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Abstract

This dissertation deals with a class of nonlinear wave equations of the type discovered by

R. Camassa and D. D. Holm which includes the Camassa-Holm, the Degasperis-Procesi,

and the two component Camassa-Holm equations. All these equations admit certain non-

smooth soliton-like solutions, called peakons as well as other non-smooth solutions like

cuspons. We apply the techniques of the theory of distributions of L. Schwartz to study

these solutions. In particular, every non-smooth traveling wave which is a distributional

solution of the two component Camassa-Holm equation is a distributional solution of the

Camassa-Holm equation if the set of points where the height of the wave equals its speed,

is of measure zero. This includes peakon or cuspon traveling wave solutions.

We also develop a suitable modification of the classical Lax pair formalism to deal

with singular solutions. We show that the Lax pair formalism can be extended to a

distributional weak Lax pair which is appropriate for dealing with the peakon solutions of

the Camassa-Holm equation.
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Chapter 1

Introduction

In 1936, S. L. Sobolev introduced the concepts of generalized functions and derivatives

to deal with non-smooth solutions of linear partial differential equations. In 1948, this

theory was generalized by L. Schwartz [21], who introduced the concept of distributions.

However, nonlinear operations cannot be easily performed on distributions. One of the

problems is that the product of distributions cannot be defined in general. One can nat-

urally define the product of a smooth function and a distribution but this product is not

associative [19]. Schwartz [20] proved that if an associative differential algebra (A, ∂, ◦)

contains the space D′(Ω) of distributions over an open set Ω ⊂ Rn, then the operations

(∂, ◦) in A cannot simultaneously be faithful extensions of the distributional derivatives

and the product of continuous functions.

The purpose of this thesis is to study two classes of distributional solutions, namely,

the traveling wave solutions and the peakon solutions of three nonlinear partial differential

equations namely, Camassa-Holm (CH) [2] (also see [31]), Degasperis-Procesi (DP) [6] and

the two-component Camassa-Holm (CH2) [12]. Given a fixed κ ∈ R, the first two are the

cases b = 2 and b = 3 of the following PDE respectively:





ut − uxxt + (b + 1)uux + κux = buxuxx + uuxxx, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R.

(1.1)
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This equation can also be written as follows:

mt + bmux + mxu = 0, (1.2)

where m = u− uxx + 1
bκ.

The Camassa-Holm and the Degasperis-Procesi equations admit a type of non-smooth

solution (in the sense of distributions) that is called a multipeakon. A multipeakon is

a train of finitely many peaked interacting waves that regain their original shape after

interaction.

In general terms the main outcome of this dissertation is that the distributional so-

lutions, at least in the narrow sense developed here, provide a wealth of mathematical

connections with many areas of mathematics. We now present an outline of the content of

this dissertation.

In Chapter 2, we present general information about the three equations mentioned

above as well as the Korteweg de Vries equation

ut + uxxx + 6uux = 0, (1.3)

which was historically the first equation of this type studied. In particular, we present a

detailed derivation of the Camassa-Holm equation using variational methods applied to

Euler’s equation. We also discuss the so-called Lax formulation of these equations in terms

of an overdetermined system of linear equations with a spectral parameter. For example,

it is known that if b = 2 (the Camassa-Holm equation), then (1.2) is the compatibility

condition ψxxt = ψtxx, for the following system:




ψxx = (1
4 − zm)ψ,

ψt = −( 1
2z + u)ψx + 1

2uxψ.

(1.4)
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A system of this type is called the Lax system.

In Chapter 3, we study the distributional traveling wave solutions of the two component

Camassa-Holm equation. The two component Camassa-Holm equation was introduced

recently by M. Chen, S. Liu and Y. Zhang [12] as a generalization of equation (1.2) for

b = 2: 



mt + 2mux + mxu− ρρx = 0,

ρt + (ρu)x = 0.

(1.5)

This equation has a potential application in image mapping. Indeed, D. Holm, A.

Trouve and L. Younes rederive this equation in their manuscript [25] which contains a result

that connects the process of metamorphosis in image matching to the physical concept of

order parameter in the theory of complex fluids.

To obtain the traveling wave solutions we set u = u(x− ct) and ρ = ρ(x− ct) where c

is the speed of the wave. Then, easy manipulations show that




−2c(u′ − u′′′) + 2κu′ + 3(u2)′ + ((u′)2)′ − (u2)′′′ = (ρ2)′,

−cρ′ + (ρu)′ = 0,

(1.6)

where u′ is the derivative of u with respect to x − ct. These equations are valid in the

sense of distributions if u ∈ H1
loc(R) and ρ ∈ L2

loc(R). We generalize a result of J. Lenells

[9] about the location of non-smooth points of functions that are distributional solutions

of the Camassa-Holm equation. In our case, we show that if a non-smooth function u

is a distributional solution of the two component Camassa-Holm equation, then its non-

smooth points only appear when u is at the level of the speed c of the wave. Also, we

prove that every non-smooth function u which is a distributional traveling wave solution

to the two component Camassa-Holm equation is in fact a distributional solution to the
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Camassa-Holm equation provided that the set u−1(c) is of measure zero. An example of

a smooth solution of the two component Camassa-Holm equation which is not a solution

to the Camassa-Holm equation is presented in this chapter. Also, we present an example

of a non-smooth solution u to the two component Camassa-Holm equation, with u−1(c) of

non-zero measure, which is not a solution of the Camassa-Holm equation.

In Chapter 4, we review basic facts about yet another type of distributional solution,

namely, the peakon solutions of the equation (1.1). In order to produce multipeakon

solutions to equations (1.1) or (1.2) we consider m as a discrete measure [3] defined by

m =
n∑

j=1

mj(t)δxj(t),

where mj and xj are smooth functions of time. This leads to a possible solution of the

form

u = −κ

b
+

1
2

n∑

j=1

mje
|x−xj |. (1.7)

We show that u given by (1.7) is a distributional solution to (1.1) if and only if mj and xj

satisfy the following ODE:




ẋj = −κ
b + 1

2

∑n
i=1 mie

−|xj−xi|,

ṁj = 1
2(b− 1)

∑n
i=1 mjmiSgn(xj − xi)e−|xj−xi|.

(1.8)

Further in this chapter, we introduce a notion of the weak Lax pair for the Camassa-

Holm equation, which we subsequently show is the right framework to study its multipeakon

solutions. It is shown that, given certain conditions, the compatibility condition for the

distributional system of equations




(1
4 −D2

x)ψ = zmψ,

Dtψ = −( 1
2z + u)ψx + 1

2uxψ, z ∈ C,

(1.9)
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is equivalent to the system of ODEs given by (1.8) when b = 2 (the Camassa-Holm equa-

tion).

In Chapter 5, we review a surprising connection between the peakon solutions to the

Camassa-Holm equation and continued fractions. R. Beals, D. H. Sattinger and J. Szmigiel-

ski [22] investigated the connection between the peakon solutions to Camassa-Holm equa-

tion and the Stieltjes continued fractions. They used classical results of Stieltjes to obtain

explicit formulas for the peakon solutions of the Camassa-Holm equation. What follows is

a brief review of their work [22].

The transformation y = tanh(x
2 ), turns the first equation of (1.4) into the following

equation:

φyy = −zg(y)φ, (1.10)

where φ = (1 − y2)
1
2 ψ, and g(y) = 4m

(1−y2)2
. On the other hand, it is known that small

vibrations u(y, t) of a string with mass density g(y) are described by uyy = g(y)utt. Using

the separation of variables u(y, t) = φ(y)τ(t), we obtain the eigenvalue problem (1.10).

Therefore, if g(y) is a positive discrete measure, the eigenvalue problem (1.10), where

g(y) =
∑n

j=1 gjδyj , with the initial conditions





φ(−1, z) = 0,

φy(−1+, z) = 1,

(1.11)

describes a discrete string consisting of point-masses at yj with masses gj , tied at the left

end [4]. Furthermore, if the distance between yj−1 and yj is denoted by lj , then the Weyl

function of the discrete string problem that is defined by

W (z) =
φy(1−, z)
φ(1, z)

, (1.12)
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has the following continued fractions representation:

W (z) =
1

ln+1 +
1

zyn +
1

ln +
1

. . .

+

1

zy1 +
1

l1

. (1.13)

In this chapter, we study the properties of the odd and even convergents of the Weyl

function. Since W (z)
z is analytic at ∞, for z large enough we can write

W (z)
z

=
∞∑

j=0

cj

zj+1
. (1.14)

Certain orthogonality conditions are reviewed and explicit formulas for the numerators and

the denominators of the convergents in terms of the cjs are given. Given the Weyl function

by (1.14) we show how to write W (z) in the form given in equation (1.13) and thus how

to recover the string data.

The dissertation concludes with two appendices:

• Appendix A (Functions of bounded variations, absolutely continuous functions)

• Appendix B (Basic statements about distributions)

All the results of Chapter 3 are new. The concept of the weak Lax form description

of multipeakons of the Camassa-Holm equation and its subsequent distributional imple-

mentation presented in Chapter 4 are new. The presentation of Chapter 2 was in the
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literature. However, the statement and the proof of Theorem 2 is my own. The thesis is

self-contained.

7



Chapter 2

A tale of three equations

2.1 Variational Derivation of the Camassa-Holm equation

2.1.1 Governing equations of water waves

The Camassa-Holm equation [2] (also see [31])

ut + κux − uxxt + 3uux = 2uxuxx + uuxxx, (2.1)

is a model for the unidirectional propagation of shallow water waves over a flat bottom,

with u(x, t) representing the water’s free surface, and κ ∈ R being a parameter related to

the critical shallow water speed. In what follows, this equation is derived by the application

of variational methods. We assume (see [8] and [15]) that water is moving in a domain with

a free surface given by z = h0 + η(x, t) where h0 > 0 represents the surface of stationary

water. The two-dimensional velocity of water is (u, 0, v). Thus, no motion takes place in

the y direction. Furthermore, we suppose that the fluid is only affected by the acceleration

of gravity g and ignore the effects of surface tension. Since water is incompressible we

assume that the density ρ is a constant. Let us denote the pressure by p. Applying Euler’s

equation (see [16]), we have




ut + uux + vuz = −1
ρpx,

vt + uvx + vvz = −1
ρpz − g.

(2.2)
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By the equation of mass conservation [16] we have

ux + vz = 0. (2.3)

The kinematic boundary conditions [16] are




v = ηt + uηx on z = h0 + η(x, t),

v = 0 on z = 0.

(2.4)

The dynamic boundary condition [16] states that the pressure on the free surface is equal

to the constant atmospheric pressure p0. Thus, we have

p = p0 on z = h0 + η(x, t). (2.5)

We non-dimensionalize these equations using the undisturbed depth of water h0 as the

vertical length scale, a typical wavelength λ as a horizontal scale and a typical amplitude

of the wave a relative to the undisturbed surface of water. An appropriate scale for the

horizontal velocity is
√

gh0. Consequently, the time scale will be λ√
gh0

and the scale for

vertical velocity will be h0
√

gh0

λ . Thus, we have defined the non-dimensional variables

x 7→ λx, z 7→ h0z, η 7→ aη, t 7→ λ√
gh0

t,

u 7→
√

gh0u, v 7→ h0
√

gh0

λ
v.

(2.6)

Note that the above notation simply means x is replaced by λx, so that afterwards, the

symbol x represents the non-dimensional variable. Also, it follows that we have the non-

dimensional variables

ut 7→ gh0

λ
ut, vt 7→ gh2

0

λ2
vt, ux 7→

√
gh0

λ
ux,

vx 7→ h0
√

gh0

λ2
vx, uz 7→

√
gh0

h0
uz, vz 7→

√
gh0

λ
vz.

(2.7)

Now, we define the non-dimensional pressure. Consider the stationary water, that is,

u ≡ v ≡ 0. Then, the first equation of (2.2) implies that p only depends on z and
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consequently, using the second equation of (2.2) we obtain the hydrostatic pressure at the

depth z as follows:

p = p0 + ρgh0 − ρgz. (2.8)

So, the hydrostatic pressure in terms of the non-dimensional variable z (by abuse of nota-

tion) would be

p = p0 + ρgh0(1− z). (2.9)

We define the non-dimensional pressure by adding the hydrostatic pressure in (2.9) to the

non-dimensional variable p 7→ ρgh0p. Thus, we have

p 7→ p0 + ρgh0(1− z) + ρgh0p, (2.10)

px 7→ ρgh0

λ
px, pz 7→ −ρg + ρgpz. (2.11)

Note that, adding the hydrostatic pressure simplifies our equations more efficiently be-

cause it removes the term −g from the second equation of (2.2). In fact, using the non-

dimensional variables, we obtain

ut + uux + vuz = −px,

δ2(vt + uvx + vvz) = −pz,

ux + vz = 0,

(2.12)

where δ = h0
λ . On the surface of water, we have

v = ε(ηt + uηx) and p = εη on z = 1 + εη(x, t), (2.13)

where ε = a
h0

, while on the bottom,

v = 0 on z = 0. (2.14)

Now, using the re-scaling

p 7→ εp, (u, v) 7→ ε(u, v), (2.15)
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we get

ut + ε(uux + vuz) = −px,

δ2
(
vt + ε(uvx + vvz)

)
= −pz,

ux + vz = 0,

v = ηt + εuηx and p = η on z = 1 + εη(x, t),

v = 0 on z = 0.

(2.16)

Furthermore, to remove δ, we introduce the variables

x 7→ δ√
ε
, t 7→ δ√

ε
, v 7→

√
ε

δ
. (2.17)

Thus, the second equation changes to

ε
(
vt + ε(uvx + vvz)

)
= −pz.

Thus, the form of the governing equations of water waves is:

ut + ε(uux + vuz) = −px,

ε
(
vt + ε(uvx + vvz)

)
= −pz,

ux + vz = 0,

v = ηt + εuηx and p = η on z = 1 + εη(x, t),

v = 0 on z = 0.

(2.18)

For waves of small amplitude, that is, when ε → 0, we have

ut + px = 0,

pz = 0,

ux + vz = 0,

v = ηt and p = η on z = 1,

v = 0 on z = 0.

(2.19)
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Since, pz = 0, then p does not depend on z. Consequently, since p = η(x, t) on z = 1, then

p = η(x, t) for any 0 ≤ z ≤ 1. Thus, using ut + px = 0, we get

u = −
∫

ηx(x, t)dt + F(x, z), (2.20)

where F(x, z) is an arbitrary function which only depends on x and z. Hence, we have

ux = −
∫

ηxx(x, t)dt + Fx(x, z).

Therefore, by ux + vz = 0, and the boundary condition v = 0 on z = 0, we have

v = z

∫
ηxx(x, t)dt− G(x, z) + G(x, 0), (2.21)

where Gz(x, z) = Fx(x, z). Now, since v = ηt on z = 1, we have

ηt =
∫

ηxx(x, t)dt− G(x, 1) + G(x, 0).

Hence,

ηtt = ηxx. (2.22)

Equation (2.22) is the well-known wave equation ηtt = c2ηxx with c = 1. So, the general

solution of (2.22) is

η(x, t) = f(x− t) + g(x + t),

where f and g are in C2(R). Now, let us restrict the problem to the waves which propagate

in only one direction η(x, t) = f(x− t). Then, by (2.20), we have

u = η + F(x, z),

and by (2.21), we get

v = −zηx − G(x, z) + G(x, 0).

Thus, the boundary condition v = ηt on z = 1, implies that G(x, 1) = G(x, 0). So, we see

that the time evolution of u and v in the shallow water problem is entirely determined by
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the evolution of the function η(x, t) which represents the displacement of the free surface

from the undisturbed state.

If the fluid is irrotational, the vorticity is zero, that is uz − vx = 0. If we non-

dimensionalize this equation by (2.7), we obtain uz = δ2vx. We re-scale again, using

(2.17) to get uz = εvx. This shows that, for small amplitude waves, that is, ε → 0, we have

uz = 0. Hence, (2.20) and (2.21) will be replaced by

u = −
∫

ηx(x, t)dt + F(x), (2.23)

and

v = −zux = z

(∫
ηxx(x, t)dt−F ′(x)

)
. (2.24)

Note that, to get the second equation we have also used the boundary condition that v = 0

whenever z = 0. Now, since v = ηt on z = 1, we have

ηt =
∫

ηxx(x, t)dt−F ′(x).

Thus, ηtt = ηxx. Again, we consider the traveling wave η(x, t) = f(x − t) as a solution.

Then, (2.23) and (2.24) imply that

u = η + F(x), v = −z
(
ηx + F ′(x)

)
.

Since, v = ηt on z = 1 then F ′(x) = 0. Thus, F(x) is a constant. Hence, for the case of

irrotational fluid we have the following solution:

η(x, t) = f(x− t), u = η + c0, v = −zηx, (2.25)

where c0 is a constant. The equation u = η + c0 implies that if the surface of water is

undisturbed then every particle of water moves at the speed of c0. We are going to use

this fact in the next section.
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2.1.2 Variational computations

This section is primarily based on a paper of A. Constantin [8]. In Lagrangian formalism

the motion of a fluid is described by a family of time-dependent diffeomorphisms γ(t, ·) on

the ambient space M (see [1]). Since v = ηt on z = 1, every particle on the free surface

of water does not leave the surface, so we can let M be a one-dimensional space. For the

sake of presentation we assume M = S, the unit circle. The material velocity is defined by

γt(t, x), while the spatial velocity is given by w(t,X) = γt(x, t), where X = γ(t, x), that

is, w(t, ·) = γt ◦ γ−1. In terms of w, we have the Eulerian description, while in terms of

γt we have the Lagrangian description of the motion. Let D be the Lie group of smooth

orientation-preserving diffeomorphisms of S (see [30] for results specific to the Camassa-

Holm equation). In Lagrangian description, the equation of motion is the equation satisfied

by a critical point of a certain functional (called the action) defined on all paths {γ(t, ·), 0 ≤

t ≤ T} in D, having fixed endpoints. Applying equation (2.25) and using the fact that

v = −ux on the surface of water where z = 1, we can approximately (ε → 0) compute the

kinetic energy on the surface over one period as follows:

K =
1
2

∫

S
(u2 + v2)dx ≈ 1

2

∫

S
(u2 + u2

x)dx (2.26)

to this order of approximation. Note that if we replace γ(t, ·) by γ(t, ·) ◦ ψ(·), for a fixed

time independent ψ ∈ D, then the spatial velocity is unchanged. To see this we write

(
γ(t, ·) ◦ ψ(·))

t
◦ (

γ(t, ·) ◦ ψ(·))−1 = γt(t, ·) ◦ ψ(·) ◦ ψ−1(·) ◦ γ−1(t, ·) = γt ◦ γ−1. (2.27)

For small surface elevations the potential energy is negligible, so K is transformed to a

right-invariant Lagrangian. Hence, the action on a path γ(t, ·) ∈ D where t ∈ [0, T ], is

given by

a =
1
2

∫ T

0

∫

S
{(γt ◦ γ−1

)2 +
(
∂x(γt ◦ γ−1)

)2}dxdt. (2.28)
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Suppose that a path γ(t, ·), t ∈ [0, T ], parameterized by the arc length is a critical point

of the action a in the space of paths with fixed endpoints. Then we have

d

dε
a(γ + εφ)|ε=0 = 0, (2.29)

for every path φ(t, ·), t ∈ [0, T ], with fixed endpoints at zero, that is, φ(0, ·) = 0 = φ(T, ·).

So, γ + εφ is a small variation of γ in D. Thus, from (2.28) and (2.29), we have

∫ T

0

∫

S
{(γt ◦ γ−1)

d

dε
[(γt + εφt) ◦ (γ + εφ)−1]|ε=0

+ ∂x(γt ◦ γ−1)
d

dε
[∂x

(
(γt + εφt) ◦ (γ + εφ)−1

)
]|ε=0}dxdt = 0. (2.30)

Lemma 1.

d

dε
[(γ + εφ)−1]|ε=0 = − φ ◦ γ−1

γx ◦ γ−1
. (2.31)

Proof. Set m(ε) = (γ + φε)−1. We have

I = (γ + εφ) ◦m(ε) = γ ◦m(ε) + εφ ◦m(ε).

Taking the derivative of this equation with respect to ε, we get

0 =
(
γx ◦m(ε)

) d

dε
m(ε) + φ ◦m(ε) + ε

(
φx ◦m(ε)

) d

dε
m(ε).

Setting ε = 0, we have

(γx ◦ γ−1)
d

dε
m(ε)|ε=0 + φ ◦ γ−1 = 0.

Hence,

d

dε
[(γ + εφ)−1]|ε=0 = − φ ◦ γ−1

γx ◦ γ−1
.

Lemma 2.

∂x(γt ◦ γ−1) =
γtx ◦ γ−1

γx ◦ γ−1
. (2.32)
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Proof. We know that

∂x(γ−1) =
1

γx ◦ γ−1
.

Therefore, we have

∂x(γt ◦ γ−1) = (γtx ◦ γ−1)∂x(γ−1) =
γtx ◦ γ−1

γx ◦ γ−1
.

Lemma 3.

d

dε
[(γt + εφt) ◦ (γ + εφ)−1]|ε=0 = φt ◦ γ−1 − (φ ◦ γ−1)∂x(γt ◦ γ−1). (2.33)

Proof. We can write

d

dε
[(γt + εφt) ◦ (γ + εφ)−1]|ε=0 =

d

dε
[γt ◦ (γ + εφ)−1 + εφt ◦ (γ + εφ)−1]|ε=0

= (γtx ◦ γ−1)
d

dε
(γ + εφ)−1|ε=0 + φt ◦ γ−1

= (γtx ◦ γ−1)(− φ ◦ γ−1

γx ◦ γ−1
) + φt ◦ γ−1

= φt ◦ γ−1 − (φ ◦ γ−1)∂x(γt ◦ γ−1).

Lemma 4.

∂t(φ ◦ γ−1) = φt ◦ γ−1 + (φx ◦ γ−1)∂t(γ−1)

= φt ◦ γ−1 − (γt ◦ γ−1)∂x(φ ◦ γ−1).

(2.34)

Proof. The first equation is obtained by the application of the chain rule to a function of

the type f
(
t, g(t)

)
, that is,

d

dt
f
(
t, g(t)

)
=

∂f

∂t
+

∂f

∂g

dg

dt
.

To prove the second equation, we note that

∂x(φ ◦ γ−1) = (φx ◦ γ−1)∂x(γ−1) =
φx ◦ γ−1

γx ◦ γ−1
.
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On the other hand, taking the derivative of γ ◦ γ−1 = I with respect to t and applying the

chain rule similar to the first equation, we obtain

γt ◦ γ−1 + (γx ◦ γ−1)∂t(γ−1) = 0.

Thus, the Lemma follows.

Lemma 5.

d

dε
[(γt + εφt) ◦ (γ + εφ)−1]|ε=0

= ∂t(φ ◦ γ−1) + (γt ◦ γ−1)∂x(φ ◦ γ−1)− (φ ◦ γ−1)∂x(γt ◦ γ−1). (2.35)

Proof. Combining (2.33) and (2.34), we can write

d

dε
[(γt + εφt) ◦ (γ + εφ)−1]|ε=0 = φt ◦ γ−1 − (φ ◦ γ−1)∂x(γt ◦ γ−1)

= ∂t(φ ◦ γ−1) + (γt ◦ γ−1)∂x(φ ◦ γ−1)− (φ ◦ γ−1)∂x(γt ◦ γ−1). (2.36)

Lemma 6.

d

dε
[∂x

(
(γt + εφt) ◦ (γ + εφ)−1

)
]|ε=0

= ∂tx(φ ◦ γ−1) + (γt ◦ γ−1)∂2
x(φ ◦ γ−1)− (φ ◦ γ−1)∂2

x(γt ◦ γ−1). (2.37)

Proof. It follows from the previous Lemma.

Theorem 1. In a periodic irrotational unidirectional shallow water flow, the motion of

a particle is the critical point of the action given by (2.28) if and only if the horizontal

velocity component u(x, t) satisfies the Camassa-Holm equation (2.1) with κ = 0.

Proof. We denote γt ◦ γ−1 by u. Thus, from (2.30), (2.35) and (2.37) it follows that
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∫ T

0

∫

S
{u[∂t(φ ◦ γ−1) + u∂x(φ ◦ γ−1)− (φ ◦ γ−1)ux]

+ ux[∂tx(φ ◦ γ−1) + u∂2
x(φ ◦ γ−1)− (φ ◦ γ−1)uxx]}dxdt = 0. (2.38)

Since φ has its endpoints at zero and u is a smooth periodic function, integration by parts

yields

−
∫ T

0

∫

S
(φ ◦ γ−1)[ut − utxx + 3uux − 2uxuxx − uuxxx]dxdt = 0. (2.39)

This completes the proof.

Theorem 2. In a periodic irrotational unidirectional shallow water flow, the displacement

of the free surface of water, denoted by η(x, t), (x being measured in a coordinate system

moving horizontally at the speed of c0) satisfies the Camassa-Holm equation (2.1) with

κ = 2c0, where c0 is the velocity of every particle when the water is undisturbed.

Proof. To avoid any ambiguity we rename the variables x and t in the Camassa-Holm

equation for the horizontal velocity. Thus, we can write

uτ − uτχχ + 3uuχ − 2uχuχχ − uuχχχ = 0. (2.40)

Now consider the Galilean transformation

x = χ− c0τ, t = τ. (2.41)

Thus, we have

uτ = −c0ux + ut, uχ = ux. (2.42)

Now, substituting these into the Camassa-Holm equation, we obtain

−c0ux + ut + c0uxxx − utxx + 3uux − 2uxuxx − uuxxx = 0. (2.43)

substituting u = η + c0 from the equation (2.25) we obtain

ηt − ηtxx + 2c0ηx + 3ηηx − 2ηxηxx − ηηxxx = 0.
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Remark. The first derivation of the Camassa-Holm equation in the group context was

done by G. Misiolek [30] who used a one dimensional extension of the group of diffeomor-

phisms.

2.2 The Lax pair perspective

P. D. Lax [26] introduced a method of solving the KdV equation which is a generalization

of the inverse scattering method and it can be applied to solve other partial differential

equations. Consider the following system of equations:

Lφ = zφ,

φt = Aφ,

(2.44)

where L is an operator, z is a spectral parameter and A describes the time evolution of

the eigenfunction φ. Taking the partial derivative of the first equation in terms of t and

applying the operator L to the second equations, we obtain

Ltφ + Lφt = ztφ + zφt,

Lφt = LAφ.

Also, we have

zφt = zAφ = Azφ = ALφ.

Thus, we have

(Lt + LA−AL)φ = ztφ.

Hence, in order to get nontrivial eigenfunctions, we must have Lt + LA − AL = 0 if and

only if the spectral parameter z is independent of time. The equation

Lt − [A,L] = 0, (2.45)
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where [A,L] = AL− LA, is called the Lax equation.

2.2.1 Formal pseudodifferential symbols and the KdV equation

In general, there is no method of finding a Lax pair for a given nonlinear partial differ-

ential equation. However, starting with the operator L, one can try to construct a class

of operators like A such that the Lax equation produces a nonlinear partial differential

equation for every operator A in the class. In what follows, we will try to find a method

to calculate A with respect to a given L, so that the Lax pair formula can produce KdV

and other similar equations [27]. First, we prove the following:

Lemma 7. The KdV equation ut− 6uux + uxxx = 0 is equivalent to the Lax pair equation

∂

∂t
L = [A,L] = AL− LA, (2.46)

where

L = −D2 + u,

A = −4D3 + 3(uD + Du),

(2.47)

where D = ∂/∂x.

Proof. We compute both AL and LA as follows:

AL =
(−4D3 + 3(uD + Du)

)
(−D2 + u)

= 4D5 − 4(uxxx + 3uxxD + 3uxD2 + uD3)

− 3uD3 + 3u(ux + uD)− 3(uxD2 + uD3) + 3(2uux + u2D)

= 4D5 − 4uxxx − 12uxxD − 15uxD2 − 10uD3 + 9uux + 6u2D.

(2.48)
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LA = (−D2 + u)
(−4D3 + 3(uD + Du)

)

= 4D5 − 3(uxxD + 2uxD2 + uD3)− 3(uxxx + 3uxxD + 3uxD2 + uD3)

− 4uD3 + 3(u2D + uux + u2D)

= 4D5 − 12uxxD − 15uxD2 − 10uD3 − 3uxxx + 6u2D + 3uux.

(2.49)

Thus, the assertion follows.

We call the highest power of D in every operator, the order of the operator. Since

ord(L) = 2 and ord( ∂
∂tL)=0, we should look for a polynomial operator A such that

ord(([A,L]) = 0.

Definition 1. A pseudodifferential symbol M is given by

M =
n∑

i=−∞
ai(x)Di, (2.50)

where each ai : R→ C is a smooth function of x and t, and n is an integer.

The product of pseudodifferential symbols can be naturally defined using the combina-

tion of the usual Leibniz Rule and

D−1f =
∞∑

k=0

(−1)kf (k)D−1+k.

Let M+ denote the part of M which has no negative power of D. Also, set

M− = M −M+

.

Lemma 8. If a pseudodifferential symbol M commutes with L, then

ord([M+, L]) = 0.

Moreover [M+, L] = a(x), where a(x) is a smooth function.
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Proof. Suppose ord(M) ≥ 0 and [M, L] = 0. Then we have [M+, L] = −[M−, L]. There-

fore,

ord([M+, L]) ≤ ord(M−) + ord(L)− 1 ≤ 0.

On the other hand, since M+ has no terms with a negative power of D, then

ord([M+, L]) ≥ 0.

Hence, ord([M+, L]) = 0.

Lemma 9. Set L = −D2 + u and suppose u is a smooth function. There exists a unique

pseudodifferential symbol K, such that K ·K = L.

Proof. It is obvious that ord(K) = 1 and the highest order term is of the form iD, where

i2 = −1. Thus, we can write

K =
0∑

n=−∞
an(x)Dn + iD.

We proceed by induction on the order of terms. So, by induction hypothesis we assume

that the coefficients an(x) for −k ≤ n ≤ 0 are all determined uniquely. Set

P−k =
1∑

n=−k

an(x)Dn.

We write

( −k−2∑
n=−∞

an(x)Dn +a−k−1(x)D−k−1 +P−k

)( −k−2∑
n=−∞

an(x)Dn +a−k−1(x)D−k−1 +P−k

)
= L.

we observe that in the above product, the only contributions to a term of order −k can

appear in the following products

a−k−1(x)D−k−1P−k, P−ka−k−1D
−k−1, P−kP−k.

Since P−k is known by induction hypothesis, then we can uniquely determine the coefficient

a−k−1.
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Proposition 1. For every positive integer k, [Lk/2
+ , L] is a smooth function.

Proof. For every positive integer k we have [Lk/2, L] = 0. Therefore, by Lemma 8,

ord([Lk/2
+ , L]) = 0.

Now, let us try k = 1. We have

[L1/2
+ , L] = −iD3 + i(ux + uD) + iD3 − iuD = iux.

Thus, the Lax pair formula becomes

ut = ux.

For k = 3, we have

L3/2 = L · L1/2 = i(−D2 + u)(D + a0 + a−1D
−1 + a−2D

−2 + · · · ).

So in order to compute L
3/2
+ , we only need to know a0, a−1 and a−2. We write

(D + a0 + a−1D
−1 + a−2D

−2 + · · · )(D + a0 + a−1D
−1 + a−2D

−2 + · · · ) = −L.

The contribution to the term of order 1 only appears in the product

Da0 + a0D = a′0 + 2a0D.

Thus, a0 = 0. Therefore, the contribution to the term of order 0 appears only in the

product

Da−1D
−1 + a−1D

−1D = a′−1D
−1 + 2a−1.

So, a−2 = −u
2 . Finally, for the contributions to the term of order −1 we need to consider

the term ia′−1D
−1 and the product

Da−2D
−2 + a−2D−2D

−2D = a′−2D
−2 + 2a−2D

−1.
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Thus, we must have 2a−2 + a′−1 = 0. Therefore, a−2 = u′
4 . Hence, we write

L3/2 = L · L1/2 = i(−D2 + u)(D − u

2
D−1 +

u′

4
D−2 + · · · )

= i(−D3 +
u

2
D + u′ +

u′′

2
D−1 − u′

4
− u′′

2
D−1 − u′′′

4
D−2

+ uD − u2

2
D−1 +

uu′

4
D−2 + · · · ).

Hence,

L
3/2
+ = i(−D3 +

3
2
uD +

3
4
u′)

=
i

4
(−4D3 + 3(uD + Du)

)
.

(2.51)

Thus, the Lax pair formula with A = −4iL
3/2
+ becomes the KdV equation.

2.2.2 Lax pair representations of the Camassa-Holm, the two component

Camassa-Holm and the Degasperis-Procesi equations

Suppose u and m are smooth functions of x and t. Consider the operators

L(z) = D2 + zm− 1
4
, A(z) = −(

1
2z

+ u)D +
ux

2
, z ∈ C. (2.52)

Proposition 2. u(x, t) satisfies the Camassa-Holm equation (2.1) with κ = 0 if and only

if

∂

∂t
L(z) = [A(z), L(z)]− 2uxL(z), (2.53)

for at least two distinct values of z.

Proof. We compute AL and LA.

AL = −(
1
2z

+ u)D3 − (
1
2

+ zu)(mx + mD) +
1
4
(

1
2z

+ u)D

+
ux

2
D2 +

zuxm

2
− ux

8
.

(2.54)

LA = −(
uxxD + 2uxD2 + (

1
2z

+ u)D3
)

+
1
2
(uxxx + 2uxxD + uxD2)

− zm(
1
2z

+ u)D +
zmux

2
+

1
4
(

1
2z

+ u)D − ux

8
.

(2.55)
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Thus, the equation (2.53) is equivalent to

z(mt + umx + 2uxm) +
1
2
(mx − ux + uxxx) = 0. (2.56)

To obtain the two component Camassa-Holm equation, we need to modify the operator

L. Thus, we set

L1(z) = L(z)− z2ρ2, z ∈ C, (2.57)

where ρ is a smooth function of x and t.

Proposition 3. u(x, t) and ρ(x, t) satisfy the two component Camassa-Holm equation




mt + 2mux + mxu− ρρx = 0,

ρt + (ρu)x = 0,

mx = ux − uxxx,

(2.58)

if and only if

∂

∂t
L1(z) = [A,L1(z)]− 2uxL1(z), (2.59)

for at least three distinct values of z.

Proof. From equation (2.59) we have

Lt − z2(ρ2)t = [A,L]− 2uxL +
z

2
(ρ2)x + z2u(ρ2)x + 2z2uxρ2.

Hence,

−z2
(
(ρ2)t + u(ρ2)x + 2uxρ2

)
+ z

(
mt + umx + 2uxm− 1

2
(ρ2)x

)
+

1
2
(mx − ux + uxxx) = 0.
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The Lax pair operators for the Degasperis-Procesi equation are given by (see [17])

L(z) = D −D3 − zm, A(z) = −1
z
D2 − uD + (ux +

1
z
). (2.60)

Proposition 4. u(x, t) satisfies the Degasperis-Procesi equation




mt + 3mux + mxu = 0,

mx = ux − uxxx,

(2.61)

if and only if

∂

∂t
L(z) = [A(z), L(z)]− 3uxL(z), (2.62)

for at least one nonzero value of z.

Proof. We have

AL = −1
z
D3 +

1
z
D5 + mxx + 2mxD + mD2

− uD2 + uD4 + zu(mx + mD)

+ (ux +
1
z
)D − (ux +

1
z
)D3 −m(zux + 1),

LA = −1
z
D3 − (uxD + uD2) + uxx + (ux +

1
z
)D

+
1
z
D5 + (uxxxD + 3uxxD2 + 3uxD3 + uD4)

− (
uxxxx + 3uxxxD + 3uxxD2 + (ux +

1
z
)D3

)

+ mD2 + zumD −m(zux + 1).

Thus,

[A,L]− 3uxL = 2(mx − ux + uxxx)D + mxx − uxx + uxxxx + z(umx + 3uxm).

Hence, the assertion follows.
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Chapter 3

Traveling wave solutions to the two component

Camassa-Holm equation

R. Camassa and D. Holm [2] discovered that the equation (2.1) has non-smooth solitary

waves that retain their individual characteristics after the interaction and eventually emerge

with their original shapes and speeds. They called these solutions multipeakons. The

simplest of them has the form of a traveling wave. The traveling wave solutions of the

Camassa-Holm equation have been subsequently classified by J. Lenells [9]. An alternative,

and useful for generalizations form of this equation is

mt + umx + 2mux = 0, (3.1)

where m = u− uxx + 1
2κ.

One such generalization has been introduced by M. Chen, S. Liu and Y. Zhang [12]:





mt + umx + 2mux − ρρx = 0,

ρt + (ρu)x = 0.

(3.2)

The traveling wave solutions are obtained by setting u = u(x − ct) and ρ = ρ(x − ct). In

this case, easy manipulations show that (3.2) can be written as follows





−2c(u′ − u′′′) + 2κu′ + 3(u2)′ + ((u′)2)′ − (u2)′′′ = (ρ2)′,

−cρ′ + (ρu)′ = 0.

(3.3)
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These equations are valid in the sense of distributions, if u ∈ H1
loc(R) and ρ ∈ L2

loc(R).

Indeed, for a given function ρ, if (ρ2)′ ∈ D′(R), then ρ ∈ L2
loc(R).

Since every distribution has a primitive which is a distribution (see [18]), we can inte-

grate and then rewrite 



(v2)′′ = (v′)2 + p(v)− ρ2,

ρv = B1.

(3.4)

where v = u− c and p(v) = 3v2 + (2κ + 4c)v + K for some constants K and B1.

Definition 2. A pair of functions (u, ρ) where u ∈ H1
loc(R) and ρ ∈ L2

loc(R), is called a

traveling wave solution for (3.2) if u and ρ satisfy (3.4) in the sense of distributions.

The following Lemma is due to J. Lenells [9].

Lemma 10. Let p(v) be a polynomial with real coefficient. Assume that v ∈ H1
loc(R)

satisfies

(v2)′′ = (v′)2 + p(v) in D′(R). (3.5)

Then

vk ∈ Cj(R) for k ≥ 2j . (3.6)

In our case, we have the following generalization:

Lemma 11. Let p(v) be a polynomial with real coefficients. Assume that v ∈ H1
loc(R) and

ρ ∈ L2
loc(R) satisfy the following system in D′(R)

:




(v2)′′ = (v′)2 + p(v)− ρ2,

ρv = B1.

(3.7)

Then

vk ∈ Cj
(
R

)
for k ≥ 2j and j ≥ 0. (3.8)
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Proof. Since v ∈ H1
loc(R) and ρ ∈ L2

loc(R), (3.7) implies that (v2)′′ ∈ L1
loc(R). Therefore,

(v2)′ is absolutely continuous (see Appendix A) and v2 ∈ C1(R). Also, since v ∈ H1
loc(R),

then v is absolutely continuous and we can claim

(vk)′ =
k

2
(
vk−2(v2)′

)
for k ≥ 3.

To see why the claim is true, we first note that in fact, it is obviously true if k is an even

number. Also, note that since the first derivative of an absolutely continuous function

exists almost everywhere, in taking the first derivative of the product of two absolutely

continuous functions we can use the Leibniz Rule almost everywhere. Now, if k is an odd

number, let us say k = 2n + 1, then we can write

(vk)′ = (v2nv)′ = v(v2n)′ + v′v2n

= v(nv2(n−1))(v2)′ +
1
2
(v2)′v2n−1

=
k

2
vk−2(v2)′.

Thus, we have

(vk)′′ =
k

2
(
vk−2(v2)′

)′

=
k

2
(
(vk−2)′(v2)′ + vk−2(v2)′′

)

= k(k − 2)vk−2(v′)2 +
k

2
vk−2(v2)′′ for k ≥ 3.

Substituting from (3.7) we have

(vk)′′ = k(k − 2)vk−2(v′)2 +
k

2
vk−2

(
(v′)2 + p(v)− ρ2

)

= k(k − 3
2
)vk−2(v′)2 +

k

2
vk−2p(v)− k

2
B1v

k−3ρ.

(3.9)

For k ≥ 3 the right hand side of the above equation belongs to L1
loc(R). Therefore

vk ∈ C1
(
R

)
for k ≥ 2. (3.10)

Thus, the assertion holds for j = 1. We proceed by induction on j. Suppose

vk ∈ Cj−1
(
R

)
for k ≥ 2j−1 and j ≥ 2.
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Then for k ≥ 2j we have

vk−2(v′)2 =
1

2j−1
(2j−1v2j−1−1v′)

1
k − 2j−1

((k − 2j−1)vk−2j−1−1v′)

=
1

2j−1(k − 2j−1)
(v2j−1

)′(vk−2j−1
)′ ∈ Cj−2(R).

(3.11)

Also, we have vk−2p(v) ∈ Cj−1(R) and vk−3ρ = B1v
k−4 ∈ Cj−2(R). Therefore the right

hand side of equation (3.9) belongs to Cj−2(R). Hence,

vk ∈ Cj
(
R

)
for k ≥ 2j .

Remark. Lemma (11) implies that v′ is possibly discontinuous only at points where

v = 0. In fact, a much stronger result is true:

Corollary 1. If v ∈ H1
loc(R) and ρ ∈ L2

loc(R) satisfy (3.7) in D′(R)
, then

v ∈ C∞(
R \ v−1(0)

)

and

ρ ∈ C∞(
R \ v−1(0)

)
.

Proof. Suppose k ≥ 2. Then vk ∈ C1(R). Therefore

kvk−1v′ = (vk)′ ∈ C(R).

This implies that v′ ∈ C
(
R \ v−1(0)

)
. Thus, v ∈ C1

(
R \ v−1(0)

)
.

Now, assume that v ∈ Cj
(
R \ v−1(0)

)
for j ≥ 1. For k ≥ 2j+1, we have vk ∈ Cj+1(R).

Therefore

kvk−1v′ = (vk)′ ∈ Cj(R).

This shows that v′ ∈ Cj
(
R \ v−1(0)

)
. Hence, v ∈ Cj+1

(
R \ v−1(0)

)
. Thus, u is in the

desired space. Now the statement for ρ follows from the second equation of (3.4).
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Remark. Since v = u− c, Corollary (1) shows that u ∈ C∞(
R \ u−1(c)

)
.

Since R \ u−1(c) is an open set, we have

R \ u−1(c) =
∞⋃

i=1

(ai, bi).

So, u is smooth in every interval (ai, bi) where the following Lemma holds (below (ai, bi) =

(a, b)):

Lemma 12. Let (u, ρ) be a traveling wave solution to (3.2). Suppose u is smooth in the

interval (a, b). Then in the interval (a, b), u satisfies the following equation:

(u− c)2u′2 = P (u), (3.12)

where

P (u) = (u2 + κu + A)(u− c)2 + C(u− c) + B, (3.13)

and A, B and C are some constants.

Proof. Since both u and ρ are smooth in (a, b) we use standard calculus rules. By the first

equation of (3.4), we have

2(v′)2 + 2vv′′ = (v′)2 + p(v)− ρ2.

Therefore,

(v′)2 + 2vv′′ = p(v)− ρ2.

Multiplying by v′ we have

(v′)3 + v
(
(v′)2

)′ = v′p(v)− v′ρ2.

Thus,

(
v(v′)2

)′ = v′p(v)− v′ρ2.
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Hence,

(
v(v′)2

)′ = (3v2 + (2κ + 4c)v + K)v′ − Bv′

v2
,

where B = B2
1 .

Integration yields

v(v′)2 = v3 + (κ + 2c)v2 + Kv +
B

v
+ C.

Now, multiplying this equation by v we get

v2(v′)2 =
(
v2 + (κ + 2c)v + K

)
v2 + Cv + B.

Substituting v = u− c and simplifying, we have

(u− c)2(u′)2 = (u2 + κu + A)(u− c)2 + C(u− c) + B,

for some constant A.

Theorem 3. Suppose (u, ρ) is a non-smooth traveling wave solution to (3.2). If u−1(c) is

a set of measure zero, then u is a solution to the Camassa-Holm equation.

Proof. Suppose ξ ∈ R \ u−1(c). Since, u−1(c) 6= ∅, there exists an η ∈ u−1(c) such that

either ξ > η or ξ < η. Without loss of generality, assume that ξ < η. Let η0 = inf{η ∈

u−1(c) : η > ξ}. Since u−1(c) is a closed set, η0 ∈ u−1(c). So, (ξ, η0) ⊆ R \ u−1(c). Thus,

we have proved that there exists an η ∈ u−1(c) such that either (ξ, η) ⊆ R \ u−1(c) or

(η, ξ) ⊆ R \ u−1(c). Now, consider the equation (3.12) and set F (u) = P (u)
(u−c)2

. We claim

that B in (3.12) equals 0. Suppose B 6= 0. Since B = B2
1 , we have B > 0. Then (3.13)

implies that

1√
F (u)

=
1√
B
|u− c|+O(

(u− c)2
)

u → c.

On the other hand, we have

dξ

du
= ± 1√

F (u)
.
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Since u ∈ C(R), for ξ close enough to η, integration yields

|ξ − η| = 1
2
√

B
(u− c)2 +O(

(u− c)3
)

u → c. (3.14)

Therefore,

|ξ − η| = 1
2
√

B
(u− c)2

(
1 +O(

u− c)
)

u → c.

So,

|ξ − η| 12 =
1√
2
√

B
|u− c|

√(
1 +O(

u− c)
)

u → c.

Thus,

|ξ − η| 12 =
1√
2
√

B
|u− c|(1 +O(

u− c)
)

u → c.

Hence,

|ξ − η| 12 =
1√
2
√

B
|u− c|+O(

(u− c)2
)

u → c.

This implies that

(u− c) = O(
(ξ − η)

1
2
)

ξ → η.

Therefore,

(u− c)2 = O(ξ − η) ξ → η.

Thus, we have

|u− c| =
√

2
√

B|ξ − η| 12 +O(ξ − η) ξ → η. (3.15)

Hence,

|ξ − η|− 1
2 −

√
2
√

B|u− c|−1 = O( |ξ − η| 12
u− c

)

= O(1) ξ → η.

So,

|u− c|−1 =
1√
2
√

B
|ξ − η|− 1

2 +O(1) ξ → η. (3.16)
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On the other hand, from (3.13) we have

|u′| =
√

B(u− c)−1 +O(1) ξ → η. (3.17)

Now combining (3.17) and (3.16), we have

|u′| =
4
√

B√
2
|ξ − η|− 1

2 +O(1) ξ → η. (3.18)

Hence, u′ /∈ L2
loc(R). This contradiction shows that B = 0. Therefore, the second equation

of (3.4) implies that ρ = 0 almost everywhere.

Now, we provide an example of a smooth solution of (3.2) that is not a solution of

Camassa-Holm equation.

Example. Let P (u) be as in the previous Theorem. Observe that P (u) = (u−G)2(u−

L)2 if and only if 



κ = 2
(
c− (L + G)

)
,

A = 2cκ− c2 + (L + G)2 + 2LG,

C = 2cA− κc2 − 2LG(L + G),

B = Cc−Ac2 + L2G2.

(3.19)

Suppose |u| < 1 and c > 1. Therefore, if G = −1 and L = 1, integration yields

(1− u)1−c(1 + u)1+c = e2(ξ−ξ0). (3.20)

Let us say c = 2 and ξ0 = 0. We observe that the equation

(1 + u)3

1− u
= e2ξ,

provides a smooth solution of (3.2) which is not a solution of Camassa-Holm equation. See

figure 3.1.
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Figure 3.1: (u on the left and ρ on the right) A smooth solution of (3.2)
which is not a solution of Camassa-Holm equation.

The following Lemma provides necessary and sufficient conditions for a piecewise smooth

function to be a distributional solution to (3.2).

Lemma 13. Suppose u is a piecewise smooth function. The pair (u, ρ) is a distributional

solution to (3.2) in the sense of definition 2 if and only if all of the following conditions

hold:

1. u ∈ H1
loc(R) and ρ ∈ L2

loc(R).

2. (u− c)2 ∈ W 2,1
loc (R).

3. u and ρ satisfy the equation (3.4) locally with the same constant K on every interval

where u is smooth.

Proof. The part (⇒) is easy. For the converse (⇐), we note that since (u− c)2 ∈ W 2,1
loc (R),

then ((u− c)2)′ is absolutely continuous and has no jumps. Therefore, ((u− c)2)′′ defines

a regular distribution [18] .Thus, every term in the equation (3.4) can be represented by

an integral that defines a distribution on the space of test functions and we are allowed to

write each integral as a finite sum of integrals over local intervals and use condition 3 to

prove that u and ρ satisfy (3.4) in the sense of distributions.

Remark. We note that if the measure of u−1(c) is not zero, then the equation (3.4)

implies that ρ2 = K on u−1(c). However in the Camassa-Holm equation if the measure
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of u−1(c) is not zero, then K = 0 because ρ = 0. This implies that solutions of the form

given in the following example cannot arise from the Camassa-Holm equation.

Example. Set κ = 0. The pair of functions (u, ρ) given by

u(x) =





ce1−|x| if |x| > 1,

c if |x| < 1,

ρ(x) =





c if |x| < 1,

0 if |x| > 1,

is a solution to (3.2) but u is not a solution of Camassa-Holm equation. To see this, observe

that the left hand side derivative of u at −1 and the right hand side derivative of u at 1

are non-zero and finite in contrast with the Camassa-Holm equation for which Lenells [9]

showed that if the measure of u−1(c) is not zero, then these limits cannot be finite. See

figure 3.2.
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Figure 3.2: u(x) is a solution of (3.2) but it is not a solution of Camassa-
Holm equation.
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Definition 3. Suppose f is a continuous function on R.

1. We say f has a peak at x if f is smooth locally on both sides of x and

0 6= lim
y→x+

f ′(y) = − lim
y→x−

f ′(y) 6= ±∞.

Traveling wave solutions of (3.2) with peaks are called peakons.

2. We say f has a cusp at x if f is smooth locally on both sides of x and

lim
y→x+

f ′(y) = − lim
y→x−

f ′(y) = ±∞.

Traveling wave solutions of (3.2) with cusps are called cuspons.

3. We say that f has a stump if there is an interval [a, b] on which f is a constant and f

is smooth locally to the left of a and to the right of b and

0 6= lim
x→a−

f ′(x) = − lim
x→b+

f ′(x).

Traveling wave solutions of (3.2) with stumps are called stumpons. Note that, in the

definition of a stump the limits can be either finite or infinite.

Theorem 3 limits the existence of new distributional peakon or cuspon solutions to the

(3.2).

Corollary 2. Every peakon or cuspon traveling wave solution to (3.2) is a traveling wave

solution to the Camassa-Holm equation.

Finally we would like to comment on the peaked solution reported in [12]. For reasons

explained below, that solution is not a distributional solution. First, we note that by

Corollary (1) the non-smooth points of a distributional solution u can only appear when

37



u = c. Also, Lemma (11) shows that if (u, ρ) is a traveling wave solution to (3.2), then

(u− c)2 ∈ C1(R). Now, consider the peaked function (see [12])

u = χ +
√

χ2 − c2, ρ =
√
−cK1

(
1 +

√
χ + c

χ− c

)
, χ = −(c + K1) cosh(x− ct) + K1,

where K1 = −1
4κ, K1 < 0 and c > |K1| > 0. Away from it’s non-smooth point, u is

a solution to (3.2). However, it is clear that u is not smooth at ξ = 0 and u(0) = −c.

Furthermore, (u− c)2 /∈ C1(R) because

lim
ξ→0+

(
(u− c)2

)′ − lim
ξ→0−

(
(u− c)2

)′ = −8c
√

c(c + K1),

where ξ = x − ct. Therefore, u is not a distributional solution to (3.2) even though it

superficially looks like a peakon solution (see figure 3.3).
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Figure 3.3: (u on the left and ρ on the right) This pair is not a distributional
traveling wave solution of (3.2). c = 2 and K1 = −1.

38



Chapter 4

Peakons and the Lax pair

4.1 Multipeakons

Recall the equation




ut − uxxt + (b + 1)uux + κux = buxuxx + uuxxx t > 0 x ∈ R

u(0, x) = u0(x) x ∈ R.

(4.1)

This is the Camassa-Holm equation if b = 2, and the Degasperis-Procesi equation if b = 3.

We can rewrite (4.1) in the following form:

mt + bmux + mxu = 0, (4.2)

where m = u− uxx + 1
bκ. The equation (4.1) can also be written in the following form:

2(ut − uxxt) + (b + 1)(u2)x + 2κux = (u2)xxx + (b− 3)(u2
x)x. (4.3)

For what follows, the equation (4.3) allows us to define distributional solutions to (4.1).

Suppose u(t, x) is a t-dependent family of functions in H1
loc(R) where t ∈ [0, T ]. Then for

every t in [0, T ], u, ux, u2 and u2
x are distributions. Also, observe that if b = 3, one only

needs to have u(t, x) in L2
loc(R).

Definition 4. Consider the map (0, T )
f−→ D′(R) (see Appendix B for notation). The

derivative Dtf (if it exists) is defined as follows:

〈Dtf, φ〉 = lim
h→0

1
h
〈f(t + h)− f(t), φ〉, (4.4)
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for every φ ∈ D(R).

Using the theorem of completeness of distributions (see Appendix B), we see that Dtf

defined above, is indeed a distribution in D′(R). Now, we rewrite equation (4.3) in the

following form:

2Dt(1−D2
x)u + (b + 1)Dx(u2) + 2κDxu = D3

x(u2) + (b− 3)Dx(Dxu)2. (4.5)

where Dx is the distributional derivative of u, Dt is the derivative in the sense of equation

(4.4) and ux is the weak derivative of u with respect to x. Now, we are ready to present

the definition of a distributional solution to (4.1).

Definition 5. Suppose u ∈ C1
(
0, T ; H1

loc(R)
)
. Then u is called a distributional solution

of (4.1) if it satisfies (4.5) in the sense of distributions.

Lemma 14. Dt in the sense of equation (4.4) commutes with Dx in the sense of distribu-

tions.

Proof. Consider the map (0, T )
f−→ D′(R) and let φ be a compactly supported C∞ function.

By the definition of the derivative of a distribution, we have

〈DxDtf, φ〉 = −〈Dtf, φx〉.

On the other hand, using the equation (4.4), we have

〈DtDxf, φ〉 = lim
h→0

1
h
〈Dxf(t + h)−Dxf(t), φ(x)〉

= − lim
h→0

1
h
〈f(t + h)− f(t), φx〉

= −〈Dtf, φx〉.
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It is well known that (4.1) admits multipeakon solutions. A multipeakon is a train of

interacting peakons that retain their original shapes after interaction. In order to obtain

multipeakon solutions to (4.1) we consider m as a discrete measure given by

m =
κ

b
+ (1−D2

x)u =
n∑

j=1

mj(t)δxj(t), (4.6)

where mj ∈ C∞(0, T ). This prompts a possible solution of the form

u = −κ

b
+

1
2

n∑

j=1

mje
−|x−xj |. (4.7)

This is a piecewise smooth and continuous function having its sharp edges at xj(t). For

convenience let us assume that xj(t) ∈ C∞(0, T ). In order to characterize such a solution

we need the following lemma:

Lemma 15. Suppose g(t) ∈ C∞(R). Then

Dt(gδxj ) = ġδxj − gẋjδ
′
xj

. (4.8)

Proof. For every φ ∈ D(R), we have

〈Dt(gδxj ), φ〉 = lim
h→0

1
h
〈g(t + h)δxj(t+h) − g(t)δxj(t), φ〉

= lim
h→0

1
h

(
g(t + h)φ(xj(t + h))− g(t)φ(xj(t))

)

=
d

dt

(
g(t)φ(xj(t))

)

= ġφ(xj) + gẋjφx(xj)

= 〈ġδxj − gẋjδ
′
xj

, φ〉.

Corollary 3. Suppose u is a piecewise smooth and continuous function which satisfies the

equation (4.6). Then we have

Dt(1−D2
x)u =

n∑

j=1

(ṁjδxj −mj ẋjδ
′
xj

). (4.9)
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Proof. Immediately follows from the previous lemma.

Definition 6. Suppose u(x, t) is a piecewise continuous function with non-smooth edges

located at xj(t), j = 1, . . . , n. We define the distribution ∂m
x u as follows:

〈∂m
x u, φ〉 =

n∑

j=0

∫ xj+1

xj

∂mu

∂xm
φdx (4.10)

for every φ ∈ D(R). Note that the integrals can be improper. We denote ∂xu, ∂2
xu and

∂3
xu by ux, uxx and uxxx respectively.

Definition 7. Let f(x) be a continuous function for x ∈ [a, b] \ {x0}, where a < x0 < b.

Suppose both limx→x−0
f(x) and limx→x+

0
f(x) exist. We define the jump of f at x0 as

follows,

[f ](x0) = lim
x→x+

0

f(x)− lim
x→x−0

f(x).

We also define

〈f〉(x0) =
1
2
(

lim
x→x−0

f(x) + lim
x→x+

0

f(x)
)
.

Lemma 16. Suppose u(x, t) is a piecewise smooth function with non-smooth edges located

at xj(t), j = 1, . . . , n. Then the following equality holds in the sense of distributions:

Dm
x u = ∂m

x u +
n∑

j=1

m−1∑

k=0

[∂k
xu](xj)δ(m−k−1)

xj
, (4.11)

where δ
(r)
xj = Dr

xδxj .

Proof. We prove this by induction on m.

〈Dxu, φ〉 = −〈u, φx〉 = −
∫ ∞

−∞
uφx dx = −

n∑

j=0

∫ x−j+1

x+
j

uφx dx

=
n∑

j=0

−
((

u(x−j+1)− u(x+
j )

)
φ(xj)−

∫ x−j+1

x+
j

uxφdx

)

=
n∑

j=1

[u](xj)φ(xj) +
n∑

j=0

∫ x−j+1

x+
j

uxφ dx

= 〈ux +
n∑

j=1

[u](xj)δxj , φ〉.
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Now, suppose

Dm−1
x u = ∂m−1

x u +
n∑

j=1

m−2∑

k=0

[∂k
xu](xj)δ(m−k−2)

xj
.

Then the proof we have just stated above, shows that

Dm
x u = ∂m

x u +
n∑

j=1

[∂m−1
x u](xj)δxj +

n∑

j=1

m−2∑

k=0

[∂k
xu](xj)δ(m−k−1)

xj

= ∂m
x u +

n∑

j=1

m−1∑

k=0

[∂k
xu](xj)δ(m−k−1)

xj
.

Proposition 5. If X is an open subset of Rn and K is a compact subset of X, then there

exist a compactly supported C∞ function φ on X, such that 0 ≤ φ ≤ 1 and φ = 1 on a

neighborhood of K.

Proof. See [28].

Corollary 4. Suppose u(x, t) and v(x, t) are piecewise smooth functions with possible

non-smooth edges located at xj(t), j = 1, . . . , n. If

Dm
x u = v +

n∑

j=1

m−1∑

k=0

ajkδ
(m−k−1)
xj

,

then v = ∂m
x u and ajk = [∂k

xu](xj), for every j = 1, . . . , n, k = 0, . . . , m− 1.

Proof. Using Lemma (16), we have

v − ∂m
x u +

n∑

j=1

m−1∑

k=0

(
ajk − [∂k

xu](xj)
)
δ(m−k−1)
xj

= 0.

So, for every φ with Support(φ) ∩ {x1, . . . , xn} = ∅, we have

v − ∂m
x u = 0.

Therefore, away from the jumps v = ∂m
x u. Now, choose a test function φ such that xj ∈

Support(φ), φ(x) = 1 on a neighborhood of xj and zero elsewhere. Also xi /∈ Support(φ),
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for i 6= j. This implies that aj,m−1 = [u](xj). Choosing the test function (x−xj)m−1−kφ(x),

we can show that for every k = 0, . . . , m − 1, ajk = [∂k
xu](xj). Since j was arbitrary, the

proof is complete.

Theorem 4. Suppose that u(x, t) is given by

u = −κ

b
+

1
2

n∑

j=1

mje
−|x−xj |

where mj , xj ∈ C∞(0, T ) and for every t ∈ (0, T ) we have

(a) x1(t) < x2(t), . . . , < xn(t),

(b) mj(t) 6= 0.

Then u is a solution to (4.1) if and only if the following system of ODEs holds:




ẋj = −κ
b + 1

2

∑n
i=1 mie

−|xj−xi|,

ṁj = 1
2(b− 1)

∑n
i=1 mjmiSgn(xj − xi)e−|xj−xi|.

(4.12)

Proof. We compute every term of the equation (4.5).

2Dt(1−D2
x)u = 2

n∑

j=1

(ṁjδxj −mj ẋjδ
′
xj

).

(b + 1)Dx(u2) = (b + 1)(u2)x.

2κDx(u) = 2κux.

D3
x(u2) = (u2)xxx +

n∑

j=1

(
[(u2)x](xj)δ′xj

+ [(u2)xx](xj)δxj

)
.

(b− 3)Dx(u2
x) = (b− 3)(u2

x)x + (b− 3)
n∑

j=1

[u2
x](xj)δxj .

On the other hand, we have

[(u2)x](xj) = [2uux](xj) = 2u(xj)[ux](xj) =
2κ

b
mj −

n∑

i=1

mjmie
−|xj−xi|.
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Also, since [uxx](xj) = 0, we have

[(u2)xx](xj) = 2[u2
x + uuxx](xj) = 2[u2

x](xj).

Since for a given function f ,

[f2](x) = 2〈f〉(x)[f ](x),

we have

[u2
x](xj) = 2〈ux〉(xj)[ux](xj) =

n∑

i=1

mjmiSgn(xj − xi)e−|xj−xi|.

Hence,

ẋj = −κ

b
+

1
2

n∑

i=1

mie
−|xj−xi|,

and

ṁj =
1
2
(b− 1)

n∑

i=1

mjmiSgn(xj − xi)e−|xj−xi|.

4.2 Multipeakons and the Lax pair

Recall the Lax pair representation of Camassa-Holm given in (2.52),

L(z) = D2 + zm− 1
4
, A(z) = −(

1
2z

+ u)D +
ux

2
, z ∈ C.

Now, we consider

m =
n∑

j=1

mjδxj ,

where mj(t), xj(t) ∈ C∞(0, T ). Suppose ψ(x, t) satisfies L(z)ψ = 0 in the sense of distri-

butions in D′(R), in other words:

(
1
4
−D2

x)ψ = z
n∑

j=1

mjψ(xj)δxj , (4.13)
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Now, using the distributional ODE

(
1
4
−D2

x)E = δ0,

which has the general solution

E = C1e
− 1

2
x + C2e

1
2
x + e−

1
2
|x|,

we have,

ψ = A(t)e−
1
2
x + B(t)e

1
2
x + z

n∑

j=1

mjψ(xj)e−
1
2
|x−xj |, (4.14)

where t ∈ (0, T ). Therefore, for every t ∈ (0, T ), ψ(x) is a piecewise smooth and absolutely

continuous function with sharp edges at xj(t).

Lemma 17. There exists a solution ψ(x, t) of the equation (4.13) such that

ψ(x, t) = Aj(t)e−
1
2
x + Bj(t)e

1
2
x

for every x ∈ (xj , xj+1), where Aj , Bj ∈ C∞(0, T ) for every j = 1, . . . , n. Furthermore,

ψ
(
t, xj(t)

) ∈ C∞(0, T ) for every j = 1, . . . , n.

Proof. By equation (4.14), on (xj , xj+1) we have

ψ = Aje
− 1

2
x + Bje

1
2
x,

where x0 = −∞, xn+1 = ∞ and

Aj = A(t) + z

j∑

i=1

miψ(xi)e
1
2
xi , Bj = B(t) + z

n∑

i=j+1

miψ(xi)e−
1
2
xi . (4.15)

Suppose that ψ(x) = A0(t)e−
1
2
x + B0(t)e

1
2
x for every x ∈ (−∞, x1) where A0, B0 ∈

C∞(0, T ). Then by the continuity of ψ we have

ψ(x1) = A0e
− 1

2
x1 + B0e

1
2
x1 .
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Hence ψ
(
t, x1(t)

) ∈ C∞(0, T ). Equation (4.13) implies that, for every j = 1, . . . , n,

[ψ](xj) =
1
2
(
(Bj −Bj−1)e

xj
2 − (Aj −Aj−1)e−

xj
2

)
= zmjψ(xj).

Again by the continuity of ψ we have

ψ(xj) = Aj−1e
−xj

2 + Bj−1e
xj
2 = Aje

−xj
2 + Bje

xj
2 . (4.16)

Therefore,

(Bj −Bj−1)e
xj
2 = (Aj−1 −Aj)e−

xj
2 .

Thus,

(Aj −Aj−1) = −zmjψ(xj)e
1
2
xj , (Bj −Bj−1) = zmjψ(xj)e−

1
2
xj .

Hence,

Aj = A0 − z

j∑

i=1

miψ(xi)e
1
2
xi , Bj = B0 + z

j∑

i=1

miψ(xi)e−
1
2
xi . (4.17)

This implies that A1(t), B1(t) ∈ C∞(0, T ). Now, suppose that

Aj−1(t), Bj−1(t), ψ
(
t, xj−1(t)

) ∈ C∞(0, T ).

Then, by equation (4.16), ψ
(
t, xj(t)

) ∈ C∞(0, T ). Hence, by equations (4.17),

Aj(t), Bj(t) ∈ C∞(0, T ).

Thus, by the mathematical induction the proof is complete.

Remark. Equations (4.15) show that the solution constructed in the proof of Lemma 17

satisfies (4.14) with A(t), B(t) ∈ C∞(0, T ). Thus, from now on, we assume that ψ is given

as in Lemma 17.

Lemma 18. Dtψ and Dt(1
4 −D2

x)ψ exist in the sense of definition (4.4) and the following

relations hold:

〈Dtψ, φ〉 =
n∑

j=0

∫ xj+1(t)

xj(t)

∂

∂t
ψ(x, t)φ(x)dx. (4.18)
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Dt(
1
4
−D2

x)ψ =
n∑

j=1

(
zmjψ(xj)

)
t
δxj − z

n∑

j=1

mjψ(xj)ẋjδ
′
xj

. (4.19)

Proof. Suppose φ ∈ D(R).

〈Dtψ, φ〉 = lim
h→0

1
h
〈ψ(x, t + h)− ψ(x, t), φ(x)〉,

= lim
h→0

1
h

∫

R

(
ψ(x, t + h)− ψ(x, t)

)
φ(x)dx.

Suppose ε > 0 is given. Since ψ(x) is a piecewise smooth function we can choose δ > 0

such that for every x ∈ (xj , xj+1) ∩ Support(φ), j = 0, 1, . . . , n, x0 = −∞, xn+1 = ∞, if

|h| < δ, then
∣∣∣∣
1
h

(
ψ(x, t + h)− ψ(x, t)

)− ∂

∂t
ψ(x, t)

∣∣∣∣ < ε.

So, we can write

∣∣∣∣
1
h

∫

R

(
ψ(x, t + h)− ψ(x, t)

)
φ(x)dx−

n∑

j=0

∫ xj+1(t)

xj(t)

∂

∂t
ψ(x, t)φ(x)dx

∣∣∣∣

<

n∑

j=0

∫ xj+1(t)

xj(t)

∣∣∣∣
(

1
h

(
ψ(x, t + h)− ψ(x, t)

)− ∂

∂t
ψ(x, t)

)
φ(x)

∣∣∣∣dx

< ε

∫

R

∣∣φ(x)
∣∣dx.

Therefore,

lim
h→0

1
h

∫

R

(
ψ(x, t + h)− ψ(x, t)

)
φ(x)dx =

n∑

j=0

∫ xj+1(t)

xj(t)

∂

∂t
ψ(x, t)φ(x)dx.

Hence,

〈Dtψ, φ〉 =
n∑

j=0

∫ xj+1(t)

xj(t)

∂

∂t
ψ(x, t)φ(x)dx.

The existence of Dt(1
4 −D2

x)ψ follows from equations (4.13) and (4.8) and we have

(
1
4
Dt −DtD

2
x)ψ = Dt

(
z

n∑

j=1

mjψ(xj)δxj

)

=
n∑

j=1

(
zmjψ(xj)

)
t
δxj − z

n∑

j=1

mjψ(xj)ẋjδ
′
xj

.
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Definition 8. Let u(x, t) ∈ C1
(
(0, T );W 1,1

loc (R)
)

and suppose (1−D2
x)u+ κ

2 =
∑n

i=1 miδxi .

The system




(1
4 −D2

x)ψ = z
∑n

j=1 mjψ(xj)δxj , z ∈ C

Dtψ = −( 1
2z + u)ψx + (1

2ux + α)ψ, z ∈ C
(4.20)

where α = 1
2( 1

2z − κ
2 ) and every term is considered as a distribution in D′(R), is called a

peakon weak Lax pair.

Remark. It makes sense to consider a more general weak Lax pair,





(1
4 −D2

x)ψ = zmψ, z ∈ C,

Dtψ = −( 1
2z + u)ψx + (1

2ux + α)ψ, z ∈ C,

(4.21)

where m is an arbitrary measure, that is, m = DxM , with M being a function of bounded

variation (see Appendix A).

We are going to show that, if ψ satisfies the peakon weak Lax pair (4.20) with

u(x, t) = −κ

2
+

1
2

n∑

j=1

mje
−|x−xj |,

then the following system of ODEs hold:





ẋj = u(xj),

ṁj = −(〈ux〉(xj)
)
mj .

Applying Dt to the first equation of (4.20) and using Lemma 18, we get

(
1
4
Dt −DtD

2
x)ψ = z

n∑

j=1

((
mjψ(xj)

)
t
δxj −mjψ(xj)ẋjδ

′
xj

)
. (4.22)
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Applying 1
4 −D2

x to the second equation of (4.20) and using Lemma 16, we obtain

(
1
4
Dt −D2

xDt)ψ = −1
4
(

1
2z

+ u)ψx +
1
8
uxψ +

1
4
αψ

+ uxxψx + 2uxψxx + (
1
2z

+ u)ψxxx

+
n∑

j=1

(
[uxψx](xj) + (

1
2z

+ u(xj))[ψxx](xj)
)
δxj

+
n∑

j=1

(
1
2z

+ u(xj))[ψx](xj)δ′xj

− 1
2
uxxxψ − uxxψx − (

1
2
ux + α)ψxx

− 1
2

n∑

j=1

(
ψ(xj)[uxx](xj) + [(ux + 2α)ψx](xj)

)
δxj

− 1
2

n∑

j=1

ψ(xj)[ux](xj)δ′xj
.

The first equation of (4.20) implies that, away from the jumps, 1
4ψ = ψxx. So,

1
4
(

1
2z

+ u)ψx = (
1
2z

+ u)ψxxx

and 3
2uxψxx = 3

8uxψ. Thus we can write

(
1
4
Dt −D2

xDt)ψ =
1
2
(ux − uxxx)ψ

+
1
2

n∑

j=1

(
[uxψx](xj)− 2α[ψx](xj)− ψ(xj)[uxx](xj)

)
δxj

+
n∑

j=1

(
(

1
2z

+ u(xj))[ψx](xj)− 1
2
ψ(xj)[ux](xj)

)
δ′xj

.

(4.23)

Now, by Lemma 14, ψ(1
4Dt−DtD

2
x) = (1

4Dt−D2
xDt)ψ. Thus, comparing (4.22) and (4.23),

we obtain the following:

1.

zmjψ(xj)ẋj =
1
2
ψ(xj)[ux](xj)− (

1
2z

+ u(xj))[ψx](xj).

Note that the first equation of (4.20) implies [ψx](xj) = −zmjψ(xj). Therefore we have

ẋj =
1
2z

( [ux](xj)
mj

+ 1
)

+ u(xj), for every z ∈ C. (4.24)
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Thus

[ux](xj) = −mj , ẋj = u(xj). (4.25)

2.

2
(
zmjψ(xj)

)
t
= [uxψx](xj)− 2α[ψx](xj)− ψ(xj)[uxx](xj). (4.26)

Lemma 19.

[ẋjψx + Dtψ](xj) = 0.

Proof. By (4.22) and Lemma 14 we have

D2
x(Dtψ) =

1
4
Dtψ − z

n∑

j=1

((
mjψ(xj)

)
t
δxj −mjψ(xj)ẋjδ

′
xj

)
.

Therefore, Corollary 4 implies that [Dtψ](xj) = zẋjmjψ(xj). Thus the assertion follows.

Corollary 5.

lim
x→xj

(
ẋjψx(x) + Dtψ(x)

)
= ẋj〈ψx〉(xj) + 〈Dtψ〉(xj).

Proof. Let

a+ = lim
x→x+

j

ẋjψx(x), a− = lim
x→x−j

ẋjψx(x),

and

b+ = lim
x→x+

j

Dtψ(x), b− = lim
x→x−j

Dtψ(x).

By Lemma 19 we have a+ − a− = b− − b+. Hence,

a+ + a−

2
+

b+ + b−

2
= a+ + b+ = a− + b−.

Proposition 6.

(
ψ(xj)

)
t
= ẋj〈ψx〉(xj) + 〈Dtψ〉(xj).
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Proof. The remark after Lemma 17 implies that ψ = ψ1 + ψ2 where

ψ1 = z

n∑

i=1

miψ(xi)e−
1
2
|x−xi| (4.27)

and ψ2(x, t) is a C∞ function with respect to t and x. So, ψ2 obviously satisfies the

assertion. For ψ1 we proceed as follows:

〈Dtψ1〉(xj) = z

n∑

i=1

(
(miψ(xi))te

− 1
2
|xj−xi| +

1
2
ẋimiψ(xi)e−

1
2
|xj−xi|Sgn(xj − xi)

)
,

〈ψ1x〉(xj) = z
n∑

i=1

−1
2
miψ(xi)e−

1
2
|xj−xi|Sgn(xj − xi),

and

(
ψ1(xj)

)
t
= z

n∑

i=1

(
(miψ(xi))te

− 1
2
|xj−xi| − 1

2
(ẋj − ẋi)Sgn(xj − xi)e−

1
2
|xj−xi|

)

= ẋj〈ψ1x〉(xj) + 〈Dtψ1〉(xj).

Now, we are ready to prove the main theorem of this section.

Theorem 5. Suppose that

u(x, t) = −κ

2
+

1
2

n∑

j=1

mje
−|x−xj |.

Then (4.20) implies the following system of ODEs:




ẋj = u(xj),

ṁj = −(〈ux〉(xj)
)
mj .

(4.28)

Proof. The first equation of the system follows from (4.24)).

Now consider the equation (4.26). We have

[uxψx](xj) = [ux](xj)〈ψx〉(xj) + [ψx](xj)〈ux〉(xj).
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Therefore, applying Proposition 6 and using [ux](xj) = −mj and [ψx](xj) = −zmjψ(xj),

we obtain

2z
(
ṁjψ(xj) + mj ẋj〈ψx〉(xj) + mj〈ψt〉(xj)

)

= −mj〈ψx〉(xj)− zmjψ(xj)〈ux〉(xj) + 2αzmjψ(xj)− ψ(xj)[uxx](xj).

(4.29)

Now, from the second equation in (4.20) we get,

〈ψt〉(xj) = −(
1
2z

+ u(xj))〈ψx〉(xj) +
(1
2
〈ux〉(xj) + α

)
ψ(xj). (4.30)

Substituting (4.30) for 〈ψt〉(xj) in the equation (4.29), using ẋj = u(xj) and simplifying

the equation we obtain

ṁj = −(〈ux〉(xj)
)
mj .

Theorem 6. Suppose that

u = −κ

2
+

1
2

n∑

i=1

mie
−|x−xi|.

Then there exists a ψ that satisfies (4.20), ψ(x, t; z) = e
1
2
x on (−∞, x1) and

ψ(x, t; z) = An(t; z)e−
1
2
x + Bn(t; z)e

1
2
x

on (xn,∞), where Bn is independent of time.

Proof. Suppose that x < x1. We can write

u = −κ

2
+

1
2
M−e

1
2
x,

where M− =
∑n

i=1 mie
−xi . Therefore, by the second equation of (4.20) we have

0 = −(
1
2z
− κ

2
+

1
2
M−ex)(

1
2
e

1
2
x) + (

1
4
M−ex + α)e

1
2
x.
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Thus,

0 =
(
α− 1

2
(

1
2z
− κ

2
)
)
e

1
2
x.

This is true because α = 1
2( 1

2z − κ
2 ). The proof of Lemma 17 implies that, on (xj , xj+1),

ψ = Aje
− 1

2
x + Bje

1
2
x,

where A0 = 0, B0 = 1 and

Bj = 1 + z

j∑

i=1

miψ(xi)e−
1
2
xi , (4.31)

Aj = −z

j∑

i=1

miψ(xi)e
1
2
xi . (4.32)

Now suppose that x > xn and let

u =
κ

2
+

1
2
M+e−x,

where M+ =
∑n

i=1 mie
xi . By the second equation of (4.20) we have

Ȧne−
1
2
x + Ḃne

1
2
x = −(

1
2z
− κ

2
+

M+

2
e−x)(−1

2
Ane−

1
2
x +

1
2
Bne

1
2
x)

(−M+

4
e−x + α)(Ane−

1
2
x + Bne

1
2
x).

Comparing the coefficients of e−
1
2
x and e

1
2
x in both sides of the equation, we obtain

Ḃn =
(
α− 1

2
(

1
2z
− κ

2
)
)
Bn,

Ȧn =
(
α +

1
2
(

1
2z
− κ

2
)
)
An − 1

2
M+Bn.

(4.33)

Since α = 1
2( 1

2z − κ
2 ), then Bn must be independent of time.

Corollary 6. Suppose that ψ(x, t; z) is given as in Theorem 6. Then we have

Ḃn(z) = 0, for every z ∈ C,

Ȧn(z) = 2α(z)An(z)− 1
2
M+Bn(z), for every z ∈ C.

(4.34)

Furthermore, if zj is a root of polynomial Bn(z), then

An(t; zj) = An(0; zj)e2α(zj)t.
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Proof. Equations (4.34) are obtained in the proof of Theorem 6. If zj is a root of Bn(z),

then by the second equation of (4.34) we have

Ȧn(zj) = 2α(zj)An(zj). (4.35)

Hence, An(t; zj) = An(0; zj)e2α(zj)t.

In Chapter 5 we show how this corollary is applied to solve peakon equations (4.28).
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Chapter 5

Peakons and the Continued Fractions

5.1 The Camassa-Holm equation and the string problem

Let us look at the Camassa-Holm equation from a different point of view. This is based

on the work of R. Beals, D. H. Sattinger and J. Szmigielski [22]. Suppose u is a solution

to the equation




ut − uxxt + κux + 3uux = 2uxuxx + uuxxx, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R.

(5.1)

As we have seen before, we can rewrite equation (5.1) in the following form:

mt + 2mux + mxu = 0, (5.2)

where m = u−uxx+ 1
2κ. In Chapter 2, we observed that equation (5.2) is the compatibility

condition ψxxt = ψtxx, for the system




ψxx = 1
4ψ − zmψ,

ψt = −( 1
2z + u)ψx + 1

2uxψ.

(5.3)

Now consider the change of variable y = tanh(x
2 ). We have

dy

dx
=

1
2
sech2(

x

2
) =

1
2
(1− y2).

and

ψx =
1
2
(1− y2)ψy.
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ψxx =
1
2
(1− y2)

(−yψy +
1
2
(1− y2)ψyy

)
.

Therefore

ψxx − 1
4
ψ = −1

4
ψ − 1

2
y(1− y2)ψy +

1
4
(1− y2)2ψyy

=
1
4
(1− y2)

3
2

(
− (1− y2)−

3
2 ψ − 2y(1− y2)−

1
2 ψy + (1− y2)

1
2 ψyy

)
.

(5.4)

Now let φ = (1− y2)
1
2 ψ. Then we have

φyy =
(
(1− y2)

1
2
)
yy

ψ + 2
(
(1− y2)

1
2
)
y
ψy + (1− y2)

1
2 ψyy

= −(1− y2)−
3
2 ψ − 2y(1− y2)−

1
2 ψy + (1− y2)

1
2 ψyy.

(5.5)

Comparing (5.4) and (5.5) we have

ψxx − 1
4
ψ =

1
4
(1− y2)

3
2 φyy.

Therefore, from the first equation of (5.3) we get

1
4
(1− y2)

3
2 φyy = −zm(1− y2)−

1
2 φ.

Hence

φyy =
−4zm

(1− y2)2
φ.

In other words we can write

φyy = −zg(y)φ, −1 < y < 1,

where g(y) = 4m
(1−y2)2

.

Proposition 7. If m(x) =
∑n

i=1 miδxi, is a discrete measure then the above transformation

transforms m(x) to g(y) =
∑n

i=1 giδyi where gi = 2mi

1−y2
i
.
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Proof. We can write

g(y) =
( 2
1− y2

)2
m(x)

=
n∑

i=1

( 2
1− y2

i

)2
miδxi

=
n∑

i=1

( 2
1− y2

i

)2
mi

dy

dx
(yi)δyi

=
n∑

i=1

( 2
1− y2

i

)2
mi

1− y2
i

2
δyi

=
n∑

i=1

2
1− y2

i

miδyi

5.2 A discrete string problem

Consider the inhomogeneous string equation

uxx = m(x)utt,

u(−1, t) = u(1, t) = 0,

(5.6)

where m(x) =
∑n

j=1 mjδxj is a positive discrete measure, and use the method of separation

of variables. Let u(x, t) = φ(x)g(t). We will have φxxg(t) = m(x)φgtt or φxx = gtt

g m(x)φ.

Setting λ = gtt

g , we obtain the following eigenvalue problem:

φxx = λm(x)φ, (5.7)

with the initial conditions φ(−1, λ) = 0, φx(−1+, λ) = 1, first considered by M. G. Krein

[5]. If the distance between xj−1 and xj is denoted by lj , we have the following relations:

φ(x1, λ) = l1,

φx(x+
1 , λ)− φx(x−1 , λ) = λm1φ(x1, λ),

φx(x−1 , λ) = φx(−1+, λ),
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and more generally

φ(xj , λ)− φ(xj−1, λ) = ljφx(x+
j−1, λ),

φx(x+
j , λ)− φx(x−j , λ) = λmjφ(xj , λ),

φx(x−j , λ) = φx(x+
j−1, λ),

(5.8)

where j = 1, . . . , n + 1, x0 = −1 and xn+1 = 1. Equations (5.8) describe a discrete

string consisting of point masses at xj with masses mj , tied at the left end. Now let

qj = φ(xj , λ), pj = φx(x+
j , λ) for j = 0, . . . , n + 1. Then we have

qj − qj−1 = ljpj−1,

pj − pj−1 = λmjqj ,

(5.9)

for j = 1, . . . , n + 1 and the initial conditions q0 = 0, p0 = 1. Let’s write

qj = ljpj−1 + qj−1,

pj = λmjqj + pj−1.

(5.10)

Then we have

pj−1

qj
=

1

lj +
qj−1

pj−1

=
1

lj +
1

λmj−1 +
pj−2

qj−1

.

In particular we have

p1

q2
=

1

l2 +
q1

p1

=
1

l2 +
1

λm1 +
1

l1

.
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Hence, by induction we can prove that

pn

qn+1
=

1

ln+1 +
1

λmn +
1

ln +
1

. . .

+

1

λm1 +
1

l1

. (5.11)

Definition 9. The Weyl function of the discrete string problem is defined by

W (λ) =
φx(1−, λ)
φ(1, λ)

.

Definition 10. The continued fractions

f2k(λ) =
1

ln+1 +
1

λmn +
1

ln +
1

. . .

+

1

ln−k+2 +
1

λmn−k+1

,

k = 1, . . . , n,

(5.12)
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and

f2k+1(λ) =
1

ln+1 +
1

λmn +
1

ln +
1

. . .

+

1

λmn−k+1 +
1

ln−k+1

,

k = 0, . . . , n,

(5.13)

are called the 2kth and the 2k + 1th convergents of the Weyl function respectively. These

convergents were originally introduced by Stieltjes [29].

Now let

Mj =




1 0

λmj 1


 , Lj =




1 lj

0 1


 . (5.14)

Therefore, (5.10) implies




qj

pj−1


 = Lj




qj−1

pj−1


 ,




qj

pj


 = Mj




qj

pj−1


 . (5.15)

Hence, applying the initial conditions q0 = 0, p0 = 1, we have




qn+1

pn


 =




φ(1, λ)

φx(1−, λ)


 = Ln+1MnLn · · ·L2M1L1




0

1


 . (5.16)

Let

Ln+1 =




Q0 Q1

P0 P1


 .
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Since multiplication by Mj from right leaves the second column invariant, and multiplica-

tion by Lj from right leaves the first column invariant, we can write

Ln+1Mn =




Q2 Q1

P2 P1


 ,

and

Ln+1MnLn =




Q2 Q3

P2 P3


 .

We observe that

P0

Q0
=

0
1
,

P1

Q1
=

1
ln+1

,
P2

Q2
=

λmn

1 + λmnln+1
,

P3

Q3
=

λmnln + 1
λmnlnln+1 + ln + ln+1

are the convergents of the Weyl function defined above. By induction we can define Pi and

Qi as follows:



Q2k Q2k−1

P2k P2k−1


 =




Q2k−2 Q2k−1

P2k−2 P2k−1


Mn−k+1, k = 1, . . . , n, (5.17)

and 


Q2k Q2k+1

P2k P2k+1


 =




Q2k Q2k−1

P2k P2k−1


Ln−k+1, k = 1, . . . , n, (5.18)

or equivalently,

P2k = λmn−k+1P2k−1 + P2k−2,

Q2k = λmn−k+1Q2k−1 + Q2k−2,

k = 1, . . . , n,

(5.19)

and

P2k+1 = ln−k+1P2k + P2k−1,

Q2k+1 = ln−k+1Q2k + Q2k−1,

k = 1, . . . , n.

(5.20)
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Theorem 7. The leading coefficients of Q2k(λ) and Q2k+1(λ) are equal to

ln+1mnlnmn−1 · · · ln−k+2mn−k+1

and

ln+1mnln · · ·mn−k+1ln−k+1

respectively.

Proof. Use (5.19) and (5.20) and apply induction.

Theorem 8. The following statements hold:

a) Pi
Qi

is the ith convergent of W (λ). In particular, W (λ) = P2n+1

Q2n+1
.

b) P2k+1, Q2k+1, P2k and Q2k are of degree k.

c) P2k(0) = 0, Q2k(0) = 1, P2k+1(0) = 1 and Q2k+1(0) =
∑k

j=0 ln−j+1.

k = 0, . . . , n.

Proof. (a) By induction we can show that equations (5.19) and (5.20) characterize the

numerators and the denominators of the convergents of W (λ).

(b) Use (5.19) and (5.20) and apply induction.

(c) It is proved by setting λ = 0 in (5.17) and (5.18) and applying induction.

Proposition 8. The eigenvalues of the boundary value problem

φxx = λmφ,

φ(−1, λ) = φ(1, λ) = 0,

where m =
∑n

j=1 mjδxj , are all real and negative.

Proof. We have φ̄x(x+
j , λ)− φ̄x(x−j , z) = λ̄mjφ̄(xj , λ), where λ̄ is the complex conjugate of
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the number λ. So we can write

(φ̄x(x+
j , λ)− φ̄x(x−j , λ))φ(xj) = λ̄mjφ̄(xj)φ(xj),

(φx(x+
j , λ)− φx(x−j , λ))φ̄(xj) = λmjφ(xj)φ̄(xj).

Therefore,

(φx(x+
j , λ)− φx(x−j , λ))φ̄(xj)− (φ̄x(x+

j , λ)− φ̄x(x−j , λ))φ(xj) = (λ− λ̄)mj |φ(xj)|2.

In other words,
∣∣∣∣∣∣∣∣

φ(xj) φ̄(xj)

φx(x−j ) φ̄x(x−j )

∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣

φ(xj) φ̄(xj)

φx(x+
j ) φ̄x(x+

j )

∣∣∣∣∣∣∣∣
= (λ− λ̄)mj |φ(xj)|2. (5.21)

Now using φx(x−j , λ) = φx(x+
j−1, λ) and φ(xj , λ)− φ(xj−1, λ) = ljφx(x+

j−1, λ), we see that
∣∣∣∣∣∣∣∣

φ(xj−1) φ̄(xj−1)

φx(x+
j−1) φ̄x(x+

j−1)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

φ(xj) φ̄(xj)

φx(x−j ) φ̄x(x−j )

∣∣∣∣∣∣∣∣
.

Hence,

0 =

∣∣∣∣∣∣∣∣

φ(−1, λ) φ̄(−1, λ)

φx(−1−, λ) φ̄x(−1−, λ)

∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣

φ(1, λ) φ̄(1, λ)

φx(1+, λ) φ̄x(1+, λ)

∣∣∣∣∣∣∣∣
= (λ− λ̄)

n+1∑

j=0

mj |φ(xj)|2.

Thus λ is real. To prove λ is negative we note that we can write

(φx(x+
j , λ)− φx(x−j , λ))φ(xj , λ) = λmjφ

2(xj , λ).

Therefore

φx(1+, λ)φ(1, λ)− φx(−1−, λ)φ(−1, λ) +
n∑

j=0

−lj+1φ
2
x(x+

j , λ) = λ

n+1∑

j=0

mjφ
2(xj , λ).

So, using the boundary conditions we have

n∑

j=0

−lj+1φ
2
x(x+

j , λ) = λ
n∑

j=1

mjφ
2(xj , λ).

Hence λ is negative.
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The following proposition was presented in [23].

Proposition 9. The problem (5.9) with qn+1 = 0 implies the following matrix problem:

Lq = λMq, (5.22)

where

L =




−( 1
l1

+ 1
l2

) 1
l2

0 0 . . . 0

1
l2

−( 1
l2

+ 1
l3

) 1
l3

0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 1
ln−1

−( 1
ln−1

+ 1
ln

) 1
ln

0 . . . 0 0 1
ln

−( 1
ln

+ 1
ln+1

)




,

q = (q1, q2, . . . , qn)T , M = diag{m1, . . . ,mn}.

Proof. Suppose (5.9) holds. In the first equation of (5.9) we solve for pj−1 and substitute

that into the second equation. We get

1
lj

qj−1 − (
1
lj

+
1

lj+1
)qj +

1
lj+1

qj+1 = λmjqj , j = 1, . . . , n. (5.23)

Now (5.23) and q0 = qn+1 = 0, imply (5.22).

Proposition 10. The problem (5.22) implies the Jacobi spectral problem

JU = λU, (5.24)

where

U = M1/2q, J = M−1/2LM−1/2. (5.25)
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We see that

J =




b1 a1 0 . . . 0

a1 b2 a2
. . .

...

0 a2 b3
. . . . . .

...

...
. . . . . . . . . . . . 0

...
. . . . . . bn−1 an−1

0 . . . . . . 0 an−1 bn




, (5.26)

where

bj = − 1
mj

(
1
lj

+
1

lj+1
), j = 1, . . . , n, (5.27)

aj =
1

lj+1
√

mjmj+1
, j = 1, . . . , n− 1. (5.28)

Theorem 9. The zeros of φ(1, λ) are all simple.

Proof. Every zero of φ(1, λ) is an eigenvalue of the problem (5.24). Now, looking at the

problem (5.9) we observe that for every λ there is a unique solution up to a constant

multiple depending on p0. Therefore, the geometric multiplicity of those eigenvalues of

the problem (5.24) that are zeros of φ(1, λ) is equal to 1. Since J is a symmetric matrix,

it is diagonalizable. So, the geometric multiplicity of every eigenvalue of J is equal to its

algebraic multiplicity. Hence, every zero of φ(1, λ) is simple.

Corollary 7. The set of zeros of φ(1, λ) is equal to the set of eigenvalues of the problem

(5.24).

Proof. Every zero of φ(1, λ) is a zero of |J − λI|. Since, both φ(1, λ) and |J − λI| are of

degree n and every zero of φ(1, λ) is simple, the assertion follows.

Corollary 8.

φ(1, λ) = 2
n∏

j=1

(1− λ

λj
). (5.29)
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Proof. If λ = 0, (5.8) implies that φ(x, 0) = x + 1. Therefore, φ(1, 0) = 2. So the constant

term of φ(1, λ) is equal to 2.

Theorem 10. The residue of W (λ)
λ at any eigenvalue λj is positive.

Proof. Suppose that λ is a zero of φ(1, λ). Let p′j(λ) denote the derivative of the polynomial

pj(λ) with respect to λ. From (5.9) we have

(p′j(λ)− p′j−1(λ))qj(λ) = mjq
2
j (λ) + λmjqj(λ)q′j(λ),

and

(pj(λ)− pj−1(λ))q′j(λ) = λmjqj(λ)q′j(λ).

Therefore

(p′j(λ)− p′j−1(λ))qj(λ)− (pj(λ)− pj−1(λ))q′j(λ) = mjq
2
j (λ).

Thus, using the fact that qn+1(λ) = 0 implies pn+1(λ) = pn(λ), we have

−pn(λ)q′n+1(λ) =
n+1∑

j=1

mjq
2
j (λ).

So, pn(λ) and q′n+1(λ) have opposite signs. Since λj is negative and it is a simple zero of

qn+1(λ), we have

Resλ=λj

W (λ)
λ

=
pn(λj)

λjq′n+1(λj)
> 0.

Corollary 9.

W (λ)
λ

=
1
2λ

+
n∑

j=1

rj

λ− λj
, rj > 0, (5.30)

where rj = Resλ=λj

W (λ)
λ .

Corollary 10.

W (λ)
λ

=
∫

dµ(x)
λ− x

, (5.31)
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where dµ =
∑n

j=0 rjδλj
, λ0 = 0 and r0 = 1/2.

Now we compute the coefficients of the Laurent expansion of W (λ)
λ (See [29]). Since

W (λ)
λ is analytic at ∞, for λ large enough we can write

W (λ)
λ

=
∞∑

j=0

cj

λj+1
, (5.32)

where cj =
∫

xjdµ(x). So, we have cj =
∑n

k=0 rkλ
j
k, for j = 0, 1, 2, . . . .

We observe that if j is even, cj > 0 and if j is odd, cj < 0. We can write

W (λ)
λ

=
∞∑

j=0

(−1)jAj

λj+1
, (5.33)

where Aj = (−1)jcj . So, Aj = (−1)j
∫

xjdµ(x) =
∫

(−x)jdµ(x).

The following approximations are due to Stieltjes [29].

Proposition 11.

W (λ)− P2k(λ)
Q2k(λ)

= O(
1

λ2k
), λ →∞, k = 0, 1, . . . , n (5.34)

and

W (λ)− P2k+1(λ)
Q2k+1(λ)

= O(
1

λ2k+1
), λ →∞, k = 0, 1, . . . , n. (5.35)

Proof. Using the fact that

det




Q2k Q2k+1

P2k P2k+1


 = 1, det




Q2k Q2k−1

P2k P2k−1


 = 1

k = 0, 1, . . . , n, k = 1, . . . , n,

(5.36)

we have

P2n+1

Q2n+1
− P2n

Q2n
=

1
Q2nQ2n+1

= O(
1

λ2n
), λ →∞, (5.37)

and

P2n

Q2n
− P2n−1

Q2n−1
=

−1
Q2n−1Q2n

= O(
1

λ2n−1
), λ →∞. (5.38)
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Now adding (5.37) and (5.38) we see that

P2n+1

Q2n+1
− P2n−1

Q2n−1
= O(

1
λ2n−1

), λ →∞.

Hence, induction completes the proof.

Proposition 12. (orthogonality)

∫
xjQ2k(x)dµ(x) = 0, j = 0, . . . , k − 1, (5.39)

∫
xjQ2k+1(x)dµ(x) = 0, j = 1, . . . , k, (5.40)

∫
Q2k+1(x)dµ(x) = 1. (5.41)

Proof. Using equation (5.34) we can write

W (λ)Q2k(λ)− P2k(λ) = O(
1
λk

), λ →∞, k = 0, . . . , n. (5.42)

Also,

λj(W (λ)Q2k(λ)− P2k(λ)) = O(
1

λk−j
), λ →∞, k = 0, . . . , n, j = 0, . . . , k − 2.

Now, let γ be a circle of large radius containing the support of µ in its interior. Then using

equation (5.31) we have,

1
2πi

∫

γ

∫
λj+1Q2k(λ)

λ− x
dµ(x)dλ = 0, j = 0, . . . , k − 2.

Thus, applying Fubini’s theorem and Cauchy’s residue theorem we get

∫
xjQ2k(x)dµ(x) = 0, j = 1, . . . , k − 1.

The case j = 0 follows from the fact that P2k(0) = 0 and dividing equation (5.42) by λ.

Similarly, (5.35) implies that

W (λ)Q2k+1(λ)− P2k+1(λ) = O(
1

λk+1
), λ →∞, k = 0, . . . , n. (5.43)
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Therefore,

λj(W (λ)Q2k+1(λ)− P2k+1(λ)) = O(
1

λk+1−j
), λ →∞, k = 0, . . . , n, j = 0, . . . , k − 1.

So we have

1
2πi

∫

γ

∫
λj+1Q2k+1(λ)

λ− x
dµ(x)dλ = 0, j = 0, . . . , k − 1.

Again applying Fubini’s theorem and Cauchy’s residue theorem we obtain

∫
xjQ2k+1(x)dµ(x) = 0, j = 1, . . . , k.

Now (5.41) follows from the fact that P2k+1(0) = 1 and dividing equation (5.43) by λ.

We are going to construct the approximants Pi
Qi

according to the asymptotic behaviour

of W (λ). The formulas are due to Stieltjes [29].

Theorem 11.

Q2k(λ) =
1

∆1
k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ λ2 . . . λk

c0 c1 c2 . . . ck

c1 c2 c3 . . . ck+1

...
...

...
...

ck−1 ck ck+1 . . . c2k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, k = 0, 1, . . . , n, (5.44)

Q2k+1(λ) =
1

∆0
k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ λ2 . . . λk

c1 c2 c3 . . . ck+1

c2 c3 c4 . . . ck+2

...
...

...
...

ck ck+1 ck+2 . . . c2k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, k = 0, 1, . . . , n, (5.45)
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where

∆1
k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 c2 . . . ck

c2 c3 . . . ck+1

...
...

...

ck ck+1 . . . c2k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, ∆0
k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c0 c1 . . . ck−1

c1 c2 . . . ck

...
...

...

ck−1 ck . . . c2k−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, k ∈ N, (5.46)

and by convention

∆1
0 = ∆0

0 = 1. (5.47)

Proof. We write Q2k(λ) =
∑k

i=0 qiλ
i. Now, using orthogonality condition (5.39) and the

fact that Q2k(0) = 1 we have

∫
xj(1 +

k∑

i=1

qix
i)dµ(x) = 0, j = 0, 1, . . . , k − 1.

Since the jth moment is given by cj =
∫

xjdµ(x) we have

k∑

i=1

ci+jqi = −cj , j = 0, 1, . . . , k − 1.

Hence we obtain the system

Bq = −c,

where

B =




c1 c2 . . . ck

c2 c3 . . . ck+1

...
...

...

ck ck+1 . . . c2k−1




, q = (q1, q2 . . . , qk)T , c = (c0, c1, . . . , ck−1)T .
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Thus, Cramer’s rule implies that

Q2k(λ) =
1

∆1
k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ λ2 . . . λk

c0 c1 c2 . . . ck

c1 c2 c3 . . . ck+1

...
...

...
...

ck−1 ck ck+1 . . . c2k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Similarly, using (5.40) and (5.41) we obtain the following system

Cq = e1,

where

C =




c0 c1 . . . ck

c1 c2 . . . ck+1

...
...

...

ck ck+1 . . . c2k




, q = (q0, q1 . . . , qk)T , e1 = (1, 0, . . . , 0)T .

Therefore, we have Q2k+1(λ) = 1
∆0

k+1

∑k
j=0(−1)jCjλ

j , where Cj is obtained by eliminating

the first row and the j + 1th column of C. Thus

Q2k+1(λ) =
1

∆0
k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ λ2 . . . λk

c1 c2 c3 . . . ck+1

c2 c3 c4 . . . ck+2

...
...

...
...

ck ck+1 ck+2 . . . c2k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Theorem 12. Let lj and mj be as in (5.8). Then

mn−k+1 =
(∆0

k)
2

∆1
k−1∆

1
k

, k = 1, . . . , n, (5.48)
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ln−k+1 =
(∆1

k)
2

∆0
k∆

0
k+1

, k = 0, . . . , n, (5.49)

where ∆0
k and ∆1

k are given by (5.46) and (5.47).

Proof. Using equations (5.44) and (5.45) and Theorem 7 we have

(−1)k∆0
k

∆1
k

= ln+1mnlnmn−1 · · · ln−k+2mn−k+1

and

(−1)k∆1
k

∆0
k+1

= ln+1mnln · · ·mn−k+1ln−k+1

Hence, the assertion follows.

5.3 Time Evolution of Peakons

In this section, we use the results obtained for the string problem to solve the peakon

equations (4.28) [24]. We consider the peakon weak Lax pair (4.20) with ψ(x, t; z) as in

Theorem 6 and the boundary value problem

φyy = λgφ,

φ(−1, λ) = φ(1, λ) = 0,

(5.50)

where λ = −z, φ = (1− y2)
1
2 ψ and g is given by Proposition 7. Now, we are going to see

how the residues of W (λ)
λ evolve in time. In the following theorem we assume that An and

Bn are given as in Theorem 6.

Theorem 13. The following hold:

1. The boundary value problem (5.50) is iso-spectral, that is its eigenvalues λj are time

independent.

2. Bn(−λj) = 0.
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3. If rj is the residue of W (λ)
λ at λ = λj, then

rj = rj(0)e
− 1

2
( 1

λj
+κ)t

. (5.51)

where

rj(0) =
An(0;−λj)

2
∏

k 6=j(1− λk
λj

)

Proof. From Theorem 6 we have

ψ(x, t; z) = An(t; z)e−
1
2
x + Bn(z)e

1
2
x, x > xn.

Using the transformation y = tanh(x
2 ), which was introduced in section 5.1 and z = −λ,

we obtain the following

ψ(x, t; z) = (1− y2)−
1
2 φ(y, t; λ) =

(1− y

1 + y

) 1
2 An(t;−λ) +

(1 + y

1− y

) 1
2 Bn(−λ).

Thus,

φ(y, t; λ) = (1− y)An(t;−λ) + (1 + y)Bn(−λ), yn < y < 1. (5.52)

The spectrum of the boundary value problem (5.50) is determined by φ(1, t;λ) = 0. Thus,

if λj is an eigenvalue, Bn(−λj) = 0. Therefore by Corollary 6, λj is iso-spectral. Since

W (λ) = φy(1−,λ)
φ(1,λ) and φ(1, λj) = 0 we have

Rezλ=λj

W (λ)
λ

=
φy(1−, λj)
λjφλ(1, λj)

.

By (5.52) and Bn(−λj) = 0, we get

φy(1−, λj) = −An(t;−λj), φλ(1, λj) = −2B′
n(−λj).

Also, by (5.29) we have

φλ(1, λj) = − 2
λj

∏

k 6=j

(1− λk

λj
).
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Hence, by Corollary 6 we have

rj =
An(0;−λj)

2
∏

k 6=j(1− λk
λj

)
e
− 1

2
( 1

λj
+κ)t

.

Now we are ready to say something about the time evolution of xj(t). In fact, by

equation (5.49) we have

lj =
(∆1

n−j+1)
2

∆0
n−j+1∆

0
n−j+2

, j = 1, . . . , n. (5.53)

This implies that

yj(t) = −1 +
j∑

i=1

(∆1
n−i+1)

2

∆0
n−i+1∆

0
n−i+2

. (5.54)

This gives the time evolution of yj(t) because ck(t) =
∑n

i=1 ri(t)λk
i . Hence, using the

transformation y = tanh(x
2 ), one can obtain the time evolution of multi-peakons introduced

in Chapter 4, as follows:

xj(t) = ln
(

Sj

2− Sj

)
, (5.55)

where Sj =
∑j

i=1

(∆1
n−i+1)

2

∆0
n−i+1∆

0
n−i+2

.
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Chapter 6

Summary and open problems

This Chapter contains a brief summary, open problems and some possible directions

for future research.

Summary: The following results have been obtained in this work:

It was shown that every non-smooth traveling wave solution to the two component Camassa-

Holm equation is a solution of the Camassa-Holm equation provided that the set of points

where the height of the wave is equal to its speed, is of measure zero. This includes all

cuspon and peakon traveling wave solutions. A weak form of the Lax pair that is appro-

priate for dealing with the peakon solutions of the Camassa-Holm equation was obtained

thus extending the original Lax pair formalism which only deals with smooth solutions of

a PDE. It was shown that one can work with the peakon solutions of the Camassa-Holm

equation in the framework of an interpretation of the Lax pair in the sense of distributions.

Open problems:

1. Can one use a general weak Lax pair (4.21) to construct solutions to the Camassa-

Holm equation when m ∈M?

2. In the case of Degasperis-Procesi equation (b = 3), it is known that there exists a

class of non-smooth solutions more general than peakons, called shockpeakons [11],

u(x, t) =
n∑

j=1

mj(t)e−|x−xj | −
n∑

i=1

sj(t)Sgn(x− xj)e−|x−xj |. (6.1)

Can one formulate the correct version of the weak Lax pair for this case?
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3. Investigate the existence of multipeakon solutions to the two component Camassa-

Holm equation. More generally, investigate the existence of piecewise smooth distri-

butional solutions to the two component Camassa-Holm equation where the discon-

tinuities are located at x1(t), . . . , xn(t).

77



Appendix A

Functions of Bounded Variation

This Appendix is based on [13] and [14].

Definition 11. The set P = {x0, x1, x2, . . . , xn} where a = x0 < x1 < x2 < · · · < xn = b,
is called a partition of the interval [a, b]. The set of all partitions of [a, b] is denoted by
P[a, b].

Definition 12. Consider the function f : [a, b] → R and suppose P ∈ P[a, b]. Let ∆fk =
f(xk)− f(xk−1). The sum

∑n
k=1|∆fk| is called a variation of f on [a, b]. If there exists a

number M > 0 such that for every P ∈ P[a, b],

n∑

k=1

|∆fk| < M,

then f said to be a function of bounded variation on [a, b]. The supremum of all the
variations of f on [a, b] is called the total variation of f on [a, b] and is denoted by Vf [a, b].

Example 1. If α : [a, b] → R is monotonic then it is a function of bounded variation on
[a, b].

Proof. Suppose α is an increasing function. Let P ∈ P[a, b]. Then we have

n∑

k=1

|∆αk| =
n∑

k=1

∆αk = α(b)− α(a).

Example 2. The function f defined by

α(x) =

{
0 if x = 0,

x cos( π
2x) if x 6= 0,

is not a function of bounded variation on [0, 1].

Proof. Suppose P = {0, 1
2n , 1

2n−1 , . . . , 1
2 , 1}. Thus, we have

n∑

k=1

|∆αk| = 1 +
1
2

+
1
3

+ · · ·+ 1
n

.

Proposition 13. Let f be a continuous function on [a, b]. Suppose that f ′ exists on (a, b)
and it is bounded. Then f is of bounded variation on [a, b].
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Proof. Let us say there exist a number C such that |f ′(x)| ≤ C for every x ∈ (a, b).
Suppose that P ∈ P[a, b]. By the mean value theorem there exists a ck ∈ (xk−1, xk) such
that ∆fk = f ′(ck)∆xk. Thus, we have

n∑

k=1

|∆fk| ≤ C(b− a).

Example 3. The function f defined by f(x) = x2 cos( 1
x), is a function of bounded variation

on [0, 1], because for every x 6= 0, f ′(x) = sin( 1
x) + 2x cos( 1

x) which is bounded on (0, 1).

Boundedness of f ′ is not a necessary condition for f to be of bounded variation.

Example 4. Let f(x) = x1/3. This functions is of bounded variation on every closed
interval because it is monotonic. However, f ′(x) → +∞ as x → 0.

Proposition 14. Suppose that f is of bounded variation on [a, b]. Then f is bounded on
[a, b].

Proof. Suppose that x ∈ (a, b) and consider the partition P = {a, x, b}. For some number
M we have

|f(x)− f(a)|+ |f(b)− f(x)| ≤ M.

So, |f(x)− f(a)| ≤ M and consequently |f(x)| ≤ |f(a)|+ M .

Proposition 15. If f and g are of bounded variation on [a, b], then so are f ± g and fg.
Also, we have

Vf±g ≤ Vf + Vg, Vfg ≤ AVf + BVg, (A.1)

where
A = sup

a≤x≤b
|g(x)|, B = sup

a≤x≤b
|f(x)|.

Proof. Let P ∈ P[a, b]. To prove the first inequality we can write

|f(xk)± g(xk)− [f(xk−1)± g(xk−1)]| ≤ |∆fk|+ |∆gk| ≤ Vf + Vg.

The second inequality follows from the observation

|f(xk)g(xk)− f(xk−1)g(xk−1)|
= |[f(xk)g(xk)− f(xk−1)g(xk)] + [f(xk−1)g(xk)− f(xk−1)g(xk−1)]|

≤ A|∆fk|+ B|∆gk| ≤ AVf + BVg.

Proposition 16. Suppose that f is a function of bounded variation on [a, b] and assume
that there exists a number m such that 0 < m ≤ |f(x)| for every x ∈ [a, b]. Then 1

f is also

a function of bounded variation on [a, b]. Moreover, V1/f ≤ Vf

m2 .

Proof. We have

| 1
f(xk)

− 1
f(xk−1)

| = | ∆fk

f(xk)f(xk−1)
| ≤ |∆fk|

m2
.
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Proposition 17. Suppose that f is a function of bounded variation on [a, b] and c ∈ [a, b].
Then f is of bounded variation on [a, c] and on [c, b] and we have

Vf [a, b] = Vf [a, c] + Vf [c, b]. (A.2)

Proof. Let P1 ∈ P[a, c] and P2 ∈ P[c, b]. Then P1 ∪ P2 ∈ P[a, b] and we have
∑

xi∈P1

|∆fi|+
∑

xj∈P2

|∆fj | =
∑

xk∈P1∪P2

|∆fk| ≤ Vf [a, b].

Therefore, f is of bounded variation on both [a, c] and [c, b]. Also it follows that

Vf [a, c] + Vf [c, b] ≤ Vf [a, b].

To prove the reverse inequality, suppose that P ∈ P[a, b] and c ∈ [xj−1, xj ] and let Pc =
P ∪ {c}. Then Pc ∩ [a, c] ∈ P[a, c] and Pc ∩ [c, b] ∈ P[c, b] and we have

|∆fj | ≤ |f(c)− f(xj−1)|+ |f(xj)− f(c)|.
Thus, we can write

∑

xk∈P

|∆fk| ≤
∑

xk∈Pc∩[a,c]

|∆fk| +
∑

xk∈Pc∩[c,b]

|∆fk| ≤ Vf [a, c] + Vf [c, b].

This completes the proof.

Proposition 18. Suppose that f is of bounded variation on [a, b] and let V be the function
given by V (x) = Vf [a, x]. Then we have
a) V is increasing on [a, b].
b) V − f is increasing on [a, b].

Proof. Assume that a ≤ x < y ≤ b. We have

V (y) = Vf [a, y] = Vf [a, x] + Vf [x, y].

Therefore
V (y)− V (x) = Vf [x, y] ≥ 0.

To verify (b), we write

V (y)− f(y)− [V (x)− f(x)] = Vf [x, y]− [f(y)− f(x)]

Since |f(y)− f(x)| ≤ Vf [x, y], the proof is complete.

Theorem 14. A function f is of bounded variation on [a, b] if, and only if, it can be
expressed as the difference of two increasing functions.

Proof. Suppose that f is on bounded variation on [a, b]. Let V and V − f be as in the
previous proposition. Thus f is the difference of two increasing functions. To see the
converse, we remember that every increasing function on [a, b] is of bounded variation.
Thus, their difference is also of bounded variation on [a, b].

Theorem 15. Suppose that f is of bounded variation on [a, b] and V (x) = Vf [a, x] for
every x ∈ [a, b]. Then every point of continuity of f is a point of continuity of V and vice
versa.
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Proof. Suppose that a < x < y ≤ b. Since V is an increasing function, the one-sided limits
V (x+) and V (x−) exists. Also, since f is the difference of two increasing functions then
f(x+) and f(x−) exist. We have

|f(x)− f(y)| ≤ Vf [x, y] = V (y)− V (x).

If we let y → x, we obtain

|f(x)− f(x+)| ≤ V (x+)− V (x).

Similarly, we can show that

|f(x)− f(x−)| ≤ V (x)− V (x−).

This proves that every point of continuity of V is a point of continuity of f . To see the
converse, let f be continuous at c ∈ (a, b). So for every ε > 0 there exists a δ > 0 such that,
|f(x)− f(c)| < ε

2 if |x− c| < δ. Also there exists a partition P ∈ P[c, b] given by

P = {c = x0, x1, . . . , xn = b},

such that

Vf [c, b]− ε

2
<

n∑

k=1

∆fk.

Since adding more points to the partition can only make the same on the right hand side
bigger, we can assume that x− x1 < δ. Thus, we have

Vf [c, b]− ε

2
<

ε

2
+

n∑

k=2

∆fk ≤ ε

2
+ Vf [x1, b].

Hence,
V (x1)− V (c) = Vf [c, x1] = Vf [c, b]− Vf [x1, b] < ε.

Thus, V (c+) = V (c). Similarly, we can see that V (c−) = V (c). So, V is continuous at c.
The argument for the endpoints of the interval is similar.

The following useful corollary follows from Theorem 14 and Theorem 15:

Theorem 16. Suppose that f is continuous on [a, b]. Then f is of bounded variation
on [a, b] if, and only if, f can be expressed as the difference of two increasing continuous
functions.

Definition 13. A real valued function f defined on [a, b] is said to be absolutely continuous
on [a, b] if, given ε > 0, there is a δ > 0 such that

n∑

i=1

|f(x′i)− f(xi)| < ε

for every finite collection {(xi, x
′
i)} of nonoverlapping intervals with

n∑

i=1

|x′i − xi| < δ.
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Corollary 11. Every absolutely continuous function is continuous.

Lemma 20. Let f be a nonnegative function which is integrable over a set E. Then given
ε > 0 there is a δ > 0 such that for every set A ⊂ E with m(A) < δ we have

∫

A
f < ε.

Corollary 12. Every function which is an indefinite integral of another function is abso-
lutely continuous.

Lemma 21. If f is absolutely continuous on [a, b], then it is of bounded variation on [a, b].

Corollary 13. If f is absolutely continuous, then f has a derivative almost everywhere.

Lemma 22. If f is absolutely continuous on [a, b] and f ′(x) = 0 almost everywhere, then
f is constant.

Theorem 17. A function F is an indefinite integral if and only if it is absolutely contin-
uous.

Corollary 14. Every absolutely continuous function is the indefinite integral of its deriva-
tive.
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Appendix B

Distributions

This Appendix is based on [19], [18] and [28].

Definition 14. The vector space of all compactly supported C∞ functions φ : R→ C, is
called the space of test functions and it is denoted by D. The vector space of all compactly
supported functions φ : R→ C having continuous derivatives up to order m, is denoted by
Dm.

The following Lemma can be used to show that the space of test functions is nontrivial.

Lemma 23. Let P (x) be a polynomial. Then the function f given by

f(x) =

{
P (1/x)e−1/x if x > 0,

0 if x ≤ 0,
(B.1)

belongs to C∞(R).

Proof. Since, f ′(x) = P (1/x)−P ′(1/x)
x2 e−1/x for x 6= 0, it suffices to prove that

lim
x↓0

x−ne−1/x = 0.

To see this, we write

lim
x↓0

x−ne−1/x = lim
t↑+∞

tn

et
= 0.

Lemma 24. There exists a non-negative function φ ∈ D such that φ(0) > 0.

Proof. By lemma 23, the function

f(x) =

{
e−1/x if x > 0,

0 if x ≤ 0,
(B.2)

belongs to C∞(R). Hence, φ(x) = f(1− x2) is the desired function.

Proposition 19. If X is an open subset of Rn and K is a compact subset of X, then there
exist a compactly supported C∞ function φ on X, such that 0 ≤ φ ≤ 1 and φ = 1 on a
neighborhood of K.

Proof. See [28].

Definition 15. A distribution u in R is a linear functional on D such that for every
compact set K ⊂ R, there exist constants C and k such that

|u(φ)| ≤ C
∑

α≤k

sup|∂αφ|, (B.3)

for every φ ∈ D with Support(φ) ⊂ K. The set of all distributions in R is denoted by D′.
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If the same integer can be used in (B.3) for every compact subset K, we say that order(u) ≤
k. The set of all distributions u with order(u) ≤ k is denoted by D′k.
Definition 16. A Radon measure µ in R is a linear functional on D0 such that for every
compact set K ⊂ R, there exists a constant C such that

|µ(φ)| ≤ C sup|φ|, (B.4)

for every φ ∈ D0 with Support(φ) ⊂ K. The set of all Radon measures in R is denoted by
M.

Example 5. If x0 ∈ R, then δ
(n)
x0 which is defined by

δ(n)
x0

(φ) = (−1)nφ(n)(x0), for every φ ∈ D,

is a distribution of order n.

Proof. It is clear that δ
(n)
x0 satisfies (B.3) with k = n. So, it suffices to show that the order

is not smaller than n. To see this, we choose ψ ∈ D with ψ(0) = 1 and define

φε(x) = (x− x0)nψ(
x− x0

ε
).

Then, δ
(n)
x0 (φε) = (−1)nn!. But, if m < n, then

sup|∂mφε| ≤ Cεn−m.

Thus, if ε → 0 then sup|∂mφε| → 0.

Example 6. If xj ∈ R is a sequence of numbers with no limit point in R, and if nj is a
sequence of non-negative integers, then

u =
∑

j

δ
(nj)
xj ,

defines a distribution in R, because a compact subset can only contain finitely many xj .
By the previous example, u is of finite order if and only if the sequence nj is bounded. In
this case, the order is max(nj).

The following theorem states that the continuity condition (B.3) is equivalent to the
sequential continuity.

Theorem 18. A linear functional u on D is a distribution if and only if u(φj) → 0 when
j → 0 for every sequence φj ∈ D converging to 0 in the sense that sup|∂αφj | → 0 for every
fixed α and Support(φj) ⊂ K for all j and some fixed compact set k ⊂ R.

Proof. See [28].

Theorem 19 (Completeness Property). If uj is a sequence in D′ and

u(φ) = lim
j→∞

uj(φ),

exists for every φ ∈ D, then u ∈ D′.
Proof. See [28].

Proposition 20. Every function f ∈ L1
loc(R) defines a distribution.

Proposition 21. Every distribution of order 0 is a Radon measure.

Proposition 22. Every Radon measure on R is the first derivative of a function of (locally)
bounded variation.
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