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Abstract

With the rapid growth of data and computational needs, distributed systems and compu-

tational Grids are gaining more and more attention. Grids are playing an important and

growing role in today networks. The huge amount of computations a Grid can fulfill in a

specific time cannot be done by the best super computers. However, Grid performance can

still be improved by making sure all the resources available in the Grid are utilized by a

good load balancing algorithm. The purpose of such algorithms is to make sure all nodes

are equally involved in Grid computations. This research proposes two new distributed

swarm intelligence inspired load balancing algorithms. One is based on ant colony opti-

mization and is called AntZ, the other one is based on particle swarm optimization and is

called ParticleZ. Distributed load balancing does not incorporate a single point of failure

in the system. In the AntZ algorithm, an ant is invoked in response to submitting a job

to the Grid and this ant surfs the network to find the best resource to deliver the job

to. In the ParticleZ algorithm, each node plays a role as a particle and moves toward

other particles by sharing its workload among them. We will be simulating our proposed

approaches using a Grid simulation toolkit (GridSim) dedicated to Grid simulations. The

performance of the algorithms will be evaluated using several performance criteria (e.g.

makespan and load balancing level). A comparison of our proposed approaches with a

classical approach called State Broadcast Algorithm and two random approaches will also

be provided. Experimental results show the proposed algorithms (AntZ and ParticleZ)

can perform very well in a Grid environment. In particular, the use of particle swarm

optimization, which has not been addressed in the literature, can yield better performance

results in many scenarios than the ant colony approach.
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Chapter 1

Introduction

1.1 Introduction to the Grid

The term “the Grid” was coined in the mid-1990s to denote a (then) proposed distributed

computing infrastructure for advanced science and engineering. Much progress has since

been made on the construction of such an infrastructure and on its extension and appli-

cation to commercial computing problems. Early definitions for the Grid go back to 1998,

when Carl Kesselman and Ian Foster defined the Grid as follows [4]:

“A computational grid is a hardware and software infrastructure that provides depend-

able, consistent, pervasive, and inexpensive access to high-end computational capabilities.”

Putting it in simple words, Grid computing aims to connect geographically distributed

computers allowing their computational power and storage capabilities to be shared.

With the rapid growth of data and computational needs, distributed systems and Grids

are gaining more attention to solve the problem of large-scale computing [5]. There are

several options for establishing distributed systems, and Grid Systems [4] are one of the

common ones for distributed applications [5].

Various Grid application scenarios have been explored in both academia and industry.

We present a brief description of some of these applications, however, a more detailed

description of each can be found in [6].

• Distributed Aircraft Engine Diagnostics. The U.K. Distributed Aircraft Main-

tenance Environment (DAME) project is using Grid technologies for the challenging

and important problem of computer-based fault diagnosis. The problem can be con-

sidered an inherently distributed problem because of the huge amount of data sources

and stakeholders involved.
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• NEES Grid Earthquake Engineering Collaboratory. The U.S. Network for

Earthquake Engineering Simulation (NEES) is a project which enables remote ac-

cess to the specialized equipment used to study the behavior of different structures

(example: bridge columns) when subjected to the forces of an earthquake.

• World Wide Telescope. Advances in digital astronomy enable the systematic

survey and the collection of vast amounts of data from telescopes gathered all over

the world.

• Biomedical Informatics Research Network. The goal of this U.S. project is

to bring together biomedical imaging data to be used for research and, hence, to

improve clinical cases.

• Virtual Screening on Desktop Computers. A drug discovery application in

which, an intra-Grid composed of desktop PCs is used for virtual screening of drug

candidates.

• Infrastructure for Multiplayer Games. Butterfly.net is a service provider for

the multiplayer videogaming industry. It uses Grid technologies to deliver scalable

services to game developers.

Another recent example of an application of the Grid in real world systems is the

application of a large Grid system for the Large Hadron Collider (LHC) at CERN1. This

scientific experiment intends to answer questions about the Big Bang and the building

blocks of our world by simulating collisions between protons on a small scale. This Grid

has a three-tier achitecture. The first layer is located at CERN and is considered the origin

of the data. The second layer is composed of eleven data centers in Europe, North America

and Asia. Third-tier data centers are located world wide in 250 universities in which the

analysis of the received data takes place2. Figure 1.1, shows LCG (LHC Computing Grid)

tiers architecture from a service level view. More information about this project can be

found in the technical design report in [1].

The next section reviews the history of the Grid from its emergence until now and its

future trends.

1The European Organization for Nuclear Research
2http://www.irdanesh.com/1387/06/25/grid-cern-lhc/
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Figure 1.1: Proposed service architecture and service level at LCG Tiers
[1]

1.1.1 History of the Grid

The transition from metacomputing (computing of computing; organization of large com-

puter networks before emergence of the Grid) to Grid computing took place in the mid-

1990s with the introduction of middleware designed to function as a wide-area infrastruc-

ture to support diverse online processing and data-intensive applications. Systems such

as the Storage Resource Broker [7], Globus Toolkit [8], Condor [9][10], and Legion [11][12]

were developed primarily for scientific applications.

The evolution of the Grid technology is well shown in Figure 1.2 [6]. As illustrated in the

figure, early experiments for the Grid worked with custom tools or specialized middleware

that focused on message-oriented communication between computing nodes. By 1998, the

open source Globus Toolkit (GT2) [8] had emerged as a standard software infrastructure

for Grid computing. As the interest in Grids continued to grow, and in particular as

industrial interest emerged, the importance of true standardization increased. The Global

Grid Forum, established in 1998 as an international community and standards organization,

3



worked out to be the natural place for such standards to be developed, and indeed multiple

standardization activities are currently under way. In particular, 2002 saw the emergence

of the Open Grid Services Architecture (OGSA), which is a community standard with

multiple implementations including the OGSA-based Globus Toolkit 3.0, released in 2003.

The next section provides introductory discussions about the architecture of the Grid

followed by more details on OGSA.

Figure 1.2: Evolution of the Grid technology

1.1.2 Grid Architecture

The main concern underlying the Grid is coordinated resource sharing and problem solving

in dynamic, multi-institutional, virtual organizations. This sharing, of course, should be

controlled by both resource providers and consumers by defining clearly what is shared

and what are the conditions under which sharing occurs. A set of individuals and insti-

tutions defined by this sharing rules form Virtual Organizations (VOs). Thus, an actual

organization can be part of one or more VOs by sharing some of its resources [13]. Figure

1.3 shows three actual organizations with both computational and data resources to share,

and two virtual organizations (VO-A and VO-B) each of which can have access to a subset

of resources in each of the organizations.

4



Figure 1.3: Virtual organizations

Historically, the architecture of a Grid was often described in terms of layers, each

providing a specific function. Figure 1.4 depicts a layered architecture of a typical Grid.1

The Network Layer provides the connectivity between the resources in the Grid.

The Resource Layer contains all the resources that are part of the Grid, such as

computers, storage systems, clusters and specialized resources such as sensors.

The Middleware Layer provides the tools so that the lower layers can participate in

a unified Grid environment.

The Application and Serviceware Layer includes all applications that use the

resources of the Grid to fulfill their mission. It is also called the Serviceware Layer because

it includes all common services that represent mostly application-specific management

functions such as billing, time logging, and others.

With the emergence of new requirements and web services, the need for standardizing

a service oriented architecture arose. OGSA, appeared to address key concerns in Grid

1http://www.sei.cmu.edu/isis/guide/engineering/architectures.htm
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Figure 1.4: A generic view of the Grid

systems by defining a set of capabilities and behaviours. OGSA, is the specification for

standards-based Grid computing and is centred on stateful web services. OGSA deals

with the middleware layer depicted in Figure 1.4 in a service-oriented architecture. OGSA

addresses issues about services and their interfaces, the individual and collective state of

resources belonging to these services, and the interaction between these services [14]. An

OGSA Grid can be described in terms of the following capabilities [14]:

• Infrastructure services. OGSA architecture wants to insure that the web service

infrastructure follows specific guidelines such as standards defined by WSDL (Web

Service Description Language), its naming policies, security and so forth.

• Execution Management services. OGSA-EMS are concerned with the problems

of instantiation, management and completion of the units of work. Examples of units

of work may include either OGSA applications or legacy (non-OGSA) applications

(a database server, a servlet running in a Java application server container, etc.).

EMS services can be divided into three classes:

– Resources that model processing, storage, executables, resource management

and provisioning.

6



– Job management is concerned about handling jobs.

– Resource selection services that collectively decide where to execute a unit

of work.

• Data services. Data services are related to these OGSA services concerned with

the management, access to and update of data resources, along with the transfer of

data between resources. These are collectively called data services.

• Resource Management services. Resource management performs several forms

of management on resources in a Grid. In an OGSA Grid there are three types of

management related to resources:

– Management of the physical and logical resources themselves (e.g., rebooting a

host, or setting VLANs on a network switch).

– Management of the OGSA Grid resources exposed through service interfaces

(e.g., resource reservation, job submission and monitoring).

– Management of the OGSA Grid infrastructure, exposed through its management

interfaces (e.g., monitoring a registry service).

• Security services. OGSA security services facilitate the enforcement of the security-

related policy within a (virtual) organization. In general, the purpose of the enforce-

ment of security policy is to ensure that the higher-level business objectives can be

met.

• Self-management services. In a self-managing environment, system components,

including hardware components such as computers, networks and storage devices,

and software components such as operating systems and business applications, are

self-configuring, self-healing and self-optimizing.

• Information services. An information service needs to support a variety of Quality

of Service (QoS) requirements for reliability, security, and performance.

One thing worth mentioning is that the entire set of OGSA capabilities which are

introduced here does not have to be present in a Grid environment, only a subset of these

capabilities may suffice. For more information about the standards and conventions that

should be followed in an OGSA environment the reader is referred to [14].
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Open Grid Services Infrastructure (OGSI) is the concrete specification of the OGSA

infrastructure. It is the middleware for Grid services. OGSI defines how to build a Grid

service and it defines the mechanisms for creating, managing, and exchanging information

for Grid services [15].

Using the standards above the Globus toolkit is developed by the Globus Alliance1.

The Globus toolkit is the most common toolkit and it is an implementation of the OGSA

framework described earlier. The Globus toolkit includes software modules for Security,

Data management, Execution management, Information Services, Fault detection, etc.

Figure 1.5, shows the Globus toolkit modules and a brief description about each module

is provided [8].

Figure 1.5: Globus toolkit modules

• Resource location and allocation. This component has the responsibility to

express application resource requirements, and to identify resources that meet these

requirements and schedule resources. Resource allocation involves scheduling the

resources and performing any initialization required for subsequent process creation,

data access, etc.

• Communications. This component provides basic communication mechanisms.

These mechanisms must permit the efficient implementation of a wide range of com-

munication methods including message passing and remote procedure call (RPC).

• Unified resource information service. This component provides the toolkit

1http://www.globus.org/alliance/
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with the ability to obtain real-time information about metasystem structure and

status. The mechanism must allow components to send as well as receive information.

Support for scoping and access control is also required.

• Authentication interface. This component provides basic authentication mecha-

nisms that can be used to validate the identity of both users and resources. These

mechanisms will be used for other security services such as authorization and data

security that need to know the identity of parties involved in an operation.

• Process creation. This component initiates computation on a resource when it

has been located and allocated. The responsibilities of this component can be stated

as follows: setting up executables, creating an execution environment, starting an

executable, passing arguments, integrating the new process within the overall com-

putation and managing termination and shutdown.

• Data access. This component is responsible for providing high-speed remote access

to persistent storage such as files. Some data resources such as databases may be

accessed via distributed database technology or the Common Object Request Broker

Architecture (CORBA). The Globus data access module addresses the problem of

achieving high performance when accessing parallel file systems and network-enabled

I/O devices such as the High Performance Storage System (HPSS).

Having described all components in a Grid environment we focus now on the resource

allocation component and provide further details.

1.2 Scheduling Jobs in Computational Grids (Resource Man-

agement)

The resource management system is the central component of a Grid system. Its basic

responsibilities are to accept requests from users, match user requests to available resources

for which the user has permission to use and schedule the matched resources [16]. Workload

and resource management are two essential functions provided at the service level of the

Grid software infrastructure [17]. To be able to fully benefit from such Grid systems,

resource management and scheduling are key Grid services, where issues of task allocation
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and load balancing represent a common challenge for most Grids [18]. In a computational

Grid, at a given time, the task is to allocate the user defined jobs efficiently both by meeting

the deadlines and making use of all the available resources [19]. In a Grid system, resources

are added and removed dynamically. Different types of applications with different resource

requirements are being executed. Resource owners set their own resource usage policies

and costs. This necessitates a need for extra decision making policies between resource

users and resource providers to meet the quality of service constraints [16].

Grid systems are classified into two categories: compute and data Grids. In compute

Grids the main resource that is being managed by the resource management system is

compute cycles (i.e. processors), while in data Grids the focus is to manage data distributed

over geographical locations. The architecture and the services provided by the resource

management system are affected by the type of Grid system it is deployed in. Resources

which are to be managed could be hardware (computation cycle, network bandwidth and

data stores) or software resources (applications) [16].

In traditional computing systems, resource management is a well-studied problem. Re-

source managers such as batch schedulers, workflow engines, and operating systems exist

for many computing environments. These resource management systems are designed to

work under the assumption that they have complete control of a resource and thus can

implement the mechanisms and policies needed for the effective use of that resource. Un-

fortunately, this assumption does not apply to the Grid. When dealing with the Grid

we must develop methods for managing Grid resources across separately administered do-

mains, with the resource heterogeneity, loss of absolute control, and inevitable differences

in policy that is the result of heterogeneity. The underlying Grid resource set is typically

heterogeneous [6].

The term “load balancing” refers to the technique that tries to distribute work load

between several computers, network links, CPUs, hard drives, or other resources, in order to

get optimal resource utilization, throughput, or response. The load balancing mechanism

aims to equally spread the load on each computing node, maximizing their utilization

and minimizing the total task execution time. In order to achieve these goals, the load

balancing mechanism should be “fair” in distributing the load across the computing nodes;

by being fair we mean that the difference between the “heaviest-loaded” node and the

“lightest-loaded” node should be minimized [20].
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1.3 Load Balancing Problem

Load balancing has always been an issue since the emergence of distributed systems. In

a distributed system there might be scenarios in which a task waits for a service at the

queue of one resource, while at the same time another resource which is capable of serving

the task is idle. The purpose of a load balancing algorithm is to prevent these scenarios as

much as possible [21].

For parallel applications, load balancing attempts to distribute the computation load

across multiple processors or machines as evenly as possible with the objective to improve

performance. Generally, a load balancing scheme consists of three phases: information

collection, decision making and data migration. During the information collection phase,

the load balancer gathers the information of the distribution of workload and the state

of computing environment and detects whether there is a load imbalance. The decision

making phase focuses on calculating an optimal data distribution, while the data migration

phase transfers the excess amount of workload from one overloaded processor to another

underloaded one [22].

Load balancing algorithms can be classified into sub categories from various perspec-

tives. From one view point, they can be divided into static, dynamic or adaptive algorithms.

In static algorithms, the decisions related to balancing the load are made at compile time.

This means these decision are made when resource requirements are estimated [23]. On the

other hand, a load balancer with dynamic load balancing allocates/reallocates resources at

runtime and uses the system-state information to make its decisions. Adaptive load bal-

ancing algorithms are a special class of dynamic algorithms. They adapt their activities by

dynamically changing their parameters, or even their policies, to suit the changing system

state [24].

From another point of view, methods used in load balancing can be divided into three

classes, i.e., centralized, distributed (decentralized) and hierarchical [16] as shown in Figure

1.6.

In a centralized approach, all jobs are submitted to a single scheduler. This single

scheduler is responsible for scheduling the jobs on the available resources. Since all the

scheduling information is available at once, the scheduling decisions are optimal but this

approach is not very scalable in a Grid system [16]. As the size of the Grid increases,
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Figure 1.6: Categorization of load balancing algorithms

keeping all the information about the state of all the resources would be a bottleneck.

Therefore scalability is an issue in centralized approaches in addition to bringing a single

point of failure to the system. Figure 1.7, shows a system with a central load balancing

architecture.

Figure 1.7: Centralized load balancing model

In a decentralized model there is no central scheduler and scheduling is done by the

resource requestors and owners independently. This approach is scalable, being distributed
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in nature, and suits Grid systems. But individual schedulers should cooperate with each

other in scheduling decisions and the schedule generated may not be the optimal schedule.

A decentralized load balancing system architecture is shown in Figure 1.8. This category of

load balancing is perfect for peer-to-peer architectures and dynamic environments. Based

on whether or not schedulers cooperate with each other, decentralized approaches can be

further classified as cooperative or non-cooperative [16].

Figure 1.8: Decentralized load balancing model

In a hierarchical model shown in Figure 1.9, the schedulers are organized in a hierarchy.

High level resource entities are scheduled at higher levels and lower level smaller sub-entities

are scheduled at lower levels of the scheduler hierarchy. This model is a combination of

the above two models [16].

Load balancing algorithms can be further classified as System-Level or Application-

Level. Application-level load balancing focuses on minimizing the makespan of a parallel

application. Here, makespan is defined as the completion time of all the jobs being sent

to the Grid. System-level load balancing, also known as distributed scheduling, aims to

maximize process throughput or the overall utilization rate of the machines.

Each of these classes has its advantages and disadvantages depending on a number of
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Figure 1.9: Hierarchical load balancing model

factors, e.g., the size of a system, dynamic behavior, etc. [25]. However, all centralized

approaches have certain disadvantages:

1. A central scheduler (load balancer) needs current knowledge about the entire state

of the system at each point in time. This makes it scale badly with the growth in

the size of the system.

2. Failure of the scheduler results in failure of the whole system, while in a distributed

approach only some of the work will be lost.

3. Distributed schedulers are much more dynamic and flexible to changes than central-

ized approaches, because they do not need the state of the system at each step to do

their job.

There has been a great effort in recent years in developing distributed load balanc-

ing algorithms, while trying to minimize all the communication needs resulting from the

distributed nature. In this research, we have focused on designing distributed load bal-

ancing algorithms with the inspiration from swarm intelligence contexts. The next section
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describes the advantages of swarm intelligence techniques for problems such as load bal-

ancing and others.

1.4 Swarm Intelligence Techniques for Load Balancing

As artificial life and swarm intelligence techniques are increasingly being used for solving

optimization problems, they have proven themselves as a good candidate in this area.

This can be inferred by recent research in the area. Related research on distributed load

balancing is reviewed in Chapter 2.

The notion of complex collective behaviour emerging from the behaviour of many rel-

atively simple units, and the interactions between them, is fundamental to the field of

artificial life. The understanding of such systems offers new ideas in creating artificial

systems which are controlled by such emergent collective behaviour; in particular, the ex-

ploitation of this concept might lead to completely new approaches for the management of

distributed systems, such as load balancing in Grids [26].

As artificial life techniques have proved to be useful in optimization problems they are

a good candidate for load balancing where we aim to minimize the load difference between

the heaviest and lightest node. The benefit of these techniques stems from their capability

in searching large search spaces, which arise in many combinatorial optimization problems,

very efficiently [27]. Job scheduling is known to be NP-complete when we want to solve it

on a single processor, therefore the use of heuristics and involving distribution is necessary

in order to cope in practice with its difficulty [19].

1.4.1 Social Insect Systems - Ant Colony

Among swarm intelligence techniques, “social insect systems” are good candidates in many

ways. Social insect systems are complex adaptive systems that are able to self-organize

within a set of constraints [28]. A social insect colony functions as an integrated unit that

is capable of the following [29]:

• Ability to process a large amount of information in a distributed manner.

• Make decisions about how to allocate individuals for various tasks.

• Coordinate the activities of tens or thousands of workers.
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• Exhibits flexibility and robustness in response challenges.

Among all their characteristics discussed, two of their aspects are of particular interest.

First, they are robust. They function smoothly even though the colony may be continu-

ously growing, or may suffer a sudden traumatic reduction in their numbers because of an

accident, predation, experimental manipulation, or may spontaneously split into two dis-

tinct colonies of half the size [30]. They routinely cope with gross and minor disturbances

of habitat and with seasonal variations in food supply [31]. Second, they are tiny insects

with no or very small memory and computational ability, yet they are surviving in our

complex real world because of their huge number and adaptability to their environment.

Using the idea of their robustness in the real world provides us with novel ideas to use

in artificial life. For example, it gives us the ability to deal with the dynamic topology

of todays networks as nodes may come and go arbitrarily; and being simple provides us

with the efficiency we need in dealing with large scale systems. The application of swarm

intelligence to network problems arises when a group of autonomous programs (agents)

are working together. This is referred to as Ant Colony Optimization (ACO) or multi-

agent systems. Each individual or program or autonomous module can be represented as

an agent and these multi-agents can be used for network applications such as finding the

shortest path, routing, load balancing, management, etc [32].

1.4.2 Particle Swarm Optimization

Another artificial life technique which performs well in optimization problems is Particle

Swarm Optimization (PSO). PSO is a stochastic search method that was developed by

Kennedy and Eberhart in 1995 [33]. The algorithm is an Evolutionary Algorithm (EA)

that imitates the sociological behavior of a flock of birds or school of fishes. In bird flocking,

the population benefits from sharing each individuals information and discoveries or past

experience with the whole population. Each individual (called particle) in the population

(called swarm) will “fly” over the search space to search for the global optimum [34]. PSO

is easily implemented as it uses numerical encoding. The convergence speed of PSO relies

on different parameter settings. A more detailed analysis about the convergence of PSO

can be found in [35] and [36]. We will be using the idea of particle swarm optimization to

design a new algorithm for distributed Grid job scheduling.
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1.5 Problem Statement

This research investigates, proposes, implements and compares two new approaches for

distributed load balancing inspired by Ant-Colony and Particle Swarm Optimization1.

There are several objectives a good load balancer should address such as fairness, robustness

and distribution; a detailed description of each is provided later. We are addressing these

requirements with this research. In the Ant-Colony approach each job submitted to the

Grid invokes an ant and the ant searches through the network to find the best node

to deliver the job to. Ants leave information related to the nodes they have seen as a

pheromone in each node which helps other ants to find lighter resources more easily. In

the particle swarm approach, each node in the network is considered to be a particle and

it tries to optimize its load locally by sending or receiving jobs to and from its neighbours.

This process being done locally for each node, results in a move toward the global optima

in the whole network.

1.6 Thesis Organization

The rest of this research is organized as follows: Chapter 2 is dedicated to related work

similar to this research. We are classifying load balancing algorithms into two categories,

centralized and decentralized, and are reviewing some relevant works in each category. The

contributions of this research and the benefits it brings to the field of Grid load balancing

are discussed in Chapter 3. It is followed by an introduction to Ant Colony Optimization

and Particle Swarm Optimization, before the proposed approaches are described in details.

Chapter 4 is dedicated to experimental design. A detailed overview of the GridSim toolkit

is provided and it is followed by design documentations of the algorithms. Chapter 5 focuses

on experimental results. Performance criteria and environmental settings are introduced in

this chapter; a thorough comparison between the performance of the algorithms and some

other classical approaches is also provided. Finally, Chapter 6 is dedicated to conclusions

and future work.

1This research is published in the Proceedings of the 24th Annual ACM Symposium on Applied Com-
puting, March 2009
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Chapter 2

Related Work

2.1 Overview

The research in the area of load balancing is diverse and it has been an issue in networks

since their emergence. There is more research on algorithms done in the area of centralized

load balancing than decentralized load balancing. In this chapter we review some research

to see how load balancing algorithms have evolved and get familiar with their diversity.

There are two sections in this chapter. In the first section we have a look at centralized

load balancing approaches which include classical approaches, artificial life inspired and

agent-based techniques. In the second section we investigate the literature of decentralized

load balancing approaches with the focus on the ant colony load balancing approach.

2.2 Centralized Load Balancing Approaches

In this section we first review some classical approaches in the area of centralized load

balancing. As the classical approaches did not satisfy all the requirements of large com-

putational needs, new approaches evolved. We investigate two common approaches in the

area of load balancing related to this research. They are agent-based and artificial life

approaches.

2.2.1 Classical Approaches

Classical approaches in centralized load balancing have been around since the emergence

of the networks. We will look at them briefly.

The Random approach is the simplest load balancing approach which assigns tasks to

resources in a random fashion regardless of the task properties or resource abilities.
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In the Round-Robin scheme the tasks are assigned to resources on a rotating basis.

Obviously, the characteristics of tasks or resources is not an issue while scheduling.

MET (Minimum Execution Time) assigns each task to the resource which performs

it in the least amount of execution time regardless of whether this resource is available or

not at that time [38].

MCT (Minimum Completion Time) assigns each task to the resource which ob-

tains the earliest completion time for that task. This causes some tasks to be assigned to

resources that do not have minimum execution time. Regarding complexity, if we have m

number of machines it takes O(m) time to map a given task to resources [38].

The Min-Min method finds the execution time of each task on each resource available,

then it chooses the smallest such completion time of the task-resource assignment. It

updates the completion times after such assignment and repeats the scenario until all

tasks are assigned. If we have m number of machines and s number of tasks this heuristic

takes O(s2m) time to complete [38].

Max-Min is very similar to Min-Min, except that it assigns a task with the maximum

expected completion time to the corresponding resource. So, it takes O(s2m) time as well

[38].

Suffrage is based on the idea that a task should be assigned to a certain host and

if it does not go to that host, it will “suffer” the most; meaning that the task should be

scheduled with more priority. For each task, its suffrage value is defined as the difference

between its best MCT and its second-best MCT and tasks with high suffrage value take

precedence [39].

2.2.2 Agent-Based Approaches

Cao et al. in [17], have addressed Grid load balancing issues using a combination of intelli-

gent agents and multi-agent approaches. At the global Grid level, each agent is a high-level

representative of a Grid resource and acts as a service provider of high performance com-

puting power. Agents are organized into a logical hierarchy by different role assignments.

There are three roles in the system: Broker, Coordinator and Agent. They cooperate with

each other to discover available Grid resources for tasks using a peer-to-peer mechanism for

service advertisement and discovery. The hierarchical model can help when issues of scal-

ability arises. When the number of agents increases, the hierarchy can help in processing
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many activities in a local domain and does not have to rely on some central agents. Still

their architecture of agents incorporates a central agent which coordinates the hierarchy

at the highest level.

In [40], an agent-based load balancing algorithm is proposed and is applied to drug

discovery and design. Its architecture is hybrid and the algorithm performs well in meeting

QoS (Quality of Service) and utilizing idle computational resources dynamically. However,

as there is a global information repository which maintains the global information of all

the resources in the Grid the same problem as all centralized approaches exist. It results

in a single point of failure which leads to critical problems in case the central part fails.

Another agent-based load balancing model is introduced in [41]. This is a credit-

based load balancing model. It works according to two policies: selection policy and

location policy. In the selection phase it decides which task should be migrated because

of overloaded machines and in the location phase it is decided where it should be sent to.

This mechanism not only works for load balancing in clusters and networks but can also

be applied in balancing agents with different properties in a multi-agent system. In their

approach each agent has a credit and the decision upon which an agent will be migrated or

will remain untouched is dependent on its credit. Each agent’s credit changes in accordance

with the behaviour of the agent system and its interactions. There is a central host which

is a decision maker about whether there is a need for an agent to migrate and also it is the

commander for selection and location policies.

Cao et al. [42], proposes an agent-based load balancing approach in which an agent-

based Grid management infrastructure is coupled with a performance-driven task scheduler

that has been developed for local Grid load balancing. This work addresses the problem

of load balancing in a global Grid environment. A genetic algorithm-based scheduler has

been developed for fine grained load balancing at the local level (such as a multiprocessor

or a cluster of workstations). This is then coupled with an agent-based mechanism that

is applied to balance the load at a higher level (Grid level). Agents cooperate with each

other to balance workload in the global Grid environment using service advertisement and

discovery mechanisms [42]. In this research, the scalability is an issue of great importance

as a genetic algorithm approach is being used in the local level load balancing part and

this may result in a bottleneck for the system.
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2.2.3 Artificial Life Approaches

Subrata et al. [18], used Genetic Algorithms [43] and Tabu search [44] for performing

centralized load balancing simulations. Both of theses techniques are evolutionary search

techniques to find solutions to optimization and search problems. The techniques used

are inspired from evolutionary biology and have behaviours such as inheritance, mutation,

selection, and crossover. They propose a centralized scheduler in which a typical assignment

of tasks to the resources is considered as a solution, and Genetic Algorithms and Tabu

search are used to search in the search space and improve the solution. They have proved

that the two techniques work better compared to some classical algorithms like Min-min,

Max-min and Suffrage in terms of time makespan. The makespan is the difference between

the time the first job is sent to the Grid until the last job comes out of the Grid. Each

of these three algorithms select a job from a set of tasks, calculate its completion time on

each existing processor and assign it to a resource iteratively. Each algorithm differs in

the way they choose a task from the set. The Min-min algorithm chooses a task with the

minimum completion time in the set. In Max-min, the task with the maximum completion

time is chosen first. In suffrage, as introduced before, a metric is defined as suffrage and

is used to choose the task. In their implementation a metric is defined as the difference

between the first minimum completion time, and second best minimum completion time

and the task with the highest suffrage is chosen.

Literature using particle swarm optimization for load balancing is less rich compared

to other approaches such as Ant-Colony load balancing.

One application of particle swarm optimization, which is a subset of evolutionary al-

gorithms, in job scheduling is provided in [45], where a fuzzy based particle swarm opti-

mization approach is proposed. They create a fuzzy membership matrix representation of

the job scheduling problem out of the existing jobs and resources. Each element in the

matrix defines the degree of membership of the specific job to a specific resource. By using

PSO, the fitness of such a matrix is improved. The representations of the position and

velocity of the particles in the conventional PSO is extended from the real vectors to fuzzy

matrices using the membership matrix. The position matrix indicates a fuzzy potential

scheduling solution. As the approach is a central approach and does not take the arrival

of new jobs in a peer-to-peer like architecture into account it needs further investigations
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for such environments.

Another use of particle swarm optimization in Grid task scheduling is investigated in

[46]. The mechanism is that they produce a task resource assignment graph out of each

task scheduling scheme, and therefore, the problem can be considered as a graph optimal

selection problem. Then, a particle swarm algorithm is applied to find the optimal solution

in this graph. The longest path of the task-resource assignment graph is considered as the

fitness value and it encodes every task-resource assignment as a particle. However, this

approach needs the information about the available resources and tasks, and does not

address the fact being exposed to a dynamic environment.

Salman et al. [47], have tried to solve the task assignment problem with particle swarm

optimization, where they try to find the best mapping between tasks and resources. Each

mapping of tasks to resources is considered as a particle. These particles fly over the search

space to find the global solution. They compare their approach with a genetic algorithm

solution over a number of randomly generated mapping problem instances, and show that

PSO can perform better than GA in most test cases.

2.3 Decentralized Load Balancing Approaches

Research in the area of distributed load balancing is diverse. Many researchers have used

Ant colony for routing and load balancing. In this section, we provide an overview of some

of the work in this area.

2.3.1 Classical Approaches

There are several classical approaches in the area of load balancing which have been around

since the emergence of networks.

In sender-initiated algorithms, load distributing activity is initiated by an over-

loaded node (sender) trying to send a task to an underloaded node (receiver) [24].

In receiver-initiated algorithms, load distributing activity is initiated from an un-

derloaded node (receiver), which tries to get a task from an overloaded node (sender)

[24].

A stable symmetrically initiated adaptive algorithm uses the information gath-

ered during polling (instead of discarding it, as the previous algorithms do) to classify
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the nodes in the system as sender/overloaded, receiver/underloaded, or OK (nodes having

manageable load). The information about the state of the nodes is maintained at each

node by a data structure composed of a senders list, a receivers list, and an OK list. These

lists are maintained using an efficient scheme and list-manipulative actions, such as moving

a node from one list to another or determining to which list a node belongs. These actions

impose a small and constant overhead, irrespective of the number of nodes in the system.

Consequently, this algorithm scales well to large distributed systems [24].

In the State Broadcast Algorithm (SBA) the information policy is based on status

broadcast messages. Whenever the state of a node changes, because of the arrival or

departure of a task, the node broadcasts a status message that describes its new state.

This information policy enables each node to hold its own updated copy of the system

state vector (SSV) and guarantees that all the copies are identical.

While the information policy of the previous algorithm is based on broadcast messages,

the information policy of the Poll when Idle Algorithm (PID) is based on polling. The

node starts to poll a subset of the system nodes whenever it enters an idle state.

2.3.2 Ant Colony Approaches

Ant colony optimization has been widely used in both routing and load balancing [48].

As we described earlier in Chapter 1, Ant Colony Optimization (ACO) is considered a

subset of social insect system approaches. The main idea underlying this approach is the

ability of ants to carry and deposit pheromones (information trails) along their way. This

information can later be used by other ants passing the same way.

One approach which is very similar to the ant colony algorithm we propose in this thesis

is Messor [49]. Montresor et al. have used an ant colony approach to develop a framework

called Anthill which provides an environment for designing and implementing Peer-to-Peer

systems. They have developed Messor which is a distributed load balancing application

based on Anthill and they have performed simulations to show how well Messor works.

In the algorithm, they propose ants can be in one of the two following states: Search-

Max or Search-Min. In the Search-Max state the ants try to find an overloaded node

in the network and in the Search-Min state they search for underloaded nodes. Finally,

they switch jobs between overloaded and underloaded nodes and hence achieve the load

balancing. However, they have not addressed the problem of topology changes in the
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network and do not provide evidence to show how good their approach is in comparison

to other distributed load balancing approaches.

In [50], a very similar approach to Messor is provided. In this work an agent-based self-

organization is proposed to perform complementary load balancing for batch jobs with no

explicit execution deadlines. In particular, an ant-like self-organizing mechanism is intro-

duced and is shown to be able to yield good results in achieving overall Grid load balancing

through a collection of very simple local interactions. Ant like agents move through the

network to find the most overloaded and underloaded nodes but the difference to previous

research is they only search 2m + 1 steps before making the decision and try balancing the

load after finding this information. Different performance optimization strategies are car-

ried out. However, they do not compare their results with other distributed load balancing

strategies.

Salehi et al. [51], have done similar research to [49] and [50] with some small mod-

ifications. They present an ecosystem of intelligent, autonomous and cooperative ants.

The ants in this environment can reproduce offspring when they realize that the system is

drastically unbalanced. They may also commit suicide when they find equilibrium in the

environment. They wander m steps instead of 2m + 1 and they balance k overloaded node

and k underloaded nodes instead of one at a time. A new concept called Ant level load

balancing is presented for improving the performance of the mechanism. When the ants

meet each other at the same node they exchange the information they carry with them

and continue on their way.

Sim et al. [52] [48], present a Multiple Ant Colony Optimization (MACO) for load

balancing circuit-switched networks. In MACO more than one colony of ants are used to

search for optimal paths and each colony of ants deposits a different type of pheromone

represented by a different colour. MACO optimizes the performance of a congested network

by routing calls via several alternative paths to prevent possible congestion along an optimal

path.

Another related and similar research to the ant colony approach we propose in this

thesis is done by Al-Dahoud et al. [32]. In their research each node sends a coloured

colony throughout the network; this approach helps in preventing ants of the same nest

from following the same route and hence enforcing them to be distributed all over the

nodes in the network. However, their experimental results are confined to a small number
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of nodes and all the jobs have the same properties.

Heusee et al. [53], have used multi-agent systems which have some similarity to ants

to solve the problem of routing and load balancing in dynamic communication networks.

They have proposed two kinds of routing agents depending on when the distance vec-

tor update occurs. The update can be performed while agents are finding their way to

their destination (forward routing) or when they backtrack their way back to their source

(backward routing).

Other similar research which benefits from the Ant colony’s power mostly focus on load

balancing in routing problems [31] and [48]. In [48], the research provides a survey of four

different routing algorithms: ABC, AntNet, ASGA. ABC is an Ant-Based Control system.

They have simulated a network with a typical distribution of calls between nodes; nodes

with an excess of traffic can become congested and cause calls to be lost. Using the ants

concept, the ants move randomly between nodes, selecting a path at each intermediate

node based on the distribution of simulated pheromones at each node. As they move,

they deposit simulated pheromones as a function of their distance from their source node,

and the congestion encountered on their way [31]. In AntNet, they have applied ideas of

the ant colony paradigm to solve the routing problem in datagram networks. Ants collect

information about the congestion status of the followed paths and leave this information

locally in the nodes. On the way back from the destination to the source, the local visiting

table of each visited nodes are modified accordingly [54]. ASGA integrates ant colony

systems with genetic algorithms. Each agent in the ASGA system encodes the sensitivity

to link and sensitivity to pheromone parameters. Each agent in the population has to solve

the problem using an ant system and each agent has a fitness according to the solution

found [55].

2.4 Job Migration

Some researchers have considered job migration (migration of partly executed jobs) in their

load balancing algorithms. However, job migration is not very beneficial in practice and

some research work have tried to investigate this ([56] [57] [58]). It involves collecting all

system states (e.g. virtual Memory image, process control blocks, unread I/O buffer, data

pointers, timers etc.) of the job which is large and complex. Studies have shown that [18]:

25



• Job migration is often difficult to achieve in practice.

• The operation is generally expensive in most systems.

• There are no significant benefits of such a mechanism over those offered by non-

migratory counterparts.

• There are very rare cases in which job migration can provide slight improvements.

These conditions usually have high variability in both job service demands and the

workload generation process [56].

According to these, we are not concerned with job migration for our proposed approaches.

As most of the classical approaches are based on centralized load balancing and this

category are mostly used in many standard toolkits like Globus; there are efforts to de-

velop robust decentralized approaches to benefit from their advantages. The review in the

related literature reveals that there are not as many decentralized approaches as there are

centralized ones. On the other hand, existing decentralized approaches which are mostly

based on Ant Colonies are not accompanied with various performance measures to state

how they perform in different scenarios and situations. Still, decentralized approaches in

the Grid infrastructure are fewer in number than approaches designed for networks and

peer-to-peer systems. In this research, we introduce two new load balancing algorithms

based on Ant Colony and particle swarm optimization. The Ant Colony approach is similar

to some approaches we reviewed in this section, while the particle swarm is a completely

new approach. We will measure their performance under different scenarios to have a good

understanding of their responsiveness.

2.5 Summary

In this chapter we investigated different research areas of load balancing and provided

details about several research work which addressed the problem in both areas of centralized

and distributed load balancing. In the next chapter, we propose two new approaches

inspired by artificial life techniques for distributed job scheduling for the Grid.
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Chapter 3

Proposed Load Balancing Approaches

3.1 Overview

In this chapter, the characteristics and requirements of a good load balancing algorithm

are investigated. Furthermore, the contributions the research makes in the area is given in

Section 3.2. The proposed approaches using ant colony and particle swarm optimization

are introduced in Section 3.2 and 3.3 respectively, including detailed descriptions and

pseudo-code listed in Sections 3.4 and 3.5.

3.2 Contributions and Benefits

In the previous two chapters we have discussed what load balancing algorithm is, outlined

the different categories of load balancing algorithms, and reviewed some related work done

in the area of load balancing and job scheduling on the Grid. Putting these all together

reveals some issues and requirements which a load balancing algorithm should address. A

list of these requirements is provided here:

• Optimum resource utilization. A load balancing algorithm should optimize the

utilization of resources whether they are resources in the Grid such as computational

or data resources, time or cost related to these resources, etc. As the Grid environ-

ment leaves us with a dynamic search space this optimality is inevitably a partial

optimal solution which improves the performance.

• Fairness. When a load balancing algorithm is fair, it means that the difference be-

tween the heaviest loaded node and lightest loaded node in the network is minimized

keeping in mind that the search space is dynamic. The load is defined by the number

of jobs assigned to each resource relative to its computational power.
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• Flexibility. It means that as the topology of the network or the Grid changes, the

algorithm should be flexible enough to adhere to the changes in the network.

• Robustness. Robustness refers to the fact that when failures in the system occur

the algorithm should have a way to deal with the failure and be able to cope with the

situation, not to break down because of the failure; on the contrary, the algorithm

should be able to manage it.

• Distribution. Distribution for managing resources and running the load balancing

algorithm has the benefit of leaving out the single point of failure which centralized

approaches are affected by.

• Simplicity. By simplicity we try to point out both the size of single software units

which are being transferred among resources in the Grid, and also the overhead that

these units bring to resources in order to make load balancing decisions. The size

of software units are important as the take up bandwidth when want to transfer

themselves between resources. As there units are being executed in Grid nodes there

is a preference to keep needed computations as simple as possible.

As we described earlier in Chapter 1 (Section 1.4), artificial life techniques have shown

their usefulness in many optimization problems as well as in job scheduling as it can

be encoded as an optimization problem. As in nature, these systems have evolved to

adopt and work under many conditions and changes, both in the environment and in

their population they show good flexibility and robustness in many circumstances which

provides us inspirations for computer algorithms. On the other hand they are distributed

and simple in nature which can be considered a perfect solution without the single point

of failure problem and the overhead for the network.

This research introduces two new algorithms in the area of swarm intelligence tech-

niques for load balancing. One of the algorithms is taking its inspiration from social insect

systems and more specifically Ant Colony systems. The other algorithm is based on par-

ticle swarm optimization. Ant Colony optimization has been used for load balancing and

routing purposes in networks and also in Grid resource scheduling. In this research, we are

suggesting a new approach for applying Ant colony optimization to the problem of load

balancing. In the previous approaches, ants act independently from jobs being submitted

28



while in our approach there is a close binding between jobs and load balancing ants. On

the other hand, particle swarm has not been used for distributed load balancing in the

Grid before and we are proposing a new way to use it in the Grid. A list of the bene-

fits and expansions which this research has brought to the area of Grid load balancing is

summarized below:

1. Well-known research works in the area of Grid load balancing, even those with in-

spiration from artificial life techniques like genetic algorithms and Tabu search, have

been suggested using centralized approaches which, as we mentioned before, have

many drawbacks. Literature using swarm intelligence techniques for distributed load

balancing is less rich and has not been around for a long time.

2. Although a variety of ant colony inspired approaches have been used for distributed

load balancing, there is no comparison of this approach with any other distributed

artificial life technique. In this research, we compare the performance of the ant

colony approach with another artificial life inspired technique, particle swarm. We

will be performing measurements and comparisons between the two algorithms to

find which can be more effective and under which conditions. We will also compare

the performance of the algorithms in comparison to two other classical techniques.

3. Particle swarm optimization has been used to address the problem of centralized

load balancing [45, 46, 47], but it has never been used for distributed load balancing

in a dynamic environment such as the Grid. In this research we will see that this

approach can perform very well in this regard.

4. Most of the research and experimental results, especially in the area of distributed

load balancing and ant colony, have used their own developed infrastructure to sim-

ulate the performance of their approaches, thus the question remains how well they

will perform in a real world environment. We have used a reliable simulation plat-

form, GridSim, which provides us with reliable results and takes a step further to

do the evaluations in a more realistic environment. A detailed description about the

GridSim framework will be provided later.

The rest of this chapter is organized as follows: the next two sections will provide

information about Ant colony optimization and particle swarm optimization. Then, we
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propose our new algorithms, AntZ and ParticleZ, which are based on the two approaches

introduced.

3.3 Ant Colony Optimization

In the early 1990s, Ant Colony Optimization (ACO) [59, 60, 61] was introduced by Dorigo

and colleagues as a novel nature-inspired meta-heuristic for solving hard Combinatorial

Optimization (CO) problems [62]. ACO takes its inspiration from the foraging behav-

ior of real ants. Ants use a signalling communication system based on the deposition of

pheromone over the path they follow, marking their trail. Pheromone is a hormone pro-

duced by ants that establishes a sort of indirect communication among them. Basically,

an individual ant moves at random, but when it finds a pheromone trail, there is a high

probability that this ant will decide to follow this trail.

Individual ants have a relatively basic and unsophisticated behaviour. They have a

very limited memory and exhibit individual behaviour that appears to have a large ran-

dom characteristic. Acting as a collective, however, ants manage to perform a variety of

complicated tasks with great reliability and consistency [26]. One of the well-known and

classical examples of the ants being able to do complicated tasks is finding the shortest

path between a nest and a food source. An example of the construction of a pheromone

trail while searching for a shorter path is shown in Figure 3.1, which was first presented

in [63]. In Figure 3.1A, there is a path between the food and the nest established by the

ants. In Figure 3.1B, an obstacle is inserted in the path. Thus, the ants spread to both

sides of the obstacle, since there is no clear trail to follow (Figure 3.1C). As the ants go

around the obstacle and find the previous pheromone trail, a new pheromone trail will be

formed around the obstacle. This trail will be stronger in the shortest path than in the

longest path, as shown in Figure 3.1D, as the shorter path receives a higher amount of

pheromone in a time unit [2]. Although, all ants are moving at approximately the same

speed and deposit a pheromone trail at approximately the same rate, it is the fact that it

takes longer to contour the obstacle on their longer side than on their shorter side which

makes the pheromone trail accumulate faster on the shorter side. It is the ant’s preference

to follow higher pheromone trail levels which makes this accumulation even faster on the

shorter [64].
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Figure 3.1: A. Ants in a pheromone trail between nest and food; B. an
obstacle interrupts the trail; C. ants find two paths to go around the obstacle;
D. a new pheromone trail is formed along the shorter path [2].

As we have seen in the example, a single ant has no global knowledge about the task

it is performing; yet by indirect communication skills, they tend to be able to do tasks

which seem intelligent. The ant’s actions are based on local decisions and are seemingly

unpredictable. The intelligent behavior naturally emerges as a consequence of the self-

organization and indirect communication between the ants. This is usually called Emergent

Behavior or Emergent Intelligence.

Depending on the species, ants may lay pheromone trails when travelling from the nest

to the food, or from the food to the nest, or when travelling in either direction. They also

follow these trails with a trustworthiness, which, among other variables, is a function of

the trail strength. Ants leave pheromones as they walk by stopping briefly and touching

their gaster on the ground, which carries the pheromone leaving gland. The strength of

the trail they lay is a function of the rate at which they make deposits, and the amount

per deposit. Since pheromones evaporate, the strength of the trail when it is encountered

by another ant is a function of the original strength, and the time since the trail was laid.

Most trails consist of several trails from many different ants, which may have been laid at

different times; it is the composite trail strength which is sensed by the ants.

By now we have explained that, indirect communication between the ants via pheromone
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trails enable them to find the shortest paths between their nest and food sources. This

characteristic of real ant colonies is exploited in artificial ant colonies, in order to solve

combinatorial optimization problems [65, 66, 67].

What makes the ant colony approach especially interesting for the distributed load

balancing problem is its distributed nature. Other artificial life techniques like genetic

algorithms, tabu search or particle swarm optimization, though being quite powerful for

optimization problems, they have one drawback that make them better for centralized envi-

ronments; the solutions should be compared with each other by evaluating their usefulness

(i.e. fitness) which prevents a completely distributed approach. Although distributed ver-

sions of them have been introduced recently, this distribution is achieved by adding some

extra steps to the classical algorithms, which have an overhead as well (for example it is

called migration in GA) [68]. On the other hand, ants begin to move toward the optimized

solution by communicating indirectly through the environment with other local ants, and

this communication is even biased through iterations.

Besides the ability of indirect communication via leaving pheromone on their paths,

ants are capable of other complex behaviours without having any intelligence incorporated

in them. One of the behaviours is the ability of ants to cluster objects (like dead corpses)

in their nests. At the first glance, they may seem to be directed by a leader to cluster

objects, but Figure 3.2 shows a very simple behavior for an ant which enables it to cluster

objects without any intelligence. This figure shows a flow chart of an ant which moves

around randomly until it encounters an object; if the ant has been carrying an object, it

will drop the object, otherwise the ant picks it up and continues on its way [49]. As can be

seen, each ant, by following this very simple behaviour, seems to be cooperating and piling

dead corpses in the nest. In load balancing we are using the same pattern of behaviour

only in a reverse way. The ants want to distribute jobs as many as possible rather than

piling them.

Taking the idea of leaving trails to guide other ants and the idea to cluster objects we

have enough information about an ant’s behaviour. We introduce our proposed algorithm

(AntZ) in Section 3.4 based on this information.
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Figure 3.2: The flow chart of an ant behavior capable of clustering objects

3.4 Particle Swarm Optimization

Particle swarm optimization (PSO) has roots in two methodologies. It relates to artificial

life in general, and in particular ,to bird flocking, fish schooling, and swarming theory. It

is also related to evolutionary computation, and has ties to both genetic algorithms (GA)

and evolutionary programming. The system is initialized with a population of random

solutions and searches for the optimum solution by updating itself through generations.

However, unlike GA, PSO (in its standard form) has no evolutionary operators such as

crossover and mutation. In PSO, the potential solutions, called particles, fly through the

problem space by following the current optimum particles [33]. Relationships, similarities

and differences between PSO and GA are briefly reviewed in [69].
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In a PSO system, multiple candidate solutions can coexist and collaborate simultane-

ously. Each solution candidate, called a particle, flies in the problem search space (similar

to the search process for food of a bird swarm) looking for the optimal position to land.

A particle, as time passes through its quest, adjusts its position according to its own ex-

perience, as well as according to the experience of neighbouring particles [46]. There are

two main characteristics for each particle in a PSO algorithm: its position which defines

where the particle lies relative to other solutions in the search space; and its velocity which

defines the direction and how fast the particle should move to improve its fitness. As in

any evolutionary algorithm, the fitness of a particle is a number representing how close

that particle is to the optimum point compared to other particles in the search space.

One of the advantages of the particle swarm optimization technique over other social

behavior inspired techniques is its implementation simplicity. As there are very few pa-

rameters to adjust in a particle swarm optimization approach, it is simpler than other

evolutionary techniques. Yet, as it is a new approach, it has not yet been widely used for

dynamic Grid job scheduling.

A simple particle swarm optimization pseudo-code can be seen in Algorithm 3.4.1. The

first step is the initialization step. Particles are created and their positions and velocity

vectors are assigned randomly. After that, until a final criterion is met, the algorithm runs

by calculating the fitness value for each particle. Each particle has a history of its best

fitness value found so far and it will be updated when the particle finds a position which

is better than all the positions it has been in given its history. We call this value pBest.

On the other, hand the algorithm keeps track of the best particle and its fitness among all

the particles in the search space which is the global optimum so far and we refer to it as

gBest. At the end of each iteration, both the local best and the global best solutions are

updated and used in the next iteration.

In Algorithm 3.4.1 it is shown that both the pBest and gBest get updated. Equations

3.1 and 3.2 state what is done to update the best local and best global solutions math-

ematically. On the other hand, ĝ is the current optimal solution with fitness f(ĝ). The

current position of the particle is denotaed by xi and x̂i is the representative for the best

position of the particle so far in the ith iteration.

The last step in the algorithm is to update each particle’s position and velocity given

all the information we have collected so far.
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Equation 3.3 is used to calculate the particle’s new velocity according to the three

terms which constitute the equation. The first term is the effect of the particle’s previous

velocity on its current velocity. The second term controls the effect of the particle’s current

distance from the best position the particle has been in during its lifetime; as this distance

increases the velocity also increases to guide the particle toward the best position it has

been in its history. The third term controls the particle to move toward the best particle

in the swarm and as it gets farther from it, the effect of this term will be more. Then, the

particle flies toward a new position according to Equation 3.4 [46].

Iff(xi) < f(x̂i), x̂i ← xi (3.1)

f(xi) < f(ĝ), ĝ← xi. (3.2)

Algorithm 3.4.1: particleSwarmOptimization()

globalBestF itness← 0

for eachParticle← 1 to n{
initializeParticle

while notConverged

for particle← 1 to n

fitness← calculateF itnessV alue

if fitness > BestF itnessInHistory

then pBest← updateBestF itnessInHistory

if fitness > globalBestF itness

then gBest← updateGlobalBestParticle

velocity ← updateParticleV elocities(pBest, gBest)

position← updateParticlePositions(velocity)

Two factors characterize the particle’s status in the search space: its position and its

velocity. The m-dimension position for the ith particle in the kth iteration can be denoted

as xi(k) = (xi1(k), xi2(k), ..., xim(k)). Similarly, the velocity (i.e., distance change) is also
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an m-dimensional vector, for the ith particle in the kth iteration and can be described as

vi(k) = (vi1(k), vi2(k), ..., vim(k)). The particle updating mechanism for a particle can be

formulated as in Equation 3.3 and 3.4:

vk+1
id = w × vk

id + c1 × rand1 × [pbest− xk
id] + c2 × rand2 × [gbest− xk

id] (3.3)

xk+1
id = xk

id + vk+1
id (3.4)

The term vk
id, called the velocity for particle i in the kth iteration, represents the dis-

tance to be travelled by this particle from its current position, xk
id represents the particle

position in the kth iteration, pbest represents its best previous position (i.e. its experience),

and gbest represents the best position among all particles in the population. Further, rand1

and rand2 are two random functions with a range [0,1], having similar or different distri-

butions. Also, c1 and c2 are positive constant parameters called acceleration coefficients

(which control the maximum step size of the particle). The inertia weight w, is a user

specified parameter that controls together with c1 and c2, the impact of previous historical

values of particle velocities on its current velocity. A larger inertia weight pressures towards

global exploration (searching new area), while a smaller inertia weight pressures toward

fine-tuning the current search area. Suitable selection of the inertia weight and acceleration

coefficients can provide a balance between the global and the local search. The random

values involved, prevent the optimization from being caught in local optimal. A detailed

analysis on the effect of parameter selection on the convergence of PSO is provided in [70].

3.5 Ant Colony Load Balancing: AntZ

In this section, a new load balancing algorithm which is developed based on the concepts

of ant colony optimization is described. This algorithm (AntZ) is developed by merging

the idea of how ants cluster objects with their ability to leave trails on their paths so that

it can be a guide for other ants passing their way. We are using the inspiration of how ants

are able to cluster objects trying to use an inverse version and use it to spread the jobs in

the Grid. Figure 3.3, shows an overview of a network being used by ants. In the figure,

circles denote the resources in the Grid and ants are carrying job information moving from

one node to another to deliver the jobs.
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Figure 3.3: Overview of the AntZ system

Figure 3.4, shows the sequential events which occur in the system when a job is sub-

mitted to the Grid.

A description of each phase follows:

1. Job Submission: A user submits a job to its local resource node. The jobs each

user submits are independent of each other.

2. Ant Invocation: An ant is created and invoked in response to the user’s request.

The ant is initialized with the job supposed to be scheduled on the Grid.

3. Ant Search: The ant starts searching the Grid to deliver the job to the best suitable

node (lightest loaded node) by taking one step a time. Each step consists of leaving

one resource and moving to another resource in the Grid. The number of steps each

ant takes can either be fixed for all the ants or different for each one.

4. Pheromone Laying: The ants carry the load information of the visited nodes along

with themselves. As the ant is moving from one node in the network to another it

builds up statistical information about the load of the nodes it has visited in resources.

5. Decision Making: The ants decide which resource to choose for their next step ei-

ther by looking at the load table information of nodes or they choose a node randomly

by the probability of a mutation factor.

6. Job Execution: Finally, the ant delivers the job to a resource and dies. Once the

job is completed the answer will be sent back to the original resource.
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Figure 3.4: Different phases of the AntZ algorithm

A pseudo-code of the AntZ approach is provided in Algorithm 3.5.1. AntZ is a dis-

tributed algorithm and each ant can be considered as an agent working independently.

The pseudo-code addresses the main functions that an ant performs during its life cycle.

Collectively, all the ants show the desired behaviour by following these steps. More details

about this algorithm can be found in the Appendix, which provides the complete source

code of the implementation.

As shown in the pseudo-code, when a job is submitted to a local node in the Grid an ant

is initialized and starts working. In each iteration, the ant collects the load information of

the node it is visiting (getNodeLoadInformation()) and adds it in its history. The ant also

updates the load information table in the visiting nodes (localLoadTable.update()). This

update simply is a table entry update with new information about load status of resources.

When moving to the next node the ant has two choices. One choice is to move to a

random node with a probability of mutation rate, mutRate. The other choice is to use the

load table information in the node to choose where to go. The mutation rate decreases
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with a DecayRate factor as time passes so that the ant will be more dependent to load

information than to random choice. This iterative process is repeated until the finishing

criteria is met which is a predefined number of steps. Finally, the ant delivers its job to

the node and finishes its task.

Ants build up a table in each node, shown in Table 3.1. This table acts like a pheromone

an ant leaves while it is moving and guides other ants to choose better paths rather than

wandering randomly in the network. Entries of each local table are the nodes that ants

have visited on their way to deliver their jobs together with their load information.

Algorithm 3.5.1: AntZAlgorithm(MutRate,MaxSteps, DecayRate)

step← 1

initialize()

while step < MaxSteps

do



currentLoad← getNodeLoadInformation()

AntHistory.add(currentLoad)

localLoadTable.update()

if random() < MutRate

then nextNode = RandomlyChosenStep()

else nextNode = chooseNextStep()

MutRate←MutRate−DecayRate

step← step + 1

moveTo(nextNode)

deliverJobToNode()

Reading the information in the load table in each node and choosing a direction, which

is represented as the chooseNextStep() procedure in Algorithm 3.5.1, the ant uses a simple

policy. It chooses the lightest loaded node in the table. The corresponding pseudo-code is

provided in Algorithm 3.5.2. As shown in the algorithm, the ant chooses the lighter node

in the table and in case of a tie, the ant chooses one with an equal probability.
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NodeIp Load

192. 168. 35. 25 0.8

... ...

... ...

Table 3.1: Load table information in nodes

Algorithm 3.5.2: chooseNextStep()

bestNode← currentNode

bestLoad← currentLoad

for entry ← 1 to n

if entry.load<bestLoad

then bestNode← entry.node

else if entry.load = bestLoadif random.next < probability

then bestNode← entry.node

As the number of jobs submitted to the network increases, the ants can take up a huge

amount of bandwidth of the network, so moving ants should be as simple and small-sized

as possible. To do this, instead of carrying the job while the ant is searching for a “light”

node, it can simply carry the source node information to which the job was delivered and

a unique job id of the source node. Thus, whenever an ant reaches its destination the job

can be downloaded from the source as needed.

The algorithm has some parameters which can be set according to the specific schedul-

ing requirements (i.e. size of the network, job specifications, etc.). The effect of these

parameters and their values on the performance of the algorithms are investigated. One

of the parameters is MaxSteps which defines how many steps an ant should be moving

around until it delivers the assigned job to a node in the Grid. If the ant wanders too

much before delivering its job, it will cause an increase in the execution time of each job

and hence decrease the performance. On the other hand, if the ant gives up too quickly
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without moving around then the pheromone (load table information) which it leaves be-

hind decreases, which in turn decreases the performance of the algorithm. Furthermore,

the ant might not have enough time to encounter a good and light node. Thus, all these

parameters should be set carefully.

Another parameter which influences the performance of the AntZ algorithm is MutRate.

As the ants are moving and they are using the load table information to decide which way

to go, they sometimes randomly choose an arbitrary node in the Grid to move towards

it. The probability of choosing their way randomly is controlled by MutRate. MutRate

decreases with a decay rate (DecayRate), while the ant is alive and is searching. This

parameter (DecayRate) can also have an effect on the performance of the AntZ algorithm.

3.6 Particle Swarm Optimization: ParticleZ

Using the idea of particle swarm optimization described in Section 3.3, which proposes a

new approach for scheduling jobs in the Grid. In the ParticleZ algorithm, all the nodes in

the Grid are considered as a flock or group of swarms (of bees) and each node in the Grid

is a particle in this flock. Figure 3.5, simply shows a symbolic representation of a Grid

running the ParticleZ algorithm. In the figure, each bee is in position of each resource in

the Grid, the black lines between bees are a representation of links between resources in

the Grid and the honey they are carrying is the representation for jobs submitted. When

a bee has a lot of honey to carry, it will share it with one of its neighbours who has less

honey.

As we described in Section 3.3, each particle in the particle swarm optimization is

defined by two characteristics: its position and its velocity. Following the analogy from

the particle swarm optimization perspective, the position of each node in the flock can

be determined by its load. This definition helps as we are actually searching in the load

search-space and we are trying to minimize the load, so each node in this search space

takes a position according to its load. The velocity of each particle in its position can

be defined by the load difference the node has compared to its other neighbour nodes.

As the particles are trying to balance the load, they can move toward each other by the

changes they make to their position (i.e. load), this change in each particle’s position can

be achieved by exchanging jobs between them. The larger their difference is, the faster
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Figure 3.5: Overview of the ParticleZ system

they will move toward each other, with a larger velocity.

Figure 3.6 shows the different phases of the ParticleZ algorithm. A description of each

phase follows:

1. Job Submission. A user submits a job to its local resource node. The jobs each

user submits is supposed to be independent of each other.

2. Queueing. As jobs are submitted to the nodes in the network they go in a local

queue list of jobs in each node waiting for their turn to be executed.

3. Node communication. Nodes communicate with each other about their load in-

formation to find a better (lighter) candidate to execute their workload. Actually,

resources are trying to move toward their best neighbours (particles) by submitting

jobs assigned to them (only those jobs waiting in the queue list to be executed) to

other lower loaded neighbour nodes.

4. Job Exchange. Nodes submit some of their jobs to their best found neighbours.

The amount of workload being submitted is being controlled by a threshold defined

by the load difference. Another factor effecting the amount of load exchange is the

difference between the lightest neighbour and the second lightest neighbour as we

do not want to burden too much load on the lightest neighbour, that it exceeds the
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Figure 3.6: Different phases of the ParticleZ algorithm

second lightest neighbour load.

Taking into account that all nodes are exchanging their loads in parallel, and the

dynamic nature of the environment, the network will reach to a partial global optima

quickly. Thus, each node will submit some jobs to one of its neighbours, which has the

minimum load among all. If all its neighbours are busier than the node itself, no job is

submitted by the current node.

The pseudo-code describing this scenario can be seen in Algorithm 3.6.1. This is the

pseudo-code of each individual particle (resource), which runs the ParticleZ algorithm. As

can be seen in the pseudo-code, if there are any jobs in the queue waiting to be executed

the node tries to submit them to a lighter node in its neighbourhood, and hence spread

the load fairly among resources.

In exchanging load from a heavier loaded node to a lighter loaded node, attention must

be paid not to burden the lighter node, so that it exceeds the load of the second lightest

node among neighbours.

If this happens we are not only distributing the load fairly but we are creating a load

imbalance. To achieve this, we define a THRESHOLD variable which tells how much

43



load exchange should happen between nodes. It is calculated by subtracting lightestLoad

from secondLightestLoad among neighbours and the load exchange happens as long as the

velocity is greater than the THRESHOLD value.

There are some issues related to the PSO which are necessary to be addressed. In the

algorithm we propose, the particle tries to move toward its best local neighbour only, while

in the classical PSO algorithm particles keep track of their best global solutions so far.

The reason we have not included the history of each particle is that we are dealing with a

dynamic environment in which the problem being solved is changing all the time as users

are submitting jobs unpredictably; thus, the global best solution that the particle has seen

might not be valid in this dynamic environment.

Algorithm 3.6.1: ParticleZAlgorithm()

sourceLoad← currentNodeLoad()

while running

do if jobsQueue.size > 0

then

lightestLoad← chooseBestNeighbour(sourceLoad)

secondLightestLoad← chooseSecondLightestNeighbour(sourceLoad)

velocity ← sourceLoad− lightestLoad

THRESHOLD ← lightestLoad− secondLightestLoad

while velocity > THRESHOLD

do
submitJobs(velocity, destLoad)

sourceLoad← currentNodeLoad()

velocity ← sourceLoad− lightestLoad

The equation for updating the velocity of each particle which was introduced in Section

3.3 takes the following form in our design of ParticleZ:

vk+1
id = gbest− xk

id (3.5)

As mentioned earlier, we are dealing with an environment which is changing dynami-

cally (i.e. the search space is changing), so the use of the past experience of each particle is
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not useful; therefore, we assign zero to c1 in order to omit the effect of the past history of

the particle at the optimum point. Also again, because of the dynamicity of the problem

the previous velocity should not effect our current decision, therefore we assign a value of

zero for w as well. On the other hand, we want to use neighbour particles to decide which

one is better to share the work load with; we have used a value of one for c2.

In Equation 3.6, the formula for updating a particle’s position is shown which is the

same as the one we introduced in Section 3.2. As mentioned, the position of a particle

(xid) is its load value and it changes while the resource submits jobs to its neighbours.

xk+1
id = xk

id + vk+1
id (3.6)

3.7 Summary

In this chapter, we reviewed the requirements of a good load balancing algorithm and listed

the characteristics of this research based on related work. The optimization approaches

used to develop the algorithms were introduced and the AntZ and ParticleZ algorithms

were described in details. Regarding the characteristics introduced in section 3.2, the

algorithms are distributed and flexible in response to changes in the Grid. They are simple

as the size of an ant or a communication message in ParticleZ is very small. More on

this issue will be provided while we show the experimental results in Chapter 5. The next

chapter is dedicated to the design and implementation of the approaches introduced.
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Chapter 4

Experimental Design and Implementation

4.1 Overview

In this chapter, we provide the design and implementation of the proposed approaches. In

the first step, we implemented the algorithms simply without any simulation framework,

to be able to test the feasibility of the proposed approaches. As the primary results were

satisfactory, we implemented the algorithms considering real world parameters with a Grid

simulation toolkit. GridSim, was chosen as the simulation toolkitis explored and discussed

later in this chapter. We will continue by providing specific design and implementation

details about AntZ and ParticleZ.

4.2 Prototype and Initial Results

In order to validate the feasibility of the proposed algorithms we first tried a simple version

of each of them in a simulation framework without any well-known toolkits. We used Java

as the language to simulate and run our experiments, and we simplified the simulation in

some aspects (e.g. having only one Processing Element (PE) for each resource). A class

diagram of the primary design is provided in Figure 4.11.

As shown in the class diagram, each node has an attribute that defines its CPU speed

and each job is characterized by its length which is the number of instructions it contains.

By these two characteristics we will be able to know how long it will take for each job to

run on a resource. Each node has a loadTable attribute which contains the information

each ant leaves in visited nodes and also the connectedNodes attribute is accommodating

the neighbours of each resource.

Although the nature of the system is distributed, we did not want to run a thread for

1The UML diagrams in this chapter are drawn using http://www.gliffy.com/
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Figure 4.1: UML class diagram of the prototype design

each resource in the network, as it will have a huge burden on the system due to the large

number of resources. We tried controlling resources by defining time stamps in the system

to control the execution manually. Each node (resource) in the Grid will be provided with

one time stamp and part of the jobs will be executed within the time provided. These time

stamps are given to resources in a sequential order. The type of load balancing algorithm

used can be defined in the class MyNetwork, accordingly, either antRun() or psoRun() is

called from each resource and the simulation starts and continues by manually calling them

at each time stamp. Obviously, Class Ant is only used for the AntZ algorithm. Each Ant

moves from node to node leaving information about visited nodes in the loadTables. The

procedure is exactly as we have described earlier. The preliminary experimental results

which were driven from this first design showed satisfactory results about the effectiveness

of both algorithms. Thus, in the next step we tried to simulate and run the algorithms

in a more realistic environment. Therefore, we chose the GridSim toolkit which is a

Java-based toolkit for Grid simulations.
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4.3 GridSim Toolkit

One of the current and complete frameworks for simulating Grid-related algorithms or

applications is the GridSim toolkit. In this section we are going to introduce GridSim

and explore details of its architecture and the benefits of using it. In the next section, we

will describe the design of our proposed strategies and how it fits into the GridSim toolkit

architecture.

The GridSim toolkit is a java-based discrete-event Grid simulation toolkit. The toolkit

supports modelling and simulation of heterogeneous Grid resources (time-shared and space-

shared), users and application models. It also provides primitives for the creation of

application tasks, mapping of tasks to resources, and their management [3].

A time-shared policy refers to a scheduling policy that shares time between running

application tasks in a resource. An example of a time-shared policy is the Round Robin

scheduling algorithm. In this scheduling scheme, a specific unit of time, called time slice or

quantum, is defined. All executing processes are kept in a circular queue. The scheduler

goes around this queue, allocating the CPU to each process for a time interval of one

quantum. New processes are added to the tail of the queue. When a process is still

running at the end of a quantum, the CPU is preempted and the process is added to the

tail of the queue. If the process finishes before the end of the quantum, the process itself

releases the CPU voluntarily. A disadvantage for this kind of scheduling is that every time

a process is allocated to the CPU, a context switch occurs, which adds overhead to the

process execution time. In [71, 70] the cost of context switching is analyzed in more detail.

On the other hand, a space-shared policy shares space (i.e. cpu space) between ap-

plication tasks, so at each time only one application can run on one processing element.

Examples of this scheduling policy can be First Come First Served, Shortest Job First, etc.

The GridSim toolkit supports the modelling and simulation of a wide range of het-

erogeneous resources, such as single or multiprocessor, shared and distributed memory

machines like PCs, workstations, SMPs (Symmetric Multiprocessing), and clusters with

different capabilities and configurations. It can also be used for the modelling and sim-

ulation of application scheduling on various classes of parallel and distributed computing

systems such as clusters, Grids, and P2P networks [3].

There are some reasons why we chose the GridSim toolkit to simulate and evaluate our
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scheduling algorithms are [3]:

• It allows modelling of heterogeneous types of resources.

• Resource capability can be defined in the form of MIPS (Million Instructions Per

Second) and SPEC (Standard Performance Evaluation Corporation) benchmark.

• Application tasks can be heterogeneous and they can be CPU or I/O intensive.

• There is no limit on the number of application jobs that can be submitted to a

resource.

• Network speed between resources can be specified.

• It supports simulation of both static and dynamic schedulers.

• Statistics of all or selected operations can be recorded. These statistics can then be

further analyzed using GridSim statistics analysis methods.

A multi-layer architecture for the development of the GridSim platform and its appli-

cations is shown in Figure 4.2.

A brief description of each of the layers is given [3]:

• The first layer is concerned with what GridSim is based on with its scalable Java

interface and the runtime machinery, called JVM (Java Virtual Machine), whose im-

plementation is available for single and multiprocessor systems. The cJVM is a Java

Virtual Machine (JVM) that provides a single system image of a traditional JVM

while executing on a cluster [72]. SMP, refers to symmetric multiprocessing. It in-

volves a multiprocessor computer-architecture where two or more identical processors

can connect to a single shared main memory1.

• The second layer is composed of a basic discrete-event infrastructure which is built

using the interfaces provided by the first layer. One of the popular discrete-event

infrastructure implementations available in the Java language is SimJava [73]. This

infrastructure builds the basis of the GridSim toolkit. SimJava consists of many

entities each of which are running in their own application thread. These entities

1http://en.wikipedia.org/wiki/Symmetric multiprocessing
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Figure 4.2: A modular architecture for GridSim platform and components

communicate with each other in an event-driven environment by sending and receiv-

ing messages to/from each other. There is a central system class which controls all

the threads and advances the simulation time.

• The third layer is concerned with modelling and simulation of core Grid entities such

as resources, information services, application tasks and so on. The GridSim toolkit

focuses on this layer that simulates system entities using the discrete-event services

offered by the lower-level infrastructure.

• The fourth layer is concerned with the simulation of resource aggregators called Grid

resource brokers or schedulers. This layer will be our focus as we will implement our

scheduling algorithms in this layer.
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• The final layer focuses on application and resource modelling with different charac-

teristics using the services provided by the two lower-level layers. It can be used for

evaluating scheduling and resource management policies, heuristics and algorithms.

A typical Grid-based simulation contains entities which play the role of users, brokers,

resources, information services, statistics, and network based I/O, as shown in Figure 4.3

[3]. Each of the entities in the figure have specifications in the GridSim environment. We

briefly describe each entity and its responsibilities [3].

Figure 4.3: A flow diagram in GridSim based simulations [3]

User. Each instance of the User entity represents a Grid user.

Broker. Each user is connected to an instance of the Broker entity. Every job a

user sends to the Grid is first submitted to its broker and the broker then decides how to

schedule the parametric tasks according to the user’s scheduling policy. Before scheduling

the tasks, the broker can dynamically retrieve a list of available resources from the global

directory entity.
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Resource. Each instance of the Resource entity represents a Grid resource. Each

resource has some special characteristics which differentiates it from other resources as

follows:

• number of processors

• cost of processing

• speed of processing

• internal process scheduling policy, e.g. time-shared, space-shared, etc.

• local load factor

• time zone.

The resource speed and the job execution time can be defined in terms of the ratings of

standard benchmarks such as MIPS and SPEC.

Grid information service. Provides services to enable resource registration while

keeping track of a list of resources available in the Grid. The brokers can query this entity

for resource contact, configuration, characteristics and status information.

Input and output. The exchange of information between the GridSim entities hap-

pens via their Input and Output entities. Every networked GridSim entity has I/O chan-

nels or ports, which are used for establishing a link between the entity and its own Input

and Output entities. Note that the GridSim entity and its Input and Output entities are

threaded entities, i.e. they have their own execution thread within the body() method that

handles events.

4.3.1 GridSim Architecture

Figure 4.4 shows a UML view of the GridSim package design. A detailed description of

the role of each of the entities can be found in the GridSim documentation [3]. Each class

in the figure has three parts: attributes, methods and internal classes. Modifiers public,

private and protected are indicated with “+”, “-” and “#” respectively.

In order to simulate an application scheduling algorithm using GridSim, we have fol-

lowed the steps below which are also suggested by the GridSim team [3].
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Figure 4.4: The UML diagram of the GridSim package design [3]
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• Create Grid resources with different capabilities and configurations (i.e single or

multiprocessor, with time/space-shared resource manager, connection links and their

speed, etc.).

• Create users with different characteristics and requirements. Each user can submit

jobs (Gridlets) with different characteristics and at different intervals. They can also

have quality of service requirements.

• Create a GridSim user entity that creates and interacts with the resource broker

scheduling entity to coordinate the execution experiment. It can also directly inter-

act with the Grid information service entity and resource entities for acquiring Grid

information and submitting or receiving processed Gridlets. However, the implemen-

tation of a separate resource broker entity is encouraged.

• Implement a resource broker entity that performs application scheduling on Grid

resources. To do this, based on cost for example, access the Grid information service,

and then inquire the resource capabilities including cost. Depending on the processing

requirements, develop a schedule for assigning Gridlets to resources and coordinate

the execution.

4.4 General Design

In order to implement the AntZ and ParticleZ algorithms following the guidelines the

GridSim team proposes, we override the AllocPolicy class. In the design specifications of

the GridSim each resource has an allocation policy attached to it. This extended class

provides us with the main functionality needed to implement in our scheduling algorithms.

Figure 4.5, depicts the UML class diagram of the design. Although there are many details

for each class shown, we have omitted many classes from the actual class diagram to keep

it simple by showing the most important ones in order to focus on the main concepts.

As can be seen in the figure, both classes which implement our scheduling algorithms

are inheriting the AllocPolicy class. Developers must implement the body of the methods

in AllocPolicy themselves according to their scheduling policy. On the other hand there is

a class called MyGridSimulator which extends Class GridSim in the GridSim toolkit.

This class creates all the resources and submits jobs to the Grid. Each GridResource
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Figure 4.5: UML class diagram of the design

has an allocation policy which in our case can be either of the classes for the Ant colony

or particle swarm policy. The characteristics of each Grid resource such as its processing

elements etc. are provided in the ResourceCharacteristics class.

Each Grid resource is being created and initialized with a specific scheduling algorithm.

Jobs are being sent to the Grid and they are delivered to their destination resources

according to the scheduling algorithm defined for the system. Resources can be created

using different attributes according to the simulation needs. The process of creating a Grid

resource is as follows1:

1. Create PE (Processing Element) objects with a typical MIPS or SPEC rating.

2. Assemble created PEs together to create a machine.

3. Group one or more objects of the machine to form a Grid resource. A resource having

a single machine with one or more PEs (Processing Elements) can be managed as

a time-shared system using a round-robin scheduling algorithm. A resource with

multiple machines is treated as a distributed memory cluster and can be managed as

1http://www.gridbus.org/gridsim/doc/api/
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a space-shared system using the FCFS (First Come First Serve) scheduling policy or

its variants.

4.5 AntZ Design and Implementation

In this section, we describe in detail how the ant colony scheduling is designed to work.

As we described earlier, each scheduling algorithm can be implemented in GridSim by

creating a new resource broker. For scheduling jobs on resources there are two issues

involved. One problem is how to choose a resource among all the resources available in

the Grid and the other problem is related to how to schedule assigned jobs to one resource

on the CPU. By extending the AllocPolicy class, we have incorporated the ant colony

scheduling, which tries to select best resources to deliver the job to, with the scheduling

needed to coordinate tasks in one resource together within one class. Class diagram of

AntColonyAllocPolicy can be seen in Figure 4.6. Some details are omitted from the

class diagram to focus on more important attributes and methods. As can be seen in the

figure, the AntColonyAllocPolicy class is inherited from AllocPolicy in GridSim. To

manage the jobs which are assigned to one resource it uses a Round Robin scheduling

algorithm; thus, whenever a job is submitted to a node it uses a Round Robin scheduling

policy to execute them inside the node. In order to do this, it contains a list of executing

jobs (gridletInExecList ). According to the Round Robin policy, jobs in this list get an

equal time stamp to execute in a node. There is also a loadTable which the entries are

filled by visiting ants and it acts as the pheromone the ants leave. Class Ant is an inner

class of AntColonyAllocPolicy and uses its functionalities while the ants are moving

from node to node. It has a small memory to carry a history of visited nodes and also the

gridlet it is scheduling.

Figure 4.7, shows a sequence diagram which depicts how the ant colony scheduling

works. A step by step description of the scenario is as follows:

1. MyGridSimulator, is simulating the jobs which are sent to the Grid. When My-

GridSimulator sends a job to a GridResource, the resource delivers the received

job to its scheduling policy to handle the incoming request accordingly.

2. In response to receiving a gridlet, AntColonyAllocPolicy creates a new Ant object

and sends it out to explore the Grid and find a lightly loaded resource to deliver the
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Figure 4.6: UML class diagram for the Ant Colony scheduling

job.

3. The ant takes steps as described earlier by collecting a history of visiting nodes

(addHistory) and decides which step to take next by either reading the loadTable

information in visiting nodes or by mutating and going to a random node. This

probability that the ant may move randomly will prevent it from getting caught in

a local minima. To choose a random node the ant needs to send a request to Grid-

InformationService as this entity contains the information about the resources in

the Grid.

4. When the ant chooses its next resource to move to, the gridlet and the ant will

move to the destination node. The gridlet is submitted to the destination node to

be scheduled again.

5. If this is the last step the ant has taken, the job will get executed and the result

will be sent to MyGridSimulator. Otherwise the whole process is repeated again.
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Figure 4.7: UML sequence diagram for the Ant Colony scheduling

As we said earlier the scheduling policy inside each node is implemented as a Time

shared policy and more specifically the Round Robin policy.

4.6 ParticleZ Design and Implementation

In this section we describe in detail how the particle swarm scheduling is designed to

work. As we described earlier each scheduling algorithm can be implemented in GridSim

by creating a new resource broker. By extending the AllocPolicy class, again we have

incorporated the particle swarm scheduling, with the scheduling needed to coordinate tasks

in one resource within one class. The class diagram of ParticleSwarmAllocPolicy can

be seen in Figure 4.8. Some details are omitted from the class diagram to focus on more

important attributes and methods.

As can be seen in the figure, the ParticleSwarmAllocPolicy class is an extension of

AllocPolicy in GridSim. It has a space shared FCFS (First Come First Served) scheduling

algorithm inside, meaning that whenever a job is submitted to a node it is scheduled with
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Figure 4.8: UML class diagram for the Particle Swarm scheduling

an FCFS scheduling policy inside the node. As FCFS is a space-shared scheduling policy

when there are more than one PEs available in the machine more than one gridlet can be

executed at the same time. ParticleSwarmAllocPolicy, has a list of jobs being executed

(gridletInExecList ) and also a list of jobs which are waiting in the queue to find a free

PE to get executed (gridletQueueList ). The jobs waiting in the queue are actually the

jobs which can be delivered to other resources while the scheduling algorithm is running

to balance the load.

As mentioned earlier, particle swarm optimization works based on best neighbouring

particles. The information related to the topology of the network in the simulation is kept

in class Topology. By querying this class, we can find the neighbours of one resource. In

order to make a random connection graph for the specific number of resources we have, we

first create a Minimum Spanning Tree with all the resources; then, we randomly add some

links to the tree to generate the final topology of the Grid. Thus, we can have control on

the number of links and the topology of our Grid in different simulations. Thus, when a

resource tries to find its neighbours it sends a message to the Topology class to retrieve

a list of its connected resources.

Figure 4.9, shows the sequence diagram of a typical run of the ParticleZ algorithm.

This sequence diagram shows the case when a Gridlet is sent to a node in the Grid and a

PE is immediately allocated to it, hence, the gridlet can right away run on the node it is
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sent to.

Figure 4.9: UML sequence diagram for the Particle Swarm scheduling

Figure 4.10: UML sequence diagram for the Particle Swarm scheduling

Figure 4.10, shows another scenario in which there is no free PE to be allocated to the

gridlet sent in the first step. In these cases the gridlet will be added to a queue. On the

other hand, each resource is exchanging information with its neighbours to find the best

and lightest loaded neighbour; once found, the resource cancels the gridlet and removes it

from the queue and moves it to another node for execution by resubmitting the gridlet.

Once the gridlet is executed the results will be sent back to the sender, which in this case
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is the MyGridSimulator class.

4.7 Summary

In this chapter, we provided detailed specifications of GridSim and described how the

algorithms were developed using the provided GridSim architecture. The next chapter

focuses on running some simulations in different scenarios to evaluate the performance of

the proposed algorithms. Furthermore, we investigate the effect of different settings for

different parameters on the performance of the algorithms.
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Chapter 5

Experimental Results

5.1 Overview

This chapter is dedicated to experimental results and measurements which are a key factor

in evaluating each simulation. In the first step, we provide information on how the envi-

ronment setting is chosen and how the Grid is constructed. We describe the application

model next, which discusses the characteristics of the jobs which are sent to the Grid and

are used to run the experiments. The performance evaluation criteria which are used to

evaluate the performance of the algorithms are introduced consequently. We also provide

details about two classical algorithms (Random and State Broadcast Algorithm) which

have been used to evaluate and compare the performance of our algorithms with. Finally,

experimental results and diagrams are provided with a thorough analysis about each of

them.

5.2 System Model

For our experimental purposes we assume that the Grid consists of a set of resources

connected via different communication networks with different speeds. In general, each re-

source may contain multiple number of computing nodes (machines), and each computing

node (machine) may have single or multiple Processing Elements (PEs). The computa-

tional power or the speed of each processor is defined by the number of Cycles Per Unit

Time (CPUT). It is actually the GridSim framework’s ability that provides us with the

definition of the computational power of PEs in CPUT.

Generally, each resource may consist of one or several machines and each machine by

itself can have one or multiple processing elements. Processors in each computing node

can be heterogeneous, thus, they may have different processing power. In our simulations,
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without loss of generality and to emphasize on the basic ideas of the algorithms, we assume

each resource consists of one machine and each machine is equipped with one or several

processors (the variations of this random number for experiments will be provided later).

The processors in the same or different computing nodes have different processing power.

A computing node in the Grid may also have a local user (or multiple local users) that

uses the node for other computations (that is, the node is not a dedicated node). As such,

at any one time, a computing node may have background workload associated with it,

which will affect the completion time of the Grid jobs assigned. The GridSim provides us

with the ability to define the background workload according to historical and statistical

information for each node. As such, each resource has a background load associated which

is taken from the average load that the resource has experienced at similar times (such as

working days or weekends).

5.3 Application Model

For our application model, we assume that tasks which are submitted to the Grid (or the

application which is being run) consists of a set of independent tasks with no required order

of execution. The tasks are of different computational sizes, meaning each task requires a

different computation time and data transmission time for completion. They can also have

different input and output size requirements.

The length of each task is presented in Millions of Instructions (MI). Tasks can be

classified into one of two categories: data intensive and computationally intensive tasks.

In this research, we are concerned with computationally intensive tasks as they are more

common in todays real life applications (like some of bio informatics problems, etc) and

the waste of computational power of resources is more costly than their memory.

Some researchers have considered job migration (migration of partly executed jobs) in

their load balancing algorithms. However, as discussed in Chapter 2, job migration is far

from trivial in practice. Thus, in this research, we do not consider migration of partly

executed jobs.
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5.4 Performance Evaluation Criteria

In this section we define our performance evaluation criteria which are used to evaluate the

performance of our algorithms. The criteria include makespan, load, standard deviation

and load balancing level. A description of each will follow.

5.4.1 Makespan

One of the most common measures in evaluating the performance of an scheduling algo-

rithm is measuring the makespan. The makespan is the “total application execution time”.

The total application execution time is measured from the time the first job is sent to the

Grid, until the last job comes out of the Grid. As we generate gridlets and topologies

randomly, although every simulation yields roughly the same result, each single simulation

is different from another one; thus, we have used an average makespan in order to simulate

realistic conditions. We have used an average of ten runs in order to take care of the small

variations of the results of each run.

5.4.2 Load

For each resource in the Grid, the load related to that resource is dependent on the number

of jobs which are assigned to the node by the Grid scheduler and the power of its processing

elements. Equation 5.1, shows how the GridLoad is calculated.

GridLoad =
AssignedJobNumber∑MaxNumberofPE

i=1 powerofPE(i)
(5.1)

The total load can be calculated using the Equation 5.2. For the experiments, our aim

is to minimize this value. According to this equation when GridLoad increases it results in

an increase in load and a decrease in GridLoad decreases load. The load is a value between

0 and 1, where 0 is not busy and 1 represents being busy.

load = 1− 1
GridLoad

(5.2)

5.4.3 Standard Deviation

One of the aims of a load balancing algorithm is to minimize the variations in workloads

on all machines. Regarding this, standard deviation in workload is often taken as the
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performance measure of a load balancing algorithm. The smaller the standard deviation,

the better the load balancing scheme is. By looking at the changes in the standard deviation

of the workload with respect to time, it is easier to visualize the effect of load balancing

upon the time of the system [41]. Equation 5.3, shows the standard deviation of the load

in the system.

d =

√∑n
i=1(load− loadi)2

n
(5.3)

In the equation, load is the average load of the system and loadi is the load of the ith

resource at each point in time.

5.4.4 Load Balancing Level of the System

We define the load balancing level of the system to be a measure of how good a load

balancing algorithm is. The load balancing level of the system is defined in Equation 5.4.

The most effective load balancing is achieved when d equals to zero and the load balancing

level equals to 100%.

LoadBalancingLevel = (1− d) ∗ 100% (5.4)

5.5 Comparison Against Classical Approaches

We have implemented two common classical approaches (Random and State Broadcast

Algorithm) in order to evaluate the performance of our algorithms and discuss their benefits

over classical ones.

The Random approach is a simple scheduling algorithm in which the jobs being sent

to the Grid are assigned randomly to different resources. Obviously this approach does

not make a very good scheduling algorithm but it has some benefits. It does not have any

decision making overhead on the system on the other hand it gives a good benchmark to

see how our proposed algorithms improve the performance of scheduling compared to a

plain random assignment.

The other approach we use to evaluate the performance of our algorithms is the State

Broadcast Algorithm (SBA). This algorithm is common in networks whose communi-

cation system consists of a broadcast medium. As described in Chapter 2, the algorithm is
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based on broadcast messages between resources. Whenever the state of a node changes, due

to the arrival or departure of a task, the node broadcasts a status message that describes

its new state. This information policy enables each node to hold its own updated copy

of the system state vector (SSV) and guarantees that all the copies are identical.When a

job is sent to a resource at the time of scheduling, the resource searches through its own

state vector to find the best resource available to deliver the job at that particular time.

SBA is a good benchmark to evaluate the performance of our algorithms as it resembles

central approaches in which the status of the whole Grid is known at the time of scheduling

although being a distributed approach. SBA performs like central approaches, which by

nature always outperform distributed ones [25], however, it has its disadvantages which

will be described later.

5.6 Experimental Results

In order to evaluate the performance of our algorithms we investigate a set of experiments

to measure the criteria we introduced in the previous section and also investigate the effect

of different values for the parameters of each algorithm. As described earlier, ParticleZ

is implemented with a space shared FCFS policy inside the resources and the AntZ is

accompanied with a time shared Round-robin policy to schedule the jobs when they are

received by a resource. In all the experiments we have compared our algorithms with both

the Random and the SBA approach in order to have an understanding of how well they

perform.

The characteristics of the resources we have used as Grid resources are shown in Table

5.1. There is one machine for each Grid resource and each machine has a random number

of PEs ranging between 1 and 5. Each PE has a different processing power. Without loss

of generality, we set the local load factor for resources to be zero; this does not affect the

performance measure of the algorithms. Setting it to zero helps us analyze the effect and

behaviour of the algorithms better.

For the first set of experiments, we compare the makespan of the different algorithms.

Different values for the different parameters in each of the algorithms and system param-

eters are shown in Table 5.2.

As said earlier, the gridlets which are sent to the Grid are supposed to be independent
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Number of machines per resource 1

Number of PEs per machine 1 - 5

PE ratings 10 or 50 MIPS

Bandwidth 1000 or 5000 B/S

Table 5.1: Grid resource characteristics

Number of resources 100

Number of gridlets 1000

ParticleZ link number 149

AntZ wander number 4

AntZ mutation rate 0.5

AntZ decay rate 0.2

Table 5.2: Scheduling parameters and their values

of each other. The characteristics of the gridlets sent to the Grid to compare the makespan

of different algorithms are shown in Table 5.3.

Length 0 - 50000 MI

File size 100 + (10% to 40%)

Output size 250 + (10% to 50%)

Table 5.3: Gridlet Characteristics

Figure 5.1 shows a comparison between the makespan of different algorithms with

parameter specifications described earlier. As the experimental results show SBA is per-

forming best amongst all. This is expected as the SBA is keeping track of the state of all

the resources at each point in time which makes it able to make more optimal decisions

at each point in time. After SBA, ParticleZ has the smallest makespan. Comparing Par-

ticleZ and AntZ with each other, ParticleZ performs better than AntZ by a factor of 1.72;

also, ParticleZ performs better than Random-SpaceShared by a factor of 3.42, and AntZ
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performs better than Random-TimeShared by a factor of 1.83.

Figure 5.1: Comparing the makespan of different approaches

One important but hidden drawback that SBA suggests is related to the overall effort

or overall cpu cycles and the time it takes for the Grid to execute it. As there is a copy

of the system state vector in all machines, in order to schedule each task, each machine is

using some time and cpu cycles to search the state vector individually. This causes a lot

of cpu cycles to be wasted but as we are running a parallel platform this disadvantage can

not be seen. In order to highlight its effect see Figure 5.2.

The time shown in this figure shows only the simulation time of each algorithm. As

the simulation is being done on a single machine the effect of parallelism is discarded and

as can be seen SBA, although having a very low makespan actually takes longer to run

and it is because all these wasted seconds can not be seen in the previous figure because of

parallelism. This effect is even worse as the number of resources grow in the Grid. Note

that this figure shows only the simulation time and does not count for different job lengths

and etc.

Another drawback related to SBA is the number of communications it takes. Figure 5.3

shows the number of extra communications of each algorithm to achieve the load balancing.

For ParticleZ, each communication message a node sends to its neighbours to acquire their

load status and its response; also, each job exchange between two resources is considered

as a communication. For AntZ, each ant taking a step while searching for the best node
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Figure 5.2: Simulation time related to each algorithm in milliseconds

to deliver the job to, is considered as a communication. Finally for SBA, each broadcast

message a resource sends to other resources is considered as communication overhead.

Figure 5.3: Communication overhead related to each algorithm

The numbers shown in the figure are the average of ten runs with the same parameter

setting as described earlier. As shown in the figure, AntZ has a higher number of com-

munication overhead compared to ParticleZ. Obviously, the other two random approaches

have no communication overhead at all, thus, they are not shown in the figure. SBA has
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the highest number of communications by a factor of around 1300. This huge number

of communications can be a bottleneck for the network and in scenarios with congested

networks the probability of messages being lost increases.

In the next experiment we investigate how fair each of the algorithms is. Table 5.4

shows the load balancing level of the system described earlier in Equation 5.4 along with

their standard deviation from several runs. The closer the value approaches 100%, the

better the load balancing level of the algorithms is. It means that the load is spread more

fairly among all the resources. According to the experimental results both ParticleZ and

SBA have the best load balancing levels. AntZ along with the other random approaches

rank third in spreading the load uniformly among resources.

Algorithm Average Load Balancing Level Standard Deviation

ParticleZ-SpaceShared 81% 2.1%

SBA 80% 0.48%

Random-SpaceShared 67% 1.3%

AntZ-TimeShared 65% 0.7%

Random-TimeShared 62% 0.97%

Table 5.4: Average load balancing level of the system for different algo-
rithms

In the next set of experiments we investigate the effect of increasing the number of

jobs on the performance of the algorithms. Thus, we keep a fixed number of resources and

run the experiments while we increase the number of jobs being sent to the Grid. The

specifications and parameter settings of the algorithms and the system are listed in Tables

5.1 to 5.3.

As can be seen in Figure 5.4, all the algorithms show a linear growth in response to

the increasing number of jobs. However, SBA along with the proposed approaches show

a much smoother growth compared to the random approaches. Among them ParticleZ

and SBA are quite close to each other. Table 5.5 shows each algorithm with its prediction

trend line for the 100 node Grid. As can be seen, ParticleZ and SBA have the smallest

slope among all other approaches.

In Figure 5.5, we investigate the effect of increasing the length of jobs on the perfor-
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Figure 5.4: Effect of the increase in number of jobs on performance of the
algorithms

mance of the algorithms. Length of the jobs is defined in Millions of Instructions (MIs) in

GridSim.

Algorithm Prediction trend line

SBA 762.5 * Number of Jobs + 808.5 [s]

ParticleZ-SpaceShared 906.7 * Number of Jobs + 1782 [s]

AntZ-TimeShared 2478 * Number of Jobs + 1291 [s]

Random-TimeShared 5518 * Number of Jobs - 291.2 [s]

Random-SpaceShared 6069 * Number of Jobs - 1419 [s]

Table 5.5: Predicting execution time based on number of jobs

Parameter settings to run this experiment are the same as described in Table 5.1 to 5.3.

We increase the length of the gridlets by adding 250,000 MIs at each step and investigate

its effect on the makespan. The numbers at the bottom of the diagram show the execution

time for each algorithm. As can be seen the growth is linear for all the approaches and the

results show the best performance is acheived by both the ParticleZ and SBA algorithm.
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AntZ ranks third and the other two random approaches as expected do not respond well

to the larger lengths of gridlets but for small gridlet lengths they can perform comparably

to others.

Figure 5.5: Effect of the increase in job length on performance of the
algorithms

Figure 5.6, shows how increasing the number of resources, while having the same num-

ber of jobs being sent to the Grid, improves the performance of the Grid in terms of

execution time. In this experiment, 3000 jobs are sent to the Grid with varying number

of resources, and as can be seen increasing the number of resources has a decreasing ex-

ponential effect on the execution time. ParticleZ and SBA are performing better when we

have a small number of resources (50) and a large number of jobs compared to the number

of resources (3000). As the number of resources increases the performance, the difference

between the algorithms drops.

One of the very interesting performance questions which arises in a distributed algo-

rithm like AntZ and ParticleZ is: how the algorithms respond if all the jobs are injected

from a single point in the Grid. From the AntZ’s perspective it will take longer to build the

load table information and from the ParticleZ’s perspective it will have a negative effect

as the jobs will need more time to be spread fairly. By incorporating some randomness in
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Figure 5.6: Effect of increasing number of resources on execution time

the nodes being chosen during the decision making precess, this bad effect can be reduced

in both algorithms. We have investigated this effect to see how much it will slow down or

have a negative effect on the performance of the algorithms.

The random approaches obviously will perform very poorly if we send all jobs to one

node. Figure 5.7 shows AntZ copes better than ParticleZ in response to sending all the

jobs to one node in the Grid. The reason lies in the mutation factor which is incorporated

inside AntZ. With the mutation, an ant moves randomly from time to time which helps in

building up the load tables more quickly to overcome the negative effect. It can be inferred

from the figure, that ParticleZ’s performance decreases by a factor of 2.4 for a one hundred

node network with gridlets of a length between 0 and 50000. On the other hand, AntZ’s

performance decreases by a factor of 1.36 in the same scenario setting.

5.6.1 AntZ Parametric Measurement Effects

Now that we have a good understanding of how well the algorithms work in comparison

and in different kinds of parameter settings, we investigate algorithm specific performance

measures and their effect on the algorithms in the next set of experiments.

First, we investigate the effect of wandering steps on the performance of the AntZ
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Figure 5.7: Effect of single and random injection points on the performance
of the algorithms

algorithm. We have a one hundred node Grid with one thousand jobs being sent to the

Grid. Figure 5.8 shows that as we increase the number of steps an ant wanders until

it delivers the job to its destination, the makespan of the algorithm improves, but this

increase is larger at the beginning but later on the rate drops to a great extent.

After about 5 or 6 steps the increase in wandering steps does not seem to have an effect

on the performance of the algorithm. The reason behind this phenomenon is that although

increasing the number of wandering steps seems to have a positive effect on the performance

of the algorithms as tables will be updated more frequently and ants have more time to

decide which way to go; but on the other hand, it increases the delay before the jobs are

being delivered to resources and this delay has a negative effect on the performance.

Figure 5.9, shows how increasing the number of wandering steps can effect the com-

munication overhead which are introduced to the system. The figure shows that while we

increase the wandering steps, the communication overhead also increases linearly. In an-

other experiment we measure how different values of decay rate can effect the performance

of the AntZ algorithm. As you remember, while the ant is moving we decrease its mutation

rate by a factor; this factor is called the decay rate. By doing this experiment we can find

out what the best decay rate value for a set of specific attributes of a Grid and its jobs

is. The results are shown in Figure 5.10. For the set of attributes we have, 0.2 is the best
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Figure 5.8: Effect of the change in wandering steps on AntZ makespan

Figure 5.9: Effect of the change in wandering steps on AntZ communication
number

decay rate while the mutation rate is set to be 0.5 for this experiment.

5.6.2 ParticleZ Parametric Measurement Effects

In the next set of experiments we will measure the effect of different ParticleZ parameter

settings on the performance of this algorithm. One of the parameters which can affect the

performance of ParticleZ is the number of links that connect resources together. As each

particle (resource) communicates with its neighbours to find the lightest node, the number

of neighbours can effect the performance of the algorithm.

Figure 5.11 shows the effect of increasing the number of links and the connectivity of
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Figure 5.10: Effect of decay rate on AntZ makespan

the resources on ParticleZ’s makespan. Although it is better to communicate with more

resources before exchanging jobs, however, it is not always good as communicating with

more resources has an extra time overhead which prevents a significant improvement in

the performance of the system.

Figure 5.11: Effect of link number on ParticleZ makespan

Figure 5.12 shows the effect of increasing the number of links on the communication

overhead of the ParticleZ algorithm. As can be seen in the figure, it has a linear growth

with an increasing number of links.
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Figure 5.12: Effect of link number on ParticleZ communication number

5.7 Summary

In this chapter, we first introduced our system and application models and discussed several

performance evaluation criteria which can be used to evaluate the performance of our

algorithms. Then, we presented several experimental results comparing the performance

of different algorithms in different scenarios and we also investigated several parameter

settings and their effect on the performance of each of the algorithms. The simulation

results have shown the power of these algorithms in distributed job scheduling. The next

chapter summarizes the experimental results with a deep analysis followed by an outlook

at the future work related to this research.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this research we have investigated the use of swarm intelligence techniques in designing

distributed Grid job scheduling algorithms. Specifically, we have taken inspiration from

social insect systems and sociological behaviour of birds and school of fishes in design-

ing two distributed algorithms. We discussed several characteristics which a good load

balancing algorithm should possess. The approaches introduced in this research fulfill all

those characteristics such as fairness, robustness, flexibility, distribution and simplicity.

The algorithms proposed can also be applied in similar load balancing environments such

as Peer-to-Peer systems.

The algorithms introduced have some common characteristics. Both algorithms are

distributed in nature as they have taken inspiration from real world insects and animals

which are inherently distributed. Jobs are supposed to be independent of each other in

both designs.

AntZ, which has taken its inspiration from Ant colony optimization creates and dis-

patches an ant in response to any gridlet submission to the Grid. The ants move in the

Grid and leave some information about visited nodes in the resources while they are mov-

ing. This information acts like pheromone and guides other ants to get to lighter regions

of the Grid.

The ParticleZ algorithm takes its inspiration from particle swarm optimization. Each

resource in the Grid acts as a particle in the flock of particles. It has two characteristics

associated with it: its load which defines the position of the particle among all particles

and its load difference with its best neighbour which controls how fast the particle moves

toward its neighbours. Moving toward a neighbour happens by submitting some of the

jobs the particle owns to its best neighbour.
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The SBA approach is a classical load balancing algorithm for distributed broadcast

systems. In this approach each resource keeps an updated state vector of the load level

of all resources in the Grid and uses this vector to send the jobs submitted to the light

resources in the Grid. The state vectors get updated by broadcasting a message in the

Grid each time a resource’s load changes.

We have simulated our proposed algorithms using GridSim. We have also evaluated

and compared the performance of our algorithms with other classical approaches (i.e. SBA

and Random). The simulations have shown the algorithms proposed can perform well for

scheduling jobs in a Grid network where jobs are being submitted from different sources.

Analyzing the results show that SBA has the smallest makespan among all and Parti-

cleZ performs better than AntZ in this regard. Although SBA has the smallest makespan

among all the approaches, comparing its simulation time with others reveals that there are

many computational activities going on in parallel in all machines to execute SBA, which

although it does not effect the overall makespan, it increases the computational complexity

for the overall Grid and therefore makes SBA the worst approach among all in this regard.

Comparing the number of communications each algorithm is concerned with while

executing, SBA shows a huge number of communications compared to the other two ap-

proaches. ParticleZ involves the smallest number of communications among all.

ParticleZ along with SBA win the competition among all other approaches regarding

the “fairness” measure, as they have the highest load balancing level amongst all other

approaches.

Looking at the scalability of the algorithms, all approaches show a linear behaviour in

response to an increasing number of jobs. ParticleZ and SBA have the smallest slope and

are very close to each other; AntZ ranks third after them.

Regarding an increase in the lengths of the jobs, all approaches show a linear behaviour;

however, ParticleZ along with SBA are best among all. Furthermore, an increase in the

number of resources decreases makespan in an exponential manner.

Having discussed several important results in Chapter 5, ParticleZ proves to perform

slightly better than AntZ in many regards. On the other hand, looking at the results show

ParticleZ has the advantages of SBA leaving its disadvantages aside. However, there is

one drawback associated with ParticleZ. When jobs being sent to the Grid are focused on

one or a small number of resources and are not spread throughout the Grid, ParticleZ’s
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performance drops lower than AntZ’s performance. The reason is the mutation factor

incorporated inside AntZ which makes it better to deal with such situations.

We also investigated several algorithm-related parametric effects for both the AntZ and

ParticleZ algorithms. We investigated the effect of different wandering steps on execution

time and communication overhead of the AntZ algorithm. Results show as we increase

the number of wandering steps the performance of the AntZ improves but there is a limit

to this improvement after which the performance stays the same although the number of

wandering steps is increased. We also studied the effect of different decay rates on the

performance of the AntZ and found the best decay rate in our simulation environment.

For the ParticleZ algorithm, we investigated the effect of different link numbers on both

the execution time and communication overhead of the algorithms. The communication

overhead grows linearly by increasing number of links while the makespan decreases.

The advantages of our proposed algorithms can be categorized as follows: 1) Looking

at the simulation results, ParticleZ shows good performance results and optimum resource

utilization. 2) The algorithms have proved to be “fair” compared to a random and SBA

approach. ParticleZ has a load balancing level of 81%, SBA has a load balancing level

of 80%, AntZ achieves a load balancing level of 65% and the random approaches have

a load balancing level near 65%. 3) Both ParticleZ and AntZ are flexible approaches in

dealing with the changes which happen in the Grid. 4) Both proposed approaches are

distributed in nature. As the algorithms have taken inspiration from sociological systems

being distributed is an inherent part and we used this ability in designing the approaches.

5) Both algorithms are very simple which is a benefit for a distributed system. In the AntZ

approach, the ants which have to move among resources to find the best resource to deliver

the job to, are very small in size and perform small computations in each resource. The

ParticleZ has also simple computations as it only sends small messages and has to choose

the lightest resource amongst all neighbour resources. 6) Looking at the scalability of the

algorithms they show linear growth in response to both an increase in the number of jobs

and an increase in the length of jobs.

To summarize, this research compared two different approaches (Ant Colony and par-

ticle swarm inspired algorithms) for developing load balancing algorithms and shows the

benefit of swarm intelligence techniques in the distributed Grid job scheduling domain. On

the other hand, it shows, although particle swarm has not been used widely in designing
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distributed load balancing algorithms, it performs quite well and it even outperforms the

ant colony approach in many scenarios. One of the important characteristics of the de-

signed algorithms compared to central approaches is their responsiveness to scalability of

the Grid. In centralized approaches, an increase in the number of resources in the Grid can

always be a problem as the information of all the resources has to be kept and known at

all time but our distributed approaches work quite well with a large number of resources

and gridlets. The shortcoming of scalability was seen by running SBA simulations with a

large number of resources and examining the simulation time.

In conclusion, we can say classical approaches like Random and SBA although suitable

for small sized networks are not efficient for large Grids. On the other hand, in their

current state, the algorithms do not address the problem of dynamic resource failure in the

Grid. A mechanism should be in place that prevents gridlet loss while any resource in the

Grid shuts down. Another issue which is worth considering is the special scenario when all

resources in the Grid are too busy to take on new jobs. The question arises what should

be done with new gridlets being submitted to the Grid. Another issue worth considering

is that although we have simulated the algorithms within a simulation framework similar

to a real world scenario; it may still need some small modification, for example, we have

not considered issues related to security in this research. One of the steps which can be

taken toward adding security is limiting ants from performing different actions in different

resources.

6.2 Future Work

In this section we explore future steps and enhancements which can be done to enhance

this research.

One of the important issues in large-scale Grids and peer-to-peer systems is resource

failures and the robustness of the system. As the size of the Grids are continually increasing

the probability of resource failures will also increase. As such, developing fault tolerant

algorithms which are able to deal with these failures are gaining more and more attention.

Failures which happen in a Grid environment can be divided into two categories. In one

category a resource may shutdown manually, thus, it can send a notice message or perform

some additional steps before shutting down. In another scenario, the resources may fail
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suddenly without any notice. Thus, we need to incorporate a mechanism to deal with both

categories of resource failures in our system without affecting jobs submitted by users.

Regarding the first class of failures, one step which is common for both algorithms is

related to the jobs which are assigned and are being executed inside resources. We do

not need to worry about successfully completed gridlets as they are already sent back to

the users. For the rest of the jobs which are not yet completed, when the resource fails a

failure message should be sent back to the users making them aware that the gridlet has

not completed its execution, thus, it needs to be rescheduled once again to the Grid.

The proposed approach to be taken to address the failure issues follows: In the AntZ

algorithm when a resource fails, as the information of that resource exists in load tables,

there may be ants heading to that resource to deliver their jobs to. Thus, when the ant

finds a resource has failed the following three steps should be performed:

• Send a notification to the owner of the job about the failure.

• The resource Id should be removed from the load table and the ant history.

• The user re-invokes the ant to continue finding a resource to submit its job to.

The ParticleZ algorithm can deal with failures more easily. At the time a resource

wants to share its workload with other resources, it simply sends a message and queries

about its available neighbours, therefore, whenever a resource breaks down it is simply

eliminated from this process automatically. Thus, in case of ParticleZ, a message sent to

the user about the uncompleted gridlets will suffice. Yet, when a resource fails without

further notice the situation is more complex. One valid approach is the following.

When a job is sent to the Grid by a user, the worst case execution time will be estimated

for that job. This predicted time represents the worst case in which the user must have

received the results of its job submission. Then, an event will be scheduled for the predicted

time. At this specific time, the user will check whether the job result was returned; if the

job result has already come back successfully, no further actions will be taken; otherwise

the job will be submitted again and the whole process repeats.

Another important issue is paying attention that the nodes may not be dedicated nodes

in the Grid, and each may have their own background workload. Thus, the local load of

each resource should be incorporated in the load calculation formula which effects the

decision making of the algorithms accordingly.
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Another issue which would be interesting to address is the security problems and au-

thentication required for the messages and jobs to be sent and received.

In this research we have simulated of the proposed algorithms with a simulation plat-

form developed for the Grid, and the results proved to be promising. The next step would

be to apply the algorithms in a real world Grid or incorporate the algorithm in existing

Grid applications such as the Sun Grid Engine or Globus toolkit.
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Appendix A

Source code

package allocpolicy.antZ;

import eduni.simjava.Sim_event;
import eduni.simjava.Sim_port;
import eduni.simjava.Sim_system;
import grid.StatisticalAnalysis;
import grid.Topology;
import gridsim.*;

import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Random;

public class AntColonyAllocPolicy extends AllocPolicy {

private ResGridletList gridletInExecList_; // storing exec Gridlets
private MIShares share_; // a temp variable
private double lastUpdateTime_; // a timer to denote the last update time
private AntPool antPool;
private HashMap<Integer, Double> loadTable = new HashMap<Integer, Double>();
private Sim_port output;
private boolean log = false;

public AntColonyAllocPolicy(String resName, String entityName,
Sim_port output) throws Exception {

super(resName, entityName);

this.gridletInExecList_ = new ResGridletList();
this.share_ = new MIShares();
this.lastUpdateTime_ = 0.0;
this.gridletInExecList_ = new ResGridletList();
this.antPool = AntPool.getInstance();
this.loadTable = new HashMap<Integer, Double>();
this.output = output;

}

public void body() {

double time1, time2 = GridSim.clock();

// a loop that is looking for internal events only
Sim_event ev = new Sim_event();
while (Sim_system.running()) {

time1 = time2;
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time2 = GridSim.clock();

if ((log) && (time2 - time1 > 200))
try {

StatisticalAnalysis.getAntColony_log().
writeChars(String.valueOf(calculateTotalLoad

(gridletInExecList_.size())) + "\n");
} catch (IOException e) {

e.printStackTrace();
}

super.sim_get_next(ev);
if (ev.get_tag() == GridSimTags.END_OF_SIMULATION ||

super.isEndSimulation()) {
gridletInExecList_.clear();
break;

}

// Internal Event if the event source is this entity
if (ev.get_src() == super.myId_) {

internalEvent();
}

// CHECK for ANY INTERNAL EVENTS WAITING TO BE PROCESSED
while (super.sim_waiting() > 0) {

// wait for event and ignore since it is likely to be related to
// internal event scheduled to update Gridlets processing
super.sim_get_next(ev);
// System.out.println(super.get_name()
// + ".body(): ignore internal events : " + ev.get_tag());

}
}

}

public void gridletCancel(int gridletId, int userId) {

}

public void gridletMove(int gridletId, int userId, int destId, boolean ack) {

}

public void gridletPause(int gridletId, int userId, boolean ack) {

}

public void gridletResume(int gridletId, int userId, boolean ack) {

}

public int gridletStatus(int gridletId, int userId) {
ResGridlet rgl;
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// Find in EXEC List first
int found = super.findGridlet(gridletInExecList_, gridletId, userId);
if (found >= 0) {

// Get the Gridlet from the execution list
rgl = (ResGridlet) gridletInExecList_.get(found);
return rgl.getGridletStatus();

}
// if not found in all lists
return -1;

}

public void gridletSubmit(Gridlet gl, boolean ack) {

Ant ant = antPool.getPool().get(gl.getGridletID());
if (ant == null) {

StatisticalAnalysis.Communications++;
ant = new Ant(gl);
antPool.getPool().put(gl.getGridletID(), ant);

}
if (ant.isFinish()) {

// ResGridlet rgl = ant.getGridlet();
updateGridletProcessing();

// reset number of PE since at the moment, it is not supported
if (gl.getNumPE() > 1) {

String userName = GridSim.getEntityName(gl.getUserID());
System.out.println();
System.out.println(super.get_name() + ".gridletSubmit(): "

+ " Gridlet #" + gl.getGridletID() + " from "
+ userName + " user requires " + gl.getNumPE()
+ " PEs.");

System.out.println("--> Process this Gridlet to 1 PE only.");
System.out.println();

// also adjusted the length because the number of
// PEs are reduced
int numPE = gl.getNumPE();
double len = gl.getGridletLength();
gl.setGridletLength(len * numPE);
gl.setNumPE(1);

}

// adds a Gridlet to the in execution list
ResGridlet rgl = new ResGridlet(gl);
rgl.setGridletStatus(Gridlet.INEXEC); // set the Gridlet status to exec
gridletInExecList_.add(rgl); // add into the execution list

// sends back an ack if required
if (ack) {

super.sendAck(GridSimTags.GRIDLET_SUBMIT_ACK, true, gl
.getGridletID(), gl.getUserID());

}
forecastGridlet();
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antPool.getPool().remove(gl.getGridletID());
} else {

try {

//System.out.print("Load for resource ID " + resId_ + " is "
// + getLoad());
//System.out.print("\n");
ant.step(calculateTotalLoad(gridletInExecList_.size()));

} catch (IOException e) {
e.printStackTrace();

}
}

}

/////////////////////// Private Methods /////////////////////////
protected double calculateTotalLoad(int size) {

int totalRating = 0;
PEList peList = (resource_.getMachineList().getMachine(0)).getPEList();
for (int i = 0; i < peList.size(); i++) {

totalRating += ((PE) peList.get(i)).getMIPSRating();
}

totalRating = totalRating / 10;
// Devide by the lowest PE rate in the Grid.
// Here we have 10 and 50 so we divide by 10
double val = (size + 1.0) / totalRating;
int numGridletPerPE = (int) Math.ceil(val);

// load is between [0.0, 1.0] where 1.0 is busy and 0.0 is not busy
double localLoad = resCalendar_.getCurrentLoad();
double load = 1.0 - ((1 - localLoad) / numGridletPerPE);
if (load < 0.0) {

load = 0.0;
}

return load;
}

private void updateGridletProcessing() {
// Identify MI share for the duration (from last event time)
double time = GridSim.clock();
double timeSpan = time - lastUpdateTime_;

// if current time is the same or less than the last update time,
// then ignore
if (timeSpan <= 0.0) {

return;
}

// Update Current Time as the Last Update
lastUpdateTime_ = time;

// update the GridResource load
int size = gridletInExecList_.size();
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double load = super.calculateTotalLoad(size);
super.addTotalLoad(load); // add the current resource load

// if no Gridlets in execution then ignore the rest
if (size == 0) {

return;
}

// gets MI Share for all Gridlets
MIShares shares = getMIShare(timeSpan, size);
ResGridlet obj;

// a loop that allocates MI share for each Gridlet accordingly
// In this algorithm, Gridlets at the front of the list
// (range = 0 until MIShares.maxCount-1) will be given max MI value
// For example, 2 PEs and 3 Gridlets. PE #0 processes Gridlet #0
// PE #1 processes Gridlet #1 and Gridlet #2
int i = 0; // a counter
Iterator iter = gridletInExecList_.iterator();
while (iter.hasNext()) {

obj = (ResGridlet) iter.next();

// Updates the Gridlet length that is currently being executed
if (i < shares.maxCount) {

obj.updateGridletFinishedSoFar(shares.max);
} else {

obj.updateGridletFinishedSoFar(shares.min);
}

i++; // increments i
}

}

private MIShares getMIShare(double timeSpan, int size) {
// 1 - localLoad_ = available MI share percentage
double localLoad = super.resCalendar_.getCurrentLoad();
double TotalMIperPE = super.resource_.getMIPSRatingOfOnePE() * timeSpan

* (1 - localLoad);

// This allocpolicy.TimeShared is not Round Robin where each PE for 1
// Gridlet only.
// a PE can have more than one Gridlet executing.
// minimum number of Gridlets that each PE runs.
int glDIVpe = size / super.totalPE_;

// number of PEs that run one extra Gridlet
int glMODpe = size % super.totalPE_;

// If num Gridlets in execution > total PEs in a GridResource,
// then divide MIShare by the following constraint:
// - obj.max = MIShare of a PE executing n Gridlets
// - obj.min = MIShare of a PE executing n+1 Gridlets
// - obj.maxCount = a threshold number of Gridlets will be assigned to
// max MI value.
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//
// In this algorithm, Gridlets at the front of the list
// (range = 0 until maxCount-1) will be given max MI value
if (glDIVpe > 0) {

// this is for PEs that run one extra Gridlet
share_.min = TotalMIperPE / (glDIVpe + 1);
share_.max = TotalMIperPE / glDIVpe;
share_.maxCount = (super.totalPE_ - glMODpe) * glDIVpe;

}

// num Gridlet in Exec < total PEs, meaning it is a
// full PE share: i.e a PE is dedicated to execute a single Gridlet
else {

share_.max = TotalMIperPE;
share_.min = TotalMIperPE;
share_.maxCount = size; // number of Gridlet

}

return share_;
}

private double forecastFinishTime(double availableRating, double length) {
double finishTime = (length / availableRating);

// This is as a safeguard since the finish time can be extremely
// small close to 0.0, such as 4.5474735088646414E-14. Hence causing
// some Gridlets never to be finished and consequently hang the program
if (finishTime < 1.0) {

finishTime = 1.0;
}
return finishTime;

}

private int getLighterNodeinHistory() {

int bestIp = resId_;
double bestLoad = calculateTotalLoad(gridletInExecList_.size());
ArrayList<Integer> equalLoads = new ArrayList<Integer>();

Iterator iterator = loadTable.keySet().iterator();
while (iterator.hasNext()) {

Integer id = (Integer) iterator.next();
Double load = loadTable.get(id);

if (load < bestLoad) {
bestIp = id;
equalLoads.add(id);

} else if (load == bestLoad) {
equalLoads.add(id);

}
}
Random random = new Random();
if (equalLoads.size() > 0)

return equalLoads.get(random.nextInt(equalLoads.size()));
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else
return bestIp;

}

private void printLoadTable() throws IOException {
Iterator iterator = loadTable.keySet().iterator();

System.out.print("ID Load");
System.out.print("\n");
System.out.print("--------------");
System.out.print("\n");

while (iterator.hasNext()) {
Integer key = (Integer) iterator.next();
System.out.print(key + " ");
System.out.print(String.valueOf(loadTable.get(key)));
System.out.print("\n");

}
}

private void internalEvent() {

// this is a constraint that prevents an infinite loop
// Compare between 2 floating point numbers. This might be incorrect
// for some hardware platform.
if (lastUpdateTime_ == GridSim.clock()) {

return;
}

// update Gridlets in execution up to this point in time
updateGridletProcessing();

// schedule next event
forecastGridlet();

}

private void checkGridletCompletion() {
ResGridlet rgl;

// a loop that determine the smallest finish time of a Gridlet
// Don’t use an iterator since it causes an exception because if
// a Gridlet is finished, gridletFinish() will remove it from the
// list.
int i = 0;
while (i < gridletInExecList_.size()) {

rgl = (ResGridlet) gridletInExecList_.get(i);

// if a Gridlet has finished, then remove it from the list
if (rgl.getRemainingGridletLength() <= 0.0) {

gridletFinish(rgl, Gridlet.SUCCESS);
continue; // not increment i coz the list size also decreases

}
i++;

}
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}

/**
* Updates the Gridlet’s properties, such as status once a Gridlet is
* considered finished.
*
* @param rgl
* @param status
*/

private void gridletFinish(ResGridlet rgl, int status) {
// NOTE: the order is important! Set the status first then finalize
// due to timing issues in ResGridlet class.
rgl.setGridletStatus(status);
rgl.finalizeGridlet();

// sends back the Gridlet with no delay
Gridlet gl = rgl.getGridlet();
super.sendFinishGridlet(gl);

// remove this Gridlet in the execution
gridletInExecList_.remove(rgl);

}

private void forecastGridlet() {
// if no Gridlets available in exec list, then exit this method
if (gridletInExecList_.size() == 0) {

return;
}

// checks whether Gridlets have finished or not. If yes, then remove
// them since they will effect the MIShare calculation.
checkGridletCompletion();

// Identify MIPS share for all Gridlets for 1 second, considering
// current Gridlets + No of PEs.
MIShares share = getMIShare(1.0, gridletInExecList_.size());

ResGridlet rgl;
int i = 0;
double time;
double rating;
double smallestTime = 0.0;

// For each Gridlet, determines their finish time
Iterator iter = gridletInExecList_.iterator();
while (iter.hasNext()) {

rgl = (ResGridlet) iter.next();

// If a Gridlet locates before the max count then it will be given
// the max. MIPS rating
if (i < share.maxCount) {

rating = share.max;
} else { // otherwise, it will be given the min. MIPS Rating

rating = share.min;
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}

time = forecastFinishTime(rating, rgl.getRemainingGridletLength());

int roundUpTime = (int) (time + 1); // rounding up
rgl.setFinishTime(roundUpTime);

// get the smallest time of all Gridlets
if (i == 0 || smallestTime > time) {

smallestTime = time;
}

i++;
}

// sends to itself as an internal event
super.sendInternalEvent(smallestTime);

}

////////////////////////// Inner Classes //////////////////////////

public class Ant {

private Gridlet gridlet;
private int sourceID;
private HashMap<Integer, AntHistory> antHistory;
private int WANDER_NUMBER = 4;
private int step;
private boolean isfinish = false;
private double MUTATION_RATE = 0.5;

public Ant(Gridlet gridlet) {

this.gridlet = gridlet;
this.sourceID = gridlet.getResourceID();
this.antHistory = new HashMap<Integer, AntHistory>();
//try {
//System.out.print("Ant ID " + gridlet.getGridletID()
// + " initiated in " + sourceID + " ");
//System.out.print("\n");
//printLoadTable();
//} catch (IOException e) {
// e.printStackTrace();
//}

}

public boolean isFinish() {
return isfinish;

}

public void step(double load) throws IOException {

int newSourceId;
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//System.out.print("Ant ID " + gridlet.getGridletID() + " took step "
// + step);
step++;
AntHistory newNode = new AntHistory(sourceID, load);
antHistory.put(sourceID, newNode);

Iterator iterator = antHistory.keySet().iterator();
while (iterator.hasNext()) {

AntHistory temp = antHistory.get(iterator.next());
loadTable.put(temp.getIp(), temp.getLoad());

}

// TODO: experiment a huristic for choosing nodes
// TODO: experiment a random value for continuing searching
//System.out.print(" from " + sourceID);

Random random = new Random();
if (random.nextDouble() < MUTATION_RATE) {

newSourceId = Topology.gerRandomNodeId();
} else

newSourceId = getLighterNodeinHistory();
if (MUTATION_RATE > 0)

MUTATION_RATE = MUTATION_RATE - 0.2;
//System.out.print(" to " + newSourceId);
//System.out.print("\n");

if (step == WANDER_NUMBER)
isfinish = true;

// TODO : how to set the Cost and is it ever used ?!
if (sourceID != newSourceId) {

StatisticalAnalysis.Communications++;
sourceID = newSourceId;
gridlet.setResourceParameter(sourceID, gridlet.getCostPerSec

(sourceID));
// TODO : what to do with ack
// TODO : check if the source and dest is the same do nothign bad
sim_schedule(output, 0, GridSimTags.GRIDLET_SUBMIT_ACK,

new IO_data(gridlet, gridlet.getGridletFileSize(),
sourceID, 0));

} else {
gridletSubmit(gridlet, true);

}
}

public int getsourceID() {
return sourceID;

}

public Gridlet getGridlet() {
return gridlet;

}
}
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/**
* Gridlets MI share in Time Shared Mode
*/

private class MIShares {
/**
* maximum amount of MI share Gridlets can get
*/
public double max;

/**
* minimum amount of MI share Gridlets can get when it is executed on a
* PE that runs one extra Gridlet
*/
public double min;

/**
* Total number of Gridlets that get Max share
*/
public int maxCount;

/**
* Default constructor that initializes all attributes to 0
*/
public MIShares() {

max = 0.0;
min = 0.0;
maxCount = 0;

}
}

}

package allocpolicy.antZ;

/**
* Created by IntelliJ IDEA.
* User: Azin
* Date: 5-Nov-2007
* Time: 4:55:24 AM
* To change this template use File | Settings | File Templates.
*/
public class AntHistory {

private int ip;
private double load;

public AntHistory(int ip, double load) {
this.ip = ip;
this.load = load;

}

public int getIp() {
return ip;

}
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public double getLoad() {
return load;

}
}

package allocpolicy.antZ;

import java.util.ArrayList;
import java.util.HashMap;

public class AntHistoryList {

private static AntHistoryList instance;
private HashMap<Integer, ArrayList> nodeAntHistory;

private AntHistoryList() {
nodeAntHistory = new HashMap<Integer, ArrayList>();

}

public static AntHistoryList getInstance() {
if (instance == null)

instance = new AntHistoryList();
return instance;

}

public void add(int ID, double cost) {
ArrayList<AntHistory> list = nodeAntHistory.get(new Integer(ID));
if (list == null) {

list = new ArrayList<AntHistory>();
}
list.add(new AntHistory(ID, cost));
nodeAntHistory.put(ID, list);

}

/* public int getLighterNodeinHistory(int ID, double cost) {

double bestLoad = cost;
ArrayList<Integer> equalLoads = new ArrayList<Integer>();

ArrayList arrayList = nodeAntHistory.get(new Integer(ID));
for (int i = 0; i < arrayList.size(); i++) {

AntHistory antHistory = (AntHistory) arrayList.get(i);
if ((antHistory.getLoad() < bestLoad)) {

equalLoads.add(antHistory.getIp());
} else if (antHistory.getLoad() == bestLoad) {

equalLoads.add(antHistory.getIp());

}
}
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Random random = new Random();
return equalLoads.get(random.nextInt(equalLoads.size()));

} */

}

package allocpolicy.antZ;

import java.util.HashMap;

import allocpolicy.antZ.AntColonyAllocPolicy.Ant;

public class AntPool {

private HashMap<Integer, Ant> gridletID_antID;
private static AntPool instance;

public static AntPool getInstance(){
if(instance == null)
instance = new AntPool();
return instance;
}

private AntPool(){
gridletID_antID = new HashMap<Integer, Ant>();
}

public HashMap<Integer, Ant> getPool(){
return gridletID_antID;
}

}

package allocpolicy.particleZ;

import java.util.HashMap;

public class AllocPolicyList {
private HashMap<Integer, ParticleSwarmAllocPolicy> allocPolicies;
private static AllocPolicyList allocPolicyList;

public AllocPolicyList(){
allocPolicies = new HashMap<Integer, ParticleSwarmAllocPolicy>();
}

public static AllocPolicyList getInstance(){
if(allocPolicyList == null)
allocPolicyList = new AllocPolicyList();
return allocPolicyList;
}

public void addallocPolicy(ParticleSwarmAllocPolicy allocPolicy){
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allocPolicies.put(allocPolicy.getresId(), allocPolicy);
}

public ParticleSwarmAllocPolicy getAllocPolicy(int id){
return allocPolicies.get(id);
}

}

package allocpolicy.particleZ;

import java.util.ArrayList;
import java.util.Iterator;
import java.io.IOException;

import eduni.simjava.Sim_event;
import eduni.simjava.Sim_system;
import grid.Topology;
import grid.StatisticalAnalysis;
import gridsim.AllocPolicy;
import gridsim.GridSim;
import gridsim.GridSimTags;
import gridsim.Gridlet;
import gridsim.Machine;
import gridsim.MachineList;
import gridsim.PE;
import gridsim.PEList;
import gridsim.ResGridlet;
import gridsim.ResGridletList;

public class ParticleSwarmAllocPolicy extends AllocPolicy {

private ResGridletList gridletQueueList_; // Queue list
private ResGridletList gridletInExecList_; // Execution list
private double lastUpdateTime_; // the last time Gridlets updated
private int[] machineRating_; // list of machine ratings available
private boolean log = false;

public ParticleSwarmAllocPolicy(String resName, String entityName)
throws Exception {

super(resName, entityName);
// initialises local data structure
this.gridletInExecList_ = new ResGridletList();
this.gridletQueueList_ = new ResGridletList();
this.lastUpdateTime_ = 0.0;
this.machineRating_ = null;

}

public void body() {

double time1, time2 = GridSim.clock();

// Gets the PE’s rating for each Machine in the list.
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// Assumed one Machine has same PE rating.
MachineList list = super.resource_.getMachineList();
int size = list.size();
machineRating_ = new int[size];
for (int i = 0; i < size; i++) {

machineRating_[i] = super.resource_.getMIPSRatingOfOnePE(i, 0);
}

// a loop that is looking for internal events only
Sim_event ev = new Sim_event();
while (Sim_system.running()) {

time1 = time2;
time2 = GridSim.clock();

if ((log) && (time2 - time1 > 200))
try {

StatisticalAnalysis.get_particle_log().
writeChars(String.valueOf(calculateTotalLoad(

gridletInExecList_.size() +
gridletQueueList_.size())) + "\n");

} catch (IOException e) {
e.printStackTrace();

}
super.sim_get_next(ev);

// if the simulation finishes then exit the loop
if (ev.get_tag() == GridSimTags.END_OF_SIMULATION

|| super.isEndSimulation()) {
break;

}
// Internal Event if the event source is this entity
if (ev.get_src() == super.myId_ && gridletInExecList_.size() > 0) {

updateGridletProcessing(); // update Gridlets
checkGridletCompletion(); // check for finished Gridlets

}

if (gridletQueueList_.size() > 0) {
double load = calculateTotalLoad(gridletInExecList_.size()

+ gridletQueueList_.size());
int destID = resId_;
double delta = Double.MAX_VALUE;
AllocPolicyList allocPolicyList = AllocPolicyList.getInstance();

ArrayList<Integer> neighbours = Topology.
getConnectedResources(resId_);

for (int i = 0; i < neighbours.size(); i++) {
int neighbourId = neighbours.get(i);
ParticleSwarmAllocPolicy allocPolicy = allocPolicyList.

getAllocPolicy(neighbourId);
double destLoad = allocPolicy.calculateTotalLoad();
StatisticalAnalysis.Communications++;
StatisticalAnalysis.Communications++;
if (destLoad < load) {
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load = destLoad;
destID = neighbours.get(i);

}
}
for (int i = 0; i < neighbours.size(); i++) {

int neighbourId = neighbours.get(i);
ParticleSwarmAllocPolicy allocPolicy = allocPolicyList.

getAllocPolicy(neighbourId);
double destLoad = allocPolicy.calculateTotalLoad();
// If in the meanwhile of these processes there is appearing a
// node which by decrease in its load it is not the second best
// any more we quit this round of body()
if (load - destLoad < 0) {

delta = 0.2;
break;

} else if ((load - destLoad < delta)) {
delta = load - destLoad;

}
}

// double THRESHOLD = delta;
if ((destID != resId_)) {

while ((gridletQueueList_.size() > 0) &&
(calculateTotalLoad(gridletInExecList_.size() +

gridletQueueList_.size()) - load > delta)) {
ResGridlet obj = (ResGridlet) gridletQueueList_.get(0);
gridletMove(obj.getGridletID(), obj.getUserID(),

destID, true);
}

}
}
allocateQueueGridlet();

// CHECK for ANY INTERNAL EVENTS WAITING TO BE PROCESSED
while (super.sim_waiting() > 0) {

// wait for event and ignore since it is likely to be related to
// internal event scheduled to update Gridlets processing
super.sim_get_next(ev);
// System.out.println(super.resName_+
// ".allocpolicy.SBA.body(): ignore internal events");

}

}
}

public void gridletCancel(int gridletId, int userId) {
}

public void gridletMove(int gridletId, int userId, int destId, boolean ack) {

// cancels the Gridlet
ResGridlet rgl = cancel(gridletId, userId);

// if the Gridlet is not found
if (rgl == null) {
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System.out.println(super.resName_
+ ".allocpolicy.SBA.gridletMove(): Cannot find "
+ "Gridlet #" + gridletId + " for User #" + userId);

if (ack) { // sends back an ack if required
super.sendAck(GridSimTags.GRIDLET_SUBMIT_ACK, false, gridletId,

userId);
}
return;

}

// if the Gridlet has finished beforehand
if (rgl.getGridletStatus() == Gridlet.SUCCESS) {

System.out
.println(super.resName_

+ ".allocpolicy.SBA.gridletMove(): " +
"Cannot move Gridlet #"
+ gridletId + " for User #" + userId
+ " since it has FINISHED.");

if (ack) { // sends back an ack if required
super.sendAck(GridSimTags.GRIDLET_SUBMIT_ACK, false, gridletId,

userId);
}

gridletFinish(rgl, Gridlet.SUCCESS);
} else { // otherwise moves this Gridlet to a different GridResource

rgl.finalizeGridlet();

// Set PE on which Gridlet finished to FREE
super.resource_.setStatusPE(PE.FREE, rgl.getMachineID(),

rgl.getPEID());
super.gridletMigrate(rgl.getGridlet(), destId, ack);
// allocateQueueGridlet();

}
}

public void gridletPause(int gridletId, int userId, boolean ack) {
}

public void gridletResume(int gridletId, int userId, boolean ack) {
}

public int gridletStatus(int gridletId, int userId) {
ResGridlet rgl;

// Find in EXEC List first
int found = super.findGridlet(gridletInExecList_, gridletId, userId);
if (found >= 0) {

// Get the Gridlet from the execution list
rgl = (ResGridlet) gridletInExecList_.get(found);
return rgl.getGridletStatus();

}
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// Find in Queue List
found = super.findGridlet(gridletQueueList_, gridletId, userId);
if (found >= 0) {

// Get the Gridlet from the execution list
rgl = (ResGridlet) gridletQueueList_.get(found);
return rgl.getGridletStatus();

}

// if not found in all 3 lists then no found
return -1;

}

public void gridletSubmit(Gridlet gl, boolean ack) {
StatisticalAnalysis.Communications++;
// update the current Gridlets in exec list up to this point in time
updateGridletProcessing();

// reset number of PE since at the moment, it is not supported
if (gl.getNumPE() > 1) {

String userName = GridSim.getEntityName(gl.getUserID());
System.out.println();
System.out.println(super.get_name() + ".gridletSubmit(): "

+ " Gridlet #" + gl.getGridletID() + " from " + userName
+ " user requires " + gl.getNumPE() + " PEs.");

System.out.println("--> Process this Gridlet to 1 PE only.");
System.out.println();

// also adjusted the length because the number of PEs are reduced
int numPE = gl.getNumPE();
double len = gl.getGridletLength();
gl.setGridletLength(len * numPE);
gl.setNumPE(1);

}

ResGridlet rgl = new ResGridlet(gl);
boolean success = false;

// if there is an available PE slot, then allocate immediately
if (gridletInExecList_.size() < super.totalPE_) {

success = allocatePEtoGridlet(rgl);
}

// if no available PE then put the ResGridlet into a Queue list
if (!success) {

rgl.setGridletStatus(Gridlet.QUEUED);
gridletQueueList_.add(rgl);

}

// sends back an ack if required
if (ack) {

super.sendAck(GridSimTags.GRIDLET_SUBMIT_ACK, true, gl
.getGridletID(), gl.getUserID());

}
}
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public int getresId() {
return resId_;

}

public double calculateTotalLoad() {
return calculateTotalLoad(gridletQueueList_.size() +

gridletInExecList_.size());
}
//////////////////////// Private Methods ///////////////////////////////

protected double calculateTotalLoad(int size) {
int totalRating = 0;
PEList peList = (resource_.getMachineList().getMachine(0)).getPEList();
for (int i = 0; i < peList.size(); i++) {

totalRating += ((PE) peList.get(i)).getMIPSRating();
}

totalRating = totalRating / 10;
// Devide by the lowest PE rate in the Grid.
// Here we have 10 and 50 so we divide by 10
double val = (size + 1.0) / totalRating;
int numGridletPerPE = (int) Math.ceil(val);

// load is between [0.0, 1.0] where 1.0 is busy and 0.0 is not busy
double localLoad = resCalendar_.getCurrentLoad();
double load = 1.0 - ((1 - localLoad) / numGridletPerPE);
if (load < 0.0) {

load = 0.0;
}

return load;
}

private void updateGridletProcessing() {
// Identify MI share for the duration (from last event time)
double time = GridSim.clock();
double timeSpan = time - lastUpdateTime_;

// if current time is the same or less than the last update time,
// then ignore
if (timeSpan <= 0.0) {

return;
}

// Update Current Time as Last Update
lastUpdateTime_ = time;

// update the GridResource load
//TODO : What ?!!!!
int size = gridletInExecList_.size();
double load = super.calculateTotalLoad(size);
super.addTotalLoad(load);
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// if no Gridlets in execution then ignore the rest
if (size == 0) {

return;
}

ResGridlet obj;

// a loop that allocates MI share for each Gridlet accordingly
Iterator iter = gridletInExecList_.iterator();
while (iter.hasNext()) {

obj = (ResGridlet) iter.next();

// Updates the Gridlet length that is currently being executed
load = getMIShare(timeSpan, obj.getMachineID());
obj.updateGridletFinishedSoFar(load);

}
}

private void checkGridletCompletion() {
ResGridlet obj;
int i = 0;

// NOTE: This one should stay as it is since gridletFinish()
// will modify the content of this list if a Gridlet has finished.
// Can’t use iterator since it will cause an exception
while (i < gridletInExecList_.size()) {

obj = (ResGridlet) gridletInExecList_.get(i);

if (obj.getRemainingGridletLength() == 0.0) {
gridletInExecList_.remove(obj);
gridletFinish(obj, Gridlet.SUCCESS);
continue;

}
i++;

}

// if there are still Gridlets left in the execution
// then send this into itself for an hourly interrupt
// NOTE: Setting the internal event time too low will make the
// simulation more realistic, BUT will take longer time to
// run this simulation. Also, size of sim_trace will be HUGE!
if (gridletInExecList_.size() > 0) {

super.sendInternalEvent(60.0 * 60.0);
}

}

private ResGridlet cancel(int gridletId, int userId) {
ResGridlet rgl = null;

// Find in QUEUE list
int found = super.findGridlet(gridletQueueList_, gridletId, userId);
if (found >= 0) {

rgl = (ResGridlet) gridletQueueList_.remove(found);
rgl.setGridletStatus(Gridlet.CANCELED);
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}
return rgl;

}

/**
* Allocates the first Gridlet in the Queue list (if any) to execution list
*
* @pre $none
* @post $none
*/

private void allocateQueueGridlet() {
// if there are many Gridlets in the QUEUE, then allocate a
// PE to the first Gridlet in the list since it follows FCFS
// (First Come First Serve) approach. Then removes the Gridlet from
// the Queue list
if (gridletQueueList_.size() > 0

&& gridletInExecList_.size() < super.totalPE_) {
ResGridlet obj = (ResGridlet) gridletQueueList_.get(0);

// allocate the Gridlet into an empty PE slot and remove it from
// the queue list
boolean success = allocatePEtoGridlet(obj);
if (success) {

gridletQueueList_.remove(obj);
}

}
}

private boolean allocatePEtoGridlet(ResGridlet rgl) {
// IDENTIFY MACHINE which has a free PE and add this Gridlet to it.
Machine myMachine = resource_.getMachineWithFreePE();

// If a Machine is empty then ignore the rest
if (myMachine == null) {

return false;
}

// gets the list of PEs and find one empty PE
PEList MyPEList = myMachine.getPEList();
int freePE = MyPEList.getFreePEID();

// ALLOCATE IMMEDIATELY
rgl.setGridletStatus(Gridlet.INEXEC); // change Gridlet status
rgl.setMachineAndPEID(myMachine.getMachineID(), freePE);

// add this Gridlet into execution list
gridletInExecList_.add(rgl);

// Set allocated PE to BUSY status
super.resource_.setStatusPE(PE.BUSY, rgl.getMachineID(), freePE);

// Identify Completion Time and Set Interrupt
int rating = machineRating_[rgl.getMachineID()];
double time = forecastFinishTime(rating, rgl
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.getRemainingGridletLength());

int roundUpTime = (int) (time + 1); // rounding up
rgl.setFinishTime(roundUpTime);

// then send this into itself
super.sendInternalEvent(roundUpTime);
return true;

}

private double forecastFinishTime(double availableRating, double length) {
double finishTime = (length / availableRating);

// This is as a safeguard since the finish time can be extremely
// small close to 0.0, such as 4.5474735088646414E-14. Hence causing
// some Gridlets never to be finished and consequently hang the program
if (finishTime < 1.0) {

finishTime = 1.0;
}
return finishTime;

}

private void gridletFinish(ResGridlet rgl, int status) {
// Set PE on which Gridlet finished to FREE
super.resource_.setStatusPE(PE.FREE, rgl.getMachineID(), rgl.getPEID());

// the order is important! Set the status first then finalize
// due to timing issues in ResGridlet class
rgl.setGridletStatus(status);
rgl.finalizeGridlet();
super.sendFinishGridlet(rgl.getGridlet());
allocateQueueGridlet(); // move Queued Gridlet into exec list

}

private double getMIShare(double timeSpan, int machineId) {
// 1 - localLoad_ = available MI share percentage
double localLoad = super.resCalendar_.getCurrentLoad();

// each Machine might have different PE Rating compare to another
// so much look at which Machine this PE belongs to
double totalMI = machineRating_[machineId] * timeSpan * (1 - localLoad);
return totalMI;

}

}

package allocpolicy.statebroadcast;

/**
* Created by IntelliJ IDEA.
* User: azm537
* Date: Nov 19, 2008
* Time: 11:15:37 PM
* To change this template use File | Settings | File Templates.
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*/
public class IdLoadBean {

private int id;
private double load;

public IdLoadBean(int id, double load) {
this.id = id;
this.load = load;

}

public int getId() {
return id;

}

public void setId(int ip) {
this.id = ip;

}

public double getLoad() {
return load;

}

public void setLoad(double load) {
this.load = load;

}
}

package allocpolicy.statebroadcast;

/*
* Title: GridSim Toolkit
* Description: GridSim (Grid Simulation) Toolkit for Modeling and Simulation
* of Parallel and Distributed Systems such as Clusters and Grids
* Licence: GPL - http://www.gnu.org/copyleft/gpl.html
*
* $Id: TimeShared.java,v 1.39 2006/03/09 05:56:32 anthony Exp $
*/

import java.util.Iterator;
import java.util.HashMap;
import java.util.Random;
import java.util.Date;
import java.io.IOException;

import gridsim.*;
import eduni.simjava.*;
import grid.StatisticalAnalysis;
import sun.util.calendar.Gregorian;

public class SBA extends AllocPolicy {
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private ResGridletList gridletInExecList_; // storing exec Gridlets
private double lastUpdateTime_; // a timer to denote the last update time
private MIShares share_; // a temp variable
private HashMap ssv; // IP -> load
private boolean log = false;
private Sim_port output;

public SBA(String resourceName, String entityName, Sim_port output)
throws Exception {

super(resourceName, entityName);

// initialises local data structure
this.gridletInExecList_ = new ResGridletList();
ssv = new HashMap();
this.share_ = new MIShares();
this.lastUpdateTime_ = 0.0;
this.output = output;

}

public void body() {

double time1, time2 = GridSim.clock();

// a loop that is looking for internal events only
sim_schedule(resId_, GridSimTags.SCHEDULE_NOW,

GridSimTags.BROADCAST_STATE);
Sim_event ev = new Sim_event();
while (Sim_system.running()) {

time1 = time2;
time2 = GridSim.clock();

if ((log) && (time2 - time1 > 200))
try {

StatisticalAnalysis.get_sba_log().writeChars(
String.valueOf(calculateTotalLoad(gridletInExecList_

.size())) + "\n");
} catch (IOException e) {

e.printStackTrace();
}

sim_schedule(resId_, GridSimTags.SCHEDULE_NOW,
GridSimTags.BROADCAST_STATE);

super.sim_get_next(ev);

// if the simulation finishes then exit the loop
if (ev.get_tag() == GridSimTags.END_OF_SIMULATION

|| super.isEndSimulation() == true) {
break;

}

// Internal Event if the event source is this entity
if (ev.get_src() == super.myId_) {
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internalEvent();
}

}

// CHECK for ANY INTERNAL EVENTS WAITING TO BE PROCESSED
while (super.sim_waiting() > 0) {

// wait for event and ignore since it is likely to be related to
// internal event scheduled to update Gridlets processing
super.sim_get_next(ev);
System.out.println(super.resName_ +

".TimeShared.body(): ignoring internal events");
}

}

/**
* Schedules a new Gridlet that has been received by the GridResource
* entity.
*
* @param gl a Gridlet object that is going to be executed
* @param ack an acknowledgement, i.e. <tt>true</tt> if wanted to know
* whether this operation is success or not, <tt>false</tt>
* otherwise (don’t care)
* @pre gl != null
* @post $none
*/

public void gridletSubmit(Gridlet gl, boolean ack) {

StatisticalAnalysis.Communications++;

// update Gridlets in execution up to this point in time
updateGridletProcessing();

// reset number of PE since at the moment, it is not supported
if (gl.getNumPE() > 1) {

String userName = GridSim.getEntityName(gl.getUserID());
System.out.println();
System.out.println(super.get_name() + ".gridletSubmit(): " +

" Gridlet #" + gl.getGridletID() + " from " + userName +
" user requires " + gl.getNumPE() + " PEs.");

System.out.println("--> Process this Gridlet to 1 PE only.");
System.out.println();

// also adjusted the length because the number of PEs are reduced
int numPE = gl.getNumPE();
double len = gl.getGridletLength();
gl.setGridletLength(len * numPE);
gl.setNumPE(1);

}

Random random = new Random();
if (!gl.isExecute()) {
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gl.setExecute(true);
double minLoad = calculateTotalLoad(gridletInExecList_.size());
int minNode = resId_;
Iterator iterator = ssv.keySet().iterator();

// System.out.println("SIZE: " + ssv.size());
while (iterator.hasNext()) {

int id = (Integer) iterator.next();
if (((Double) ssv.get(id) == minLoad)) {

if (random.nextDouble() > 0.5)
minNode = id;

} else if ((Double) ssv.get(id) < minLoad) {
minLoad = (Double) ssv.get(id);
minNode = id;

}
}

// System.out.println("Send Job From " + resId_ + " with load:
// " + calculateTotalLoad(gridletInExecList_.size()) + " to " +
// minNode + " with load: " + minLoad);

sim_schedule(output, 0, GridSimTags.GRIDLET_SUBMIT_ACK,
new IO_data(gl, gl.getGridletFileSize(),

minNode, 0));
} else if (gl.isExecute()) {

// adds a Gridlet to the in execution list
ResGridlet rgl = new ResGridlet(gl);
rgl.setGridletStatus(Gridlet.INEXEC); // set the Gridlet status to exec
gridletInExecList_.add(rgl); // add into the execution list

// sends back an ack if required
if (ack) {

super.sendAck(GridSimTags.GRIDLET_SUBMIT_ACK, true,
gl.getGridletID(), gl.getUserID());

}
sim_schedule(resId_, GridSimTags.SCHEDULE_NOW,

GridSimTags.BROADCAST_STATE);
}
// forecast all Gridlets in the execution list
forecastGridlet();

}

/**
* Finds the status of a specified Gridlet ID.
*
* @param gridletId a Gridlet ID
* @param userId the user or owner’s ID of this Gridlet
* @return the Gridlet status or <tt>-1</tt> if not found
* @pre gridletId > 0
* @pre userId > 0
* @post $none
* @see gridsim.Gridlet
*/

public int gridletStatus(int gridletId, int userId) {
ResGridlet rgl;
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// Find in EXEC List first
int found = super.findGridlet(gridletInExecList_, gridletId, userId);
if (found >= 0) {

// Get the Gridlet from the execution list
rgl = (ResGridlet) gridletInExecList_.get(found);
return rgl.getGridletStatus();

}

// if not found in all lists
return -1;

}

/**
* Cancels a Gridlet running in this entity.
* This method will search the execution and paused list. The User ID is
* important as many users might have the same Gridlet ID in the lists.
* <b>NOTE:</b>
* <ul>
* <li> Before canceling a Gridlet, this method updates all the
* Gridlets in the execution list. If the Gridlet has no more MIs
* to be executed, then it is considered to be <tt>finished</tt>.
* Hence, the Gridlet can’t be canceled.
* <p/>
* <li> Once a Gridlet has been canceled, it can’t be resumed to
* execute again since this method will pass the Gridlet back to
* sender, i.e. the <tt>userId</tt>.
* <p/>
* <li> If a Gridlet can’t be found in both execution and paused list,
* then a <tt>null</tt> Gridlet will be send back to sender,
* i.e. the <tt>userId</tt>.
* </ul>
*
* @param gridletId a Gridlet ID
* @param userId the user or owner’s ID of this Gridlet
* @pre gridletId > 0
* @pre userId > 0
* @post $none
*/

public void gridletCancel(int gridletId, int userId) {
// Finds the gridlet in execution and paused list
ResGridlet rgl = cancel(gridletId, userId);

// If not found in both lists then report an error and sends back
// an empty Gridlet
if (rgl == null) {

System.out.println(super.resName_ +
".TimeShared.gridletCancel(): Cannot find " +
"Gridlet #" + gridletId + " for User #" + userId);

super.sendCancelGridlet(GridSimTags.GRIDLET_CANCEL, null,
gridletId, userId);

return;
}
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// if a Gridlet is found
rgl.finalizeGridlet(); // finalise Gridlet

// if a Gridlet has finished execution before canceling, the reports
// an error msg
if (rgl.getGridletStatus() == Gridlet.SUCCESS) {

System.out.println(super.resName_
+ ".TimeShared.gridletCancel(): Cannot cancel"
+ " Gridlet #" + gridletId + " for User #" + userId
+ " since it has FINISHED.");

}

// sends the Gridlet back to sender
super.sendCancelGridlet(GridSimTags.GRIDLET_CANCEL, rgl.getGridlet(),

gridletId, userId);
}

public void gridletPause(int gridletId, int userId, boolean ack) {

}

public void gridletResume(int gridletId, int userId, boolean ack) {

}

/**
* Moves a Gridlet from this GridResource entity to a different one.
* This method will search in both the execution and paused list.
* The User ID is important as many Users might have the same Gridlet ID
* in the lists.
* <p/>
* If a Gridlet has finished beforehand, then this method will send back
* the Gridlet to sender, i.e. the <tt>userId</tt> and sets the
* acknowledgment to false (if required).
*
* @param gridletId a Gridlet ID
* @param userId the user or owner’s ID of this Gridlet
* @param destId a new destination GridResource ID for this Gridlet
* @param ack an acknowledgement, i.e. <tt>true</tt> if wanted to know
* whether this operation is success or not, <tt>false</tt>
* otherwise (don’t care)
* @pre gridletId > 0
* @pre userId > 0
* @pre destId > 0
* @post $none
*/

public void gridletMove(int gridletId, int userId, int destId, boolean ack) {
// cancel the Gridlet first
ResGridlet rgl = cancel(gridletId, userId);

// If no found then print an error msg
if (rgl == null) {

System.out.println(super.resName_ +
".TimeShared.gridletMove(): Cannot find " +
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"Gridlet #" + gridletId + " for User #" + userId);

if (ack) { // sends ack that this operation fails
super.sendAck(GridSimTags.GRIDLET_SUBMIT_ACK, false,

gridletId, userId);
}
return;

}

// if found
rgl.finalizeGridlet(); // finalise Gridlet
Gridlet gl = rgl.getGridlet();

// if a Gridlet has finished execution
if (gl.getGridletStatus() == Gridlet.SUCCESS) {

System.out.println(super.resName_
+ ".TimeShared.gridletMove(): Cannot move"
+ " Gridlet #" + gridletId + " for User #" + userId
+ " since it has FINISHED.");

if (ack) {
super.sendAck(GridSimTags.GRIDLET_SUBMIT_ACK, false, gridletId,

userId);
}

super.sendFinishGridlet(gl); // sends the Gridlet back to sender
}
// moves this Gridlet to another GridResource entity
else {

super.gridletMigrate(gl, destId, ack);
}

}

public double getLoad() {
return calculateTotalLoad(gridletInExecList_.size());

}

public void setSSV(IdLoadBean bean) {
ssv.put(bean.getId(), bean.getLoad());

}

//////////////////////////////// PRIVATE METHODS //////////////////////////////

protected double calculateTotalLoad(int size) {
int totalRating = 0;
PEList peList = (resource_.getMachineList().getMachine(0)).getPEList();
for (int i = 0; i < peList.size(); i++) {

totalRating += ((PE) peList.get(i)).getMIPSRating();
}

totalRating = totalRating / 10; // Devide by the lowest PE rate in the Grid.
// Here we have 10 and 50 so we divide by 10
double val = (size + 1.0) / totalRating;
int numGridletPerPE = (int) Math.ceil(val);
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// load is between [0.0, 1.0] where 1.0 is busy and 0.0 is not busy
double localLoad = resCalendar_.getCurrentLoad();
double load = 1.0 - ((1 - localLoad) / numGridletPerPE);
if (load < 0.0) {

load = 0.0;
}

return load;
}

/**
* Updates the execution of all Gridlets for a period of time.
* The time period is determined from the last update time up to the
* current time. Once this operation is successfull, then the last update
* time refers to the current time.
*
* @pre $none
* @post $none
*/

private void updateGridletProcessing() {
// Identify MI share for the duration (from last event time)
double time = GridSim.clock();
double timeSpan = time - lastUpdateTime_;

// if current time is the same or less than the last update time,
// then ignore
if (timeSpan <= 0.0) {

return;
}

// Update Current Time as the Last Update
lastUpdateTime_ = time;

// update the GridResource load
int size = gridletInExecList_.size();
double load = super.calculateTotalLoad(size);
super.addTotalLoad(load); // add the current resource load

// if no Gridlets in execution then ignore the rest
if (size == 0) {

return;
}

// gets MI Share for all Gridlets
MIShares shares = getMIShare(timeSpan, size);
ResGridlet obj = null;

// a loop that allocates MI share for each Gridlet accordingly
// In this algorithm, Gridlets at the front of the list
// (range = 0 until MIShares.maxCount-1) will be given max MI value
// For example, 2 PEs and 3 Gridlets. PE #0 processes Gridlet #0
// PE #1 processes Gridlet #1 and Gridlet #2
int i = 0; // a counter
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Iterator iter = gridletInExecList_.iterator();
while (iter.hasNext()) {

obj = (ResGridlet) iter.next();

// Updates the Gridlet length that is currently being executed
if (i < shares.maxCount) {

obj.updateGridletFinishedSoFar(shares.max);
} else {

obj.updateGridletFinishedSoFar(shares.min);
}

i++; // increments i
}

}

/**
* Identifies MI share (max and min) for all Gridlets in
* a given time duration
*
* @param timeSpan duration
* @param size total number of Gridlets in the execution list
* @return the total MI share that a Gridlet gets for a given
* <tt>timeSpan</tt>
*/

private MIShares getMIShare(double timeSpan, int size) {
// 1 - localLoad_ = available MI share percentage
double localLoad = super.resCalendar_.getCurrentLoad();
double TotalMIperPE = super.resource_.getMIPSRatingOfOnePE() * timeSpan

* (1 - localLoad);

// This TimeShared is not Round Robin where each PE for 1 Gridlet only.
// a PE can have more than one Gridlet executing.
// minimum number of Gridlets that each PE runs.
int glDIVpe = size / super.totalPE_;

// number of PEs that run one extra Gridlet
int glMODpe = size % super.totalPE_;

// If num Gridlets in execution > total PEs in a GridResource,
// then divide MIShare by the following constraint:
// - obj.max = MIShare of a PE executing n Gridlets
// - obj.min = MIShare of a PE executing n+1 Gridlets
// - obj.maxCount = a threshold number of Gridlets will be assigned to
// max MI value.
//
// In this algorithm, Gridlets at the front of the list
// (range = 0 until maxCount-1) will be given max MI value
if (glDIVpe > 0) {

// this is for PEs that run one extra Gridlet
share_.min = TotalMIperPE / (glDIVpe + 1);
share_.max = TotalMIperPE / glDIVpe;
share_.maxCount = (super.totalPE_ - glMODpe) * glDIVpe;

}

119



// num Gridlet in Exec < total PEs, meaning it is a
// full PE share: i.e a PE is dedicated to execute a single Gridlet
else {

share_.max = TotalMIperPE;
share_.min = TotalMIperPE;
share_.maxCount = size; // number of Gridlet

}

return share_;
}

/**
* Determines the smallest completion time of all Gridlets in the execution
* list. The smallest time is used as an internal event to
* update Gridlets processing in the future.
* <p/>
* The algorithm for this method:
* <ul>
* <li> identify the finish time for each Gridlet in the execution list
* given the share MIPS rating for all and the remaining Gridlet’s
* length
* <li> find the smallest finish time in the list
* <li> send the last Gridlet in the list with
* <tt>delay = smallest finish time - current time</tt>
* </ul>
*
* @pre $none
* @post $none
*/

private void forecastGridlet() {
// if no Gridlets available in exec list, then exit this method
if (gridletInExecList_.size() == 0) {

return;
}

// checks whether Gridlets have finished or not. If yes, then remove
// them since they will effect the MIShare calculation.
checkGridletCompletion();

// Identify MIPS share for all Gridlets for 1 second, considering
// current Gridlets + No of PEs.
MIShares share = getMIShare(1.0, gridletInExecList_.size());

ResGridlet rgl;
int i = 0;
double time;
double rating;
double smallestTime = 0.0;

// For each Gridlet, determines their finish time
Iterator iter = gridletInExecList_.iterator();
while (iter.hasNext()) {

rgl = (ResGridlet) iter.next();
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// If a Gridlet locates before the max count then it will be given
// the max. MIPS rating
if (i < share.maxCount) {

rating = share.max;
} else { // otherwise, it will be given the min. MIPS Rating

rating = share.min;
}

time = forecastFinishTime(rating, rgl.getRemainingGridletLength());

int roundUpTime = (int) (time + 1); // rounding up
rgl.setFinishTime(roundUpTime);

// get the smallest time of all Gridlets
if (i == 0 || smallestTime > time) {

smallestTime = time;
}

i++;
}

// sends to itself as an internal event
super.sendInternalEvent(smallestTime);

}

/**
* Checks all Gridlets in the execution list whether they are finished or
* not.
*
* @pre $none
* @post $none
*/

private void checkGridletCompletion() {
ResGridlet rgl;

// a loop that determine the smallest finish time of a Gridlet
// Don’t use an iterator since it causes an exception because if
// a Gridlet is finished, gridletFinish() will remove it from the list.
int i = 0;
while (i < gridletInExecList_.size()) {

rgl = (ResGridlet) gridletInExecList_.get(i);

// if a Gridlet has finished, then remove it from the list
if (rgl.getRemainingGridletLength() <= 0.0) {

gridletFinish(rgl, Gridlet.SUCCESS);
continue; // not increment i coz the list size also decreases

}

i++;
}

}

/**
* Forecast finish time of a Gridlet.
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* <tt>Finish time = length / available rating</tt>
*
* @param availableRating the shared MIPS rating for all Gridlets
* @param length remaining Gridlet length
* @return Gridlet’s finish time.
*/

private double forecastFinishTime(double availableRating, double length) {
double finishTime = length / availableRating;

// This is as a safeguard since the finish time can be extremely
// small close to 0.0, such as 4.5474735088646414E-14. Hence causing
// some Gridlets never to be finished and consequently hang the program
if (finishTime < 1.0) {

finishTime = 1.0;
}

return finishTime;
}

/**
* Updates the Gridlet’s properties, such as status once a
* Gridlet is considered finished.
*
* @param rgl a ResGridlet object
* @param status the status of this ResGridlet object
* @pre rgl != null
* @post $none
*/

private void gridletFinish(ResGridlet rgl, int status) {
// NOTE: the order is important! Set the status first then finalize
// due to timing issues in ResGridlet class.
rgl.setGridletStatus(status);
rgl.finalizeGridlet();

// sends back the Gridlet with no delay
Gridlet gl = rgl.getGridlet();
super.sendFinishGridlet(gl);

// remove this Gridlet in the execution
gridletInExecList_.remove(rgl);
sim_schedule(resId_, GridSimTags.SCHEDULE_NOW, GridSimTags.BROADCAST_STATE);

}

/**
* Handles internal event
*
* @pre $none
* @post $none
*/

private void internalEvent() {
// this is a constraint that prevents an infinite loop
// Compare between 2 floating point numbers. This might be incorrect
// for some hardware platform.
if (lastUpdateTime_ == GridSim.clock()) {
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return;
}
// update Gridlets in execution up to this point in time
updateGridletProcessing();

// schedule next event
forecastGridlet();

}

private ResGridlet cancel(int gridletId, int userId) {
ResGridlet rgl = null;

// Check whether the Gridlet is in execution list or not
int found = super.findGridlet(gridletInExecList_, gridletId, userId);

// if a Gridlet is in execution list
if (found >= 0) {

// update the gridlets in execution list up to this point in time
updateGridletProcessing();

// Get the Gridlet from the execution list
rgl = (ResGridlet) gridletInExecList_.remove(found);

// if a Gridlet is finished upon cancelling, then set it to success
if (rgl.getRemainingGridletLength() == 0.0) {

rgl.setGridletStatus(Gridlet.SUCCESS);
} else {

rgl.setGridletStatus(Gridlet.CANCELED);
}

// then forecast the next Gridlet to complete
forecastGridlet();

}
return rgl;

}

////////////////////////////////// INTERNAL CLASS ///////////////////////////////

/**
* Gridlets MI share in Time Shared Mode
*/

private class MIShares {
/**
* maximum amount of MI share Gridlets can get
*/
public double max;

/**
* minimum amount of MI share Gridlets can get when
* it is executed on a PE that runs one extra Gridlet
*/
public double min;

/**
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* Total number of Gridlets that get Max share
*/
public int maxCount;

/**
* Default constructor that initializes all attributes to 0
*
* @pre $none
* @post $none
*/
public MIShares() {

max = 0.0;
min = 0.0;
maxCount = 0;

}
} // end of internal class

}

/*
* Title: GridSim Toolkit
* Description: GridSim (Grid Simulation) Toolkit for Modeling and Simulation
* of Parallel and Distributed Systems such as Clusters and Grids
* Licence: GPL - http://www.gnu.org/copyleft/gpl.html
*
* $Id: SBA.java,v 1.28 2006/03/09 05:56:31 anthony Exp $
*/

package allocpolicy;

import java.util.Iterator;
import java.io.IOException;

import eduni.simjava.Sim_event;
import eduni.simjava.Sim_system;
import gridsim.*;
import grid.StatisticalAnalysis;
import grid.SimulationWithoutFailure;

/**
* SBA class is an allocation policy for GridResource that behaves
* exactly like First Come First Serve (FCFS). This is a basic and simple
* scheduler that runs each Gridlet to one Processing Element (PE).
* If a Gridlet requires more than one PE, then this scheduler only assign
* this Gridlet to one PE.
*
* @author Manzur Murshed and Rajkumar Buyya
* @author Anthony Sulistio (re-written this class)
* @invariant $none
* @see gridsim.GridSim
* @see gridsim.ResourceCharacteristics
* @since GridSim Toolkit 2.2
*/
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public class SpaceShared extends AllocPolicy {
private ResGridletList gridletQueueList_; // Queue list
private ResGridletList gridletInExecList_; // Execution list
private ResGridletList gridletPausedList_; // Pause list
private double lastUpdateTime_; // the last time Gridlets updated
private int[] machineRating_; // list of machine ratings available

private double time1 = 0;
private double time2 = 0;
private boolean log = false;

/**
* Allocates a new SBA object
*
* @param resourceName the GridResource entity name that will contain
* this allocation policy
* @param entityName this object entity name
* @throws Exception This happens when one of the following scenarios occur:
* <ul>
* <li> creating this entity before initializing GridSim
* package
* <li> this entity name is <tt>null</tt> or empty
* <li> this entity has <tt>zero</tt> number of PEs
* (Processing
* Elements). <br>
* No PEs mean the Gridlets can’t be processed.
* A GridResource must contain one or more Machines.
* A Machine must contain one or more PEs.
* </ul>
* @pre resourceName != null
* @pre entityName != null
* @post $none
* @see gridsim.GridSim#init(int,java.util.Calendar,boolean,String[],String[],
*String)
*/

public SpaceShared(String resourceName, String entityName) throws Exception {
super(resourceName, entityName);

// initialises local data structure
this.gridletInExecList_ = new ResGridletList();
this.gridletPausedList_ = new ResGridletList();
this.gridletQueueList_ = new ResGridletList();
this.lastUpdateTime_ = 0.0;
this.machineRating_ = null;

}

/**
* Handles internal events that are coming to this entity.
*
* @pre $none
* @post $none
*/

public void body() {
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// Gets the PE’s rating for each Machine in the list.
// Assumed one Machine has same PE rating.
MachineList list = super.resource_.getMachineList();
int size = list.size();
machineRating_ = new int[size];
for (int i = 0; i < size; i++) {

machineRating_[i] = super.resource_.getMIPSRatingOfOnePE(i, 0);
}

// a loop that is looking for internal events only
Sim_event ev = new Sim_event();
while (Sim_system.running()) {

time1 = time2;
time2 = GridSim.clock();

if ((log) && (time2 - time1 > 200))
try {

StatisticalAnalysis.getRandom_SpaceShared_log().
writeChars(String.valueOf(calculateTotalLoad(

gridletInExecList_.size() + gridletQueueList_.
size())) + "\n");

} catch (IOException e) {
e.printStackTrace();

}
super.sim_get_next(ev);

// if the simulation finishes then exit the loop
if (ev.get_tag() == GridSimTags.END_OF_SIMULATION ||

super.isEndSimulation() == true) {
break;

}

// Internal Event if the event source is this entity
if (ev.get_src() == super.myId_ && gridletInExecList_.size() > 0) {

updateGridletProcessing(); // update Gridlets
checkGridletCompletion(); // check for finished Gridlets

}
}

// CHECK for ANY INTERNAL EVENTS WAITING TO BE PROCESSED
while (super.sim_waiting() > 0) {

// wait for event and ignore since it is likely to be related to
// internal event scheduled to update Gridlets processing
super.sim_get_next(ev);
System.out.println(super.resName_ +

".SBA.body(): ignore internal events");
}

}

/**
* Schedules a new Gridlet that has been received by the GridResource
* entity.
*
* @param gl a Gridlet object that is going to be executed
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* @param ack an acknowledgement, i.e. <tt>true</tt> if wanted to know
* whether this operation is success or not, <tt>false</tt>
* otherwise (don’t care)
* @pre gl != null
* @post $none
*/

public void gridletSubmit(Gridlet gl, boolean ack) {

StatisticalAnalysis.Communications++;
// update the current Gridlets in exec list up to this point in time
updateGridletProcessing();

// reset number of PE since at the moment, it is not supported
if (gl.getNumPE() > 1) {

String userName = GridSim.getEntityName(gl.getUserID());
System.out.println();
System.out.println(super.get_name() + ".gridletSubmit(): " +

" Gridlet #" + gl.getGridletID() + " from " + userName +
" user requires " + gl.getNumPE() + " PEs.");

System.out.println("--> Process this Gridlet to 1 PE only.");
System.out.println();

// also adjusted the length because the number of PEs are reduced
int numPE = gl.getNumPE();
double len = gl.getGridletLength();
gl.setGridletLength(len * numPE);
gl.setNumPE(1);

}

ResGridlet rgl = new ResGridlet(gl);
boolean success = false;

// if there is an available PE slot, then allocate immediately
if (gridletInExecList_.size() < super.totalPE_) {

success = allocatePEtoGridlet(rgl);
}

// if no available PE then put the ResGridlet into a Queue list
if (success == false) {

rgl.setGridletStatus(Gridlet.QUEUED);
gridletQueueList_.add(rgl);

}

// sends back an ack if required
if (ack == true) {

super.sendAck(GridSimTags.GRIDLET_SUBMIT_ACK, true,
gl.getGridletID(), gl.getUserID()

);
}

}

/**
* Finds the status of a specified Gridlet ID.
*
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* @param gridletId a Gridlet ID
* @param userId the user or owner’s ID of this Gridlet
* @return the Gridlet status or <tt>-1</tt> if not found
* @pre gridletId > 0
* @pre userId > 0
* @post $none
* @see gridsim.Gridlet
*/

public int gridletStatus(int gridletId, int userId) {
ResGridlet rgl = null;

// Find in EXEC List first
int found = super.findGridlet(gridletInExecList_, gridletId, userId);
if (found >= 0) {

// Get the Gridlet from the execution list
rgl = (ResGridlet) gridletInExecList_.get(found);
return rgl.getGridletStatus();

}

// Find in Paused List
found = super.findGridlet(gridletPausedList_, gridletId, userId);
if (found >= 0) {

// Get the Gridlet from the execution list
rgl = (ResGridlet) gridletPausedList_.get(found);
return rgl.getGridletStatus();

}

// Find in Queue List
found = super.findGridlet(gridletQueueList_, gridletId, userId);
if (found >= 0) {

// Get the Gridlet from the execution list
rgl = (ResGridlet) gridletQueueList_.get(found);
return rgl.getGridletStatus();

}

// if not found in all 3 lists then no found
return -1;

}

/**
* Cancels a Gridlet running in this entity.
* This method will search the execution, queued and paused list.
* The User ID is
* important as many users might have the same Gridlet ID in the lists.
* <b>NOTE:</b>
* <ul>
* <li> Before canceling a Gridlet, this method updates all the
* Gridlets in the execution list. If the Gridlet has no more MIs
* to be executed, then it is considered to be <tt>finished</tt>.
* Hence, the Gridlet can’t be canceled.
* <p/>
* <li> Once a Gridlet has been canceled, it can’t be resumed to
* execute again since this method will pass the Gridlet back to
* sender, i.e. the <tt>userId</tt>.
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* <p/>
* <li> If a Gridlet can’t be found in both execution and paused list,
* then a <tt>null</tt> Gridlet will be send back to sender,
* i.e. the <tt>userId</tt>.
* </ul>
*
* @param gridletId a Gridlet ID
* @param userId the user or owner’s ID of this Gridlet
* @pre gridletId > 0
* @pre userId > 0
* @post $none
*/

public void gridletCancel(int gridletId, int userId) {
// cancels a Gridlet
ResGridlet rgl = cancel(gridletId, userId);

// if the Gridlet is not found
if (rgl == null) {

System.out.println(super.resName_ +
".SBA.gridletCancel(): Cannot find " +
"Gridlet #" + gridletId + " for User #" + userId);

super.sendCancelGridlet(GridSimTags.GRIDLET_CANCEL, null,
gridletId, userId);

return;
}

// if the Gridlet has finished beforehand then prints an error msg
if (rgl.getGridletStatus() == Gridlet.SUCCESS) {

System.out.println(super.resName_
+ ".SBA.gridletCancel(): Cannot cancel"
+ " Gridlet #" + gridletId + " for User #" + userId
+ " since it has FINISHED.");

}

// sends the Gridlet back to sender
rgl.finalizeGridlet();
super.sendCancelGridlet(GridSimTags.GRIDLET_CANCEL, rgl.getGridlet(),

gridletId, userId);
}

/**
* Pauses a Gridlet only if it is currently executing.
* This method will search in the execution list. The User ID is
* important as many users might have the same Gridlet ID in the lists.
*
* @param gridletId a Gridlet ID
* @param userId the user or owner’s ID of this Gridlet
* @param ack an acknowledgement, i.e. <tt>true</tt> if wanted to know
* whether this operation is success or not, <tt>false</tt>
* otherwise (don’t care)
* @pre gridletId > 0
* @pre userId > 0
* @post $none
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*/
public void gridletPause(int gridletId, int userId, boolean ack) {

boolean status = false;

// Find in EXEC List first
int found = super.findGridlet(gridletInExecList_, gridletId, userId);
if (found >= 0) {

// updates all the Gridlets first before pausing
updateGridletProcessing();

// Removes the Gridlet from the execution list
ResGridlet rgl = (ResGridlet) gridletInExecList_.remove(found);

// if a Gridlet is finished upon cancelling, then set it to success
// instead.
if (rgl.getRemainingGridletLength() == 0.0) {

found = -1; // meaning not found in Queue List
gridletFinish(rgl, Gridlet.SUCCESS);
System.out.println(super.resName_

+ ".SBA.gridletPause(): Cannot pause"
+ " Gridlet #" + gridletId + " for User #" + userId
+ " since it has FINISHED.");

} else {
status = true;
rgl.setGridletStatus(Gridlet.PAUSED); // change the status
gridletPausedList_.add(rgl); // add into the paused list

// Set the PE on which Gridlet finished to FREE
super.resource_.setStatusPE(PE.FREE, rgl.getMachineID(),

rgl.getPEID());

// empty slot is available, hence process a new Gridlet
allocateQueueGridlet();

}
} else { // Find in QUEUE list

found = super.findGridlet(gridletQueueList_, gridletId, userId);
}

// if found in the Queue List
if (status == false && found >= 0) {

status = true;

// removes the Gridlet from the Queue list
ResGridlet rgl = (ResGridlet) gridletQueueList_.remove(found);
rgl.setGridletStatus(Gridlet.PAUSED); // change the status
gridletPausedList_.add(rgl); // add into the paused list

}
// if not found anywhere in both exec and paused lists
else if (found == -1) {

System.out.println(super.resName_ +
".SBA.gridletPause(): Error - cannot " +
"find Gridlet #" + gridletId + " for User #" + userId);

}
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// sends back an ack if required
if (ack == true) {

super.sendAck(GridSimTags.GRIDLET_PAUSE_ACK, status,
gridletId, userId);

}
}

/**
* Moves a Gridlet from this GridResource entity to a different one.
* This method will search in both the execution and paused list.
* The User ID is important as many Users might have the same Gridlet ID
* in the lists.
* <p/>
* If a Gridlet has finished beforehand, then this method will send back
* the Gridlet to sender, i.e. the <tt>userId</tt> and sets the
* acknowledgment to false (if required).
*
* @param gridletId a Gridlet ID
* @param userId the user or owner’s ID of this Gridlet
* @param destId a new destination GridResource ID for this Gridlet
* @param ack an acknowledgement, i.e. <tt>true</tt> if wanted to know
* whether this operation is success or not, <tt>false</tt>
* otherwise (don’t care)
* @pre gridletId > 0
* @pre userId > 0
* @pre destId > 0
* @post $none
*/

public void gridletMove(int gridletId, int userId, int destId, boolean ack) {
// cancels the Gridlet
ResGridlet rgl = cancel(gridletId, userId);

// if the Gridlet is not found
if (rgl == null) {

System.out.println(super.resName_ +
".SBA.gridletMove(): Cannot find " +
"Gridlet #" + gridletId + " for User #" + userId);

if (ack == true) // sends back an ack if required
{

super.sendAck(GridSimTags.GRIDLET_SUBMIT_ACK, false,
gridletId, userId);

}

return;
}

// if the Gridlet has finished beforehand
if (rgl.getGridletStatus() == Gridlet.SUCCESS) {

System.out.println(super.resName_
+ ".SBA.gridletMove(): Cannot move Gridlet #"
+ gridletId + " for User #" + userId
+ " since it has FINISHED.");
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if (ack == true) // sends back an ack if required
{

super.sendAck(GridSimTags.GRIDLET_SUBMIT_ACK, false,
gridletId, userId);

}

gridletFinish(rgl, Gridlet.SUCCESS);
} else // otherwise moves this Gridlet to a different GridResource
{

rgl.finalizeGridlet();

// Set PE on which Gridlet finished to FREE
super.resource_.setStatusPE(PE.FREE, rgl.getMachineID(),

rgl.getPEID());

super.gridletMigrate(rgl.getGridlet(), destId, ack);
allocateQueueGridlet();

}
}

/**
* Resumes a Gridlet only in the paused list.
* The User ID is important as many Users might have the same Gridlet ID
* in the lists.
*
* @param gridletId a Gridlet ID
* @param userId the user or owner’s ID of this Gridlet
* @param ack an acknowledgement, i.e. <tt>true</tt> if wanted to know
* whether this operation is success or not, <tt>false</tt>
* otherwise (don’t care)
* @pre gridletId > 0
* @pre userId > 0
* @post $none
*/

public void gridletResume(int gridletId, int userId, boolean ack) {
boolean status = false;

// finds the Gridlet in the execution list first
int found = super.findGridlet(gridletPausedList_, gridletId, userId);
if (found >= 0) {

// removes the Gridlet
ResGridlet rgl = (ResGridlet) gridletPausedList_.remove(found);
rgl.setGridletStatus(Gridlet.RESUMED);

// update the Gridlets up to this point in time
updateGridletProcessing();
status = true;

// if there is an available PE slot, then allocate immediately
boolean success = false;
if (gridletInExecList_.size() < super.totalPE_) {

success = allocatePEtoGridlet(rgl);
}
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// otherwise put into Queue list
if (success == false) {

rgl.setGridletStatus(Gridlet.QUEUED);
gridletQueueList_.add(rgl);

}

System.out.println(super.resName_ + "TimeShared.gridletResume():" +
" Gridlet #" + gridletId + " with User ID #" +
userId + " has been sucessfully RESUMED.");

} else {
System.out.println(super.resName_ +

"TimeShared.gridletResume(): Cannot find " +
"Gridlet #" + gridletId + " for User #" + userId);

}

// sends back an ack if required
if (ack == true) {

super.sendAck(GridSimTags.GRIDLET_RESUME_ACK, status,
gridletId, userId);

}
}

///////////////////////////// PRIVATE METHODS /////////////////////
protected double calculateTotalLoad(int size) {

int totalRating = 0;
PEList peList = (resource_.getMachineList().getMachine(0)).getPEList();
for (int i = 0; i < peList.size(); i++) {

totalRating += ((PE) peList.get(i)).getMIPSRating();
}

totalRating = totalRating / 10;
// Devide by the lowest PE rate in the Grid.
// Here we have 10 and 50 so we divide by 10
double val = (size + 1.0) / totalRating;
int numGridletPerPE = (int) Math.ceil(val);

// load is between [0.0, 1.0] where 1.0 is busy and 0.0 is not busy
double localLoad = resCalendar_.getCurrentLoad();
double load = 1.0 - ((1 - localLoad) / numGridletPerPE);
if (load < 0.0) {

load = 0.0;
}

return load;
}

/**
* Allocates the first Gridlet in the Queue list (if any) to execution list
*
* @pre $none
* @post $none
*/

private void allocateQueueGridlet() {
// if there are many Gridlets in the QUEUE, then allocate a
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// PE to the first Gridlet in the list since it follows FCFS
// (First Come First Serve) approach. Then removes the Gridlet from
// the Queue list
if (gridletQueueList_.size() > 0 &&

gridletInExecList_.size() < super.totalPE_) {
ResGridlet obj = (ResGridlet) gridletQueueList_.get(0);

// allocate the Gridlet into an empty PE slot and remove it from
// the queue list
boolean success = allocatePEtoGridlet(obj);
if (success == true) {

gridletQueueList_.remove(obj);
}

}
}

/**
* Updates the execution of all Gridlets for a period of time.
* The time period is determined from the last update time up to the
* current time. Once this operation is successfull, then the last update
* time refers to the current time.
*
* @pre $none
* @post $none
*/

private void updateGridletProcessing() {
// Identify MI share for the duration (from last event time)
double time = GridSim.clock();
double timeSpan = time - lastUpdateTime_;

// if current time is the same or less than the last update time,
// then ignore
if (timeSpan <= 0.0) {

return;
}

// Update Current Time as Last Update
lastUpdateTime_ = time;

// update the GridResource load
int size = gridletInExecList_.size();
double load = super.calculateTotalLoad(size);
super.addTotalLoad(load);

// if no Gridlets in execution then ignore the rest
if (size == 0) {

return;
}

ResGridlet obj = null;

// a loop that allocates MI share for each Gridlet accordingly
Iterator iter = gridletInExecList_.iterator();
while (iter.hasNext()) {
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obj = (ResGridlet) iter.next();

// Updates the Gridlet length that is currently being executed
load = getMIShare(timeSpan, obj.getMachineID());
obj.updateGridletFinishedSoFar(load);

}
}

/**
* Identifies MI share (max and min) each Gridlet gets for
* a given timeSpan
*
* @param timeSpan duration
* @param machineId machine ID that executes this Gridlet
* @return the total MI share that a Gridlet gets for a given
* <tt>timeSpan</tt>
* @pre timeSpan >= 0.0
* @pre machineId > 0
* @post $result >= 0.0
*/

private double getMIShare(double timeSpan, int machineId) {
// 1 - localLoad_ = available MI share percentage
double localLoad = super.resCalendar_.getCurrentLoad();

// each Machine might have different PE Rating compare to another
// so much look at which Machine this PE belongs to
double totalMI = machineRating_[machineId] * timeSpan * (1 - localLoad);
return totalMI;

}

/**
* Allocates a Gridlet into a free PE and sets the Gridlet status into
* INEXEC and PE status into busy afterwards
*
* @param rgl a ResGridlet object
* @return <tt>true</tt> if there is an empty PE to process this Gridlet,
* <tt>false</tt> otherwise
* @pre rgl != null
* @post $none
*/

private boolean allocatePEtoGridlet(ResGridlet rgl) {
// IDENTIFY MACHINE which has a free PE and add this Gridlet to it.
Machine myMachine = resource_.getMachineWithFreePE();

// If a Machine is empty then ignore the rest
if (myMachine == null) {

return false;
}

// gets the list of PEs and find one empty PE
PEList MyPEList = myMachine.getPEList();
int freePE = MyPEList.getFreePEID();

// ALLOCATE IMMEDIATELY
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rgl.setGridletStatus(Gridlet.INEXEC); // change Gridlet status
rgl.setMachineAndPEID(myMachine.getMachineID(), freePE);

// add this Gridlet into execution list
gridletInExecList_.add(rgl);

// Set allocated PE to BUSY status
super.resource_.setStatusPE(PE.BUSY, rgl.getMachineID(), freePE);

// Identify Completion Time and Set Interrupt
int rating = machineRating_[rgl.getMachineID()];
double time = forecastFinishTime(rating,

rgl.getRemainingGridletLength());

int roundUpTime = (int) (time + 1); // rounding up
rgl.setFinishTime(roundUpTime);

// then send this into itself
super.sendInternalEvent(roundUpTime);
return true;

}

/**
* Forecast finish time of a Gridlet.
* <tt>Finish time = length / available rating</tt>
*
* @param availableRating the shared MIPS rating for all Gridlets
* @param length remaining Gridlet length
* @return Gridlet’s finish time.
* @pre availableRating >= 0.0
* @pre length >= 0.0
* @post $none
*/

private double forecastFinishTime(double availableRating, double length) {
double finishTime = (length / availableRating);

// This is as a safeguard since the finish time can be extremely
// small close to 0.0, such as 4.5474735088646414E-14. Hence causing
// some Gridlets never to be finished and consequently hang the program
if (finishTime < 1.0) {

finishTime = 1.0;
}

return finishTime;
}

/**
* Checks all Gridlets in the execution list whether they are finished or
* not.
*
* @pre $none
* @post $none
*/

private void checkGridletCompletion() {
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ResGridlet obj = null;
int i = 0;

// NOTE: This one should stay as it is since gridletFinish()
// will modify the content of this list if a Gridlet has finished.
// Can’t use iterator since it will cause an exception
while (i < gridletInExecList_.size()) {

obj = (ResGridlet) gridletInExecList_.get(i);

if (obj.getRemainingGridletLength() == 0.0) {
gridletInExecList_.remove(obj);
gridletFinish(obj, Gridlet.SUCCESS);
continue;

}

i++;
}

// if there are still Gridlets left in the execution
// then send this into itself for an hourly interrupt
// NOTE: Setting the internal event time too low will make the
// simulation more realistic, BUT will take longer time to
// run this simulation. Also, size of sim_trace will be HUGE!
if (gridletInExecList_.size() > 0) {

super.sendInternalEvent(60.0 * 60.0);
}

}

/**
* Updates the Gridlet’s properties, such as status once a
* Gridlet is considered finished.
*
* @param rgl a ResGridlet object
* @param status the Gridlet status
* @pre rgl != null
* @pre status >= 0
* @post $none
*/

private void gridletFinish(ResGridlet rgl, int status) {
// Set PE on which Gridlet finished to FREE
super.resource_.setStatusPE(PE.FREE, rgl.getMachineID(), rgl.getPEID());

// the order is important! Set the status first then finalize
// due to timing issues in ResGridlet class
rgl.setGridletStatus(status);
rgl.finalizeGridlet();
super.sendFinishGridlet(rgl.getGridlet());

allocateQueueGridlet(); // move Queued Gridlet into exec list
}

private ResGridlet cancel(int gridletId, int userId) {
ResGridlet rgl = null;
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// Find in EXEC List first
int found = super.findGridlet(gridletInExecList_, gridletId, userId);
if (found >= 0) {

// update the gridlets in execution list up to this point in time
updateGridletProcessing();

// Get the Gridlet from the execution list
rgl = (ResGridlet) gridletInExecList_.remove(found);

// if a Gridlet is finished upon cancelling, then set it to success
// instead.
if (rgl.getRemainingGridletLength() == 0.0) {

rgl.setGridletStatus(Gridlet.SUCCESS);
} else {

rgl.setGridletStatus(Gridlet.CANCELED);
}

// Set PE on which Gridlet finished to FREE
super.resource_.setStatusPE(PE.FREE, rgl.getMachineID(),

rgl.getPEID());
allocateQueueGridlet();
return rgl;

}

// Find in QUEUE list
found = super.findGridlet(gridletQueueList_, gridletId, userId);
if (found >= 0) {

rgl = (ResGridlet) gridletQueueList_.remove(found);
rgl.setGridletStatus(Gridlet.CANCELED);

}

// if not, then find in the Paused list
else {

found = super.findGridlet(gridletPausedList_, gridletId, userId);

// if found in Paused list
if (found >= 0) {

rgl = (ResGridlet) gridletPausedList_.remove(found);
rgl.setGridletStatus(Gridlet.CANCELED);

}

}
return rgl;

}
/*protected double calculateTotalLoad(int size) {

return size / (totalPE_ - (totalPE_ * resCalendar_.getCurrentLoad()));
}*/

} // end class

/*
* Title: GridSim Toolkit
* Description: GridSim (Grid Simulation) Toolkit for Modeling and Simulation
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* of Parallel and Distributed Systems such as Clusters and Grids
* Licence: GPL - http://www.gnu.org/copyleft/gpl.html
*
* $Id: TimeShared.java,v 1.39 2006/03/09 05:56:32 anthony Exp $
*/

package allocpolicy;

import java.util.Iterator;
import java.io.IOException;

import gridsim.*;
import eduni.simjava.*;
import grid.StatisticalAnalysis;

/**
* TimeShared class is an allocation policy for GridResource that behaves
* similar to a round robin algorithm, except that all Gridlets are
* executed at the same time.
* This is a basic and simple
* scheduler that runs each Gridlet to one Processing Element (PE).
* If a Gridlet requires more than one PE, then this scheduler only assign
* this Gridlet to one PE.
*
* @author Manzur Murshed and Rajkumar Buyya
* @author Anthony Sulistio (re-written this class)
* @invariant $none
* @see gridsim.GridSim
* @see gridsim.ResourceCharacteristics
* @since GridSim Toolkit 2.2
*/
public class TimeShared extends AllocPolicy {

private ResGridletList gridletInExecList_; // storing exec Gridlets
private ResGridletList gridletPausedList_; // storing Paused Gridlets
private double lastUpdateTime_; // a timer to denote the last update time
private MIShares share_; // a temp variable

private double time1 = 0;
private double time2 = 0;
private boolean log = false;

/**
* Allocates a new TimeShared object
*
* @param resourceName the GridResource entity name that will contain
* this allocation policy
* @param entityName this object entity name
* @throws Exception This happens when one of the following scenarios occur:
* <ul>
* <li> creating this entity before initializing
* GridSim package
* <li> this entity name is <tt>null</tt> or empty
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* <li> this entity has <tt>zero</tt> number of PEs
* (Processing
* Elements). <br>
* No PEs mean the Gridlets can’t be processed.
* A GridResource must contain one or more Machines.
* A Machine must contain one or more PEs.
* </ul>
* @pre resourceName != null
* @pre entityName != null
* @post $none
* @see gridsim.GridSim#init(int,java.util.Calendar,boolean,String[],String[],
*String)
*/

public TimeShared(String resourceName, String entityName) throws Exception {
super(resourceName, entityName);

// initialises local data structure
this.gridletInExecList_ = new ResGridletList();
this.gridletPausedList_ = new ResGridletList();
this.share_ = new MIShares();
this.lastUpdateTime_ = 0.0;

}

////////////////////// INTERNAL CLASS /////////////////////////////////

/**
* Gridlets MI share in Time Shared Mode
*/

private class MIShares {
/**
* maximum amount of MI share Gridlets can get
*/
public double max;

/**
* minimum amount of MI share Gridlets can get when
* it is executed on a PE that runs one extra Gridlet
*/
public double min;

/**
* Total number of Gridlets that get Max share
*/
public int maxCount;

/**
* Default constructor that initializes all attributes to 0
*
* @pre $none
* @post $none
*/
public MIShares() {

max = 0.0;
min = 0.0;
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maxCount = 0;
}

} // end of internal class

/////////////////////// End of Internal Class /////////////////////////

/**
* Handles internal events that are coming to this entity.
*
* @pre $none
* @post $none
*/

public void body() {
// a loop that is looking for internal events only
Sim_event ev = new Sim_event();
while (Sim_system.running()) {

time1 = time2;
time2 = GridSim.clock();

if ((log) && (time2 - time1 > 200))
try {

StatisticalAnalysis.getRandom_TimeShared_log().
writeChars(String.valueOf(calculateTotalLoad

(gridletInExecList_.size())) + "\n");
} catch (IOException e) {

e.printStackTrace();
}

super.sim_get_next(ev);

// if the simulation finishes then exit the loop
if (ev.get_tag() == GridSimTags.END_OF_SIMULATION ||

super.isEndSimulation() == true) {
break;

}

// Internal Event if the event source is this entity
if (ev.get_src() == super.myId_) {

internalEvent();
}

}

// CHECK for ANY INTERNAL EVENTS WAITING TO BE PROCESSED
while (super.sim_waiting() > 0) {

// wait for event and ignore since it is likely to be related to
// internal event scheduled to update Gridlets processing
super.sim_get_next(ev);
System.out.println(super.resName_ +

".TimeShared.body(): ignoring internal events");
}

}

/**
* Schedules a new Gridlet that has been received by the GridResource
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* entity.
*
* @param gl a Gridlet object that is going to be executed
* @param ack an acknowledgement, i.e. <tt>true</tt> if wanted to know
* whether this operation is success or not, <tt>false</tt>
* otherwise (don’t care)
* @pre gl != null
* @post $none
*/

public void gridletSubmit(Gridlet gl, boolean ack) {
StatisticalAnalysis.Communications++;
// update Gridlets in execution up to this point in time
updateGridletProcessing();

// reset number of PE since at the moment, it is not supported
if (gl.getNumPE() > 1) {

String userName = GridSim.getEntityName(gl.getUserID());
System.out.println();
System.out.println(super.get_name() + ".gridletSubmit(): " +

" Gridlet #" + gl.getGridletID() + " from " + userName +
" user requires " + gl.getNumPE() + " PEs.");

System.out.println("--> Process this Gridlet to 1 PE only.");
System.out.println();

// also adjusted the length because the number of PEs are reduced
int numPE = gl.getNumPE();
double len = gl.getGridletLength();
gl.setGridletLength(len * numPE);
gl.setNumPE(1);

}

// adds a Gridlet to the in execution list
ResGridlet rgl = new ResGridlet(gl);
rgl.setGridletStatus(Gridlet.INEXEC); // set the Gridlet status to exec
gridletInExecList_.add(rgl); // add into the execution list

// sends back an ack if required
if (ack == true) {

super.sendAck(GridSimTags.GRIDLET_SUBMIT_ACK, true,
gl.getGridletID(), gl.getUserID()

);
}

// forecast all Gridlets in the execution list
forecastGridlet();

}

/**
* Finds the status of a specified Gridlet ID.
*
* @param gridletId a Gridlet ID
* @param userId the user or owner’s ID of this Gridlet
* @return the Gridlet status or <tt>-1</tt> if not found
* @pre gridletId > 0
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* @pre userId > 0
* @post $none
* @see gridsim.Gridlet
*/

public int gridletStatus(int gridletId, int userId) {
ResGridlet rgl = null;

// Find in EXEC List first
int found = super.findGridlet(gridletInExecList_, gridletId, userId);
if (found >= 0) {

// Get the Gridlet from the execution list
rgl = (ResGridlet) gridletInExecList_.get(found);
return rgl.getGridletStatus();

}

// if not found then find again in Paused List
found = super.findGridlet(gridletPausedList_, gridletId, userId);
if (found >= 0) {

// Get the Gridlet from the execution list
rgl = (ResGridlet) gridletPausedList_.get(found);
return rgl.getGridletStatus();

}

// if not found in all lists
return -1;

}

/**
* Cancels a Gridlet running in this entity.
* This method will search the execution and paused list. The User ID is
* important as many users might have the same Gridlet ID in the lists.
* <b>NOTE:</b>
* <ul>
* <li> Before canceling a Gridlet, this method updates all the
* Gridlets in the execution list. If the Gridlet has no more MIs
* to be executed, then it is considered to be <tt>finished</tt>.
* Hence, the Gridlet can’t be canceled.
* <p/>
* <li> Once a Gridlet has been canceled, it can’t be resumed to
* execute again since this method will pass the Gridlet back to
* sender, i.e. the <tt>userId</tt>.
* <p/>
* <li> If a Gridlet can’t be found in both execution and paused list,
* then a <tt>null</tt> Gridlet will be send back to sender,
* i.e. the <tt>userId</tt>.
* </ul>
*
* @param gridletId a Gridlet ID
* @param userId the user or owner’s ID of this Gridlet
* @pre gridletId > 0
* @pre userId > 0
* @post $none
*/

public void gridletCancel(int gridletId, int userId) {
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// Finds the gridlet in execution and paused list
ResGridlet rgl = cancel(gridletId, userId);

// If not found in both lists then report an error and sends back
// an empty Gridlet
if (rgl == null) {

System.out.println(super.resName_ +
".TimeShared.gridletCancel(): Cannot find " +
"Gridlet #" + gridletId + " for User #" + userId);

super.sendCancelGridlet(GridSimTags.GRIDLET_CANCEL, null,
gridletId, userId);

return;
}

// if a Gridlet is found
rgl.finalizeGridlet(); // finalise Gridlet

// if a Gridlet has finished execution before canceling, the reports
// an error msg
if (rgl.getGridletStatus() == Gridlet.SUCCESS) {

System.out.println(super.resName_
+ ".TimeShared.gridletCancel(): Cannot cancel"
+ " Gridlet #" + gridletId + " for User #" + userId
+ " since it has FINISHED.");

}

// sends the Gridlet back to sender
super.sendCancelGridlet(GridSimTags.GRIDLET_CANCEL, rgl.getGridlet(),

gridletId, userId);
}

/**
* Pauses a Gridlet only if it is currently executing.
* This method will search in the execution list. The User ID is
* important as many users might have the same Gridlet ID in the lists.
*
* @param gridletId a Gridlet ID
* @param userId the user or owner’s ID of this Gridlet
* @param ack an acknowledgement, i.e. <tt>true</tt> if wanted to know
* whether this operation is success or not, <tt>false</tt>
* otherwise (don’t care)
* @pre gridletId > 0
* @pre userId > 0
* @post $none
*/

public void gridletPause(int gridletId, int userId, boolean ack) {
boolean status = false;

// find this Gridlet in the execution list
int found = super.findGridlet(gridletInExecList_, gridletId, userId);
if (found >= 0) {

// update Gridlets in execution list up to this point in time
updateGridletProcessing();
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// get a Gridlet from execution list
ResGridlet rgl = (ResGridlet) gridletInExecList_.remove(found);

// if a Gridlet is finished upon pausing, then set it to success
// instead.
if (rgl.getRemainingGridletLength() == 0.0) {

System.out.println(super.resName_
+ ".TimeShared.gridletPause(): Cannot pause"
+ " Gridlet #" + gridletId + " for User #" + userId
+ " since it is FINISHED.");

gridletFinish(rgl, Gridlet.SUCCESS);
} else {

status = true;
rgl.setGridletStatus(Gridlet.PAUSED);

// add the Gridlet into the paused list
gridletPausedList_.add(rgl);
System.out.println(super.resName_ +

".TimeShared.gridletPause(): Gridlet #" + gridletId +
" with User #" + userId + " has been sucessfully PAUSED.");

}

// forecast all Gridlets in the execution list
forecastGridlet();

} else // if not found in the execution list
{

System.out.println(super.resName_ +
".TimeShared.gridletPause(): Cannot find " +
"Gridlet #" + gridletId + " for User #" + userId);

}

// sends back an ack
if (ack == true) {

super.sendAck(GridSimTags.GRIDLET_PAUSE_ACK, status,
gridletId, userId);

}
}

/**
* Moves a Gridlet from this GridResource entity to a different one.
* This method will search in both the execution and paused list.
* The User ID is important as many Users might have the same Gridlet ID
* in the lists.
* <p/>
* If a Gridlet has finished beforehand, then this method will send back
* the Gridlet to sender, i.e. the <tt>userId</tt> and sets the
* acknowledgment to false (if required).
*
* @param gridletId a Gridlet ID
* @param userId the user or owner’s ID of this Gridlet
* @param destId a new destination GridResource ID for this Gridlet
* @param ack an acknowledgement, i.e. <tt>true</tt> if wanted to know
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* whether this operation is success or not, <tt>false</tt>
* otherwise (don’t care)
* @pre gridletId > 0
* @pre userId > 0
* @pre destId > 0
* @post $none
*/

public void gridletMove(int gridletId, int userId, int destId, boolean ack) {
// cancel the Gridlet first
ResGridlet rgl = cancel(gridletId, userId);

// If no found then print an error msg
if (rgl == null) {

System.out.println(super.resName_ +
".TimeShared.gridletMove(): Cannot find " +
"Gridlet #" + gridletId + " for User #" + userId);

if (ack == true) // sends ack that this operation fails
{

super.sendAck(GridSimTags.GRIDLET_SUBMIT_ACK, false,
gridletId, userId);

}
return;

}

// if found
rgl.finalizeGridlet(); // finalise Gridlet
Gridlet gl = rgl.getGridlet();

// if a Gridlet has finished execution
if (gl.getGridletStatus() == Gridlet.SUCCESS) {

System.out.println(super.resName_
+ ".TimeShared.gridletMove(): Cannot move"
+ " Gridlet #" + gridletId + " for User #" + userId
+ " since it has FINISHED.");

if (ack == true) {
super.sendAck(GridSimTags.GRIDLET_SUBMIT_ACK, false, gridletId,

userId);
}

super.sendFinishGridlet(gl); // sends the Gridlet back to sender
}
// moves this Gridlet to another GridResource entity
else {

super.gridletMigrate(gl, destId, ack);
}

}

/**
* Resumes a Gridlet only in the paused list.
* The User ID is important as many Users might have the same Gridlet ID
* in the lists.
*
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* @param gridletId a Gridlet ID
* @param userId the user or owner’s ID of this Gridlet
* @param ack an acknowledgement, i.e. <tt>true</tt> if wanted to know
* whether this operation is success or not, <tt>false</tt>
* otherwise (don’t care)
* @pre gridletId > 0
* @pre userId > 0
* @post $none
*/

public void gridletResume(int gridletId, int userId, boolean ack) {
boolean success = false;

// finds in the execution list first
int found = super.findGridlet(gridletPausedList_, gridletId, userId);
if (found >= 0) {

// need to update Gridlets in execution up to this point in time
updateGridletProcessing();

// remove a Gridlet from paused list and change the status
ResGridlet rgl = (ResGridlet) gridletPausedList_.remove(found);
rgl.setGridletStatus(Gridlet.RESUMED);

// add the Gridlet back to in execution list
gridletInExecList_.add(rgl);

// then forecast Gridlets in execution list
forecastGridlet();

success = true;
System.out.println(super.resName_ +

".TimeShared.gridletResume(): Gridlet #" + gridletId +
" with User #" + userId + " has been sucessfully RESUMED.");

} else // if no found then prints an error msg
{

System.out.println(super.resName_ +
".TimeShared.gridletResume(): Cannot find Gridlet #" +
gridletId + " for User #" + userId);

}

// sends back an ack to sender
if (ack == true) {

super.sendAck(GridSimTags.GRIDLET_RESUME_ACK, success,
gridletId, userId);

}
}

////////////////////// PRIVATE METHODS //////////////////////////////

protected double calculateTotalLoad(int size) {
int totalRating = 0;
PEList peList = (resource_.getMachineList().getMachine(0)).getPEList();
for (int i = 0; i < peList.size(); i++) {

totalRating += ((PE) peList.get(i)).getMIPSRating();
}
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totalRating = totalRating / 10;
// Devide by the lowest PE rate in the Grid.
// Here we have 10 and 50 so we divide by 10
double val = (size + 1.0) / totalRating;
int numGridletPerPE = (int) Math.ceil(val);

// load is between [0.0, 1.0] where 1.0 is busy and 0.0 is not busy
double localLoad = resCalendar_.getCurrentLoad();
double load = 1.0 - ((1 - localLoad) / numGridletPerPE);
if (load < 0.0) {

load = 0.0;
}

return load;
}

/**
* Updates the execution of all Gridlets for a period of time.
* The time period is determined from the last update time up to the
* current time. Once this operation is successfull, then the last update
* time refers to the current time.
*
* @pre $none
* @post $none
*/

private void updateGridletProcessing() {
// Identify MI share for the duration (from last event time)
double time = GridSim.clock();
double timeSpan = time - lastUpdateTime_;

// if current time is the same or less than the last update time,
// then ignore
if (timeSpan <= 0.0) {

return;
}

// Update Current Time as the Last Update
lastUpdateTime_ = time;

// update the GridResource load
int size = gridletInExecList_.size();
double load = super.calculateTotalLoad(size);
super.addTotalLoad(load); // add the current resource load

// if no Gridlets in execution then ignore the rest
if (size == 0) {

return;
}

// gets MI Share for all Gridlets
MIShares shares = getMIShare(timeSpan, size);
ResGridlet obj = null;
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// a loop that allocates MI share for each Gridlet accordingly
// In this algorithm, Gridlets at the front of the list
// (range = 0 until MIShares.maxCount-1) will be given max MI value
// For example, 2 PEs and 3 Gridlets. PE #0 processes Gridlet #0
// PE #1 processes Gridlet #1 and Gridlet #2
int i = 0; // a counter
Iterator iter = gridletInExecList_.iterator();
while (iter.hasNext()) {

obj = (ResGridlet) iter.next();

// Updates the Gridlet length that is currently being executed
if (i < shares.maxCount) {

obj.updateGridletFinishedSoFar(shares.max);
} else {

obj.updateGridletFinishedSoFar(shares.min);
}

i++; // increments i
}

}

/**
* Identifies MI share (max and min) for all Gridlets in
* a given time duration
*
* @param timeSpan duration
* @param size total number of Gridlets in the execution list
* @return the total MI share that a Gridlet gets for a given
* <tt>timeSpan</tt>
*/

private MIShares getMIShare(double timeSpan, int size) {
// 1 - localLoad_ = available MI share percentage
double localLoad = super.resCalendar_.getCurrentLoad();
double TotalMIperPE = super.resource_.getMIPSRatingOfOnePE() * timeSpan

* (1 - localLoad);

// This TimeShared is not Round Robin where each PE for 1 Gridlet only.
// a PE can have more than one Gridlet executing.
// minimum number of Gridlets that each PE runs.
int glDIVpe = size / super.totalPE_;

// number of PEs that run one extra Gridlet
int glMODpe = size % super.totalPE_;

// If num Gridlets in execution > total PEs in a GridResource,
// then divide MIShare by the following constraint:
// - obj.max = MIShare of a PE executing n Gridlets
// - obj.min = MIShare of a PE executing n+1 Gridlets
// - obj.maxCount = a threshold number of Gridlets will be assigned to
// max MI value.
//
// In this algorithm, Gridlets at the front of the list
// (range = 0 until maxCount-1) will be given max MI value
if (glDIVpe > 0) {
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// this is for PEs that run one extra Gridlet
share_.min = TotalMIperPE / (glDIVpe + 1);
share_.max = TotalMIperPE / glDIVpe;
share_.maxCount = (super.totalPE_ - glMODpe) * glDIVpe;

}

// num Gridlet in Exec < total PEs, meaning it is a
// full PE share: i.e a PE is dedicated to execute a single Gridlet
else {

share_.max = TotalMIperPE;
share_.min = TotalMIperPE;
share_.maxCount = size; // number of Gridlet

}

return share_;
}

/**
* Determines the smallest completion time of all Gridlets in the execution
* list. The smallest time is used as an internal event to
* update Gridlets processing in the future.
* <p/>
* The algorithm for this method:
* <ul>
* <li> identify the finish time for each Gridlet in the execution list
* given the share MIPS rating for all and the remaining Gridlet’s
* length
* <li> find the smallest finish time in the list
* <li> send the last Gridlet in the list with
* <tt>delay = smallest finish time - current time</tt>
* </ul>
*
* @pre $none
* @post $none
*/

private void forecastGridlet() {
// if no Gridlets available in exec list, then exit this method
if (gridletInExecList_.size() == 0) {

return;
}

// checks whether Gridlets have finished or not. If yes, then remove
// them since they will effect the MIShare calculation.
checkGridletCompletion();

// Identify MIPS share for all Gridlets for 1 second, considering
// current Gridlets + No of PEs.
MIShares share = getMIShare(1.0, gridletInExecList_.size());

ResGridlet rgl = null;
int i = 0;
double time = 0.0;
double rating = 0.0;
double smallestTime = 0.0;
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// For each Gridlet, determines their finish time
Iterator iter = gridletInExecList_.iterator();
while (iter.hasNext()) {

rgl = (ResGridlet) iter.next();

// If a Gridlet locates before the max count then it will be given
// the max. MIPS rating
if (i < share.maxCount) {

rating = share.max;
} else { // otherwise, it will be given the min. MIPS Rating

rating = share.min;
}

time = forecastFinishTime(rating, rgl.getRemainingGridletLength());

int roundUpTime = (int) (time + 1); // rounding up
rgl.setFinishTime(roundUpTime);

// get the smallest time of all Gridlets
if (i == 0 || smallestTime > time) {

smallestTime = time;
}

i++;
}

// sends to itself as an internal event
super.sendInternalEvent(smallestTime);

}

/**
* Checks all Gridlets in the execution list whether they are finished or
* not.
*
* @pre $none
* @post $none
*/

private void checkGridletCompletion() {
ResGridlet rgl = null;

// a loop that determine the smallest finish time of a Gridlet
// Don’t use an iterator since it causes an exception because if
// a Gridlet is finished, gridletFinish() will remove it from the list.
int i = 0;
while (i < gridletInExecList_.size()) {

rgl = (ResGridlet) gridletInExecList_.get(i);

// if a Gridlet has finished, then remove it from the list
if (rgl.getRemainingGridletLength() <= 0.0) {

gridletFinish(rgl, Gridlet.SUCCESS);
continue; // not increment i coz the list size also decreases

}
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i++;
}

}

/**
* Forecast finish time of a Gridlet.
* <tt>Finish time = length / available rating</tt>
*
* @param availableRating the shared MIPS rating for all Gridlets
* @param length remaining Gridlet length
* @return Gridlet’s finish time.
*/

private double forecastFinishTime(double availableRating, double length) {
double finishTime = length / availableRating;

// This is as a safeguard since the finish time can be extremely
// small close to 0.0, such as 4.5474735088646414E-14. Hence causing
// some Gridlets never to be finished and consequently hang the program
if (finishTime < 1.0) {

finishTime = 1.0;
}

return finishTime;
}

/**
* Updates the Gridlet’s properties, such as status once a
* Gridlet is considered finished.
*
* @param rgl a ResGridlet object
* @param status the status of this ResGridlet object
* @pre rgl != null
* @post $none
*/

private void gridletFinish(ResGridlet rgl, int status) {
// NOTE: the order is important! Set the status first then finalize
// due to timing issues in ResGridlet class.
rgl.setGridletStatus(status);
rgl.finalizeGridlet();

// sends back the Gridlet with no delay
Gridlet gl = rgl.getGridlet();
super.sendFinishGridlet(gl);

// remove this Gridlet in the execution
gridletInExecList_.remove(rgl);

}

/**
* Handles internal event
*
* @pre $none
* @post $none
*/
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private void internalEvent() {
// this is a constraint that prevents an infinite loop
// Compare between 2 floating point numbers. This might be incorrect
// for some hardware platform.
if (lastUpdateTime_ == GridSim.clock()) {

return;
}

// update Gridlets in execution up to this point in time
updateGridletProcessing();

// schedule next event
forecastGridlet();

}

private ResGridlet cancel(int gridletId, int userId) {
ResGridlet rgl = null;

// Check whether the Gridlet is in execution list or not
int found = super.findGridlet(gridletInExecList_, gridletId, userId);

// if a Gridlet is in execution list
if (found >= 0) {

// update the gridlets in execution list up to this point in time
updateGridletProcessing();

// Get the Gridlet from the execution list
rgl = (ResGridlet) gridletInExecList_.remove(found);

// if a Gridlet is finished upon cancelling, then set it to success
if (rgl.getRemainingGridletLength() == 0.0) {

rgl.setGridletStatus(Gridlet.SUCCESS);
} else {

rgl.setGridletStatus(Gridlet.CANCELED);
}

// then forecast the next Gridlet to complete
forecastGridlet();

}

// if a Gridlet is not in exec list, then find it in the paused list
else {

found = super.findGridlet(gridletPausedList_, gridletId, userId);

// if a Gridlet is found in the paused list then remove it
if (found >= 0) {

rgl = (ResGridlet) gridletPausedList_.remove(found);
rgl.setGridletStatus(Gridlet.CANCELED);

}
}

return rgl;
}
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/* protected double calculateTotalLoad(int size) {
return size / (totalPE_ - (totalPE_ * resCalendar_.getCurrentLoad()));

}*/
} // end class

package grid;

import java.util.*;
import java.io.FileWriter;
import java.sql.Time;

import eduni.simjava.Sim_system;
import eduni.simjava.Sim_event;

import gridsim.*;
import gridsim.net.Link;
import gridsim.index.AbstractGIS;
import allocpolicy.*;
import allocpolicy.statebroadcast.SBA;
import allocpolicy.antZ.AntColonyAllocPolicy;
import allocpolicy.particleZ.ParticleSwarmAllocPolicy;
import allocpolicy.particleZ.AllocPolicyList;

public class SimulationWithoutFailure extends GridSim {

private static int num_resource;
private static int num_gridlet;
private static int GRIDLENGTH_COEF; //500 * 100
public static int MAX_NUMBER_PE = 4;
private boolean trace_flag = false;
private static String loadbalancing; // SBA | AntColony |
// TimeShared | SpaceShared | ParticleSwarm

private Integer ID;
private double pollingTime_;
private GridletList GridletReceiveList_;
private ArrayList GridletSubmittedList_; // list of submitted Gridlets
private static final int BASE = 440000;
public static final int SUBMIT_GRIDLET = BASE + 1;
// we keep here the time when each gridlet is submitted
private double gridletSubmissionTime[];
private double gridletLatencyTime[];

private double startTime = Double.MAX_VALUE;
private double finishTime = 0;
Topology topology;
private static long Simulation_Time = 0;

SimulationWithoutFailure(String name, double baud_rate, double pollTime)
throws Exception {
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super(name, baud_rate);

this.GridletSubmittedList_ = new ArrayList();
this.GridletReceiveList_ = new GridletList();
gridletSubmissionTime = new double[num_gridlet];
gridletLatencyTime = new double[num_gridlet];
pollingTime_ = pollTime;
ID = getEntityId(name);

}

public void body() {

initializeResultsFile();
createGridlet(super.get_id(), num_gridlet);

LinkedList<Integer> resList;
while (true) {

super.gridSimHold(1.0);
resList = super.getGridResourceList();
if (resList.size() == num_resource)

break;
//else
// System.out.println("Waiting to get list of resources ...");

}

try {
topology = Topology.getInstance(num_resource, getResList());

} catch (Exception e) {
e.printStackTrace();

}

int PAUSE = 10 * 60; // 10 mins
Random random = new Random();
int init_time = PAUSE + random.nextInt(5 * 60);

// sends a reminder to itself
super.send(super.get_id(), init_time, SUBMIT_GRIDLET);
System.out.println(super.get_name() +

": initial SUBMIT_GRIDLET event will be at clock: " +
init_time + ". Current clock: " + GridSim.clock());

/* if (loadbalancing.equals("SBA"))
for (int i = 0; i < resList.size(); i++){

send(resList.get(i), GridSimTags.SCHEDULE_NOW,
GridSimTags.BROADCAST_STATE);

} */

////////////////////////////////////////////////////////////
// Now, we have the framework of the entity:
Simulation_Time = System.currentTimeMillis();
while (Sim_system.running()) {

Sim_event ev = new Sim_event();
super.sim_get_next(ev); // get the next event in the queue
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//System.out.println("STILL RUNNING" + GridSim.clock());

switch (ev.get_tag()) {
// submit a gridlet
case SUBMIT_GRIDLET: {

if (GridSim.clock() < startTime) {
startTime = GridSim.clock();

}

processGridletSubmission(ev); // process the received event
break;

}

// Receive a gridlet back
case GridSimTags.GRIDLET_RETURN: {

if (GridSim.clock() > finishTime) {
finishTime = GridSim.clock();

}
processGridletReturn(ev);

break;
}

case GridSimTags.END_OF_SIMULATION:
System.out.println("\n============== " + super.get_name() +

". Ending simulation...");
break;

default:
if (trace_flag)

System.out.println(super.get_name() + ": " +
"Received an event: " + ev.get_tag());

break;

} // switch

} // while

// wait for few seconds before printing the output
super.sim_pause(super.get_id() * 2);
super.terminateIOEntities();
Simulation_Time = System.currentTimeMillis() - Simulation_Time;
if (trace_flag)

printGridletList(GridletReceiveList_, super.get_name(), false,
gridletLatencyTime);

printGridletList(GridletReceiveList_);
printUsefulInfo();

}

// TODO: What the gridlets should be like ?!

private Gridlet createGridlet(int id) {
long seed = 11L * 13 * 17 * 19 * 23 + 1;
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// sets the PE MIPS Rating
GridSimStandardPE.setRating(100);
double length;
Random random;
long file_size, output_size;

random = new Random(seed);
length = GridSimStandardPE.toMIs(random.nextDouble() * GRIDLENGTH_COEF);

// determines the Gridlet file size that varies within the
// range
// 100 + (10% to 40%)
file_size = (long) GridSimRandom.real(100, 0.10, 0.40, random

.nextDouble());

// determines the Gridlet output size that varies within the
// range
// 250 + (10% to 50%)
output_size = (long) GridSimRandom.real(250, 0.10, 0.50, random

.nextDouble());

// creates a new Gridlet object
// System.out.println("A Gridlet is created : --- " + id);
Gridlet gridlet = new Gridlet(id, length, file_size, output_size);

gridlet.setUserID(ID);
return gridlet;

}

private void createGridlet(int userID, int numGridlet) {
for (int i = 0; i < numGridlet; i++) {

// Creates a Gridlet
Gridlet gl = createGridlet(i);
gl.setUserID(userID);

// Originally, gridlets are created to be submitted
// as soon as possible (the 0.0 param)
GridletSubmission gst = new GridletSubmission(gl, false);

// add this gridlet into a list
this.GridletSubmittedList_.add(gst);

}
}

private void printUsefulInfo() {

System.out.println("Comunications : " + StatisticalAnalysis.Communications);
System.out.println("LINK NO: " + Topology.LINKNO);

}

private void initializeResultsFile() {
if (!trace_flag) {
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return;
}

// Initialize the results file
FileWriter fwriter = null;
try {

fwriter = new FileWriter(super.get_name(), true);
} catch (Exception ex) {

ex.printStackTrace();
System.out.println(

"Unwanted errors while opening file " + super.get_name() +
" or " + super.get_name() + "_Fin");

}

try {
fwriter.write("Event \t GridletID \t Resource \t GridletStatus " +

"\t\t Clock\n");
} catch (Exception ex) {

ex.printStackTrace();
System.out.println(

"Unwanted errors while writing on file " + super.get_name() +
" or " + super.get_name() + "_Fin");

}

try {
fwriter.close();

} catch (Exception ex) {
ex.printStackTrace();
System.out.println(

"Unwanted errors while closing file " + super.get_name() +
" or " + super.get_name() + "_Fin");

}
}

private void processGridletSubmission(Sim_event ev) {
if (trace_flag) {

System.out.println(super.get_name() +
": received an SUBMIT_GRIDLET event. Clock: " +
GridSim.clock());

}

/***********
We have to submit:
- the gridlet whose id comes with the event
- all the gridlets with the "gridletSub.getSubmitted() == false"

So, set the gridletSub.getSubmitted() to false for the gridlet whose
id comes with the event
***********/

int i = 0;
GridletSubmission gridletSub;
int resourceID[];
Random random = new Random(5); // a random generator with a random seed
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int index;
Gridlet gl;
Integer obj;
int glID;

// This is because the initial GRIDLET_SUBMIT event, at the beginning
// of sims, does not have any gridlet id. We have to submit
// all the gridlets.
if (ev.get_data() instanceof Integer) {

obj = (Integer) ev.get_data();
glID = obj; // get the gridlet id.

} else {
glID = 99; // a value at random, not used at all in this case

}

while (i < GridletSubmittedList_.size()) {
gridletSub = (GridletSubmission) GridletSubmittedList_.get(i);

if ((gridletSub.getGridlet()).getGridletID() == glID) {
// set this gridlet whose id comes with the event as not submitted,
// so that it is submitted as soon as possible.
((GridletSubmission) GridletSubmittedList_.get(i)).

setSubmitted(false);
}

// Submit the gridlets with the "gridletSub.getSubmitted() == false"
if ((gridletSub.getSubmitted() == false)) {

// we have to resubmit this gridlet
gl = ((GridletSubmission) GridletSubmittedList_.get(i)).

getGridlet();
resourceID = getResList(); // Get list of resources from GIS

// If we have resources in the list
if ((resourceID != null) && (resourceID.length != 0)) {

index = random.nextInt(resourceID.length);

// make sure the gridlet will be executed from the begining
resetGridlet(gl);

// submits this gridlet to a resource
super.gridletSubmit(gl, resourceID[index]);

//Submit to one resource
//super.gridletSubmit(gl, resourceID[0]);
gridletSubmissionTime[gl.getGridletID()] = GridSim.clock();

// set this gridlet as submitted
((GridletSubmission) GridletSubmittedList_.

get(i)).setSubmitted(true);

if (trace_flag) {
System.out.println(super.get_name() +

": Sending Gridlet #" + i + " to " +
GridSim.getEntityName(resourceID[index]) +
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" at clock: " + GridSim.clock());

// Write into a results file
write(super.get_name(), "Sending", gl.getGridletID(),

GridSim.getEntityName(resourceID[index]),
gl.getGridletStatusString(), GridSim.clock());

}

}
// No resources available at this moment, so schedule an event
// in the future. The event wil be in 15 min (900 sec), as
// resource failures may last several hours.
// This event includes the gridletID, so that the user will
// try to submit only this gridlet
else {

super.send(super.get_id(), GridSimTags.SCHEDULE_NOW + 900,
SUBMIT_GRIDLET, new Integer(gl.getGridletID()));

}

}// if (gridletSub.getSubmitted() == false)

i++;
} // while (i < GridletSubmittedList_.size())

} // processGridletSubmission

private void processGridletReturn(Sim_event ev) {
if (trace_flag) {

System.out.println(super.get_name() +
": received an GRIDLET_RETURN event. Clock: " + GridSim.clock());

}

Object obj = ev.get_data();
Gridlet gl;
Random random = new Random(5); // a random generator with a random seed

if (obj instanceof Gridlet) {
gl = (Gridlet) obj;
gridletLatencyTime[gl.getGridletID()] = GridSim.clock();

// Write into a results file
if (trace_flag) {

write(super.get_name(), "Receiving", gl.getGridletID(),
GridSim.getEntityName(gl.getResourceID()),
gl.getGridletStatusString(), GridSim.clock());

}

///////////////////////// Gridlet Success
if (gl.getGridletStatusString().compareTo("Success") == 0) {

if (trace_flag)
System.out.println(super.get_name() + ": Receiving Gridlet #" +

gl.getGridletID() + " with status Success at time = " +
GridSim.clock() + " from resource " +
GridSim.getEntityName(gl.getResourceID()));
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this.GridletReceiveList_.add(gl); // add into the received list
gridletLatencyTime[gl.getGridletID()] =

gridletLatencyTime[gl.getGridletID()] -
gridletSubmissionTime[gl.getGridletID()];

// We have received all the gridlets. So, finish the simulation.
if (GridletReceiveList_.size() == GridletSubmittedList_.size()) {

super.shutdownUserEntity();
super.terminateIOEntities();

}

} // if (gl.getGridletStatusString() == "Success")

//////////////////////// Gridlet Failed
else if (gl.getGridletStatusString().compareTo("Failed") == 0) {

if (trace_flag)
System.out.println(super.get_name() + ": Receiving Gridlet #" +

gl.getGridletID() + " with status Failed at time = " +
GridSim.clock() + " from resource " +
GridSim.getEntityName(gl.getResourceID()));

// Send the gridlet as soon as we have resources available.
// This gridlet will be resend as soon as possible,
// in the first loop.
int pos = findGridletInGridletSubmittedList(gl);
if (pos == -1) {

System.out.println(super.get_name() +
". Gridlet not found in GridletSubmittedList.");

} else {
// set this gridlet as submitted, because otherwise
// this gridlet may be submitted several times.
// A gridlet will only be submitted when the event carrying
// its id reaches the user
((GridletSubmission) GridletSubmittedList_.get(pos)).

setSubmitted(true);

// Now, schedule an event to itself to submit the gridlet
// The gridlet will be sent as soon as possible
Integer glID_Int = new Integer(gl.getGridletID());

// This event includes the gridletID, so that the user
// will try to submit only this gridlet
super.send(super.get_id(), GridSimTags.SCHEDULE_NOW,

SUBMIT_GRIDLET, glID_Int);
}

} // if (gl.getGridletStatusString() == "Failed")

////////////////////////////// Gridlet Failed_resource
else if (gl.getGridletStatusString().compareTo(

"Failed_resource_unavailable") == 0) {
int pos = findGridletInGridletSubmittedList(gl);
if (pos == -1) {

System.out.println(super.get_name() +
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". Gridlet not found in GridletSubmittedList.");
} else {

// Now, set its submission time for a random time between
// 1 and the polling time
double resubmissionTime = random.nextDouble() * pollingTime_;

// this is to prevent the gridlet from being submitted
// before its resubmission time.
// This is different from the FAILED case, because
// in that case, the gridlet should be resubmited as soon
// as possible. As oppossed to that, this gridlet should
// not be resubmited before its resubmission time.
((GridletSubmission) GridletSubmittedList_.get(pos)).

setSubmitted(true);

System.out.println(super.get_name() + ": Receiving Gridlet #" +
gl.getGridletID() +
" with status Failed_resource_unavailable at time = " +
GridSim.clock() + " from resource " +
GridSim.getEntityName(gl.getResourceID()) +
"(resID: " + gl.getResourceID() +
"). Resubmission time will be: " +
resubmissionTime + GridSim.clock());

// Now, we have to inform the GIS about this failure, so it
// can keep the list of resources up-to-date.
informGIS(gl.getResourceID());

// Now, schedule an event to itself to submit the gridlet
Integer glID_Int = new Integer(gl.getGridletID());

// This event includes the gridletID, so that the user
// will try to submit only this gridlet
super.send(super.get_id(), resubmissionTime, SUBMIT_GRIDLET,

glID_Int);
}

} // else if
else {

System.out.println(super.get_name() + ": Receiving Gridlet #" +
gl.getGridletID() + " with status " +
gl.getGridletStatusString() + " at time = " +
GridSim.clock() + " from resource " +
GridSim.getEntityName(gl.getResourceID()) +
" resID: " + gl.getResourceID());

}

} // if (obj instanceof Gridlet)
}

private void informGIS(int resID) {
Integer resID_Int = new Integer(resID);

super.send(super.output, 0.0, AbstractGIS.NOTIFY_GIS_RESOURCE_FAILURE,
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new IO_data(resID_Int, Link.DEFAULT_MTU, this.ID));
}

private int findGridletInGridletSubmittedList(Gridlet gl) {
Gridlet g;
GridletSubmission gst;
for (int i = 0; i < GridletSubmittedList_.size(); i++) {

gst = (GridletSubmission) GridletSubmittedList_.get(i);
g = gst.getGridlet();

if (g.getGridletID() == gl.getGridletID())
return i;

}

return -1;
}

private void write(String user, String event, int glID, String resName,
String status, double clock) {

if (trace_flag == false) {
return;

}

// Write into a results file
FileWriter fwriter = null;
try {

fwriter = new FileWriter(super.get_name(), true);
} catch (Exception ex) {

ex.printStackTrace();
System.out.println(

"Unwanted errors while opening file " + super.get_name());
}

try {
fwriter.write(event + "\t\t" + glID + "\t" + resName + "\t" + status +

"\t\t" + clock + "\n");
} catch (Exception ex) {

ex.printStackTrace();
System.out.println(

"Unwanted errors while writing on file " + super.get_name());
}

try {
fwriter.close();

} catch (Exception ex) {
ex.printStackTrace();
System.out.println(

"Unwanted errors while closing file " + super.get_name());
}

}
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private int[] getResList() {

LinkedList resList = super.getGridResourceList();
int[] resourceID = null;

// if we have any resource
if ((resList != null) && (resList.size() != 0)) {

resourceID = new int[resList.size()];
for (int x = 0; x < resList.size(); x++) {

// Resource list contains list of resource IDs
resourceID[x] = ((Integer) resList.get(x)).intValue();
if (trace_flag == true) {

System.out.println(super.get_name() +
": resource[" + x + "] = " + resourceID[x]);

}
}

}
return resourceID;

}

private void resetGridlet(Gridlet gl) {
gl.setGridletLength(gl.getGridletLength());
gl.setGridletFinishedSoFar(0);

}

private void printGridletList(GridletList list, String name,
boolean detail, double gridletLatencyTime[]) {

int size = list.size();
Gridlet gridlet = null;

String indent = " ";
StringBuffer buffer = new StringBuffer(1000);
buffer.append("\n\n============== OUTPUT for " + name + " ===========");
buffer.append("\nGridlet ID" + indent + "STATUS" + indent +

"Resource ID" + indent + indent + "Cost" + indent +
indent + "CPU Time" + indent + indent + "Latency");

// a loop to print the overall result
int i = 0;
boolean header = true;

for (i = 0; i < size; i++) {
gridlet = (Gridlet) list.get(i);

buffer.append("\n");
buffer.append(indent + gridlet.getGridletID() + indent + indent);
buffer.append(gridlet.getGridletStatusString());
buffer.append(indent + indent + gridlet.getResourceID() +

indent + gridlet.getProcessingCost() +
indent + gridlet.getActualCPUTime() +
indent + gridletLatencyTime[gridlet.getGridletID()]);

if (i != 0) {
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header = false;
}

writeFin(name, gridlet.getGridletID(),
GridSim.getEntityName(gridlet.getResourceID()),
gridlet.getProcessingCost(), gridlet.getActualCPUTime(),
GridSim.clock(), header);

}

if (detail == true) {
// a loop to print each Gridlet’s history
for (i = 0; i < size; i++) {

gridlet = (Gridlet) list.get(i);

buffer.append(gridlet.getGridletHistory());
buffer.append("Gridlet #" + gridlet.getGridletID());
buffer.append(", length = " + gridlet.getGridletLength()

+ ", finished so far = " +
gridlet.getGridletFinishedSoFar());

buffer.append("===========================================");
}

}

buffer.append("\n====================================================");
System.out.println(buffer.toString());

}

private void writeFin(String user, int glID, String resName,
double cost, double cpu, double clock,
boolean header) {

if (trace_flag == false) {
return;

}

// Write into a results file
FileWriter fwriter = null;
try {

fwriter = new FileWriter(user, true);
} catch (Exception ex) {

ex.printStackTrace();
System.out.println(

"Unwanted errors while opening file " + user);
}

try {
if (header == true) {

fwriter.write(
"\n\nGridletID \t Resource \t Cost \t CPU time " +

"\t Latency\n");
}

fwriter.write(glID + "\t" + resName + "\t" + cost + "\t" + cpu +
"\t" + +clock + "\n");
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} catch (Exception ex) {
ex.printStackTrace();
System.out.println(

"Unwanted errors while writing on file " + user);
}

try {
fwriter.close();

} catch (Exception ex) {
ex.printStackTrace();
System.out.println(

"Unwanted errors while closing file " + user);
}

}

// ///////////////////////// STATIC METHODS ///////////////////////

private static void initialize() {

int num_user = 1; // number of grid users
Calendar calendar = Calendar.getInstance();
boolean trace_flag = false; // mean don’t trace GridSim events

// Initialize the GridSim package
System.out.println("Initializing GridSim package");
GridSim.init(num_user, calendar, trace_flag);

}

private static void createResource(String name, int totalMachine, int totalPE,
double[] baudRate, int[] peRating,
double[] price) {

double bandwidth;
double cost;
Random random = new Random();

if (random.nextBoolean() == true) {
bandwidth = baudRate[0];
cost = price[0];

} else {
bandwidth = baudRate[1];
cost = price[1];

}

// creates a GridResource
createGridResource(name, totalMachine, totalPE, bandwidth, peRating,

cost);
}

private static void createGridResource(String name, int totalMachine,
int totalPE, double bandwidth,
int[] peRating, double cost) {

// Here are the steps needed to create a Grid resource:
// 1. We need to create an object of MachineList to store one or more
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// Machines
Random random = new Random();
MachineList mList = new MachineList();

int rating;
for (int i = 0; i < totalMachine; i++) {

// 2. A Machine contains one or more PEs or CPUs. Therefore, should
// create an object of PEList to store these PEs before creating
// a Machine.
PEList peList = new PEList();

// even Machines have different PE rating compare to odd ones
if (random.nextBoolean() == true) {

rating = peRating[0];
} else {

rating = peRating[1];
}

// 3. Create PEs and add these into an object of PEList.
for (int k = 0; k < totalPE; k++) {

// need to store PE id and MIPS Rating
peList.add(new PE(k, rating));

}

// 4. Create one Machine with its id and list of PEs or CPUs
mList.add(new Machine(i, peList));

}

// 5. Create a ResourceCharacteristics object that stores the
// properties of a Grid resource: architecture, OS, list of
// Machines, allocation policy: time- or space-shared, time zone
// and its price (G$/PE time unit).
String arch = "Sun Ultra"; // system architecture
String os = "Solaris"; // operating system
double time_zone = 0.0; // time zone this resource located

ResourceCharacteristics resConfig = new ResourceCharacteristics(arch,
os, mList, ResourceCharacteristics.OTHER_POLICY_DIFFERENT_RATING,
time_zone, cost);

// 6. Finally, we need to create a GridResource object.
long seed = 11L * 13 * 17 * 19 * 23 + 1;
double peakLoad = 0.0; // the resource load during peak hour
double offPeakLoad = 0.0; // the resource load during off-peak hr
double holidayLoad = 0.0; // the resource load during holiday

// incorporates weekends so the grid resource is on 7 days a week
LinkedList<Integer> Weekends = new LinkedList<Integer>();
Weekends.add(new Integer(Calendar.SATURDAY));
Weekends.add(new Integer(Calendar.SUNDAY));

// incorporates holidays. However, no holidays are set in this example
LinkedList Holidays = new LinkedList();
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ResourceCalendar resourceCalendar = new ResourceCalendar(time_zone,
peakLoad, offPeakLoad, holidayLoad, Weekends, Holidays, seed);

try {
AllocPolicy allocPolicy = getAllocPolicy(name);
if (allocPolicy == null)

throw new Exception("Define Alloc Plicy");
new GridResource(name, bandwidth, resConfig, resourceCalendar,

allocPolicy);
if (loadbalancing.equals("ParticleSwarm")) {

AllocPolicyList.getInstance().addallocPolicy(
(ParticleSwarmAllocPolicy) allocPolicy);

}
} catch (Exception e) {

e.printStackTrace(); // To change body of catch statement use
// File | Settings | File Templates.

}
// m System.out.println("Creates one Grid resource with name = " +
// name);

}

private static AllocPolicy getAllocPolicy(String name) throws Exception {
AllocPolicy allocPolicy = null;

if (loadbalancing.equals("AntColony")) {
allocPolicy = new AntColonyAllocPolicy(name, name + "AllocPolicy",

output);
} else if (loadbalancing.equals("TimeShared")) {

allocPolicy = new TimeShared(name, name + "AllocPolicy");
} else if (loadbalancing.equals("SpaceShared")) {

allocPolicy = new SpaceShared(name, name + "AllocPolicy");
} else if (loadbalancing.equals("ParticleSwarm")) {

allocPolicy = new ParticleSwarmAllocPolicy(name, name + "AllocPolicy");
} else if (loadbalancing.equals("SBA")) {

allocPolicy = new SBA(name, name + "AllocPolicy", output);
}
return allocPolicy;

}

public static void main(String[] args) {
Random random = new Random();

loadbalancing = args[0];
num_resource = Integer.valueOf(args[1]);
num_gridlet = Integer.valueOf(args[2]);
GRIDLENGTH_COEF = Integer.valueOf(args[3]);

try {
initialize();

// Second step: Creates one or more GridResource objects
double pollTime = 100; // time between polls
double baudRate[] = {1000, 5000}; // bandwidth for even, odd
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int peRating[] = {10, 50}; // PE Rating for even, odd
double price[] = {3.0, 5.0}; // resource for even, odd

for (int i = 0; i < num_resource; i++) {
createResource("GridResource_" + i, 1,

random.nextInt(MAX_NUMBER_PE) + 1,
baudRate, peRating, price);

}

// Third step: Creates the grid.MyGridSimulator object
SimulationWithoutFailure obj = new SimulationWithoutFailure(

"grid.MyGridSimulator", 560.00, pollTime);

// Fourth step: Starts the simulation
GridSim.startGridSimulation();

// Final step: Prints the Gridlets when simulation is over
//GridletList newList = obj.getGridletList();
// printGridletList(newList);
// printUsefulInfo(newList);

} catch (Exception e) {
e.printStackTrace();
System.out.println("Unwanted errors happen");

}
}

private static void printGridletList(GridletList list) {
double time1 = Double.MAX_VALUE;
double time2 = Double.MIN_VALUE;
double averageTurnAroundTime = 0;
int size = list.size();
Gridlet gridlet;

String indent = " ";
System.out.println();
System.out.println("========== OUTPUT ==========");
//System.out.println("Gridlet ID" + indent + "STATUS" + indent
// + "Resource ID" + indent + "Cost" + indent + "START TIME"
// + indent + "END TIME");

for (int i = 0; i < size; i++) {
gridlet = (Gridlet) list.get(i);
if (gridlet.getSubmissionTime() < time1)

time1 = gridlet.getSubmissionTime();
if (gridlet.getFinishTime() > time2)

time2 = gridlet.getFinishTime();
averageTurnAroundTime += gridlet.getFinishTime()

- gridlet.getSubmissionTime();
//System.out.print(indent + gridlet.getGridletID() + indent + indent);

//if (gridlet.getGridletStatus() == Gridlet.SUCCESS)
// System.out.print("SUCCESS");
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//System.out.println(indent + indent + gridlet.getResourceID()
// + indent + indent + gridlet.getProcessingCost() + indent
// + indent + gridlet.getExecStartTime() + indent + indent
// + gridlet.getFinishTime());

}
System.out.println("time1 = " + time1);
System.out.println("time2 = " + time2);
System.out.println("Difference : " + (time2 - time1));
System.out.println("Simulation_Time = " + Simulation_Time);
System.out.println("averageTurnAroundTime = " + averageTurnAroundTime /

num_gridlet);
}

}

package grid;

import java.io.RandomAccessFile;
import java.io.FileNotFoundException;
import java.io.IOException;

/**
* Created by IntelliJ IDEA.
* User: azm537
* Date: Jul 18, 2008
* Time: 6:46:41 PM
* To change this template use File | Settings | File Templates.
*/
public class StatisticalAnalysis {

public static int Communications = 0;
public static int Number_resource_failure = 0;
public static double MAX_MAKESPAN = Double.MIN_VALUE;

public static double heaviestNode = 0;
public static double lightestNode = 0;

private static RandomAccessFile random_Timeshared_log = null;
private static RandomAccessFile antColony_log = null;
private static RandomAccessFile random_SpaceShared_log = null;
private static RandomAccessFile particle_log = null;
private static RandomAccessFile SBA_log = null;

public static RandomAccessFile getRandom_TimeShared_log() {
if (random_Timeshared_log == null) {

try {
random_Timeshared_log = new RandomAccessFile(

"random_timeshared_log.txt", "rw");
random_Timeshared_log.setLength(0);

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
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e.printStackTrace();
}

}
return random_Timeshared_log;

}
public static RandomAccessFile getAntColony_log() {

if (antColony_log == null) {
try {

antColony_log = new RandomAccessFile("antColony_log.txt", "rw");
antColony_log.setLength(0);

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

}

}
return antColony_log;

}
public static RandomAccessFile getRandom_SpaceShared_log(){

if (random_SpaceShared_log == null) {
try {

random_SpaceShared_log = new RandomAccessFile(
"random_spaceshared.txt", "rw");

random_SpaceShared_log.setLength(0);
} catch (FileNotFoundException e) {

e.printStackTrace();
} catch (IOException e) {

e.printStackTrace();
}

}
return random_SpaceShared_log;

}
public static RandomAccessFile get_particle_log(){

if (particle_log == null) {
try {

particle_log = new RandomAccessFile("particle_log.txt", "rw");
particle_log.setLength(0);

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

}

}
return particle_log;

}
public static RandomAccessFile get_sba_log(){

if (SBA_log == null) {
try {
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SBA_log = new RandomAccessFile("sba_log.txt", "rw");
SBA_log.setLength(0);

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

}

}
return SBA_log;

}
}

package grid;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Random;

public class Topology {

private static HashMap<Integer, ArrayList> connectedNodes;
private static HashMap<Integer, Boolean> alive;
private static Topology topology;
public static int LINKNO = 0;

public static Topology getInstance(int num_resource, int[] resourceID)
throws Exception {

if (topology == null)
topology = new Topology(num_resource, resourceID);

return topology;
}

private Topology(int num_resource, int[] resourceID) throws Exception {

boolean connected[] = new boolean[num_resource];
alive = new HashMap<Integer, Boolean>();
connectedNodes = new HashMap<Integer, ArrayList>();
Random random = new Random();
int connectedNodeIp, notConnectedNodeIp;

for (int i = 0; i < resourceID.length; i++)
alive.put(resourceID[i], true);

connected[0] = true;

for (int i = 0; i < num_resource - 1; i++) {
do {

connectedNodeIp = random.nextInt(num_resource);
} while (!connected[connectedNodeIp]);
do {

notConnectedNodeIp = random.nextInt(num_resource);
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} while (connected[notConnectedNodeIp]);

connected[notConnectedNodeIp] = true;

ArrayList<Integer> list = connectedNodes.get(
resourceID[connectedNodeIp]);

if (list == null)
list = new ArrayList<Integer>();

list.add(resourceID[notConnectedNodeIp]);
connectedNodes.put(resourceID[connectedNodeIp],

list);

ArrayList<Integer> list2 = connectedNodes.get(
resourceID[notConnectedNodeIp]);

if (list2 == null)
list2 = new ArrayList<Integer>();

list2.add(resourceID[connectedNodeIp]);
connectedNodes.put(resourceID[notConnectedNodeIp],

list2);
LINKNO++;

}
int node1, node2;

for (int i = 0; i < 50; i++) {

while (true) {
node1 = random.nextInt(num_resource);
do {

node2 = random.nextInt(num_resource);
} while (node1 == node2);

ArrayList arrayList = connectedNodes.get(resourceID[node1]);
for (int j = 0; j < arrayList.size(); j++)

if (((Integer) arrayList.get(j)).intValue() ==
resourceID[node2])

continue;
break;

}

connectedNodes.get(resourceID[node1]).add(resourceID[node2]);
// if(connectedNodes.get(resourceID[node2]) == null)
// System.out.println(connectedNodes.get(resourceID[node2]));

connectedNodes.get(resourceID[node2]).add(resourceID[node1]);
LINKNO++;

}

/* Iterator<Integer> iterator = connectedNodes.keySet().iterator();
while(iterator.hasNext()){

Integer key = iterator.next();
ArrayList<Integer> neighbours = connectedNodes.get(key);
for(int i=0 ; i < neighbours.size() ; i++)

System.out.println(neighbours.get(i));
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System.out.println("-------------");
}
System.out.println("Topology created !");

*/
}

public static ArrayList getConnectedResources(int ID) {
ArrayList result = connectedNodes.get(ID);
for (int i = 0; i < result.size();) {

if (!isAlive((Integer) result.get(i)))
result.remove(i);

else
i++;

}
return result;

}

public static int gerRandomNodeId() {
Random random = new Random();
Object[] nodes = connectedNodes.keySet().toArray();
return (Integer) (nodes[random.nextInt(nodes.length)]);

}

public static void failNode(int id) {
alive.put(id, false);

}

public static void liveNode(int id) {
alive.put(id, true);

}

private static boolean isAlive(int id) {
return alive.get(id);

}
}
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