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Abstract 

For many decades, turbulence has been the subject of extensive numerical research and experimental 

work. A bottleneck problem in turbulence research has been to detect and characterize the energetic, 

space and time-dependent structures and give a mathematical definition to each topology. This research 

presents a fundamental study of coherent structures, embedded in turbulent flows, by use of Proper 

Orthogonal Decomposition (POD). The target is to detect dominant features which contain the largest 

fraction of the total kinetic energy and hence contribute more to a turbulent flow. POD is proven to be a 

robust methodology in multivariate analysis of non-linear problems. This method also helps to obtain a 

low-dimensional approximation of a high-dimensional process, like a turbulent flow.  

This manuscript-based dissertation consists of five chapters. The first chapter starts with a brief 

introduction to turbulence, available simulation techniques, limitations and practical applications. Next, 

POD is introduced and the step-by-step approach is explained in detail.  

Three submitted manuscripts are presented in the subsequent chapters. Each chapter starts with 

introducing the study case and explaining the contribution of the study to the whole topic and also has its 

topic-relevant literature review. Each article consists of two parts: flow simulation and verification of the 

results at the onset, followed by POD analysis and reconstruction of the turbulent flow fields. For flow 

simulation, Large Eddy Simulation (LES) was performed to obtain databases for POD analysis. The 

simulations were validated by making comparison with available experimental and numerical studies. For 

each case, coherent topologies are characterized and the contribution of kinetic energy for each structure 

is determined and compared with previous literature.  

The first manuscript focused on investigating the large-scale dynamics in the wake of an infinite 

square cylinder. This case is the first step towards the targeting study case of this research, i.e. flow over 

rib roughened walls. The main purpose the first step is to establish a benchmark for comparison to the 
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more complicated cases of a square cylinder with a nearby wall and flow over a rib-roughened surface. 

For POD analysis, the three-dimensional velocity field is obtained from LES of the flow around an 

infinite square cylinder at a Reynolds number of Re = 500. The POD algorithm is examined and the total 

energy of the flow is found to be well captured by only a small number of eigenmodes. From the energy 

spectrum, it is learned that each eigenmode represents a particular flow characteristic embedded in the 

turbulent wake, and eigenmodes with analogous characteristics can be bundled as pairs. Qualitative 

analysis of the dominant modes provided insight as to the spatial distribution of dominant structures in the 

turbulent wake. Another outcome of this chapter is to develop physical interpretations of the energetic 

structures by examining the temporal coefficients and tracking their life-cycle. It was observed that the 

paired temporal coefficients are approximately sinusoidal with similar order of magnitude and frequency 

and a phase shift. Lastly, it was observed that the turbulent flow field can be approximated by a linear 

combination of the mean flow and a finite number of spatial modes.  

The second manuscript analyses the influence of a solid wall on the wake dynamics of an infinite 

square cylinder. Different cases have been studied by changing the distance between the cylinder and the 

bottom wall. From the simulation results, it is learned that the value of drag and lift coefficients can be 

significantly affected by a nearby solid wall. From the energy decay spectrum it is observed that the 

energy decay rate varies for different gap ratios and accordingly a physical explanation is developed. 

Visualization of coherent structures for each case shows that for larger gaps, although the structures are 

distorted and inclined away from the wall, the travelling wave characteristic persists. Lastly, it is observed 

that as the gap ratio gets smaller, energetic structures originated by the wall begin to appear in the lower 

index modes.          

The last manuscript presents a numerical study of the structures in turbulent Couette flow with 

roughness on one wall, which as mentioned earlier, is the targeting study case of this research. Flow over   

both roughened and smooth surfaces was examined in a single study. Comparison was made with 

experiments and other numerical studies to verify the LES results. The mean velocity distribution across 
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the channel shows that the rib roughness on the bottom wall has a strong effect on the velocity profile on 

the opposite wall. The energetic coherent dynamics of turbulent flow were investigated by the use of 

POD. The energy decay spectrum was analysed and the influence of a roughened wall and each roughness 

element on formation of those structures was investigated. Coherent POD modes on a spanwise sampling 

plane are detected. A secondary swirling motion is visualized, for the first two modes and counter-

rotating cells are observed in the lower region of the channel above the rough wall for the higher modes. 

At the end, a quantitative analysis of the POD temporal coefficients was performed, which characterize 

the life-cycle of each coherent dynamic. A motivating outcome of this analysis is to decompose the time 

trace curves into quasi-periodic and fluctuations curves and to detect a linkage between these life cycles 

and physical meaning and location of each energetic pattern.  

At the end, in a closuring chapter, concluding remarks of this research work are presented in more 

detail and some potential extensions have been proposed for future researchers.  
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Chapter 1 

Introduction 

“A biologist, a chemist, and a CFD Professor are taking a walk through the countryside when they come 

upon a “Bigfoot”. For some reasons, none of them knew what it was. The biologist thinks for a second 

and then declares, "I know what that is. That's a bipedal anthropoid mammal." The chemist looks for a 

second and then says, "It's just a carbon-based life form, approximately 75% water, and the remaining 

25% trace elements." The CFD Professor stares blankly for a second and then says, "Well.... I guess we 

could approximate it as a finite cylinder in a free-stream." 

1.1 Motivation 

According to the book “A Voyage Through Turbulence” [1], the history of turbulence start with 

Leonardo da Vinci, when he used the word “turbolenza” and sketched a variety of turbulent flows. 

Turbulence refers to a fluid motion with random and chaotic three-dimensional vorticity. Most of the 

industrial and environmental flows are turbulent, e.g. aerodynamic flows, combustion, rivers and even the 

exhaust jets from noses when people breathe. The advantage of studying turbulence is that you truly can 

see it almost everywhere as it mixes and diffuses, disrupts and dissipates the world around us as quoted in 

[2]. That, in fact, is the motivation and importance of studying turbulence.  
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However, there are difficulties in studying turbulent flow, primarily because it is difficult to 

fundamentally understand the physics and impossible to solve it analytically (even though the governing 

equations are known). The dynamical system is strongly non-linear and the available theory, both in the 

context of turbulence and transition-to-turbulence, is very limited. The existing exact solutions are very 

limited and they are often obtained by taking a number of assumptions which in some cases involve 

physically unrealistic suppositions. An alternate approach to analytical solution would be to numerically 

simulate the flow. A high fidelity simulation provides observation on how a turbulent flow behaves and 

what it looks like. Consequently, a simulated flow can provide insight as to its mechanisms. There are a 

number of techniques to numerically resolve the turbulent motions. The most common technique in 

engineering applications is the so-called Reynolds Averaged Navier Stokes (RANS) method. This 

approach is based on averaging the equations of motion. The opposite approach is Direct Numerical 

Simulation (DNS), in which the Navier-Stokes equations are directly solved without any turbulence 

model. Although DNS is (potentially) the most accurate way of computing turbulent flow, the 

computational cost in a DNS grows quickly with Reynolds number. Therefore, DNS is unsuitable for 

most practical computations. Some key references that describe RANS and DNS are [1], [2] and [3]. 

In between, there is Large Eddy Simulation (LES) which solves the larger motions directly (LES is 

DNS of large scales), and models (approximates) the smaller scale eddies. LES is a suitable method for 

practical flows and complex domains, but requires much more computational effort than RANS. 

Moreover, LES is able to predict the instantaneous flow characteristics and resolve turbulent flow 

structures, with much lower cost compared to DNS. That is why LES is chosen to simulate the turbulent 

flows in this research.   

It should be noted here that, a third approach to study turbulent flows, which is equally as challenging 

(for many of the same reasons), is to perform experiments. Many of key parameters of turbulent flows can 

be obtained from experimental measurements, especially when it comes to time-averaged parameters. 

Those outputs can be used to validate numerical simulations of turbulent flows. However, when it comes 
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to instantaneous flow fields, conventional experimental studies do not give as much information as one 

can obtain from numerical simulations. In other words, numerical simulations give more spatio-temporal 

information. In addition, the accuracy of results in experimental research is limited to the measuring 

instrument. Therefore numerical simulation is chosen for this research work. 

Having simulated a turbulent flow, a challenge would be to identify the coherent structures which 

dominate this multi-scale process. A thorough understanding of turbulent structures, their energy content 

and interactions, can be very beneficial for flow control purposes, flow reconstruction and even airfoil 

profile design, and therefore it is chosen as the main objective of this research. Some key review articles 

on coherent structures in turbulent flows are [4], [5] and [6].   

The most common technique used by former researchers is the so called turbulence statistics, which 

yields the mean properties and turbulence intensities. However, it does not give much information about 

the lifecycle of each structure, i.e. birth, growth, decay and death of each structure as well as its 

contribution to the whole flow. It is difficult to give a mathematical definition to a spatio-temporal 

structure, and this is where Proper Orthogonal Decomposition (POD) comes into play. POD is proven to 

be a powerful method of data analysis that facilitates a low-dimensional approximation of a high-

dimensional process. In addition, POD modes are the optimal decomposition for a turbulent flow field 

that much of the flow topology can be captured by using only a few modes. Some key references that 

used POD to investigate large scale energetic structures in turbulent flows are [7], [8] and [9]. 

1.2 Objectives and Scope 

The ultimate scope of this research is to study the turbulent flow over rough walls and the objective is  

to investigate the turbulent structures caused by rough walls. In order to reach there, the flow simulation 

was done in three steps.  
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First, it starts with study of the external incompressible flow around an infinite cylinder of square 

cross section. The reason to choose this “simple” geometry for the first step is to verify the LES and POD 

algorithm on a configuration where a number of earlier experimental and numerical studies are available 

for comparison. Another intention is to establish a benchmark for comparison to more complicated cases 

in the following studies. The main objective of the first study was to investigate large-scale velocity 

structures and their corresponding energy content in the turbulent wake region.   

In the second study, a ground plane was added and the cylinder (in the first study) was moved 

towards the bottom wall (and ultimately on the wall). The main objective for the second study is to 

investigate the interaction between the structures generated by the wall and turbulent wake.  

In the third and final study, to simulate Couette channel flow, the pressure gradient was removed and 

a moving top surface was added, such that the flow would solely be driven by the motion of the top 

surface. A number of rib elements were periodically distributed in the streamwise direction (to resemble a 

roughened surface). The scope of this particular set-up was to compare flow over rough and smooth walls 

within a single study for the same flow conditions: the top wall resembles flow over a smooth wall, while 

transitional roughness is obtained on the bottom wall. The objective of this study is to analyse the 

topologies of the coherent structures generated by the rough wall, make a comparison with those in 

proximity of the smooth wall and finally investigate the interactions of the coherent structures in the core 

region.  

In the context above, the main objectives of this thesis can be summarized as follows: 

 To investigate large-scale velocity and vorticity structures and their corresponding energy content in 

turbulent flows;  

 Examine the ability of POD in reconstructing turbulent flow;  

 Explore the structures generated by a solid wall and their interactions with the turbulent wake 

structures;   
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 Examine topologies of coherent turbulent structures generated by rough and smooth surfaces and 

investigate the interactions with coherent structures in the core region. 

1.3 The Expected Contributions 

In the first study case, an infinite square cylinder in a free stream, the Reynolds number based on the 

approach-flow velocity (ܷஶ), cylinder edge-length (ܦ) and dynamic viscosity of the flow (ߥ) was set 

to Re =  500 (ܷஶߥ/ܦ), where a number of high resolution numerical results are available for comparison. 

The first expected contribution for this study case was to resolve the turbulent wake flow field by using a 

relatively courser mesh and accordingly, lesser computational time and cost compared with the existing 

numerical simulations. Another expected contribution of this study case was to perform a qualitative 

analysis of the coherent structures in different sampling planes, spanwise and lateral, and examine the 

three-dimensionality of the turbulent wake generated by a prismatic bluff body. 

For the second study case, an infinite square cylinder in proximity of a solid wall, a similar Reynolds 

number was adopted to make a connection with the first study. The expected contribution was to examine 

how a nearby wall can affect the energy contained in the energetic eigenmodes. Investigating the 

distribution of energetic topologies and the effect of the wall on generating or distorting coherent 

topologies was also expected to be another contribution of this study.  

The last study case, turbulent Couette flow in a channel with rib-roughness on one wall, is unique 

both in terms of simulation and POD analysis. The main expected contribution from the simulation 

perspective was to examine the effect of roughness on the velocity distribution across the channel and 

consequently measure the characteristic roughness shift. From POD analysis, detecting and classifying the 

coherent structures in two sampling planes was expected to be another contribution of this study.        

In the context above, to recap the main expected contributions of the three studies: 
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 To provide a new insight as to the spatial distribution of dominant structures in the turbulent wake 

and flow inside a roughened channel; 

 Showing how one can get a sense of the physical nature of each dominant structure and structures 

with the same or similar energy content, by analyzing eigenmodes energy spectrum; 

 To present a method to develop physical interpretations of the energetic structures by examining the 

temporal coefficients and tracking their life-cycle and a technique to detect a linkage between these 

life cycles and physical meaning and location of each energetic pattern.  

1.4 Numerical Methodology 

In this section the numerical approach is outlined. First, the governing equations are determined and 

the discretisation scheme used in the simulation is explained. Then, details of LES and the POD 

methodology are outlined in the next subsections. 

1.4.1 Governing equations:  

Turbulence is a flow regime, not a property of a fluid, so the governing equations are the same as for 

laminar flow. Therefore, the Navier-Stokes (NS) and continuity equations are used as the governing 

equations to describe turbulent flow: 

 
࢏࢛߲
ݐ߲

൅ ࢐࢛
࢏࢛߲
࢐߲࢞

൅
1
ߩ
݌߲
࢏߲࢞

െ ߥ
߲ଶ࢏࢛
࢐߲࢞࢐߲࢞

ൌ  ௜ࢌ (1.1) 

and  

࢏࢛߲
࢏߲࢞

ൌ 0.  (1.2) 
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Here ࢏࢛ is the ݅ component of velocity field, p is the pressure, t is the time, ࢏࢞ is the corresponding 

Cartesian coordinate and ࢏ࢌ is an external force term. The specific terms in equation (1.1) are the 

unsteady term, the convection term, ࢐࢛
డ࢏࢛
డ࢐࢞
 , which is nonlinear, the diffusion term, the pressure term, and 

the body force. Note that the above equations are for incompressible flow, constant properties and 

Newtonian fluids.  

By the use of numerical simulation, one can approximate the above equations by a system of 

algebraic equations. With increasing computer power, this field has become more popular and is known 

as Computational Fluid Dynamics (CFD). The typical procedure in numerical approaches is as follows. 

The first step is to choose an appropriate mathematical model, i.e. a set of partial differential equations 

and proper boundary and initial conditions. The next step is to find a method for approximating the 

equations by a system of algebraic equations which is the discretization method. Based on the flow 

conditions and geometry, the discretization can be performed on a Cartesian, cylindrical, spherical or any 

curvilinear coordinate system. 

1.4.2 Discretization scheme:  

In this work, the finite volume method (FVM) is chosen as the discretization technique. In this 

approach the solution domain is covered by a finite number of control volumes. Notwithstanding that the 

FVM is regarded as the simplest approach to program, the FVM is also an efficient method for complex 

geometries, since it can accommodate many types of grids and geometries. This is the reason why the 

FVM is the most popular discretization method in CFD applications. However, this scheme also has some 

disadvantages compared with the finite difference method. When it comes to higher-order methods, it is 

more difficult to implement higher order schemes in the FVM especially in three dimensions [15].  

The basic concept of the FVM is to balance the unsteady term and the net flux across the bounding 

surfaces. Therefore the finite volume approximation deals with approximations of surface integrals, 
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න ݂݀ܵ ,
ௌ೔

  (1.3) 

where f is the net flux and S denotes the surface. In order to approximate (1.3), one needs to approximate 

the integrand (݂) first. Based on the required accuracy and computational costs, one may choose an 

approximation method among several available approaches. More details on common approaches can be 

found in [3]. 

In this work, a second order fractional step algorithm is employed to solve the governing equations. 

In the fractional step method, first the momentum equation is solved in a predictor step to obtain an 

intermediate value of the velocity field based on previous pressure field. Then a Poisson equation for the 

pressure field is formed by taking the divergence of the momentum equation. Finally, the convector step 

uses the new pressure field to obtain an improved solution for the velocity field.  

In order to describe the methodology, the starting point is to rearrange the NS equations in the form of  

௡ݑߜ

ݐߜ
ൌ ሺ෍ܽ௡௕ ௡௕ݑ

௡ െ ܽ௣ݑ௣௡ ൅ ܾሻ/ܸߩ .  (1.4) 

Here n denotes the time step, ݐߜ is the time space between the two time steps and the ܽ௜ݑ௜  terms 

represent the flux through the face ݅. Now, the mathematical algorithm would be: 

Step 1) advection-diffusion equation step:  

node velocity:   כሬറ௣ݑ ൌ ௣௡ݑ ൅ ሺݐߜߩ
3
2
௡ݑߜ

ݐߜ
െ
1
2
௡ିଵݑߜ

ݐߜ
ሻ (1.5.a) 

and 
  

face velocity:  כሬറ௘ݑ ൌ
1
2
൫ݑ௣כ ൅ ாݑ

כ ൯ െ
௘ܣ

ߥߩ ⁄ݐߜ
൫ ாܲ

௡ െ ௣ܲ
௡൯ , (1.5.b) 

where ݑሬറכ  is the intermediate velocity obtained from the momentum equation and ܣ   represents the 

control volume face. 
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Step 2) mass-conservation  

ܽ௣ ௉ܲ
ᇱ ൌ ෍ܽ௡௕ ௡ܲ௕

ᇱ ൅ ܾ (1.6) 

where b is the mass residual based on the ݑሬറכ field, i.e. 

ܾ ൌ െܣൣߩ௫ሺݑሬറ௘כ െ כሬറ௪ݑ ሻ ൅ כሬറ௡ݑ௬ሺܣ െ ሻכሬറ௦ݑ ൅ ሬറ௙ݑ௭൫ܣ
כ െ ሬറ௕ݑ

 ൯൧ (1.7)כ

Here ݕܣ ,ݔܣ and ݖܣ are the face areas in x, y and z direction respectively. At the end of this step the 

pressure correction term will be obtained.  

Step 3) pressure correction step 

௉ܲ
௡ାଵ ൌ ௉ܲ

௡ ൅ ௉ܲ
ᇱ  (1.8) 

Step 4) updating the velocities 

node velocity:  ௣௡ାଵݑ ൌ כ௣ݑ െ
ݐߜ

ሻݔߜሺ2ߩ
ሺ ாܲ

௡ାଵ െ ௐܲ
௡ାଵሻ (1.9.a) 

and 
 

 

face velocity:  ሬറ௘௡ାଵݑ  ൌ ሬറ௘௡ݑ െ
௘ܣ

ߥߩ ⁄ݐߜ
ሺ ாܲ

ᇱ െ ௉ܲ
ᇱ ሻ. (1.9.b) 

More details about the fractional step methodology can be found in [3] and [10]. 

1.4.3 Turbulence modeling:  

As mentioned previously, in this study LES is employed for modelling the flow. In LES one solves 

the large-scale motions and approximates the small-scale motions. This approach is based on 

Kolmogorov’s theory of self-similarity, which states that the large eddies of the flow are dependent on the 

flow geometry, while the smaller eddies are more universal [11]. The large scale motions can be 

computed directly while the effect of the small-scale motions represented by a subgrid-scale model (SGS 

model). First the flow is decomposed as 
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௜ݑ ൌ ത௜ݑ ൅ ௜ݑ
ᇱ ,  (1.10) 

where ݑത௜ is the large scale component of the velocity field and ݑ௜
ᇱ is the SGS part. The large scale velocity 

  .ത௜ can be obtained by a filtering technique, i.eݑ

Ԧሻݔത௜ሺݑ ൌ නܩሺ ,Ԧݔ  ԦߙԦሻ݀ߙሺݑԦሻߙ (1.11) 

where the function ܩሺݔԦ,  Ԧߙ Ԧ andݔ Ԧሻ is called the filter kernel, which eliminates the small-scale eddies, andߙ

are the coordinates. There are several possible filtering techniques, e.g. Gaussian, box filter and cut-off, 

that can be applied. Every filter has a characteristic width, ߂, and the condition ߂ ൐ ݄ (where ݄ is the grid 

size) should be satisfied. After implicitly filtering the incompressible Navier-Stokes equations with a 

spatial filter of characteristic width, ߂, the governing equations become 

ത௜ݑ߲
ݐ߲

൅
߲ሺݑത௜ݑത௝ሻ
௝ݔ߲

ൌ െ
1
ߩ
݌߲
௜ݔ߲

൅ ߥ
߲ଶݑത௜
௝ݔ௝߲ݔ߲

െ
߲߬௜௝
௝ݔ߲

  (1.12) 

and  

ത௜ݑ߲
௜ݔ߲

ൌ 0 ,  (1.13) 

where ݑത௜ is the filtered velocity component and the variable ߬௜௝ is the so-called subgrid-scale stress (SGS) 

term which is given by 

߬௜௝ ൌ ఫതതതതതݑపݑ െ ത௝ݑത௜ݑ .  (1.14) 

For closure, a model relation is required for the SGS term. Perhaps the simplest and most common 

model used for the subgrid stresses is the Smagorinsky model which uses an eddy viscosity formulation 

for the SGS term, i.e.  

߬௜௝ െ
1
3
௜௝߬௞௞ߜ ൌ െ2ߥ௧ܵҧ௜௝ ,  (1.15) 

in which the SGS viscosity ሺߥ௧ሻ needs to be specified. From dimensional analysis  
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௧ߥ ൌ ௌܥ
ଶ߂ଶ|ܵҧ| ,  (1.16) 

where ܥௌ  is the model parameter, ܵҧ௜௝ ൌ
ଵ

ଶ
൫߲ݑത௜ ⁄௝ݔ߲ ൅ ത௝ݑ߲ ⁄௜ݔ߲ ൯    and |ܵҧ| ൌ ൫ܵҧ௜௝ܵҧ௜௝൯

భ
మ. In isotropic 

turbulence ܥௌ ൎ 0.2 can be used, but in general, ܥௌ  is not a constant; it may be a function of Reynolds 

number, can be affected by a wall and may take different values in different flows. The Smagorinsky 

model is poor at representing details of the SGS stresses, especially at higher Reynolds numbers. In the 

current study, the so called Dynamic Smagorinsky (DS) model of Germano et al. [12] is employed to 

improve the modelling. In this model, ܥௌ  is determined as a variable of space and time, utilizing two 

filters with different characteristic scales: a grid filter and a test filter. Additional details of the 

mathematical formulation of this methodology can be found in [13]. 

1.4.4 Proper Orthogonal Decomposition:  

As mentioned previously POD is a powerful method of data analysis that can be used to obtain a low-

dimensional approximation of a high-dimensional process. POD is also known as the Karhunen–Loéve 

Expansion. There are applications of POD in different fields: turbulent flow modelling, structural 

vibrations, image processing, signal analysis, etc. POD was first introduced to the study of turbulence by 

Lumley [11]. In order to identify coherent structures, Lumley used functions of spatial variables that have 

the maximum energy content. So based on his definition, coherent structures are linear combinations of 

  ,ሻ′s which maximize the following expression࢞ሺࢌ

,ሻ࢞ሺࢌሺۃ ,࢞ሺ࢛ ۄሻሻଶݐ

൫ࢌሺ࢞ሻ, ሻ൯࢞ሺࢌ
,  (1.17) 

where (A,B) = ׬ തఆܤܣ  ;ሻ, that maximizes the equation above࢞ଵሺࢌ Assume there is a function, call it .ߗ݀

then if the flow field ࢛ሺ࢞,  ሻ, the average energy content is larger than if the࢞૚ሺࢌ  ሻ, is projected alongݐ

flow field is projected along any other direction. If one then repeats the maximization process in the space 
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orthogonal to ࢌ૚ሺ࢞ሻ, a set of orthogonal functions  ࢏ࢌሺ࢞ሻ can be determined. The  ࢌ௜ሺ࢞ሻ’s are called the 

orthogonal basis functions [17].  

The POD methodology attempts to decompose the flow field (ࣘሺ࢏࢞,  ሻ) into an orthonormal system ofݐ

spatial modes (ࣘ࢓ሺ࢏࢞ሻ) and corresponding temporal coefficients (ܽ௠ሺݐሻ), where 

ࣘሺ࢏࢞, ሻݐ ൌ ࣘ૙ሺ࢏࢞ሻ ൅ ෍ ܽ௠ሺݐሻࣘ࢓ሺ࢏࢞ሻ
ெ

௠ୀଵ

  (1.18) 

The representation of equation (1.18) is not unique; there are several choices of functions ࣘ࢓ሺ࢏࢞ሻ, based 

on different types of series such as Fourier series, Legendre or Chebyshev polynomials, etc. Likewise, the 

time coefficients, ܽ௠ሺݐሻ, are different. The POD is concerned with one possible choice of function: the 

POD eigenfunctions are optimal with respect to energy content, which means that any other set of modes 

contains less energy on average than the corresponding POD eigenfunctions. One can use this property to 

determine the most energetic structures of the flow. 

To compute the POD coefficients, the method of snapshots by Sirovich [5] is employed in this study. 

The coefficients are obtained from the solution of an eigenvalue problem associated with the correlation 

matrix. For example, if a velocity field is used as the input data for POD analysis, the correlation matrix 

would be  

௠௡ܥ ൌ
1
ܯ
න ሾ࢛Ԣሺ࢏࢞, ,࢏࢞Ԣሺ࢛௠ሻݐ ௡ሻሿݐ
ఆ

࢏࢞݀ ,  ሺ1.19ሻ 

where ࢛Ԣሺ࢏࢞,   ,.ሻ represents the fluctuating part of the flow field, i.eݐ

,࢏࢞ᇱሺ࢛ ሻݐ ൌ ,࢏࢞ሺ࢛ ሻݐ െ ሻ࢏࢞૙ሺࢁ .  ሺ1.20ሻ 

After solving the eigenvalue problem associated with the correlation matrix, a series of eigenvalues 

and corresponding eigenvectors are obtained; the eigenvectors are the temporal coefficients (ܽ௠ሺݐሻ) in 

(1.18). The eigenvalues are used to compute the total energy and evaluate the energy captured by each 
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mode. Moreover, there is a mathematical relation between the temporal coefficients and the 

eigenvalues ߣ௜ given by  

ܽప ఫܽതതതതത ൌ
1
ܯ
෍ ܽ௜ሺݐ௠ሻ ௝ܽሺݐ௠ሻ
ெ

௠ୀଵ

ൌ ௜௝ߜ௜ߣ .  (1.21) 

Finally, the POD modes are computed as  

ሻ࢏࢞ሺ࢓࢛ ൌ
1

௠ߣܯ
෍ ܽ௠ሺݐ௡ሻ࢛Ԣሺ࢏࢞, ௡ሻݐ
ெ

௠ୀଵ

.  (1.22) 

A MATLAB code was developed to implement the POD algorithm based on the above formulation.  

1.5 Literature Review 

As mentioned before, there are a number of techniques to numerically resolve the turbulent motions, 

and among these LES is chosen to simulate the turbulent flows in this thesis. The first attempt to 

numerically solve a turbulent flow goes back to 1922, when Richardson [14], a meteorologist, developed 

a numerical scheme to solve the equations applied to the atmosphere. Four decades after, another 

meteorologist named Smagorinsky proposed the famous Smagorinsky eddy viscosity model [15], which 

marked the beginning of Large Eddy Simulation of turbulence. The Smagorinsky model was improved by 

Lilly [16], who calculated the value of the Smagorinsky’s constant based on three-dimensional isotropic 

turbulence. Chollet and Lesieur [17] used the spectral eddy viscosity to develop LES in spectral space, 

which allows for conquering the scale-separation phenomenon. This technique was modified by Ducros et 

al. [18] for application to shear flows. Later, Germano and co-workers ([12] and [19]) developed a 

physical-space eddy-viscosity concept, in which the Smagorinsky constant was dynamically evaluated 

through a double filtering, which is used in the present study.     

Among the present techniques for studying turbulent structures, POD is selected in this research. 

POD, which is also known as the Karhunen–Loéve Expansion, was developed by several researchers (e.g. 
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[4], [5], [20] and [21]) and in different fields: turbulent flow analysis, meteorology, structural vibrations, 

image processing and signal analysis. POD was first proposed for the study of turbulence by Lumley [4]. 

Sirovich [5] developed the snapshot POD method based on the Karhunen–Loéve Expansion. This method 

has much less computational cost than the direct computation of POD, and therefore is being used in this 

study. Aubry et al. [6] proposed the idea of constructing low-dimensional models that exhibit most of the 

coherent properties of the flow. Berkooz et al. [22] performed a comprehensive assessment of POD and 

its abilities for turbulence structural analysis. POD has since been extensively used for many turbulence 

flow studies. Some of the alternatives to POD method are coherent structure tracking (CST) which was 

developed by Scouten [23], linear-stochastic estimation (LSE) by Adrian [24] and wavelet transformation 

by Brown et al. [25]. Among all the existing techniques, POD was proven to be more powerful in terms 

of the level of details it reveals when it comes to the study of coherent structures. Due to the memory 

limitations of computers in the past, the majority of POD analysis was performed on two-dimensional 

sampling planes. But the growth of computer technologies could remove this computational limitation 

and can make three-dimensional POD analysis possible in the near future.   

There have been a number of high resolution numerical and experimental studies of viscous 

incompressible flow past a square cylinder. Rodi [14] performed a comprehensive LES study of flow past 

different types of bluff-bodies including a long square cylinder. Norberg [26] conducted an experimental 

investigation of flow around rectangular cylinders at a range of Reynolds numbers from 400 to 30,000. 

Later, Sohankar et al. [27] presented a high fidelity Direct Numerical Simulation (DNS) of two- and 

three-dimensional unsteady flow around a square cylinder at Re = 150 - 500. The same group also 

performed LES of flow past a square cylinder at a higher Reynolds number (Re = 22,000) [28].      

The study of the energetic topologies by the use of POD has attracted specific attention in recent 

years. The energetic flow structures in the wake region of an infinite circular cylinder have been extracted 

by POD [30]. Van Oudheusden et al. [31] characterized the coherent wake flow and extracted the 

shedding phase of the velocity field for a flow past a square cylinder at relatively high Reynolds number 
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(Re = 10,000). Results for three-dimensional flow past a square cylinder confined between two parallel 

walls is documented in [32]. Perrin et al. [8] extracted the first three dominant structures in the wake 

region of an infinite circular cylinder. Giordano et al. [33] used the data obtained from particle image 

velocimetry (PIV) measurements of both infinite and finite circular cylinder flows to perform POD 

analysis. Their main focus was on the study of vortex shedding and velocity structures in the wake region. 

Frederich et al. [9] conducted LES for a finite wall-mounted circular cylinder to investigate the large-

scale dynamics of the flow in the wake region.  

Notwithstanding the comprehensive studies on an infinite square cylinder in a free stream and the 

existence of high resolution numerical and experimental results, the study of the energetic coherent 

structures and analysis of the wake is not yet complete. The existing literature, e.g. [31], does not go that 

deep into the analysis of the temporal coefficients and is limited in terms of the number of modes used to 

reconstruct the flow. A significant aspect of this study compared to previous studies is to perform POD 

analysis for a low Reynolds number, yet turbulent wake flow where experimental data are available for 

validation (e.g. [26] and [34]). Also, the lower Reynolds number enables larger time gaps between the 

time steps and therefore the input database for POD analysis covers more time history of the flow (due to 

memory limitations, the number of snapshots cannot be too large). In addition, the present study 

emphasizes the temporal coefficients and tracks the variation of the energetic modes and attempts to 

determine the physical meaning of each mode. 

For an infinite cylinder in proximity to a solid wall, there are a number of previous experimental and 

numerical studies, both in terms of circular and square geometries. A comprehensive experimental study 

for a high Reynolds number (Re = 45,000) flow around a circular cylinder in proximity to a wall, and for 

gap-to-diameter ratios in the range of 0.2 to 0.4 was performed by Bearman et al. [35]. Later, Bailey et al. 

[36] performed a similar experimental study of a square cylinder for different gap-to-diameter ratios at a 

Reynolds number of Re = 19,000. They classified the wake flow into three distinct regimes based on the 

gap width and defined a critical gap for which vortex shedding is suppressed due to presence of wall. This 
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critical gap-to-diameter ratio was also investigated by Bosch et al. [37], Durao et al. [38] and Martinuzzi 

et al. [39] using different approaches. Later, Price et al. [40] extended that study by classifying the flow 

into four regimes based on the gap width and boundary layer thickness.   

Despite the previous studies on cylinders in proximity to a solid wall, investigation of the wake flow 

characteristics and topologies caused by solid wall and bluff body is far from complete. Wang et al. [41] 

studied the flow characteristics in the near-wake of a circular cylinder by the use of a vortex identification 

method. Later, Lin et al. [42] examined these flow characteristics in more detail for a wide range of gap-

to-diameter ratios (0.0 to 4.0). They also investigated the mechanism of vortex shedding suppression (for 

circular cylinder cases). In a recent study by Shi et al. [43], the wake flow characteristics of a square 

cylinder in proximity to a solid wall was investigated by the use of POD. The database for the POD 

analysis was obtained for gap-to-diameter ratios in the range of 0.1 to 0.8 by time-resolved particle image 

velocimetry (TR-PIV) measurements at high temporal resolution.  

Previous studies of rib-roughened channel flow are more focused on pressure-driven flows, rather 

than wall driven Couette flows. Miyake et al. [44] conducted a DNS study of pressure-driven channel 

flow with transverse rib roughness on both walls. Later, Ikeda and Durbin [45] performed DNS of a 

configuration with uneven rib heights. Cui et al. [46] conducted an LES study to investigate mean and 

instantaneous flow structures of pressure driven flow in a rib roughened channel for different element 

spacing. A series of studies by Leonardi and co workers (e.g. [47-48]) used DNS to study turbulent 

channel flow with a rib-roughened wall for a wide range of w/k values, where w is the separation distance 

between the rib elements and k is the rib height. Krogstad et al. [49] studied a fully turbulent pressure-

driven symmetric channel flow for cases with smooth walls and rod-roughness on both walls using both 

hot-wire anemometry and DNS. They also assessed the turbulence structure in terms of the Reynolds 

stress ratios and anisotropy tensor. Similar symmetric configurations have been studied by other authors, 

e.g., Bakken et al. [50] and Ashrafian et al. [51]. Orlandi et al. [52] conducted a DNS study to investigate 

the effect of element shape and orientation on the turbulence structure. Later, Burattini et al. [53] 
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performed simultaneous experimental and numerical analyses of asymmetric channel flow with roughness 

on one wall for a range of Reynolds numbers. They extensively studied the statistical moments of the 

velocity fluctuations, turbulent length scales and energy spectra, and their variation with Reynolds 

number. 

Notwithstanding previous numerical and experimental results on pressure driven channel flows, the 

study of turbulent Couette flow on roughened surfaces is far from complete. In two experimental studies 

by Aydin and Leutheusser [54-55] plane Couette flows with two smooth walls and with two rough walls 

were analysed in detail. They compared the mean velocity distribution and turbulent intensities between 

the smooth and rough wall cases; the flow was symmetric for both cases. Papavassiliou et al. [56] 

conducted a DNS study of a plane Couette flow to investigate large scale secondary flow structures, 

which are not be observed in pressure-driven flows. Wang and Bergstrom [57] applied and validated LES 

for a simulation of turbulent Couette flow for a similar Reynolds number. 

The existing literature on analyzing the large-scale dominant structures in turbulent Couette channel 

flow and interaction of flow topologies associated with the wall and bulk flow is limited. Moehlis et al. 

[58] investigated coherent structures in a plane Couette flow using POD. Their work was later extended 

by Smith et al. [59] to obtain a low-dimensional model in a minimal flow unit. Tsukahara et al. [60] 

extracted three-dimensional spatial POD modes from a DNS analysis of a plane Couette flow.  

To the author’s knowledge no one has yet studied plane Couette flow with rib roughness on one wall, 

which is the main difference of the present work with previous studies. Another contribution of this study 

is to analyze the large-scale velocity structures in turbulent Couette channel flow and the flow topology 

associated with the roughness elements using POD, which has not been done in the past. Lastly, a new 

insight into the temporal coefficients’ life cycles has been introduced which may encourage new 

development ideas in POD analysis of turbulent channel flows.  
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1.6 Thesis Outline 

This manuscript-based dissertation consists of five chapters; each chapter has its own individual 

reference list. 

Chapter 2 presents the study case of flow around an infinite cylinder of square cross section. It starts 

with a literature review, followed by the numerical methodology and flow set-up details. Choosing a 

common geometry made it possible to validate the LES simulations before performing POD analysis. 

Large-scale velocity structures and their corresponding energy content in the wake region were 

investigated on sampling planes in two directions and ultimately, the ability of POD in reconstructing a 

turbulent wake flow was examined. The results was documented and submitted to the International 

Journal of Fluid Mechanics Research.   

In chapter 3 the effect of a solid wall on the wake dynamics of an infinite square cylinder was 

investigated. Unlike chapter 2, this study case emphasizes less on LES verifications and focuses more on 

POD analysis. The flow structures associated with the proximity of wall were analyzed, compared to the 

benchmark study and the results were documented and submitted to the 10th International ERCOFTAC 

Symposium on Engineering Turbulence Modeling and Measurements. 

Chapter 4 presents the last study case, study of coherent structures in a turbulent Couette flow with 

rib-shaped roughness elements on one wall. It starts with literature reviews on pressure-driven flows with 

rib-roughened walls and Couette flows with rough and smooth walls. Then, the literature on POD analysis 

of plane Couette flows and rib-roughened Poiseuille flows is reviewed. Numerical methodology and flow 

set-up details are presented next. Flow simulation results are presented in detail and comparison of flow 

over rough and smooth walls are discussed. At the end, topologies of the coherent structures generated by 

the rough and smooth walls are investigated on sampling planes in two directions. A comparison is made 

to the first two study cases and the results were documented and submitted to the International Journal of 

Heat and Fluid Flow. 
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Conclusions and recommendations for future extension are presented in Chapter 5. At the end, results 

of a separate side work, the study of a turbulent lid-driven cavity flow, are briefly presented in Appendix. 

The relevance of this subject to the case study 3, which is the motivation of this side study, was explained 

first. The results were primarily prepared for the 7th International Symposium on Turbulence, Heat and 

Mass Transfer in Sicily, Italy (September 2012), and later an extended work was submitted to the Journal 

of Turbulence.  
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Chapter 2  

Capturing the Large-scale Dynamics in the Wake of 
an Infinite Square Cylinder using Proper Orthogonal 
Decomposition 

A similar version of this chapter has been submitted as:  

o M. Samani, M. Einian and D.J. Bergstrom, “Capturing the large-scale dynamics in the wake of an 

infinite square cylinder using Proper Orthogonal Decomposition”, International Journal of Fluid 

Mechanics Research (Under Review). 

The flow simulation results and POD analysis were performed by the main author. Partial 

development of the LES code was contributed by the co-authors.    

In addition, a part of this chapter was presented at the following conference: 

o M. Samani, M. Einian, D.J. Bergstrom, Use of Proper Orthogonal Decomposition to Investigate 

the Large-Scale Dynamics in the Wake Region of an Infinite Square Cylinder, 18th Annual 

Conference of the CFD Society of Canada, London, ON, Canada, May 17-19, 2010. 

The flow simulation results and POD analysis were performed by the main author. Partial 

development of the LES code was contributed by the first co-author and partial development of 

the POD routine formulation as well as initiating the LES code were performed by the second co-

author.  
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Preamble: 

The first step to simulate turbulent flow over rib-roughened surfaces is to validate the LES approach 

and most importantly verify the POD algorithm. To this end, a proper starting point is to examine the 

wake flow behind a square cylinder, and then add a nearby wall and next place the cylinder on the wall 

(which resembles a single rib), which is studied in an independent study in step 2. Finally, to make a 

sequence of those obstacles to resemble a rough surface, this is the ultimate target of this thesis.  

Another benefit of choosing this common geometry for the first step is that because a number of 

experimental and high fidelity numerical studies are available for comparison, the used LES technique 

and POD algorithm can be verified and validated for next steps.  

Another contribution of this chapter to the overall study is to establish a benchmark for comparison to 

more complicated cases in the next steps. As a result, this chapter equally concentrates on an upfront 

validation of LES and POD and smoothes the way for the next step.  
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Abstract 

In this work, Proper Orthogonal Decomposition (POD) is applied to determine the large-scale three-

dimensional space and time dependent flow structures in the near-wake region of an infinite square 

cylinder. One purpose of this study is to establish a benchmark for comparison to the more complicated 

case of flow over a rib-roughened surface. The three-dimensional velocity field obtained from a low 

resolution Large Eddy Simulation (LES) of the flow around an infinite square cylinder at a Reynolds 

number of ܴ݁  ൌ  500 is used as the input data for the POD analysis. The finite-volume method was used 

to discretize the filtered Navier-Stokes equations on a non-uniform collocated grid. A two-step fractional 

step method was used to solve the discrete equations, and a pressure correction method was used to 

ensure mass conservation. For the POD analysis, streamwise and wall-normal velocity components along 

with spanwise vorticity are used as the computational variables. The energy of the flow was found to be 

well captured by only a small number of eigenmodes, and the flow cycle can be accurately reconstructed 

using less than 60 eigenmodes. Qualitative analysis of the dominant modes provides insight as to the 

large-scale structures in the wake and their interaction with the developed turbulence in the outer flow.  

2.1 Introduction 

The external incompressible flow around an infinite cylinder of square cross section is a standard 

topic in the study of bluff body flows. The term “infinite” refers to the case when cylinder’s end effects 

are negligible. Although it is possible to find many numerical works related to the analysis of the infinite 

cylinder, studies on characterizing the coherent structures of this flow are more limited. In spite of the 

simple two-dimensional geometry, the turbulent wake is highly unsteady and three-dimensional. From an 

engineering perspective, the study of square cylinder flows is of interest as a proto-typical bluff-body  
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flow with applications such as the flow over long slender beams. For flows around bluff bodies with 

sharp corners, e.g. a square cylinder, cube or diamond, the geometry predetermines the separation point 

and therefore the “numerical solution becomes less sensitive to modeling in the near-wall region” [1]. At 

very low Reynolds numbers, a steady two-dimensional, symmetric, fully-attached flow pattern is 

observed. As the Reynolds number is increased to about Re = 50, the flow separation occurs at the rear 

corners of the cylinder, but the flow stays laminar, steady and two-dimensional. Further increasing the 

Reynolds number causes disappearing of the upstream-downstream symmetry and a pair of symmetric 

vortices forms behind the cylinder. These vortices or eddies grow longer with increasing Reynolds 

number. As the Reynolds number increases beyond the critical value (ܴ݁  ൌ  125), the flow separation 

starts moving towards the leading corners until the Reynolds number reaches ܴ݁  ൌ  175  [2]. Further 

increasing the Reynolds number causes antisymmetric and time-dependent motions to develop in the 

flow. For the infinite cylinder case, the wake flow is dominated by the time-periodic phenomenon of 

Kármán vortex shedding from the sides of the cylinder. The study of vortex shedding is an important 

application for research on flow control since it leads to sharp changes in the instantaneous drag, lift and 

vibration forces.    

Due to the geometrical simplicity and phenomenon of flow separation, the viscous flow past an 

infinite square cylinder has been extensively studied over the past two decades. A Direct Numerical 

Simulation (DNS) of two- and three-dimensional unsteady flow around a square cylinder was performed 

in [2]. In general, their results were in a good agreement with existing experiments. The LES results for 

the flow past different types of bluff-bodies including a long square cylinder were documented in [3]. 

LES of flow past a square cylinder at a higher Reynolds number (Re = 22,000) was reported in [4]. A 

comparison between three different subgrid-scale (SGS) models, i.e. the Smagorinsky, dynamic 

Smagorinksy and dynamic one-equation model, was presented in their work.  
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In the context of the study of wake flows, the identification of the most-energetic flow topologies has 

attracted specific attention in recent years, and proper orthogonal decomposition (POD) has been 

extensively used to analyze the constituent topologies. A high-resolution direct numerical simulation 

(DNS) database was employed by by Ma and Karniadakis [5] to extract the most-energetic flow structures 

in the wake region of an infinite circular cylinder. POD was used to build a low-order model for two-

dimensional flow past a square cylinder at incidence in [6]. They characterized the coherent wake flow 

unsteadiness and extracted the shedding phase of the velocity fields, by using mean and first two 

dominant modes. Buffoni et al. [7] studied a more complex three-dimensional flow past a square cylinder 

placed between two parallel walls. Advanced time resolved particle image velocimetry (TRPIV) 

measurements of flow past an infinite circular cylinder were performed by Perrin et al. [8] and they used 

the data to identify the first three dominant structures in the wake region based on POD. The dependence 

of the POD results on the domain size is also discussed in their work. PIV measurements of both infinite 

and finite circular cylinder flows were performed by Giordano et al. [9] to obtain input data for POD 

analysis. Their main focus was on the study of vortex shedding and velocity structures of the wake region. 

Frederich et al. [10] conducted LES for a finite circular wall-mounted cylinder to investigate the large-

scale dynamics of the flow in the wake region. They characterized the flow features using two 

approaches: POD and Coherent Structure Tracking (CST).  

The present study focuses on investigating the large-scale velocity structures and their corresponding 

energy content in the wake region of an infinite square cylinder. The Reynolds number based on the 

approach-flow velocity and cylinder edge-length (ܷஶߥ/ܦ) was set to ܴ݁ = 500. Here ܷஶ is the approach-

flow velocity, ܦ is the cylinder edge-length and ߥ is the dynamic viscosity of the fluid. The flow results 

from LES are decomposed into orthogonal eigenmodes using the snapshot POD method of Sirovich [12]. 

The POD analysis specifically considers the two-dimensional velocity components and vorticity for plane 

sections in the wake region which are aligned perpendicular and parallel to the free stream flow. 
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2.2 Numerical Methodology 

2.2.1 Flow configuration and LES: 

For the purpose of generating a full-order database for the POD analysis, LES is utilized in this study. 

LES calculates the large-scale motions directly, and approximates the small-scale motions using a SGS 

model. For LES, the incompressible Navier-Stokes (NS) and continuity equations (for a Newtonian flow 

with constant properties) are implicitly filtered with a spatial filter of characteristic width (߂), so that the 

governing equations become 

࢏ഥ࢛߲
ݐ߲
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and  

࢏ഥ࢛߲
࢏߲࢞

ൌ 0,  ሺ2.2ሻ 

where ࢛ഥ࢏ is the filtered velocity component, t is the time, ݌ is the local pressure, ߩ is the fluid density, ࢏࢞ 

is the corresponding Cartesian coordinate and ߬௜௝ is the so-called subgrid-scale stress (SGS) term, which 

is given by 

߬௜௝ ൌ ଚതതതതതത࢛ଙ࢛ െ  ሺ2.3ሻ .࢐ഥ࢛࢏ഥ࢛

A cell-centered finite-volume method was used to discretise the filtered Navier-Stokes equations on a 

non-uniform collocated grid. A semi-implicit Crank-Nicolson scheme was employed for the viscous 

terms.  A two-step fractional step method was used to solve the discrete transport equations, and a 

pressure correction method was implemented to ensure mass conservation at each time step. The pressure 

correction equation was solved using a multi-grid method which accelerates the iterative solution by 

considering coarser grids. 

Using an eddy viscosity formulation, the SGS term is expressed as 
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߬௜௝ െ
1
3
௜௝߬௞௞ߜ ൌ െ2ߥௌீௌܵҧ௜௝ ሺ2.4ሻ 

where ߜ௜௝ is the Kronecker delta, ܵҧ௜௝ is the deformations tensor and ߥௌீௌ is the SGS viscosity, which 

needs to be modeled. The present results are based on the so called Dynamic Smagorinsky (DS) model of 

Germano et al. [11]. The dynamic Smagorinsky model for the SGS eddy viscosity, ߥௌீௌ, takes the form 

ௌீௌߥ ൌ  ௦Δଶ|ܵҧ| ሺ2.5ሻܥ

where ܵҧ௜௝ ൌ
ଵ

ଶ
൫߲࢛ഥ࢏ ⁄࢐߲࢞ ൅ ࢐ഥ࢛߲ ⁄࢏߲࢞ ൯   and |ܵҧ| ൌ ൫2ܵҧ௜௝ܵҧ௜௝൯

భ
మ. In this model, ܥ௦ is determined as a variable 

of space and time, utilizing two filters with different characteristic scales: a grid filter and a test filter. 

Additional details of the mathematical formulation of this methodology can be found in [11] and [13]. In 

the present code, the dynamic coefficient is locally smoothed so that plane averaging of the model 

coefficient is not required for numerical stability. 

 

 

 

 

 

 

 

 

 

 

 

The physical solution domain was discretized using a rectangular 646464 non-uniform grid. 

Figure 2.1 shows the grid configuration for the infinite cylinder. The solution domain extended 6 cylinder 

Figure 2.1: Cartesian computational grid configuration around the infinite cylinder 
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widths upstream and 19 cylinder widths downstream. The spanwise (x2) and normal (x3) extent of the 

domain is 8 and 10 cylinder widths, respectively. This domain size was found to be adequate in previous 

LES studies, e.g., [32] and [33].  

The surfaces of the cylinder were modeled as non-slip surfaces, while the upper and lower surfaces of 

the solution domain were modeled as slip surfaces. A uniform laminar velocity profile was used for the 

approach flow, while a convective boundary condition was applied at the outlet. A periodic boundary 

condition was implemented on the lateral surfaces of the solution domain which models a cylinder of 

infinite extent. Although the grid was relatively small, comparisons with other studies demonstrates that 

the LES accurately resolved the large-scale velocity field, which was then used for the POD analysis.  

Given the need for extensive time integration to obtain the database for the POD, it was efficient to follow 

the approach of other studies (e.g. [5]) and use a relatively small grid for the simulation. 

2.2.2 Proper Orthogonal Decomposition:  

Proper Orthogonal Decomposition is the methodology being used in this study to first identify the 

energy containing structures in the evolving dynamics, and then to reproduce the main turbulent wake 

structures using a finite number of modes. The basic concept of the POD methodology is straightforward: 

the attempt is to decompose the time-dependent fluctuating part of the flow field (࢛Ԣሺ࢞,  ሻ) into a systemݐ

of spatial modes ሺࣘ࢑ሺ࢞ሻሻ and associated temporal coefficients ሺܽ௞ሺݐሻሻ, i.e. 

,࢞Ԣሺ࢛ ሻݐ ൌ ෍ࣘ࢑ሺ࢞ሻܽ௞ሺݐሻ
௄

௞ୀଵ

, ሺ2.6ሻ 

where ܽ௞ሺݐሻ represents the amplitude of the spatial mode ࣘ࢑ሺ࢞ሻ and ܭ is the series cut-off with 

maximum being the total number of snapshots. For a given instantaneous field the fluctuation field can be 

obtained by subtracting the ensemble average ࢕࢛ሺ࢞ሻ from the instantaneous field (࢛ሺ࢞,    .ሻ), i.eݐ

,࢞Ԣሺ࢛ ሻݐ ൌ ,࢞ሺ࢛ ሻݐ െ  ሻ. ሺ2.7ሻ࢞ሺ࢕࢛
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The representation of equation (2.6) is not unique, i.e. there are several choices of functions ࣘ࢑ሺ࢞ሻ 

such as Fourier series, Legendre or Chebyshev polynomials. The main advantage of POD over the other 

methods is that POD requires fewer modes to represent a system. The POD eigenfunctions are optimal 

with respect to energy content which means that any other set of modes contains less energy on average 

than the corresponding set of POD eigenfunctions. For practical applications, this property is used to 

determine the most energetic structures of a flow. Following the snapshot method of Sirovich [12], one 

can obtain the coefficients by solving an eigenvalue problem which is based on the covariance matrix of 

the velocity field correlating all points in the domain, 

௣௤ܥ ൌ
1
ܭ
න ,࢞Ԣ൫࢛ൣ .௣൯ݐ ,࢞Ԣ൫࢛ ௤൯൧ݐ
ఆ

 ሺ2.8ሻ .࢞݀

Here ݐ௣ and ݐ௤ are two sampling times and ߗ is the POD domain. After solving the eigenvalue 

problem, a series of eigenvalues and corresponding eigenvectors are obtained. The eigenvalues are used 

to compute the energy captured by each mode.  Finally, the POD vector modes can be obtained as 

ࣘሺ࢞ሻ࢑ ൌ නܽ௞ሺݐሻ ,࢞Ԣሺ࢛ ሻݐ  ሺ2.9ሻ .ݐ݀

Snapshot POD based on the above formulation is applied to two-dimensional slices of the flow field 

perpendicular to the cylinder axis and to the flow direction. In each plane, two-dimensional velocity and 

vorticity components are used as the computational data for the POD analysis. The domain chosen to 

perform POD analysis affects the result: in this case the POD domain extended 9D downstream in the 

wake region and 6D in the spanwise direction. The ensemble of 1200 snapshots extended over a time 

duration of 26 convective units (ܦ/ܷஶ). The time step for the simulation was set to 0.001ܦ/ܷஶ, and 

snapshots were taken every 20th time step. A MATLAB code was written to implement the POD 

algorithm based on the above formulation.  
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2.3 Selected Results and Discussion 

2.3.1 Vortex Shedding Frequency:  

To check the validity of the LES results, some global flow parameters were selected to make a 

comparison with the results of previous experimental and numerical studies. Time traces of the velocity 

and vorticity components can be used to assess the periodicity of the wake. In order to follow the 

evolution of the flow field, velocities, vorticity and pressure were collected from a number of numerical 

probes located  in  the wake  region. Figure  2.2  illustrates  a  time series of  the  lateral velocity (ݑଷ)  and  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.2: Time trace of (a) lateral velocity and (b) spanwise vorticity 
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spanwise vorticity (߱ଶ) component from a probe located 1.8ܦ behind the cylinder and on the centre line. 

Both samples exhibit irregularly changing amplitude with zero mean. The existence of spanwise velocity 

fluctuations illustrates the three-dimensionality of the turbulent wake. Moreover, these signals are a clear 

indication of vortex shedding. 

 

Figure 2.3: Power spectrum based on spanwise velocity component 

By performing a Fast Fourier Transform (FFT) on the signals and calculating the power spectrum, the 

dominant shedding frequency can be identified. The frequency spectrum plotted in Figure 2.3 shows a 

peak in the spectrum of the spanwise velocity signal which occurs at a frequency of 6.2 Hz. Using 

cylinder edge-length and approach-flow velocity, this frequency corresponds to Strouhal number of 

ݎݐܵ ൌ ஶܷ/ܦ݂   ൌ  0.122. The same value was obtained from the frequency spectrum of other flow 

variables, e.g. the pressure and spanwise vorticity. The Strouhal number obtained in the present work is in 

a reasonable agreement with the results of other experimental and computational studies for Re = 500, 

e.g. ܵݎݐ  ൌ  0.122 െ  0.127 (using different grids) from a DNS study by Sohankar et al. [2],             

 ݎݐܵ ൌ  0.116 െ  0.120 from a DNS study by Saha et al. [27], ܵݎݐ  ൌ  0.13 from an experimental study 

by Okajima [28] for aspect ratio AR = 10 and ܵݎݐ  ൌ  0.142 from an experimental study by Lindquist 

[34] for AR = 40. 
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2.3.2 Mean and fluctuating velocity components in the wake:  

Figure 2.4 shows an instantaneous flow field and the ensemble-averaged flow pattern for the infinite 

cylinder. The streamlines are projected onto the center normal plane and laid over the spanwise vorticity 

field (color contours). The instantaneous flow clearly shows the vortex shedding motion with the 

associated strong asymmetry. In contrast, the mean flow field reveals a region of recirculation consisting 

of two symmetric cells, which is in agreement with the flow visualization of circular cylinder wakes 

presented in previous studies (Bergmann et al. [15] Djenidi et al. [16]). Upstream of the prism, both plots 

show a laminar-like flow pattern.  

 

 

 

 

 

 

 

 

 

 

 

 

A close-up view of the time-averaged streamlines in the vicinity of the rear corner of the prism is 

presented in Figure 2.5. The main recirculation vortex behind the body and secondary vortex on the 

Figure 2.4: Streamlines in center plane (a) instantaneous, and (b) mean 
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lateral side are visibly captured. Different structures are separated using different colors. The streamline 

pattern indicates that the reverse flow along the rear face of the cylinder separates at the rear corner, 

before reattaching slightly upstream. This is in accordance with previous numerical and experimental 

studies, e.g. [18] and [36]. Although a relatively coarse mesh is used in the present study, this figure 

demonstrates that the grid can successfully resolve the reverse flow near the trailing edge of the bluff 

body. 

 

 

 

 

 

 

 

The mean streamwise velocity distribution along the centerline of the wake is plotted in Figure 2.6 

(a). The mean velocity was obtained by time-averaging the flow field for nearly 26 shedding cycles; the 

profiles were also spatially averaged along the cylinder axis. The data distribution is compared with 

previous studies of the square cylinder wake for different Reynolds numbers. As shown, the mean 

velocity is successfully resolved by this LES despite using a course grid. The time-averaged streamwise 

velocity distribution along lateral sections at various ݔଵ/ܦ locations is plotted in Figure 2.6 (b). ݔଵ and ݔଷ 

are measured from the center of the cylinder. For the near-wake profiles, two peaks and a minimum can 

be observed. The peaks are caused by the acceleration of the flow around the sides of the cylinder, which 

gradually diminish and completely disappear 3.7ܦ from the center of cylinder. The minimum represents 

Figure 2.5: Time-averaged stream traces near rear corner of prism 
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the momentum deficit created by the cylinder, and persists approximately 6.7ܦ downstream of the 

cylinder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Time-averaged streamwise velocity distribution along: (a) the centerline, and (b) transverse 

sections in the wake 
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Figure 2.7 illustrates the distribution of the fluctuating energy components along the centerline and 

within  the   wake  region. Since the  fluctuations for  the  instantaneous  velocity  field   are  obtained   by  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.7: Distribution of fluctuating energy along the centerline for: (a) the streamwise velocity

component, and (b) transverse velocity component 
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subtracting the mean velocity from the instantaneous, these fluctuations include both turbulent and 

periodic fluctuations. The maximum for both components occur at approximately the same location in the 

wake, i.e. at ݔଵ/ܦ   ൎ  2.2. This peak location corresponds to vortex formation length. Both profiles are 

compared to experimental study of Lyn et al. [29] and three LES study cases from Voke [31] (using the 

same index key, also referred in Rodi [18]). All the referred studies are mainly for higher Reynolds 

number since similar data for moderate/low Reynolds number is scarce.  

The streamwise velocity profile within the shear layer on the top wall of the cylinder is shown in 

Figure 2.8. Comparison with similar experimental and numerical results (as done in Figure 2.7), shows 

that the separated shear layer is reasonably predicted and the simulation is observed to successfully 

capture the reverse flow region near the wall. The area of reverse flow, the location (and the value) of 

peak compares well the experimental and LES results of Lyn et al. [29] and Voke [31] respectively 

(likewise, both for higher Reynolds number flows). Overall, the analysis above indicates that the grid size  

used the present study is sufficient to allow the LES to accurately reproduce the essential features of the 

flow in both the shear layers on the sides of the cylinder and within the wake region.   

2.3.3 Phase-averaged structures:  

The phase-averaged values of the spanwise vorticity and velocity vectors are plotted in Figure 2.9 for 

four different phases. As shown, the recirculation zone and shedding of vortical structures is well 

captured. In order to identify the centers of the Kármán vortices, a smoothing filter is used in 

thesevisualizations. The velocity vectors clearly show the recirculation zone in the near-wake, including 

the region of reverse flow immediately downstream of the cylinder. Comparison of the four phases 

illustrates the process of vortex shedding; typically, as one vortex structure forms and grows, the other 

contracts and is displaced downstream. Figure 2.9 (a) plots the first phase (2/ߨ or ܶ/4) which represents 

the  case  when   the  clockwise  vortex   reaches   its   maximum.  Moving   to  the   next   phase  (ߨ),  the  



42 
 

 

 

Figure 2.8: Profiles of the (a) mean streamwise velocity, and (b) fluctuations ࢛ۃ૚
ᇱ ૚࢛

ᇱ  along a transverse section ۄ
located at the midpoint of the top face of the cylinder.  
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counter-clockwise vortex evolves, whilst the clockwise vortex is diminished, until a relatively symmetric 

pattern forms with respect to the centerline, as shown in Figure 2.9 (b). Figures 2.9 (c) and 2.9 (d) show 

the 32/ߨ  and  2ߨ  phases, respectively, which represent the counterparts to the first and second phase. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Phase-average iso-vorticity contours and vector plots for a) 1/4, b) 1/2, c) 3/4 and d) 1 shedding 
period T 

Figure 2.10 shows the phase-averaged transverse velocity distribution along the centerline at two 

select phases (ܶ/4 and  3ܶ/4). For both phases the first positive/negative peak value occurs at               

 ܦ/ଵݔ ൎ  2.2 which agrees with the fluctuating velocity distribution shown in Figure 2.7.  In the near-

wake region, the curve for 3ܶ/4 is almost exactly anti-symmetric to the curve for ܶ/4 plot. However, this 

anti-symmetry becomes less precise as we move further downstream, i.e. more than 4D downstream of 

the bluff body. This incongruity could be caused due to an insufficient number of samples in each bin. 

Another consequence of this issue can be visualized in other phases as well; for the ܶ/2 and ܶ phases, 
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both iso-contour and vector plots show deviations from a strict anti-symmetric pattern (a qualitative 

analysis of Figures 2.9 (b) and 2.9 (d)). 

 

Figure 2.10: Phase-averaged transverse velocity component along the centerline for two phases 

To further illustrate the behavior of the phase-averaged velocity field, iso-vorticity contours and 

vector plots of the time-averaged flow are presented in Figure 2.11. Unlike the phase-averaged profiles 

(ܶ/2 and ܶ), the time-averaged profile exhibits a perfectly symmetric vorticity and velocity distribution 

as shown in Figure 2.11(a). Figures 2.11(b) and 2.11(c) compare transverse profiles of the streamwise and 

transverse velocity components for phase- and time-averaged quantities at the same location in the wake. 

As shown, within the shear layer zone there is a clear difference in the profiles, which is in accordance 

with previous phase-averaged studies of similar cylinder flows, e.g. Lyn and Rodi [17] and Persillon and 

Braza [20].  

In addition to increasing the number of samples in each bin, the phase-averaged results would be 

improved by reducing the ݐ߂ between snapshots, which would increase the number of intervals in each 

shedding period. The current set-up results in a deviation of up to േ7° in the samples in the same phase 

bin, which would correspond to about 0.15ܦ in spatial distance, which is quite substantial for a phase-

average study. 
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2.4 POD Analysis 

2.4.1 Energy spectrum:  

Prior to investigating the large-scale energy-containing structures of the flow, the mean flow pattern 

is obtained in terms of the ensemble average of the snapshots. For the case of this work, the mean flow 

Figure 2.11: (a) Vorticity contours and vector plot of the time-averaged flow in the wake, comparison of 
the phase-averaged (b) streamwise and (c) transverse velocity component profiles to the time-average 
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was obtained by averaging 1200 instantaneous velocity fields, which were collected during 26 vortex 

shedding periods each 0.16 seconds in duration. A comparison of the ensemble average versus 

instantaneous snapshot of the velocity field has been shown in Figure 2.4. The symmetric shape of the 

wake for the infinite cylinder indicates that the ensemble size used was sufficient to yield a realistic mean 

field.  

 

 

In order to test the convergence of the POD eigenvalues and identify the most energetic modes, the 

contribution of the kinetic energy contained in each mode is plotted on a logarithmic scale in Figure 2.12. 

The lower-order modes correspond to the larger scales which represent the more energetic features of the 

flow. The higher eigenmodes have smaller eigenvalues and contain information on the smaller-scale flow 

features. There is a continuous and clear decline in the energy spectra, which means that the POD 

effectively identifies the energetic modes. As shown in Figure 2.12, more than 90% of the total kinetic 

energy of the velocity perturbations is captured by only the first 35 modes (1200 modes in total). A 

Figure 2.12:   Convergence of POD eigenvalues 
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significant characteristic of the energy spectra shown in Figure 2.12 is that some of the eigenvalues can be 

grouped by pairs. This is in agreement with other studies of the POD analysis of a two-dimensional 

square cylinder, e.g., Ma and Karniadakis [5], Bergmann et al. [15], Hay et al. [19]. Hay et al. [19] 

presumed that: “This property comes from the temporal periodicity of the flow, which here is preserved 

through any parameter change, and makes the temporal eigenfunctions Fourier modes.” Another 

physical interpretation of this characteristic is given by Ma and Karniadakis [5]: “The modes form pairs 

due to the closeness of the vortex street to a travelling wave, similarly to the two-dimensional flow studied 

in Deane et al. (1991) ([14]). This is also reflected in the eigenmodes of each pair, which are phase-

shifted with respect to each other”. 

2.4.2 Energetic velocity modes:  

Figure 2.13 provides a qualitative picture of the first three spatial POD modes in the center-plane. 

Using contour-lines of the streamwise and normal velocity components, the large-scale features of the 

first three dominant eigenmodes are visualized. Blue and red contours refer to negative and positive 

values of the velocity, respectively. Figures 2.13(a) through (c) portray the streamline flow pattern for the 

first three modes. To put emphasis on the dominant flow topology, streamlines are only shown for the 

areas with larger velocity vectors. As shown, for both modes the pattern slightly dissipates downstream. 

The first pair has a harmonic travelling-wave character, in which the second mode looks like a phase-

shifted pattern of the first mode. Hay et al. [19] made a similar observation: “The POD modes are almost 

even or odd functions in x2 as it is the case for the symmetric configuration”. For the third mode, the flow 

character is no longer harmonic, but an asymmetric topology can be seen in the streamline pattern (and 

likewise for the lateral velocity). In agreement with other POD wake studies (e.g. van Oudheusden et al. 

[6]), the first two modes are associated with periodic Kármán vortex shedding and can be combined as 

shown in Figure 2.15 to reproduce the shedding motions. 
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Another significant characteristic of the first pair of spatial modes is that the large-scale structures are 

concentrated in the near-wake region, whereas for the third mode, relatively large structures are 

distributed throughout the wake region; this is even more noticeable for the streamwise velocity 

component. Therefore, one can conclude that the third eigenmode is of a different nature compared with 

the first pair. Similar patterns were obtained for the first three modes for the case of a circular cylinder in 

previous studies, e.g. (Bergmann  et al. [15], Borggaard et al. [21], Buffoni et al. [7], Hay et al.[19], Ma 

and Karniadakis [5], Perrin et al. [23], Persillon et al. [20]) .  

To further develop a physical interpretation of the energetic structures and better study the 

characteristics of and relations between POD eigenmodes, the temporal coefficients,  ܽ௡ሺݐሻ, are 

examined; recall that they signify the amplitude of the eigenmodes for a given snapshot in time. The time 

variation of the first five temporal coefficients for one shedding cycle is plotted in Figure 2.14(a). As 

shown, ܽଵ and ܽଶ are approximately sinusoidal with almost equal magnitude, but with a phase shift of 

  This characteristic can be  illustrated further by cross  plotting the two-dimensional  projection of the .2/ߨ

Figure 2.13: Spatial structures of the first 3 eigenmodes: (a) to (c): streamline patterns; (d) to (f): 
streamwise velocity component; and (g) to (i): transverse velocity component (different contour ranges 

and levels are used in each of the subfigures) 
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 Figure 2.14: (a) Temporal behavior of the first five eigenmodes over one shedding period, (b) cross plot of 
normalized coefficients [a1-a2], (c) cross plot of normalized coefficients [a1-a4] and (d) time evolution of 

coefficients [a1-a2] over 13 shedding periods. 
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phase portrait for one shedding period for normalized pairs of coefficient; the cross plots for  [ܽଵ െ ܽଶሿ 

and [ܽଵ െ ܽସሿ are given in Figures 2.14 (b) and (c), respectively. The data points are clearly scattered 

around the theoretical curves (theoretical curves are plotted based on the predicted phase difference). A 

three-dimensional portrait of the first two modes evolving in time also validates this characteristic, as 

shown in Figure 2.14 (d). The curves are in a reasonable agreement with previous studies, e.g. (Borggaard 

et al. [21], Gillies et al. [25], Ma and Karniadakis [5], van Oudheusden et al. [6], Perrin et al. [23]). 

Another key characteristic of the [ܽଵ െ ܽଶሿ pair is that they are both fluctuating with the same frequency 

equal to the Strouhal frequency as calculated in Section 2.2.  This is further evidence that the first two 

modes are associated with the same coherent structure, i.e. Kármán vortex shedding. As mentioned 

earlier, one can reproduce the main structures of the Kármán vortex shedding process at any phase, by 

combining only the first two modes, which reflects the notion of Reduced Order Modeling (ROM), 

another advantage of using POD. 

Both Figures 2.12 and 2.14 indicate that modes 4 and 5 also make pairs, where mode 5 is a phase shift 

of mode 4. The amplitude of the second pair is notably smaller than the first pair, but the frequency is 

significantly higher. Physically the second mode pair, i.e. modes 4 and 5, could be associated with the 

start of evolving instabilities. Their flow topologies are quiet complex and therefore difficult to analyze 

qualitatively as was done for the first pair. 

Between the two pairs sits mode 3, which appears to be a stand-alone mode. It is clear that this mode 

does not have a periodic variation and therefore is a different type than the other modes. Figures 2.12, 

2.13 and 2.14 confirm this scenario. This single mode with substantial energy content could be attributed 

to the adjustments in the free stream flow due to the existence of the bluff body.  Based on Figure 2.12, 

one would expect to see some harmonic behavior for the next few pairs, e.g. modes 6 and 7 appear to be a 

pair. The higher modes, however, are more difficult to analyze and to infer a physical interpretation for 

their behavior. 
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2.4.3 Reconstruction of turbulent flow: 

After obtaining the POD spatial modes (߶௞ሺݔ௜ሻ) and corresponding temporal coefficients (ܽ௞ሺݐሻ), 

reconstruction of instantaneous flow field (at each snapshot time) can be performed by choosing a finite  

 

 

 

 

 

 

 

 

 

 

number of dominant modes. As explained, POD modes give an optimal decomposition for a turbulent 

flow field in the sense that much of the flow topology can be captured by using only a few modes. Figure 

2.15 (a) shows the streamline pattern of a random snapshot ݇ of the original flow field. The global flow 

field can be approximately by a linear combination of the mean flow and a finite number of spatial 

modes, i.e.: ߶଴ሺݔ௜ሻ ൅ ∑ ܽ௠ሺݐ௞ሻ߶௠ሺݔ௜ሻ 
ெబ
௠ୀଵ  in which ܯ଴ denotes the number of modes considered. In 

Figure 2.15 (b), the reconstructed flow field based on the first two dominant modes (ܯ଴ ൌ 2) is shown. 

The first two modes capture about 32% of the total perturbation kinetic energy of the flow. As is shown, 

the formation of the main vortex structure is well reproduced by the first two dominant modes. In order to 

Figure 2.15: (a) Streamlines for instantaneous flow field and the reconstructed flow field for: (b) 
Mo = 2 , (c) Mo = 24 , and (d) Mo = 60. 
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reconstruct the evolution of additional vortices, a reconstruction based on additional spatial modes is 

carried out. Figures 2.15 (c) and 2.15 (d) show the reconstructed field based on the first 24 and 60 POD 

modes, respectively. As shown, the last reconstruction is similar enough to the selected snapshot for one 

to conclude that 60 orthonormal bases are sufficient to accurately reconstruct the flow field, even though 

a total of 1200 modes exists. In other words, the 60-mode model represents a low-order description of the 

wake flow with an error of less than 1% in terms of the kinetic energy. 

2.4.4 Streamwise sampling plane:  

Performing POD on a spanwise sampling plane has been performed, partly for the sake of verifying 

POD algorithm, where qualitative results for this sampling plane are available from previous studies. The 

next step is to apply POD to snapshots collected on a streamwise sampling plane. The sampling plane is 

located about 2ܦ behind the rear face of the cylinder. Nearly 400 snapshots were collected to perform this 

preliminary POD analysis, over a time duration of 9 convective units (ܦ/ܷஶ). Similar to the first 

sampling plane, the time step for the simulation was set to 0.001ܦ/ܷஶ and snapshots were taken every 

20th time step. 

Figure 2.16 shows the energy decay rate based on 99% total energy filter, which means 99% of total 

kinetic energy of flow is captured by the first 76 modes, as shown. Here the ensemble averaged field (also 

known as mode 0) is not subtracted from the total field while doing POD, which explains why the energy 

contained in the first mode is significantly higher than for the next modes. To allow having number 0 on 

one axis, the energy spectrum is not plotted on a logarithmic scale as was done for the spanwise sampling 

plane. The pair-wise decay, which was observed in spanwise plane, can no longer be seen. Instead a 

gradual, fairly steep decline is visible on the next four modes.  

The topology of the first four modes, including the mode 0 is presented in terms of lateral velocity 

(u3), spanwise velocity (u2) and velocity vectors in Figures 2.17, 2.18 and 2.19, respectively.  As shown in  
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Figure 2.17, the ensemble averaged lateral velocity field has a nearly symmetric pattern, which represents 

the symmetric vortical cells of  Figure 2.4. Mode 1 on  the other  hand, seems  to  have  a different type of 

topology; an up-wash motion covers close to half of the cylinder length (red curves) and a relatively 

weaker down-wash motion covers the other half. These up- and down-wash motions persist for modes 2 

and 3, with a difference that in mode 2, the cylinder is covered with two up-wash and two down-wash 

fields. In mode 3, the flow is decomposed into more, but smaller up- and down-wash regions. Mode 4 

seems to be of a completely different nature than the first 3 modes; the structures are more elongated in 

the spanwise direction and more comparable with the ensemble averaged field, but of a significantly 

smaller order of magnitude, which can be concluded from the values on the color map bars. Mode 5 

seems to possess a fairly similar characteristic, in which some of the structures are extended in the 

spanwise direction. An interesting contrast between modes 4 and 5 is in the direction of the lateral 

motions; in mode 4, a downward motion field stretches above the cylinder centerline while an upward 

motion field of the same size sits below the centerline. So, the two structures have a tendency to move 

towards the cylinder’s centerline. Conversely for mode 5, these stretched fields have opposite signs, i.e. 

Figure 2.16: Energy spectrum for streamwise sampling pane 



54 
 

the field above the centerline has an upward sign while the field below the centerline has a downward 

sign. In this case, the two fields have a tendency to move away from the cylinder’s centerline. 

 

Figure 2.17: Lateral component ൫࢛ࣘ૜൯ of the first six POD eigenmodes 
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Another interesting difference between modes 4 and 5 is the location of the velocity peaks. In mode 4 

the more energetic structures seem to be distributed towards one end of the cylinder, i.e. left end  

 
Figure 2.18: Spanwise component ൫࢛ࣘ૛൯ of the first six POD eigenmodes 
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as shown in the figure, whereas in mode 5, the peak region seems to be displaced towards the opposite 

end. Somewhat  similar  movement  can be detected in modes 1  through  3 as well; the peak is on the  left  

 

Figure 2.18: Velocity vector field of the first six POD eigenmodes 
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side in modes 1 and 2, while it goes towards the right side in mode 3.  

Figure 2.18 demonstrates the spanwise velocity component of modes 0 through 5. Unlike the lateral 

velocity component, the ensemble average of the spanwise field does not have a symmetric topology. 

This figure also reveals that, despite the two-dimensional geometry, the turbulent wake is highly three-

dimensional. A similarity between this figure and Figure 2.17 is the distribution of energetic structures; in 

modes 1 and 2, the energetic structures are more distributed on the left side, while in mode 3 they are 

moved towards the right side. Likewise between modes 4 and 5, the peak regions relocate from one side 

to another. Lastly, the noise on the curves in Figures 2.17 and 2.18 suggests an extended study of this 

sampling plane with a larger number of snapshots.  

The velocity vector fields of the first six modes are shown in Figure 2.19. This figure can be used to 

get a sense of vortical motions in the wake as well. This figure also demonstrates three-dimensionality of 

the turbulent wake, generated by a simple two-dimensional geometry.  

2.5 Conclusion and Outlook 

In this study, the wake created behind an infinite square cylinder placed in a free stream flow has 

been studied. The LES method was used to predict the large-scale velocity fields, and it produced results 

that were consistent with other LES and DNS performed for the circular cylinder and square prism. The 

main objective of the paper was to investigate the dominant flow structures embedded in the global flow 

field with the goal of characterizing these topologies. To study the dynamics of these structures, snapshot 

POD was applied to two-dimensional slices of the instantaneous velocity field. It was used to provide 

insight as to the spatial distribution of dominant structures in the turbulent wake. Each eigenmode 

represents a particular flow structure embedded in the turbulent wake, and some eigenmodes can be 

associated as pairs. Some dominant flow structures were associated with different modes related to vortex 
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shedding, which was represented by the first pair, bulk flow adjustment, which was captured by the third 

mode and higher harmonic fluctuations which are embedded in higher order modes. The results obtained 

are in agreement with similar POD analysis that has been performed for the wake of a circular cylinder. 

Performing POD on snapshots collected on the spanwise sampling plane demonstrated three-

dimensionality of the coherent structures. This also motivates further POD investigations on other 

sampling planes (e.g. a horizontal plane or streamwise planes on different locations). Overall, the 

summary results presented in the paper demonstrate the effectiveness of POD in extracting a low-

dimensional description from a high-dimensional process, in this case a turbulent flow. Moreover, it was 

demonstrated, in a visual sense, the robustness of POD in reconstructing the structure evolutions. A 

companion study which considers a POD analysis of a square cylinder on a ground plane will use the 

infinite cylinder study presented in this paper as an important reference case. 
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Chapter 3  

Effect of a Wall on the Wake Dynamics of an Infinite 
Square Cylinder 

A similar version of this chapter has been submitted as:  

M. Samani and D. J. Bergstrom, “Effect of a Wall on the Wake Dynamics of an Infinite Square 

Cylinder”, 10th International ERCOFTAC Symposium on Engineering Turbulence Modeling and 

Measurements (under review). 

The flow simulation results and the POD analysis were developed by the first author. Partial 

development of the POD routine formulation as well as initiating the LES code were performed 

by the second author. 
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Preamble: 

The connecting link between the preparatory study (infinite cylinder in free stream) and the target 

point (flow over roughened surfaces) of this research is to investigate the influence of a nearby wall on 

turbulent wake structures. For the sake of this “connecting” study, a solid wall was implemented in 

proximity of the cylinder, which was studied in step 1. The effect of the wall was studied by considering 

different gaps between the wall and bluff body. A Reynolds number of Re = 500 (based on the free 

stream velocity and the cylinder side length) is set which is similar to the first study case and makes it 

possible to focus on the wall effect only. Ultimately the cylinder was placed on the surface to lay the 

groundwork for the next step, i.e. flow over a rib-roughened surface (by making a sequence of these 

obstacles as explained before).  

The major contribution of this chapter to the overall study and main emphasis of this step is to 

compare the results of the current case(s) with the preparatory and the target studies and lay the 

groundwork for the next step.  
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Abstract 

The present study investigates the influence of a solid wall on the wake structure of an infinite 

cylinder of square cross-section when it is placed in proximity to a wall. Three different cases have been 

studied by changing the distance between the cylinder and the bottom wall. For each case, the coherent 

wake structures have been identified by the use of Proper Orthogonal Decomposition (POD), and the 

results are compared with the case of an infinite cylinder in a free stream. A coarse-grid Large Eddy 

Simulation (LES) is used to generate the input data for the POD analysis. The analysis documents the 

coherent structures in the wake and their interaction with the energetic structures generated by the solid 

wall. 

3.1 Introduction 

Many industrial applications include flows over bluff bodies located in the vicinity of a wall, such as 

pipelines mounted above the ground and elevated walkways or bridges exposed to a cross-wind. In such 

applications, it important to understand how the presence of the wall modifies the drag and lift forces, as 

well as the flow pattern in the wake. Although a number of numerical and experimental works consider 

unconfined bluff bodies as well as flows over bluff bodies located in the centre of a channel, there are 

fewer studies which consider the bluff body in proximity to a wall. Furthermore, the majority of previous 

studies have focused on the circular cylinder; in contrast, flow over square cylinder in proximity to a wall 

has not been as extensively studied. In this context, knowledge of the interactions between the energetic 

structures created by prismatic bluff bodies and a bounding wall is far from complete.  

For a square cylinder, at sufficiently high Reynolds numbers, the flow separation point is fixed by the 

upstream sharp corners. However, the mean wake flow pattern will change when the gap between the wall 

and body is sufficiently small. The mean wake pattern no longer consists of a pair of symmetric 
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recirculation zones. Even though the wake flow is still dominated by the periodic Kármán vortex 

shedding, the vortices shed from each side of the cylinder are of unequal strength. More specifically, the 

vortex shed closest to the wall is weakened, which then leads to an asymmetric wake structure. As the 

cylinder moves closer to the wall, the asymmetry increases, and eventually vortex shedding is entirely 

suppressed on the bottom side of the cylinder due to the wall. (e.g. Bailey et al. [6], Bosch et al. [7], 

Wang et al. [10])        

A pioneering experimental study for a low Reynolds number (ܴ݁  ൌ  170) flow around a circular 

cylinder in proximity of wall was performed by Taneda [1]. Different gap ratios (݃/ܦ, where ݃ is the gap 

distance and ܦ is the cylinder diameter) were examined and documented in his work. Later, Bearman and 

Zdrakovich [2], continued this research for a higher Reynolds number (ܴ݁  ൌ  45000) and different gap 

ratios in the range of   0.2  ൑  ܦ/݃  ൑  0.4. The thickness of the turbulent boundary layer (TBL) on the 

ground plane at the cylinder position was ܦ/ߜ  ൌ  0.8 in their work.  The fluctuating drag and lift forces 

on the cylinder in terms of the gap ratio and the TBL thickness were studied by Taniguchi and Miyakoshi 

[3]. They also identified a critical gap ratio and examined the formation of vortex streets for different 

gaps.  They concluded that “the formation of Kármán vortex streets was abruptly interrupted when the 

bottom of the cylinder came in contact with the outer layer of the boundary layer developed on the wall” 

[3]. Buresti and Lanciotti [4] performed the same study for a wider range of Reynolds number and gap 

ratios. Their results indicate that increasing the gap width leads to a rapid decrease of the mean lift 

coefficient, whereas the mean drag coefficient is extensively influenced by the TBL thickness. Later an 

experimental study by Lei et al. [5] showed that both the drag and lift coefficients strongly depend on the 

gap ratio.  They also showed that at some specific gap ratios, the lift force changes direction. Bailey et al. 

[6] performed an experimental study of a square cylinder for different gap ratios and  ܴ݁  ൌ  19000.  

They classified the wake flow into three distinct regimes based on the gap width: (i) if ݃/ܦ  ൐  0.85, then 

the wall has no significant effect, (ii) when  0.4  ൏  ܦ/݃  ൏  0.85, the influence of the wall appears but 

does not have a dominant effect on the lift and drag coefficient, and (iii) when ݃/ܦ  ൏  0.4, vortex 
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shedding is suppressed due to the small gap width. This critical gap ratio was previously documented by 

Bosch et al. [7] as ݃/ܦ ൌ  0.35 െ  0.5, Durao et al. [8] as ݃/ܦ  ൌ  0.35, and later by Martinuzzi et al. [9] 

as ݃/ܦ  ൌ  0.3 by measuring the pressure fluctuations for different gap ratios (all square cylinder cases). 

Price et al. [11] employed Particle Image Velocimetry and Hot Film Anemometry techniques to study a 

circular cylinder near a solid wall for ܴ݁ ൌ 1200 െ 4960. The influence of boundary layer separation 

was also investigated in their work. They classified the flow into four regimes based on the gap width and 

boundary layer thickness. In a more recent experimental study by Wang et al. [10], the flow 

characteristics in the near-wake of a circular cylinder were investigated. They analyzed the instantaneous 

fields and by the use of vortex identification methods documented the evolution of the vorticity. They 

also found that the Strouhal number (ܵݐ) and convection velocity of the shed vortex are independent of 

the gap ratio. In a comprehensive study by Lin et al. [12], these flow characteristics were studied in more 

detail and for a wide range of gap ratios (0.0 to 4.0). The mechanism of vortex shedding suppression was 

explained in detail (for circular cylinder cases) and a similarity in the streamwise velocity profile, when 

the periodic shedding originates, was detected in their study.  

As previously mentioned, this study will also consider the limiting case when the square cylinder is 

located on the wall, so that the cylinder represents a single prismatic rib. An early LES simulation of a 

single rib in a fully developed channel flow was performed by Werner et al. [12]. Martinuzzi and Tropea 

[13] subsequently performed an experimental study for this arrangement. They studied the separation and 

reattachment regions and investigated the flow structures. As documented by Zdravkovich [15-16] the 

influence of the wall depends mainly on the following factors: the Reynolds number, the type of boundary 

layer (i.e. laminar or turbulent), the gap ratio (݃/ܦ) and the thickness of boundary layer (ܦ/ߜ). For the 

present flow arrangement, the free stream velocity (ܷஶ), the cylinder side length (ܦ) and dynamic 

viscosity of the fluid (ߥ) can be used to define the Reynolds number (ܴ݁ ൌ ܷஶߥ/ܦ). In the current study, 

a Reynolds number of ܴ݁ ൌ 500 is adopted. The approach flow includes a turbulent boundary layer with 

thickness of  ܦ/ߜ ൌ 0.2.  
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In summary, the present study considers a square cylinder placed in proximity to a bounding wall.   

Three different gap ratios were considered:  ݃/ܦ ൌ  1.0, 0.5 and 0. The last case resembles a prismatic 

obstacle on a ground plane and provides a reference case for flow in a rib-roughened channel. POD 

following the method of Sirovich [17] will be used to decompose the LES results into orthogonal 

eigenmodes, which will facilitate analysis of the flow structure. Results are compared to POD analysis of 

wake flow behind a square cylinder in proximity of a wall by Shi et al. [28]. 

3.2 Computational Details 

The LES technique used in this study was verified and validated in a previous benchmark study of 

flow over an infinite square cylinder [18]. To formulate the governing equations, a spatial filter is applied 

to the incompressible Navier-Stokes (NS) and continuity equations, 
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and  

࢏ഥ࢛߲
࢏߲࢞

ൌ 0, ሺ3.2ሻ 

where ࢛ഥ࢏ is the filtered velocity component, t is the time, ݌ is the local pressure, ߩ is the fluid density, ࢏࢞ 

is the corresponding Cartesian coordinate and ߬௜௝ is the subgrid-scale stress (SGS) component. A dynamic 

Smagorinsky subgrid-scale model was employed to model the SGS stress following the method of 

Germano et al. [19] and Lilly [20].  The use of clipping and local volume-averaging was used to stabilize 

the dynamic coefficient; plane averaging was not required. 

A non-uniform 646464 collocated grid was used to discretise the flow domain which extended  

 in the x1, x2 and x3 directions respectively. As shown in Figure 3.1, the mesh was refined  ܦ8ܦ10ܦ24
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near the square cylinder and in proximity to the wall. By applying periodic boundary conditions on the 

four lateral side surfaces, flow over an infinitely long prism was simulated. The flow is driven by a 

pressure gradient and initial perturbations were added to ensure a turbulent boundary layer state. The 

filtered Navier-Stokes equations were discretised utilizing a cell-centered finite-volume method and a 

semi-implicit second-order Crank-Nicolson scheme was used for the temporal discretisation. The discrete 

transport equations were solved using a two-step fractional step procedure together with a pressure 

correction scheme to ensure conservation of mass. 

 

 

The characteristic shedding frequency in the wake flow can be expressed by the non-dimensional 

Strouhal number given by 

ݎݐܵ ൌ ௦݂ܦ
ܷஶ

, ሺ3.3ሻ 

where  ௦݂  denotes the shedding frequency of the vortices. The sectional drag and lift coefficients 

represent the non-dimensionalized drag (ܨ஽) and lift forces (ܨ௅) per unit length on the cylinder: 

Figure 3.1: Flow configuration and layout of computational grid 



 

70 
 

஽ܥ ൌ
஽ܨ

1
ஶܷߩ2

ଶ ܦ
      where     ܨ஽ ൌ෍൫߬௧௢௣ ൅ ߬௕௢௧௧௢௠൯௜

௜

ଵ௜ݔ݀ ൅෍൫ ௟ܲ௘௙௧ െ ௥ܲ௜௚௛௧൯௝
௝

 ଷ௝ ሺ3.4ሻݔ݀

and  

௅ܥ ൌ
௅ܨ

1
2 ஶܷߩ

ଶ ܦ
      where       ܨ௅ ൌ෍൫߬௟௘௙௧ ൅ ߬௥௜௚௛௧൯௜

௜

ଷ௜ݔ݀ ൅෍൫ ௕ܲ௢௧௧௢௠ െ ௧ܲ௢௣൯௝
௝

ଵ௝ ሺ3.5ሻݔ݀

where ߩ is the density and ߬ and  ܲ represent the wall shear stress and pressure, respectively. Both of 

these contributions to the forces act periodically on the bluff body with a frequency relevant to   ௦݂ . 

Turbulent structures are complex and highly time dependent. POD is a powerful tool to extract an 

orthogonal set of spatial eigenmodes and then derive optimally correlated structures or the so called 

coherent structures by combining these energetic eigenmodes. The first step is to collect the discrete, 

instantaneous fields, known as snapshots, from the flow on the sampling planes. Then, an autocorrelation 

matrix is generated from the collected snapshots. For example, if one chose a sampling plane 

perpendicular to the cylinder axis (ߗ  ൌ   ሾݔଵ െ  ,ଷሿ plane), then the autocorrelation matrix would beݔ

,ݐሺܥ ᇱሻݐ ൌ
1
ܯ
න ሾݑ௜

ᇱሺݔଵ, ,ଷݔ ௜ݑሻݐ
ᇱሺݔଵ, ,ଷݔ ᇱሻሿݐ

ఆ
 ଷ, ሺ3.6ሻݔଵ݀ݔ݀

in which ܯ is the total number of snapshots and ݑ௜
ᇱሺݔଵ, ,ଷݔ  ሻ represents the fluctuating velocity fieldݐ

which can be obtained by subtracting the mean field from the instantaneous. As shown, ܥ is a two-point 

correlation-in-time matrix, between snapshots taken at times ݐ and ݐԢ. An eigenvalue problem can be 

formulated based on the correlation matrix: 

නܥሺݐ, ԢݐԢሻ݀ݐԢሻܽ௡ሺݐ ൌ  ሻ. ሺ3.7ሻݐ௡ܽ௡ሺߣ

Solution of this eigenvalue problem gives a series of eigenvalues (ߣ௡) and eigenvectors (ܽ௡ሺݐሻ). From 

the eigenvalues, one can measure the fraction of turbulent kinetic energy (TKE) contained in each mode 
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and accordingly collect energetic modes. Looking at the ߣ௡ trend, it can be noticed that the convergence 

of energy is very fast; in fact, it convergence is faster than any other linear representation. That means, the 

first few modes give the main contribution to TKE and therefore can be used to reproduce the flow field, 

which is the spirit of using POD. The eigenvectors ሺܽ௡ሺݐሻሻ can be projected onto the velocity field to 

produce the eigenmode number ݊ as 

߶௡ሺݔଵ, ଷሻݔ ൌ ෍ܽ௡ሺݐ௞ሻݑ௜
ᇱሺݔଵ, ,ଷݔ .௞ሻݐ

௄

௞ୀଵ

 ሺ3.8ሻ 

At the end, the discrete instantaneous snapshots can be reconstructed by using a limited number of 

empirical eigenmodes (ܯ଴) in the following series: 

,ଵݔሺݑ ,ଷݔ ௡ሻݐ ൌ ෍ ܽ௠ሺݐ௡ሻ߶௠ሺݔଵ, ଷሻݔ

ெబ

௠ୀଵ

 ሺ3.9ሻ 

The database for POD analysis originates from the LES output on different sampling planes. Nearly 

1100 snapshots were collected over 24 vortex shedding cycles (for the cases with vortex shedding in the 

wake; for other cases the same amount of snapshots over the same time frame was collected). That makes 

about ∆ݐ ൌ 3 ൈ 10ିଷ seconds (or 7.5°) spacing between the snapshots. 

3.3 Selected Results and Discussion 

3.3.1 Flow simulation results:  

As mentioned previously, the numerical methodology used to simulate the flow was validated in an 

earlier benchmark study [18] of an infinite cylinder in a free stream. However, as a result of the nearby 

wall, some characteristic features of the present flow differ from the benchmark study. The deviation of 

the aerodynamic forces acting on the cylinder, especially the lift force, is of practical importance in 



 

72 
 

engineering applications. For the no-wall case (݃/ܦ ൌ ∞), the lift force has a periodic profile with an 

average value of zero. However, with the presence of a nearby wall, the average value of the lift 

coefficient, ܥ௅തതത, moves slightly away from zero, while the frequency of the oscillations remains the same. 

Figure 3.2 displays the power spectrum obtained by performing a Fast Fourier Transform (FFT) of 

the temporal variation of the lift coefficient. As shown, the dominant peak is stronger for larger gaps. The 

magnitude of the peak reduces as the cylinder approaches the wall and at some point there is no longer a 

 

 Figure 3.2: power spectra of lift forces for different gap heights 
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single dominant peak in the spectrum. This indicates that the bottom vortical cell is completely 

suppressed by the wall. Based on Figure 3.2, this occurs somewhere in the range   0 ൏ ܦ/݃ ൏ 0.5 , which 

is in accordance with previous studies, e.g. [6], [7] and [8]. 

Another conclusion which can be drawn from Figure 3.2 is that the shedding frequency (and 

consequently the Strouhal number) remains unchanged by the presence of the wall. This is consistent with 

the observation by Wang et al. [10] that the Strouhal number is independent of gap ratio as mentioned. On 

the other hand, the amplitude of the oscillations is dramatically affected by the presence of the wall. 

For all three values of the gap ratio, the shear and pressure forces on the cylinder in the streamwise 

direction create a drag force. In fact, the drag force is created by the pressure difference on the front and 

rear sides of the cylinder, and also from the shear stresses acting on the sides; the blockage created by the 

cylinder causes a favorable pressure gradient that contributes to the net drag force. The mean drag (ܥ஽തതതത) 

and lift (ܥ௅തതത) coefficients for four different values of the gap ratio are shown in Figure 3.3. The drag 

coefficient increases as the gap ratio is increases, while the lift coefficient decreases. This trend is in 

accordance with experimental study by Bosch et al. [7]. 

 

 

 

 

 

 

 

Figure 3.3: The variation of the mean drag and lift coefficients with gap ratio 
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 |௅തതതܥ| ஽തതതതܥ

 
Approach Re ݃

ܦ
 ൌ 0 

݃
ܦ
ൌ 0.5 

݃
ܦ
ൌ 1 

݃
ܦ
ൌ ∞

݃
ܦ
ൌ 0 

݃
ܦ
ൌ 0.5 

݃
ܦ
 ൌ 1 

݃
ܦ
ൌ ∞

Mahir [30]    numerical 250 - 1.59 1.78 - - - - - 

Lei et al. [5] experimental 13,100 - 1.29 1.41 - - - - - 

Bhattacharyya 
et al. [24] 

numerical 500 1.9 2.9 - 2 - 0.2 - - 

Kumaran et al. 
[22] 

numerical 500 - 2.9 3.4 1.91 - 0.1 -0.003 0.003 

Bhattacharyya 
et al. [31] 

numerical 200 - 2.8 2.95 - - 0.4 0.3 - 

Nishino [32]  experimental 40,000 - 1.24 1.31 - - 0.05 0.01 - 

Roshko et al. 
[33] 

experimental 20,000 0.8 1.12 1.24 - 0.59 0.09 0.03 - 

Hiwada et al. 
[34] 

experimental 20,000 0.77 1.20 1.27 - - - - - 

Dutta et al. 
[35] 

experimental 420 - - - 2.03 - - - - 

Davis et al. 
[36] 

experimental 
& numerical 

470 - - - 1.95 - - - - 

Present study    numerical 500 1 1.48 1.74 1.89 0.63 0.07 0.02 0 

Table 3.1: the mean drag (ࡰ࡯തതതത) and lift (ࡸ࡯തതത) coefficients for four different values of the gap ratio; 
comparison to data in literature 

Table 3.1 compares the mean drag and lift coefficients documented in other literature. As is shown, 

there are some disagreements between the existing results and measurements (e.g.  

ܦ/݃ ஽തതതത forܥ ൌ 0.5 by [22], [24] and [31] being different from all the others), which suggest further study 

is needed on this flow arrangement. Nevertheless, they all follow more or less same trend as shown in 

Figure 3.3.     

Time-averaged flow patterns are plotted and compared to the instantaneous values, in the form of 

streamlines overlaid on vorticity contours in Figure 3.4. For all cases, the primary separation on the 
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cylinder occurs at the leading edge, as imposed by the square geometry. For ݃/ܦ ൌ 1, a secondary 

separation on the bottom wall can be observed in the instantaneous field, Figure 3.4(c). Although the 

time-averaged streamlines do  not  show  this  secondary  separation,  it  can be  inferred from the positive  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4: Effect of gap width on flow structure: (a) and (b): ࡰ/ࢍ ൌ ∞, (c) and (d): ࡰ/ࢍ ൌ ૚, (e) 

and (f): ࡰ/ࢍ ൌ ૙. ૞, (g) and (h): ࡰ/ࢍ ൌ ૙ 
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vorticity contours on the bottom wall, Figure 3.4(d). For smaller gaps, the secondary separation is more 

prominent and shifted downstream, Figures 3.4(e) and 3.4(f). The size of this secondary vortical cell 

becomes relatively large, even larger than the primary cells in the cylinder wake. In general, as the 

cylinder approaches the wall, the wake pattern is deflected upward, such that the top recirculation bubble 

in the wake is aligned almost parallel to  the ground plane. Similar wake flow structures were observed  in  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous studies, e.g. [21], [22] and [23]. When the cylinder is located on the ground plane, the secondary 

cell on the wall merges with the top recirculation bubble and forms a single large vortical region behind 

Figure 3.5: Averaged velocity profiles in the gap region, (a): ࢛ഥ૚ for  ࡰ/ࢍ ൌ ૚, (b): ࢛ഥ૜ for  
ࡰ/ࢍ ൌ ૚, (c): ࢛ഥ૚ for  ࡰ/ࢍ ൌ ૙. ૞ and (d): ࢛ഥ૜ for  ࡰ/ࢍ ൌ ૙. ૞ 
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the obstacle. For this geometry, the bottom recirculation bubble in the wake is completely suppressed by 

the wall, Figures 3.4(g) and 3.4(h). 

Time-averaged velocity profiles in the gap between the lower face of cylinder and the wall are plotted 

in Figure 3.5 for gap ratios of ݃/ܦ ൌ 1 and ݃/ܦ ൌ 0.5 and for three different streamwise locations. The 

locations are measured from the leading edge of the cylinder. As shown, the streamwise flow in the gap is 

generally higher than the free stream value. However, along the lower surface of the cylinder, the flow 

decelerates and a small region of reverse flow is observed.  Interestingly, the size of this region seems to 

be the same for both gap ratios; although in Figure 3.5(c) the reverse flow region looks to be twice the 

width of the region in Figure 3.5(a), since the vertical axis denotes the relative height (ݔଷ/݃), the actual 

sizes are almost equal. The vertical velocity profile is observed to be more dependent on the streamwise 

location: the velocity is mainly downward close to the leading-edge of the cylinder, but turns upward 

close to the exit of the gap. This upward flow at the trailing-edge is due to the interaction between the 

wake vortices and the vortex attached to the wall, which deflects the exit flow upward (see Figures 3.4(d) 

and 3.4(f)). The predicted velocity profiles are in a good agreement with those documented in the existing 

literature, e.g. [24-26]. 

3.3.2 POD analysis:  

As explained earlier, POD enables to decompose a flow field into a set of flow structures, (sometimes 

referred to as topologies) that make different individual contributions to the overall flow. A proper 

criterion to determine the contribution of each structure is to measure the relative turbulent kinetic energy 

(TKE) of each topology. Figure 3.6 compares the energy spectrum for the four different gap ratios 

considered.  For the no-wall case (denoted ݃/ܦ ൌ ∞), the first two modes contain a larger fraction of the 

total TKE compared to the other cases. This can be explained by the fact that the flow for the free 

cylinder is dominated by the periodic Kármán vortex shedding. For gap ratio’s of  ݃/ܦ ൌ 1 and             

ܦ/݃  ൌ 0.5, although vortex shedding still exists, it is not as energetic as for the no-wall case. This 
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dominancy almost disappears for the case where the cylinder is located on the wall (denoted  ݃/ܦ ൌ 0). 

Another characteristic of the free cylinder case without any bounding wall is that the energy of the next 

few modes is significantly smaller than the same modes of the cases where a wall is present; this is 

especially noticeable for modes 4 to 10. This may suggest that for the three cases with a wall present, the 

structures represented by modes 4 to 10 are associated with and perhaps generated by the solid wall.  

Although the energy spectrum is helpful in comparing the distribution of eigenmodes, it only provides 

partial information. 

 

 

 

 

 

 

 

Figure 3.7 displays the first three POD modes, for the four cases studied in terms of the streamwise 

velocity component (߶௨భ). For the no-wall case, the first two modes represent a travelling wave 

characteristic, where the second mode is a phase shift of the first mode, see Figures 3.7(a) and 3.7(b). 

These periodic modes are attributed to the Kármán vortex shedding. On the other hand, the third mode is 

of a different nature than the first two, as can be noticed from its topology, Figure 3.7(c). The travelling 

wave characteristic is still noticeable in the first two modes of the ݃/ܦ ൌ 1 case, Figures 3.7(d) and 

3.7(e). It seems that the wall does not strongly influence the vortex shedding; although the structures are 

somewhat distorted and inclined away from the wall, the travelling wave characteristic persists. However, 

Figure 3.6: Decay of energy for different gap ratios 
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some distinct near-wall structures begin to appear in the third mode, Figure 3.7(f). For smaller gap ratios 

the second mode does not give the impression of being a phase-shifted version of the first mode, but 

instead appears to be strongly affected by the nearby wall, Figures 3.7(g) and 3.7(h). The energetic 

structures originated by the wall are stronger than for the previous case and being to appear in the second 

mode. Finally, for case where the cylinder sits on the wall, while the first  two  modes  show  some  wave- 

like behavior, it is distinct from the vortex shedding case, Figures 3.7(j) and 3.7(k). Unlike the previous 

three cases, the topology of the third mode is not significantly different from the first two, and hence the 

third mode is not of a different nature from the first two, Figure 3.7(l). This also explains why the energy 

content does not change significantly from eigenmode 2 to 3 for the ݃/ܦ ൌ 0 case shown in Figure 3.6. 

This is another example of how the energy spectrum can be linked to the mode topologies to explain 

thecoherent structures in a turbulent flow. 

The first three eigenmodes for the wall-normal component velocity component (߶௨మ) are displayed in 

Figure 3.8, using the same layout as in Figure 3.7. Figures 3.8(a) through (f) support the previous 

discussion regarding the nature of the first three modes. Unlike the case of the streamwise velocity, the 

energetic wall related structures do not appear in the first three modes, even for the case of a narrow gap 

as in Figures 3.8(g) and 3.8(h). However, at some point, the wall begins to deform and change the shape 

of the structures, as shown in Figure 3.8(i). 

Lastly, the first three energetic structures in terms of streamlines overlaid on the spanwise vorticity 

contours (߶ఠమ
) are presented in Figure 3.9. The streamlines provide a sense of the complex flow patterns 

created by the different modes. In fact, this figure is the “richest” in terms of portraying the flow topology 

and its influence by the wall; the formation of smaller vortex structures at the wall, for smaller gap ratios, 

can be detected. This figure also illustrates how as the wall approaches, the energetic structures generated 

by the wall become more prominent and begin to dominate the lower modes. For example, for the case of 

the cylinder on the wall, even the first mode is influenced by the interaction of wall structures and the 

prismatic obstacle. A remarkable conclusion which can be drawn from this figure is that a nearby solid 
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wall not only pushes the structures upward (note the center of vortical structures), but also the structures 

tend to lean backward (note the distribution of vortical structures from the streamline patterns). This 

topology (and conclusion) is in accordance with previous study of square cylinder near a solid wall by Shi 

et al. [28]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

Figure 3.7: First three modes for the streamwise velocity component ߶௨భ: (a) to (c): ࡰ/ࢍ ൌ ∞, (d) 
to (f): ࡰ/ࢍ ൌ ૚, (g) to (i): ࡰ/ࢍ ൌ ૙. ૞, (j) to (l): ࡰ/ࢍ ൌ ૙ 
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3.4 Conclusion and Recommendations 

In this study, the effect of the wall proximity on the wake dynamics of flow over a square cylinder 

was investigated for different gap ratios. The numerical predictions provided by the LES were first 

verified as consistent with the  results of other studies. The  results  indicated that  although a nearby  wall  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: First three modes for the wall normal velocity component ߶௨మ: (a) to (c): ࡰ/ࢍ ൌ ∞, (d) 
to (f): ࡰ/ࢍ ൌ ૚, (g) to (i): ࡰ/ࢍ ൌ ૙. ૞, (j) to (l): ࡰ/ࢍ ൌ ૙ 
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alters the values of the lift and drag coefficients,  ܥ௅തതത  and  ܥ஽തതതത, its effect on the shedding frequency and 

Strouhal number is minimal. A POD analysis was performed to characterize the wake flow structures and 

identify those structures associated with the nearby wall. It was observed that the energy decay rate is 

slower for smaller gap widths, which means that the role of wall in the formation of energetic structures is 

more significant (than the role of cylinder itself) for smaller gap spaces. Lastly, it was observed that the 

vortical structures are being pushed away and lean backward in proximity of a solid wall. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.9: First three modes for the spanwise vorticity component ࣓ࣘ૛: (a) to (c): ࡰ/ࢍ ൌ ∞, (d) to 

(f): ࡰ/ࢍ ൌ ૚, (g) to (i): ࡰ/ࢍ ൌ ૙. ૞, (j) to (l): ࡰ/ࢍ ൌ ૙ 
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Chapter 4  

Turbulent Couette Flow with Rib-Roughness: A Study 
of the Coherent Structures using Proper Orthogonal 
Decomposition 

A similar version of this chapter has been submitted as:  

M. Samani and D. J. Bergstrom, “Turbulent Couette flow with rib-roughness: a study of the 

coherent structures using Proper Orthogonal Decomposition”, International Journal of Heat and 

Fluid Flow (under review).  

The flow simulation results and POD analysis were developed by the first author. Partial 

development of the POD routine formulation as well as initiating the LES code were contributed 

by the second author. 

In addition a part of this chapter was presented at the following conference: 

o M. Samani and D.J. Bergstrom, Use of POD to Investigate Large-Scale Structures in Turbulent 

Flow with Rib-Roughness, The 63rd Annual Meeting of the American Physical Society's Division 

of Fluid Dynamics (DFD), Long Beach,  California, USA,  November 21-23, 2010. 

The flow simulation results and POD analysis were developed by the first author. Partial 

development of the POD routine formulation as well as initiating the LES code were performed 

by the second author. 
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Preamble: 

After verifying and validating the LES technique and POD algorithm in the first step, and making 

proper revisions to the LES code in the second step, the ultimate target of this research can be addressed, 

which is to study turbulent flows over rough walls and investigate the structures generated by the 

roughness, by making comparison to similar turbulent flows over smooth walls. In order to make this 

comparison in similar flow conditions, an asymmetric channel with one smooth wall and one roughened 

wall was implemented in a single study.  

To make this last step special and unique, both in terms of simulation and POD analysis, the pressure 

gradient was removed and a moving top surface was added instead, such that the flow would solely be 

driven by the motion of the top surface. So, unlike the previous study cases, the available literature on this 

study case (asymmetric Couette channel flow) is scarce. As a result, this chapter has contributions in both 

aspects of this study (LES and POD) and therefore both aspects are equally emphasized.  

This chapter recaps the contributions and outcomes of the first two steps and opens up some 

innovative ideas in terms of using POD capabilities to improve the accuracy and fidelity of turbulent flow 

simulation for future studies.   
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Abstract 

A numerical study of the structures in turbulent Couette flow with roughness on one wall is 

performed. The hydrodynamic roughness was created by a series of ribs of square cross-section mounted 

perpendicular to the flow and distributed uniformly in the streamwise direction. The effect of both 

roughened and smooth surfaces was examined by implementing a moving top surface which was smooth 

and a roughened bottom wall. The domain was discretized using a non-uniform collocated grid and the 

flow solved using a second-order finite volume code. Large Eddy Simulation (LES) with a dynamic 

Smagorinsky subgrid-scale model was used to obtain the large-scale velocity field. Comparison with 

experiments and other numerical studies indicated that the predictions for the resolved-scale and 

fluctuating velocity fields were realistic. The velocity distribution near the top wall has the prototypic 

characteristics of a smooth surface, while transitional roughness was present on the bottom wall.  The 

mean resolved-scale velocity field is characterized by a secondary flow consisting of two counter-rotating 

cells aligned in the streamwise direction. Proper Orthogonal Decomposition (POD) was used to 

investigate the dynamic behavior of the large-scale three-dimensional, time-dependent flow structures. 

The results show that in the proximity of each rib, the structures are mostly influenced by the neighboring 

ribs, while the topology in core region is mainly determined by the flow type, i.e. Couette flow. Some 

structures in the core region are shown to be displaced upwards by the rough surface. The topology of the 

coherent structures was also analysed and the contribution of each structure to the total fluctuating kinetic 

energy was determined.  Qualitative analyses of these topologies provided insight as to the interaction of 

the ribs with the turbulence in the core region. Lastly, a quantitative analysis of POD temporal 

coefficients was performed, which revealed a quasi-periodic time-variation of the POD components.   
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4.1 Introduction 

There have been many previous numerical and experimental studies of turbulent flow over smooth 

surfaces.  However, in reality a perfectly smooth surface does not exist as any surface has some finite 

roughness and therefore all practical flows occur over rough surfaces. Despite this fact, far less 

information is available for turbulent flows over rough walls. 

Due to the geometric simplicity, two-dimensional spanwise ribs have been previously used to 

simulate roughness elements. These simple two-dimensional geometries can generate highly three-

dimensional structures in the inner layer and cause significant changes in the turbulence motions in the 

outer flow. Accordingly, one can divide the flow field into two regions: the wall dominant region where 

the surface roughness has a direct effect, and the outer region, where the effect of the surface is indirect. 

For rib roughness elements, due to the existence of sharp corners, the geometry predetermines the 

separation point which is the leading corner of the element, or the rear corner for low Reynolds number 

flows. The flow separation creates a small wake region behind the ribs, and the pressure distribution on 

the ribs creates a pressure drag which increases the effective wall shear stress. 

A pioneering experimental study of turbulent channel flow with roughness elements on one wall was 

performed by Hanjalic and Launder [1]. With the advent of computational methods and the rapid 

development of computers, numerical analysis of two- and three-dimensional roughness elements has 

attracted more attention. Direct numerical simulation (DNS) of pressure driven channel flow with 

transverse rib roughness was performed by Miyake et al. [3]. Later, Ikeda and Durbin [4] performed DNS 

of a configuration with uneven rib heights. In a Large Eddy Simulation (LES) study, Cui et al. [5], 

studied mean and instantaneous flow structures of this arrangement for different spacing between 

elements. Leonardi et al. [6-7] performed DNS of turbulent channel flow with a rib-roughened wall for a 

wide range of w/k values, where w is the separation distance between the rib elements and k is the rib 

height. Nagano et al. [8] performed a Direct Numerical Simulation (DNS) study of channel flow with rib 
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roughness including heat transfer for different type of elements and different spacing, and investigated the 

statistical properties of both the velocity and thermal fields. They also studied rectangular ribs with non-

square cross sections. Jimenez [9] studied the interaction between the viscous sublayer and the outer flow 

in turbulent near-wall flow, and concluded that at sufficiently large Reynolds numbers the dependency of 

the outer flow structures on the surface roughness is very weak. Using both hot-wire anemometry and 

DNS, Krogstad et al. [10] studied a fully turbulent pressure-driven symmetric channel flow for cases with 

smooth walls and rod-roughness on both walls. Similar symmetric configurations have been studied by 

other authors, e.g. Bakken et al. [11] and Ashrafian et al. [12]. Orlandi et al. [13] investigated the effect 

of element shape and orientation on the turbulence structure using DNS. Later, Burattini et al. [14] 

performed simultaneous experimental and numerical analyses of asymmetric channel flow with roughness 

on one wall for a range of Reynolds numbers. They extensively studied the statistical moments of the 

velocity fluctuations, length scales and turbulent energy spectra, and their variation with Reynolds 

number. 

In the current study, a two-dimensional turbulent channel flow is considered, which is driven not by a 

pressure gradient, but rather by the motion of one wall relative to the other, i.e. turbulent Couette flow. 

Aydin and Leutheusser [2] experimentally studied plane Couette flow, in one case with two smooth walls, 

and in the other case with two rough walls. They compared the mean velocity distribution and turbulent 

intensities between the smooth and rough wall cases, and the flow was symmetric for both cases. To the 

authors’ knowledge no one has yet studied turbulent plane Couette flow with rib roughness on one wall. 

By performing DNS of a plane Couette flow, Papavassiliou and Hanratty [15] investigated large scale 

secondary flow structures, which cannot be observed in pressure-driven flows. Notwithstanding the 

capability and accuracy of DNS in resolving the complete range of turbulent motions, the large eddies 

dominate the turbulent transport and therefore in this study the turbulent flow is simulated using the LES 

approach. Wang and Bergstrom [16] applied LES for a simulation of turbulent Couette flow for a similar 

Reynolds number. The main focus of this study was on analyzing the large-scale velocity structures in 
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turbulent Couette channel flow and the flow topology associated with the roughness elements using 

Proper Orthogonal Decomposition (POD). Moehlis et al. [17] employed POD to model a plane Couette 

flow. Their work was extended later by Smith et al. [18] to obtain a low-dimensional model in a minimal 

flow unit. Tsukahara et al. [19] extracted three-dimensional spatial POD modes from a DNS analysis of a 

plane Couette flow.  

In the present study, rib elements are periodically arranged in the streamwise direction. The Reynolds 

number based on the velocity of the top wall and channel half-width is set to Re = 2600 with the aim of 

facilitating comparisons to the existing literature. Since the Reynolds number is relatively low and the rib 

height, k, is relatively large compared to the channel height, h, the roughness elements are expected to 

have a noticeable influence on the turbulent structures. Of specific interest is the interaction of the rib 

wakes with the outer flow above. Note that the choice of this geometry also allows direct comparison 

between the smooth and rough wall, since they have the same friction velocity (Uτ) value. The snapshot 

POD method of Sirovich [20] is used to investigate the flow results from LES. The POD analysis 

specifically considers two-dimensional velocity and vorticity components in plane sections which are 

aligned perpendicular and parallel to the outer flow.  This analysis required use of a relatively large 

number of snapshots spread over a sufficiently long time period so that the velocity fields are independent 

of each other, which was efficiently accomplished using the LES approach to simulate the turbulent 

velocity field. 

4.2 Computational Methodology 

4.2.1 Flow physics, transport equations and numerical approach: 

To model the turbulent flow in this study, the LES method was employed. First, a spatial filter is used 

to filter the incompressible Navier-Stokes (NS) and continuity equations to obtain 
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where ࢛ഥ࢏ is the filtered velocity, t is the time, ݌ is the local pressure, ߩ is the density, ࢏࢞ is the 

corresponding Cartesian coordinate and ߬௜௝ is the subgrid-scale stress (SGS) term. In this work, an eddy 

viscosity formulation was employed to express the SGS stress in terms of the resolved-scale velocity 

field, i.e.  

߬௜௝ െ
1
3
௜௝߬௞௞ߜ ൌ െ2ߥௌீௌܵҧ௜௝, ሺ4.3ሻ 

where   ܵҧ௜௝ ൌ
ଵ

ଶ
൫߲ݑത௜ ⁄௝ݔ߲ ൅ ത௝ݑ߲ ⁄௜ݔ߲ ൯. To model the SGS viscosity ሺߥௌீௌሻ, the dynamic Smagorinsky 

model of Germano et al. [21] was implemented, in which ߥௌீௌ is given by  

ௌீௌߥ ൌ  ଶ|ܵҧ|, ሺ4.4ሻ߂௦ܥ

where |ܵҧ| ൌ ൫2ܵҧ௜௝ܵҧ௜௝൯
భ
మ, ߂ is the filter width and the dynamic coefficient Cs is determined as a variable of 

space and time. Further details of the mathematical procedure can be found in [21] and [22]. In the 

present formulation, both clipping and local volume averaging were used to stabilize the value of Cs. 

A non-uniform collocated grid was used to discretize the governing equations using a cell-centered 

finite volume method. The discrete momentum equation was advanced in time using a semi-implicit 

Crank-Nicolson scheme as part of a fractional-step method. To ensure mass conservation at each time 

step, a pressure correction scheme was implemented using a multi-grid solver. The time step was set to a 

constant value of Δt = 2 ൈ 10ିସ which corresponds to the Courant–Friedrichs–Lewy (CFL) number of 

0.35 and meets the convergence condition.  



94 
 

The theoretical relation for the mean velocity profile in a turbulent flow on a smooth surface is given 

by the classical two-layer wall-law of von-Kármán [23], i.e. 

൞

ଷାݔ ൑ 5              ฺ ଵାݑ ൌ ଷାݔ ;

ଷାݔ ൐ 30            ฺ ଵାݑ ൌ ൬
1
ߢ
൰ ݈݊ ଷାݔ ൅ ܤ .

 

ሺ4.5. ܽሻ 

(4.5.b) 

Here  ݑଵା and ݔଷା are the dimensionless streamwise velocity and wall-distance components 

respectively, ߢ is the von-Kármán constant (ൎ 0.41) and B is a constant (ൎ 5). 

For a rough surface, the form drag caused by the pressure forces on the roughness elements 

significantly modifies the resistance presented to the flow by the wall. Even though viscous drag exists, 

often it is relatively small compared to the form drag. The effect of roughness on the mean velocity 

profile can be expressed in wall units as follows, 
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In the above equation,  ݑଵା is the mean velocity normalized by the friction velocity (Uτ) and ݔଷା is 

the dimensionless wall-normal distance normalized by the viscous length scale (ℓτ), where 
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The roughness effect is given by the last term, ∆ݑଵା, which is called the roughness function and 

reflects the roughness geometry, i.e. the shape, height and distribution of the roughness elements. When 

plotted on a semi-log plot, the roughness function mathematically acts as a shift to the velocity profile for 

a smooth wall and as such quantifies the effect of roughness.  

In the present study, the bottom wall is characterized by ribs of height k separated by a distance w.  

Figure 4.1 shows the channel configuration and defines the geometrical parameters. The top wall of the 

channel is located a distance of h (= 2δ) above the bottom wall, so that h/k = 16. The ribs are 

characterized by a pitch-to-height ratio of w/k = 7.5. This ratio was chosen because it is close to the value 

for which the maximum drag force occurs for a given rib height, and hence yields the maximum shift in 

the velocity profile ΔU+, according to Leonardi et al. [6].  Since their study considered Poiseuille channel 

flow with one roughened wall, this value has not been verified for the Couette flow case.   

 

 

 

 

 

 

 

 

For plane Couette flow, the flow is driven solely by the movement of the top wall. The velocity of the 

top wall and channel half-width can be used to define the Reynolds number  ܴ݁ ൌ ܷ௢݄/ߥ , where the 

reference  velocity  is  given by ܷ௢ ൌ ܷ௪/2.  According  to  the study of Bech et al. [24],  the  transitional  

Figure 4.1: Geometrical sketch of the channel showing sampling planes 
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Reynolds number for Couette flow in a channel with smooth walls is ReT  ≈ 720 (or ReτT  ≈ 26) and the 

critical Reynolds number for fully developed turbulent flow is ReC  ≈ 1000 (or ReτC ≈ 35). In this work, 

the Reynolds number is set to Re = 2600 which ensures that the flow is fully turbulent and corresponds to 

a Reynolds number of Reτ = 90 based on the friction velocity.  

 

 

 

 

 

 

 

 

 

 

To resolve the turbulent flow field, computations were performed on a rectangular domain of size  

4.6δ1.0δ2.0δ (36k8k16k) using a 1283264 non-uniform grid, as shown in Figure 4.2. The 

flow behaves as an infinitely long and infinitely wide channel, since periodic boundary conditions were 

imposed on the streamwise and lateral surfaces of the domain. Blocks of 163216 control volumes 

were used to resolve the rib geometry, and the center of the first interior control volume is located at 

ଷାݔ ൌ 1.27  for the smooth wall and ݔଷା ൌ 0.94 for the rough wall. Even though a relatively small 

number of control volumes was used to resolve the flow, the near-wall resolution is sufficient to resolve 

the flow very close to the wall, e.g. within the viscous sub-layer on the smooth wall. 

Figure 4.2: projected computational grid 
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4.2.2 Implementation of Proper Orthogonal Decomposition:  

Given a set of apparently random and complex flow fields, it would be desirable to determine an 

optimally correlated relationship among them, which is the motivation for using the POD methodology to 

analyze turbulent flows. The correlated features or so called “coherent structures” represent the energy 

containing structures in an evolving flow dynamics. In this case, the two-dimensional fluctuating velocity 

and vorticity fields are used as the input data. The fluctuating field can be obtained by subtracting the 

mean field from the instantaneous field, e.g. for the velocity field in a streamwise sampling 

plane,  ࢏࢛
ᇱሺ࢞૛, ,૜࢞ ሻݐ ൌ ࢏࢛  ሺ࢞૛, ,૜࢞ ሻݐ െ ,૛࢞ሺ࢏ഥ࢛  ૜ሻ. A two-point velocity correlation matrix can be࢞

generated using these fluctuating fields, i.e. 

,ݐሺܥ ᇱሻݐ ൌ
1
ܰ
න ሾ࢏࢛

ᇱሺ࢞૛, ,૜࢞ ࢏࢛ሻݐ
ᇱሺ࢞૛, ,૜࢞ ᇱሻሿݐ

ఆ
૛࢞݀  ૜, ሺ4.8ሻ࢞݀

where N is the total number of snapshots and Ω denotes the spatial domain. After solving the following 

eigenvalue problem 

නܥሺݐ, ԢݐԢሻ݀ݐᇱሻܽ௡ሺݐ ൌ  ሻ, ሺ4.9ሻݐ௡ܽ௡ሺߣ

a series of eigenvalues and corresponding eigenvectors are obtained. The eigenvalue of each mode 

represents twice the turbulence kinetic energy (TKE) associated with that mode, and consequently 

summation of the eigenvalues gives twice the total TKE for the flow. The coefficient ሺܽ௡ሺݐሻሻ represents 

the amplitude corresponding to spatial mode  ߶௡ሺ࢞૛, -૜ሻ, and can be used to decompose the time࢞

dependent fluctuating part of the velocity field into a sum of orthonormal spatial modes ሺ߶௡ሺ࢞૛,  ૜ሻሻ and࢞

associated temporal coefficients ሺܽ௡ሺݐሻሻ, i.e.  

࢏࢛
ᇱሺ࢞૛, ,૜࢞ ሻݐ ൌ ෍ ܽ௡ሺݐሻ߶௡ሺ࢞૛, ૜ሻ࢞

ே

௡ୀଵ

. ሺ4.10ሻ 

To obtain the 2D “coherent structures”, one can use the following relation 
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߶௠ሺ࢞૛, ૜ሻ࢞ ൌ ෍ܽ௠ሺݐ௞ሻ࢏࢛
ᇱሺ࢞૛, ,૜࢞ .௞ሻݐ

௄

௞ୀଵ

 ሺ4.11ሻ 

Finally, a specific velocity field of the total ensemble can be reproduced as follows, 

,ݕሺݑ ,ݖ ௡ሻݐ ൌ ෍ ܽ௠ሺݐ௡ሻ߶
௠ሺݕ, ሻݖ

ெ

௠ୀଵ

. ሺ4.12ሻ 

The snapshots were collected after the initial transient field had decayed so that the turbulent flow 

was statistically stationary. The instantaneous velocity field was sampled on two-dimensional slices 

(snapshots) of the flow field taken perpendicular to the rods (x1-x3 plane) and perpendicular to the flow 

direction (x2-x3 plane). In each plane, two-dimensional velocity and vorticity components were used as the 

computational data for the POD analysis.  In total N = 2200 snapshots were sampled over a time duration 

of 180 non-dimensional time units (ݓ/ܷ௪). As noted previously, part of the motivation for using a 

relatively small-scale LES was to facilitate collection of the ensemble of snapshots required for the POD. 

4.3 Selected Results and Discussion 

4.3.1 Validation of Couette flow results:  

In order to validate the LES results, select features of the turbulent mean flow were compared to the 

results from previous studies. The resolved-scale time-averaged velocity profile, normalized using the 

outer scales, is plotted in Figure 4.3, along with the results of some other smooth-wall and rough-wall 

studies. Note that the profile is averaged in time and also averaged spatially along the gap between two 

consecutive ribs. Due to the existence of recirculation zones in the gap between the ribs, a small region of 

reverse flow is evident in the vicinity of the ground surface. A practical practice in such cases, e.g. as 

done in [26], is to define a virtual origin which corresponds to the location where mean velocity is zero. 

As expected, the turbulent velocity profile deviates significantly from the linear profile obtained for 
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laminar flow indicated by the dashed line. Recall that the flow along the top wall is characteristic of a 

smooth surface. Near the top wall, the present results show fairly good agreement with previous studies 

on smooth walls, e.g. the experimental study of [2] and LES of [16], especially in close proximity to the 

wall. 

 

 

 

 

 

 

 

 

 

 

 

 

As one moves away from the top wall towards the center of the channel, the present profile deviates 

from the smooth wall profile and moves toward the rough profile of Aydin and Leutheusser [2].  This 

behavior indicates that the rib roughness on the bottom wall affects the flow near the top wall, which is 

expected considering fairly high blockage of rib elements. At the present time it is not clear what flow 

mechanism is responsible for this behavior. A similar effect has been observed in Poiseuille flows with 

rib-roughness on just a single wall, e.g. [1, 5, 13]. The mean velocity profile near the bottom wall clearly 

shows the influence of the ribs, which reduce the velocity below that on a smooth surface. In this case, 

Figure 4.3: Mean velocity distribution across the channel 
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there is close agreement over much of the lower half of the channel with the profile measured by Aydin 

and Leutheusser [2] for a channel with roughness on both walls at a much higher Reynolds number. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

To further investigate the mean velocity field, the velocity profiles are presented using universal wall 

coordinates in Figure 4.4. The velocity profiles are plotted referenced to the nearest wall, in anticipation 

of comparing smooth and rough wall characteristics. Note that reference profiles are provided for both 

symmetric ([2, 16]) and asymmetric ([6, 13]) cases; for the symmetric flows, a single velocity profile is 

shown, while for the asymmetric flows, smooth and rough wall profiles are included. Near the top wall, 

the velocity profile sits below the smooth wall velocity profiles of [2] and [16].  This is consistent with 

other studies which used roughness on only one wall [5, 7, 8, 13], and indicates that the effect of 

roughness has a strong effect on the velocity profile on the opposite wall. Note that very close to the top 

Figure 4.4: Mean velocity distribution expressed in wall coordinates 
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wall, the present velocity profile approaches the linear profile of the viscous sublayer on a smooth 

surface.  The velocity profile on the rough wall exhibits the characteristic roughness shift due to the 

enhanced wall shear stress created by the ribs.  The value of the roughness shift in this study was      

 ଵା|  = 2.1, which indicates that the flow is in the transitional roughness regime ([9]).  Table 4.1ݑ∆|

compares this value with some previous Poiseuille flow studies with different Reynolds numbers and 

geometries. The fact that the ribs produced only transitional roughness in the present study may be due to 

the nature of the flow, i.e. Couette versus Poiseuille, and also reflect the difference in Reynolds number. 

Note that the velocity profile on the rough wall has only a small logarithmic region, and transitions to the 

wall in a manner which indicates that viscous effects are still important.  This is partly due to the fact that 

it is transitional roughness, and also reflects the fact that in the gap between ribs, the resistance at the wall 

is entirely due to viscosity. 

 Re w/k |∆ݑଵା| 

Leonardi et al. [6] 4200 4 6.2 

Leonardi et al. [7] 4200 7 7.7 

Krogstad et al. [10] 4200 8 7.1 

Orlandi et al. [13] 4200 7 6.5 

This work 2600 7.5 2.1 

Table 4.1:  Comparison of roughness shift in different studies 

In terms of the LES predictions for the turbulence field, the resolved-scale streamwise velocity 

fluctuation along the wall normal direction is presented in Figure 4.5 for both walls.  As before, this 

profile is time-averaged and also averaged spatially over the gap between two consecutive ribs. On the 

smooth wall, the peak value in the present profile is approximately ݑଵ௥௠௦/ ఛܷ ൌ 2.55, which is slightly 

less than that obtained by previous studies, e.g. ݑଵ௥௠௦/ ఛܷ ൌ 2.6 by Bech et al. [24], ݑଵ௥௠௦/ ఛܷ ൌ 2.7 by 
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Aydin and Leutheusser [2] and ݑଵ௥௠௦/ ఛܷ ൌ 2.8 by Wang and Bergstrom [16]. Likewise, the location of 

the peak is shifted slightly away from the wall in the present simulation; the location is 

approximately  ݔଷା ൌ 18, compared with   ݔଷା ൌ 11 for Aydin and Leutheusser [2],   ݔଷା ൌ 12 for    

Bech et al. [24] and  ݔଷା ൌ 14 for Wang and Bergstrom [16]. In the core region of the channel, the 

present prediction tends to a constant value which is in agreement with the other studies. Overall, the 

resolved-scale streamwise velocity fluctuation on the smooth wall does not appear to be strongly affected 

by the roughness on the opposite side of the channel. 

 

 

 

 

 

 

 

 

 

The profile of ݑଵ௥௠௦/ ఛܷ for the rough wall is close to the measurements of Aydin and Leutheusser 

[2], as well as the open channel data of Grass [30], especially in the core region. The observed reduction 

in the peak and core values compared to the smooth wall case is consistent with the experimental results. 

This characteristic was attributed by Krogstad et al. [25] to the break-up of the streamwise vortices due to 

the rib elements. 

Figure 4.5: Profile of resolved-scale streamwise velocity fluctuation in wall coordinates
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Purely two-dimensional Couette flow is characterized by a constant shear stress profile. Figure 4.6 

displays the budget of the total normalized shear stress plotted across the channel, including contributions 

from the viscous, resolved-scale and SGS transport. Note that the data in the reverse flow region on the 

rough surface are excluded from the plots. As previously mentioned, the wall normal distance is measured 

from the  wall surface,  i.e.,  just below  the  neutral  axis.  The viscous  contribution  (
ఓ

ఛೢ
ۃ
డ௨భ೘೐ೌ೙

డ௫య
  peaks  (ۄ

 

 

 

 

 

 

 

 

 

close to the walls, where the turbulent contribution is damped, and diminishes in the core region. The 

resolved-scale shear stress (െ
ఘ

ఛೢ
ଵݑ
ᇱ ଷݑ

ᇱതതതതതത) exhibits the opposite trend, since turbulent transport is dominant in 

the core region.  The sum of the viscous and resolved-scale contributions yields an approximately 

constant value equal to unity across the channel. The profile for the SGS stress contribution, (
ఛೣభೣయ
௎ഓ
మ ), is 

asymmetric, and is largest in proximity to the rough wall.  Not included in the present figure is the 

contribution of the secondary flow, which is discussed later in the paper (see Figure 4.15). The SGS stress 

and secondary flow contributions tend to balance each other. 

Figure 4.6: Shear stress profile across the channel 
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The time-averaged flow patterns have been compared to the instantaneous values in Figure 4.7 using 

streamlines and spanwise vorticity contours. More than 2200 samples were used to perform the time-

averaging on the LES fields. The primary separation at the leading edge is well captured in both cases. 

The vorticity contours indicate that a high spanwise vorticity component exists near the upstream corner 

of ribs. In the core region of the channel, there are vortical structures of opposite sign, which do not 

appear to penetrate into the region between the ribs. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Mean and instantaneous flow patterns in terms of streamlines and spanwise vorticity: 
(a)-(b): instantaneous (࣓૛); (c)-(d): mean (࣓૛࢔ࢇࢋ࢓) 
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The time-averaged pattern of streamlines is shown for a single pair of ribs in Figure 4.8. The initial 

separation and reattachment phenomena are well captured, and the primary and two secondary 

recirculation zones are also resolved, which agree well with the results of other studies, e.g. [5] and [6]. 

The length of the recirculation cell and reattachment length are approximately 4k and 1.2k, respectively. 

These values are also comparable to previous measurements of rib-roughened walls, e.g. 4.8k by Leonardi 

et al. [6] and 5k by Liu et al. [27]. Note that these characteristics have significant implication for the form 

drag on the ribs. 

 

 

 

 

 

A qualitative analysis of the instantaneous flow in Figures 4.7(a) reveals that roughness elements 

have impact to some extent, on the mean flow in the outer region. However, the time-average streamlines 

far above the ribs are nearly parallel. In contrast, close to the rough wall the flow direction is drastically 

changed by the ribs, and in the proximity of the roughness elements the flow becomes spatially 

heterogeneous and three-dimensional. This feature is more noticeable in vector plots of the instantaneous 

velocity for different sections across the channel as shown in Figure 4.9.  Figure 4.9(a) displays the vector 

field at an elevation of approximately x3 = 0.5k above the ground plane. Although the geometry is two-

dimensional, complex spanwise motions, i.e. in the third dimension, are clearly evident. These spanwise 

features diminish as the sampling section moves toward the centre of the channel. Just above the crest of 

the ribs, a few weak spanwise motions can still be detected (Figure 4.9(b)) but further away from the ribs 

Figure 4.8: Time-averaged streamlines in spanwise plane 
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(Figure 4.9(c)) the vectors are nearly parallel, indicating negligible impact of roughness elements on the 

mean flow in the outer region. 

The above analysis documents the characteristics of the mean and instantaneous velocity fields 

predicted by the LES. Comparisons with other simulations and experiments indicate that the LES 

prediction provides a realistic simulation of low Reynolds number turbulent flow over a rib-roughened 

wall. The next section will use POD to specifically analyse the flow structure, especially the most 

energetic flow structures associated with the roughness elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.9: Instantaneous velocity vector field for different x1-x2 planes across the channel: at  

(a) 0.5k, (b) 1.4k and (c) 7k, above the ground plane 
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4.3.2 Proper Orthogonal Decomposition: 

4.3.2.1 Spanwise sampling plane 

A first step in POD analysis is to determine the fraction of energy contained in each mode and hence 

identify the more energetic topologies embedded in  the  turbulent flow. Figure  4.10  displays  the energy  

 

 

 

 

 

 

 

spectrum for the POD analysis on a log-log plot; the POD was performed on a spanwise (x1-x3) sampling 

plane. The spectrum, which spans five decades, indicates that consecutive modes contain less and less 

energy, which is consistent with the basic premise of POD. The first eleven modes capture almost 46 

percent of the total fluctuating energy. The mean flow field, which is often referred to as mode 0, carries a 

large portion of the total energy (almost 44%) and is not included in the spectrum shown in Figure 4.10. 

The energy contained in each of the first four modes is similar, and there is a noticeable drop in energy 

content after the fourth mode. This suggests that the fifth mode is of a different nature from the first four. 

Often it is useful to “bundle” the modes in different groups based on energy content to assess the role of 

different eigenmodes, although a firm conclusion cannot be drawn from the energy plot alone.  

Figure 4.10: POD eigenmodes energy spectrum 
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Figure 4.11 displays the streamwise velocity contour plots of the first four POD modes, for a plane in 

the spanwise direction (x1-x3 plane). The overall pattern of each mode can be segregated into three 

topologies associated with the smooth wall (SW), the roughened wall (RW) and the bulk flow (BF). In 

Figure 4.11, longitudinal structures can be observed in the proximity of both walls: the RW structures are 

inclined to the wall. This characteristic is more pronounced in modes 3 and 4, Figures 4.11(c) and 4.11(d), 

respectively. The BF structures are typically larger and less stretched in the streamwise direction 

compared to SW and RW structures. For the first two modes, the BF structures are located near the center 

of the channel, while for modes 3 and 4; they are displaced towards the smooth wall. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: First four modes of the ࢛ࣘ૚ component 
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All three topologies exhibit traveling wave characteristics with a phase shift relative to each other. 

The first two modes are dominated by the BF structures, whereas for modes 3 and 4, the RW structures 

are dominant.  

Contours of the first four modes of the wall-normal velocity component are displayed in Figure 4.12. 

The SW topologies are stretched in the streamwise direction, whereas the RW topologies also extend in 

the wall normal direction. In the first two modes, the RW and BF topologies merge to form the large 

dominating structures. For the next two modes, the separate BF structures are absent, and the SW 

structures are larger than those on the RW. Similar to the case of the streamwise component, a traveling 

wave characteristic, with a phase shift can be noticed in all four eigenmodes. 

   

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.12: first four modes of the ࢛ࣘ૜ component  
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Figure 4.13 displays the first four eigenmodes for the spanwise component of the vorticity (߱ଶ). For 

Couette flow, the vortex strength of the RW and SW structures is much higher than that of the BF 

structures: accordingly, in Figure 4.13, the BF structures are very weak and difficult to distinguish. The 

SW structures are stretched in the streamwise direction, and located very close to the wall. In contrast, the 

RW structures are somewhat inclined and located just above the rib elements. An interesting feature is the 

presence of multiple structures near the leading corner of each rib. This feature is most noticeable for the 

first mode.  Overall, the dominant components of the eigenmodes of the spanwise vorticity component are 

located close the channel walls.  This is in contrast to the eigenmodes of the streamwise and wall normal 

velocity components, which tended to fill the entire channel including the core. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: first four modes of the ࣘ߱2 component 
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Lastly, in terms of a qualitative analysis of the eigenmodes in the (x1-x3) plane, it is useful to make a 

comparison to the case of a single rib placed on a ground plane (as was done in Chapter 3). Figure 4.14 

displays the first two eignenmodes for the streamwise and wall-normal components. Similar to the rib-

roughened wall considered in the present study, the topology of the streamwise component is elongated in 

the x direction (Figures 4.14 (a) and 4.14(b)) but unlike the case of Couette flow, the structures incline 

downward towards the ground plane. Furthermore, the longitudinal structures are relatively shorter than 

for the case of Couette flow. For the wall-normal component, the energetic structures are extended in the 

wall normal (x3) direction, whereas for the case of Couette flow, they incline in the streamwise direction. 

A traveling wave characteristic is evident for both geometries. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.14: POD modes of a single rib on a ground plane: (a)࢛ࣘ૚ mode 1, (b) ࢛ࣘ૚ 

mode 2, (c) ࢛ࣘ૜ mode 1 and (d) ࢛ࣘ૜ mode 2 
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4.3.2.2 Streamwise sampling plane 

As mentioned previously, two-dimensional velocity fields were sampled using the POD on planes 

with different orientations, i.e. perpendicular to the ribs and to the flow direction. This section will 

consider the energetic structures in the streamwise (x2-x3) plane or cross-section of the flow. To begin, the 

ensemble averaged or mode 0 field is considered. A remarkable characteristic of turbulent Couette flow as 

noted by some previous authors (e.g. [15, 32]) is a swirling motion with its axis aligned in the streamwise 

direction. This secondary flow pattern in the ensemble averaged field is successfully captured in this 

simulation as displayed in Figure 4.15. The secondary flow consists of two counter-rotating vortical 

structures which move the fluid towards the smooth wall in the center of the channel and then towards the 

rough wall near the side planes.   

 

 

 

 

 

 

 

 

 

 

 
Figure 4.15: Ensemble averaged motions in a streamwise plane 



113 
 

The energy spectrum obtained from the POD analysis of the two-dimensional velocity field on the 

cross-stream plane or (x2-x3) plane is plotted in Figure 4.16. The energy curve obtained from the spanwise 

plane or (x1-x3) plane is also shown for comparison. Note that the lower order modes for the (x2-x3) plane 

contain more energy than those for the (x1-x3) plane; however, for higher order modes, this phenomenon 

is reversed.  

  

 

 

 

 

 

 

 

 

Figure 4.17 shows the velocity vector plots for the first four POD modes collected on a streamwise 

(x2-x3) plane located between two ribs. The first mode is similar to the secondary flow pattern, i.e. it 

represents a swirling motion which is aligned in streamwise direction.  For the second mode, similar 

swirling roll cells can be detected, however, compared with the first mode, the rolls are displaced to align 

with the center and sides of the domain.  The dimensions of these roll cells are a function of the width of 

the channel for the boundary condition imposed, i.e. periodic in the spanwise direction. Compared with 

previous studies of plane Couette flow with two smooth walls, e.g. [15] and [17], these streamwise cells 

are displaced towards the smooth wall as a result of the rib-roughness. For the third mode, two counter-

rotating cells are evident in the lower region of the channel above the rough wall. The primary cells swirl 

Figure 4.16 Energy spectrums from POD in two planes 
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in the same direction as those contained by the first mode.  When the tertiary motions are added to the 

other two modes, they will change the recirculation patterns in  the lower half of the channel. In addition  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.17: Velocity vectors for the first four eigenmodes in the x2-x3 plane 
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to the larger swirls observed for mode three, some smaller yet still energetic motions begin to appear near 

the crests of the ribs. This suggests that the first three energetic modes are dominated by the outer flow, 

with roughness only beginning to interact with the core flow in the third mode.   

The topology of the fourth mode is visibly different than the first three, i.e. it is no longer dominated 

by swirling cells in the channel core.  Instead, some vortical motions in the wake of the upstream rib can 

be seen. Further to the previous comment on the third mode, the fourth mode is more associated with the 

transverse flow patterns located in the gaps between the ribs, rather than with the Couette flow itself. As 

such, mode four is fundamentally different in nature than the first three. This conclusion is also supported 

by the energy plot given in Figure 4.16, which shows that the energy drops noticeably after the third 

mode.  Another topology specific to this eigenmode is the emergence of vortical motions close to the 

smooth wall. One would expect the higher-order modes to introduce additional vortical motions close to 

the upper and lower walls. 

It should be noted that visualizing the velocity vector fields was found to be helpful only for the      

(x2-x3) plane. This is simply because in the (x2-x3) plane, the u2 and u3 components of velocity were 

considered. For the (x1-x3) plane, where the u1 and u3 components were considered, the vectors become 

very small close to the bottom surface which then makes the plots less helpful for detecting the dominant 

structures.  

The contour plots of the wall-normal velocity, spanwise velocity and streamwise vorticity (߱ଵ) for the 

first four modes in a (x2-x3) plane are displayed in Figures 4.18, 4.19 and 4.20, respectively. These 

contour plots help to identify the energetic flow structures in the core of the flow. Analysis of these 

figures supports the earlier observation that the first two modes are mainly dominated by the swirling 

motions in the centre region of the channel. The figures also illustrate how the swirling cells are displaced 

upwards by the roughened wall. Finally, they also reveal that for the higher-order modes the structures 

begin to accumulate near the walls, and likely relate to the turbulence generation. 
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4.3.2.3 Analysis of the life cycle of the eigenmodes 

The eigenmodes presented thus far are basically two-dimensional spatial fields. However, one can use 

them to reproduce the reference turbulent flow, which is a time-dependent field.  Therefore, it would be of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.18:  ૜ component of the first four modes࢛ࣘ
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interest to investigate how the contributions of these spatial fields are modulated in time to generate a 

“realistic” flow field. This is where the temporal coefficients, ܽ௡ሺݐሻ, come into play. These coefficients 

are obtained from  the eigenvalue  problem  and  represent the  amplitude of the  eigenmodes  in the linear 

decomposition of the instantaneous fluctuation field. The variation of the temporal coefficients of the first  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.19: ࢛ࣘ૛ component of the first four modes 
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four eigenmodes over 24 non-dimensional time units is plotted in Figure 4.21. As noted previously, the 

velocity  of  the  top wall  and  the spacing  between  the elements is used to  non-dimesionalize  the  time 

( ௪ܶ ൌ  ௪). Given that the four ribs cover the streamwise extent of the solution domain, 24ܷ/ݓ

dimensionless time units is  equivalent  traversing  the  channel six  times. As  expected, the magnitude of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.20: ࣓ࣘ૚  component of the first four modes 
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ܽଵ  is typically  larger than the other modes, and the magnitude of each mode decreases as the order of the 

mode increases. Unlike the case of vortex shedding flow, a significant  sinusoidal behavior  is  not evident  

in  Figure 4.21. However, viewing the variation of ܽ௡ሺݐሻ over a much longer time frame, a quasi-periodic 

behavior with a large time period can be detected, as shown in Figure 4.22. This approximately periodic 

dynamic has been visualized in previous studies, e.g. [17], [28] and [29]. These time traces indicate how 

energetic rolls are born, grow and decay as part of the life cycle of a realistic turbulent flow 

 

 

 

 

 

 

 

 

By individually analyzing each of the data series in Figure 4.22, a remarkable feature is observed for 

each curve: each curve can be decomposed into a primary trend curve and fluctuations about the trend. 

The trend curves exhibit a nearly periodic trajectory, and the time periods are all of the same order of 

magnitude but not exactly equal, as shown in Figure 4.23 (a) for the first two modes. The curves for the 

fluctuation component have much higher frequencies (or smaller periods), which increase with the of the 

mode index (see Figure 4.23 (b)).  For comparison, both Figure 4.23 (a) and 4.23 (b) include the original 

time variation curves in the background. 

The quasi-periodic behavior might be associated with the numerical boundary condition imposed on 

the streamwise boundaries of the computational domain, and as such not be observed in experimental 

Figure 4.21: Time variation of the temporal coefficients for the first four modes 
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studies.  Moreover, the trends outlined above can be used to specify the location of each energetic 

structure in the domain. The fluctuation curves on the other hand likely represent the turbulent motions. 

For higher modes, the frequency of these oscillations would systematically increase. Since the small-scale 

motions are more irregular and less energetic, the plots for higher modes would be expected to look like a 

noisy weak signal. Conversely, the frequency of the trend curves stays in the same approximate range, 

even for higher modes. 

 

 

 

 

 

 

 

 

 

 

4.4 Conclusion 

In this study, LES of turbulent Couette flow with rib-roughness elements on one wall was performed. 

Selected  characteristics  of  the mean and  fluctuating  velocity  fields  were  compared  with  previous 

measurements and simulations of plane Couette and rib-roughened Poiseuille flows to verify the results.  

Figure 4.22: Time history of the first four modes over 100 non-dimensional time units 



121 
 

                

 

 

 

 

 

 

 

 

 

 

 

 

 

The LES results showed that roughness introduces an asymmetry in the velocity field. The dominant 

streamwise and spanwise structures of the flow were investigated using POD, and a physical 

interpretation of each structure was presented.  Typically, the roughened surface displaces the streamwise 

swirling motions into the core region. Finally, the life cycle of the coherent structures was analyzed based 

on the temporal coefficients of the POD analysis. The results of the temporal analysis were shown to 

provide novel and significant insight into the flow structure. The two-dimensional roughness elements 

were shown to generate highly three-dimensional structures. This three-dimensionality suggests that the 

next step would be a thorough study of the three-dimensional flow structures using POD. 

Figure 4.23: Decomposition of  ࢔ࢇሺ࢚ሻ  plots: (a) trend curves, (b) oscillations 
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Chapter 5  

Concluding Remarks 

5.1 Thesis Summary 

The main target of this research was to study turbulent flows over rough walls and the objective was 

to identify the structures associated with the roughness. For the sake of validating the LES and POD 

algorithm, a simple geometry (an infinite square cylinder) was selected where a number of earlier 

experimental and numerical studies were available for comparison. Then, the effect of the wall was 

analysed by implementing a solid surface in proximity of the infinite cylinder. Finally by distributing 

those tested prismatic obstacles in the streamwise direction and changing the boundary conditions, a 

turbulent Couette flow with one roughened wall was modelled. For each study case, the main objective 

was to detect and characterize the dominant flow structures embedded in the global flow field.  

For all the simulations, an existing in-house LES code was adopted and initial and boundary 

conditions along with grid resolution and time-steps were modified to apply it to multiple different 

geometries. The author also performed extensive post-processing, which included development of the 

POD code in MATLAB. In addition, three independent topics were linked and integrated into a 

comprehensive study of turbulent wake structures.  
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5.2 Conclusions and Contributions 

For the first study case, an infinite square cylinder in a free stream, the Reynolds number based on the 

approach-flow velocity and cylinder edge-length (ܷஶߥ/ܦ) was set to ܴ݁  ൌ  500, where a number of high 

resolution numerical and experimental results are available for comparison. A time series of the spanwise 

velocity and vorticity component from probes located in the wake behind the cylinder clearly exhibited 

irregularly changing amplitude with zero mean and indicated vortex shedding frequencies.  

By performing a fast Fourier transform on these signals, the dominant shedding frequency was 

calculated and shown that is in a reasonable agreement with the results of other experimental and 

computational studies, despite using a relatively courser mesh and accordingly, lesser computational time 

and cost.  

By looking into a close-up view of the time-averaged streamlines in the vicinity of the rear side of the 

cylinder, and distribution of some flow parameters (such as mean streamwise velocity and fluctuating 

energy components) along the centerline of the wake, it was shown that by proper local refinement of the 

grid, one can successfully resolve the turbulent wake flow with a reasonable accuracy, with a less 

computational cost.  

After validation of the LES code, the POD algorithm was examined by first scanning the energy 

spectrum. A relatively steep inclination of the plot indicated that the total kinetic energy of the flow was 

found to be well captured by only a small number of eigenmodes. From the energy spectrum, it was 

concluded that each eigenmode represents a particular flow characteristic embedded in the turbulent wake 

and eigenmodes with analogous characteristics have analogous energies. Another contribution of this 

study case was to perform a qualitative analysis of the coherent structures generated by a prismatic bluff 

body and study their interaction, with large-scale structures in the developed outer flow. Dominant flow 

structures were classified as vortex shedding, bulk flow adjustment, higher harmonic fluctuations and 

instability rolls.    
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A contribution of this chapter was to examine the temporal behavior of the eigenmodes and from that, 

present a new manner to develop physical interpretations of the eigenmodes and even obtain some global 

flow parameters by analyzing life-cycles of each eigenmode. It was observed that the life-cycles of the 

paired modes are periodic, with nearly similar frequency, but a phase shift. In contrast, the stand-alone 

modes did not have a periodic variation or comparable pattern. At the end, the ability of POD in 

reconstructing the turbulent structure was examined. It was verified that the turbulent flow field can be 

approximated by a linear combination of the mean flow and a finite number of spatial modes. It was 

verified that, the cut-off of this linear series, and accordingly, the desired accuracy of this approximation 

can be defined by the number of dominant modes selected to reconstruct the turbulent flow.  

In the second study case, for flow arrangement, the free stream velocity and the cylinder side length 

were used to define the Reynolds number (ܴ݁ ൌ ܷஶߥ/ܦ). Similar to the first case, a Reynolds number of 

ܴ݁ ൌ 500 was adopted. The approach flow included a turbulent boundary layer with a thickness of 

ܦ/ߜ ൌ 0.2. The simulation results of the second study case showed that a nearby wall has a minimal 

impact on the vortex shedding frequency, but significantly changes the periodic forces and consequently, 

the value of the mean drag and lift coefficients. As a result, the mean drag coefficient increases as the gap 

ratio is reduced, while the lift coefficient decreases. From the time-averaged velocity profiles in the gap 

between the lower face of cylinder and the wall, the region of reverse flow was observed, and it was 

concluded that the proportional size of this region is independent of the gap size. From the spanwise 

velocity profile for the same region, it was observed that the spanwise velocity is more dependent on the 

streamwise location: mainly downward close to the leading-edge of the cylinder, but turning upward close 

to the exit of the gap. It was concluded that the upward flow at the trailing-edge is due to the interaction 

between the wake vortices and the vortex attached to the wall. 

A POD study of this flow reveals that the rate of decay of the eigenvalues decreases as the wall 

approaches the bluff body, which means the influence of the wall on generating the energetic structures is 

more significant for smaller gap spaces. In addition, at some point the pairwise decay disappears and the 
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physical interpretation of the dominant modes changes. An interpretation of the characteristic of each 

dominant mode versus the energy contained is developed, with the aim of detecting a meaningful linkage 

between the energy spectrum and the mode patterns.  

From visualization of the coherent structures (in terms of streamwise velocity, wall-normal velocity 

and spanwise vorticity) for each gap height, it was concluded that for larger gaps, while the structures are 

leaning away from the wall, the travelling wave characteristic still exists. On the contrary for smaller gaps 

(and finally no gap case), the travelling wave and ultimately, the shedding fades away. Lastly, it was 

concluded that for the smaller gap spaces, energetic structures originated by the wall are rooted in lower 

index modes. In comparison to the existing literature on this topic, this study focused on the more spatial 

characteristics of the wake in proximity to the wall. More distinct structures are visualized and 

characterised and linked to the energy spectrum. Another improvement is to make a comparison with flow 

over a rib shaped obstacle which is the linkage to the study of flow over roughened surfaces.   

The last study case tried to recap the contributions of the first two studies, in a single independent 

study and introduce a new perspective to analyse turbulent flow using POD. From the mean velocity 

distribution profile across the channel, it was concluded that the rib roughness on the bottom wall can 

have a significant influence on the velocity profile near the top wall. Another contribution of this 

simulation was to measure the characteristic roughness shift due to the enhanced wall shear stress created 

by the ribs from the velocity profiles in universal wall coordinates. The value of the roughness shift 

indicated that the flow is in the transitional roughness regime. 

From the resolved-scale streamwise velocity fluctuation along the wall normal direction plots (for 

both walls) the peak value was obtained and it was shown that as a result of a roughened wall the peak 

value drops and the location of peak is shifted slightly away from the roughened wall, which is another 

outcome of this study work. It was also concluded that the resolved-scale streamwise velocity fluctuation 

on the smooth wall does not appear to be strongly affected by the roughness on the opposite side of the 

channel. Another valuable outcome of this simulation is the length of the recirculation cell and 
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reattachment length, which is shown to be slightly smaller than similar quantities in a pressure-driven 

channel.  

From POD analysis of this flow, the energetic dynamics of the flow were obtained and characterized 

in two different two-dimensional planes. The energy spectrum in a log-log plot showed a significant drop 

in energy content after the fourth mode on the (x1-x3) plane and drop after the third mode on the (x2-x3) 

plane. It was also concluded that the lower order modes for the (x2-x3) plane contain more energy than 

those for the (x1-x3) plane. The influence of the roughened wall on formation of the energetic velocity 

(streamwise, spanwise and wall normal) and vortical structures was visualized on both planes. From 

coherent POD modes on a plane in the spanwise direction (x1-x3), it was learned that the energetic bulk 

flow structures have been pushed towards the smooth wall, especially for higher modes. It was also 

concluded that the first two modes are dominated by the bulk flow structures, whereas for modes 3 and 4, 

the structures associated with the rough wall are dominant.  

By visualizing energetic structures in the streamwise (x2-x3) plane or cross-section of the flow, the 

secondary flow consists of two counter-rotating vortical structures which are a well-recognized 

characteristic of turbulent Couette flow. It was shown that counter-rotating cells start to appear (as tertiary 

swirling motions) above the ribs for the higher modes. In addition, some smaller yet still energetic 

motions were observed near the crests of the ribs.  It was concluded that the first three energetic modes 

are dominated by the outer flow, with roughness only beginning to interact with the core flow in the third 

mode. In a different manner the fourth mode is more associated with the transverse flow patterns located 

in the gaps between the ribs, rather than with the Couette flow itself.  

At the end, a comprehensive analysis of the time history of the eigenvectors for the first four modes 

was performed. By individually analyzing each of the traces, it was observed that each curve can be 

decomposed into a primary trend curve and fluctuations about the trend, which is an important 

contribution of this study. Physical explanations of the trend curves and oscillations were developed and 
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an interesting application of POD was introduced in terms of filtering out unrealistic behaviors caused by 

numerical boundary conditions.  

To sum up, this research demonstrates advantages of POD to study turbulent flows in a more practical 

and efficient way: focusing on the stronger topologies and detecting their life-cycle, instead of looking at 

the flow as a whole. This approach can be very advantageous, for example, for flow control purposes. In 

addition some interesting applications of POD were introduced, from an angle never looked at before.    

5.3  Recommendations for Future Extension  

One important undertaking as an extension to this study is to examine more geometries and 

configurations. A finite square cylinder mounted on a ground plane would be an interesting subject to 

look into. Preparatory work was done as a side work in terms of literature review and some preliminary 

(yet interesting) POD results were obtained. That study can be continued on an appropriate time frame in 

the future. 

Another configuration to look into is the cavity flow, which is worth considering from its practical 

point of view. Usually, when the spacing between two prismatic obstacles is relatively small, local cavity 

flows start to develop. The existing LES code was modified and tested for a three-dimensional lid-driven 

cavity flow (LDCF) case. POD analysis of unsteady and turbulent LDCF across different Reynolds 

numbers has been conducted and some preliminary results were obtained. The results are summarized in 

Appendix. This work can be carried on in future for fully turbulent cases (ܴ݁ ൒ 10,000) and with a three-

dimensional POD analysis. Also, by replacing the lid with an outer flow (as in Figure A.1), possible 

interaction of the energetic topologies with those in the outer flow can be investigated. 

Apart from studying different configurations, another effort that would constitute advancement to this 

research is to improve the POD algorithm based on its vast capabilities in turbulence research. One 
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potential which is currently under investigation is to perform a high temporal resolution (and/or spatial 

resolution) POD by using an incomplete, coarse or “gappy” snapshot set. That would be an extension to 

the existing method in the context of reconstruction of images, such as human faces, from partial data. 

The proposed method, i.e. performing spatio-temporal gap filling at the same time, seems to be feasible 

on paper. However, as mentioned, this is an ongoing work and the outcomes are likely being obtained 

after the defence of this thesis. Another remarkable capability of POD is to design a surface (or a bluff 

body) based on the desired outer flow energetic topology. That idea is also under review and will be 

continued after the graduation.  

 

 

 

 

 

 

“The end of a melody is not its goal:  

but nonetheless, had the melody not reached its end it would not have reached its goal either. A parable!” 

Friedrich Nietzsche 
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Appendix:  

Side Work 1: Analysis of Three-dimensional Lid-driven 
Cavity Flows using Proper Orthogonal Decomposition 

Figure A.1 displays the development of local cavity flows in the spacing between two prismatic 

obstacles. As mentioned in Chapter 1, preliminary results of POD analysis of unsteady and turbulent 

LDCF was documented in a draft paper for the 7th International Symposium on Turbulence, Heat and 

Mass Transfer, in Sicily, Italy (September 2012). To verify the validity of the simulation, the case of a 

steady cavity flow at ܴ݁  ൌ  1000 was first tested. The steady state velocity profiles along the centerlines 

was measured and verified with the existing literature (Figure A.2).  

 

 

 

 

 

 

 

 

 

 

 

Figure A.1: formation of cavity flow between the elements 
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In order to convert the laminar benchmark case to a time-dependent or transient flow field, a time 

dependent, periodic velocity was imposed on the moving lid. In this case, the POD technique was able to 

capture more than 99% of the total kinetic energy using only the first four modes. These four modes are 

displayed in Figure A.3. The first two can be identified as the dominant vortical structures of the flow. 

The first eigenmode represents the main vortex in the core region. The second mode denotes the change 

in the shape of the main vorticity due to the periodic motion of the upper wall. Modes 3 and 4 show the 

formation of the secondary and tertiary vortices. 

Following the initial validation of the simulation and the POD algorithm, the simulation of higher Re 

LDCF was performed. The instantaneous streamline patterns in the vertical centre plane of two quasi-

turbulent flows at ܴ݁  ൌ  3000 and 8000 is shown in Figure A.4. For both cases the flow is quasi-

periodic in time, although instabilities begin to appear in the second flow.  

Ultimately POD was performed on the higher Re quasi-turbulent flow cases, and energy spectrum 

was analyzed. It was concluded that the convergence of eigenmodes is significantly slower than the 

laminar case, but faster than a fully turbulent flow. The velocity vector plot of the first two dominant 

modes for the ܴ݁  ൌ  8000  case is plotted in Figure A.5. Although, for the POD analysis, the mean flow 

dynamic  was  subtracted, some  large  scale  dynamics can  still  be seen near  the  core  region. That  was 

Figure A.2: Steady solution at ࢋࡾ  ൌ  ૚૙૙૙: (a) streamlines, and velocity profiles along (b) horizontal and 
(c) vertical centerlines 
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shown to be due to the fact that the flow is not yet fully turbulent. The formation of eddies in the bottom 

corners of the cavity is displayed in Figure A.5. Since most of the energy is associated with the first 

eigenmode, which is most active in the lower right hand corner, it can be concluded that the largest 

velocity fluctuations also occur in this region of the cavity.  

 

 

 

Figure A.3: Velocity vectors for the first 4 eigenmodes 
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Figure A.4: Streamline patterns of (a) Re = 3000 and (b) Re = 8000 

Figure A.5: Velocity vectors for the first 2 eigenmodes ( ) 
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