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ABSTRACT 

Field Programmable Gate Arrays (FPGA) are increasingly being used to design high-

end computationally intense microprocessors capable of handling both fixed and floating-

point mathematical operations. Addition is the most complex operation in a floating-point 

unit and offers major delay while taking significant area. Over the years, the VLSI 

community has developed many floating-point adder algorithms mainly aimed to reduce 

the overall latency. 

An efficient design of floating-point adder onto an FPGA offers major area and 

performance overheads. With the recent advancement in FPGA architecture and area 

density, latency has been the main focus of attention in order to improve performance. 

Our research was oriented towards studying and implementing standard, Leading One 

Predictor (LOP), and far and close data-path floating-point addition algorithms. Each 

algorithm has complex sub-operations which lead significantly to overall latency of the 

design. Each of the sub-operation is researched for different implementations and then 

synthesized onto a Xilinx Virtex2p FPGA device to be chosen for best performance. 

This thesis discusses in detail the best possible FPGA implementation for all the three 

algorithms and will act as an important design resource. The performance criterion is 

latency in all the cases. The algorithms are compared for overall latency, area, and levels 

of logic and analyzed specifically for Virtex2p architecture, one of the latest FPGA 

architectures provided by Xilinx. According to our results standard algorithm is the best 

implementation with respect to area but has overall large latency of 27.059 ns while 

occupying 541 slices. LOP algorithm improves latency by 6.5% on added expense of 

38% area compared to standard algorithm. Far and close data-path implementation shows 
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19% improvement in latency on added expense of 88% in area compared to standard 

algorithm. The results clearly show that for area efficient design standard algorithm is the 

best choice but for designs where latency is the criteria of performance far and close data-

path is the best alternative. The standard and LOP algorithms were pipelined into five 

stages and compared with the Xilinx Intellectual Property [12]. The pipelined LOP gives 

22% better clock speed on an added expense of 15% area when compared to Xilinx 

Intellectual Property and thus a better choice for higher throughput applications. Test 

benches were also developed to test these algorithms both in simulation and hardware. 

Our work is an important design resource for development of floating-point adder 

hardware on FPGAs. All sub components within the floating-point adder and known 

algorithms are researched and implemented to provide versatility and flexibility to 

designers as an alternative to intellectual property where they have no control over the 

design. The VHDL code is open source and can be used by designers with proper 

reference.  
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CHAPTER 1    INTRODUCTION 

Floating-point addition is the most frequent floating-point operation and accounts for 

almost half of the scientific operation. Therefore, it is a fundamental component of math 

coprocessor, DSP processors, embedded arithmetic processors, and data processing units. 

These components demand high numerical stability and accuracy and hence are floating-

point based. Floating-point addition is a costly operation in terms of hardware and timing 

as it needs different types of building blocks with variable latency. In floating-point 

addition implementations, latency is the overall performance bottleneck. A lot of work 

has been done to improve the overall latency of floating-point adders. Various algorithms 

and design approaches have been developed by the Very Large Scale Integrated (VLSI) 

circuit community [1-4] over the span of last two decades. 

Field Programmable Gate Array (FPGA) is a silicon chip with unconnected logic 

blocks, these logic blocks can be defined and redefined by user at anytime. FPGAs are 

increasingly being used for applications which require high numerical stability and 

accuracy. With less time to market and low cost, FPGAs are becoming a more attractive 

solution compared to Application Specific Integrated Circuits (ASIC). FPGAs are mostly 

used in low volume applications that cannot afford silicon fabrication or designs which 

require frequent changes or upgrades. In FPGAs, the bottleneck for designing efficient 

floating-point units has mostly been area. With advancement in FPGA architecture, 

however, there is a significant increase in FPGA densities. Devices with millions of gates 
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and frequencies reaching up to 300 MHz are becoming more suitable for floating-point 

arithmetic reliant applications. 

1.1 Motivation and Contribution 

For the most part, the digital design companies have resolved to FPGA design instead 

of ASICs due to its effective time to market, adaptability and most importantly, its low 

cost. Floating-point unit is one of the most important custom applications needed in most 

hardware designs as it adds accuracy and ease of use. Floating-point adder is the most 

complex operation in a floating-point unit and consists of many sub operations. A lot of 

work has been done on floating-point adder and FPGAs which is summarized in chapter 

2. However, to the best of our knowledge, there is no work which gives a detailed open 

source analysis of different floating-point adder algorithms and different architectural 

implementation of sub operations for floating-point adder on FPGA. 

The main contribution and objective of our work is to implement and analyze 

floating-point addition algorithms and hardware modules used to compute these 

algorithms. These algorithms and modules are implemented using Very High Speed 

Integrated Circuit (VHSIC) Hardware Description Language (VHDL), and then are 

synthesized for Xilinx Virtex2p FPGA using Xilinx integrated software environment 

(ISE) 6.3i [5]. Trade offs with respect to architectural level and algorithm level are 

researched and explored. These implementations are placed and routed in the FPGA 

device. Area and timing information for each design approach and algorithm is reported 

and analyzed, thus giving designers more versatility in choosing the appropriate 

algorithm in their design applications. VHDL code for each design approach is available 

in the Appendix for reference.  
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1.2 Outline 

This thesis is structured as follows. Chapter 2 gives the background information on 

related work regarding implementation of FPGA and VLSI floating-point adder 

algorithms and Virtex2p FPGA architecture. Chapter 3 provides an overview of IEEE 

floating-point standard, and discusses hardware implementation and synthesis results of 

standard floating-point adder algorithm. Chapter 4 describes the implementation and 

synthesis results of improved floating-point adder algorithms including Leading One 

Predictor (LOP) algorithm and far and close data-path adder algorithms. Chapter 5 goes 

over the testing procedure, simulation, and hardware verification. Chapter 6 concludes 

the thesis and provides recommendations for further research. 
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CHAPTER 2    BACKGROUND 

Following the development in FPGA architectures and tools, many floating point 

addition implementations are carried out on FPGAs. In this chapter, the related work 

done in this area is overviewed. The architecture of our target FPGA device, Virtex2p by 

Xilinx is also discussed briefly. 

2.1 Related Work 

One of the first competitive floating-point addition implementation is done by L. 

Louca, T. Cook, and W. Johnson [6] in 1996. Single precision floating-point adder was 

implemented for Altera FPGA device. The primary challenge was to fit the design in the 

chip area while having reasonable timing convergence. The main objective of their 

implementation was to achieve IEEE standard accuracy with reasonable performance 

parameters. This is claimed to be the first IEEE single precision floating-point adder 

implementation on a FPGA, before this, implementation with only 18-bit word length 

was present [25]. 

Another research paper by W. Ligon, S. McMillan, G. Monn, F. Stivers, and K. 

Underwood [7] discusses the use of reconfigurable hardware to perform high precision 

operations on FPGAs which has been limited in the past by FPGA resources. The 

practical implications of these operations in the Xilinx 4000 series FPGAs considering 

densities available then and in the future are discussed. This paper is one of the first looks 

at the future of computer arithmetic in terms of FPGA advancements. 
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Over time FPGA architecture and development tools evolved. One of the recent 

papers related to FPGA architecture and floating-point units discussing novel 

optimizations for arithmetic hardware was presented by E. Roesler, B. Nelson [8] in 

2002. They discussed advancements in FPGA architecture, mainly high density fixed 

circuit function blocks such as multiplier blocks and shift registers, and their effect on 

floating-point unit operations including addition. They have shown that due to these 

advancements in FPGA architecture significant area savings are achieved as compared to 

old FPGA architectures. 

The most important functionality of FPGA devices is their ability to reconfigure when 

needed according to the design need. In 2003, J. Liang, R. Tessier and O. Mencer [9] 

developed a tool which gives the user the option to create vast collection of floating-point 

units with different throughput, latency, and area characteristics. Our work is related to 

their work done but different in a way that we have taken each module inside the 

floating-point adder and discussed its design tradeoffs, utilizing VLSI techniques. Their 

result and analysis are directed more towards pipelining and the choice of optimization is 

throughput. One of the drawbacks of their work is that they lack implementation of 

overflow and underflow exceptions.  

Latency is the overall bottleneck for any execution unit, and is defined as the time it 

takes from reading the inputs to registering the outputs and exceptions for a single cycle 

execution unit and is the basic criteria for performance. High clock speeds and 

throughput can be achieved by adding numerous stages to the design and vary by design 

needs. Latency is the fundamental performance criteria and thus choice of discussion and 
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comparison in our work. Our implementations also include overflow and underflow 

exceptions. 

One of the most recent works published related to our work is published by G. 

Govindu, L. Zhuo, S. Choi, and V. Prasanna [10] on the analysis of high-performance 

floating-point arithmetic on FPGAs. This paper has been an excellent resource for our 

implementation and discussions throughout the research process, and provides possible 

explanations. The results and analyses are based on number of pipeline stages as 

parameter and throughput per area as the metric. All the implementations are done with 

the latest Xilinx Virtex 2p FPGA device thus a good source for our work in evaluating 

design techniques. The main difference between their work and our work is that they 

have optimized the floating-point adder in terms of sub pipelining the sub components 

thus increasing the throughput. On the other hand our work is concentrated on reducing 

the latency of each sub component which is the key to overall latency. Another major 

difference is that they have only discussed standard floating-point algorithm while in our 

work standard, LOP, and far and close data-path algorithms are the parameter of 

discussion. 

Recently I have published a paper in 2005 [11] which discusses an effective 

implementation of floating-point adder using the pipelined version of LOP later discussed 

in Chapter 3 of this thesis. That design was customized in order to meet the design 

criteria set by Xilinx Intellectual Property (IP) provided by Digital Core Design [12]. The 

implementation shows significant improvement compared to the IP in terms of both clock 

speed and area in some of the Xilinx FPGA architectures.  
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There are many commercial products related to floating-point adders [12, 13, 14] 

which can be bought to be used in custom designs. Our work would be a great resource 

for designers who want to custom design their product according to design needs as we 

have described versatile implementations of different floating-point adder algorithms. 

The VHDL code for all the implementations is given in the Appendix which can be 

referred to while designing floating-point adders according to design resources and needs. 

2.2 Xilinx Virtex2p FPGA Architecture 

The variable-input Look-Up Table (LUT) architecture has been a fundamental 

component of the Xilinx Virtex architecture first introduced in 1998 and now in its fourth 

generation [5]. This distinctive architecture enables flexible implementation of any 

function with eight variable inputs, as well as implementation of more complex functions. 

In addition to being optimized for 4-, 5-, 6-, 7-, and 8- input LUT functions, the 

architecture has been designed to support 32:1 multiplexers and Boolean functions with 

up to 79 inputs. The Virtex architecture enables users to implement these functions with 

minimal levels of logic. By collapsing levels of logic, users can achieve superior design 

performance. The design is still based on the fundamental Configurable Logic Block 

(CLB). According to Virtex2p datasheet [5], CLB resources include four slices and two 

3-state buffers. 

Each slice is equivalent and consists of two function generators (F & G), two storage 

elements, arithmetic logic gates, large multiplexers, wide function capability, fast carry 

look-ahead chain and horizontal cascade chain (OR gate). The function generators, F & G 

are configurable as 4-input look-up tables (LUTs), as 16-bit shift registers, or as 16-bit 

distributed Random Access Memory (RAM). In addition, the two storage elements are 
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either edge-triggered D flip-flops or latches. Each CLB has an internal fast interconnect 

and connects to a switch matrix to access general routing resources. Virtex-2 Pro function 

generators and associated multiplexers can also be implemented as 4:1 multiplexer in one 

slice, 8:1 multiplexer in two slices, 16:1 multiplexer in one CLB element (4 slices), or 

32:1 multiplexer in two CLB elements (8 slices). Dedicated carry logic provides fast 

arithmetic addition and subtraction. The CLB also contains logic units such as XOR, OR 

and AND gates which are dedicated to implement Sum of Product (SOP) chains. Table 2-

1 shows the summary of logic resources in one CLB. 

Table 2-1: Logic resources of one CLB of Virtex 2p FPGA 

Slices LUTs Flip 
Flops 

AND Carry 
Chains 

SOP 
Chains 

RAM Shift 
Registers 

TBUF 

4 8 8 8 2 2 128 bits 128 bits 2 

 

We have used the XC2VP2 device in our implementation. This device contains 1408 

slices or 2816 LUTs. It can accommodate 2816 flip-flops, 44 carry chains, and 32 SOP 

chains. It was enough for our design needs to implement various floating-point adder 

algorithms.  
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CHAPTER 3   STANDARD FLOATING POINT REPRESENTATION 

AND ADDER ALGORITHM 

This chapter gives a brief explanation on numerical encoding and the standard used to 

represent floating-point arithmetic and the detail implementation of a prototype floating-

point adder.  

3.1 Fixed Point and Floating Point Representations 

Every real number has an integer part and a fraction part; a radix point is used to 

differentiate between them. The number of binary digits assigned to the integer part may 

be different to the number of digits assigned to the fractional part. A generic binary 

representation with decimal conversion is shown in Figure 3-1. 

 Integer Part Binary Point Fraction Part 

Binary 23 22 21 20 2-1 2-2 2-3 

Decimal 
--- 

8 4 2 1 
. 

½ ¼ ⅛ --- 

Figure 3-1: Binary representation and conversion to decimal of a numeric 

3.1.1 Fixed-Point Representation  

A representation, in which a real number is represented by an approximation to some 

fixed number of places after the radix or decimal point, is called a fixed-point 

representation. Usually the radix point is placed next to the least significant bit thus only 

representing the integer part. The main advantage of this kind of representation is that 
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integer arithmetic can be applied to them and they can be stored using small values. This 

helps making the operations faster and area efficient. The main disadvantage is that a 

fixed-point number has limited or no flexibility, i.e., number of significant bits to the 

right of the decimal point. Some of the other disadvantages are that the arithmetic 

operations based on this representation can go into overflow and underflow often. The 

fixed-point number also has a limited integer range and it is hard to represent very small 

and big number in the same representation. These are some of the reasons why floating-

point representation and arithmetic was evolved to take care of these disadvantages. 

3.1.2 2’s Complement Representation 

In order to represent both positive and negative fixed-point numbers, 2’s complement 

representation is used. Positive 2’s complement numbers are represented as simple 

binary. Negative number is represented in a way that when it is added to a positive 

number of same magnitudes the answer is zero. In 2’s complement representation, the 

most significant bit is called the sign bit. If the sign bit is 0, the number is non-negative 

,i.e., 0 or greater. If the sign bit is 1, the number is negative or less than 0. In order to 

calculate a 2’s complement or a negative of a certain binary integer number, first 1’s 

complement, i.e., bit inversion is done and then a 1 is added to the result.  

3.1.3 Floating-Point Representation 

In general, a floating-point number will be represented as ± d.dd... d × ßE, where 

d.dd... d is called the significand and has p digits also called the precision of the number, 

and ß is the base being 10 for decimal, 2 for binary or 16 for hexadecimal. If ß= 10 and p 

= 3, then the number 0.1 is represented as 1.00 × 10-1. If ß= 2 and p = 24, then the 
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decimal number 0.1 cannot be represented exactly, but is approximately 

1.10011001100110011001101 × 2-4.  This shows a number which is exactly represented 

in one format lies between two floating-point numbers in another format. Thus the most 

important factor of floating-point representation is the precision or number of bits used to 

represent the significands. Other important parameters are Emax and Emin, the largest and 

the smallest encoded exponents for a certain representation, giving the range of a number. 

3.2 IEEE Floating Point Representation 

The Institute of Electrical and Electronics Engineering (IEEE) issued 754 standard for 

binary floating-point arithmetic in 1985 [15]. This standardization was needed to 

eliminate computing industry’s arithmetic vagaries. Due to different definitions used by 

different vendors, machine specific constraints were imposed on programmers and 

clients. The standard specifies basic and extended floating-point number formats, 

arithmetic operations, conversions between various number formats, and floating-point 

exceptions. This section goes over the aspects of the standard used in implementing and 

evaluating various floating-point adder algorithms. 

3.2.1 Basic Format 

There are two basic formats described in IEEE 754 format, double-precision using 

64-bits and single-precision using 32-bits. Table 3-1 shows the comparison between the 

important aspects of the two representations. 
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Table 3-1: Single and double precision format summary 

Format Precision 
(p) 

Emax Emin Exponent 
bias 

Exponent 
width 

Format 
width 

Single 24 +127 -126 127 8 32 
Double 53 +1023 -1022 1023 11 64 
 

To evaluate different adder algorithms, we are only interested in single precision 

format. Single-precision format uses 1-bit for sign bit, 8-bits for exponent and 23-bits to 

represent the fraction as shown in Figure 3-2. 

 

Figure 3-2: IEEE 754 single precision format 

The single- precision floating-point number is calculated as (-1) S × 1.F × 2(E-127). The 

sign bit is either 0 for non-negative number or 1 for negative numbers. The exponent field 

represents both positive and negative exponents. To do this, a bias is added to the actual 

exponent. For IEEE single-precision format, this value is 127, for example, a stored value 

of 200 indicates an exponent of (200-127), or 73. The mantissa or significand is 

composed of an implicit leading bit and the fraction bits, and represents the precision bits 

of the number. Exponent values (hexadecimal) of 0xFF and 0x00 are reserved to encode 

special numbers such as zero, denormalized numbers, infinity, and NaNs. The mapping 

from an encoding of a single-precision floating-point number to the number’s value is 

summarized in Table 3-2. 

 

 

S 8 bit Exponent-E 23 bit Fraction-F

    0    1                                       8   9                                                                                                         31 
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Table 3-2: IEEE 754 single precision floating-point encoding 

Sign Exponent Fraction Value Description 
S 0xFF 0x00000000 (-1)S ∞ Infinity 
S 0xFF F≠0 NaN Not a Number 
S 0x00 0x00000000 0 Zero 
S 0x00 F≠0 (-1)S × 0.F × 2(E-126) Denormalized Number 
S 0x00 < E < 0xFF F (-1)S × 1.F × 2(E-127) Normalized Number 

3.2.1.1 Normalized numbers 

A floating-point number is said to be normalized if the exponent field contains the 

real exponent plus the bias other than 0xFF and 0x00. For all the normalized numbers, 

the first bit just left to the decimal point is considered to be 1 and not encoded in the 

floating-point representation and thus also called the implicit or the hidden bit. Therefore 

the single-precision representation only encodes the lower 23 bits. 

3.2.1.2 Denormalized numbers 

A floating-point number is considered to be denormalized if the exponent field is 

0x00 and the fraction field doesn’t contain all 0’s. The implicit or the hidden bit is always 

set to 0. Denormalized numbers fill in the gap between zero and the lowest normalized 

number. 

3.2.1.3 Infinity  

In single-precision representation, infinity is represented by exponent field of 0xFF 

and the whole fraction field of 0’s. 

3.2.1.4 Not a Number (NaN) 

In single-precision representation, NaN is represented by exponent field of 0xFF and 

the fraction field that doesn’t include all 0’s. 
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3.2.1.5 Zero 

In single-precision representation, zero is represented by exponent field of 0x00 and 

the whole fraction field of 0’s. The sign bit represents -0 and +0, respectively.  

3.2.2 Rounding Modes 

Rounding takes a number regarded as infinitely precise and, if necessary, modifies it 

to fit in the destination’s format while signaling the inexact exception. Thus the rounding 

mode affects the results of most arithmetic operations, and the thresholds for overflow 

and underflow exceptions. In IEEE 754 floating point representation, there are four 

rounding modes defined: round towards nearest even (REN), round towards -∞ (RP), 

round towards +∞ (RM), and round towards 0 (RZ). The default rounding mode is REN 

and is mostly used in all the arithmetic implementations in software and hardware. In 

order to evaluate different adder algorithms, we are also interested in only the default 

rounding mode i.e. REN. In this mode, the representable value nearest to the infinitely 

precise result is chosen. If the two nearest representable values are equally near, the one 

with its least significant bit equal to zero is chosen. 

3.2.3 Exceptions 

The IEEE 754 defines five types of exceptions: overflow, underflow, invalid 

operation, inexact result, and division-by-zero. Exceptions are signaled by setting a flag 

or setting a trap. In evaluating hardware implementations of different floating-point adder 

algorithms, we only implemented overflow and underflow flags in our designs as they are 

the most frequent exceptions that occur during addition. 
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3.2.3.1 Invalid operation 

The given operation cannot be performed on the operands. In the case of an adder, 

these are the subtraction of infinity or NaN inputs. 

3.2.3.2 Inexact result 

Inexact exception is set when the rounded result is not exact or it overflows without 

an overflow trap. Exact is determined when no precision was lost while performing the 

rounding. 

3.2.3.3 Division by zero 

In the case when the divisor is zero, the result is set to signed ∞. 

3.2.3.4 Overflow  

Overflow exception is defined by the rounding mode used. In REN, overflow occurs 

if the rounded result has an exponent equal to 0xFF or if any of the input operators is 

infinity. 

3.2.3.5 Underflow 

Underflow exception occurs when there is a loss of accuracy. If the implicit bit of the 

result is 0 and exponent out is -126 or 0x01, the number is too small to be represented 

fully in the single precision format and the underflow flag is set. 

3.3 Standard Floating Point Addition Algorithm 

This section will review the standard floating point algorithm architecture, and the 

hardware modules designed as part of this algorithm, including their function, structure, 
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and use. The standard architecture is the baseline algorithm for floating-point addition in 

any kind of hardware and software design [16].  

3.3.1 Algorithm 

Let s1; e1; f1 and s2; e2; f2 be the signs, exponents, and significands of two input 

floating-point operands, N1 and N2, respectively. Given these two numbers, Figure 3-3 

shows the flowchart of the standard floating-point adder algorithm. A description of the 

algorithm is as follows. 

 

Figure 3-3: Flow chart for standard floating-point adder 
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1. The two operands, N1 and N2 are read in and compared for denormalization and 
infinity. If numbers are denormalized, set the implicit bit to 0 otherwise it is set to 1. 
At this point, the fraction part is extended to 24 bits. 

2.   The two exponents, e1 and e2 are compared using 8-bit subtraction. If e1 is less than 
e2, N1 and N2 are swapped i.e. previous f2 will now be referred to as f1 and vice 
versa. 

3.   The smaller fraction, f2 is shifted right by the absolute difference result of the two 
exponents’ subtraction. Now both the numbers have the same exponent. 

4.   The two signs are used to see whether the operation is a subtraction or an addition. 

5.   If the operation is a subtraction, the bits of the f2 are inverted. 

6.   Now the two fractions are added using a 2’s complement adder. 

7.   If the result sum is a negative number, it has to be inverted and a 1 has to be added to 
the result. 

8.  The result is then passed through a leading one detector or leading zero counter. This 
is the first step in the normalization step. 

9.  Using the results from the leading one detector, the result is then shifted left to be 
normalized. In some cases, 1-bit right shift is needed. 

10. The result is then rounded towards nearest even, the default rounding mode. 

11. If the carry out from the rounding adder is 1, the result is left shifted by one. 

12. Using the results from the leading one detector, the exponent is adjusted. The sign is 
computed and after overflow and underflow check, the result is registered. 

3.3.2 Micro-Architecture 

Using the above algorithm, the standard floating point adder was designed. The 

detailed micro-architecture of the design is shown in Figure 3-4. It shows the main 

hardware modules necessary for floating-point addition. The detailed description and 

functionality of each module will be given later in this chapter. 
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Figure 3-4: Micro-architecture of standard floating-point Adder 

The main hardware modules for a single-precision floating-point adder are the 

exponent difference module, right shift shifter, 2’s complement adder, leading one 

detector, left shift shifter, and the rounding module. The bit-width as shown in Figure 3-4 

and following figures is specifically for single-precision addition and will have to be 

changed for any other format. 

3.3.3 Exponent Difference Module  

The exponent difference module has the following two functions: 

• To compute absolute difference of two 8-bit numbers. 

• To identify if e1 is smaller than e2. 
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Figure 3-5: Hardware implementation for exponent difference 

The hardware implementation of the exponent difference module is shown in Figure 

3-5. In order to choose the best adder implementation, four different types of adders, 

ripple carry adder, carry-look ahead adder, carry-save adder [18] and VHDL inbuilt adder 

were designed to compare the area and timing information and choose the right 

implementation for further work. For this purpose, 16 bit test adders with carry-in and 

carry-out were implemented. Table 3-3 shows the results compiled using the Xilinx ISE 

for Virtex 2p device. Combinational delay is independent of clock and thus is defined as 

the total propagation and routing delays of all the gates included in the critical path of the 

circuit. Each CLB consists of 4 slices in Virtex2p architecture, and used as the basic unit 

of measuring area in Xilinx FPGAs. Both these design parameters are reported by Xilinx 

ISE after synthesizing, routing, and placing the circuit onto a FPGA device. The timing 

and area information for each module synthesized and placed separately gives a rough 

estimation in order to compare different implementations and choose the best one. 

However these numbers are not valid when all the modules are connected together to get 

the overall delay and area but still the numbers are affected proportionally and thus a 

good tool for comparative study.   
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Table 3-3: Adder implementation analysis 

Adder Type Combinational Delay (ns) Slices 
Ripple-Carry Adder 15.91 18 
Carry-Save Adder 11.951 41 

Carry-Look Ahead Adder 9.720 39 
VHDL Adder 6.018 8 

 

As it is evident from Table 3-3, the VHDL adder shows the least combinational delay 

and area. In adders, the delay is mostly offered due to the propagation of carry. While 

designing custom adders, carry-look ahead adder offers the best delay because the carry 

is calculated separately looking at the inputs. VHDL adders use the inbuilt carry-chains in 

CLBs of the Virtex 2p FPGA and provide very small delay and area and thus are chosen 

for all further adder and subtraction implementations. An 8-bit adder is used to subtract 

the exponents and the carry out is used to identify if e1 is smaller than e2. If the result is 

negative, it has to be complemented and a 1 has to be added to it in order to give out the 

absolute difference. 

3.3.4 Right Shift Shifter 

The right shifter is used to shift right the significand of the smaller operand by the 

absolute exponent difference. This is done so that the two numbers have the same 

exponent and normal integer addition can be implemented. Right shifter is one of the 

most important modules when designing for latency. In order not to loose the precision of 

the number, three extra bits, the guard (g), round (r), and sticky (s) are added to the 

significand. The g and r bits are first and second bits that might be shifted out and s is the 

bit computed by ORing all the other bits that are shifted out. Two different 

implementations for the customized right shifter were done and named barrel and align 
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shifter, respectively. Figure 3-6 shows the micro-architecture of barrel shifter. 129, two to 

one multiplexers are used to shift the 24 bit fraction by the exponent difference (d). There 

are five levels doing 1, 2, 4, 8, and 16 bit shifts. The least significant bit of the exponent 

difference acts as the selection for first level of multiplexers. The input bits are either 

shifted one position to the right in case the least significant bit is 1 or just passed through 

in case it’s 0. The same idea is applied to the rest of the levels to do 2, 4, 8, and 16 bit 

shifts as shown in Figure 3-6. The bits represented in dotted lines are those that might be 

shifted out and are ORed together to give out the s bit. 

 

Figure 3-6: Micro-architecture of barrel shifter 

. Figure 3-7 shows the micro-architecture of the align shifter. In this shifter 1, 2, 4, 8, 

and 16 bit shift modules were designed using concatenation operation in VHDL. The 
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behaviorally shift input from the previous level by adding desired amount of 0s to the left 

of the input, for each level respectively. Bits coming out at each level are ORed to get the 

sticky bit. 

  

Figure 3-7:  Micro-architecture of align shifter 

The above two  24 bit right  shifters with the ability to give guard, round and sticky 

bits were separately synthesized using Xilinx ISE for Virtex2p device, and the results are 

shown in Table 3-4. 
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which is easily synthesizable by the function generators present in the slices. The align 

type shifter relies on the synthesizer to implement the behaviorally coded large 

multiplexers and thus offers more propagation delay due to added routing. 

3.3.5 2’s Complement Adder 

2’s complement adder is a simple integer addition process which adds or subtracts the 

pre-normalized significands. 

 

Figure 3-8: Hardware implementation for 2’s complement adder 

Figure 3-8 shows the hardware description of a 2’s complement adder. The two 27 bit 

significands enter the module. The signs are multiplexed using an XOR gate to determine 

if the operation is addition or subtraction. In case of subtraction, the sub bit is 1 otherwise 

it’s 0. This signal is used to invert one of the operands before addition in case of 

subtraction. A 27-bit adder with sub bit being the carry-in computes the addition. The 

generated carry out signal determines the sign of the result and is  later on used to 

determine the output sign. If the result is negative, it has to be inverted and a 1 has to be 

added to the result. 
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3.3.6 Leading One Detector 

After the addition, the next step is to normalize the result. The first step is to identify 

the leading or first one in the result. This result is used to shift left the adder result by the 

number of zeros in front of the leading one. In order to perform this operation, special 

hardware, called Leading One Detector (LOD) or Leading Zero Counter (LZC), has to be 

implemented. 

There are a number of ways of designing a complex and complicated circuit such as 

LOD. A combinational approach is a complex process because each bit of the result is 

dependant on all the inputs. This approach leads to large fan-in dependencies and the 

resulting design is slow and complicated. Another approach is using Boolean 

minimization and Karnaugh map, but the design is again cumbersome and unorganized. 

The circuit can also be easily described behaviorally using VHDL and the rest can be left 

to Xilinx ISE or any synthesis tool. In our floating-point adder design, we used the LOD 

design which identifies common modules and imposes hierarchy on the design. As 

compared to other options, this design has low fan-in and fan-out which leads to area and 

delay efficient design [17] first presented by Oklobdzija in 1994. 

3.3.6.1 Oklobdzija’s LOD 

The first step in the design process is to examine two bits case shown in Table 3-5. 

The module is named as LOD2. The pattern shows the possible combinations. If the left 

most bit is 1, the position bit is assigned 0 and the valid bit is assigned 1. The position bit 

is set to 1 if the second bit is 1 and the first bit is 0. The valid bit is set to 0 if both the bits 

are 0. 
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Table 3-5: Truth table for LOD2 

Pattern Position Bit  Valid Bit 
1x 0 1 
01 1 1 
00 x 0 

  

The logic for LOD2 is straightforward and shown in Figure 3-9. 

 

Figure 3-9: Hardware implementation for LOD2 

The two bit case can be easily extended to four bits. Two bits are needed to represent 

the leading-one position. The module is named LOD4. The inputs for the LOD4 are the 

position and valid bits from two LOD2’s, respectively. The two level implementation of 

LOD4 is shown in Figure 3-10. 

 

Figure 3-10: Two level implementation of 4 bit LOD 

The truth table examining the LOD4 is shown in Table 3-6. The second bit of the 

LOD4 position bits is selected using the valid bit, V0 of the first LOD2. V0 is inverted to 

get the first position bit. The output valid bit is the OR of the two input valid bits. 
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Table 3-6: Truth table for LOD4 with inputs from two LOD2’s 

Pattern P0-LOD2 P1-LOD2 V0-LOD2 V1-LOD2 P-LOD4 V-LOD4 
1xxx 0  1  00 1 
01xx 1  1  01 1 
001x  0 0 1 10 1 
0001  1 0 1 11 1 
0000 0 0 0 0  0 

 

The hardware implementation of the LOD4 is shown in Figure 3-11. 

 

Figure 3-11: LOD4 logic implementation 

The same concept is used to implement LOD8, LOD16, and LOD32 modules. Table 

3-7 shows the truth table for a LOD8 module. The same concept used to generate LOD4 

is used to implement the LOD8. The position of the leading one is represented using 3-

bits. The first bit being inversion of V0 and the last 2-bits being the position bits from 

either of the LOD4’s selected by the V0. In LOD16, 4-bits are used to represent the 

position of the leading one. The first bit being the inversion of valid bit of the first LOD8 

and the last 3-bits being the position bits from either of the LOD8’s selected by the valid 

bit of the first LOD8. The theory is repeated in LOD32, 5 bits are used to represent the 

position of the leading 1. The first bit is the inversion of the valid bit of the first LOD16 

and the last 4-bits are the position bits of either of the LOD16’s selected by the valid bit 

of the first LOD16. 
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Table 3-7: Truth table for LOD8 with inputs from two LOD4’s 

Pattern P0- LOD4 P1-LOD4 V0-LOD4 V1-LOD4 P-LOD8 V-LOD8 
1xxx_xxxx 00  1  000 1 
01xx_xxxx 01  1  001 1 
001x_xxxx 10  1  010 1 
0001_xxxx 11  1  011 1 
0000_1xxx xx 00 0 1 100 1 
0000_01xx xx 01 0 1 101 1 
0000_001x xx 10 0 1 110 1 
0000_0001 xx 11 0 1 111 1 
0000_0000      0 

 

Using the above designed modules, the leading one detector takes the shape as shown 

in Figure 3-12. The input to the LOD for single-precision floating point adder is the first 

24 bits of the result coming out of the integer adder. Twelve LOD2’s, six LOD4’s, three 

LOD8’s, two LOD16’s, and one LOD32 are implemented in parallel to get the position of 

the first leading one in the adder result.  

 

Figure 3-12: LOD implementation 
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The behavioral model was implemented using ‘case’ statements in VHDL defining 

each possibility behaviorally. Table 3-8 shows a synthesis analysis on behavioral and 

Oklobdzija’s implementation on Virtex2p using Xilinx ISE. 

Table 3-8: LOD implementation analysis 

LOD Type Combinational Delay (ns) Slices 
Behavioral LOD 9.05 20 

Oklobdzija’s LOD 8.32 18 
 

The implementation of the behavioral LOD is done entirely by the Xilinx synthesizer 

which results in a cumbersome design and adds routing delays. On the other hand, the 

basic module for implementation described by Oklobdzija is a two to one multiplexer, 

which are implemented using the inbuilt function generators of the slices in the CLBs of 

the Virtex2p FPGA. Each connection is defined, thus minimum routing delay is expected, 

and results in better propagation delay and area compared to behavioral implementation.  

3.3.7 Left Shift Barrel Shifter 

Using the results from the LOD, the result from the adder is shifted left to normalize 

the result. That means now the first bit is 1. This shifter can be implemented using “shl” 

operator in VHDL or by describing it behaviorally using ‘case’ statements. Table 3-9 

gives the synthesis results obtained from Xilinx ISE implemented for Virtex2p device. 

Table 3-9: Left shifter implementation analysis 

Shifter Type Combinational Delay (ns) Slices 
Behavioral Left Shifter 8.467 80 

VHDL Shifter 8.565 90 
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The behavioral model had a negligibly smaller combinational delay, and smaller area, 

and is therefore used in our implementation. This result was unexpected because a 

behavioral implementation has given a better timing and area numbers compared to the 

VHDL operator which uses inbuilt shift registers in the CLBs. For a single precision 

floating-point adder the maximum amount of left shift needed is 27. The hardware for the 

behavioral left shifter is designed to only accommodate the maximum shift amount. As 

we have no control over the hardware implementation in VHDL shifter, it implements 

hardware for shift amounts greater than 27, thus resulting in bigger area and delay 

compared to behavioral shifter. Only in case when the carry out from the adder is 1 and 

the operation is addition, the result is shifted right by one position. 

3.3.8 Rounding 

Rounding is done using the guard, round and sticky bit of the result. REN mode is 

accomplished by rounding up if the guard bit is set, and then pulling down the lowest bit 

of the output if the r and s bits are 0. A 1 is added to the result if r and s bit are 1 or r and 

either of the last two bits of the normalized result is 1. This step is really important to 

assure precision and omit loss of accuracy. 

The fraction part of the answer is determined using the rounded result. The exponent 

part of the result is determined by subtracting the larger of the exponent by the leading 

zero count from the leading one detector, only in case when the result is shifted right in 

normalization step or the carry out from rounding adder is 1, a one is added to the 

exponent. The sign is selected according to the sign of the result of the integer adder. 

Overflow and underflow exceptions are flagged by comparing the output exponent to the 

desired conditions explained above. 



 

  30

3.3.9  Timing and Area Analysis 

The standard single precision floating point adder is synthesized, placed, and routed 

for Virtex2p FPGA device using Xilinx ISE 6.3i. The minimum clock period reported by 

the synthesis tool after placing and routing was 27.059 ns. The levels of logic reported 

were 46. That means the maximum clock speed that can be achieved for this 

implementation is 36.95 MHz. The number of slices reported by the synthesis tool was 

541. All this information will be used as a base to analyze improved floating-point adder 

algorithms. Table 3-10 summarizes these results. 

Table 3-10: Standard algorithm analysis 

Algorithm Clock period 
(ns) 

Clock speed  
(MHz) 

Area  
(Slices) 

Levels of 
logic 

Standard  27.059 36.95 541 46 
 

3.4 Five Stage Pipeline Standard Floating Point Adder Implementation 

In order to decrease clock period, to run the operations at a higher clock rate, and to 

increase speedup by increasing the throughput, pipelining is used. Pipelining is achieved 

by distributing the hardware into smaller operations, such that the whole operation takes 

more clock cycles to complete but new inputs can be added with every clock cycle 

increasing the throughput. Pipelining of floating-point adder has been discussed in a 

number of previous research papers [9, 10]. Minimum, maximum, and optimum number 

of pipeline stages for a 32 bit floating-point number has been given based on the factor of 

frequency per area (MHz/Slices). According to these studies, 16 pipeline stages are the 

optimum for single-precision adder implementation. In order to achieve this, all of the 

hardware modules have to be sub-pipelined within themselves. In order to analyze effects 
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of pipelining on floating-point adder implementations on FPGAs, we will compare our 

implementation results with Xilinx IP Core by Digital Core Design [12]. The key features 

for the IP given by Digital Core Design are given below:  

•  Full IEEE-754 compliance  

•  Single precision real format support  

•  5 levels pipeline  

•  Overflow, underflow and invalid operation flags  

•  Full accuracy and precision  

•  Results available at every clock  

•  Fully synthesizable  

•  Positive edge clocking and no internal tri-states  

Our implementation realizes all the features except the invalid flag.  

3.4.1 Micro-Architecture 

Figure 3-13 shows the micro-architecture of five stage pipeline implementation of the 

standard floating-point adder algorithm implementation. The levels of pipeline chosen are 

purely based on comparison with the Xilinx IP Core and are entirely a design choice 

according to the design needs. Five is a good choice because anymore stages will need 

sub pipelining the modules. The placement of the registers in order to put stages is shown 

as the dotted line in Figure 3-13. The main theory behind pipelining is to decrease the 

clock period thus increasing the overall clock speed that the application can run. Adding 

pipeline stages exploits the D flip-flops in the slices already being used for other logic 

and thus doesn’t increase the area significantly. Pipelining also helps increase throughput 

as after the first five clock cycles a result is produced after every clock cycle.    
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Figure 3-13: Micro-architecture of 5 stage pipeline standard floating-point adder 

In the first stage of the implementation the two operands are compared to identify 

denormalization and infinity. Then the two exponents are subtracted to obtain the 

exponent difference and identify whether the operands need to be swapped using the 

exponent difference sign. In the second stage the right sifter is used to pre normalize the 

smaller mantissa. In the third stage addition is done along with the leading one detection. 

In the fourth stage left shifter is used to post normalize the result. In the last stage the 

exponent out is calculated and rounding is done. The results are then compared to set 

overflow or underflow flags. 
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3.4.2 Timing and Area Comparison with Xilinx Intellectual Property  

The five stage standard single precision floating point adder is synthesized, placed, 

and routed for Virtex2p FPGA device using Xilinx ISE 6.3i. The minimum clock period 

reported by the synthesis tool after placing and routing was 7.837 ns. That means the 

maximum clock speed that can be achieved for this implementation is 127.68 MHz. The 

number of slices reported by the synthesis tool was 394. The maximum delay was shown 

by third stage where the addition and leading one detection occurs. Inducing registers to 

implement stages in the design reduces the routing delays significantly compared to one 

stage pipeline in the previous section. Table 3-11 shows the comparison between our 

implementation and data provided by Xilinx IP Core. 

Table 3-11: 5 stage pipeline standard implementation and Xilinx IP analysis 

 Clock speed  
(MHz) 

Area  
(Slices) 

Xilinx IP[12] 120 510 
5 Stage Pipeline Standard 127.68 394 

% of improvement +6.4% +23% 
 

The five stage pipelined standard floating-point adder implementation clock speed is 

6.4% better than that reported by Xilinx IP. The area reported for our implementation is 

23% better than the Xilinx IP. Due to better slice packing the area occupied by five stage 

pipelined version of standard adder implementation takes around 27% (147 slices) less 

than its non pipelined version. The IP doesn’t give the algorithm or the internal module 

implementation or stage placement thus it is hard to compare in detail the reasons behind 

these numbers. This study is done to mainly to give designers a comparison between our 

implementation and the IP available for sale.  
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3.5 Conclusion  

In this chapter, the IEEE 754 standard for floating-point representation is explained in 

detail. After this, the architecture and hardware implementation of standard or naive 

floating-point adder algorithm is illustrated. Logic implementation of each hardware 

module is discussed and analyzed. The timing and area information gathered by Xilinx 

synthesis tool is summarized. In the end the standard algorithm is pipelined in five stages 

and compared with the area and timing information provided by Xilinx IP. 
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CHAPTER 4    IMPROVED FLOATING-POINT ADDER 

ALGORITHMS 

This chapter goes over the two main improvements made to the standard floating-

point adder algorithm. The first is named the LOP algorithm and the second one is the far 

and close data-path algorithm. The central concept behind the first improvement is in 

terms of latency by introducing parallelism within floating-point adder modules. The 

second improvement is done by having dedicated paths for two different cases, because 

not all hardware modules are needed for all input operands. Both these improvements add 

significant area compared to the standard floating-point adder but decrease the latency.  

In modern hardware applications, latency is the most important parameter for most 

operations. While designing for FPGA devices with millions of reconfigurable hardware 

gates, area can be given up to gain overall latency. Pipelining is another technique used to 

increase the overall throughput of the adder but doesn’t decrease the latency. In this 

chapter, pipelining and its effects on far and close data-path adder implementation will 

also be discussed.  

4.1 Leading One Predictor Algorithm 

In this section, LOP implementation and its use in floating-point addition is described 

in detail. LOP module is also used in far and close data-path algorithm implementation. 
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Figure 4-1: a) Leading one detector b) Leading one prediction 

Figure 4-1 shows the difference between leading one detection and prediction. LOD 

detects leading one after the adder result is available. On the other hand, LOP is used to 

predict the leading one in parallel with the adder computation. This decreases the number 

of logic levels in the critical path and results in an overall improvement in the latency. 

 

Figure 4-2: Micro-architecture of LOP algorithm adder 
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Figure 4-2 shows the micro-architecture of LOP algorithm and is close to that of the 

standard floating-point implementation. The inputs to the adder also enter the LOP, so 

that the position of the leading one can be computed in parallel with the addition process. 

This result is then used in post-normalization process and computing the resulting 

exponent. 

4.1.1 Leading One Predictor 

The LOP consists of three operations [3, 21]:  

• Pre-encoding the inputs 

• Leading one detection 

• Error correction in case of some situations  

There are three ways to design a leading one predictor. The first architecture doesn’t 

have a concurrent correction and uses a compensate shift during normalization, and the 

second one has a concurrent error detection based on carry checking. The third one which 

we used is with concurrent correction based on parallel detection tree. Parallel, leading 

one detection and correction adds area to the design but decreases the overall latency of 

the module by reducing levels of logic.  

For a single-precision floating-point addition operation, a 24-bit LOP is needed. A 

and B are the two inputs, the leading one predictor designed is for A > B and/or A < B. 

This is needed because even after pre-normalization, the resulting addition can be 

negative as in case of A < B. When the effective operation is addition, the LOP result is 

not used and the shift value is always zero. The general structure is shown in Figure 4-3. 
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Figure 4-3: General structure of LOP 

4.1.2 Pre-Encoding Logic 

The pre-encoding module gives a string of 0s and 1s with the location of the first one 

being the leading one position. After this, the leading one detector already designed for 

standard algorithm is used to compute the position of the most significant bit. This is the 

amount we need to shift for normalization, in case of no correction. The pre-encoding 

module also gives strings of symbols, which are passed through the binary tree to 

determine if correction is needed. A one is added to the leading one position if a certain 

string of symbols is identified.  

In order to get the string of 0s and 1s, to pass through the LOD, first the following 

logic has to be encoded for all input bits where ‘i’ is the number of bits being encoded. 
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)gg  s(se  )g s s(ge f 1ii1ii1-i1ii1ii1-ii +⋅+⋅+⋅+⋅ +++=                                                      (4.1) 

To detect the error, inputs are encoded for positive and negative cases separately. 

These inputs will act as the initial inputs to the binary trees to detect the correction 

pattern. In the case when A > B, the encodings for detection tree inputs are defined as:  

i1iii i n s ) s(g p ⋅⋅+= +  

i1-i i se n ⋅=                                                                                                                      (4.2) 

ii i n  p z +=  

In the case when A < B, the encodings for detection tree inputs are defined as: 

i1iii i p g ) s(g n ⋅⋅+= +  

i1-i i ge p ⋅=                                                                                                                     (4.3) 

ii i n  p z +=  

Using the above equations, hardware for the pre-encoder is entered in VHDL using 

AND, OR and NOT gates. Equations 4.2 and 4.3 are different than those provided by J. 

D. Bruguera and T. Lang [3]. For a respective set of input bits, only pi or ni can be set to 1 

in positive and negative cases. A NAND gate has to be added to pi and ni for positive and 

negative trees respectively to obtain the right inputs for the error detection step. This 

error was notified and acknowledged by the authors.  

4.1.3 Leading One Detector 

The same leading one detector used in the standard floating-point adder is used for 

the leading one detection. The string ‘f’ computed using the encodings shown in equation 

4.1, is used as the input. The output is the shift amount needed to normalize the result 
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from the adder. In this case this operation is done in parallel to addition and thus 

decreases levels of logic in the critical path. 

4.1.4 Correction Tree 

In order to detect an error, pre-encoded values shown in equations 4.2 and 4.3 are 

passed through a binary tree structure to determine whether the correction pattern is 

present. The general structure of the correction tree is shown in Figure 4-4. 

 

Figure 4-4: General structure of error correction tree 
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Z  zk 

P  zkpzq 

N  zkn(x) 

Y  zkpzqn(x) 

U  other strings 

The outputs from two consecutive nodes of the preceding level become inputs to the 

next as shown in Figure 4-5. The first level has its inputs coming from the pre-encoder 

block as shown in Figure 4-4 and is encoded by logic given in equation 4.2. Table 4-1 

shows the node function for positive tree error correction. If string Y is detected in the 

last level, node correction is needed. 

Table 4-1: Node function for positive tree error detection 

Second Input  
Z2 P2 N2 Y2 U2 

Z1 Z P N Y U 
P1 P U Y U U 
N1 N N N N N 
Y1 Y Y Y Y Y 

First 
Input

U1 U U U U U 
 

Using the node function, the following equations are derived and implemented, where 

Z1, Z2, P1, P2, N1, N2, Y1, and Y2 are inputs to the node. 

Z2Z1= Z ⋅  

 Z2)(P1  P2)(Z1P ⋅+⋅=                                                                                                 (4.4) 

N2)  (Z1 N1N ⋅+=                                                                                                               

N2) (P1  Y2) (Z1 Y1Y ⋅+⋅+=  
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Figure 4-5 shows an example of error detection in positive tree. A pattern of z7pz8n(x) 

is passed through the error detection tree. The nodes work in parallel with the leading one 

detection thus not effecting latency but having a big effect on area. 

 

Figure 4-5: Binary tree to detect error detection pattern in z7pz8n(x) for positive 

pattern 

4.1.4.2 Negative tree 

The structure of the negative tree is similar to that of the positive tree, and it can be 

obtained by exchanging the role of P and N in the positive tree. It receives the inputs 

generated from the pre-encoder as shown in Figure 4-4. The substrings detected by the 

negative node are as follows. 
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Table 4-2 shows the node function of the negative tree error correction. If string Y is 

detected in the last level, node correction is needed. 

Table 4-2: Node function for negative tree error detection 

Second Input  
Z2 P2 N2 Y2 U2 

Z1 Z P N Y U 
P1 P P P P P 
N1 N Y U U U 
Y1 Y Y Y Y Y 

First 
Input

U1 U U U U U 
 

Using the node function, following equations are derived and implemented in 

hardware. 

Z2Z1= Z ⋅  

 Z2)(N1  N2)(Z1N ⋅+⋅=                                                                                               (4.5) 

P2)  (Z1 P1P ⋅+=                                                                                                                          

P2) (N1  Y2) (Z1 Y1Y ⋅+⋅+=  

4.1.5 Timing and Area Analysis 

The LOP floating point adder is synthesized, placed and routed for Virtex2p FPGA 

device using Xilinx ISE 6.3i. The minimum clock period reported by the synthesis tool 

after placing and routing was 25.325 ns. The levels of logic reported were 35. That means 

the maximum clock speed that can be achieved for this implementation is 39.48 MHz. 

The number of slices reported by the synthesis tool was 748. A comparison between 

standard algorithm and LOP algorithm implementation is shown in Table 4-3. 
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Table 4-3: Standard and LOP algorithm analysis 

 Clock 
period (ns) 

Clock speed 
(MHz) Area (Slices) Levels of logic 

Standard  27.059 36.95 541 46 
LOP Algorithm 25.325 39.48 748 35 

% of improvement +6.5% +6.5% -38% +23% 
 

The main improvement seen in LOP design is the levels of logic reduced by 23% 

with an added expense of increasing the area by 38%. The minimum clock period shows 

very small improvement. Having addition in parallel with leading one detector has helped 

to reduce the levels of logic but this has added significant routing delay in between the 

LUTs as most of the added logic is in form of logic gates. In standard algorithm, LOD 

and adder working in series will have a combinational delay of 15.213 ns while the LOP 

offers a delay of 13.6 ns while the addition is done in parallel on an added cost of large 

area. Pre-encoding in the LOP consists equations 4.1, 4.2 and 4.3 which are based on 

AND, OR and NOT gates which uses the sum of product chains in the slices and consists 

of 70% (146 slices) of the overall increase in the area of LOP algorithm compared to the 

standard algorithm. Other increase in area consists of error detection tree in the LOP. The 

next step is to combine these algorithms and design a smart hardware also called the far 

and close data-path algorithm. 

4.2 Five Stage Pipeline LOP Floating Point Adder Implementation 

The leading one predictor algorithm is pipelined into five stages to be compared with 

the Xilinx IP Core [12] provided by Digital Core Design. All the key features of the 

Xilinx IP Core, listed in section 3.4 were implemented except invalid flag.   
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4.2.1 Micro-Architecture 

Figure 4-6 shows the micro-architecture of the five stage pipeline implementation of 

LOP floating-point adder algorithm. The dotted lines show the registers used to induce 

stages between logic. 

  

Figure 4-6: Micro-architecture of 5 stage pipeline LOP floating-point adder 
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smaller mantissa. In the third stage the addition is done along with leading one prediction. 

In the fourth stage left shifter is used to post normalize the result. In the last stage the 

exponent out is calculated and rounding is done. The results are then compared to set 

overflow or underflow flags.  

4.2.2 Timing and Area Comparison with Xilinx Intellectual Property  

The five stage LOP single precision floating point adder is synthesized, placed, and 

routed for Virtex2p FPGA device using Xilinx ISE 6.3i. The minimum clock period 

reported by the synthesis tool after placing and routing was 6.555 ns. That means the 

maximum clock speed that can be achieved for this implementation is 152.555 MHz. The 

number of slices reported by the synthesis tool was 591. The maximum delay was shown 

by third stage where the addition and leading one prediction occurs. Table 4-4 shows the 

comparison between our implementation and data provided by Xilinx IP Core. 

Table 4-4: 5 stage pipeline LOP implementation and Xilinx IP analysis 

 Clock speed  
(MHz) 

Area  
(Slices) 

Xilinx IP[12] 120 510 
5 Stage Pipeline LOP 152.555 591 

% of improvement +22% -15% 
 

The clock speed reported for our pipelined LOP adder implementation is better than 

the reported Xilinx IP by 22%, but the area reported by the IP is 15% better than ours. 

Due to better slice packing the area occupied by five stage pipelined version of LOP 

adder implementation takes around 21% (157 slices) less than its non-pipelined version. 

As mentioned earlier the algorithm and stage placement in the Xilinx IP Core is not 

known thus it is hard to discuss and compare the two implementations. 
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 The pipelined LOP adder implementation shows great improvement in clock speed 

compared to both pipelined standard adder and Xilinx IP Core but on added cost of area. 

Five stage pipelined standard adder implementation is a better choice in terms of area 

occupying only 394 slices. If throughput is the criterion for performance the five stage 

pipelined LOP adder implementation provides 22% better clock speed than the Xilinx IP 

and 19% better clock speed compared to the five stage pipelined standard adder 

implementation and thus clearly a better design choice. 

4.3 Far and Close Data-path Algorithm 

In standard floating-point adder, the critical path in terms of latency is the pre-

normalization shifter, the integer addition, leading-one detection, post-normalization, and 

then the rounding addition. Leading one predictor is used in the LOP algorithm to do the 

addition and leading one detection in parallel, however, as shown in results it decreases 

the number of logic levels but doesn’t have a very big effect in overall latency if 

synthesized for a Xilinx Virtex 2p FPGA device. Far and close data-path algorithm adder 

is designed on the research work based on rounding in floating-point adders using a 

compound adder [19]. 

4.3.1 Algorithm 

According to the studies, 43% of floating-point instructions [20] have an exponent 

difference of either 0 or 1. A leading one detector or predictor is needed to count the 

leading number of zeros only when the effective operation is subtraction and the 

exponent difference is 0 or 1, for all the other cases no leading zero count is needed.  
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Let s1; e1; f1 and s2; e2; f2 be the signs, exponents and significands of two input 

floating-point operands, N1 and N2, respectively. Given these two numbers, Figure 4-7 

shows the flowchart of the far and close data-path algorithm. A description of the 

algorithm is as follows. 

 

Figure 4-7: Flow chart of far and close floating-point adder 

1.   Read in the two operands N1 and N2 and check if the numbers are denormalized or 
infinity. If numbers are denormalized set the implicit bit to 0 otherwise is set to 1. At 
this point the fraction part is extended to 24 bits. 
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Figure 4-8 shows the micro-architecture of the far and close path floating point adder. 

The exponent difference and swap units for pre-normalization are the same as in the 

standard or LOP algorithm. The two fractions, exponent difference, and larger exponent 

are the common inputs to both the paths. Close path is chosen if the exponent difference 

is 0 or 1 and the effective operation is a subtraction otherwise the far path is chosen. The 

close and far path will be explained in detail in the following sections. 

4.3.2 Micro-Architecture 

 

Figure 4-8: Micro-architecture of far and close path floating-point adder 

4.3.3 Close Path Micro-architecture 
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combine the addition and the rounding process. The micro-architecture of the close path 

is shown in Figure 4-9. 

 

Figure 4-9: Micro-architecture of close path 
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4.3.3.1 Compound adder 

After the inversion of the respective fraction, both the fractions are passed on to two 

24 bit VHDL adders where the sum without any carry-in and sum plus one are computed. 

Figure 4-10 shows the hardware implementation of the compound adder. 

 

Figure 4-10: Hardware implementation of compound adder 

4.3.3.2 Rounding selection 

In case of subtraction and round towards nearest even rounding mode, the selection in 

terms of S1 and S is based on the following equation. 

)rgMSB)srL(g MSB srg( Coutclose nearest select ⋅⋅+++⋅⋅+⋅⋅⋅=                   (4.6) 

Cout being the sign of the result S, MSB is the most significant bit of the result S, and 

L is the least significant bit of the result. The g, r, and s in equation 4.6 are computed; the 

guard, round and sticky bits are computed using the following equations where the inputs 

are coming from the bit inversion. 

yb-a

yyb-a

yyyb-a

s ss

sr  rr

)s(r  ggg

==

⊕==

⊕== ⋅

                                                                                                  (4.7) 

2424

+ S

24

+ 

1

S1
25

25



 

  52

As in the case of subtraction, 1 has to be added to sticky location to obtain 2’s 

complement. Equation 4.7 is used to induce a 1 at the sticky location. We also have to 

consider a carry from this addition of 1 to the least significant bit of S. If there is such a 

carry, the g, r, and s bits computed using equation 4.7 are all 0s. If the result is positive 

i.e. carry-out is 1 then in this case S1 is chosen to compensate this carry but no rounding 

up is needed. This is the first addend in equation 4.6. The sum result is normalized when 

most significant bit of the adder result is 1 and g, r, and s bits are not 0 meaning no carry 

from the addition of 1 in the sticky bit position. Rounding is needed if sum result is 

positive, normalized and if the g bit is 1 and either of the least significant bit, r, or s bit is 

1. S1 is selected in this case to round the result. This is the second addend to equation 4.6. 

In the case when result is positive and the result is not normalized, S1 is chosen to round 

to nearest only when both g and r bits are 1. This is the third addend in equation 4.6. As 

in close path both r and s bits are 0, equation 4.6 can be reduced to following. 

)L MSBg( Coutclose nearest select ⋅+⋅=                                                                    (4.8) 

Thus, equation 4.8 is used to select between the results of S1 or S outputs from the 

compound adder. This step reduces the extra delay induced by the rounding adder in 

standard and LOP algorithm. 

4.3.3.3 Post-normalization 

After the rounded result has been selected, using equation 4.8, the LOP result is 

needed to normalize the result by left shifting the result by the shift amount predicted. 

Before this step, the result is inverted if the result is negative i.e. carry-out is 0. The first 

bit shifted in is 1 only when the result is positive and g bit is 1, otherwise all the bits 
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shifted in are 0. This is the rounded and normalized result and is the mantissa out. The 

LOP result is also used to compute the exponent out by subtracting it from the larger 

exponent. 

4.3.4 Far Path Micro-architecture 

 

Figure 4-11: Micro-architecture of far path 

In case when the exponent difference is greater than 0 or 1 and the effective operation 

is subtraction or addition, the far path is chosen. Figure 4-11 shows the micro-

architecture of the far path. The two fractions, exponent difference, the larger exponent, 

and effective operation are the inputs to the far path. Leading one detector is not needed 

as the result is only needed to be shifted one bit left or right. The two fractions enter the 

path and the smaller one is shifted right by the exponent difference. The barrel shifter 

designed in the standard floating-point adder implementation is used to do this pre-

normalization step. The g, r, and s bits don’t enter the adder but are used to select 

     Right Shift 

1-bit Shifter 

Shift Logic

Compound 
Adder 

 
S1          S

Cout, MSB, sub 

24

24

24
24

2525

Complement 

g, r, s

GRS 

Select 

ga-b, ra-b, sa-b 

           or 
ga+b, ra+b, sa+b 4 

Cout, MSB, L-1, L 

MUX 

Bit shifted in 

Mantissa Out

d

Sub

3 

sub 

Left/ right 



 

  54

between S1 and S of the compound adder like the close path implementation. After the 

pre-normalization step, the results enter the compound adder and compute sum and sum 

plus one as discussed earlier. In case of subtraction the shifted fraction is inverted. 

4.3.4.1 Rounding selection 

In case of addition and round towards nearest even rounding mode, the selection in 

terms of S1 and S is based on the following equation. 

   s)rg1-(LLCouts)r(Lg Coutfar nearest select +++⋅⋅+++⋅⋅=                        (4.9) 

In case of subtraction, the selection in terms of S1 and S is based on the following 

equation. 

 s)) (Lg  MSB rg  srg( Coutfar nearest select +⋅⋅+⋅+⋅⋅⋅=                                   (4.10) 

In case of addition there is no change to the g, r, and s bits, but when the effective 

operation is subtraction, equation 4.7 is used to compute the added 1 at the sticky bit. 

Equation 4.10 has the same explanation of choosing between S1 and S as in the close 

path. In case of addition, S1 is chosen to round to nearest if the result is normalized i.e. 

carry-out is 0 and if the g bit is 1 and any of the r, s, or the least significant bit of the 

adder result is 1. This is the first addend to equation 4.9. If the carry-out of the result is 1 

then it is not normalized and it will be right shifted to be normalized. In this case, bit next 

to the least significant bit (L-1) is also considered. This is the second addend to the 

equation 4.9. Using the above equations and explanation, rounded result is selected from 

the compound adder. 
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4.3.4.2 Post-normalization 

In case of far path, only 1 bit left or right shift is needed. 1-bit right shift is done if the 

result from the adder is not normalized and the effective operation is addition. On the 

other hand, 1 bit left shift is needed if the most significant bit of the result is 0 and 

subtraction was carried out. This is a big reduction in the critical path in terms of latency 

when compared to standard or LOP algorithm implementations. In case of right shift, one 

is added to the larger exponent to obtain exponent out, on the other hand, one is 

subtracted from the larger exponent in case of left shift. 

4.3.5 Sign Computation 

In order to compute the sign in far and close path, following conditions are 

considered. In case of addition: 

sign(N1)sign =  

In case of subtraction: 

)1N(signsign:)1rencesign_diffe(2e1e

Cout sign(N1) sign:0)difference 0,fferencee2(sign_die1

sign(N1) sign:) 0erence(sign_diff e2e1

==<

⊕====

==>

 

N1 and N2 are the two operands, but referred vice-versa when swapping occurs as 

shown in Figure 4-7. In case of addition, the sign is simply the sign of the first operand, 

on the other hand in case of subtraction, the sign is MUXed if result of the adder is 

negative or swapping occurs before pre-normalization step. 
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4.3.6 Timing and Area Analysis 

The far and close data-path floating point adder is synthesized, placed, and routed for 

Virtex2p FPGA device using Xilinx ISE. The minimum clock period reported by the 

synthesis tool after placing and routing was 21.821 ns. The levels of logic reported were 

30. That means the maximum clock speed that can be achieved for this implementation is 

45.82 MHz. The number of slices reported by the synthesis tool was 1018. A comparison 

between standard algorithm and far and close data-path algorithm implementation is 

shown in Table 4-6. 

Table 4-5: Standard and far and close data-path algorithm analysis 

 Clock Period 
(ns) 

Clock speed 
(MHz) 

Area 
(Slices) Levels of logic 

Standard  27.059 36.95 541 46 
F&C path 21.821 45.82 1018 30 

% of improvement +19% +19% -88% +34% 
 

A comparison between LOP algorithm and far and close data-path algorithm 

implementation is shown in Table 4-7. 

Table 4-6: LOP and far and close data-path algorithm analysis 

 Clock Period 
(ns) 

Clock speed 
(MHz) 

Area 
(Slices) Levels of logic 

LOP 25.325 39.48 748 35 
F&C path 21.821 45.82 1018 30 

% of improvement +14% +14% -36% +14% 
 

In terms of latency far and close path algorithm shows a 19% improvement compared 

to standard algorithm, and 14% improvement compared to the LOP algorithm. In terms 

of levels of logic there is a 34% improvement compared to the standard algorithm and 

14% improvement compared to the LOP algorithm. When compared to standard 
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algorithm far and close critical path consists of a LOP in parallel with an adder instead of 

a LOD followed by an adder in the standard algorithm. The critical path also has only one 

full shifter instead of two full shifters in the standard algorithm implementation. In the far 

and close data-path algorithm, the compound adder combines addition and rounding steps 

and thus eliminates additional delay caused by rounding adder. When compared to LOP 

algorithm, far and close critical path contains one less shifter and no rounding adder in its 

critical path. On the other hand, in terms of area it is 88% bigger compared to the 

standard algorithm but 36% bigger compared to the LOP algorithm.  

Figure 4-12 shows the graphical comparison between the latency and area of the three 

different floating-point adder algorithms implemented for Virtex2p FPGA device. It is 

obvious from the results that for an area efficient design standard algorithm 

implementation should be preferred but in case of latency far and close path has much 

better results compared to the rest, although on added expense of area.  

0
200
400
600
800

1000
1200

Standard LOP F&C path

S
lic

es

0
10
20
30
40
50

M
H

z

Area (Slices) Clock Speed(MHz)
 

Figure 4-12: Latency and area comparison 
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4.4 Conclusion 

In this chapter, the improvements in basic floating point adder algorithms are 

discussed. The first change implemented is the leading one predictor algorithm, which 

has a great effect on area but doesn’t improve timing significantly, due to added routing 

and gate delays in FPGAs. In far and close data-path algorithm implementation, LOP 

along with combined addition and rounding, and only one full shift in its critical path 

shows significant improvement in the overall latency of the adder. Five stage LOP 

pipeline adder implementation is also discussed with its comparison with Xilinx IP core 

and five stage pipeline standard adder algorithm implementation. 

This chapter gives the designer the choice to select appropriate implementation 

according to their design needs. Standard floating-point addition algorithm is meant for 

area efficient designs where designers are working with small FPGA devices with very 

few equivalent logic gates to fit in their design. For latency efficient designs where the 

main aim is to have faster execution units, far and close data-path algorithm is the best 

option. It takes almost double the area that of standard algorithm implementation but 

gives 19% improvement in overall latency with respect to standard algorithm and 14% 

improvement compared to LOP algorithm. When it comes to comparing the pipelined 

versions of the algorithms, LOP is the best choice running at around 152 MHz for five 

pipeline stages i.e. 22% faster than the Xilinx IP and 19% better than the pipelined 

standard adder algorithm implementation. Far and close data-path was not chosen for the 

five stage pipeline implementation as the optimum number of stages is either three 

without sub pipelining the internal modules [22] or six with the sub staging of the 

modules according to our experiment.  



 

  59

 

 

CHAPTER 5   VERIFICATION AND VALIDATION 

This chapter goes over the testing procedure, simulation, and hardware verification of 

floating-point adder implementations. In order to verify the hardware implementations, 

test benches were developed using Java programming language and simulations were run 

using ModelSim for Xilinx [23]. Hardware verification was done using inbuilt Random 

Access Memory (RAM) blocks. 

5.1 Test Bench 

The industry standard to test and obtain performance results for floating-point 

arithmetic is SpecFP2000 [24]. Due to lack of resources and unavailability of these test 

benches, custom test benches were developed using Java programming language. Java 

was chosen because it has inbuilt float class which includes conversion from float data 

type to integer and then to hexadecimal format for easy test runs. Some of the other 

functions used were Java’s random number generator and for loops.  

In Java, the data type float represents a single precision floating point number which 

adheres to all the IEEE 754 standard restrictions and round the number to REN which has 

been used in our implementations. The class Float has inbuilt function 

Float.floatToRawIntBits() which convert any floating point number to integer 

representation according to the IEEE 754 standard. Integer.toHexString() is used to 
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covert integers into hexadecimal format. These functions are used to convert it for 

binary representation in form of hexadecimal numbers.  

 

 

Figure 5-1: Example Java test bench developer loop code 

In order to generate random numbers, class Math with inbuilt function 

Math.random() was used to generate a float number between decimal 0 and 1. A unique 

number is generated every time as it based on a seed from the internal clock of the 

computer. Multiple ‘for’ loops were used to multiply this number with diverse numbers 

 public static void main(String[] args) { 
    float rand1, rand2, add; 
    int out_rand1, out_rand2, out_add; 
    String Str, Str2, opa, opb, result, ans, run; 
    char end; 
    int i, j; 
    opa = "force opa X";  opb = "force opb X";  result = "force ans X";   
    end = '"'; run = "run"; 
 
    for(i=10000; i<10010; i++) 
    { 
      for (j = 1000000000; j < 1000000001; j++) { 
        rand1 = - (float) Math.random() * i; 
        rand2 = + (float) Math.random() * j; 
        add = rand1 + rand2; 
 
        out_rand1 = Float.floatToRawIntBits(rand1); 
        Str = Integer.toHexString(out_rand1); 
        System.out.print(opa); 
        System.out.print(end); 
        System.out.print(Str); 
        System.out.println(end); 
 
        out_rand2 = Float.floatToRawIntBits(rand2); 
        Str2 = Integer.toHexString(out_rand2); 
        System.out.print(opb); 
        System.out.print(end); 
        System.out.print(Str2); 
        System.out.println(end); 
 
        out_add = Float.floatToRawIntBits(add); 
        ans = Integer.toHexString(out_add); 
        System.out.print(result); 
        System.out.print(end); 
        System.out.print(ans); 
        System.out.println(end); 
        System.out.println(run); 
      } 
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in multiple of 10s to generate two totally different random numbers with different ranges 

of exponents to be added. An example java loop is shown in Figure 5-1. 

The result is changed into binary form too using the above used functions rounded 

towards nearest even and ready to be compared against the answer we obtain from our 

implementations. Main emphasis was given on having inputs with diverse exponent 

differences and different signs. In order to do an exhaustive test of the hardware, we need 

millions of inputs; since this was impossible but using smart loops around 8000 different 

inputs were generated. Apart from these special cases which included NaN, zero, and 

infinity, cases which give overflow and underflow results were also included in the test 

bench. 

5.2 Verification of Simulation 

ModelSim for Xilinx is a powerful simulation tool developed by Model Technologies 

for Xilinx devices. VHDL code can be compiled and special libraries for Xilinx devices 

can be used to simulate any hardware efficiently. All the basic modules designed for 

standard, LOP, and far and close data-path algorithm were compiled and tested 

vigorously for functional correctness using waveforms. The test bench developed using 

Java was run under simulation environment for all the three algorithms separately.  

 

Figure 5-2: Example ModelSim run for floating-point adder 
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The results stored in  the test bench and the ones obtained from hardware for a certain 

pair of  inputs were compared bit by bit and 100% accuracy was reported for all cases. 

An example test run is shown in Figure 5-2. The numbers are shown are in hexadecimal 

format and represent inputs, outputs and the forced result. This step was important to 

ensure the functional correctness and robustness of the design. 

5.3 Hardware Validation 

In order to validate the design on the hardware, the multimedia board (DO-V2000-

MLTA), the only Xilinx board with a Virtex 2 FPGA chip on it was used. Two separate 

RAM blocks available in the FPGA were used to store a set of inputs at the same address 

location and the addition result was stored in another RAM at the same address location. 

The embedded development kit available to us was used to program the FPGA to output 

a 1 on the screen if the result registered by the hardware was the same for a certain set of 

inputs and its corresponding result obtained from the RAM. This was a custom testing 

procedure to ensure that the hardware designed is synthesizable and downloadable onto a 

FPGA device. The clock was simulated using a button rather than using the inbuilt clock 

to see the results visually. 100% accuracy for all the three algorithms was obtained and 

thus the test was considered successful. 
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CHAPTER 6   CONCLUSION 

Floating-point unit is an integral part of any modern microprocessor. With 

advancement in FPGA architecture, new devices are big and fast enough to fit and run 

modern microprocessors interfaced on design boards for different applications. Floating-

point units are available in forms of intellectual property for FPGAs to be bought and 

used by customers. However, the HDL for the design is not available to be modified by 

the customers according to their design needs. Floating-point adder is the most complex 

component of the floating-point unit. It consists of many complex sub components and 

their implementations have a major effect on latency and area of the overall design. 

Over the past two decades, a lot of research has been done by the VLSI community to 

improve overall latency for the floating-point adder while keeping the area reasonable. 

Many algorithms have been developed over time. Standard, LOP, and far and close data-

path are the three most common algorithms. In order to reduce confusions among 

programmers and vendors, IEEE introduced the IEEE 754 standard in 1985 which 

standardizes floating-point binary arithmetic for both software and hardware. 

There are many floating-point adder implementations available for FPGAs but to the 

best of our knowledge, no work has been done to design and compare different 

implementations for each sub component used in the floating-point addition for a FPGA 

device. The main objective of our work was to implement these components and obtain 
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best overall latency for the three different algorithms and provide HDL and discuss 

solutions to improve custom designs. 

Standard algorithm consists of the basic operation which consists of right shifter, 2’s 

complement adder, leading one detector, and left shifter. Different implementations for 

all these various components were done using VHDL and then synthesized for Xilinx 

Virtex 2p FPGA device to be compared for combinational delay and area. The objective 

was to reduce the overall latency; therefore each sub component is selected accordingly. 

Standard algorithm is also considered as naive algorithm for floating-point adder and is 

considered to be area efficient but has larger delays in levels of logic and overall latency. 

For a Xilinx Virtex2p FPGA device our implementation of the standard algorithm 

occupied 541 slices and had an overall delay of 27.059 ns. The standard algorithm was 

also pipelined into five stages to run at 127 MHz which took an area of 394 slices. 

The second implementation researched and implemented was the LOP algorithm. It 

consists of a module called leading one predictor which has the capability to detect the 

leading one and add the normalized operands in parallel. This has a significant effect on 

the levels of logic and reduces them by 23% but only reduces the latency by 6.5% on an 

added area of 38% compared to the standard algorithm implementation. It is not an 

effective design in case of FPGAs because the added slices due to LOP uses SOP chains 

present in the CLBs of the Virtex 2p and adds significant routing and gate delay. The 

LOP algorithm was also pipelined into five stages to run at 152 MHz which took 591 

slices. The pipelined version of LOP adder was a better choice when compared to Xilinx 

IP Core [12] running at 22% better clock speed and thus giving a better throughput.  
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The third and most up-to-date implementation mostly employed by all the modern 

microprocessors is the far and close data-path algorithm. This algorithm distributes the 

design into two paths called the close and far path. The main objective for this algorithm 

is to reduce overall latency by reducing the numbers of logics for the two paths by 

eliminating or distributing modules only needed in certain cases. This design, as 

expected, gives very good latency results on added cost of almost double the area 

compared to that of the standard algorithm. For a Xilinx Virtex2p FPGA device our 

implementation of the far and close data-path algorithm occupied 1018 slices and had an 

overall delay of 21.821 ns.  

The main objective of this research was to develop a design resource for designers to 

implement floating-point adder onto FPGA device according to their design needs such 

as clock speed, throughput and area. This kind of work has not been done before, to the 

best of our knowledge, and we believe it would be a great help in custom implementation 

and design of floating-point adders on FPGAs.  

6.1 Future Work 

In order to expand our research further some of the works proposed are converting the 

VHDL so that it can accommodate any exponent and mantissa length. This will give the 

designer more versatility while choosing their design specs. The designs can also be 

pipelined further for different number of pipeline stages to give designers even more 

adaptability and flexibility. 
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APPENDIX 

VHDL CODE 

Standard Algorithm 
LIBRARY ieee ; 
USE ieee.std_logic_1164.ALL; 
USE ieee.std_logic_misc.ALL; 
USE ieee.std_logic_unsigned.ALL; 
USE ieee.std_logic_arith.ALL; 
 
entity fpad is 
port(  
clk: in std_logic; 
opa: in std_logic_vector (0 to 31); 
opb: in std_logic_vector (0 to 31);  
add: out std_logic_vector(0 to 31); 
underflow: out std_logic; 
overflow: out std_logic); 
end fpad ; 
 
architecture arch of fpad is 
signal opa_r, opb_r: std_logic_vector(0 to 31); 
signal signa, signb: std_logic; 
signal expa, expb: std_logic_vector(0 to 7); 
signal fraca, fracb: std_logic_vector(0 to 23); 
signal a_exp_zero, b_exp_zero: std_logic; 
signal a_exp_ones, b_exp_ones: std_logic; 
signal a_frac_zero, b_frac_zero: std_logic; 
signal denorm_a, denorm_b: std_logic; 
signal a_zero, b_zero: std_logic; 
signal a_inf, b_inf: std_logic; 
signal signd: std_logic; 
signal swap: std_logic; 
signal signx: std_logic; 
signal expx: std_logic_vector(0 to 7); 
signal fracx, fracy: std_logic_vector(0 to 23); 
signal rsft_amt: std_logic_vector(0 to 7); 
signal modeslct: std_logic; 
signal fracy_in_sft, align_fracy: std_logic_vector(0 to 26); 
signal sub:std_logic; 
signal a, b, sum_adder: std_logic_vector(0 to 26); 
signal cout_adder, neg_sum: std_logic; 
signal lzc: std_logic_vector(0 to 4); 
signal lsft_amt: std_logic_vector(0 to 7); 
signal rsft1: std_logic; 
signal lrsft_in: std_logic_vector(0 to 27); 
signal lrsft1_out: std_logic_vector(0 to 25); 
signal norm_sft_out: std_logic_vector(0 to 26); 
signal norm: std_logic_vector(0 to 25); 
signal norm_out: std_logic_vector(0 to 23); 
signal r, s, round: std_logic; 
signal round_out: std_logic_vector(0 to 24); 
signal round_cout: std_logic; 
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signal mantissa: std_logic_vector(0 to 23); 
signal exponent: std_logic_vector(0 to 7); 
signal sign, uf, ovf: std_logic; 
 
component exp_diff 
port ( 
exp_a, exp_b: in std_logic_vector(0 to 7); 
d: out std_logic_vector(0 to 7); 
sign_d: out std_logic); 
end component; 
 
component bshifter_rt is 
port ( 
i: in std_logic_vector(0 to 26); 
sftamt: in std_logic_vector(0 to 4); 
o: out std_logic_vector(0 to 26)); 
end component; 
 
component adder is 
port( 
a, b: in std_logic_vector(0 to 26); 
sub:in std_logic; 
sum: out std_logic_vector(0 to 26); 
cout: out std_logic); 
end component; 
 
component lrsft1 is 
port (  
i: in  std_logic_vector (0 to 27 );  
lsft, rsft: in std_logic; 
o: out std_logic_vector (0 to 25)); 
end component; 
 
component bshifter_lft is 
port (  
i: in  std_logic_vector (0 to 26 );--input    
sft_amt: in  std_logic_vector (0 to 7 );--shift amount 
o: out std_logic_vector (0 to 26));--shift answer, g r and s bits 
end component; 
 
component lod is 
port ( 
f: in std_logic_vector(0 to 23); 
d: out std_logic_vector(0 to 4)); 
end component; 
 
begin  
process (clk) 
begin 
if clk='1' and clk'event then 
opa_r<=opa; 
opb_r<=opb; 
end if; 
end process; 
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a_exp_zero<=not (or_reduce(opa_r(1 to 8))); 
b_exp_zero<=not (or_reduce(opb_r(1 to 8))); 
a_exp_ones<=and_reduce(opa_r(1 to 8)); 
b_exp_ones<=and_reduce(opb_r(1 to 8)); 
a_frac_zero<=not (or_reduce(opa_r(9 to 31))); 
b_frac_zero<=not (or_reduce(opb_r(9 to 31))); 
denorm_a<= a_exp_zero and (not a_frac_zero); 
denorm_b<= b_exp_zero and (not b_frac_zero); 
a_zero<=a_exp_zero and a_frac_zero; 
b_zero<=b_exp_zero and b_frac_zero; 
a_inf<=a_exp_ones and a_frac_zero; 
b_inf<=b_exp_ones and b_frac_zero; 
 
signa<= opa_r(0); 
expa<= opa_r(1 to 8) when denorm_a='0' else x"01"; 
fraca<=('0' & opa_r(9 to 31)) when (denorm_a='1' or a_zero='1') else ('1' & opa_r(9 to 31)); 
signb<= opb_r(0); 
expb<= opb_r(1 to 8) when denorm_b='0' else x"01"; 
fracb<=('0' & opb_r(9 to 31)) when (denorm_b='1' or b_zero='1') else ('1' & opb_r(9 to 31)); 
exp_diff1: exp_diff port map(expa, expb, rsft_amt, signd);--exponent difference 
swap<=signd; 
expx<=expa when swap='0' else expb; 
fracx<=fraca when swap='0' else fracb; 
fracy<=fracb when swap='0' else fraca; 
modeslct<=or_reduce(rsft_amt(0 to 6));--0 when ex-ey<=1, 1 otherwise 
fracy_in_sft<=fracy & "000"; 
bshfiter_rt1: bshifter_rt port map (fracy_in_sft, rsft_amt(3 to 7), align_fracy); 
a<=fracx & "000"; 
b<=align_fracy(0 to 26); 
sub<= signa xor signb;--0 for addition, 1 for subtraction 
adder1: adder port map(a, b, sub, sum_adder, cout_adder); 
neg_sum<=cout_adder and sub; 
rsft1<= cout_adder and (not sub); 
lrsft_in<=(not (cout_adder & sum_adder) + "000000000000000000000000001") when neg_sum='1' else 
(cout_adder & sum_adder); 
lod1: lod port map(lrsft_in(1 to 24), lzc); 
lsft_amt<="000" & lzc; 
--if modeslct=1 ex-ey>1 normalization shifter consist of maximmim 1 left shift 
--if modeslct=0 ex-ey<=1 an there was a carry_out normalization shifter consist of 1 right shift 
lrsft1_1: lrsft1 port map(lrsft_in, lsft_amt(7), rsft1, lrsft1_out); 
bshifter_lft1: bshifter_lft port map(lrsft_in(1 to 27), lsft_amt, norm_sft_out); 
norm<=lrsft1_out(0 to 25) when (modeslct or rsft1)='1' else (norm_sft_out(0 to 24) & 
or_reduce(norm_sft_out(25 to 26))); 
norm_out<=norm(0 to 23); 
r<=norm(24); 
s<=norm(25); 
round<=(r and s) or (r and norm_out(23)); 
round_out<=(('0' & norm_out) + "0000000000000000000000001") when round='1' else ('0' & norm_out); 
round_cout<=round_out(0); 
mantissa<=(round_cout & round_out(1 to 23)) when round_cout='1' else round_out(1 to 24); 
exponent<=(expx + x"01") when (rsft1 or round_cout)='1' else (expx - lsft_amt); 
uf<='1' when exponent=x"01" and mantissa(0)='0' else '0'; 
ovf<='1' when exponent=x"FF" or a_inf='1' or b_inf='1' else '0'; 
signx<=signb when swap='1' or neg_sum='1' else signa; 
sign<=signx; 
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process (clk) 
begin 
if clk='1' and clk'event then 
add<=sign & exponent & mantissa(1 to 23); 
underflow<=uf; 
overflow<=ovf; 
end if; 
end process; 
end arch; 
 
5 Stages Pipeline Standard Algorithm 
 
entity fpad_p is 
port(  
clk: in std_logic; 
opa: in std_logic_vector (0 to 31);--input operators  
opb: in std_logic_vector (0 to 31);  
add: out std_logic_vector(0 to 31); 
underflow: out std_logic; 
overflow: out std_logic); 
end fpad_p ; 
 
architecture arch of fpad_p is 
 
signal opa_r, opb_r: std_logic_vector(0 to 31); 
signal signa_r, signb_r, swap_r, a_inf_r, b_inf_r: std_logic; 
signal expx_r: std_logic_vector(0 to 7); 
signal fracy_in_sft_r: std_logic_vector(0 to 26); 
signal rsft_amt_r: std_logic_vector(0 to 7); 
signal fracx_r: std_logic_vector(0 to 23); 
signal signa_r_r, signb_r_r, modeslct_r, swap_r_r, sub_r, a_inf_r_r, b_inf_r_r: std_logic; 
signal a_r, b_r: std_logic_vector(0 to 26); 
signal expx_r_r: std_logic_vector(0 to 7); 
signal lrsft_in_r: std_logic_vector(0 to 27); 
signal lsft_amt_r: std_logic_vector(0 to 7); 
signal rsft1_r, sign_r, modeslct_r_r, a_inf_r_r_r, b_inf_r_r_r: std_logic; 
signal expx_r_r_r: std_logic_vector(0 to 7); 
signal round_r: std_logic; 
signal norm_out_r: std_logic_vector(0 to 23); 
signal lsft_amt_r_r: std_logic_vector(0 to 7); 
signal rsft1_r_r, sign_r_r, a_inf_r_r_r_r, b_inf_r_r_r_r: std_logic; 
signal expx_r_r_r_r: std_logic_vector(0 to 7); 
 
signal signa, signb: std_logic; 
signal expa, expb: std_logic_vector(0 to 7); 
signal fraca, fracb: std_logic_vector(0 to 23); 
signal a_exp_zero, b_exp_zero: std_logic; 
signal a_exp_ones, b_exp_ones: std_logic; 
signal a_frac_zero, b_frac_zero: std_logic; 
signal denorm_a, denorm_b: std_logic; 
signal a_zero, b_zero: std_logic; 
signal a_inf, b_inf: std_logic; 
signal signd: std_logic; 
signal swap: std_logic; 
signal expx: std_logic_vector(0 to 7); 
signal fracx, fracy: std_logic_vector(0 to 23); 
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signal rsft_amt: std_logic_vector(0 to 7); 
signal modeslct: std_logic; 
signal fracy_in_sft, align_fracy: std_logic_vector(0 to 26); 
signal a, b: std_logic_vector(0 to 26); 
signal sub:std_logic; 
signal sum_adder: std_logic_vector(0 to 26); 
signal cout_adder, neg_sum: std_logic; 
signal lzc: std_logic_vector(0 to 4); 
signal lsft_amt: std_logic_vector(0 to 7); 
signal rsft1: std_logic; 
signal lrsft_in: std_logic_vector(0 to 27); 
signal signx, signy: std_logic; 
signal sign: std_logic; 
signal lrsft1_out: std_logic_vector(0 to 25); 
signal norm_sft_out: std_logic_vector(0 to 26); 
signal norm: std_logic_vector(0 to 25); 
signal norm_out: std_logic_vector(0 to 23); 
signal r, s, round: std_logic; 
signal round_out: std_logic_vector(0 to 24); 
signal round_cout: std_logic; 
signal mantissa: std_logic_vector(0 to 23); 
signal exponent: std_logic_vector(0 to 7); 
signal uf, ovf: std_logic; 
 
component exp_diff 
port ( 
exp_a, exp_b: in std_logic_vector(0 to 7); 
d: out std_logic_vector(0 to 7); 
sign_d: out std_logic); 
end component; 
 
component bshifter_rt is 
port ( 
i: in std_logic_vector(0 to 26); 
sftamt: in std_logic_vector(0 to 4); 
o: out std_logic_vector(0 to 26)); 
end component; 
 
component adder is 
port( 
a, b: in std_logic_vector(0 to 26); 
sub:in std_logic; 
sum: out std_logic_vector(0 to 26); 
cout: out std_logic); 
end component; 
 
component lrsft1 is 
port (  
i: in  std_logic_vector (0 to 27 );  
lsft, rsft: in std_logic; 
o: out std_logic_vector (0 to 25)); 
end component; 
 
component bshifter_lft is 
port (  
i: in  std_logic_vector (0 to 26 );--input    
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sft_amt: in  std_logic_vector (0 to 7 );--shift amount 
o: out std_logic_vector (0 to 26));--shift answer, g r and s bits 
end component; 
 
component lod is 
port ( 
f: in std_logic_vector(0 to 23); 
d: out std_logic_vector(0 to 4)); 
end component; 
 
begin  
 
process (clk) 
begin 
if clk='1' and clk'event then 
opa_r<=opa; 
opb_r<=opb; 
end if; 
end process; 
 
a_exp_zero<=not (or_reduce(opa_r(1 to 8))); 
b_exp_zero<=not (or_reduce(opb_r(1 to 8))); 
a_exp_ones<=and_reduce(opa_r(1 to 8)); 
b_exp_ones<=and_reduce(opb_r(1 to 8)); 
a_frac_zero<=not (or_reduce(opa_r(9 to 31))); 
b_frac_zero<=not (or_reduce(opb_r(9 to 31))); 
denorm_a<= a_exp_zero and (not a_frac_zero); 
denorm_b<= b_exp_zero and (not b_frac_zero); 
a_zero<=a_exp_zero and a_frac_zero; 
b_zero<=b_exp_zero and b_frac_zero; 
a_inf<=a_exp_ones and a_frac_zero; 
b_inf<=b_exp_ones and b_frac_zero; 
 
signa<= opa_r(0); 
expa<= opa_r(1 to 8) when denorm_a='0' else x"01" when denorm_a='1'; 
fraca<=('0' & opa_r(9 to 31)) when (denorm_a='1' or a_zero='1') else ('1' & opa_r(9 to 31)); 
signb<= opb_r(0); 
expb<= opb_r(1 to 8) when denorm_b='0' else x"01" when denorm_b='1'; 
fracb<=('0' & opb_r(9 to 31)) when (denorm_b='1' or b_zero='1') else ('1' & opb_r(9 to 31)); 
 
exp_diff1: exp_diff port map(expa, expb, rsft_amt, signd); 
swap<=signd; 
expx<=expa when swap='0' else expb; 
fracx<=fraca when swap='0' else fracb; 
fracy<=fracb when swap='0' else fraca; 
fracy_in_sft<=fracy & "000"; 
 
process(clk) 
begin 
if clk='1' and clk'event then 
signa_r<=signa; 
signb_r<=signb; 
modeslct_r<=modeslct; 
swap_r<=swap; 
expx_r<=expx; 
a_inf_r<=a_inf; 
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b_inf_r<=b_inf; 
fracy_in_sft_r<=fracy_in_sft; 
rsft_amt_r<=rsft_amt; 
fracx_r<=fracx; 
end if; 
end process; 
 
bshfiter_rt1: bshifter_rt port map (fracy_in_sft_r, rsft_amt_r(3 to 7), align_fracy); 
a<=fracx_r & "000"; 
b<=align_fracy(0 to 26); 
sub<= signa_r xor signb_r; --0 for addition, 1 for subtraction 
modeslct<=or_reduce(rsft_amt_r(0 to 6));--0 when ex-ey<=1, 1 otherwise 
 
process(clk) 
begin 
if clk='1' and clk'event then 
signa_r_r<=signa_r; 
signb_r_r<=signb_r; 
a_r<=a; 
b_r<=b; 
sub_r<=sub; 
modeslct_r<=modeslct; 
swap_r_r<=swap_r; 
expx_r_r<=expx_r; 
a_inf_r_r<=a_inf_r; 
b_inf_r_r<=b_inf_r; 
end if; 
end process; 
 
adder1: adder port map(a_r, b_r, sub_r, sum_adder, cout_adder); 
neg_sum<=cout_adder and sub_r; 
rsft1<= cout_adder and (not sub_r);--right shift by 1 if carry_out from the addition 
lrsft_in<=(not (cout_adder & sum_adder) + "000000000000000000000000001") when neg_sum='1' else 
(cout_adder & sum_adder); 
 
lod1: lod port map(lrsft_in(1 to 24), lzc); 
lsft_amt<="000" & lzc; 
signx<=signb_r_r when swap_r_r='1' or neg_sum='1' else signa_r_r; 
signy<=signa_r_r when swap_r_r='1' or neg_sum='1' else signb_r_r; 
sign<=signx; 
 
process(clk) 
begin 
if clk='1' and clk'event then 
lrsft_in_r<=lrsft_in; 
lsft_amt_r<=lsft_amt; 
rsft1_r<=rsft1; 
sign_r<=sign; 
modeslct_r_r<=modeslct_r; 
expx_r_r_r<=expx_r_r; 
a_inf_r_r_r<=a_inf_r_r; 
b_inf_r_r_r<=b_inf_r_r; 
end if; 
end process; 
 
lrsft1_1: lrsft1 port map(lrsft_in_r, lsft_amt_r(7), rsft1_r, lrsft1_out); 
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bshifter_lft1: bshifter_lft port map(lrsft_in_r(1 to 27), lsft_amt_r, norm_sft_out); 
norm<=lrsft1_out(0 to 25) when (modeslct_r_r or rsft1_r)='1' else (norm_sft_out(0 to 24) & 
or_reduce(norm_sft_out(25 to 26))); 
norm_out<=norm(0 to 23); 
r<=norm(24); 
s<=norm(25); 
round<=(r and s) or (r and norm_out(23)); 
 
process(clk) 
begin 
if clk='1' and clk'event then 
round_r<=round; 
norm_out_r<=norm_out; 
lsft_amt_r_r<=lsft_amt_r; 
rsft1_r_r<=rsft1_r; 
sign_r_r<=sign_r; 
expx_r_r_r_r<=expx_r_r_r; 
a_inf_r_r_r_r<=a_inf_r_r_r; 
b_inf_r_r_r_r<=b_inf_r_r_r; 
end if; 
end process; 
 
round_out<=(('0' & norm_out_r) + "0000000000000000000000001") when round_r='1' else ('0' & 
norm_out_r); 
round_cout<=round_out(0); 
mantissa<=(round_cout & round_out(1 to 23)) when round_cout='1' else round_out(1 to 24); 
exponent<=(expx_r_r_r_r + x"01") when (rsft1_r_r or round_cout)='1' else (expx_r_r_r_r - lsft_amt_r_r); 
uf<='1' when exponent=x"01" and mantissa(0)='0' else '0'; 
ovf<='1' when exponent=x"FF" or a_inf_r_r_r_r='1' or b_inf_r_r_r_r='1' else '0'; 
 
process (clk) 
begin 
if clk='1' and clk'event then 
add<=sign_r_r & exponent & mantissa(1 to 23); 
underflow<=uf; 
overflow<=ovf; 
end if; 
end process; 
end arch; 
 
Exponent Difference 
entity exp_diff is  
port( 
exp_a, exp_b: in std_logic_vector(0 to 7); 
d: out std_logic_vector(0 to 7); 
sign_d: out std_logic); 
end exp_diff; 
 
architecture arch of exp_diff is  
signal diff: std_logic_vector(0 to 8);  
begin 
diff<=('0' & exp_a) - ('0' & exp_b); 
d<=(not diff(1 to 8) + "00000001") when diff(0)='1' else diff(1 to 8); 
sign_d<=diff(0); 
end arch; 
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Right Shift Shifter  
entity bshifter_rt is 
port ( 
i: in std_logic_vector(0 to 26); 
sftamt: in std_logic_vector(0 to 4); 
o: out std_logic_vector(0 to 26)); 
end bshifter_rt; 
architecture structure of bshifter_rt is 
 
component m2to1 
port( 
a0, b0, s: in std_logic; 
o: out std_logic); 
end component; 
 
signal A: std_logic_vector(0 to 24); 
signal B, C, D: std_logic_vector(0 to 25); 
 
begin 
m0: m2to1 port map('0', i(0), sftamt(4), A(0)); 
m1: m2to1 port map(i(0), i(1), sftamt(4), A(1)); 
m2: m2to1 port map(i(1), i(2), sftamt(4), A(2)); 
m3: m2to1 port map(i(2), i(3), sftamt(4), A(3)); 
m4: m2to1 port map(i(3), i(4), sftamt(4), A(4)); 
m5: m2to1 port map(i(4), i(5), sftamt(4), A(5)); 
m6: m2to1 port map(i(5), i(6), sftamt(4), A(6)); 
m7: m2to1 port map(i(6), i(7), sftamt(4), A(7)); 
m8: m2to1 port map(i(7), i(8), sftamt(4), A(8)); 
m9: m2to1 port map(i(8), i(9), sftamt(4), A(9)); 
m10: m2to1 port map(i(9), i(10), sftamt(4), A(10)); 
m11: m2to1 port map(i(10), i(11), sftamt(4), A(11)); 
m12: m2to1 port map(i(11), i(12), sftamt(4), A(12)); 
m13: m2to1 port map(i(12), i(13), sftamt(4), A(13)); 
m14: m2to1 port map(i(13), i(14), sftamt(4), A(14)); 
m15: m2to1 port map(i(14), i(15), sftamt(4), A(15)); 
m16: m2to1 port map(i(15), i(16), sftamt(4), A(16)); 
m17: m2to1 port map(i(16), i(17), sftamt(4), A(17)); 
m18: m2to1 port map(i(17), i(18), sftamt(4), A(18)); 
m19: m2to1 port map(i(18), i(19), sftamt(4), A(19)); 
m20: m2to1 port map(i(19), i(20), sftamt(4), A(20)); 
m21: m2to1 port map(i(20), i(21), sftamt(4), A(21)); 
m22: m2to1 port map(i(21), i(22), sftamt(4), A(22)); 
m23: m2to1 port map(i(22), i(23), sftamt(4), A(23)); 
m24: m2to1 port map(i(23), '0', sftamt(4), A(24)); 
 
m0_2: m2to1 port map('0', A(0), sftamt(3), B(0)); 
m1_2: m2to1 port map('0', A(1), sftamt(3), B(1)); 
m2_2: m2to1 port map(A(0), A(2), sftamt(3), B(2)); 
m3_2: m2to1 port map(A(1), A(3), sftamt(3), B(3)); 
m4_2: m2to1 port map(A(2), A(4), sftamt(3), B(4)); 
m5_2: m2to1 port map(A(3), A(5), sftamt(3), B(5)); 
m6_2: m2to1 port map(A(4), A(6), sftamt(3), B(6)); 
m7_2: m2to1 port map(A(5), A(7), sftamt(3), B(7)); 
m8_2: m2to1 port map(A(6), A(8), sftamt(3), B(8)); 
m9_2: m2to1 port map(A(7), A(9), sftamt(3), B(9)); 
m10_2: m2to1 port map(A(8), A(10), sftamt(3), B(10)); 
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m11_2: m2to1 port map(A(9), A(11), sftamt(3), B(11)); 
m12_2: m2to1 port map(A(10), A(12), sftamt(3), B(12)); 
m13_2: m2to1 port map(A(11), A(13), sftamt(3), B(13)); 
m14_2: m2to1 port map(A(12), A(14), sftamt(3), B(14)); 
m15_2: m2to1 port map(A(13), A(15), sftamt(3), B(15)); 
m16_2: m2to1 port map(A(14), A(16), sftamt(3), B(16)); 
m17_2: m2to1 port map(A(15), A(17), sftamt(3), B(17)); 
m18_2: m2to1 port map(A(16), A(18), sftamt(3), B(18)); 
m19_2: m2to1 port map(A(17), A(19), sftamt(3), B(19)); 
m20_2: m2to1 port map(A(18), A(20), sftamt(3), B(20)); 
m21_2: m2to1 port map(A(19), A(21), sftamt(3), B(21)); 
m22_2: m2to1 port map(A(20), A(22), sftamt(3), B(22)); 
m23_2: m2to1 port map(A(21), A(23), sftamt(3), B(23)); 
m24_2: m2to1 port map(A(22), A(24), sftamt(3), B(24)); 
m25_2: m2to1 port map(A(23), '0', sftamt(3), B(25)); 
 
m0_4: m2to1 port map('0', B(0), sftamt(2), C(0)); 
m1_4: m2to1 port map('0', B(1), sftamt(2), C(1)); 
m2_4: m2to1 port map('0', B(2), sftamt(2), C(2)); 
m3_4: m2to1 port map('0', B(3), sftamt(2), C(3)); 
m4_4: m2to1 port map(B(0), B(4), sftamt(2), C(4)); 
m5_4: m2to1 port map(B(1), B(5), sftamt(2), C(5)); 
m6_4: m2to1 port map(B(2), B(6), sftamt(2), C(6)); 
m7_4: m2to1 port map(B(3), B(7), sftamt(2), C(7)); 
m8_4: m2to1 port map(B(4), B(8), sftamt(2), C(8)); 
m9_4: m2to1 port map(B(5), B(9), sftamt(2), C(9)); 
m10_4: m2to1 port map(B(6), B(10), sftamt(2), C(10)); 
m11_4: m2to1 port map(B(7), B(11), sftamt(2), C(11)); 
m12_4: m2to1 port map(B(8), B(12), sftamt(2), C(12)); 
m13_4: m2to1 port map(B(9), B(13), sftamt(2), C(13)); 
m14_4: m2to1 port map(B(10), B(14), sftamt(2), C(14)); 
m15_4: m2to1 port map(B(11), B(15), sftamt(2), C(15)); 
m16_4: m2to1 port map(B(12), B(16), sftamt(2), C(16)); 
m17_4: m2to1 port map(B(13), B(17), sftamt(2), C(17)); 
m18_4: m2to1 port map(B(14), B(18), sftamt(2), C(18)); 
m19_4: m2to1 port map(B(15), B(19), sftamt(2), C(19)); 
m20_4: m2to1 port map(B(16), B(20), sftamt(2), C(20)); 
m21_4: m2to1 port map(B(17), B(21), sftamt(2), C(21)); 
m22_4: m2to1 port map(B(18), B(22), sftamt(2), C(22)); 
m23_4: m2to1 port map(B(19), B(23), sftamt(2), C(23)); 
m24_4: m2to1 port map(B(20), B(24), sftamt(2), C(24)); 
m25_4: m2to1 port map(B(21), B(25), sftamt(2), C(25)); 
 
 
m0_8: m2to1 port map('0', C(0), sftamt(1), D(0)); 
m1_8: m2to1 port map('0', C(1), sftamt(1), D(1)); 
m2_8: m2to1 port map('0', C(2), sftamt(1), D(2)); 
m3_8: m2to1 port map('0', C(3), sftamt(1), D(3)); 
m4_8: m2to1 port map('0', C(4), sftamt(1), D(4)); 
m5_8: m2to1 port map('0', C(5), sftamt(1), D(5)); 
m6_8: m2to1 port map('0', C(6), sftamt(1), D(6)); 
m7_8: m2to1 port map('0', C(7), sftamt(1), D(7)); 
m8_8: m2to1 port map(C(0), C(8), sftamt(1), D(8)); 
m9_8: m2to1 port map(C(1), C(9), sftamt(1), D(9)); 
m10_8: m2to1 port map(C(2), C(10), sftamt(1), D(10)); 
m11_8: m2to1 port map(C(3), C(11), sftamt(1), D(11)); 
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m12_8: m2to1 port map(C(4), C(12), sftamt(1), D(12)); 
m13_8: m2to1 port map(C(5), C(13), sftamt(1), D(13)); 
m14_8: m2to1 port map(C(6), C(14), sftamt(1), D(14)); 
m15_8: m2to1 port map(C(7), C(15), sftamt(1), D(15)); 
m16_8: m2to1 port map(C(8), C(16), sftamt(1), D(16)); 
m17_8: m2to1 port map(C(9), C(17), sftamt(1), D(17)); 
m18_8: m2to1 port map(C(10), C(18), sftamt(1), D(18)); 
m19_8: m2to1 port map(C(11), C(19), sftamt(1), D(19)); 
m20_8: m2to1 port map(C(12), C(20), sftamt(1), D(20)); 
m21_8: m2to1 port map(C(13), C(21), sftamt(1), D(21)); 
m22_8: m2to1 port map(C(14), C(22), sftamt(1), D(22)); 
m23_8: m2to1 port map(C(15), C(23), sftamt(1), D(23)); 
m24_8: m2to1 port map(C(16), C(24), sftamt(1), D(24)); 
m25_8: m2to1 port map(C(17), C(25), sftamt(1), D(25)); 
 
m0_16: m2to1 port map('0', D(0), sftamt(0), o(0)); 
m1_16: m2to1 port map('0', D(1), sftamt(0), o(1)); 
m2_16: m2to1 port map('0', D(2), sftamt(0), o(2)); 
m3_16: m2to1 port map('0', D(3), sftamt(0), o(3)); 
m4_16: m2to1 port map('0', D(4), sftamt(0), o(4)); 
m5_16: m2to1 port map('0', D(5), sftamt(0), o(5)); 
m6_16: m2to1 port map('0', D(6), sftamt(0), o(6)); 
m7_16: m2to1 port map('0', D(7), sftamt(0), o(7)); 
m8_16: m2to1 port map('0', D(8), sftamt(0), o(8)); 
m9_16: m2to1 port map('0', D(9), sftamt(0), o(9)); 
m10_16: m2to1 port map('0', D(10), sftamt(0), o(10)); 
m11_16: m2to1 port map('0', D(11), sftamt(0), o(11)); 
m12_16: m2to1 port map('0', D(12), sftamt(0), o(12)); 
m13_16: m2to1 port map('0', D(13), sftamt(0), o(13)); 
m14_16: m2to1 port map('0', D(14), sftamt(0), o(14)); 
m15_16: m2to1 port map('0', D(15), sftamt(0), o(15)); 
m16_16: m2to1 port map(D(0), D(16), sftamt(0), o(16)); 
m17_16: m2to1 port map(D(1), D(17), sftamt(0), o(17)); 
m18_16: m2to1 port map(D(2), D(18), sftamt(0), o(18)); 
m19_16: m2to1 port map(D(3), D(19), sftamt(0), o(19)); 
m20_16: m2to1 port map(D(4), D(20), sftamt(0), o(20)); 
m21_16: m2to1 port map(D(5), D(21), sftamt(0), o(21)); 
m22_16: m2to1 port map(D(6), D(22), sftamt(0), o(22)); 
m23_16: m2to1 port map(D(7), D(23), sftamt(0), o(23)); 
m24_16: m2to1 port map(D(8), D(24), sftamt(0), o(24)); 
m25_16: m2to1 port map(D(9), D(25), sftamt(0), o(25)); 
 
o(26)<= 
((A(24) and sftamt(3)) or  
((B(25) or B(24) or B(23) or B(22)) and sftamt(2)) or 
((C(25) or C(24) or C(23) or C(22) or C(21) or C(20) or C(19) or C(18)) and sftamt(1)) or 
((D(25) or D(24) or D(23) or D(22) or D(21) or D(20) or D(19) or D(18) or  
  D(17) or D(16) or D(15) or D(14) or D(13) or D(12) or D(11) or D(10)) and sftamt(0))); 
 end structure; 
 
2:1 Multiplexer 
entity m2to1 is 
port( 
a0, b0, s: in std_logic; 
o: out std_logic); 
end m2to1; 
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architecture behaviour of m2to1 is 
begin 
o<=a0 when s='1' else b0; 
end behaviour; 
 
 
2’s Complement Adder 
entity adder is 
port( 
a, b: in std_logic_vector(0 to 26); 
sub:in std_logic; 
sum: out std_logic_vector(0 to 26); 
cout: out std_logic); 
end adder; 
 
architecture equations of adder is 
signal x, y, invy, result: std_logic_vector(0 to 27); 
 
begin 
x<='0' & a; 
y<='0' & b; 
invy<= not y when sub='1' else y; 
result<= x + invy + ("00000000000000000000000000" & sub); 
cout<=result(0); 
sum<=result(1 to 27); 
end equations; 

 

Leading One Detector 
entity lod is 
port ( 
f: in std_logic_vector(0 to 23); 
d: out std_logic_vector(0 to 4)); 
end lod; 
architecture equations of lod is 
 
component lod2 is 
port ( 
a, b: in std_logic; 
p: out std_logic; 
v: out std_logic); 
end component; 
 
component lod4 is 
port ( 
a, b, v0, v1: in std_logic; 
p: out std_logic_vector(0 to 1); 
v: out std_logic); 
end component; 
 
component lod8 is 
port ( 
a, b: in std_logic_vector(0 to 1);  
v0, v1: in std_logic; 
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p: out std_logic_vector(0 to 2); 
v: out std_logic); 
end component; 
 
component lod16 is 
port ( 
a, b: in std_logic_vector(0 to 2);  
v0, v1: in std_logic; 
p: out std_logic_vector(0 to 3); 
v: out std_logic); 
end component; 
 
component lod32 is  
port ( 
a, b: in std_logic_vector(0 to 3);  
v0, v1: in std_logic; 
p: out std_logic_vector(0 to 4); 
v: out std_logic); 
end component; 
 
signal p1, v1, p2: std_logic_vector(0 to 11); 
signal v2: std_logic_vector(0 to 5); 
signal p3: std_logic_vector(0 to 8); 
signal v3: std_logic_vector(0 to 2); 
signal p4: std_logic_vector(0 to 7); 
signal v4: std_logic_vector(0 to 1); 
signal p5: std_logic_vector(0 to 4); 
signal v5: std_logic; 
 
begin  
lod2_0: lod2 port map(f(0), f(1), p1(0), v1(0)); 
lod2_1: lod2 port map(f(2), f(3), p1(1), v1(1)); 
lod2_2: lod2 port map(f(4), f(5), p1(2), v1(2)); 
lod2_3: lod2 port map(f(6), f(7), p1(3), v1(3)); 
lod2_4: lod2 port map(f(8), f(9), p1(4), v1(4)); 
lod2_5: lod2 port map(f(10), f(11), p1(5), v1(5)); 
lod2_6: lod2 port map(f(12), f(13), p1(6), v1(6)); 
lod2_7: lod2 port map(f(14), f(15), p1(7), v1(7)); 
lod2_8: lod2 port map(f(16), f(17), p1(8), v1(8)); 
lod2_9: lod2 port map(f(18), f(19), p1(9), v1(9)); 
lod2_10: lod2 port map(f(20), f(21), p1(10), v1(10)); 
lod2_11: lod2 port map(f(22), f(23), p1(11), v1(11)); 
 
lod4_0: lod4 port map(p1(0), p1(1), v1(0), v1(1), p2( 0 to 1), v2(0)); 
lod4_1: lod4 port map(p1(2), p1(3), v1(2), v1(3), p2( 2 to 3), v2(1)); 
lod4_2: lod4 port map(p1(4), p1(5), v1(4), v1(5), p2( 4 to 5), v2(2)); 
lod4_3: lod4 port map(p1(6), p1(7), v1(6), v1(7), p2( 6 to 7), v2(3)); 
lod4_4: lod4 port map(p1(8), p1(9), v1(8), v1(9), p2( 8 to 9), v2(4)); 
lod4_5: lod4 port map(p1(10), p1(11), v1(10), v1(11), p2( 10 to 11), v2(5)); 
 
lod8_0: lod8 port map(p2(0 to 1), p2(2 to 3), v2(0), v2(1), p3(0 to 2), v3(0)); 
lod8_1: lod8 port map(p2(4 to 5), p2(6 to 7), v2(2), v2(3), p3(3 to 5), v3(1)); 
lod8_2: lod8 port map(p2(8 to 9), p2(10 to 11), v2(4), v2(5), p3(6 to 8), v3(2)); 
 
lod16_0: lod16 port map(p3(0 to 2), p3(3 to 5), v3(0), v3(1), p4(0 to 3), v4(0)); 
lod16_1: lod16 port map(p3(6 to 8), "000", v3(2), '0', p4(4 to 7), v4(1)); 
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lod32_0: lod32 port map(p4(0 to 3), p4(4 to 7), v4(0), v4(1), p5(0 to 4), v5); 
 
d<=p5; 
end equations; 
 
LOD2 
entity lod2 is 
port ( 
a: in std_logic; 
b: in std_logic; 
p: out std_logic; 
v: out std_logic); 
end entity; 
 
architecture equations of lod2 is 
begin 
p<='1' when b='1' and a='0' else '0'; 
v<='1' when a='1' or b='1' else '0'; 
end equations; 
 
 
LOD4 
entity lod4 is 
port ( 
a, b, v0, v1: in std_logic; 
p: out std_logic_vector(0 to 1); 
v: out std_logic); 
end entity; 
 
architecture equations of lod4 is 
begin 
p(0)<= not v0; 
p(1)<= a when v0='1' else b; 
v<=v0 or v1; 
end equations; 
 
LOD8 
entity lod8 is 
port ( 
a, b: in std_logic_vector(0 to 1);  
v0, v1: in std_logic; 
p: out std_logic_vector(0 to 2); 
v: out std_logic); 
end entity; 
 
architecture equations of lod8 is 
begin 
p(0)<= not v0; 
p(1 to 2)<= a when v0='1' else b; 
 
v<=v0 or v1; 
end equations; 
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LOD16 
entity lod16 is 
port ( 
a, b: in std_logic_vector(0 to 2);  
v0, v1: in std_logic; 
p: out std_logic_vector(0 to 3); 
v: out std_logic); 
end entity; 
 
architecture equations of lod16 is 
begin 
p(0)<= not v0; 
p(1 to 3)<= a when v0='1' else b; 
 
v<=v0 or v1; 
end equations; 
 
 
LOD32 
entity lod32 is 
port ( 
a, b: in std_logic_vector(0 to 3);  
v0, v1: in std_logic; 
p: out std_logic_vector(0 to 4); 
v: out std_logic); 
end entity; 
 
architecture equations of lod32 is 
begin 
p(0)<= not v0; 
p(1 to 4)<= a when v0='1' else b; 
 
v<=v0 or v1; 
end equations; 
 
 
Left Right Shift One 
entity lrsft1 is 
port (  
i: in  std_logic_vector (0 to 27 );--input    
lsft, rsft: in std_logic; 
o: out std_logic_vector (0 to 25)); 
end lrsft1; 
 
architecture structure of lrsft1 is 
begin 
o<=i(0 to 24) & or_reduce(i(25 to 27)) when rsft='1' else  
i(2 to 27) when (lsft='1' and rsft='0') else --lft shift 
i(1 to 25) & or_reduce(i(26 to 27)); 
end structure; 
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Left Shift Shifter 
entity bshifter_lft is 
port (  
i: in  std_logic_vector (0 to 26 );--input    
sft_amt: in  std_logic_vector (0 to 7 );--shift amount 
o: out std_logic_vector (0 to 26));--shift answer, g r and s bits 
end bshifter_lft; 
architecture structure of bshifter_lft is 
begin 
process(i, sft_amt) 
begin 
case sft_amt is  
when x"00" => o<=i(0 to 26); 
when x"01" => o<=i(1 to 26) &'0'; 
when x"02" => o<=i(2 to 26) & "00"; 
when x"03" => o<=i(3 to 26) & "000"; 
when x"04" => o<=i(4 to 26) & "0000"; 
when x"05" => o<=i(5 to 26) & "00000"; 
when x"06" => o<=i(6 to 26) & "000000"; 
when x"07" => o<=i(7 to 26) & "0000000"; 
when x"08" => o<=i(8 to 26) & "00000000"; 
when x"09" => o<=i(9 to 26) & "000000000";  
when x"0a" => o<=i(10 to 26) & "0000000000";  
when x"0b" => o<=i(11 to 26) & "00000000000";  
when x"0c" => o<=i(12 to 26) & "000000000000";  
when x"0d" => o<=i(13 to 26) & "0000000000000";  
when x"0e" => o<=i(14 to 26) & "00000000000000";  
when x"0f" => o<=i(15 to 26) & "000000000000000";  
when x"10" => o<=i(16 to 26) & "0000000000000000";  
when x"11" => o<=i(17 to 26) & "00000000000000000";  
when x"12" => o<=i(18 to 26) & "000000000000000000";  
when x"13" => o<=i(19 to 26) & "0000000000000000000"; 
when x"14" => o<=i(20 to 26) & "00000000000000000000"; 
when x"15" => o<=i(21 to 26) & "000000000000000000000";  
when x"16" => o<=i(22 to 26) & "0000000000000000000000";  
when x"17" => o<=i(23 to 26) & "00000000000000000000000";  
when x"18" => o<=i(24 to 26) & "000000000000000000000000";  
when x"19" => o<=i(25 to 26) & "0000000000000000000000000";  
when x"1a" => o<=i(26) &       "00000000000000000000000000"; 
when others => o<="000000000000000000000000000"; 
end case; 
end process; 
end structure; 
 
16 bit Carry Look Ahead Adder 
entity cla is 
port( 
a, b: in std_logic_vector(15 downto 0);  
ci: in  std_logic; 
co: out std_logic; 
s: out std_logic_vector(15 downto 0)); 
end cla; 
 
architecture equations of cla is 
component fourbitcla 
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port( 
a:  in std_logic_vector (3 downto 0); 
b:  in std_logic_vector (3 downto 0); 
ci: in std_logic ; 
gg: out std_logic; 
pp: out std_logic; 
s:  out std_logic_vector (3 downto 0));   
end component; 
  
signal gg , pp: std_logic_vector(3 downto 0); 
signal c: std_logic_vector(2 downto 0); 
 
begin 
c(0)<= gg(0) or (pp(0) and ci); 
c(1)<= gg(1) or (pp(1) and gg(0)) or (pp(1) and pp(0) and ci); 
c(2)<=gg(2) or (pp(2) and gg(1)) or (pp(2) and pp(1) and pp(0) and ci); 
co<=gg(3) or (pp(3) and gg(2)) or (pp(3) and pp(2) and gg(1)) or (pp(3) and pp(2) and pp(1) and gg(0)) or  
 (pp(3) and pp(2) and pp(1) and pp(0) and ci); 
 
CLA_4_0: fourbitcla port map(a(3 downto 0), b(3 downto 0), ci, gg(0), pp(0), s(3 downto 0)); 
CLA_4_1: fourbitcla port map(a(7 downto 4), b(7 downto 4), c(0), gg(1), pp(1), s(7 downto 4)); 
CLA_4_2: fourbitcla port map(a(11 downto 8), b(11 downto 8), c(1), gg(2), pp(2), s(11 downto 8)); 
CLA_4_3: fourbitcla port map(a(15 downto 12), b(15 downto 12), c(2),gg(3), pp(3), s(15 downto 12)); 
end equations; 
 
Four bit Carry Look Ahead Adder 
entity fourbitcla is 
port( 
a:  in std_logic_vector (3 downto 0); 
b:  in std_logic_vector (3 downto 0); 
ci: in std_logic ; 
gg: out std_logic; 
pp: out std_logic; 
s:  out std_logic_vector (3 downto 0));  
end fourbitcla; 
 
architecture equations of fourbitcla is 
signal g, p, c: std_logic_vector(3 downto 0); 
  
begin 
G(0) <= A(0) and B(0); --generate terms 
G(1) <= A(1) and B(1); 
G(2) <= A(2) and B(2); 
G(3) <= A(3) and B(3); 
  
P(0) <= A(0) or B(0); --propogate terms 
P(1) <= A(1) or B(1); 
P(2) <= A(2) or B(2); 
P(3) <= A(3) or B(3); 
      
-- Ci+1 = Gi + Pi.Ci 
C(0) <= Ci; 
C(1) <= G(0) or (P(0) and C(0)); 
C(2) <= G(1) or (P(1) and G(0)) or (P(1) and P(0) and C(0)); 
C(3) <= G(2) or (P(2) and G(1)) or (P(2) and P(1) and G(0)) or (P(2) and P(1) and P(0) and C(0));  
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S(0) <= A(0) xor B(0) xor C(0); 
S(1) <= A(1) xor B(1) xor C(1); 
S(2) <= A(2) xor B(2) xor C(2); 
S(3) <= A(3) xor B(3) xor C(3); 
 
GG<=G(3) or (G(2) and P(3)) or (G(1) and P(2) and P(3)) or (G(0) and P(1) and P(2) and P(3)); 
PP<=P(0) and P(1) and P(2) and P(3); 
end equations; 
 
16 bit Carry Save Adder 
entity csa16 is 
port( 
a, b: in std_logic_vector (15 downto 0); 
ci:in std_logic ; 
co: out std_logic; 
s: out std_logic_vector (15 downto 0));  
end csa16; 
 
architecture behave of csa16 is 
signal cout: std_logic; 
 
component csa is 
port( 
a, b:   in std_logic_vector (7 downto 0); 
ci:  in std_logic ; 
co:  out std_logic; 
s:   out std_logic_vector (7 downto 0));  
end component; 
 
begin 
csa0: csa port map (a(7 downto 0), b(7 downto 0), ci, cout, s(7 downto 0)); 
csa1: csa port map (a(15 downto 8), b(15 downto 8), cout, co, s(15 downto 8)); 
end behave; 
 
 
8 bit Carry Save Adder 
entity csa is 
port( 
a, b:   in std_logic_vector (7 downto 0); 
ci:  in std_logic ; 
co:  out std_logic; 
s:   out std_logic_vector (7 downto 0));  
end csa; 
 
architecture equations of csa is 
signal c1, c2, c3: std_logic; 
signal s0_1, c0_1, s1_1, c1_1, s0_2: std_logic_vector(7 downto 0); 
signal c0_2: std_logic_vector(3 downto 0); 
signal s1_2: std_logic_vector(7 downto 0); 
signal c1_2: std_logic_vector(3 downto 0); 
signal s0_3: std_logic_vector(7 downto 0); 
signal c0_3: std_logic_vector(1 downto 0); 
signal s1_3: std_logic_vector(7 downto 0); 
signal c1_3: std_logic_vector(1 downto 0); 
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component cc is 
port( 
a, b:   in std_logic; 
s_0, co_0, s_1, co_1: out std_logic);  
end component; 
 
begin 
cc0: cc port map(a(0), b(0), s0_1(0), c0_1(0), s1_1(0), c1_1(0)); 
cc1: cc port map(a(1), b(1), s0_1(1), c0_1(1), s1_1(1), c1_1(1)); 
cc2: cc port map(a(2), b(2), s0_1(2), c0_1(2), s1_1(2), c1_1(2)); 
cc3: cc port map(a(3), b(3), s0_1(3), c0_1(3), s1_1(3), c1_1(3)); 
cc4: cc port map(a(4), b(4), s0_1(4), c0_1(4), s1_1(4), c1_1(4)); 
cc5: cc port map(a(5), b(5), s0_1(5), c0_1(5), s1_1(5), c1_1(5)); 
cc6: cc port map(a(6), b(6), s0_1(6), c0_1(6), s1_1(6), c1_1(6)); 
cc7: cc port map(a(7), b(7), s0_1(7), c0_1(7), s1_1(7), c1_1(7)); 
 
s0_2(0)<=s0_1(0); 
s0_2(1)<=s0_1(1) when c0_1(0)='0' else s1_1(1); 
c0_2(0)<=c0_1(1) when c0_1(0)='0' else c1_1(1); 
 
s0_2(2)<=s0_1(2); 
s0_2(3)<=s0_1(3) when c0_1(2)='0' else s1_1(3); 
c0_2(1)<=c0_1(3) when c0_1(2)='0' else c1_1(3); 
 
s0_2(4)<=s0_1(4); 
s0_2(5)<=s0_1(5) when c0_1(4)='0' else s1_1(5); 
c0_2(2)<=c0_1(5) when c0_1(4)='0' else c1_1(5); 
 
s0_2(6)<=s0_1(6); 
s0_2(7)<=s0_1(7) when c0_1(6)='0' else s1_1(7); 
c0_2(3)<=c0_1(7) when c0_1(6)='0' else c1_1(7); 
 
s1_2(0)<=s1_1(0); 
s1_2(1)<=s1_1(1) when c1_1(0)='1' else s0_1(1); 
c1_2(0)<=c1_1(1) when c1_1(0)='1' else c0_1(1); 
 
s1_2(2)<=s1_1(2); 
s1_2(3)<=s1_1(3) when c1_1(2)='1' else s0_1(3); 
c1_2(1)<=c1_1(3) when c1_1(2)='1' else c0_1(3); 
 
s1_2(4)<=s1_1(4); 
s1_2(5)<=s1_1(5) when c1_1(4)='1' else s0_1(5); 
c1_2(2)<=c1_1(5) when c1_1(4)='1' else c0_1(5); 
 
s1_2(6)<=s1_1(6); 
s1_2(7)<=s1_1(7) when c1_1(6)='1' else s0_1(7); 
c1_2(3)<=c1_1(7) when c1_1(6)='1' else c0_1(7); 
 
s0_3(1 downto 0)<= s0_2(1 downto 0); 
s0_3(3 downto 2)<= s0_2(3 downto 2) when c0_2(0)='0' else s1_2(3 downto 2); 
s0_3(5 downto 4)<= s0_2(5 downto 4) when c0_2(1)='0' else s1_2(5 downto 4); 
s0_3(7 downto 6)<= s0_2(7 downto 6) when c0_2(2)='0' else s1_2(7 downto 6); 
 
c0_3(0)<=c0_2(1) when c0_2(0)='0' else c1_2(1); 
c0_3(1)<=c0_2(3) when c0_2(2)='0' else c1_2(3); 
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s1_3(1 downto 0)<= s1_2(1 downto 0); 
s1_3(3 downto 2)<= s1_2(3 downto 2) when c1_2(0)='1' else s0_2(3 downto 2); 
s1_3(5 downto 4)<= s1_2(5 downto 4) when c1_2(1)='1' else s0_2(5 downto 4); 
s1_3(7 downto 6)<= s1_2(7 downto 6) when c1_2(2)='1' else s0_2(7 downto 6); 
 
c1_3(0)<=c1_2(1) when c1_2(0)='1' else c0_2(1); 
c1_3(1)<=c1_2(3) when c1_2(2)='1' else c0_2(3); 
 
s(0)<=s0_1(0) when ci='0' else s1_1(0); 
c1  <=c0_1(0) when ci='0' else c1_1(0); 
 
s(1)<=s0_2(1) when c1='0' else s1_2(1); 
c2  <=c0_2(0) when c1='0' else c1_2(0); 
 
s(3 downto 2)<=s0_3(3 downto 2) when c2='0' else s1_3(3 downto 2); 
c3 <=c0_2(1) when c2='0' else c1_2(1); 
s(7 downto 4)<= s0_3(7 downto 4) when c3='0' else s1_3(7 downto 4); 
 
co<=c0_3(1) when c3='0' else c1_3(1); 
end equations; 
 
Carry Chain  
entity cc is 
port( 
a, b:   in std_logic; 
s_0, co_0, s_1, co_1: out std_logic);  
end cc; 
 
architecture equations of cc is 
begin 
co_0<= a and b; 
s_0<=  ((not a) and b) or (a and (not b)); 
co_1<= a or b; 
s_1<=  ((not a) and (not b)) or  (a and b) ; 
end equations; 
 
16 bit Ripple Carry Adder 
entity rca is 
port( 
a, b:   in std_logic_vector (15 downto 0); 
ci: in std_logic ; 
co: out std_logic; 
s:   out std_logic_vector (15 downto 0));  
end rca; 
 
architecture equations of rca is 
 
component fa is 
port( 
a, b, ci: in std_logic; 
co: out std_logic; 
s:   out std_logic);  
end component; 
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signal c: std_logic_vector (14 downto 0); 
begin 
 
fa1: fa port map(a(0), b(0), ci, c(0), s(0)); 
fa2: fa port map(a(1), b(1), c(0), c(1), s(1)); 
fa3: fa port map(a(2), b(2), c(1), c(2), s(2)); 
fa4: fa port map(a(3), b(3), c(2), c(3), s(3)); 
fa5: fa port map(a(4), b(4), c(3), c(4), s(4)); 
fa6: fa port map(a(5), b(5), c(4), c(5), s(5)); 
fa7: fa port map(a(6), b(6), c(5), c(6), s(6)); 
fa8: fa port map(a(7), b(7), c(6), c(7), s(7)); 
fa9: fa port map(a(8), b(8), c(7), c(8), s(8)); 
fa10: fa port map(a(9), b(9), c(8), c(9), s(9)); 
fa11: fa port map(a(10), b(10), c(9), c(10), s(10)); 
fa12: fa port map(a(11), b(11), c(10), c(11), s(11)); 
fa13: fa port map(a(12), b(12), c(11), c(12), s(12)); 
fa14: fa port map(a(13), b(13), c(12), c(13), s(13)); 
fa15: fa port map(a(14), b(14), c(13), c(14), s(14)); 
fa16: fa port map(a(15), b(15), c(14), co, s(15)); 
end equation; 
 
Full Adder 
entity fa is 
port( 
a, b, ci: in std_logic; 
co: out std_logic; 
s:   out std_logic);  
end fa; 
 
architecture equations of fa is 
begin 
co<= (a and b) or (ci and (a or b)); 
s<= a xor b xor ci; 
end equations; 
 
16 Bit VHDL Adder 
entity addervhdl is 
port( 
a, b:   in std_logic_vector (15 downto 0); 
ci: in std_logic ; 
co: out std_logic; 
s:   out std_logic_vector (15 downto 0));  
end addervhdl; 
 
architecture equations of addervhdl is 
signal o: std_logic_vector(16 downto 0); 
begin 
o<=('0'& a) + ('0' & b) + ("0000000000000000" & ci); 
s<=o(15 downto 0); 
co<=o(16);  
end equations; 
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Align Left Shifter 
entity align_sft is 
port ( fracb_c : in  std_logic_vector (0 to 23 );--input    
d : in  std_logic_vector (0 to 4 );--shift amount 
sft_ans: inout std_logic_vector (0 to 26 ));--shift answer, g r and s bits 
end align_sft; 
 
architecture structural of align_sft is 
signal sticky : Std_Logic ; -- sticky bit 
signal p0, p1, p2, p3, p4, p5 : Std_Logic_Vector (0 to 25) ; -- internal signals 
 
begin 
p0 <= fracb_c & "00" ; -- guard and round bits 
p1<=p0 when d(4)='0' else '0' & p0(0 to 24); 
p2<=p1 when d(3)='0' else "00" & p1(0 to 23); 
p3<=p2 when d(2)='0' else "0000" & p2(0 to 21); 
p4<=p3 when d(1)='0' else "00000000" & p3(0 to 17); 
p5<=p4 when d(0)='0' else "0000000000000000" & p4(0 to 9); 
 
sticky <= ((p5(10) or p5(11) or p5(12) or p5(13) or p5(14) or p5(15) or p5(16) or p5(17) or 
p5(18) or p5(19) or p5(20) or p5(21) or p5(22) or p5(23) or p5(24) or p5(25)) and d(0)) or 
 ((p4(18) or p4(19) or p4(20) or p4(21) or p4(22) or p4(23) or p4(24) or p4(25)) and d(1)) or 
 ((p3(22) or p3(23) or p3(24) or p3(25)) and d(2)) or 
((p2(24) or p2(25)) and d(1)) or  
(p1(25) and d(0)) ; 
sft_ans <= p5 & sticky ; 
end structural ; 
 
 
LOD Behavioral Model 
entity lod_test is 
port ( 
sum: in std_logic_vector(0 to 23); 
zero_ld: out std_logic_vector(0 to 4)); 
end lod_test; 
 
architecture equations of lod_test is  
begin    
process (sum) 
begin  
IF sum(0) =  '1' THEN zero_ld <=  conv_std_logic_vector(0,5); 
ELSIF sum(0 TO 1) = "01" THEN zero_ld <=  conv_std_logic_vector(1,5); 
ELSIF sum(0 TO 2) = "001" THEN zero_ld <=  conv_std_logic_vector(2,5); 
ELSIF sum(0 TO 3) = "0001" THEN zero_ld <=  conv_std_logic_vector(3,5); 
ELSIF sum(0 TO 4) = "00001" THEN zero_ld <=  conv_std_logic_vector(4,5); 
ELSIF sum(0 TO 5) = "000001" THEN zero_ld <=  conv_std_logic_vector(5,5); 
ELSIF sum(0 TO 6) = "0000001" THEN zero_ld <=  conv_std_logic_vector(6,5); 
ELSIF sum(0 TO 7) = "00000001" THEN zero_ld <=  conv_std_logic_vector(7,5); 
ELSIF sum(0 TO 8) = "000000001" THEN zero_ld <=  conv_std_logic_vector(8,5); 
ELSIF sum(0 TO 9) = "0000000001" THEN zero_ld <=  conv_std_logic_vector(9,5); 
ELSIF sum(0 TO 10) = "00000000001" THEN zero_ld <=  conv_std_logic_vector(10,5); 
ELSIF sum(0 TO 11) = "000000000001" THEN zero_ld <=  conv_std_logic_vector(11,5); 
ELSIF sum(0 TO 12) = "0000000000001" THEN zero_ld <=  conv_std_logic_vector(12,5); 
ELSIF sum(0 TO 13) = "00000000000001" THEN zero_ld <=  conv_std_logic_vector(13,5); 
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ELSIF sum(0 TO 14) = "000000000000001" THEN zero_ld <=  conv_std_logic_vector(14,5); 
ELSIF sum(0 TO 15) = "0000000000000001" THEN zero_ld <=  conv_std_logic_vector(15,5); 
ELSIF sum(0 TO 16) = "00000000000000001" THEN zero_ld <=  conv_std_logic_vector(16,5); 
ELSIF sum(0 TO 17) = "000000000000000001" THEN zero_ld <=  conv_std_logic_vector(17,5); 
ELSIF sum(0 TO 18)  = "0000000000000000001" THEN zero_ld <=  conv_std_logic_vector(18,5); 
ELSIF sum(0 TO 19)  = "00000000000000000001" THEN zero_ld <=  conv_std_logic_vector(19,5); 
ELSIF sum(0 TO 20)  = "000000000000000000001" THEN zero_ld <=  conv_std_logic_vector(20,5); 
ELSIF sum(0 TO 21)  = "0000000000000000000001" THEN zero_ld <=  conv_std_logic_vector(21,5); 
ELSIF sum(0 TO 22)  = "00000000000000000000001" THEN zero_ld <=  conv_std_logic_vector(21,5); 
ELSIF sum(0 TO 23)  = "000000000000000000000001" THEN zero_ld <=  conv_std_logic_vector(22,5); 
ELSE zero_ld <= (OTHERS => 'X'); 
END IF; 
end process; 
end equations; 
 
 
LOP Algorithm 
entity fpad is 
port( 
clk: in std_logic;  
opa: in std_logic_vector (0 to 31);--input operators  
opb: in std_logic_vector (0 to 31);  
add: out std_logic_vector(0 to 31); 
underflow: out std_logic; 
overflow: out std_logic); 
end fpad ; 
 
architecture arch of fpad is 
signal opa_r, opb_r: std_logic_vector(0 to 31); 
signal signa, signb: std_logic; 
signal expa, expb: std_logic_vector(0 to 7); 
signal fraca, fracb: std_logic_vector(0 to 23); 
signal a_exp_zero, b_exp_zero: std_logic; 
signal a_exp_ones, b_exp_ones: std_logic; 
signal a_frac_zero, b_frac_zero: std_logic; 
signal denorm_a, denorm_b: std_logic; 
signal a_zero, b_zero: std_logic; 
signal a_inf, b_inf: std_logic; 
signal signd: std_logic; 
signal swap: std_logic; 
signal signx: std_logic; 
signal expx: std_logic_vector(0 to 7); 
signal fracx, fracy: std_logic_vector(0 to 23); 
signal rsft_amt: std_logic_vector(0 to 7); 
signal modeslct: std_logic; 
signal fracy_in_sft, align_fracy: std_logic_vector(0 to 26); 
signal sub:std_logic; 
signal a, b, sum_adder: std_logic_vector(0 to 26); 
signal cout_adder, neg_sum: std_logic; 
signal lzc_correct_bit: std_logic; 
signal lzc_out, lzc_correct, lzc: std_logic_vector(0 to 4); 
signal lsft_amt: std_logic_vector(0 to 7); 
signal rsft1: std_logic; 
signal lrsft1_in: std_logic_vector(0 to 27); 
signal lrsft1_out: std_logic_vector(0 to 25); 
signal lsft_in: std_logic_vector(0 to 26); 
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signal norm_sft_out: std_logic_vector(0 to 26); 
signal norm: std_logic_vector(0 to 25); 
signal norm_out: std_logic_vector(0 to 23); 
signal r, s, round: std_logic; 
signal round_out: std_logic_vector(0 to 24); 
signal round_cout: std_logic; 
signal mantissa: std_logic_vector(0 to 23); 
signal exponent: std_logic_vector(0 to 7); 
signal sign, uf, ovf: std_logic; 
 
component exp_diff 
port ( 
exp_a, exp_b: in std_logic_vector(0 to 7); 
d: out std_logic_vector(0 to 7); 
sign_d: out std_logic); 
end component; 
 
component bshifter_rt is 
port (  
i: in  std_logic_vector (0 to 26 ); 
sftamt: in  std_logic_vector (0 to 4); 
o: out std_logic_vector (0 to 26)); 
end component; 
 
component adder is 
port( 
a, b: in std_logic_vector(0 to 26); 
sub:in std_logic; 
sum: out std_logic_vector(0 to 26); 
cout: out std_logic); 
end component; 
 
component lrsft1 is 
port (  
i: in  std_logic_vector (0 to 27 );  
lsft, rsft: in std_logic; 
o: out std_logic_vector (0 to 25)); 
end component; 
 
component bshifter_lft is 
port (  
i: in  std_logic_vector (0 to 26 );--input    
sft_amt: in  std_logic_vector (0 to 7 );--shift amount 
o: out std_logic_vector (0 to 26));--shift answer, g r and s bits 
end component; 
 
component lop is 
port ( 
a, b: in std_logic_vector(0 to 23); 
d: out std_logic_vector(0 to 4);--output 
y: out std_logic);--correction 
end component; 
 
begin  
process (clk) 
begin 
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if clk='1' and clk'event then 
opa_r<=opa; 
opb_r<=opb; 
end if; 
end process; 
 
a_exp_zero<=not (or_reduce(opa_r(1 to 8))); 
b_exp_zero<=not (or_reduce(opb_r(1 to 8))); 
a_exp_ones<=and_reduce(opa_r(1 to 8)); 
b_exp_ones<=and_reduce(opb_r(1 to 8)); 
a_frac_zero<=not (or_reduce(opa_r(9 to 31))); 
b_frac_zero<=not (or_reduce(opb_r(9 to 31))); 
denorm_a<= a_exp_zero and (not a_frac_zero); 
denorm_b<= b_exp_zero and (not b_frac_zero); 
a_zero<=a_exp_zero and a_frac_zero; 
b_zero<=b_exp_zero and b_frac_zero; 
a_inf<=a_exp_ones and a_frac_zero; 
b_inf<=b_exp_ones and b_frac_zero; 
signa<= opa_r(0); 
expa<= opa_r(1 to 8) when denorm_a='0' else x"01"; 
fraca<=('0' & opa_r(9 to 31)) when (denorm_a='1' or a_zero='1') else ('1' & opa_r(9 to 31)); 
signb<= opb_r(0); 
expb<= opb_r(1 to 8) when denorm_b='0' else x"01"; 
fracb<=('0' & opb_r(9 to 31)) when (denorm_b='1' or b_zero='1') else ('1' & opb_r(9 to 31)); 
exp_diff1: exp_diff port map(expa, expb, rsft_amt, signd);--exponent difference 
swap<=signd; 
 
expx<=expa when swap='0' else expb; 
fracx<=fraca when swap='0' else fracb; 
fracy<=fracb when swap='0' else fraca; 
modeslct<=or_reduce(rsft_amt(0 to 6));--0 when ex-ey<=1, 1 otherwise 
fracy_in_sft<=fracy & "000"; 
bshfiter_rt1: bshifter_rt port map (fracy_in_sft, rsft_amt(3 to 7), align_fracy); 
a<=fracx & "000"; 
b<=align_fracy(0 to 26); 
sub<= signa xor signb;--0 for addition, 1 for subtraction 
adder1: adder port map(a, b, sub, sum_adder, cout_adder); 
neg_sum<=cout_adder and sub; 
lop1: lop port map(a(0 to 23), b(0 to 23), lzc_out, lzc_correct_bit); 
lzc_correct<=(lzc_out + "00001") when lzc_correct_bit='1' else lzc_out; 
lzc<="00000" when sub='0' else lzc_correct; 
lsft_amt<=("000" & lzc); 
rsft1<= cout_adder and (not sub);--right shift by 1 if carry_out from the addition 
lrsft1_in<=(not (cout_adder & sum_adder) + "000000000000000000000000001") when neg_sum='1' else 
(cout_adder & sum_adder); 
lsft_in<=lrsft1_in(1 to 27); 
--if modeslct=1 ex-ey>1 normalization shifter consist of maximmim 1 left shift 
--if modeslct=0 ex-ey<=1 an there was a carry_out normalization shifter consist of 1 right shift 
lrsft1_1: lrsft1 port map(lrsft1_in, lsft_amt(7), rsft1, lrsft1_out); 
bshifter_lft1: bshifter_lft port map(lsft_in, lsft_amt, norm_sft_out); 
norm<=lrsft1_out(0 to 25) when (modeslct or rsft1)='1' else (norm_sft_out(0 to 24) & 
or_reduce(norm_sft_out(25 to 26))); 
norm_out<=norm(0 to 23); 
r<=norm(24); 
s<=norm(25); 
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round<=(r and s) or (r and norm_out(23)); 
round_out<=(('0' & norm_out) + "0000000000000000000000001") when round='1' else ('0' & norm_out); 
round_cout<=round_out(0); 
mantissa<=(round_cout & round_out(1 to 23)) when round_cout='1' else round_out(1 to 24); 
exponent<=(expx + x"01") when (rsft1 or round_cout)='1' else (expx - lsft_amt); 
uf<='1' when exponent=x"01" and mantissa(0)='0' else '0'; 
ovf<='1' when exponent=x"FF" or a_inf='1' or b_inf='1' else '0'; 
signx<=signb when swap='1' or neg_sum='1' else signa; 
sign<=signx; 
 
process (clk) 
begin 
if clk='1' and clk'event then 
add<=sign & exponent & mantissa(1 to 23); 
underflow<=uf; 
overflow<=ovf; 
end if; 
end process; 
end arch; 
 
5 Stages Pipeline LOP Algorithm 
 
entity fpad_p is 
port(  
clk: in std_logic; 
opa: in std_logic_vector (0 to 31);--input operators  
opb: in std_logic_vector (0 to 31);  
add: out std_logic_vector(0 to 31); 
underflow: out std_logic; 
overflow: out std_logic); 
end fpad_p ; 
 
architecture arch of fpad_p is 
 
signal opa_r, opb_r: std_logic_vector(0 to 31); 
signal signa_r, signb_r, swap_r, a_inf_r, b_inf_r: std_logic; 
signal expx_r: std_logic_vector(0 to 7); 
signal fracy_in_sft_r: std_logic_vector(0 to 26); 
signal rsft_amt_r: std_logic_vector(0 to 7); 
signal fracx_r: std_logic_vector(0 to 23); 
signal signa_r_r, signb_r_r, modeslct_r, swap_r_r, sub_r, a_inf_r_r, b_inf_r_r: std_logic; 
signal a_r, b_r: std_logic_vector(0 to 26); 
signal expx_r_r: std_logic_vector(0 to 7); 
signal lrsft1_in_r: std_logic_vector(0 to 27); 
signal lsft_amt_r: std_logic_vector(0 to 7); 
signal rsft1_r, sign_r, modeslct_r_r, a_inf_r_r_r, b_inf_r_r_r: std_logic; 
signal expx_r_r_r: std_logic_vector(0 to 7); 
signal round_r: std_logic; 
signal norm_out_r: std_logic_vector(0 to 23); 
signal lsft_amt_r_r: std_logic_vector(0 to 7); 
signal rsft1_r_r, sign_r_r, a_inf_r_r_r_r, b_inf_r_r_r_r: std_logic; 
signal expx_r_r_r_r: std_logic_vector(0 to 7); 
 
signal signa, signb: std_logic; 
signal expa, expb: std_logic_vector(0 to 7); 
signal fraca, fracb: std_logic_vector(0 to 23); 
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signal a_exp_zero, b_exp_zero: std_logic; 
signal a_exp_ones, b_exp_ones: std_logic; 
signal a_frac_zero, b_frac_zero: std_logic; 
signal denorm_a, denorm_b: std_logic; 
signal a_zero, b_zero: std_logic; 
signal a_inf, b_inf: std_logic; 
signal signd: std_logic; 
signal swap: std_logic; 
signal expx: std_logic_vector(0 to 7); 
signal fracx, fracy: std_logic_vector(0 to 23); 
signal rsft_amt: std_logic_vector(0 to 7); 
signal modeslct: std_logic; 
signal fracy_in_sft, align_fracy: std_logic_vector(0 to 26); 
signal a, b: std_logic_vector(0 to 26); 
signal sub:std_logic; 
signal sum_adder: std_logic_vector(0 to 26); 
signal cout_adder, neg_sum: std_logic; 
signal lzc_correct_bit: std_logic; 
signal lzc_out, lzc_correct, lzc: std_logic_vector(0 to 4); 
signal lsft_amt: std_logic_vector(0 to 7); 
signal rsft1: std_logic; 
signal lrsft1_in: std_logic_vector(0 to 27); 
signal signx: std_logic; 
signal sign: std_logic; 
signal lrsft1_out: std_logic_vector(0 to 25); 
signal norm_sft_out: std_logic_vector(0 to 26); 
signal norm: std_logic_vector(0 to 25); 
signal norm_out: std_logic_vector(0 to 23); 
signal r, s, round: std_logic; 
signal round_out: std_logic_vector(0 to 24); 
signal round_cout: std_logic; 
signal mantissa: std_logic_vector(0 to 23); 
signal exponent: std_logic_vector(0 to 7); 
signal uf, ovf: std_logic; 
 
component exp_diff 
port ( 
exp_a, exp_b: in std_logic_vector(0 to 7); 
d: out std_logic_vector(0 to 7); 
sign_d: out std_logic); 
end component; 
 
component bshifter_rt is 
port (  
i: in  std_logic_vector (0 to 26 ); 
sftamt: in  std_logic_vector (0 to 4); 
o: out std_logic_vector (0 to 26)); 
end component; 
 
component adder is 
port( 
a, b: in std_logic_vector(0 to 26); 
sub:in std_logic; 
sum: out std_logic_vector(0 to 26); 
cout: out std_logic); 
end component; 
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component lrsft1 is 
port (  
i: in  std_logic_vector (0 to 27 );  
lsft, rsft: in std_logic; 
o: out std_logic_vector (0 to 25)); 
end component; 
 
component bshifter_lft is 
port (  
i: in  std_logic_vector (0 to 26 );--input    
sft_amt: in  std_logic_vector (0 to 7 );--shift amount 
o: out std_logic_vector (0 to 26));--shift answer, g r and s bits 
end component; 
 
component lop is 
port ( 
a, b: in std_logic_vector(0 to 23); 
d: out std_logic_vector(0 to 4);--output 
y: out std_logic);--correction 
end component; 
 
begin  
process (clk) 
begin 
if clk='1' and clk'event then 
opa_r<=opa; 
opb_r<=opb; 
end if; 
end process; 
 
a_exp_zero<=not (or_reduce(opa_r(1 to 8))); 
b_exp_zero<=not (or_reduce(opb_r(1 to 8))); 
a_exp_ones<=and_reduce(opa_r(1 to 8)); 
b_exp_ones<=and_reduce(opb_r(1 to 8)); 
a_frac_zero<=not (or_reduce(opa_r(9 to 31))); 
b_frac_zero<=not (or_reduce(opb_r(9 to 31))); 
denorm_a<= a_exp_zero and (not a_frac_zero); 
denorm_b<= b_exp_zero and (not b_frac_zero); 
a_zero<=a_exp_zero and a_frac_zero; 
b_zero<=b_exp_zero and b_frac_zero; 
a_inf<=a_exp_ones and a_frac_zero; 
b_inf<=b_exp_ones and b_frac_zero; 
 
 
signa<= opa_r(0); 
expa<= opa_r(1 to 8) when denorm_a='0' else x"01" when denorm_a='1';--if denormalized set exp to x"01" 
fraca<=('0' & opa_r(9 to 31)) when (denorm_a='1' or a_zero='1') else ('1' & opa_r(9 to 31)); 
signb<= opb_r(0); 
expb<= opb_r(1 to 8) when denorm_b='0' else x"01" when denorm_b='1'; 
fracb<=('0' & opb_r(9 to 31)) when (denorm_b='1' or b_zero='1') else ('1' & opb_r(9 to 31)); 
exp_diff1: exp_diff port map(expa, expb, rsft_amt, signd); 
swap<=signd; 
expx<=expa when swap='0' else expb; 
fracx<=fraca when swap='0' else fracb; 
fracy<=fracb when swap='0' else fraca; 
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fracy_in_sft<=fracy & "000"; 
 
process(clk) 
begin 
if clk='1' and clk'event then 
signa_r<=signa; 
signb_r<=signb; 
modeslct_r<=modeslct; 
swap_r<=swap; 
expx_r<=expx; 
a_inf_r<=a_inf; 
b_inf_r<=b_inf; 
fracy_in_sft_r<=fracy_in_sft; 
rsft_amt_r<=rsft_amt; 
fracx_r<=fracx; 
end if; 
end process; 
 
bshfiter_rt1: bshifter_rt port map (fracy_in_sft_r, rsft_amt_r(3 to 7), align_fracy); 
a<=fracx_r & "000"; 
b<=align_fracy(0 to 26); 
sub<= signa_r xor signb_r; --0 for addition, 1 for subtraction 
modeslct<=or_reduce(rsft_amt_r(0 to 6));--0 when ex-ey<=1, 1 otherwise 
 
process(clk) 
begin 
if clk='1' and clk'event then 
signa_r_r<=signa_r; 
signb_r_r<=signb_r; 
a_r<=a; 
b_r<=b; 
sub_r<=sub; 
modeslct_r<=modeslct; 
swap_r_r<=swap_r; 
expx_r_r<=expx_r; 
a_inf_r_r<=a_inf_r; 
b_inf_r_r<=b_inf_r; 
end if; 
end process; 
 
adder1: adder port map(a_r, b_r, sub_r, sum_adder, cout_adder); 
neg_sum<=cout_adder and sub_r; 
lop1: lop port map(a_r(0 to 23), b_r(0 to 23), lzc_out, lzc_correct_bit); 
lzc_correct<=(lzc_out + "00001") when lzc_correct_bit='1' else lzc_out; 
lzc<="00000" when sub_r='0' else lzc_correct; 
lsft_amt<=("000" & lzc); 
lrsft1_in<=(not (cout_adder & sum_adder) + "000000000000000000000000001") when neg_sum='1' else 
(cout_adder & sum_adder); 
rsft1<= cout_adder and (not sub_r);--right shift by 1 if carry_out from the addition 
signx<=signb_r_r when swap_r_r='1' or neg_sum='1' else signa_r_r; 
sign<=signx; 
 
process(clk) 
begin 
if clk='1' and clk'event then 
lrsft1_in_r<=lrsft1_in; 
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lsft_amt_r<=lsft_amt; 
rsft1_r<=rsft1; 
sign_r<=sign; 
modeslct_r_r<=modeslct_r; 
expx_r_r_r<=expx_r_r; 
a_inf_r_r_r<=a_inf_r_r; 
b_inf_r_r_r<=b_inf_r_r; 
end if; 
end process; 
 
--if modeslct=1 ex-ey>1 normalization shifter consist of maximmim 1 left shift 
--if modeslct=0 ex-ey<=1 an there was a carry_out normalization shifter consist of 1 right shift 
lrsft1_1: lrsft1 port map(lrsft1_in_r, lsft_amt_r(7), rsft1_r, lrsft1_out); 
bshifter_lft1: bshifter_lft port map(lrsft1_in_r(1 to 27), lsft_amt_r, norm_sft_out); 
norm<=lrsft1_out(0 to 25) when (modeslct_r_r or rsft1_r)='1' else (norm_sft_out(0 to 24) & 
or_reduce(norm_sft_out(25 to 26))); 
norm_out<=norm(0 to 23); 
r<=norm(24); 
s<=norm(25); 
round<=(r and s) or (r and norm_out(23)); 
 
process(clk) 
begin 
if clk='1' and clk'event then 
round_r<=round; 
norm_out_r<=norm_out; 
lsft_amt_r_r<=lsft_amt_r; 
rsft1_r_r<=rsft1_r; 
sign_r_r<=sign_r; 
expx_r_r_r_r<=expx_r_r_r; 
a_inf_r_r_r_r<=a_inf_r_r_r; 
b_inf_r_r_r_r<=b_inf_r_r_r; 
end if; 
end process; 
 
round_out<=(('0' & norm_out_r) + "0000000000000000000000001") when round_r='1' else ('0' & 
norm_out_r); 
round_cout<=round_out(0); 
mantissa<=(round_cout & round_out(1 to 23)) when round_cout='1' else round_out(1 to 24); 
exponent<=(expx_r_r_r_r + x"01") when (rsft1_r_r or round_cout)='1' else (expx_r_r_r_r - lsft_amt_r_r); 
uf<='1' when exponent=x"01" and mantissa(0)='0' else '0'; 
ovf<='1' when exponent=x"FF" or a_inf_r_r_r_r='1' or b_inf_r_r_r_r='1' else '0'; 
 
process (clk) 
begin 
if clk='1' and clk'event then 
add<=sign_r_r & exponent & mantissa(1 to 23); 
underflow<=uf; 
overflow<=ovf; 
end if; 
end process; 
end arch; 
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Leading One Predictor 
entity lop is 
port ( 
a, b: in std_logic_vector(0 to 23); 
d: out std_logic_vector(0 to 4);--output 
y: out std_logic);--correction 
end lop; 
 
architecture equations of lop is 
component preencoder is 
port ( 
a: in std_logic_vector(0 to 23); 
b: in std_logic_vector(0 to 23); 
f, np, pp, zp, nn, pn, zn: inout std_logic_vector(0 to 23)); 
end component; 
 
component lod2 is 
port ( 
a: in std_logic; 
b: in std_logic; 
p: out std_logic; 
v: out std_logic); 
end component; 
 
component lod4 is 
port ( 
a, b, v0, v1: in std_logic; 
p: out std_logic_vector(0 to 1); 
v: out std_logic); 
end component; 
 
component lod8 is 
port ( 
a, b: in std_logic_vector(0 to 1);  
v0, v1: in std_logic; 
p: out std_logic_vector(0 to 2); 
v: out std_logic); 
end component; 
 
component lod16 is 
port ( 
a, b: in std_logic_vector(0 to 2);  
v0, v1: in std_logic; 
p: out std_logic_vector(0 to 3); 
v: out std_logic); 
end component; 
 
component lod32 is  
port ( 
a, b: in std_logic_vector(0 to 3);  
v0, v1: in std_logic; 
p: out std_logic_vector(0 to 4); 
v: out std_logic); 
end component; 
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component poss is 
port ( 
zl, pl, nl, yl, zr, pr, nr, yr: in std_logic; 
z, p, n, y: out std_logic); 
end component; 
 
component neg is 
port ( 
zl, pl, nl, yl, zr, pr, nr, yr: in std_logic; 
z, p, n, y: out std_logic); 
end component; 
 
signal f, np, pp, zp, yp, nn, pn, zn, yn: std_logic_vector(0 to 23); 
signal p1, v1, p2: std_logic_vector(0 to 11); 
signal v2: std_logic_vector(0 to 5); 
signal p3: std_logic_vector(0 to 8); 
signal v3: std_logic_vector(0 to 2); 
signal p4: std_logic_vector(0 to 7); 
signal v4: std_logic_vector(0 to 1); 
signal p5: std_logic_vector(0 to 4); 
signal v5: std_logic; 
signal zp1, pp1, np1, yp1: std_logic_vector(0 to 11); 
signal zp2, pp2, np2, yp2: std_logic_vector(0 to 5); 
signal zp3, pp3, np3, yp3: std_logic_vector(0 to 2); 
signal zp4, pp4, np4, yp4: std_logic_vector(0 to 1); 
signal zp5, pp5, np5, yp5: std_logic; 
signal zn1, pn1, nn1, yn1: std_logic_vector(0 to 11); 
signal zn2, pn2, nn2, yn2: std_logic_vector(0 to 5); 
signal zn3, pn3, nn3, yn3: std_logic_vector(0 to 2); 
signal zn4, pn4, nn4, yn4: std_logic_vector(0 to 1); 
signal zn5, pn5, nn5, yn5: std_logic; 
 
begin  
yp<="000000000000000000000000"; 
yn<="000000000000000000000000"; 
pre_encoder: preencoder port map(a, b, f, np, pp, zp, nn, pn, zn); 
 
lod2_0: lod2 port map(f(0), f(1), p1(0), v1(0)); 
lod2_1: lod2 port map(f(2), f(3), p1(1), v1(1)); 
lod2_2: lod2 port map(f(4), f(5), p1(2), v1(2)); 
lod2_3: lod2 port map(f(6), f(7), p1(3), v1(3)); 
lod2_4: lod2 port map(f(8), f(9), p1(4), v1(4)); 
lod2_5: lod2 port map(f(10), f(11), p1(5), v1(5)); 
lod2_6: lod2 port map(f(12), f(13), p1(6), v1(6)); 
lod2_7: lod2 port map(f(14), f(15), p1(7), v1(7)); 
lod2_8: lod2 port map(f(16), f(17), p1(8), v1(8)); 
lod2_9: lod2 port map(f(18), f(19), p1(9), v1(9)); 
lod2_10: lod2 port map(f(20), f(21), p1(10), v1(10)); 
lod2_11: lod2 port map(f(22), f(23), p1(11), v1(11)); 
 
lod4_0: lod4 port map(p1(0), p1(1), v1(0), v1(1), p2( 0 to 1), v2(0)); 
lod4_1: lod4 port map(p1(2), p1(3), v1(2), v1(3), p2( 2 to 3), v2(1)); 
lod4_2: lod4 port map(p1(4), p1(5), v1(4), v1(5), p2( 4 to 5), v2(2)); 
lod4_3: lod4 port map(p1(6), p1(7), v1(6), v1(7), p2( 6 to 7), v2(3)); 
lod4_4: lod4 port map(p1(8), p1(9), v1(8), v1(9), p2( 8 to 9), v2(4)); 
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lod4_5: lod4 port map(p1(10), p1(11), v1(10), v1(11), p2( 10 to 11), v2(5)); 
 
lod8_0: lod8 port map(p2(0 to 1), p2(2 to 3), v2(0), v2(1), p3(0 to 2), v3(0)); 
lod8_1: lod8 port map(p2(4 to 5), p2(6 to 7), v2(2), v2(3), p3(3 to 5), v3(1)); 
lod8_2: lod8 port map(p2(8 to 9), p2(10 to 11), v2(4), v2(5), p3(6 to 8), v3(2)); 
 
lod16_0: lod16 port map(p3(0 to 2), p3(3 to 5), v3(0), v3(1), p4(0 to 3), v4(0)); 
lod16_1: lod16 port map(p3(6 to 8), "000", v3(2), '0', p4(4 to 7), v4(1)); 
 
lod32_0: lod32 port map(p4(0 to 3), p4(4 to 7), v4(0), v4(1), p5(0 to 4), v5); 
 
d<=p5; 
 
poss_0_1:  
poss port map(zp(0), pp(0), np(0), yp(0), zp(1), pp(1), np(1), yp(1), zp1(0), pp1(0), np1(0), yp1(0)); 
poss_1_1: 
 poss port map(zp(2), pp(2), np(2), yp(2), zp(3), pp(3), np(3), yp(3), zp1(1), pp1(1), np1(1), yp1(1)); 
poss_2_1:  
poss port map(zp(4), pp(4), np(4), yp(4), zp(5), pp(5), np(5), yp(5), zp1(2), pp1(2), np1(2), yp1(2)); 
poss_3_1:  
poss port map(zp(6), pp(6), np(6), yp(6), zp(7), pp(7), np(7), yp(7), zp1(3), pp1(3), np1(3), yp1(3)); 
poss_4_1:  
poss port map(zp(8), pp(8), np(8), yp(8), zp(9), pp(9), np(9), yp(9), zp1(4), pp1(4), np1(4), yp1(4)); 
poss_5_1: poss port map(zp(10), pp(10), np(10), yp(10), zp(11), pp(11), np(11), yp(11), zp1(5), pp1(5), 
np1(5), yp1(5)); 
poss_6_1: poss port map(zp(12), pp(12), np(12), yp(12), zp(13), pp(13), np(13), yp(13), zp1(6), pp1(6), 
np1(6), yp1(6)); 
poss_7_1: poss port map(zp(14), pp(14), np(14), yp(14), zp(15), pp(15), np(15), yp(15), zp1(7), pp1(7), 
np1(7), yp1(7)); 
poss_8_1: poss port map(zp(16), pp(16), np(16), yp(16), zp(17), pp(17), np(17), yp(17), zp1(8), pp1(8), 
np1(8), yp1(8)); 
poss_9_1: poss port map(zp(18), pp(18), np(18), yp(18), zp(19), pp(19), np(19), yp(19), zp1(9), pp1(9), 
np1(9), yp1(9)); 
poss_10_1: poss port map(zp(20), pp(20), np(20), yp(20), zp(21), pp(21), np(21), yp(21), zp1(10), pp1(10), 
np1(10), yp1(10)); 
poss_11_1: poss port map(zp(22), pp(22), np(22), yp(22), zp(23), pp(23), np(23), yp(23), zp1(11), pp1(11), 
np1(11), yp1(11)); 
 
poss_0_2: poss port map(zp1(0), pp1(0), np1(0), yp1(0), zp1(1), pp1(1), np1(1), yp1(1), zp2(0), pp2(0), 
np2(0), yp2(0)); 
poss_1_2: poss port map(zp1(2), pp1(2), np1(2), yp1(2), zp1(3), pp1(3), np1(3), yp1(3), zp2(1), pp2(1), 
np2(1), yp2(1)); 
poss_2_2: poss port map(zp1(4), pp1(4), np1(4), yp1(4), zp1(5), pp1(5), np1(5), yp1(5), zp2(2), pp2(2), 
np2(2), yp2(2)); 
poss_3_2: poss port map(zp1(6), pp1(6), np1(6), yp1(6), zp1(7), pp1(7), np1(7), yp1(7), zp2(3), pp2(3), 
np2(3), yp2(3)); 
poss_4_2: poss port map(zp1(8), pp1(8), np1(8), yp1(8), zp1(9), pp1(9), np1(9), yp1(9), zp2(4), pp2(4), 
np2(4), yp2(4)); 
poss_5_2: poss port map(zp1(10), pp1(10), np1(10), yp1(10), zp1(11), pp1(11), np1(11), yp1(11), zp2(5), 
pp2(5), np2(5), yp2(5)); 
 
poss_0_3: poss port map(zp2(0), pp2(0), np2(0), yp2(0), zp2(1), pp2(1), np2(1), yp2(1), zp3(0), pp3(0), 
np3(0), yp3(0)); 
poss_1_3: poss port map(zp2(2), pp2(2), np2(2), yp2(2), zp2(3), pp2(3), np2(3), yp2(3), zp3(1), pp3(1), 
np3(1), yp3(1)); 



 

  102

poss_2_3: poss port map(zp2(4), pp2(4), np2(4), yp2(4), zp2(5), pp2(5), np2(5), yp2(5), zp3(2), pp3(2), 
np3(2), yp3(2)); 
 
poss_0_4:poss port map('1', '0', '0', '0', zp3(0), pp3(0), np3(0), yp3(0), zp4(0), pp4(0), np4(0), yp4(0)); 
poss_1_4:poss port map(zp3(1), pp3(1), np3(1), yp3(1), zp3(2), pp3(2), np3(2), yp3(2), zp4(1), pp4(1), 
np4(1), yp4(1)); 
 
poss_1_5:poss port map(zp4(0), pp4(0), np4(0), yp4(0), zp4(1), pp4(1), np4(1), yp4(1), zp5, pp5, np5, 
yp5); 
 
 
neg_0_1:  
neg port map(zn(0), pn(0), nn(0), yn(0), zn(1), pn(1), nn(1), yn(1), zn1(0), pn1(0), nn1(0), yn1(0)); 
neg_1_1:  
neg port map(zn(2), pn(2), nn(2), yn(2), zn(3), pn(3), nn(3), yn(3), zn1(1), pn1(1), nn1(1), yn1(1)); 
neg_2_1:  
neg port map(zn(4), pn(4), nn(4), yn(4), zn(5), pn(5), nn(5), yn(5), zn1(2), pn1(2), nn1(2), yn1(2)); 
neg_3_1:  
neg port map(zn(6), pn(6), nn(6), yn(6), zn(7), pn(7), nn(7), yn(7), zn1(3), pn1(3), nn1(3), yn1(3)); 
neg_4_1:  
neg port map(zn(8), pn(8), nn(8), yn(8), zn(9), pn(9), nn(9), yn(9), zn1(4), pn1(4), nn1(4), yn1(4)); 
neg_5_1: neg port map(zn(10), pn(10), nn(10), yn(10), zn(11), pn(11), nn(11), yn(11), zn1(5), pn1(5), 
nn1(5), yn1(5)); 
neg_6_1: neg port map(zn(12), pn(12), nn(12), yn(12), zn(13), pn(13), nn(13), yn(13), zn1(6), pn1(6), 
nn1(6), yn1(6)); 
neg_7_1: neg port map(zn(14), pn(14), nn(14), yn(14), zn(15), pn(15), nn(15), yn(15), zn1(7), pn1(7), 
nn1(7), yn1(7)); 
neg_8_1: neg port map(zn(16), pn(16), nn(16), yn(16), zn(17), pn(17), nn(17), yn(17), zn1(8), pn1(8), 
nn1(8), yn1(8)); 
neg_9_1: neg port map(zn(18), pn(18), nn(18), yn(18), zn(19), pn(19), nn(19), yn(19), zn1(9), pn1(9), 
nn1(9), yn1(9)); 
neg_10_1: neg port map(zn(20), pn(20), nn(20), yn(20), zn(21), pn(21), nn(21), yn(21), zn1(10), pn1(10), 
nn1(10), yn1(10)); 
neg_11_1: neg port map(zn(22), pn(22), nn(22), yn(22), zn(23), pn(23), nn(23), yn(23), zn1(11), pn1(11), 
nn1(11), yn1(11)); 
 
neg_0_2: neg port map(zn1(0), pn1(0), nn1(0), yn1(0), zn1(1), pn1(1), nn1(1), yn1(1), zn2(0), pn2(0), 
nn2(0), yn2(0)); 
neg_1_2: neg port map(zn1(2), pn1(2), nn1(2), yn1(2), zn1(3), pn1(3), nn1(3), yn1(3), zn2(1), pn2(1), 
nn2(1), yn2(1)); 
neg_2_2: neg port map(zn1(4), pn1(4), nn1(4), yn1(4), zn1(5), pn1(5), nn1(5), yn1(5), zn2(2), pn2(2), 
nn2(2), yn2(2)); 
neg_3_2: neg port map(zn1(6), pn1(6), nn1(6), yn1(6), zn1(7), pn1(7), nn1(7), yn1(7), zn2(3), pn2(3), 
nn2(3), yn2(3)); 
neg_4_2: neg port map(zn1(8), pn1(8), nn1(8), yn1(8), zn1(9), pn1(9), nn1(9), yn1(9), zn2(4), pn2(4), 
nn2(4), yn2(4)); 
neg_5_2: neg port map(zn1(10), pn1(10), nn1(10), yn1(10), zn1(11), pn1(11), nn1(11), yn1(11), zn2(5), 
pn2(5), nn2(5), yn2(5)); 
 
neg_0_3: neg port map(zn2(0), pn2(0), nn2(0), yn2(0), zn2(1), pn2(1), nn2(1), yn2(1), zn3(0), pn3(0), 
nn3(0), yn3(0)); 
neg_1_3: neg port map(zn2(2), pn2(2), nn2(2), yn2(2), zn2(3), pn2(3), nn2(3), yn2(3), zn3(1), pn3(1), 
nn3(1), yn3(1)); 
neg_2_3: neg port map(zn2(4), pn2(4), nn2(4), yn2(4), zn2(5), pn2(5), nn2(5), yn2(5), zn3(2), pn3(2), 
nn3(2), yn3(2)); 
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neg_0_4:neg port map('1', '0', '0', '0', zn3(0), pn3(0), nn3(0), yn3(0), zn4(0), pn4(0), nn4(0), yn4(0)); 
neg_1_4:neg port map(zn3(1), pn3(1), nn3(1), yn3(1), zn3(2), pn3(2), nn3(2), yn3(2), zn4(1), pn4(1), 
nn4(1), yn4(1)); 
 
neg_1_5:neg port map(zn4(0), pn4(0), nn4(0), yn4(0), zn4(1), pn4(1), nn4(1), yn4(1), zn5, pn5, nn5, yn5); 
 
y<=yn5 or yp5; 
 
end equations; 
 
 
Pre-Encoder 
entity preencoder is 
port ( 
a: in std_logic_vector(0 to 23); 
b: in std_logic_vector(0 to 23); 
f, np, pp, zp, nn, pn, zn: inout std_logic_vector(0 to 23)); 
end preencoder; 
 
architecture equations of preencoder is  
signal e, g, s: std_logic_vector(0 to 23); 
signal x, y, u, v: std_logic_vector(0 to 23); 
begin 
 
g(23)<='1' when a(23)='1' and b(23)='0' else '0'; 
g(22)<='1' when a(22)='1' and b(22)='0' else '0'; 
g(21)<='1' when a(21)='1' and b(21)='0' else '0'; 
g(20)<='1' when a(20)='1' and b(20)='0' else '0'; 
g(19)<='1' when a(19)='1' and b(19)='0' else '0'; 
g(18)<='1' when a(18)='1' and b(18)='0' else '0'; 
g(17)<='1' when a(17)='1' and b(17)='0' else '0'; 
g(16)<='1' when a(16)='1' and b(16)='0' else '0'; 
g(15)<='1' when a(15)='1' and b(15)='0' else '0'; 
g(14)<='1' when a(14)='1' and b(14)='0' else '0'; 
g(13)<='1' when a(13)='1' and b(13)='0' else '0'; 
g(12)<='1' when a(12)='1' and b(12)='0' else '0'; 
g(11)<='1' when a(11)='1' and b(11)='0' else '0'; 
g(10)<='1' when a(10)='1' and b(10)='0' else '0'; 
g(9)<='1' when a(9)='1' and b(9)='0' else '0'; 
g(8)<='1' when a(8)='1' and b(8)='0' else '0'; 
g(7)<='1' when a(7)='1' and b(7)='0' else '0'; 
g(6)<='1' when a(6)='1' and b(6)='0' else '0'; 
g(5)<='1' when a(5)='1' and b(5)='0' else '0'; 
g(4)<='1' when a(4)='1' and b(4)='0' else '0'; 
g(3)<='1' when a(3)='1' and b(3)='0' else '0'; 
g(2)<='1' when a(2)='1' and b(2)='0' else '0'; 
g(1)<='1' when a(1)='1' and b(1)='0' else '0'; 
g(0)<='1' when a(0)='1' and b(0)='0' else '0'; 
 
s(23)<='1' when a(23)='0' and b(23)='1' else '0'; 
s(22)<='1' when a(22)='0' and b(22)='1' else '0'; 
s(21)<='1' when a(21)='0' and b(21)='1' else '0'; 
s(20)<='1' when a(20)='0' and b(20)='1' else '0'; 
s(19)<='1' when a(19)='0' and b(19)='1' else '0'; 
s(18)<='1' when a(18)='0' and b(18)='1' else '0'; 
s(17)<='1' when a(17)='0' and b(17)='1' else '0'; 
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s(16)<='1' when a(16)='0' and b(16)='1' else '0'; 
s(15)<='1' when a(15)='0' and b(15)='1' else '0'; 
s(14)<='1' when a(14)='0' and b(14)='1' else '0'; 
s(13)<='1' when a(13)='0' and b(13)='1' else '0'; 
s(12)<='1' when a(12)='0' and b(12)='1' else '0'; 
s(11)<='1' when a(11)='0' and b(11)='1' else '0'; 
s(10)<='1' when a(10)='0' and b(10)='1' else '0'; 
s(9)<='1' when a(9)='0' and b(9)='1' else '0'; 
s(8)<='1' when a(8)='0' and b(8)='1' else '0'; 
s(7)<='1' when a(7)='0' and b(7)='1' else '0'; 
s(6)<='1' when a(6)='0' and b(6)='1' else '0'; 
s(5)<='1' when a(5)='0' and b(5)='1' else '0'; 
s(4)<='1' when a(4)='0' and b(4)='1' else '0'; 
s(3)<='1' when a(3)='0' and b(3)='1' else '0'; 
s(2)<='1' when a(2)='0' and b(2)='1' else '0'; 
s(1)<='1' when a(1)='0' and b(1)='1' else '0'; 
s(0)<='1' when a(0)='0' and b(0)='1' else '0'; 
 
e(23)<=not (g(23) or s(23)); 
e(22)<=not (g(22) or s(22)); 
e(21)<=not (g(21) or s(21)); 
e(20)<=not (g(20) or s(20)); 
e(19)<=not (g(19) or s(19)); 
e(18)<=not (g(18) or s(18)); 
e(17)<=not (g(17) or s(17)); 
e(16)<=not (g(16) or s(16)); 
e(15)<=not (g(15) or s(15)); 
e(14)<=not (g(14) or s(14)); 
e(13)<=not (g(13) or s(13)); 
e(12)<=not (g(12) or s(12)); 
e(11)<=not (g(11) or s(11)); 
e(10)<=not (g(10) or s(10)); 
e(9)<=not (g(9) or s(9)); 
e(8)<=not (g(8) or s(8)); 
e(7)<=not (g(7) or s(7)); 
e(6)<=not (g(6) or s(6)); 
e(5)<=not (g(5) or s(5)); 
e(4)<=not (g(4) or s(4)); 
e(3)<=not (g(3) or s(3)); 
e(2)<=not (g(2) or s(2)); 
e(1)<=not (g(1) or s(1)); 
e(0)<=not (g(0) or s(0)); 
 
 
x(23)<=g(23) and '1'; 
x(22)<=g(22) and not s(23); 
x(21)<=g(21) and not s(22); 
x(20)<=g(20) and not s(21); 
x(19)<=g(19) and not s(20); 
x(18)<=g(18) and not s(19); 
x(17)<=g(17) and not s(18); 
x(16)<=g(16) and not s(17); 
x(15)<=g(15) and not s(16); 
x(14)<=g(14) and not s(15); 
x(13)<=g(13) and not s(14); 
x(12)<=g(12) and not s(13); 
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x(11)<=g(11) and not s(12); 
x(10)<=g(10) and not s(11); 
x(9)<=g(9) and not s(10); 
x(8)<=g(8) and not s(9); 
x(7)<=g(7) and not s(8); 
x(6)<=g(6) and not s(7); 
x(5)<=g(5) and not s(6); 
x(4)<=g(4) and not s(5); 
x(3)<=g(3) and not s(4); 
x(2)<=g(2) and not s(3); 
x(1)<=g(1) and not s(2); 
x(0)<=g(0) and not s(1); 
 
 
y(23)<=s(23) and '1'; 
y(22)<=s(22) and not g(23); 
y(21)<=s(21) and not g(22); 
y(20)<=s(20) and not g(21); 
y(19)<=s(19) and not g(20); 
y(18)<=s(18) and not g(19); 
y(17)<=s(17) and not g(18); 
y(16)<=s(16) and not g(17); 
y(15)<=s(15) and not g(16); 
y(14)<=s(14) and not g(15); 
y(13)<=s(13) and not g(14); 
y(12)<=s(12) and not g(13); 
y(11)<=s(11) and not g(12); 
y(10)<=s(10) and not g(11); 
y(9)<=s(9) and not g(10); 
y(8)<=s(8) and not g(9); 
y(7)<=s(7) and not g(8); 
y(6)<=s(6) and not g(7); 
y(5)<=s(5) and not g(6); 
y(4)<=s(4) and not g(5); 
y(3)<=s(3) and not g(4); 
y(2)<=s(2) and not g(3); 
y(1)<=s(1) and not g(2); 
y(0)<=s(0) and not g(1); 
 
 
u(23)<=s(23) and '1'; 
u(22)<=s(22) and not s(23); 
u(21)<=s(21) and not s(22); 
u(20)<=s(20) and not s(21); 
u(19)<=s(19) and not s(20); 
u(18)<=s(18) and not s(19); 
u(17)<=s(17) and not s(18); 
u(16)<=s(16) and not s(17); 
u(15)<=s(15) and not s(16); 
u(14)<=s(14) and not s(15); 
u(13)<=s(13) and not s(14); 
u(12)<=s(12) and not s(13); 
u(11)<=s(11) and not s(12); 
u(10)<=s(10) and not s(11); 
u(9)<=s(9) and not s(10); 
u(8)<=s(8) and not s(9); 
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u(7)<=s(7) and not s(8); 
u(6)<=s(6) and not s(7); 
u(5)<=s(5) and not s(6); 
u(4)<=s(4) and not s(5); 
u(3)<=s(3) and not s(4); 
u(2)<=s(2) and not s(3); 
u(1)<=s(1) and not s(2); 
u(0)<=s(0) and not s(1); 
 
 
v(23)<=g(23) and '1'; 
v(22)<=g(22) and not g(23); 
v(21)<=g(21) and not g(22); 
v(20)<=g(20) and not g(21); 
v(19)<=g(19) and not g(20); 
v(18)<=g(18) and not g(19); 
v(17)<=g(17) and not g(18); 
v(16)<=g(16) and not g(17); 
v(15)<=g(15) and not g(16); 
v(14)<=g(14) and not g(15); 
v(13)<=g(13) and not g(14); 
v(12)<=g(12) and not g(13); 
v(11)<=g(11) and not g(12); 
v(10)<=g(10) and not g(11); 
v(9)<=g(9) and not g(10); 
v(8)<=g(8) and not g(9); 
v(7)<=g(7) and not g(8); 
v(6)<=g(6) and not g(7); 
v(5)<=g(5) and not g(6); 
v(4)<=g(4) and not g(5); 
v(3)<=g(3) and not g(4); 
v(2)<=g(2) and not g(3); 
v(1)<=g(1) and not g(2); 
v(0)<=g(0) and not g(1); 
 
f(23)<=x(23) or y(23) when e(22)='1' else u(23) or v(23); 
f(22)<=x(22) or y(22) when e(21)='1' else u(22) or v(22); 
f(21)<=x(21) or y(21) when e(20)='1' else u(21) or v(21); 
f(20)<=x(20) or y(20) when e(19)='1' else u(20) or v(20); 
f(19)<=x(19) or y(19) when e(18)='1' else u(19) or v(19); 
f(18)<=x(18) or y(18) when e(17)='1' else u(18) or v(18); 
f(17)<=x(17) or y(17) when e(16)='1' else u(17) or v(17); 
f(16)<=x(16) or y(16) when e(15)='1' else u(16) or v(16); 
f(15)<=x(15) or y(15) when e(14)='1' else u(15) or v(15); 
f(14)<=x(14) or y(14) when e(13)='1' else u(14) or v(14); 
f(13)<=x(13) or y(13) when e(12)='1' else u(13) or v(13); 
f(12)<=x(12) or y(12) when e(11)='1' else u(12) or v(12); 
f(11)<=x(11) or y(11) when e(10)='1' else u(11) or v(11); 
f(10)<=x(10) or y(10) when e(9)='1' else u(10) or v(10); 
f(9)<=x(9) or y(9) when e(8)='1' else u(9) or v(9); 
f(8)<=x(8) or y(8) when e(7)='1' else u(8) or v(8); 
f(7)<=x(7) or y(7) when e(6)='1' else u(7) or v(7); 
f(6)<=x(6) or y(6) when e(5)='1' else u(6) or v(6); 
f(5)<=x(5) or y(5) when e(4)='1' else u(5) or v(5); 
f(4)<=x(4) or y(4) when e(3)='1' else u(4) or v(4); 
f(3)<=x(3) or y(3) when e(2)='1' else u(3) or v(3); 
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f(2)<=x(2) or y(2) when e(1)='1' else u(2) or v(2); 
f(1)<=x(1) or y(1) when e(0)='1' else u(1) or v(1); 
f(0)<=x(0) or y(0); 
 
np(23)<=e(22) and s(23); 
np(22)<=e(21) and s(22); 
np(21)<=e(20) and s(21); 
np(20)<=e(19) and s(20); 
np(19)<=e(18) and s(19); 
np(18)<=e(17) and s(18); 
np(17)<=e(16) and s(17); 
np(16)<=e(15) and s(16); 
np(15)<=e(14) and s(15); 
np(14)<=e(13) and s(14); 
np(13)<=e(12) and s(13); 
np(12)<=e(11) and s(12); 
np(11)<=e(10) and s(11); 
np(10)<=e(9) and s(10); 
np(9)<=e(8) and s(9); 
np(8)<=e(7) and s(8); 
np(7)<=e(6) and s(7); 
np(6)<=e(5) and s(6); 
np(5)<=e(4) and s(5); 
np(4)<=e(3) and s(4); 
np(3)<=e(2) and s(3); 
np(2)<=e(1) and s(2); 
np(1)<=e(0) and s(1); 
np(0)<=s(0); 
 
pp(23)<=(u(23) or x(23))and not np(23); 
pp(22)<=(u(22) or x(22))and not np(22); 
pp(21)<=(u(21) or x(21))and not np(21); 
pp(20)<=(u(20) or x(20))and not np(20); 
pp(19)<=(u(19) or x(19))and not np(19); 
pp(18)<=(u(18) or x(18))and not np(18); 
pp(17)<=(u(17) or x(17))and not np(17); 
pp(16)<=(u(16) or x(16))and not np(16); 
pp(15)<=(u(15) or x(15))and not np(15); 
pp(14)<=(u(14) or x(14))and not np(14); 
pp(13)<=(u(13) or x(13))and not np(13); 
pp(12)<=(u(12) or x(12))and not np(12); 
pp(11)<=(u(11) or x(11))and not np(11); 
pp(10)<=(u(10) or x(10))and not np(10); 
pp(9)<=(u(9) or x(9))and not np(9); 
pp(8)<=(u(8) or x(8))and not np(8); 
pp(7)<=(u(7) or x(7))and not np(7); 
pp(6)<=(u(6) or x(6))and not np(6); 
pp(5)<=(u(5) or x(5))and not np(5); 
pp(4)<=(u(4) or x(4))and not np(4); 
pp(3)<=(u(3) or x(3))and not np(3); 
pp(2)<=(u(2) or x(2))and not np(2); 
pp(1)<=(u(1) or x(1))and not np(1); 
pp(0)<=(u(0) or x(0))and not np(0); 
 
zp(23)<=not (np(23) or pp(23)); 
zp(22)<=not (np(22) or pp(22)); 
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zp(21)<=not (np(21) or pp(21)); 
zp(20)<=not (np(20) or pp(20)); 
zp(19)<=not (np(19) or pp(19)); 
zp(18)<=not (np(18) or pp(18)); 
zp(17)<=not (np(17) or pp(17)); 
zp(16)<=not (np(16) or pp(16)); 
zp(15)<=not (np(15) or pp(15)); 
zp(14)<=not (np(14) or pp(14)); 
zp(13)<=not (np(13) or pp(13)); 
zp(12)<=not (np(12) or pp(12)); 
zp(11)<=not (np(11) or pp(11)); 
zp(10)<=not (np(10) or pp(10)); 
zp(9)<=not (np(9) or pp(9)); 
zp(8)<=not (np(8) or pp(8)); 
zp(7)<=not (np(7) or pp(7)); 
zp(6)<=not (np(6) or pp(6)); 
zp(5)<=not (np(5) or pp(5)); 
zp(4)<=not (np(4) or pp(4)); 
zp(3)<=not (np(3) or pp(3)); 
zp(2)<=not (np(2) or pp(2)); 
zp(1)<=not (np(1) or pp(1)); 
zp(0)<=not (np(0) or pp(0)); 
 
pn(23)<=e(22) and g(23); 
pn(22)<=e(21) and g(22); 
pn(21)<=e(20) and g(21); 
pn(20)<=e(19) and g(20); 
pn(19)<=e(18) and g(19); 
pn(18)<=e(17) and g(18); 
pn(17)<=e(16) and g(17); 
pn(16)<=e(15) and g(16); 
pn(15)<=e(14) and g(15); 
pn(14)<=e(13) and g(14); 
pn(13)<=e(12) and g(13); 
pn(12)<=e(11) and g(12); 
pn(11)<=e(10) and g(11); 
pn(10)<=e(9) and g(10); 
pn(9)<=e(8) and g(9); 
pn(8)<=e(7) and g(8); 
pn(7)<=e(6) and g(7); 
pn(6)<=e(5) and g(6); 
pn(5)<=e(4) and g(5); 
pn(4)<=e(3) and g(4); 
pn(3)<=e(2) and g(3); 
pn(2)<=e(1) and g(2); 
pn(1)<=e(0) and g(1); 
pn(0)<=g(0); 
 
nn(23)<=(y(23) or v(23))and not pn(23); 
nn(22)<=(y(22) or v(22))and not pn(22); 
nn(21)<=(y(21) or v(21))and not pn(21); 
nn(20)<=(y(20) or v(20))and not pn(20); 
nn(19)<=(y(19) or v(19))and not pn(19); 
nn(18)<=(y(18) or v(18))and not pn(18); 
nn(17)<=(y(17) or v(17))and not pn(17); 
nn(16)<=(y(16) or v(16))and not pn(16); 
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nn(15)<=(y(15) or v(15))and not pn(15); 
nn(14)<=(y(14) or v(14))and not pn(14); 
nn(13)<=(y(13) or v(13))and not pn(13); 
nn(12)<=(y(12) or v(12))and not pn(12); 
nn(11)<=(y(11) or v(11))and not pn(11); 
nn(10)<=(y(10) or v(10))and not pn(10); 
nn(9)<=(y(9) or v(9))and not pn(9); 
nn(8)<=(y(8) or v(8))and not pn(8); 
nn(7)<=(y(7) or v(7))and not pn(7); 
nn(6)<=(y(6) or v(6))and not pn(6); 
nn(5)<=(y(5) or v(5))and not pn(5); 
nn(4)<=(y(4) or v(4))and not pn(4); 
nn(3)<=(y(3) or v(3))and not pn(3); 
nn(2)<=(y(2) or v(2))and not pn(2); 
nn(1)<=(y(1) or v(1))and not pn(1); 
nn(0)<=(y(0) or v(0))and not pn(0); 
 
zn(23)<=not (nn(23) or pn(23)); 
zn(22)<=not (nn(22) or pn(22)); 
zn(21)<=not (nn(21) or pn(21)); 
zn(20)<=not (nn(20) or pn(20)); 
zn(19)<=not (nn(19) or pn(19)); 
zn(18)<=not (nn(18) or pn(18)); 
zn(17)<=not (nn(17) or pn(17)); 
zn(16)<=not (nn(16) or pn(16)); 
zn(15)<=not (nn(15) or pn(15)); 
zn(14)<=not (nn(14) or pn(14)); 
zn(13)<=not (nn(13) or pn(13)); 
zn(12)<=not (nn(12) or pn(12)); 
zn(11)<=not (nn(11) or pn(11)); 
zn(10)<=not (nn(10) or pn(10)); 
zn(9)<=not (nn(9) or pn(9)); 
zn(8)<=not (nn(8) or pn(8)); 
zn(7)<=not (nn(7) or pn(7)); 
zn(6)<=not (nn(6) or pn(6)); 
zn(5)<=not (nn(5) or pn(5)); 
zn(4)<=not (nn(4) or pn(4)); 
zn(3)<=not (nn(3) or pn(3)); 
zn(2)<=not (nn(2) or pn(2)); 
zn(1)<=not (nn(1) or pn(1)); 
zn(0)<=not (nn(0) or pn(0)); 
end equations; 

 

Negative tree detection node 
entity neg is 
port ( 
zl, pl, nl, yl, zr, pr, nr, yr: in std_logic; 
z, p, n, y: out std_logic); 
end entity; 
architecture equations of neg is 
begin  
z<=zl and zr; 
n<=(zl and nr) or (nl and zr); 
p<=pl or (zl and pr); 
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y<=yl or (zl and yr) or (nl and pr); 
end equations; 
 
Positive tree detection node 
entity poss is 
port ( 
zl, pl, nl, yl, zr, pr, nr, yr: in std_logic; 
z, p, n, y: out std_logic); 
end entity; 
 
architecture equations of poss is 
begin  
z<=zl and zr; 
p<=(zl and pr) or (pl and zr); 
n<=nl or (zl and nr); 
y<=yl or (zl and yr) or (pl and nr); 
end equations; 
 
 
Far and Close Data-Path Adder Algorithm 
entity far_close_fpa is 
port( 
clk: in std_logic;  
opa, opb: in std_logic_vector (0 to 31);--single precision  
add: out std_logic_vector(0 to 31); 
underflow: out std_logic; 
overflow: out std_logic); 
end  far_close_fpa; 
 
architecture arch of far_close_fpa is 
signal opa_r, opb_r: std_logic_vector(0 to 31); 
signal a_exp_zero, b_exp_zero: std_logic;  
signal a_exp_ones, b_exp_ones: std_logic; 
signal a_frac_zero, b_frac_zero: std_logic; 
signal denorm_a, denorm_b: std_logic; 
signal a_zero, b_zero: std_logic; 
signal a_inf, b_inf: std_logic; 
signal signa, signb, signd, swap : std_logic ; --sign bit a and b 
signal expa, expb, exp_large,d: std_logic_vector (0 to 7);--exponent a and b 
signal fraca, fracb : std_logic_vector (0 to 23);--fraction a and b 
signal fraca_c, fracb_c: std_logic_vector(0 to 23);--swapped fraction according to exp diff sign 
signal zero_d, one_d: std_logic;-- zero_d one when d=0, one_d one when d=1; 
signal sub, cout: std_logic; 
signal path: std_logic; 
signal frac_ans_close, frac_ans_far, mantissa: std_logic_vector(0 to 23); 
signal exp_ans_close, exp_ans_far: std_logic_vector(0 to 7); 
signal sign_out: std_logic; 
signal exponent: std_logic_vector(0 to 7); 
signal frac_out: std_logic_vector(0 to 22); 
signal uf, ovf: std_logic; 
--gives absolute diffrence, and the signd determines  
component exp_diff 
port ( 
exp_a, exp_b: in std_logic_vector(0 to 7); 
d: out std_logic_vector(0 to 7); 
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sign_d: out std_logic); 
end component; 
 
component close is  
port( 
fraca_c, fracb_c: in std_logic_vector(0 to 23); 
exp_large: in std_logic_vector(0 to 7); 
one_d: in std_logic; 
cout: inout std_logic; 
frac_ans_close: out std_logic_vector (0 to 23); 
exp_ans_close: out std_logic_vector(0 to 7)); 
end component; 
 
component far is  
port( 
fraca_c, fracb_c: in std_logic_vector(0 to 23); 
exp_large: in std_logic_vector(0 to 7); 
d: in std_logic_vector(0 to 7); 
sub: in std_logic; 
frac_ans_far: out std_logic_vector (0 to 23); 
exp_ans_far: out std_logic_vector(0 to 7)); 
end component; 
 
 
begin 
process (clk) 
begin 
if clk='1' and clk'event then 
opa_r<=opa; 
opb_r<=opb; 
end if; 
end process; 
 
a_exp_zero<=not (or_reduce(opa_r(1 to 8))); 
b_exp_zero<=not (or_reduce(opb_r(1 to 8))); 
a_exp_ones<=and_reduce(opa(1 to 8)); 
b_exp_ones<=and_reduce(opb(1 to 8)); 
a_frac_zero<=not (or_reduce(opa_r(9 to 31))); 
b_frac_zero<=not (or_reduce(opb_r(9 to 31))); 
denorm_a<= a_exp_zero and (not a_frac_zero); 
denorm_b<= b_exp_zero and (not b_frac_zero); 
a_zero<=a_exp_zero and a_frac_zero; 
b_zero<=b_exp_zero and b_frac_zero; 
a_inf<=a_exp_ones and a_frac_zero; 
b_inf<=b_exp_ones and b_frac_zero; 
 
signa<= opa_r(0); 
expa<= opa_r(1 to 8) when denorm_a='0' else x"01"; 
fraca<=('0' & opa_r(9 to 31)) when (denorm_a='1' or a_zero='1') else ('1' & opa_r(9 to 31)); 
signb<= opb_r(0); 
expb<= opb_r(1 to 8) when denorm_b='0' else x"01"; 
fracb<=('0' & opb_r(9 to 31)) when (denorm_b='1' or b_zero='1') else ('1' & opb_r(9 to 31)); 
 
--getting a absolute difference of the exponent, the signd is tells if A=B or A>B and A<B     
exp_diff1: exp_diff port map(expa, expb, d, signd); 
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zero_d<='1' when d="00000000" else '0'; 
one_d<='1' when d="00000001" else '0'; 
 
swap<=signd; 
fraca_c<=fraca when swap='0' else fracb; 
fracb_c<=fracb when swap='0' else fraca; 
exp_large<=expa when signd='0' else expb; 
sub<=signa xor signb; 
 
 
close1: close port map(fraca_c, fracb_c, exp_large, one_d, cout, frac_ans_close, exp_ans_close); 
far1: far port map(fraca_c, fracb_c, exp_large, d, sub, frac_ans_far, exp_ans_far); 
path<='1' when (sub and (zero_d or one_d))='1' else '0'; 
mantissa<=frac_ans_close when path='1' else frac_ans_far; 
exponent<=exp_ans_close when path='1' else exp_ans_far; 
uf<='1' when exponent=x"01" and mantissa(0)='0' else '0'; 
ovf<='1' when exponent=x"FF" or a_inf='1' or b_inf='1' else '0'; 
frac_out<=mantissa(1 to 23); 
sign_out<=(signa and (not sub)) or 
(signa and (not zero_d) and (not signd) and sub) or  
((signa xor (not cout)) and zero_d and (not signd) and sub) or 
(signb and signd and sub); 
 
process (clk) 
begin 
if clk='1' and clk'event then 
add<=sign_out & exponent & mantissa(1 to 23); 
underflow<=uf; 
overflow<=ovf; 
end if; 
end process; 
end arch; 
 
 
Close Path 
entity close is  
port( 
fraca_c, fracb_c: in std_logic_vector(0 to 23); 
exp_large: in std_logic_vector(0 to 7); 
one_d: in std_logic; 
cout: inout std_logic; 
frac_ans_close: out std_logic_vector (0 to 23); 
exp_ans_close: out std_logic_vector(0 to 7)); 
end close; 
 
architecture arch of close is 
signal a, b: std_logic_vector(0 to 23); 
signal gb, rb, sb: std_logic;-- g, r and s bit of the smaller fraction 
signal x, y: std_logic_vector(0 to 23);--after inversion in case of effective subtraction 
signal gy, ry, sy: std_logic;--g, r, s after invertion in case of effective subtraction 
signal w, wp1: std_logic_vector(0 to 24);--output of compound adder 
signal dlop, shift_amt: std_logic_vector(0 to 4);--lop output 
signal y_corr: std_logic;--lop output v=0 if all zero and y=1 if we have to add 1 to shifter 
signal msb, l: std_logic; 
signal g: std_logic;--ra_b(a-b) and sa_b(a-b) are both zero as ry and sy are zero for close 
signal sel_nearest_close: std_logic; 
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signal sum, rounded: std_logic_vector(0 to 24); 
signal bshin: std_logic;--byte sifted in 
signal shift, shifted: std_logic_vector(0 to 25); 
  
component compound_adder is 
port ( 
x, y: in std_logic_vector(0 to 23); 
w: inout std_logic_vector(0 to 24); 
wp1: out std_logic_vector(0 to 24)); 
end component; 
 
component lop is 
port ( 
a: in std_logic_vector(0 to 23); 
b: in std_logic_vector(0 to 23); 
d: out std_logic_vector(0 to 4); 
y: out std_logic); 
end component; 
 
begin 
 
a<=fraca_c; 
b<=('0' & fracb_c(0 to 22)) when one_d='1' else fracb_c;--one bit shift right 
gb<=fracb_c(23) when one_d='1' else '0';--gaurd bit 
rb<='0';--round bit 
sb<='0';--sticky bit 
 
x<=a; 
y<=not b;--bit invert for subtraction 
gy<=not gb; 
ry<=not rb; 
sy<=not sb; 
 
compound1: compound_adder port map(x, y, w, wp1); 
lop1: lop port map(a, b, dlop, y_corr);--dlop no of leading zeros, y_corr if correction is needed 
cout<=w(0); 
msb<=w(1); 
l<=w(24); 
g<=gy xor (ry and sy);--g a-b, because 1 has to be added at position sy for 2's complement 
sel_nearest_close<='1' when(cout and (not g or (msb and l)))='1' else '0'; 
sum<=wp1 when sel_nearest_close='1' else w; 
rounded<=(cout & not sum(1 to 24)) when cout='0' else sum;--incase of negative result 
shift_amt<=(dlop + "00001") when y_corr='1' else dlop; 
bshin<=cout and g; 
shift<=rounded & bshin; 
shifted<=shl(shift, shift_amt); 
frac_ans_close<=shifted(1 to 24) when shifted(1)='1' else shifted(2 to 25); 
exp_ans_close<=(exp_large - ("000" & shift_amt)) when shifted(1)='1' else (exp_large -("000" & 
shift_amt) + "00000001"); 
end arch; 
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Compound Adder 
entity compound_adder is 
port ( 
x, y: in std_logic_vector(0 to 23); 
w: inout std_logic_vector(0 to 24); 
wp1: out std_logic_vector(0 to 24)); 
end entity; 
 
architecture equation of compound_adder is 
begin 
w<=('0' & x) + ('0' & y); 
wp1<=w + "0000000000000000000000001"; 
end equation; 
 
 
Far Path 
entity far is  
port( 
fraca_c, fracb_c: in std_logic_vector(0 to 23); 
exp_large: in std_logic_vector(0 to 7); 
d: in std_logic_vector(0 to 7); 
sub: in std_logic; 
frac_ans_far: out std_logic_vector (0 to 23); 
exp_ans_far: out std_logic_vector(0 to 7)); 
end far; 
 
architecture arch of far is 
signal a, b: std_logic_vector(0 to 23);--signal comming in from the main file 
signal sft_ans: std_logic_vector(0 to 26);--shifted b 
signal gb, rb, sb: std_logic;-- gaurd, round, and sticky bit 
signal x, y: std_logic_vector(0 to 23);--after inversion in case of effective subtraction 
signal gy, ry, sy: std_logic;-- gaurd, round, and sticky bit incase of subtraction 
signal g, r, s: std_logic; 
signal L, cout : std_logic;--n-bit half adder output 
signal w, wp1: std_logic_vector(0 to 24);--output of compound adder 
signal msb, L_1: std_logic; --msb and least significant bit 
signal sel_nearest_far_add, sel_nearest_far_sub, sel_nearest_far: std_logic; 
signal sel_sp1: std_logic; 
signal bshin, sft_rt, sft_left: std_logic; 
signal rounded: std_logic_vector(0 to 25); 
 
component bshifter_rt is 
port (  
i: in  std_logic_vector (0 to 23); 
sftamt: in  std_logic_vector (0 to 4); 
o: out std_logic_vector (0 to 26)); 
end component; 
 
component compound_adder is 
port ( 
x, y: in std_logic_vector(0 to 23); 
w: inout std_logic_vector(0 to 24); 
wp1: out std_logic_vector(0 to 24)); 
end component; 
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begin 
a<=fraca_c; 
bshfiter_rt1: bshifter_rt port map (fracb_c, d(3 to 7), sft_ans); 
b<=sft_ans(0 to 23); 
gb<=sft_ans(24); 
rb<=sft_ans(25); 
sb<=sft_ans(26); 
x<=a; 
y<=not b when sub='1' else b;--bit invert for subtraction 
gy<=not gb when sub='1' else gb; 
ry<=not rb when sub='1' else rb; 
sy<=not sb when sub='1' else sb; 
g<=(gy xor (ry and sy)) when sub='1' else gy;--g, r, s incase of subtraction, to add 1 at position sy 
r<=(ry xor sy) when sub='1' else ry; 
s<=(not sy) when sub='1' else sy; 
compound1: compound_adder port map(x, y, w, wp1); 
cout<=w(0); 
msb<=w(1); 
L_1<=w(23); 
L<=w(24); 
sel_nearest_far_add<='1' when 
(((not cout) and (g and (L or r or s))) or (cout and (L and (L_1 or g or r or s))))='1' and sub='0' else '0'; 
sel_nearest_far_sub<='1' when  
(cout and (((not g) and (not r) and (not s)) or (g and r) or (msb and (g and (L or s)))))='1' and sub='1' else 
'0'; 
sel_nearest_far<= sel_nearest_far_add or sel_nearest_far_sub; 
sel_sp1<='1' when sel_nearest_far='1' else '0'; 
bshin<='1' when 
(cout and (((not g) and r and s) or (g and not r)))='1' else '0'; 
sft_rt<= (cout and (not sub)); 
sft_left<=((not msb) and sub); 
rounded<= (wp1 & bshin) when sel_sp1='1' else (w & bshin); 
frac_ans_far<=rounded(0 to 23)when sft_rt='1' else rounded(2 to 25) when sft_left='1' else rounded(1 to 
24); 
exp_ans_far<=(exp_large - "00000001") when sft_left='1' else (exp_large + "00000001") when sft_rt='1' 
else exp_large; 
end arch; 

 

 


