
 
 

 

CHARACTERIZING THE SIGNALING AND 
TUMOR SUPPRESSOR ROLE OF FRK IN 

BREAST CANCER 

 

 

Thesis Submitted to the College of Graduate and Postdoctoral Studies 
and in Partial Fulfillment of the Requirements for a Ph.D. Degree in the 

Department of Biochemistry, University of Saskatchewan Saskatoon  

 

 

By Yetunde Ogunbolude  

 

 

 Copyright Yetunde Ogunbolude, April 2018.  

 

All rights reserved



i 
 

PERMISSION TO USE 
 
In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from 

the University of Saskatchewan, I agree that the Libraries of this University may make it freely 

available for inspection. I further agree that permission for copying of this thesis in any manner, 

in whole or in part, for scholarly purposes may be granted by the professor or professors who 

supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the 

College in which my thesis work was completed. It is understood that any copying or publication 

or use of this thesis or parts thereof financial gain shall not be allowed without my written 

permission. It is also understood that due recognition shall be given to me and to the University 

of Saskatchewan in any scholarly use which may be made of any material in my thesis.  

Requests for permission to copy or to make other use of the material in this thesis in 

whole or part should be addressed to:  

 

Dean 

College of Graduate and Postdoctoral Studies 

University of Saskatchewan 

116 Thorvaldson Building, 110 Science Place 

Saskatoon, Saskatchewan S7N 5C9 

Canada 

 

 

Dean 

College of Medicine 

University of Saskatchewan 

107 Wiggins road, Health Science Building  

Saskatoon, Saskatchewan S7N 5E5 

Canada 

 



ii 
 

ABSTRACT 
 

The human Fyn-related kinase (FRK) is a non-receptor tyrosine kinase known to have tumor 

suppressor activity in breast cancer cells. FRK expression is mostly absent in mesenchymal 

breast cancer cells but present in epithelial cells. Overexpression of FRK in breast cancer cells 

was shown to suppress cell growth by interacting, phosphorylating and stabilizing the tumor 

suppressor PTEN, inhibiting breast cancer cell proliferation by arresting the G1 phase of the cell 

cycle, by interacting with pRb (Retinoblastoma) and decreasing STAT3 phosphorylation.  

However, STAT3 has not been validated as a target of FRK and the mechanisms by which FRK 

suppresses cell proliferation, and migration has not been fully characterized. We used the FRK-

negative MDA-MB 231 breast cancer cell line in which we stably overexpressed FRK, and 

analyzed the effect on FRK on STAT3 signaling, cell proliferation, migration, and invasiveness. 

We employed both immunoblotting and RT-PCR to identify/validate FRK-regulated targets 

(proteins and genes) in these cells. Finally, we interrogated the TCGA and GENT gene 

expression databases to determine the correlation between the expression of FRK and 

epithelial/mesenchymal markers in breast cancer cell lines and tissues. We observed that FRK 

overexpression inhibited JAK/STAT signaling pathway by suppressing the expression of some 

STAT3 target genes. Overexpression of FRK also increased transcription of the epithelial marker 

gene E-cadherin, and down-regulated the transcript levels of Vimentin, Fibronectin, and Slug. 

We also observed an inverse correlation between FRK expression and mesenchymal markers in a 

large cohort of breast cancer cells. FRK suppresses breast cancer cell proliferation by inducing 

cellular senescence through upregulation of p21 thus, resulting in pRb dephosphorylation and the 

consequent inhibition of E2F1. Finally, we found that FRK suppressed mammary tumorigenesis 

in xenograft mice. Our data indicate that the suppression of EMT and upregulation of p21 is one 

of the mechanisms by which FRK suppresses breast cancer tumorigenesis. We conclude 

therefore that FRK acts as a tumor suppressor in breast cancer by repressing cell proliferation, 

migration and invasiveness by suppressing epithelial-to-mesenchymal transition and inducing 

cellular senescence. 
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1.0 OVERVIEW 

Fyn-related tyrosine kinase (FRK) is a non-receptor tyrosine kinase that has been described as a 

candidate tumor suppressor (Brauer and Tyner, 2009; Goel and Lukong, 2016).  The human FRK 

gene is located on chromosomes 6q21-23, a region that is destabilized by loss of heterozygosity 

in 30% of breast tumors and 40% of melanomas.  The gene encodes a 54-kDa protein composed 

of 505 amino acids.  FRK is a member of the breast tumor kinase (BRK) family kinase (BFK) 

that also includes BRK and src-related kinase lacking C-terminal regulatory tyrosine and N-

terminal myristylation sites (SRMS) (Goel and Lukong, 2016).  These kinases share a conserved 

gene structure and 60% amino acid homology, as well as display a similar architecture too and 

have 30–50% sequence identity with SFKs (Src family kinases).  Like SFKs, FRK is functionally 

composed of a Src homology 3 (SH3) domain, an SH2 domain, a kinase domain and a putative 

C-terminal regulatory tyrosine (Y497) in addition to a conserved auto-regulatory tyrosine residue 

(Y387) in its catalytic domain (Ogunbolude et al., 2017).   

Ectopically expressed FRK was shown to inhibit the growth of breast cancer cells (Meyer 

et al., 2003; Yim et al., 2009b).  Although FRK has been characterized as a candidate tumor 

suppressor, the protein has been detected in some breast cancer cell lines including BT 20, 

MDA-MB-468, and MCF-7, but not in BT549, MDA-MB 231, and MDA-MB-435. FRK was 

also detected in the normal epithelium but was absent in 16 of 21 of invasive breast carcinomas 

studied. Mechanistically, FRK was shown to inhibit cell growth by binding, phosphorylating and 

stabilizing the tumor suppressor PTEN, attenuating the PI3K/Akt signaling pathway (Yim et al., 

2009b).  Additionally, FRK suppressed glioma cell migration and invasion by inhibiting of JUN 

N-terminal kinase (JNK)/ c-Jun activation (Zhou et al., 2012), Cyclin D1 nucleus accumulation 

and pRb phosphorylation (Hua et al., 2014). Also, by promoting N-cadherin/β-catenin complex 

formation (Shi et al., 2015). Furthermore, FRK has been reported to suppress cervical cancer and 

non-small lung cancer proliferation and migration (Sun et al., 2015; Zhang et al., 2016). 

Previous and published data from our lab have indicated that constitutively active FRK-

YF induces the phosphorylation of numerous targets that do not overlap with FRK-WT targets 

and decreases the phosphorylation of signal transducer and activator of transcription 3 (STAT3) 

(Ogunbolude et al., 2017). Hence, the goal of this Ph.D. project was to validate STAT3 as a 
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target of FRK, access the effect of FRK on STAT3-regulated cellular processes and evaluate the 

tumor suppressor role of FRK in vivo.   

2.0 Background 

2.1 Breast cancer 

Breast cancer is a heterogeneous disease that arises from the epithelial cells of the breast, it is the 

most frequent female malignancy in the Western world, and it displays diversity in its 

morphology, molecular genetics, biology, and clinical outcome (Lukong, 2017). Breast cancer is 

the leading cause of cancer death in females worldwide, with nearly 1.7 million new cases in 

2012 and almost 522,000 deaths globally (Ferlay et al., 2015; Lukong et al., 2017; Torre et al., 

2015). Highest incidence rates of breast cancer in women occur in Western Europe and North 

America, while Africa and Asia have the lowest incidence rates (Lukong et al., 2017). However, 

African American women have the highest mortality rates whereas the lowest mortality rates 

exist among Korean women (Lukong et al., 2017).  According to Statistics Canada, one in nine 

women is expected to develop breast cancer during her lifetime, and one in 29 will die of the 

disease in Canada (Statistics-Canada, 2007, 2013).   There are nearly 23,000 new cases and over 

5,000 deaths every year in Canada (Statistics-Canada, 2007, 2013).  Higher breast cancer 

incidence has been attributed to breast cancer screening as well as higher prevalence of breast 

cancer risk factors such as weight gain after age 18 years, excess body weight (for 

postmenopausal breast cancer), use of menopausal hormone therapy (MHT), physical inactivity, 

alcohol consumption, and reproductive or hormonal factors (long menstrual history, recent use of 

oral contraceptives, and null parity or later age at first birth) (Chlebowski et al., 2013; Torre et 

al., 2016). However, the high mortality rates of breast cancer likely due to changes in risk 

factors, as well as limited access to early detection and treatment and this occur in most low-

income countries (Lukong et al., 2017; Torre et al., 2016; Youlden et al., 2014).  

2.1.1 Molecular classification of breast cancer 
 
Pathologists classify breast cancer based on it histological grade, as determined by the evaluation 

of the degree of tumor differentiation (tubule formation) and proliferation (mitotic index) 

(Eliyatkin et al., 2015). This method has been shown to provide a very strong prediction for 

determining patient prognosis. However, evaluation based on histology is semi-quantitative 

(Eliyatkin et al., 2015; Rakha et al., 2010).  Furthermore, breast cancer was classified based on 
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tumor, node, metastasis (TNM) parameter. This is a staging system commonly used for all 

cancers over the world to guide treatment planning, provide a possibility to demonstrate the 

effectiveness of the treatment during follow-up and predict prognosis (Denoix, 1952; Eliyatkin et 

al., 2015).  

However, with advances in diagnosis and treatment of breast cancer, improving technol-

ogy and increased knowledge, scientists have made efforts to evaluate tumor biology of breast 

cancer in details (Eliyatkin et al., 2015). Breast cancer was classified into four major molecular 

subtypes based on gene expression; these include  HER2 (human epidermal growth factor 

receptor 2) type, Basal cell type, and Luminal A and luminal B (Perou et al., 2000; Prat and 

Perou, 2011; Sorlie et al., 2001). The HER2 type displays an overexpression of HER2 and is 

more likely to be high-grade and poorly differentiated (Brenton et al., 2005).  Whereas, the Basal 

cell type (also called triple-negative breast cancer or TNBC) has a high proliferation rate, is not 

amenable to conventional targeted therapies, has a poor prognosis and occurs in about 5-10 % of 

breast cancer patients (Carey et al., 2010).  Lastly, the luminal A and B cancers are mostly 

estrogen receptor (ER)-positive and histologically low- and high-grade, respectively (Perou et 

al., 2000; Prat and Perou, 2011; Sorlie et al., 2001).  Normal-like breast cancer was also 

described; it represents samples with low tumor cell content and more normal tissue components 

(Eliyatkin et al., 2015; Perou et al., 2000). 

 Neve and his colleagues further classified breast cancer cell lines into two major clusters: 

luminal and basal-like clusters (Neve et al., 2006). Basal-like clusters was further divided into 

basal A and basal B; there is no distinct HER2 cluster. However, HER2 was shown to be 

distributed among luminal and basal A clusters. These clusters were shown to have distinct 

morphological and invasive properties. Luminal appear more differentiated, form tight cell-cell 

junctions and have a noninvasive phenotype (Neve et al., 2006), while basal B cells appear less 

differentiated and highly invasive with more mesenchymal-like appearance. However, basal A 

cells have either luminal-like or basal-like morphologies (Neve et al., 2006). Since breast cancer 

is a dynamic and adaptive process, other diagnostic methods are necessary for better-

personalized therapy.  
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Molecular Subtype 

      Luminal A         Luminal B         HER2/neu        Basal likea 

Gene  Expression of Expression of luminal 
(low 

High expression of High expression of 
basal 

Expression  luminal (low molecular weight) HER2/neu, low 
expression 

epithelial genes and 
basal 

Pattern  molecular 
weight) 

cytokeratins, moderate-
low 

of ER and related genes cytokeratins, low 
expression of 

  cytokeratins, high expression of hormone  ER and related 
genes, low 

  expression of receptors and related 
genes 

 expression of 
HER2/neu 

  hormone 
receptors 

   

  moreover, related 
genes 

   

      
Clinical  50% of invasive 20% of invasive breast 15% of invasive breast ~15% of invasive 

breast 
and  bresat cancer, cancer, ER/PR positive, cancer, ER/PR negative, cancer, most 

ER/PR/HER2/neu 
biologic  ER/PR positive, HER2/neu expression HER2/neu positive, high negative (triple 

negative), high 
properties  HER2/neu 

negative 
variable, higher 
proliferation 

proliferation, diffuse 
TP53 

proliferation, 
diffuse TP53 

   than Luminal A, higher mutation, high histologic mutation, BRCA1 
dysfunction 

   histologic grade than grade and nodal 
positivity 

(germline, 
sporadic) 

   Luminal A   
      
Histologic  Tubular 

carcinoma, 
Invasive ductal 
carcinoma, 

High grade invasive 
ductal 

High grade 
invasive ductal 

correlation  Cribriform NOS Micropapillary carcinoma, NOS carcinoma, NOS 
Metaplastic 

  carcinoma, Low carcinoma  carcinoma, 
Medullary 

  grade invasive   carcinoma 
  ductal carcinoma,    
  NOS, Classic 

lobular 

carcinomab 

   

Response  Response to Response to endocrine Response to trastuzumab No response to 
endocrine 

To  endocrine therapy therapy (tamoxifen and (Herceptin) therapy or 
trastuzumab 

treatment   aromatase inhibitors) not 
as 

  

and   good as Luminal A   
prognosis  Variable response 

to 
Variable response to Response to 

chemotherapy 
Sensitive to 
platinum group 
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  chemotherapy chemotherapy (better than with anthracyclines chemotherapy and 
PARP 

   Luminal A)  inhibitors 

  Good prognosis Prognosis not as good as Usually unfavorable Not all, but usually 
worse 

  Luminal A prognosis prognosis 

PARP poly-adenosinediphosphate ribose polymerase 

 
Table 2.1: A table showing the molecular subtypes of breast cancer with their 
characteristics. aBasal like tumor group includes a low-grade group with low proliferation 
but expression of basal type (high molecular weight) cytokeratin and triple-negative 
phenotype (like adenoid cystic carcinoma, secretuar carcinoma). bClassical lobular 
carcinoma generally exhibits luminal A properties, while pleomorphic lobular carcinoma 
usually shows features of other molecular subtypes (Eliyatkin et al., 2015). 
 

2.1.2 Breast cancer microcalcification 

The survival rates of breast cancer have significantly increased due to a combination of improved 

treatment options and increased detection of early-stage tumors (Narod et al., 2015; O'Grady and 

Morgan, 2018). X-ray based mammography are widely used for early screening and detection of 

breast cancers, it visualizes breast tissues clearly and screen various subtle abnormalities 

including pathological lesions (Tabar et al., 2003; Sharma et al., 2016). Mammary 

microcalcifications are one of the most pertinent markers of both benign and malignant lesions of 

the breast detected by mammography (Morgan, Cooke, and McCarthy, 2005; Sharma et al., 

2016). Calcification is a term referred to mineralized materials found in various parts of the 

body; they usually appear as bright white flecks on a mammogram (Chou et al., 1998; Morgan, 

Cooke, and McCarthy, 2005; Sharma et al., 2016). They are broadly categorized as ‘macro’ and 

‘micro’ calcification (Sharma et al., 2016; Suhail et al., 2015). Macrocalcifications are coarse, 

large white dots or specks in nature (>0.5 mm in diameter) that are often randomly dispersed 

throughout the breast tissue, and are most often found in non-cancerous tissues (Bhargava et al., 

2014; Dikshith, 2013; Sharma et al., 2016). Microcalcification clusters are tiny specks (<0.5 mm 

in diameter) of calcium deposits appearing on the mammographic image (Sharma et al., 2016; 

Suhail et al., 2015). 

 Microcalcification in breast cancers is classified based on morphology, size, distribution 

and chemical composition. Classification based on their morphological appearance include 

benign eggshell calcification, which consists of a thin spherical structure that are usually formed 
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as the result of calcium deposition on the surface of an oil cyst, and is unrelated to breast cancer 

(Rao et al., 2016; O'Grady and Morgan, 2018). In comparison to the long, thin branching 

structure of fine linear (often referred to as casting) calcifications which indicates spread of 

calcium deposition along the lumen of a breast duct, are found in malignant breast cancers (Rao 

et al., 2016; O'Grady and Morgan, 2018). 

 Classification based on distribution displays linear, clustered, diffuse or regional pattern 

calcification. The linear distribution represents the spread of calcified deposits along a duct. The 

clustered calcifications (an intermediate category) represent 5 calcifications within an area of 1 

cm2, while the diffuse (random distribution within the breast) or regional pattern calcifications 

spread in a larger volume > 2 cm2 (Hernández et al., 2016; O'Grady and Morgan, 2018). The 

linear calcifications are considered high-risk, and more malignant when compared to the 

clustered calcifications (Hernández et al., 2016; O'Grady and Morgan, 2018).  

 In addition to morphology and spatial distribution, microcalcification can be classified 

based on their chemical composition. We have 2 categories of microcalcification under the 

chemical composition group. They include the Type I (calcium oxalate) and Type II (calcium 

hydroxyapatite [HA]) (Sharma et al., 2018). The Type I microcalcifications are generally found 

solely in benign tumors while type II calcifications are found in either benign or malignant 

tumors (O'Grady and Morgan, 2018; Sharma et al., 2018). Under the light microscope the 

calcium oxalate appears in amber color and are partially transparent, while the HA crystals 

appear grey/white and are opaque (Frappart et al., 1989; Sharma et al., 2018). 

 Microcalcification has been used as a strong predictor of breast cancers malignancy. For 

instance, HA microcalcification has been shown to induce mitogenesis in MCF-7 and Hs578T 

breast cancer cells (Morgan et al., 2001; O'Grady and Morgan, 2018; Sharmal et al., 2018). Also, 

treatment of breast cancer cells with HA was shown to promote matrix metalloproteinase (MMP) 

activity and stimulated prostaglandin production to intensify its effect (Morgan et al., 2001; 

O'Grady and Morgan, 2018; Sharmal et al., 2018).  However, due to the inability of current 

standard clinical imaging techniques to reliably differentiate type I from type II calcifications, 

the chemical nature of breast calcifications is not routinely determined (O'Grady and Morgan, 

2018). 
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2.2 Tyrosine Kinases 

Protein tyrosine kinases (PTKs) are known to modulate critical pathways that drive the hallmarks 

of breast cancer, which include cell growth, survival, and metastasis (Manning et al., 2002; 

Parsons and Parsons, 2004). The human genome contains about 90 tyrosine kinase genes that 

form two classes of PTKs: receptor tyrosine kinases (RTKs) and non-receptor tyrosine kinases 

(NRTKs), 58 are receptors tyrosine kinases, while 32 are non-receptor tyrosine kinases (Blume-

Jensen and Hunter, 2001).  RTKs regulate numerous cellular processes, such as proliferation and 

differentiation, cell survival and metabolism, cell migration, and cell-cycle control (Blume-

Jensen and Hunter, 2001; Lemmon and Schlessinger, 2010). These receptors have an 

extracellular region, a single transmembrane helix, and a cytoplasmic region that contains the 

protein tyrosine kinase (TK) domain plus additional carboxy (C-) terminal and juxtamembrane 

regulatory regions (Lemmon and Schlessinger, 2010). Mutation or overexpression of several 

receptor tyrosine kinases such as EGFR and FGFR have been implicated in most cancer-related 

diseases (Lemmon and Schlessinger, 2010). 

NRTKs have varied sub-cellular localization and occur in the cytoplasm, nucleus or 

anchored to the plasma membrane (Blume-Jensen and Hunter, 2001).  Some cytoplasmic or 

membrane-anchored NRTKs link signal transduction to specific events in the nucleus, such as 

cell division and gene expression (Pendergast, 2002).   Deregulation of NRTKs occurs in various 

cancers, including breast cancer.  For example, BRK also known as protein tyrosine kinase 6 

(PTK6) is overexpressed in over 60% of breast carcinomas, but not in the normal mammary 

gland or benign lesions (Brauer and Tyner, 2010).  Both the protein levels and kinase activity of 

c-Src, another NRTK, are frequently elevated in breast cancer (Ishizawar and Parsons, 2004).   

The importance of some NRTKs in triggering oncogenic events makes them potential 

targets for therapeutic intervention. Oncogenic NRTKs need to overcome the negative regulatory 

constraints of tumor suppressors that counteract their signaling activity.  Some NRTKs have also 

been identified as candidate tumor suppressors, but their mechanisms of action have been largely 

understudied.  Spleen tyrosine kinase (SYK) and fyn-related tyrosine kinase (FRK, also known 

as protein tyrosine kinase 5 (Coopman and Mueller, 2006; Goel and Lukong, 2016; Yim et al., 

2009b) are one of the few known NRTK candidate tumor suppressors. NRTKs are subdivided 

into nine main families, based on their similarities in domain structure with a high degree of 

homology in the catalytic Src Homology 1 (SH1), p-Tyr binding Src Homology 2 (SH2), and 
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protein-protein interaction Src Homology 3 (SH3) domains (Gocek et al., 2014). The families 

include Src, Fak, Csk, Tec, Abl, Syk, Jak, Fes and Aec family kinases (Figure 2.1). The Src 

family kinases are the largest of all the NRTKs (Gocek et al., 2014). It is sub-divided into Lyn-

related, Src-related, and BRK-related. The BRK-related subfamily is also called the BRK family 

kinases (BFKs) (Goel and Lukong, 2015). 

2.3. SRC family kinases 

The Src family kinases (SFKs) play essential roles in regulating several signal transduction 

pathways using a diverse set of cell surface receptors (Ingley, 2008; Parsons and Parsons, 2004). 

These signal transduction pathways include metabolism, viability, proliferation, differentiation, 

and migration within many different cell lineages (Ingley, 2008; Parsons and Parsons, 2004). The 

Src family kinase is divided into three main subfamilies: Lyn related, Src-related, and PTK6/Brk 

related. The Lyn-related family consists of four members: Lyn, Hck, Lck, and Blk (Gocek et al., 

2014). The second subfamily consists of Src-related kinases, such as Fgr, Fyn, Yrk, Yes (Gocek 

et al., 2014). The third subfamily is the PTK6/Brk-related, also known as the BRK family kinase 

or BFK, consists of BRK, FRK, and SRMS (Gocek et al., 2014; Goel and Lukong, 2016; Ingley, 

2008). All the SFKs share similar domain arrangement; they possess an N-terminal unique 

region (50–70 residues), Src homology 3 (SH3) domain (50 residues), Src homology 2 (SH2) 

domain and a Src homology 1 (SH1) (∼300 residues) domain (Ingley, 2008). The SH3 domain 

has high variability among the family members; it encompasses a myristoylation/palmitoylation 

site (Ingley, 2008; Resh, 1999). It associates with proline-rich motifs harboring the PXXP 

consensus (Ingley, 2008; Koch et al., 1991). The SH2 domain with interacts with 

phosphotyrosine motifs, showing highest affinity for the consensus sequence pYEEI (Ingley, 

2008; Koch et al., 1991) and lastly the SH1 domain also known as the kinase domain is 

responsible for the enzymatic activity (Ingley, 2008). Some members of the SFKs have the C-

terminal region which bears an auto-inhibitory phosphorylation site (Figure 2.2) (Gocek et al., 

2014). 
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Figure 2.1: Families of NRTKs. NRTKs phylogram inferred from amino acid sequences of 
the kinase domains. Src family is subdivided into three groups: Lyn-related, Src-related, and 
PTK6/Brk (Gocek et al., 2014). 

 

 

Figure 2.2: Schematics of Src family kinases showing all the domain structure. Members of the 
family exhibit a conserved domain organization, which includes a myristoylated N-terminal 
segment, followed by SH3, SH2, linker and tyrosine kinase domains, and a short C-terminal tail 
(Figure adapted from Parsons and Parsons, 2004) 

2.3.1 Mechanism of activation and inactivation of the SRC family kinases 

The SFKs are kept inactive through phosphorylation of the conserved tyrosine residues at the c-

terminal (e.g., Y527 in c-Src which is usually phosphorylated by the C-terminal Src kinase (Csk) 

and closely related kinases), this restricts the accessibility of the kinase domain (the active site) 

for ATP and substrates (Summy and Gallick, 2003). The SH2 domain via intramolecular 

interactions binds to the phosphorylated tyrosine residue at the C-terminal, while the SH3 

domain binds to the amino acids linking the SH2 and the kinase domain hence limiting the 

potential of these proteins to participate in cellular signaling (Figure 2.3) (Summy and Gallick, 

2003). Activation of the SFKs occur either through displacement of the intramolecular 

interactions via higher affinity binding between the SH3 and SH2 domains and their cellular 

ligands and/or through dephosphorylating of the carboxy-terminal regulatory tyrosine (Frame, 

2002; IpRby and Yeatman, 2000; Summy and Gallick, 2003). Also, the loss the carboxy-terminal 

sequence (as seen in v-Src and v-Yes) and mutation (Y527 in c-Src to phenylalanine) of the C-

terminal tyrosine residues makes the kinase to be constitutively active (Frame, 2002; Irby and 

Yeatman, 2000; Summy and Gallick, 2003). 
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Distinct from the SFKs are the BRK-related/ BRK family kinases that comprise BRK, 

FRK, and SRMS (Ingley, 2008). None of these kinases are myristoylated, and only two (BRK 

and FRK) have potential regulatory C-terminal tyrosine but show no significant homology to the 

corresponding Src/Lyn like sequences (Ingley, 2008; Manning et al., 2002). 

 

 

Figure 2.3: General structural schematic of the Src family kinases in their inactive and active 
configurations. Left, the inactive configuration showing the SH2 domain interacting with the 
phosphorylated C-terminal tyrosine (pY508), the SH3 domain interacting with the SH2-kinase 
connector which forms a left-handed polyproline type II helix, and the dephosphorylated 
activation loop (Y397) folded back over the substrate binding site. Right, the active 
configuration, showing SH2 and SH3 domains released from the intramolecular interactions and 
available for binding to substrates and regulatory molecules, the C-terminal tyrosine is 
dephosphorylated (Y508), and the activation loop is phosphorylated (pY397) and is folded away 
from the substrate binding site and allows the two kinase lobs (N and C) to form a kinase 
competent catalytic cleft (Ingley, 2008). 
 

2.4 BRK Family kinases 

The BRK family kinases were first referred to as FRK/PTK6 family of tyrosine kinases 

(Brauer and Tyner, 2009) and later renamed as BRK family kinases (Goel and Lukong, 2015). 

Members of this family include BRK or protein tyrosine kinase 6 (PTK6), FRK (PTK5) and 

SRMS (src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristylation 

sites or PTK7 (Figure 2.4). BFKs are distantly related to the Src-family, they are composed of 

the Src homology 3 (SH3), the Src homology 2 (SH2) and the kinase (SH1) domains (Figure 

2.4A). However, they share an exon-intron structure distinct from Src-family members (Figure 
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2.4B) (Brauer and Tyner, 2009; Goel and Lukong, 2015), all three members possess 8 exons 

interspersed between 7 introns in a conserved/identical manner (Goel and Lukong, 2015). 

Additionally, the BRK family kinases are not myristoylated, and only two members of the family 

(BRK and FRK) have potential regulatory C-terminal tyrosine but show no significant homology 

to the corresponding Src/Lyn like sequences (Goel and Lukong, 2015; Ingley, 2008; Manning et 

al., 2002).  

BRK is known for its ability to promote tumorigenesis by regulating several cellular 

processes such as cell proliferation, migration, and metastasis (Goel and Lukong, 2015). While 

FRK have been reported to function as a tumor suppressor as well as  promote tumor growth 

(Brauer and Tyner, 2009; Goel and Lukong, 2016; Pilati et al., 2014). The actual role of SRMS 

in cancer is still unknown. 

 
Figure 2.4A: Domain structure of c-Src and BRK family kinases. c-Src, as well as BRK family 
kinases (BFKs), possess 3 functional domains, namely, the Src homology 3 (SH3), the Src 
homology 2 (SH2) and the kinase (SH1) domains. Src family kinases also possess an N-terminal 
myristoylation signal absent in the BRK family kinases. The SH3 domain characteristically binds 
proline-containing motifs while the SH2 domain binds phosphorylated-tyrosine containing 
motifs (Goel and Lukong, 2015) 
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Figure 2.4B: Schematic representation of the intron-exon splicing pattern of the BRK family 
(BRK, FRK, and SRMS) and Src family kinases. The BRK family kinases possess 8 exons 
spliced between 7 introns. This differs from the Src family kinases where, as shown for the c-Src 
kinase, the 12 exons are separated by 11 intervening introns. Thus compared to Src family 
kinases (SFKs), the BRK family (BFK) displays a diverging splicing pattern conforming to 
differences in the number of introns/exons (Goel and Lukong, 2015).  
 

2.5 FRK 

Fyn-related tyrosine kinase (FRK) is a non-receptor tyrosine kinase that has been described as a 

candidate tumor suppressor (Brauer and Tyner, 2009; Goel and Lukong, 2016).  The human FRK 

gene is located on chromosomes 6q21-23, a region that is destabilized by the loss of 

heterozygosity in 30% of breast tumors and 40% of melanomas.  The gene encodes a 54-kDa 

protein composed of 505 amino acids.  FRK was originally cloned from the human B-cell 

lymphoma cell line BL979 and human breast cancer cells (Lee et al., 1994). Later studies 

demonstrated that FRK is also expressed in the BT20, BT474 and MCF-7 breast cancer cell 

lines, but not in mesenchymal cells or tissues (Cance et al., 1994). 
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2.5.1 Functional features of FRK 

Like SFKs, FRK is functionally composed of a Src homology 3 (SH3) domain, an SH2 domain, 

a kinase domain and a putative C-terminal regulatory tyrosine (Y497) in addition to a conserved 

auto-regulatory tyrosine residue (Y387) in its catalytic domain (Goel and Lukong 2015; 

Ogunbolude et al., 2017) (Figure 2.2 and 2.4). SH2 domains in general bind to peptide 

sequences that contain a phosphorylated tyrosine, whereas the SH3 domain, tends to bind 

polyproline-containing ligands (Kaneko et al., 2011).  The human FRK harbors a putative 

bipartite nuclear localization signal (NLS), 168KRLDEGGFFLTRRR181, embedded in its SH2 

domain, it lacks the myristoylated N-terminal consensus sequence (MGXXXS/T) that dictates 

plasma membrane anchorage of SFKs (Serfas and Tyner, 2003).  However, the mouse and rat 

orthologs of FRK known as IYK contains N-terminal myristoylation sequences, indicating that 

the intracellular targets and perhaps the cellular roles may differ between the orthologs (Sunitha 

and Avigan, 1996; Sunitha et al., 1999).  The C-terminal tyrosine of murine FRK (Y504, 

analogous to Y497 in the human sequence) is phosphorylated by the cytoplasmic tyrosine kinase 

(CSK), resulting in a decrease in its kinase activity (Sunitha and Avigan, 1996).  Mutation of this 

C-terminal tyrosine of some SFKs members and as well as murine FRK has been shown to 

increase the catalytic activity of the enzymes (Derry et al., 2000; Oberg-Welsh et al., 1998; 

Roskoski, 2004). For example, the Welsh group found out that single (Y504F) and double 

mutation (Y504F/ Y497F) in IYK resulted in increased autophosphorylation, while Y497F alone 

did not exhibit an increased kinase activity when compared to the wildtype protein (Goel and 

Lukong, 2016; Oberg-Welsh et al., 1998). The human FRK contains Y387 within the kinase 

activation loop, autophosphorylation of this tyrosine residue is predicted to stabilize enzymatic 

activity and result in increased catalytic activity, this autophosphorylation site corresponds to 

Y394 in IYK (mouse FRK) (Cance et al., 1994; Goel and Lukong, 2016; Ingley, 2008). The first 

report of intrinsic FRK kinase activity was through an in vitro kinase assay, where FRK was 

immunoprecipitated from a BT 20 breast cancer cell line. The wild-type kinase demonstrated the 

capability of autophosphorylation and also immunospecificity towards an anti-phosphotyrosine 

antibody, thereby presenting itself as a functional tyrosine kinase (Cance et al., 1994; Goel and 

Lukong, 2016). Within the kinase domain of human FRK is a lysine residue (K262), which is 

conserved in BFKs and SFKs. It is critical for ATP binding, and mutation of this residue 

completely abrogates catalytic activity (Meyer et al., 2003). 
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Figure 2.5: Schematic representation showing the difference between human FRK and 
mouse FRK was known as IYK. IYK contains N-terminal myristoylation sequences, indicating 
that the intracellular targets and perhaps the cellular roles may differ between the orthologs. All 
proteins possess three conserved functional domains, namely, the Src-homology 3 (SH3), Src-
homology-2 (SH2) and the kinase domains. Additionally, the critical residues involved in the 
regulation of tyrosine kinase activity remain conserved. These include the ATP contacting 
lysine: K262 (FRK) and K269 (IYK), the autophosphorylation tyrosine within the activation 
loopY387 (FRK) and Y394 (IYK) and the C-terminal regulatory tyrosine: Y497 (FRK) and 
Y504 (IYK). Phosphorylation of the activation loop tyrosine enhances kinase activity while 
phosphorylation of the C-terminal tyrosine negatively regulates kinase activity (Adapted Goel 
and Lukong, 2016). 

2.5.2 FRK localization 

Human FRK has a nuclear localization signal (NLS). However, the protein variably localizes to 

the nucleus and cytoplasm in different cell lines and tissues.  In normal human mammary tissue, 

FRK was detected predominantly in the cytoplasm during the proliferative follicular phase of the 

menstrual cycle, and when the human breast epithelium undergoes intense proliferation; nuclear 

localization of FRK was detected during the differentiating luteal phase (Berclaz et al., 2000).  

Another study in COS-7 monkey kidney cells showed that endogenous FRK was predominantly 

localized in the nucleus (Cance et al., 1994; Meyer et al., 2003b).  However, ectopically 

expressed wild-type and kinase-inactive FRK (K262M) were shown to localize mainly in the 

perinuclear region in both BT474 and MCF-7 breast cancer cell lines, while deletion of NLS-

hapRboring SH2 domain caused diffuse cytoplasmic localization (Cance et al., 1994; Meyer et 

al., 2003).  Although murine FRK has a myristoylation signal, subcellular fractionation studies 

have shown that the constitutively active Y504F variant localizes predominantly in the cytosol, 

while Y497F and Y497/504F double mutant were detected in both nuclear and cytosolic 

fractions (Anneren et al., 2000; Oberg-Welsh et al., 1998).  Interestingly, only the double mutant 
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decreased cell proliferation in this study, suggesting that nuclear FRK may be responsible for the 

tumor suppressor function of FRK.  Mutation or deletions of either the SH2, SH3 domains or the 

ATP binding site (K262) of FRK have been shown to have a significant effect on its localization. 

For example, the deletion of the NLS-containing SH2 resulted to a diffused cytoplasmic 

localization of FRK, while deletion of the SH3 domain did not affect subcellular localization and 

mutation of the ATP-contacting lysine (K262) residue resulted in a punctate perinuclear 

distribution (Goel and Lukong, 2016).  

FRK localization has also been studied in various cancers; for example, in glioma cells, 

endogenous FRK was found to be localized to the nuclear and perinuclear regions of the non-

tumourous brain tissues and low-grade gliomas (Goel and Lukong, 2016; Zhou et al., 2012). 

However, ectopic FRK was also found to localize to the nuclear region of U87 and U251 glioma 

cell lines. Additionally, in A549 lung cancer cell line, FRK was shown to co-localize with EGFR 

in the perinuclear region (Goel and Lukong, 2016; Jin and Craven, 2014).  Based on these 

findings Goel et al. suggested that FRK localization may vary in different cell types, or depend 

on different stages of the cell cycle, or intermolecular interactions mediated by its SH3 and/or 

SH2 domains and its association with other proteins following direct or indirect phosphorylation 

which might target FRK to specific sub-cellular sites (Goel and Lukong, 2016). 

2.5.4 FRK substrates/interacting proteins 

The cellular biochemical functions and the physiological roles of FRK have not been fully 

characterized. However, FRK-null mice are viable, and display no apparent histological 

abnormalities in the epithelial organs and cells, except for decreases in the levels of circulating 

thyroid hormone (Chandrasekharan et al., 2002). Furthermore, these mice are neither 

predisposed to spontaneous tumors nor show altered sensitivity to ionizing radiation 

(Chandrasekharan et al., 2002).  The lack of an apparent defect in FRK-deficient mice is an 

indication that the functions of FRK might overlap with those of other members of the SFKs.  

Consistent with the growth inhibitory properties of FRK, FRK depletion was shown to induce 

transformation of the normal MCF-10A mammary epithelial cell line (Yim et al., 2009a).  

Unlike BRK, that has over a dozen characterized substrates, and binding partners, very few 

substrates/binding partners of FRK have been identified (Brauer and Tyner, 2009; Jin and 

Craven, 2014; Yim et al., 2009a).  Reported targets of FRK include CDC2 (cell division cycle 

2), CDK4 (cyclin-dependent kinase 4), pRb (retinoblastoma protein), SHB (Src homology 2 
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protein of beta-cells or SH2 adaptor protein B),  PTEN (phosphatase and tensin homolog deleted 

from chromosome 10), EGFR  and, BRCA 1 (Anneren et al., 2000; Craven et al., 1995b; Kim et 

al., 2014; Jin and Craven, 2014; Yim et al., 2009a).  CDC2 and CDK4 (but not CDK5, CDK6 or 

CDK7) were shown to associate with FRK, but the significance of this interaction has not been 

determined (Pendergast, 1996).  The retinoblastoma gene (pRb) is a tumor suppressor gene. The 

gene product pRb is a crucial regulator of the cell cycle and is frequently inactivated in some 

human tumors (Giacinti and Giordano, 2006; Weinberg, 1995). pRb associates with various 

proteins through a 400-amino acid region called the A/B pocket or the C pocket (Giacinti and 

Giordano, 2006; Weinberg, 1995).  In breast cancer cells, FRK was shown to interact with pRb 

via the A/B pocket and this interaction was highest in the G1 and S phases of the cell cycle 

(Craven et al., 1995b).  Also, FRK was shown to interact with ectopically expressed SHB, a 

ubiquitously expressed adaptor protein that positively regulates cell migration by binding to 

vascular endothelial growth factor receptor 2 in a Src-dependent manner (Anneren et al., 2000; 

Holmqvist et al., 2004).  

The first known substrate of FRK reported in the literature was phosphatase and tensin 

homolog (PTEN). PTEN is also a tumor suppressor and was shown to enhance the stability and 

function of FRK (Goel and Lukong, 2016; Yim et al., 2009a). FRK SH3 domain was shown to 

interact with PTEN C2 domain thereby phosphorylating PTEN at Y336 leading to PTEN 

stabilization, thus preventing it from degradation by polyubiquitination (Yim et al., 2009a). 

EGFR another substrate of FRK was reported to be phosphorylated by FRK on its Y1173 hence 

leading to its degradation or internalization (Jin and Craven, 2014). The phosphorylation of 

EGFR at Y1173 negatively regulates the activation of EGFR at Y1068. The interaction between 

FRK and EGFR requires both the SH3 and SH2 domain of FRK (Jin and Craven, 2014). 

Recently BRCA1 was shown as a substrate of FRK (Kim et al., 2015). BRCA1 is a tumor 

suppressor known to play critical roles in several processes including DNA repair as well as 

maintenance of genomic stability (Goel and Lukong, 2016; Kim et al., 2015). Mutations in both 

BRCA1 and BRCA2 proteins have been associated with an increased risk of developing breast 

cancer (Goel and Lukong, 2016; Kim et al., 2015). As seen with PTEN, FRK enhances BRCA1 

stability and function by phosphorylating BRCA1 on Y1152 thus preventing it from degradation 

by polyubiquitination (Kim et al., 2015). This interaction requires the SH3 domain of FRK and 

BRCA1-BRCT domain of BRCA1 (Kim et al., 2015). 
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2.5.5 Roles of FRK in cancers 

Several studies on FRK in different cancer types have shown that FRK has both oncogenic and 

tumor suppressive roles (Goel and Lukong, 2016; Pilati et al., 2014; Shi et al., 2015; Yim et al., 

2009a; Yim et al., 2009b). 

The first oncogenic role of FRK was first reported by Hosoya et al. They found a 

chimeric fusion of FRK protein with oncogenic ETV6 transcription factor (Hosoya et al., 2005). 

This ETV6/FRK fused protein had higher enzymatic activity than wild-type FRK thereby 

promoting leukemogenesis (Hosoya et al., 2005). Also, FRK, as well as other SFKs, were 

reported to promote cell proliferation and survival of pancreatic cancers (Je et al., 2014). The 

knockdown of FRK using specific small interfering RNA transfection was reported to suppress 

the mRNA expression of FRK and other SFKs hence significantly 

reduced pancreatic cancer cell migration and invasion (Je et al., 2014). Additionally, FRK was 

found to promote hepatocellular carcinoma (Chen et al., 2013).  Chen and his colleague's used 

tumor-associated gene (TAG) database identified 183 tumor-associated genes in which FRK was 

among them (Chen et al., 2013). FRK was upregulated in hepatocellular cell lines tested such as 

Hep3B and HepG2, and also observed a positive correlation between the levels of FRK and 

invasiveness of these liver cancer cells (Chen et al., 2013). In 2014, Pilati and his group further 

verified Chen findings, using exome sequencing he was able to identify recurrent somatic 

mutations in FRK kinase domain. These mutations were shown to induce constitutive FRK 

kinase activity, STAT3 activation and promote cell proliferation of hepatocellular cancers (Pilati 

et al., 2014).  

There are reports of the tumor suppressive role of FRK in various cancers, including 

breast, glioma, cervical and non-small lung cancers (Sun et al., 2015; Yim et al., 2009a; Zhang et 

al., 2016; Zhou et al., 2012). FRK was first predicted to have a tumor suppressive role in a study 

where ectopic expression of FRK in NIH3T3 cells decreased the number of colonies. FRK was 

found to interact with pRb both in vivo and in vitro, and higher FRK expression was seen in the 

G1 phase of the cell cycle (Craven et al., 1995b).  Also, transfection of the constitutively active 

form of murine FRK (double mutation of Y497/504F) in NIH 3T3 cells was shown to 

decrease cell growth rate, and also decreased the [3H] thymidine incorporation, this further 

corroborated craven findings (Oberg-Welsh et al., 1998).  
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Meyer and his group were the first to validate FRK as a tumor suppressor in breast 

cancer; they showed that FRK inhibits breast cancer cell growth by inducing G1 arrest of 

the cell cycle (Meyer et al., 2003). They also reported that the tumor suppressor activity of FRK 

was independent of pRb (Meyer et al., 2003). There are a few reports of the potential 

mechanisms by which FRK act as a tumor suppressor. For instance, Yim et al. found that FRK 

interacts and phosphorylates PTEN, thus preventing its degradation (Yim et al., 2009a). The 

group also found that exogenous expression of FRK effectively suppressed breast cancer cell 

proliferation and invasion, both in vitro and in vivo and the knockdown of FRK was able to 

transform normal mammary epithelial cells (Yim et al., 2009a).  

FRK was shown to suppress glioma cell migration and invasion by inhibiting the c-

Jun N-terminal protein kinase (JNK)/c-Jun signaling pathway. Overexpression of FRK inhibited 

phosphorylation of JNK, c-Jun and inhibited the excretion of the matrix metalloprotease 2 

(MMP2) in glioma cells (Zhou et al., 2012). It was also shown to inhibit glioma cell invasion by 

promoting N-cadherin/beta-catenin complex formation (Shi et al., 2015). Furthermore, FRK was 

shown to suppress glioma cell proliferation by inducing G1 phase arrest of the cell cycle, 

promoting apoptosis, decreasing pRb hyperphosphorylation, downregulating E2F1 and 

inhibiting cyclin D1 accumulation in the nucleus of proliferating cells (Hua et al., 2014). 

Another mechanism by which FRK functions as a tumor suppressor includes, 

internalization or degradation of EGFR (Jin and Craven, 2014) and inducing the stability and 

function of BRCA1 (Kim et al., 2015). In non-small lung cancer, antagomir-1290 was shown to 

significantly inhibit proliferation, clonogenicity, invasion, and migration by targeting FRK (Sun 

et al., 2015). Recently, FRK has been shown to predict favorable prognosis in patients 

with cervical cancer (Zhang et al., 2016). Here, they found that overexpression of FRK in 

cervical cancer cells inhibits cell migration and invasion, while the knockdown enhanced cell 

migration and invasion (Zhang et al., 2016).  

2.5.6 FRK and signal transduction  

In addition to protein interactions, FRK and other PTKs play essential roles in the deregulation 

of signaling cascades in various cancers (Blume-Jensen and Hunter, 2001). However, the precise 

signaling pathways regulated by FRK are unknown.  Zhou et al. found that FRK suppressed 

glioma cell migration and invasion in a mechanism that involved the inhibition of JUN N-

terminal kinase (JNK) and c-Jun activation (Zhou et al., 2012).  In the context of breast cancer, 
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FRK was shown to negatively regulate the PI3K-Akt pathway by stabilizing PTEN (Vazquez et 

al., 2000).  PTEN is a tumor suppressor frequently lost or inactivated in various human cancers 

including breast (Georgescu, 2010). PTEN antagonizes PI3K-Akt signaling by 

dephosphorylating phosphatidylinositol 3, 4, 5-trisphosphate (PIP3), preventing the activation of 

PIP3-binding effector proteins such as Akt (Georgescu, 2010).  The PI3K-Akt pathway 

transduces signals to promote cell growth, proliferation, and survival.  Phosphorylation of 

several serine/threonine residues in the C-tail region of PTEN is essential for PTEN stability 

(Vazquez et al., 2000).  FRK was shown to bind to PTEN via its SH3 domain and 

phosphorylates PTEN specifically on Y336,  resulting in PTEN stabilization (Yim et al., 2009b).  

Conversely, the depletion of FRK promoted PTEN polyubiquitination and subsequent 

degradation (Yim et al., 2009b).  Although the mechanism of action of FRK is not fully 

understood, the same study suggests that phosphorylation of PTEN is one potential mechanism 

of FRK tumor suppressor activity.  

FRK has also been shown to regulate EGFR signaling pathway (Jin and Craven, 2014). 

EGFR is known to promote cell proliferation and migration stimulating several mitogenic 

signaling pathways such as the KRAS-BRAF-MEK-ERK pathway, phosphoinositide 3-kinase 

(PI3K), phospholipase C gamma protein pathway, the anti-apoptotic AKT kinase pathway and 

the STAT signaling pathway (Seshacharyulu et al., 2012; Tomas et al., 2014). FRK has been 

shown to downregulates EGFR signaling by phosphorylating EGFR on Y1173 hence leading to 

its degradation or internalization (Jin and Craven, 2014). The phosphorylation of EGFR at 

Y1173 negatively regulates the activation of EGFR at Y1068 (Jin and Craven, 2014).  

2.6.1 JAK-STAT signaling pathway 

The Signal transducer and activator of transcription 3 (STAT3) signaling pathway is a crucial 

signaling pathway activated in most cancers (Yu et al., 2014). STAT3 which belongs to the 

STAT family has been extensively studied because of its many functions in animal cell growth 

regulation, inflammation, and early embryonic stimuli (Akira, 2000; Hirano et al., 2000). The 

STAT proteins are transcription factors that regulate the expression of a wide range of genes that 

promote proliferation, migration. They are constitutively activated in various cancers including 

breast, colon, gastric, lung, head and neck, skin, and prostate (Levy and Lee, 2002; Sansone et 

al., 2007; Siveen et al., 2014; Yu et al., 2014). STAT proteins are regulated by the entire IL-6 
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family of cytokines and transduce signals from receptor and non-receptor tyrosine kinases such 

as epidermal growth factor receptor (EGF), and JAK (Siveen et al., 2014; Yu et al., 2014). 

STAT3 is thought to be activated  primarily by ligand receptors such as (IL-6 and IL- 22) 

(Siveen et al., 2014; Wang et al., 2011). Interaction of these receptors results in dimerization of a 

signal transducer protein gp130 in the cytoplasm, phosphorylation of Janus-kinase (JAK) and 

subsequent phosphorylation of STAT3 (Siveen et al., 2014; Wang et al., 2011). The JAK family 

of tyrosine-kinases especially JAK1 and JAK 2 mediates the activation of STAT3 by 

phosphorylating it (Hirano et al., 2000).  The phosphorylated STAT3 monomers combine to 

form dimers and translocate into the nucleus to induce transcription of genes involved in cell 

survival and proliferation (Figure 2.6) (Chen and Han, 2008; Weerasinghe et al., 2008). Several 

studies have identified other activators of JAK-STAT3 signaling pathway; these include Toll-

like receptors (TLRs), (TLR9 and TLR4), microRNAs (miRNAs), and several G-protein-coupled 

receptors (GPCRs) (Guo et al., 2013; Tye et al., 2012; Xin et al., 2013; Yu et al., 2014).  

STAT3 has been shown to promote tumorigenesis by regulating several cellular 

processes that include proliferation, survival, inflammation, invasion, metastasis, and 

angiogenesis (Figure 2.7) (Siveen et al., 2014). STAT3 induces cell proliferation by promoting 

the expression of gene/ proteins that drive the progression of the cell cycle (Carpenter and Lo, 

2014). For instance, Cyclin D proteins are known to promote  the G1-S phase transition of the 

cell cycle through it interaction and activation of cyclin-dependent kinases 4/6 (CDK4/6), which 

phosphorylates the retinoblastoma (pRb) protein thus initiate progression to the S-phase (Bertoli 

et al., 2013; Carpenter and Lo, 2014). STAT3 binding sites have been identified within the 

Cyclin D1 gene, and a direct association of STAT3 with the Cyclin D promoter have been 

observed as well as the induction of cell proliferation (Carpenter and Lo, 2014; Leslie et al., 

2006). Also, STAT3 has been reported to upregulate other genes such as Cyclin B and cdc2, 

which are involved in cell cycle regulation and cell proliferation (Jarnicki et al., 2010; Siveen et 

al., 2014). In addition to cell cycle progression, STAT3 has been shown to promote cell 

proliferation by inhibiting apoptosis. Anti-apoptotic Bcl-2 proteins, such as Bcl-2 and Mcl-1 

have been reported to have binding sites for STAT3 and overexpression of STAT3 has been 

shown to lead to the upregulation of Bcl-xL, another anti-apoptotic gene (Carpenter and Lo, 

2014; Catlett-Falcone et al., 1999; Choi and Han, 2012). 
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STAT3 have been shown to promotes cell invasion and migration by upregulating genes 

that are involved in cell movement, cytoskeleton reorganization, and cell adhesion properties, 

these genes include; matrix metalloproteinase (MMP) and intercellular adhesion molecular-1, 

(ICAM-1) (Carpenter and Lo, 2014; Siveen et al., 2014). 

 

 
Figure 2.6: Pathways are activating JAK–STAT3 signaling in cancer. Biological processes 
that are crucial for cancer progression are mediated by Janus kinase (JAK)–signal transducer and 
activator of transcription 3 (STAT3) signaling. The JAK–STAT3 pathway is activated by diverse 
receptors, including those for interleukin-6 (IL-6) and IL-6 family cytokines, as well as 
G-protein-coupled receptors (GPCRs) and Toll-like receptors (TLRs). Unlike receptor tyrosine 
kinases (RTKs), these receptors lack intrinsic kinase activity. Instead, upon binding to their 
cognate ligands, these receptors undergo conformational changes and form interacting sites for 
adaptor proteins to propagate signals. For example, IL-6 receptors rely on the tyrosine kinases 
JAK1 or JAK2, which associate with the cytoplasmic tail of gp130 and directly phosphorylate 
(P) STAT3. The gp130 subunit of the IL-6 receptor is the signaling component that is shared 
with other cytokine receptors. While cytokine receptors and TLRs function as dimers after 
activation by ligands, G-protein-bound GPCRs catalyze the conversion of guanine nucleotides 
and activate a sequence of downstream signaling effectors and kinases, including JAK2. Also, 
JAK2 can act as a direct mediator of certain GPCR signals to activate STAT3. Activated JAKs, 
such as JAK1 and JAK2, phosphorylate STAT3 at Tyr705, resulting in translocation of activated 



23 
 

STAT3 dimers to the nucleus. Meanwhile, serine/threonine kinases mediate Ser727 
phosphorylation of STAT3 that enhances its transcriptional activity. In the nucleus, STAT3 binds 
to the promoters of genes and induces a genetic program that promotes various cellular processes 
that are required for cancer progression (Yu et al., 2014). 
 

MMP belongs to a family of proteases that are zinc-dependent, they degrade extracellular matrix 

proteins and also basement membrane for endothelial cell migration (Carpenter and Lo, 2014). 

Studies have shown that these MMP genes have binding sites for STAT3. For instance, MMP1 

contains a STAT3 and an Activator protein 1 (AP-1) binding site, mutation of either the STAT3 

or AP-1 site ablated STAT3-mediated gene activation (Carpenter and Lo, 2014; Zugowski et al., 

2011). Also, STAT3 has been shown to upregulate ICAM- 1, a membrane adhesion molecule 

which promotes metastasis by making it easier for ICAM-1-expressing tumor cells to separate 

from each other and invade surrounding tissue (Carpenter and Lo, 2014; Zhu and Gong, 2013).    

 

 
Figure 2.7: The Multifaceted role of STAT3 in invasion and metastasis. Activated STAT3 
promotes proliferation primarily by stimulating transcription of key cancer genes linked with the 
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proliferation of tumor cells, such as Cyclin D1, cyclin B, and cdc2, which are involved in the 
regulation of cell cycle. STAT3 signaling contributes to malignancy by preventing apoptosis 
pathway via increased expression of Bcl-xL, a member of the anti-apoptotic Bcl-2-family. 
Several anti-apoptotic proteins, such as Survivin and members of the Bcl family (Bcl-xL, Bcl-2, 
and Mcl-1), are known to be crucial for tumor cell survival, and are direct target genes of STAT3 
and are down-regulated as a consequence of STAT3 inhibition. Degradation and remodeling of 
the extracellular matrix (ECM) and basement membranes by proteolytic enzymes such as MMPs 
secreted by tumor cells play a major role in tumor invasion and metastasis. The STAT3 target 
genes include several members of the MMP family, which are known to contribute to tumor 
invasion, angiogenesis and metastasis. Excessive activation of STAT3 correlates with tumor 
invasion and metastasis in a variety of cancers, and high level of phosphorylated STAT3 is a 
prominent feature in the colon and gastric cancers associated with adverse outcomes. STAT3 
interacts with Fra-1/c-Jun and binds to the specific promoter region of MMP-9 gene, leading to 
transcriptional activation of MMP-9 in breast cancer cell lines (Siveen et al., 2014). 

2.6.2 Epithelial to Mesenchymal transition in breast cancers 

STAT3 has been reported to promote cell invasion and migration by regulating Epithelial to 

Mesenchymal Transitions (EMT) (Wendt et al., 2014). EMT is a biological process that allows a 

polarized epithelial cell to undergo multiple biochemical changes that enable it to assume a 

mesenchymal cell phenotype, which includes enhanced migratory capacity, invasiveness, 

elevated resistance to apoptosis, and significantly increased production of ECM component 

(Kalluri and Weinberg, 2009). This process leads to a loss of cellular adhesion, changes in the 

polarization of the cell and cytoskeleton, migration, intravasation, survival in the vascular 

system, extravasation, and metastasis (Figure 2.8) (Fedele et al., 2017; Kalluri and Weinberg, 

2009). There are three types of EMT programs; they include type 1, Type 2 and type 3 (Felipe 

Lima et al., 2016; Kalluri, 2009; Kalluri and Weinberg, 2009). Type 1 relates to embryogenesis, 

gastrulation, and neural crest formation, it neither causes fibrosis nor induces an invasive 

phenotype resulting in systemic spread via the circulation (Felipe Lima et al., 2016; Kalluri and 

Weinberg, 2009). The type 2 EMT is mostly related to tissue regeneration and wound healing; it 

begins as part of a repair-associated event that usually generates fibroblasts and other related 

cells to reconstruct tissues following trauma and inflammatory injury. (Kalluri and Weinberg, 

2009). Unlike type 1 EMT, type 2 EMTs are associated with inflammation, and it ceases once 

inflammation is attenuated (Felipe Lima et al., 2016; Kalluri and Weinberg, 2009). Lastly, Type 

3 EMT is associated with malignancy, invasion, and metastasis; it occurs in neoplastic cells that 

have previously undergone either genetic and epigenetic change (Kalluri and Weinberg, 2009). 

Cancer cells undergoing a type 3 EMT may invade and metastasize and thereby lead to life-
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threatening manifestations of cancer progression (Felipe Lima et al., 2016; Kalluri and 

Weinberg, 2009).  

Type 3 EMT is regulated by some signaling pathways, the major pathways that regulate 

EMT are the TGF-β, Notch, and Wnt signaling pathways (Figure 2.9) (Fedele et al., 2017; 

Felipe Lima et al., 2016). Additionally, several molecular processes also regulate EMT; they 

include transcription factors, expression of specific cell-surface proteins, reorganization and 

expression of cytoskeletal proteins, production of ECM-degrading enzymes, and expression of 

specific microRNAs (Fedele et al., 2017; Felipe Lima et al., 2016; Kalluri and Weinberg, 2009).  

 

 
Figure 2.8: EMT. An EMT involves a functional transition of polarized epithelial cells into 
mobile and ECM component–secreting mesenchymal cells. The epithelial and mesenchymal cell 
markers commonly used by EMT researchers are listed. (Kalluri and Weinberg, 2009) 
 

There are three main families of transcription factors that regulate EMT. These include SNAI 

(SNAI1/Snail and SNAI2/Slug), ZEB (ZEB1 and ZEB2), and TWIST (TWIST1 and TWIST2) 

family. They are all nuclear proteins and have been shown to interact with a variety of proteins 

involved in transcriptional regulation (Skrypek et al., 2017). The expression or post-

transcriptional and post-translational of these transcription factors are regulated by the TGF-β, 

Notch and Wnt signaling pathways (Skrypek et al., 2017). TGF-β signaling (both canonical and 

non-canonical) leads to expression of Snail, Zeb, and Twist. Likewise, Notch signaling pathway 

induces acts the transcription of SNAI1, SNAI2 (Slug), Twist and Zeb1/Zeb2 by acting on NF-

κB. The Wnt pathway leads to induction of SNAI1 expression with subsequent downregulation 

of E-cadherin via β-catenin (Felipe Lima et al., 2016; Skrypek et al., 2017).  
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These transcription factors directly bind to the E-box motifs within the E-cadherin 

promoter and recruit multiple co-repressors to this region to promote the gene silencing of E-

cadherin (Lee and Kong, 2016; Skrypek et al., 2017).  SNAI1 not only represses E-cadherin 

expression, but also down-regulates the expression of claudins, occludins, and mucin-1, inducing 

invasive behavior (Felipe Lima et al., 2016). It also leads to increased expression of 

mesenchymal proteins, such as the intermediate filament protein Vimentin, contributes to the 

enhanced migratory properties of EMT cells (Lamouille et al., 2014; (Karlsson et al., 2017). 

Distinct cellular and extracellular markers characterize the EMT status. Epithelial cells express a 

series of cell adhesion molecules, including E-cadherin, desmoplakin, ZO-1, cytokeratin, 

laminin, MUC-1, while mesenchymal-like cells lose these epithelial markers and gain the 

expression of mesenchymal markers, including Vimentin, N-cadherin, and Fibronectin (Lee and 

Kong, 2016). 

Additionally, miRNA have been reported to play an essential role in regulating EMT 

(Fedele et al., 2017; Felipe Lima et al., 2016; Prieto-Garcia et al., 2017). For instance, the miR-

200 family (miR-200a, miR200b, miR200c, miR141, and miR-429) regulate EMT by repressing 

the expression of transcription factors such as of ZEB1/2 transcription factors and an increase in 

epithelial markers expression (Prieto-Garcia et al., 2017). 

Over 90% of all breast cancer deaths are the result of metastasis, primarily to the bone, 

lung, liver, and brain (Fedele et al., 2017; Gao et al., 2016). Some studies have shown a strong 

correlation between the EMT and high invasive and metastatic behavior of breast cancers 

(Fedele et al., 2017; Gao et al., 2016). For example, the basal-like breast cancer phenotype have 

been recently reported to be associated with mesenchymal features, hence reasons for being the 

most deadly subtype (Fedele et al., 2017; Gao et al., 2016). These basal-like breast cancers have 

been shown to have low expression of GATA3-regulated genes, genes involved in cell-cell 

adhesion, high expression of stem cells and EMT markers (Fedele et al., 2017; Gao et al., 2016).  

2.6.3 Cell cycle regulation  

In addition to EMT, STAT3 has also been shown to regulate cell proliferation by upregulating 

genes that inhibit apoptosis, for instance, anti-apoptotic genes such as Bcl-2 and Mcl-1 

(Carpenter and Lo, 2014; Catlett-Falcone et al., 1999; Choi and Han, 2012). It is worth 

mentioning that EMT has also been reported to promote cell proliferation by regulating the cell 

cycle (Jiang et al., 2011; Karlsson et al., 2017). Jang and his group found that Twist, (a 
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transcription factor) inhibits p16 and p21 (CDK inhibitors) known to regulate the cell cycle 

negatively, thus promoting cell proliferation (Jiang et al., 2011; Karlsson et al., 2017). The 

uncontrollable growth characteristics of cancer cells are as a result of defects in the cell cycle.  

The cell cycle can be defined as a cell-autonomous mechanism operated by a small number of 

enzymes, mainly the cyclin-dependent kinases (CDKs), whose primary function is to ensure a 

timely control of its 2 fundamental steps: DNA replication and chromosome segregation 

(Bendris et al., 2015). These CDKs functions are regulated by specific cofactors such as cyclin 

and CDK inhibitors (CKI) (Bendris et al., 2015). 
 

Figure 2.9: Epithelial to mesenchymal transition overview. Selected signaling pathways are 
depicted. Transforming growth factor-β, Notch, WNT can induce EMT through multiple 
pathways. EMT and MET (mesenchymal to epithelial transition) are associated with changes in 
the cytoskeleton and disruption of tight junctions and desmosomes. They are also influenced by 
the effects of the tumor microenvironment such as hypoxia as well as the differential expression 
of microRNAs (miRNAs). External stimulus, as in the case of hypoxia, leads to changes in 
mitochondrial function, leading to HIF1 stimulation, with subsequent Zeb1 expression. (Felipe 
Lima et al., 2016) 
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Cyclins bind to CDKs to form a cyclin-CDK complex (Bendris et al., 2015; Hydbring et al., 

2016). These complexes phosphorylate a number of cellular proteins that promote entry into the 

cell cycle, regulate DNA synthesis and trigger segregation of the newly duplicated chromosomes 

to the daughter cells during mitosis (Bendris et al., 2015; Hydbring et al., 2016), whereas CKIs 

act both as architectural and inhibitory components (Bendris et al., 2015; Hydbring et al., 2016). 

Cell proliferation depends on progression through four distinct phases of the cell cycle 

(G0/G1, S, G2, and M), and these phases are regulated by cyclin-dependent kinases (CDKs), 

their cyclin partners and CKI (Otto and Sicinski, 2017). In the G1 phase, Cyclin D interacts with 

CDK4 or CDK6 and phosphorylates the retinoblastoma protein (pRb), p107 and p130 proteins, 

which bind and regulate E2F transcription factors. Later during G1, Cyclin E1 and E2 become 

upregulated and activate CDK2, resulting in phosphorylation of a broader range of cell cycle-

related proteins. In the S phase, Cyclin A are upregulated, this leads to the activation of CDK2 

and CDK1. CDK1 are also activated by Cyclin B, this occurs at the onset of mitosis and drives 

the progression of cells through the remainder of the cell cycle, through phosphorylation of a 

large number of proteins involved in DNA replication, as well as centrosome and chromosome 

function (Hydbring et al., 2016). 

The CKI belongs to two families: the INK4 (composed of P15, p16, p18 and p19) and 

Cip/ Kip family (composed of p21, p27, and p57) (Malumbres and BapRbacid, 2009; Otto and 

Sicinski, 2017). The INK4 families bind to CDK4/CDK6 and block their association with D-type 

cyclins, thereby extinguishing the kinase activity of CDK4 and CDK6, whereas the CIP/KIP 

families bind to all CDK complexes and inhibit the kinase activity of CDK2 and CDK1 (Otto 

and Sicinski, 2017). These inhibitors have been shown to block proliferation of adult stem cells 

in multiple tissue types. For instance, p21 and p27 may control self-renewal of neural, intestinal 

and hematopoietic progenitors (Malumbres and Barbacid, 2009). 

2.6.3.1 Regulation of cell cycle in breast cancer 

The cell cycle is deregulated through various mechanisms that include amplification, mutation 

and overexpression of the genes encoding the core components of the cell cycle such as the 

cyclins, CDKs, CKIs and the retinoblastoma protein pRB and E2F1 (Johnson et al., 2016). For 

instance, Cyclin D1 gene is the second most frequently amplified locus gene in most types of 

human cancers (Hydbring et al., 2016).  
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E2Fs are transcription factors and comprise a family of ten proteins encoded by eight 

distinct genes, and they are most well known for their function in cell cycle regulation. E2Fs 1, 

2, and 3a are transcriptional activators, whereas E2F3b, 4, and 5 the passive repressors, and 

E2F6, 7a, 7b, and 8 are active repressors. E2F 1, 2 and 3 stimulate proliferation by inducing the 

expression of genes that stimulate the progression of the cell cycle. In most cancers, E2Fs have 

been identified as a factor that promotes tumor progression. For instance, in HRAS-dependent 

breast cancer, E2Fs1-3 was found to induce the expression of the β4 integrin subunit, hence 

enhances invasion mediated by the α6β4 integrin (Johnson et al., 2016; Yoon et al., 2006). 

pRb is a known tumor suppressor that associate with E2F family proteins and thereby 

inhibit E2F‐dependent activation of genes that stimulate DNA synthesis and cell cycle 

progression (Dick and Rubin, 2013). pRb is regulated through phosphorylation when pRb is 

hyperphosphorylated by cyclin-CDK complexes, it leads to its disassociation from E2F, thus 

promoting the advancement of the cell cycle. However, when pRb is hypophosphorylated, it 

binds to E2F leading to its inhibition (Dick and Rubin, 2013). Loss of pRb has been shown to 

promote breast tumorigenesis. A study on a panel of breast cancer cell lines showed that the 

breast cancer cell lines with inactive pRb had increased expression of mesenchymal phenotype 

and high expression of genes involved in EMT (Arima et al., 2012; Johnson et al., 2016). Also, 

the loss of pRb in ERBB2 overexpressed breast cancer cell was found to altered essential 

molecules needed for proper cellular organization and cell-to-cell adhesion (Johnson et al., 2016; 

Witkiewicz et al., 2014). 

CKIs have been reported to prevent pRb phosphorylation by inhibiting CDK activity 

thereby inducing growth arrest.  For instance,  p21, a regulator of cell cycle progression during 

the G1 and S phases have also been reported to inhibit CDK activity by  indirectly  interfering 

with phosphorylation of CDK1 and CDK2 in the activation segment by an unidentified 

mechanism (Abbas and Dutta, 2009; Johnson et al., 2016). The inhibition of these CDKs 

prevents the phosphorylation of pRb and the release and activation of E2F-dependent gene 

expression leading to growth arrest of the cell cycle (Abbas and Dutta, 2009). Loss-of-function 

expression of p21 and p27 have been implicated in breast carcinogenesis and progression; it has 

also shown to mediate drug-resistance phenotype (Abukhdeir and Park, 2008; Zagouri et al., 

2017). 
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2.6.4 Cell senescence 

In addition to growth arrest, p21 can mediate cellular senescence in a variety of mammalian cells 

and tissues (Georgakilas et al., 2017). An extensive microarray-based study showed that p21 

expression positively correlates with both the suppression of gene activities directly involved in 

cell cycle progression and the activation of genes associated with senescence (Georgakilas et al., 

2017). 

Cellular senescence can be defined can be defined as irreversible growth arrest or lack of 

proliferative potential characterized by distinct metabolic activity and dramatic changes in cell 

morphology (Gire and Dulic, 2015; Terzi et al., 2016). There are two types of Senescence; they 

are replicative and oncogene-induced senescence. Replicative senescence is one of the common 

types of cellular senescence. It occurs due to devoid of telomere shortening repair system or 

impaired telomerase activity or due to sustained DNA damage response (DDR) in normal cells 

(Masutomi et al., 2003; Terzi et al., 2016). While oncogene-induced senescence otherwise 

known as ‘‘permanent quiescent’’ occur due to overstimulation of growth-promoting pathways 

leading to senescence-like phenotype such as hyperactivity and hypertrophy (Blagosklonny, 

2013; Terzi et al., 2016). Oncogene-induced senescence mediates its effect by using CDK 

inhibitors (Blagosklonny, 2013; Terzi et al., 2016).   

Cells with damaged DNA as a result of telomere erosion or activated oncogenes have 

been reported to activate the ATM/ p53/p21 pathway hence inducing senescence-associated G1 

arrest (Figure 2.10). This pathway activates p53, a tumor suppressor which induces the 

expression p21 (Gire and Dulic, 2015).The mouse double minute 2 (MDM2) proto-oncogene is a 

regulatory protein regulates p53 expression, when p53 intracellular levels increase, it binds to 

MDM2 to induce its transcription, and then MDM2 initiates the ubiquitination and proteolytic 

degradation of p53 under normal conditions (Terzi et al., 2016). A recent study shows that p53 

downstream pathway players (e.g., p16, p21) also drive the transition of cancer cells into 

senescence in the absence of p53 by inactivation of cyclin D1-Cdk4/6 and cyclin E1-Cdk2 

complexes (Kovatcheva et al., 2015; Terzi et al., 2016). p21 blocks the inactivating 

phosphorylation of pRb by Cdk2 and Cdk4/6,  which is a critical mechanism in the senescence 

program.  p16, another pRb regulator that inhibits explicitly the cyclin D1-associated kinases 

Cdk4 and Cdk6, was also implicated in senescence (Gire and Dulic, 2015). 
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Cellular senescence is identified by senescence biomarkers such as senescence-associated 

β-galactosidase (SA-β-gal), It is characterized by the senescence-associated secretory phenotype 

(SASP), referring to increased expression and secretion of inflammatory cytokines, chemokines, 

growth factors, proteases and other proteins in senescent cells (Freund et al., 2010; Xu et al., 

2014). The SASP factors are critical for the initiation and maintenance of senescence in a cell-

autonomous fashion. Accumulation of senescence-associated heterochromatic foci (SAHFs) 

have been identified in cells that undergo cellular senescence, SAHFs recruit pRb, and 

heterochromatin proteins to stably silence the expression of E2F target genes that are necessary 

for cell proliferation, these changes in chromatin brought about by SAHF formation are believed 

to mediate the irreversibility of senescence (Xu et al., 2014). 

  

 

 
Figure 2.10: Cell cycle deregulation. The cell cycle is regulated by complexes of cyclins and 
cyclin-dependent kinases (CDKs). In addition, there are various important inhibitors of these 
cyclin–CDK complexes. These are p16 and p21. The expression of p16INK4A mediates 
senescence and differentiation. p53 tetramers act as a stress-induced transcription factor and 
induce the expression of p21CIP (also known as CDKN1A), which inhibits several cyclins–CDK 
complexes and halts the cell cycle. Besides its crucial role in cell cycle control, p53 is also a 
master regulator of apoptosis and many other stress-associated cellular functions and is, 
therefore, one of the primary targets for inactivation in many cancers. E6 and E7 are viral 
oncoproteins. The E6 protein binds p53 and targets the protein for degradation, whereas the E7 
protein binds and inactivates the PRb pocket proteins (Leemans et al., 2011).  
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2.7 Objectives and rationale 

2.7.1 Rationale  

FRK is a candidate tumor suppressor in breast cancer. FRK was shown to suppress breast cancer 

tumorigenesis by negatively regulating several signaling pathways, including the AKT pathway 

by stabilizing PTEN and preventing it from degradation, and DNA damage pathway by 

stabilizing BRCA1, as well as potentially by binding to pRb. 

Additionally, previous study from our lab has shown that FRK downregulates STAT3 

phosphorylation. The suppression of STAT3 activation by FRK was seen with both the wild-type 

FRK and the constitutively active form of FRK (FRK-YF or FRK-YF). We also found that FRK-

YF induces the phosphorylation of numerous targets that do not overlap with FRK-WT targets. 

Also, FRK inhibition of breast cancer proliferation was reported to be independent of its binding 

to pRb. 

Based on this, we intend to identify novel FRK regulated signaling pathways in breast 

cancers, validate STAT3 as a target of FRK and investigate other mechanisms by which FRK 

suppresses breast cancer proliferation.  Additionally, we intend to evaluate the effect of FRK 

overexpression on tumor formation in vivo.   

 

2.7.2 Hypothesis and Objectives  

2.7.2.1 Hypothesis 

We hypothesize that FRK suppresses tumor growth by inhibiting JAK/STAT signaling and 

related cellular processes.  

 

2.7.2.2 Objectives 

1. To validate the effect of FRK on STAT3 signaling.  

2. To determine the mechanism of action of FRK on STAT3 inactivation. 

3. To determine the effect of FRK on the expression of STAT3 target genes.  

4. To determine the effect of FRK on EMT and cell cycle.  

5. To validate the tumor suppression role of FRK in vivo using xenograft mice 
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3.0 MATERIALS AND METHODS 

3.1 Reagents  

The list of reagents and antibodies used for these experiments are listed in Table 3.1 and Table 

3.2 

Table 3.1: List of reagent and suppliers 

S/N Types of 

Reagent 

Reagents List of Suppliers and location 

  

 

 

 

 

 

 

Organic 

and 

Inorganic 

reagents 

 

 

 

Western blot reagent 

Acrylamide, 0341  

 

 

Aprotinin, A6279 

  

Ammonium persulfate 

(APS),A3678  

Laemmli sample buffer, S3401 

 

SDS, 151-21-3 

 

Methanol, MX0485  

 

 

 

 

 

AMRESCO (North York, Ontario, 
Canada) 
 
 
SigmaAldrich (Oakville, Ontario, 
Canada) 
 
 
SigmaAldrich (Oakville, Ontario, 
Canada) 
 
SigmaAldrich (Oakville, Ontario, 
Canada) 
 
 
SigmaAldrich (Oakville, Ontario, 
Canada) 
 
 
EMD (Madison, Wisconsin, USA) 

 

 
 

AMRESCO (North York, Ontario, 
Canada) 
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Glycine, 0167  

Sodium chloride (NaCl), 0241  

 

Tris, 0826  

 

TWEEN® 20, 0777  

 

Difco™ skim milk, 232100 

 

Bisacrylamide,0172 

 

Gelatin, G1890  

 

Sodium azide, S8032  

 

Triton™ X-100, X-100  

 

Paraformaldehyde, PX0055-3 

  

 

Polyethylenimine, 25987-06-8 

RT-PCR reagents 

RNeasy Plus Mini Kit  

 
SigmaAldrich (Oakville, Ontario, 
Canada) 
 
 
SigmaAldrich (Oakville, Ontario, 
Canada) 
 
 
AMRESCO (North York, Ontario, 
Canada) 
 
BD (Mississauga, Ontario, Canada) 
 
 
AMRESCO (North York, Ontario, 
Canada) 
 
 
SigmaAldrich (Oakville, Ontario, 
Canada) 
 
 
AMRESCO (North York, Ontario, 
Canada) 
 

SigmaAldrich (Oakville, Ontario, 
Canada) 
 
 
AMRESCO (North York, Ontario, 
Canada) 
 

 
 
SigmaAldrich (Oakville, Ontario, 
Canada) 
 
 
Qiagen, (Mississauga ON, Canada) 
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Iscript cDNA Synthesis Kit 

Bio-Rad, (United States). 

 Cell 

culture 

Dulbecco’s Modified Eagle 

Medium (DMEM), 

SH30022.01 

 

Mcoy  

 

Fetal Bovine Serum (FBS), 

SH30397.03  

 

Trypsin-EDTA, T4049  

 

 

MEM Vitamin Solution, 

11120-052  

 

Thermo Fisher Scientific (Whatham, 

Massachusetts, USA) 

 

Thermo Fisher Scientific (Whatham, 

Massachusetts, USA) 

 

Thermo Fisher Scientific (Whatham, 

Massachusetts, USA) 

 

SigmaAldrich (Oakville, Ontario, 
Canada) 
 

 

Gibco (Burlington, Ontario, Canada) 

 Bacteria 

culture 

Ampicillin, 0339  

 

Tryptone, 1.07213.1000  

 

Fermtech® Yeast Extract, 

1.11926.1000  

 

AMRESCO (North York, Ontario, 
Canada) 
 
 
EMD (Madison, Wisconsin, USA) 

 
 
EMD (Madison, Wisconsin, USA) 
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Kanamycin sulfate, 0408  

 

Lysogeny Broth (LB) agar, 

L2897 

 
 
AMRESCO (North York, Ontario, 
Canada) 
 
 
 
SigmaAldrich (Oakville, Ontario, 
Canada) 
 

 Cell cycle 

analysis 

Senescence kit 

 

7AAD 

 

Annexin/FTTC kit 

Bio-vision 
 
 
 
Bio-vision 
 
 
 
Bio-vision 

3.2 Antibodies and inhibitors 

The following primary antibodies were purchased from Santa Cruz Biotechnology (California, 

USA): FRK (N19, sc-916), JNK 1/2 (sc-137020), pJNK (sc-81502), p38 (sc-535), p-p38-

Thr180/Tyr182 (sc-17852) and β-tubulin (sc-9104), SLUG (sc-166476), Fibronectin (sc-8422) 

anti-GFP (sc-8334), β-actin (sc-130300), pTyr 20 (sc-508), pSTAT3- S7272 (sc-8001),. STAT3, 

pSTAT3 705 (9145S), AKT (9272S), pAKT-S473 (4058S), MEK1/2 (9126) and pMEK1/2-

S217/21 (9154S), were purchased from Cell Signaling (Massachusetts, USA).  
Table 3.2: List of antibodies used with suppliers 

S/N Antibodies and working dilutions Supplier 

 FRK (N19, sc-916), (1:1000) 

STAT3 (9145S), (1:2000) 

 

 

pSTAT3 TYR705(9145S),  (1:2000) 

Santa-cruz 

Cell Signaling 

(Massachusetts, USA).  

 

Cell Signaling 
(Massachusetts, USA). 

Santa Cruz 
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pSTAT3 S7272 sc-8001 (1:1000) 

 

E-cadherin (1:2000) 

 

N-cadherin (1:1000) 

 

Fibronectin (sc-8422) (1:1000) 

 

pRb (1:1000) 

 

E2F1 (1:1000) 

 

Cyclin E (1:1000) 

 

p21 (1:1000) 

 

Beclin (1:1000) 

 

Slug  (sc-166476) (1:1000) 

 

β -actin -sc-130300 (1:1000) 

 

Biotechnology 
(California, USA) 

 

Cell Signaling 

(Massachusetts, USA).  

Santa Cruz 

Biotechnology 

(California, USA) 

Santa Cruz 

Biotechnology 

(California, USA) 

Santa Cruz 

Biotechnology 

(California, USA) 

 

Santa Cruz 

Biotechnology 

(California, USA) 

Santa Cruz 

Biotechnology 

(California, USA) 

Santa Cruz 

Biotechnology 

(California, USA) 

Santa Cruz 

Biotechnology 

(California, USA) 
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β -tubulin -sc-9104 (1:1000) 

 

 

Santa Cruz 

Biotechnology 

(California, USA) 

Santa Cruz 

Biotechnology 

(California, USA) 

Santa Cruz 

Biotechnology 

(California, USA) 

 

Santa Cruz 

Biotechnology 

(California, USA) 

Santa Cruz 

Biotechnology 

(California, USA) 

3.3 Primers 

The list of primers used in the quantitative PCR analysis of transcript expression of the target 

genes relative to the housekeeping gene (GAPDH) in breast cancer cells are listed in Table 3.3. 

Directions of the primers are as listed (forward or reverse). 

Table 3.3: List of primers used for RT-PCR 

Target Gene Direction Sequence 

GAPDH 
Forward 5′GTCAGTGGTGGACCTGACCT 3′ 

Reverse 5′TGCTGTAGCCAAATTCGTTG 3′ 

SURVIVIN Forward 5′GGACCACCGCATCTCTACAT 3′ 
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3.4. Cell lines and Cell culture 

Breast cancer cell lines (AU565, BT20, MDA-MB 231, MDA-MB-468, HCC 70, BT 549, 

SKBR3, T47D, MCF 10A, MCF-7) and human embryonic kidney 293 (HEK293) cells were 

purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA). The cell 

lines were cultured in high glucose (4.5 g/l), Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS) (Thermo Scientific, Logan, USA) and 

contained 4mM L-glutamine, 100 units/ml penicillin, 100 mg/ml streptomycin (Sigma-Aldrich, 

St Louis, MO, USA). SKBR3 cell line was cultured in McCoy culture media with 10% fetal 

bovine serum (FBS) (Thermo Scientific, Logan, USA). All the cell lines were incubated in a 

humidified CO2 incubator (Thermo Fisher Scientific) with 5% CO2 at 370C. Upon cells 

confluency, Trypsin-EDTA (0.25 % (w/v) was used to detached and split into new culture plates. 

3.5 Transformation of plasmids into Ecoli 

Green fluorescent protein (GFP)-tagged as well as retroviral lysophosphatidylcholine (LPC) of 

FRK-WT (wild-type), and FRK mutants plasmids (FRK-YF and FRK-K262M) were obtained 

from Dr.Lukong’s lab. Maxi-prep was made for these plasmids. To make the maxi-prep, first, the 

DNA was transformed into E.coli DH5α cells which served as the host. 5 µL of the DNA was 

Reverse 5′GACAGAAAGGAAAGCGCAAC 3′ 

MMP1 
Forward 5′GGACCACCGCATCTCTACAT 3′ 

Reverse 5′GACAGAAAGGAAAGCGCAAC 3′ 

FIBRONECTIN 
Forward 5′CCCAACTGGCATTGACTTTT 3′ 

Reverse 5′ CTCGAGGTCTCCCACTGAAG 3′ 

VIMENTIN 
Forward 5′ GAGAACTTTGCCGTTGAAGC 3′ 

Reverse 5′ TCCAGCAGCTTCCTGTAGGT 3′ 

CYCLIN D1 

(CCND1) 

Forward 5′ GATCAAGTGTGACCCGGACT 3′ 

Reverse 5′ TCCTCCTCTTCCTCCTCCTC 3′ 
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added into 50 µL competent cells once the cells were thawed, and left on ice for 30 minutes, 

after which it was exposed to heat shock at 420C for 45 seconds and 2 minutes cold shock. 500 

µL antibiotic-free LB Broth medium, containing Tryptone, Fermtech® Yeast Extract, NaCl, and 

ddH2O, was added into the mixture, and the mixture was incubated in a shaker at 370C for 1 

hour. The mixture was centrifuged at 20,000 × g for 30 seconds, and 450 µL of the cell 

supernatant was removed. The remaining cells were resuspended and plated on LB agar plates 

containing the 10% appropriate antibiotic(s) (kanamycin for pLPC; ampicillin for pEGFP-C1). 

The antibiotic resistance markers on plasmids facilitated the screening of the recombinants. The 

successful recombinants transformed plasmid DNA was selected by picking up single colonies 

after 16-18 hours culture 370C.  The plasmid DNA was prepared and sent for sequencing to 

verify the mutations. Sequencing was performed by National Research Council Canada DNA 

sequencing facility (Saskatoon, SK). The DNA mutants with the right mutations were prepared 

in large scale using maxi-prep kit obtained from Qiagen. The procedure used was according to 

the manufacture protocol. 

3.6 Transfection (transient and generation of stable cell lines) 

Transient transfection was done according to standard operating procedure of Dr. Lukong lab.  

HEK 293 cells were used for the transiet transfection. The cells were cultured in 6-well plates 

and transiently transfected with 2.5 µg of DNA using 1% polyethyleneimine ‘Max’ (PEI) 

(Polysciences Inc., Warrington, PA, USA).  For each well, 2.5 µg of DNA was added to 107.5 

µL of sterile 0.15M NaCl in a microcentrifuge tube and vortexed gently for 10s. 15 µl 0.1% PEI 

was added to the DNA mixture and vortexed gently for 10 seconds. The DNA–PEI complex was 

incubated for 10 min at room temperature, and the mixture was added dropwise to wells 

containing 2 mL of complete media and incubated at 37 0C. The cells were incubated for 24 h 

post transfection and harvested the next day. Transient knockdown of FRK in SKBR3 and MCF-

7 was carried out using FRK-siRNA (Santa Cruz, CA, USA), as recommended by the 

manufacturers. 

 MDA-MB 231 stably expressing FRK-wild-type and FRK-YF was generated using the 

method previously described (Miah et al., 2012). HEK 293-derived Phoenix packaging cells 

were transfected with the retroviral plasmids constructs. The viral supernatant was used to infect 

MDA-MB 231 cells. Puromycin was used to select the pLPC-containing cells. All untransduced 

MDA-MB 231 cells died within 7 days of selection. However, the selected stable cell lines were 
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cultured in puromycin for 4 weeks. FRK expression levels were measured in the stable cells 

using western blot analysis. 

3.7 Preparation of cell lysates  

The whole procedure was done at 40C before adding the Laemmli sample buffer. 10 cm cultures 

plates containing breast cancer cells were harvested using Trypsin-EDTA (0.25 % (w/v), and 

transferred into pre-cooled microcentrifuge tubes. The cells were centrifuged at 750 × g for 5 

minutes and washed twice with ice-cold PBS. Cells were lysed using freshly prepared lysis 

buffer (20 mM Tris ph 7.5, 1% Triton, 150 mm NaCl, protease inhibitors: Aprotinin 5 mg/l and 

PMSF 0.1 mM) for 30 minutes on ice and centrifuged at 14,000 rpm for 15 minutes at 40C. Cell 

debris was removed by full speed centrifugation for 15 minutes, and the Lowry’s assay was used 

to measured protein concentration. 2× Laemmli sample buffer was added to the lysates, and 

boiled at 1000C for 5 minutes, the lysates were stored at -200C.  

3.8 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophores 

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) using vertical Mini-

PROTEAN® Tetra cell electrophoresis system (Bio-Rad 165-8006). The gel was made 

according to the standard operating procedure of Dr. Lukong lab.  1.5 mm thickness gel was 

clamped between a short plate and a spacer plate, and the casting frame was assembled on 

casting stands. 10% resolving gel was used for SDS-PAGE in these experiments. The 10% 

resolving gel consists of dH2O, 375 mM Tris-HCl (pH 8.8), 30% (w/v) acrylamide/bisacrylamide 

(29:1), 0.4% (w/v) SDS and 0.16% (w/v) ammonium persulfate, and 0.1% N,N,N’,N’-

Tetramethylethylenediamine was poured in the plates and left for 45 minutes to solidify. After 

the solidification of the resolving gel, the stacking gel which consisted of dH2O, 0.5 M Tris-HCl 

(pH 6.8), 30% (w/v) acrylamide/bisacrylamide (29:1), 0.4% (w/v) SDS and 0.16% (w/v) 

ammonium persulfate, and 0.1% N,N,N’,N’-Tetramethylethylenediamine was added and left for 

30 minutes to solidify.  10-well or 15-well-forming combs were inserted in the stacking gel 

according to the loading volume of the samples. The samples were preheated and prestained 

protein ladder (ColorPlus, NEB, P7711S)  was added. The mixture were loaded when the 

polymerization of the gel was completed. The SDS-PAGE was performed using 1× running 

buffer containing 0.1% SDS, 25mM Tris, 192 mM glycine, and dH2O; pH 8.3 at a constant 
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voltage of 125 V for 90 minutes at room temperature. Subsequently, the gel was analyzed by 

western blot analysis. 

3.8. 1. Western blot analysis 

After resolving the proteins derived from whole cell lysates via SDS-PAGE in 10% 

polyacrylamide gels, a western blot analysis was done. First, a transfer stack was prepared as 

follows: the SDS-PAGE gel was overlayed with the BioTrace™ nitrocellulose membrane (Pall 

Corporation, P/N 66485), and was sandwiched between 3 sheets of 3 MM filter paper (Whatman 

3030-6189). The nitrocellulose membranes were pre-soaked in the transfer buffer (20% 

methanol, 25 mM Tris, 192 mM glycine, and dH2O; pH 8.3) at 40C for 15 minutes. The proteins 

were transferred to the nitrocellulose membrane by placing the prepared transfer stack in Mini 

Trans-blot® electrophoretic transfer apparatus (Bio-Rad, 170-3930) within transfer buffer, and 

then a constant voltage of 100 V was applied for 80 minutes at 40C.  

 The transferred nitrocellulose membrane was soaked in blocking solution (5% Difco™ 

Skim Milk, 0.05% sodium azide, and 1× TBST) at room temperature for 40 minutes, and rinsed 

with 1× TBST. The nitrocellulose membranes were immunoblotted with the appropriate 

antibodies via overnight incubation at 40C. The membranes were washed three times for 5 

minutes each with PBST and incubated for 1 h with fluorescent secondary antibodies (LI-COR 

Biotechnology, Guelph, ON, Canada). LI-COR Odyssey imaging system (LI-COR 

Biotechnology) was used to obtain the protein images.  

3.9. RT-PCR  

Total RNA was isolated from cell lines using RNeasy Plus Mini Kit (Qiagen, Mississauga ON). 

The RNA quantity and quality was analyzed using a spectrophotometer (Nanodrop) and gel 

electrophoresis. 1.0 µg of total RNA was used as a template to generate cDNA according to the 

manufacturer procedure using the Iscript cDNA Synthesis Kit (Bio-Rad, United States). 1.0 µg 

of the RNA was added to 4 μl 5x iScript reaction mix, 1 μl iScript reverse transcriptase, and 

sufficient nuclease-free water to a reaction volume of 20 μl. The reaction was incubated at 25°C 

for 5 min, 42°C for 30 min, and 85°C for 5 min, and then stored at −20°C. The cDNA 

synthesized was used as a template in quantitative RT-PCR reactions. Quantification of the 

expression GAPDH, SURVIVIN, MMP1, FN1, and VIMENTIN was performed using primers 

listed in Table 3.3 and sybr green SsoFastTM EvaGreen Supermix(R) (BIO-RAD) as described 

previously (Miah et al., 2014). The expression of FRK, SLUG, and GAPDH was determined 
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using TaqMan probes Hs00176619_m1, Hs00950344-m1, and Hs02758991-g1, respectively as 

recommended by the manufacturer (Life Technologies, Burlington, ON, Canada. 0.5 µL of 

probes for the target and housekeeping genes were added  to each well containing 0.6 µL cDNA 

and 5 µL  TaqMan(R) Master Mix (Life Technologies, Burlington, ON, Canada), then topped up 

with dH2O to a volume of 10 µL. Probes for GAPDH and target genes (FRK and SLUG) were 

labeled with VICTM and FAMTM dyes, respectively. The expression of both the target and 

housekeeping genes were detected using an Applied BiosystemsTM, Step One Plus qRT-PCR 

machine (Life Technologies, Burlington, ON, Canada). 

 3.10 Cell analysis using flow cytometer. 

Cell cycle analysis was done by quantifying the DNA content at each phase of the cell cycle 

using flow cytometer. MDA-MB 231 stably overexpressing FRK-WT and FRK depleted MCF-7, 

and SKBR3 breast cancer cells were used. These cells were seeded into a 6-cm culture plate. 

Upon confluency, the cells were harvested using trypsin and washed with PBS. The cells were 

then fixed with 100% ethanol for at least an hour and then stained with Propidium Iodide (PI) 

(Biovision); a fluorescent that directly binds to the DNA in the nucleus. The flow cytometry 

measures the amount of dye taken up by the cells, which indirectly amount to the DNA content.  

Apoptosis was detected using Annexin V-FITC Apoptosis Detection Kit. MDA-MB 231 stably 

overexpressing FRK-WT and FRK-YF as well as the parental cells were seeded into 6-well 

plate. Upon confluency, the cells were harvested by centrifugation at 1000 rpm for 10 min and 

washed with PBS. The cells were resuspended in 500 µl of 1 X binding buffer, and subsequently, 

5 µl of Annexin V-FITC and 5 µl of propidium were added and incubated in the dark for 5 min 

at room temperature. The cells were analyzed using a flow cytometer (Ex = 488 nm; Em = 530 

nm) using FITC signal detector (usually FL1) and PI staining by the phycoerythrin emission 

signal detector (usually FL2). The procedure used was according to the manufacture protocol. 

Also, the cell viability, as well as the number of cell death was determined with a flow 

cytometer using 7-amino-actinomycin D (7AAD) purchased from Bio-vision. Breast cancer cells 

were harvested cells and aliquoted up to 1 x 106 cells/100 μL in a FACS tube. The cells were 

washed twice by adding 2 mL PBS (or HBSS), centrifuged at 300 x g for 5 minutes. The 

supernatant was decanted, and the pelleted cells were resuspended in 100 μL of flow cytometry 

Staining Buffer. 5 μL of 7-AAD staining solution was added to the cells and mixed gently then 

incubated for 30 minutes at 4 °C in the dark. The 7-AAD fluorescence (using the FL-2 or FL-3 
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channel) was determined with a flow cytometer, and viable cells were counted from a dot-plot of 

forward scatter versus 7-AAD. The procedure used was according to the manufacture protocol 

3.11. Cell Proliferation assay  

Cell proliferation was carried out using a Cell Counting Kit-8 (CCK-8) (Dojindo, CK04-05) 

according to the manufacturer’s protocol. CCK-8 contains water-soluble tetrazolium salts 

(WSTs) (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2Htetrazolium) 

which is reduced by dehydrogenase to form an orange water-soluble 40 formazan dye, indicating 

cell mitochondrial viability. Parental MDA-MB 231, as well as MDA-MB 231 cells stably 

expressing FRK-WT and FRK-YF, were seeded into 96-well plates (BD, 353077) containing 100 

µL culture medium (1000 cells/well). 10 µL CCK-8 solution was added to each well, and then 

the cells were incubated for 2 hours. Following treatment with CCK-8, absorbance at 485 nm 

was measured using a POLARStar OPTIMA microplate reader (BMG Labtech, 413-1040). The 

cell proliferation assay was designed for 4 days that is after 0, 24, 48, 72 and 96 hours. The 

procedure used was according to the manufacture protocol 

3.12 Senescence assay 

Cell senescence assay was performed using senescence-associated β-galactosidase (SA-β-Gal) 

staining kit purchased from Bio vision, the procedure used was according to the manufacturer 

instructions. Culture medium was removed from the cells grown in a 6-well plate. The cells were 

washed once with 1 ml of 1X PBS and fixed at room temperature for 10-15 minutes using 0.5 ml 

of fixative solution.  After fixation of the cells, the cells were washed twice with 1 ml of 1X 

PBS.  0.5 ml of the staining solution mix containing 470 µl of staining solution, 5 µl of staining 

supplement and 25 µl of 20 mg/ml X-gal in DMF was added to each well and incubated 

overnight at 37°C. The following morning, the cells were observed under a microscope for 

development of blue color (200X total magnification).  

3.13 in vivo xenograft studies 

Xenograft experiments were done as described by (Miah et al., 2012).  Six-week-old female 

athymic nude mice used were purchased from the Charles River (Canada). Parental MDA-MB 

231 and MDA-MB 231 cells stably expressing each of the LPC- FRK-WT as well as LPC-FRK-

YF were harvested in PBS and resuspended in Matrigel (BD Biosciences, Bedford, MA, USA). 

For each injection, 400,000 MDA-MB 231 cells in a 100 ml volume of Matrigel were injected 
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subcutaneously bilaterally into the fourth mammary fat pads according to standard injection 

procedures, with four animals injected per cell line. Once tumors were palpable (about 2 weeks 

after injection of tumor cells), mammary primary tumor growth rates were monitored and 

analyzed by measuring tumor length (L) and width (W), for about 8 weeks. Tumor size was 

measured with a digital Vanier caliper. Volume was calculated as 0.50 x length x width2. Nude 

mice xenograft experiments were performed under an animal protocol approved by the Animal 

Care Unit and Committee of the University of Saskatchewan. Mice were killed humanely when 

the tumor size exceeded the approved limit by animal ethical authority. 

3.14 Gene expression datasets (in-silico) 

GENT, (http://medicalgenome.kribb.re.kr/GENT/reference.php) a bioinformatic software was 

used to analyzed the gene expression profiles of the different breast cancer cell lines. GENT 

utilizes datasets created by the Affymetrix platforms (U133A and U133plus2). The normalized 

expression profiles of target genes in all cancer cells generated from the Affymetrix platform 

133plus2 was downloaded. The expression data of target genes in breast cancer cell lines were 

selected, and the cell lines nomenclature were harmonized and classified based on their 

phenotype and molecular subtype (Basal A, (BA); Basal B, (BB); or Luminal, (LU)). Correlation 

analysis was run on all the breast cancer cells (n = 56) with GEO accession numbers GSE10021, 

GSE10843, GSE3156, GSE10890 and GSK's cell line project 

(https://array.nci.nih.gov/caarray/project/woost-00041/) to determine consistency across the 

different profiles 

3.14 Tumor expression data  

Breast cancers expression datasets were downloaded from the online database, The Cancer 

Genome Atlas (TCGA; http://tcga-data.nci.nih.gov). 1104 breast tumors and 114 normal 

mammary tissue samples were used for the analysis. The immunohistochemistry (IHC) data 

available for these samples were used and the samples were  classified into three sub-types. Gene 

expression data normalized using RSEM (RNA Seq Expectation Maximization) algorithm was 

used to analyze the correlation in expression. The sub-type classification was analyzed using 

python scripts pylab, while the sciPy stat library was used to generate the graphs and Spearman 

rank correlation between FRK and EMT/MET markers.  

http://tcga-data.nci.nih.gov/
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3.15 Statistical analysis 

For statistical analysis, one-way analysis of variance followed by a post hoc Newman–Keuls test 

was used done using GraphPad Software, San Diego, California, USA, www.graphpad.com. The 

results are given as the means ± S.D., nX3 unless otherwise stated. P≤0.05 was considered 

statistically significant. The gene expression data were analyzed by a one-way analysis of 

variance (ANOVA; SigmaStat Version 2.0, Jadel Corporation, San Rafael, CA, USA). Multiple 

range comparisons of paired means were done using a Fishers LSD test or the Newman-Keuls 

test. The level of significance was set at p<0.05 and the data were reported as mean ± SEM. 

Pearson's correlations were done to evaluate the consistency of the data and the relationship 

across gene expression profiles in the different cell lines. 

 

4.0 RESULTS 

4.1 Expression of FRK and pSTAT3 in human breast cell lines 

Previous work from our lab shows that overexpression of FRK-WT and the constitutively active 

form of FRK (FRK-YF) in MDA-MB 231 breast cancer cell line decreased STAT3 

phosphorylation. Hence, to validate STAT3 as a target of FRK, we checked if there was any 

correlation between FRK and pSTAT3 expression in a panel of 24 breast cancer cell lines of 

various molecular and cellular characteristics. The lysate from 24 breast cancer cells was 

obtained and subjected to immunoblot analysis for basal expression of FRK and pSTAT3 

(Figure 4.1). HCC 1395, Hs578T, BT 549 and MDA-MB 231 had low expression of FRK and 

high expression of pSTAT3. HCC 1419, HCC 1937, HCC1809, MCF-7 and SKBR3, expressed 

high levels of FRK and low levels of pSTAT3, while MDA-MB 435, MDA-MB 134 and 

MDAKB2 expressed both low levels of FRK and low levels of pSTAT3 and finally, BT 20 and 

HCC 1599 both expressed high levels of FRK and pSTAT3 (Figure 4.1). Altogether, we found 

about 75% inverse correlations between FRK and pSTAT3 in the 24 breast cancer cell lines 

tested (Figure 4.1). Our results align with our hypothesis that FRK is a potential negative 

regulator of STAT3 signaling. 

Furthermore, to validate STAT3 as a target of FRK, we determined the effect of FRK 

knockdown on STAT3 phosphorylation. To do this, we needed a breast cancer cell line that 

expresses high FRK and low pSTAT3. From our immunoblot of the 24 breast cancer cell lines, 

the candidate cell lines were HCC1419, HCC1937, HCC1809, MCF-7 and SKBR3. Another 
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criterion for sorting the choice of breast cancer cell line to be used for this study was the 

tumorigenicity of the cell lines.  Hence, we further classified the 5 breast cancer cell lines based 

on the tumorigenicity (Table 4.1). Only 3 of these breast cancer cells with a high protein level of 

FRK and low/no pSTAT3 were tumorigenic. These cell lines were SKBR3 (HER2 positive), 

MCF-7 and T47D (ER-positive).  Hence, we chose SKBR3 and MCF-7 for our knockdown 

studies as well as MDA-MB 231 for overexpressing FRK mutants.  

 

 

FIGURE 4.1: FRK and pSTAT3 expression in several breast cancer cell lines:  24 breast 
cancer cell lines were probed for FRK, pSTAT3, and STAT3 protein expression. β-tubulin was 
used as the loading control. The cells were lysed, and western blotting was done. Anti-FRK, 
pSTAT3, STAT3 and beta-tubulin antibodies were used to determine the expression of the 
different proteins. There was an inverse correlation between FRK and pSTAT3 expression in the 
breast cancer cell lines tested. 

 

FRK 
 
pSTAT3 
 
STAT3 
 
β-Tubulin 
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Table 4.1: Classification of 24 breast cancer cell lines based on their molecular subtype, 
tumorigenicity, and protein expression of FRK and pSTAT3. About 30% of the 24 breast 
cancer cell lines were tumorigenic including SKBR3 and MDA–MB 231. Also, FRK and pSTAT3 
protein expression are inversely correlated. + (low expression), ++ (moderate expression), +++ 
(high expression), ++++ (very high expression) 
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4.2. Stimulation of breast cancer cell lines with IL-6 

Next, we checked the response of these breast cancer cells to IL-6 stimulation. IL-6 is a 

cytokine known to activate the JAK\STAT pathway leading to constitutive activation of STAT3 

(Hirano et al., 2000). SKBR3, MCF-7, and MDA-MB 231 were subjected to IL-6 (10ng/mL) 

stimulation at different time (10, 20, 30, 60 and 120 minutes) and different concentration of IL-6 

(0, 5, 10, 20, 30 and 50ng/mL) for 30 minutes. pSTAT3, as well as FRK protein expression 

levels, was determined by western blot (Figure 4.2). MCF-7 and SKBR3 cells were all sensitive 

to IL-6 stimulation, STAT3 phosphorylation increased with increased concentration and time 

with exception to MDA-MB 231, where there was no effect on STAT3 phosphorylation upon IL-

6 stimulation (Figure 4.2), we are not sure why stimulation of MDA-MB 231 with IL-6 did not 

affect STAT3 phosphorylation. On the other hand, a previous report had shown that STAT3 

could be activated via the EGF signaling pathway (Wu et al., 2014). Thus, we stimulated MDA-

MB 231 with epidermal growth factor (EGF) and tested the effect on STAT3 phosphorylation. 

Stimulation of MDA-MB 231 with EGF at various concentrations (1, 5, 10 and 30 ng/mL) did 

not affect STAT3 phosphorylation and FRK protein expression (Figure 4.3). It is possible that 

the phosphorylation of STAT3 in this cell line is already saturated hence no further response 

could be induced by stimulation with either IL-6 or EGF.   However, increasing the 

concentration of EGF led to higher cellular levels of tyrosine phosphorylation with the peak of 

phosphorylation at 5 ng/mL when the samples were blotted with an antibody against 

phosphorylated tyrosine residues (4G10) (Figure 4.3). We further tested the effect of IL-6 

stimulation on STAT3 phosphorylation in MDA-MB 231 transiently expressing FRK-WT, FRK-

YF or FRK-K262M. We obtained a decrease in the phosphorylation of STAT3 with MDA-MB 

231 transiently expressing FRK-WT as well as FRK-YF (Figure 4.4).  
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Figure 4.2: Effect of IL-6 stimulation on pSTAT3 and FRK in different breast cancer cell 
lines. Four breast cancer cell lines from each of the molecular subtype ER-positive -(MCF-7),  
HER2 positive –(SKBR3) and triple negative –(MDA-MB 231) were stimulated with A). A fixed 
concentration of IL-6 (10 ng/mL) at different time points (10, 20, 20, 60 and 120 minutes) and 
was repeated with B).  different concentrations of IL-6 (5, 10, 20, 30 and 50 ng/mL) for 30 
minutes. Cell lysates were subjected to SDS-PAGE analysis followed by immunoblotting with 
antibodies against the indicated proteins.Il-6 stimulation at different time and concentration in 
MDA-MB 231 did not affect both STAT3 phosphorylation and FRK protein expression. 
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Figure 4.3: A). Effect of EGF stimulation on pSTAT3 and FRK protein expression in 
MDA-MB 231 breast cancer cell lines. MDA-MB 231 cells were stimulated with EGF 
(50ng/mL) at different time points (1, 5, 10 and 50 minutes). The cell lysates were collected at 
the different time points and subjected to SDS-PAGE analysis followed by immunoblotting with 
antibodies against the indicated proteins. EGF stimulation did not affect both STAT3 
phosphorylation and FRK protein expression. B). Effect of EGF stimulation on tyrosine 
phosphorylation in MDA-MB 231. MDA-MB 231 cell were treated with EGF (50 ng/mL) at 
different time points (1, 5, 10 and 50 minutes). The cell lysates were subjected to SDS-PAGE 
analysis followed by immunoblotting with an antibody used to detect tyrosine phosphorylation 
(anti-4G10). There was an increase in the levels of tyrosine phosphorylation upon EGF 
stimulation. 
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Figure 4.4: Effect of IL-6 stimulation on the FRK-mediated regulation of signaling proteins 
in MDA-MB 231 cells: A). The empty vector control, Wild-type FRK (FRK-WT), Mutant FRK 
Y497F and FRK-KM (kinase dead)  cell lines were harvested, lysed and resolved via SDS-
PAGE. Western blotting was performed using antibodies against the indicated signaling proteins 
corresponding to important signaling pathways. An antibody against FRK was used to determine 
the expression of FRK in MDA-MB 231 transiently transfected with FRK wild-type and FRK 
mutants. β-tubulin was used as the loading control. B). pSTAT3 protein expression levels were 
quantified using Image J (Ver. 1.48). The data are presented as mean ± S.D. (p-value ≤ 0.05).  
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4.3. Down-regulation of FRK in does not affect STAT3 activation/phosphorylation 

We generated stable MDA-MB 231 breast cancer cell lines that overexpressed either 

FRK-WT or FRK-YF and also transiently knockdown the expression of FRK in SKBR3 and 

MCF-7 breast cancer cell line using siRNA. We obtained about a 60% fold increase in the 

expression of FRK-WT and FRK-YF mRNA expression in the respective stable MDA-MB 231 

cell lines as compared to the parental cells. For the SKBR3 and MCF-7 breast cancers cells, we 

obtained about 70% knockdown of FRK mRNA expression. Similar trends in protein levels were 

seen when the stable (MDA-MB 231) and transient knockdown cells (SKBR3 and MCF-7), were 

compared to their respective parental cell lines (Figure 4.5).  Western blot analysis was carried 

out on the cell lysates to determine the protein expression of FRK, pSTAT3, STAT3, and β-

tubulin. The expression of β-tubulin was used as a loading control in both the overexpressed and 

knockdown cells. We noted a decrease in STAT3 phosphorylation in MDA-MB 231 cells that 

were stably overexpressing FRK-WT and FRK-YF as compared to the parental MDA-MB 231 

parental cells. This result was similar to what we previously obtained from our lab, and this 

confirms that FRK downregulates STAT3 phosphorylation. However, when we knockdown FRK 

in SKBR3 and MCF-7 breast cancer cell lines, we expected the depletion of FRK to induce 

STAT3 phosphorylation; however, the knockdown of FRK neither increased nor decreased 

STAT3 phosphorylation in both SKBR3 and MCF-7 cell lines (Figure 4.6). This could have 

been because FRK was not completely knocked down in both SKBR3 and MCF-7. It is also 

possible that complete knockout of FRK may have a significant impact on STAT3 

phosphorylation/activation.  

 

 

 

 

 

 

 



54 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C
on

tro
l 

Sc
ra

m
bl

e 

Si
R

N
A

 F
R

K
 

Sc
ra

m
bl

e 

Si
R

N
A

 F
R

K
 

MDA-MB 231 

SKBR3 

MCF-7 

        FRK 

FRK 

FRK 
B 

C D 

E F 

A 
FR

K-
W

T 

Pa
re

nt
al

 

FR
K-

YF
 

 

Parental FRK-WT FRK-YF 

Parental scramble FRK-KD 

FRK-KD scramble Parental Re
la

tiv
e 

m
RN

A 
ex

pr
es

sio
n/

G
AP

DH
 

(fo
ld

 c
ha

ng
e)

 

Re
la

tiv
e 

m
RN

A 
ex

pr
es

sio
n/

G
AP

DH
 

(fo
ld

 c
ha

ng
e)

 
Re

la
tiv

e 
m

RN
A 

ex
pr

es
sio

n/
G

AP
DH

 
(fo

ld
 c

ha
ng

e)
 

FRK 

β-Tubulin 

FRK 

β-Tubulin 

Pa
re

nt
al

 

Sc
ra

m
bl

e 

FR
K-

KD
 

Pa
re

nt
al

 

Sc
ra

m
bl

e 

FR
K-

KD
 

FRK 

β-Tubulin 

* 

* 

* 

* 



55 
 

Figure 4.5: The expression of FRK in breast cancer cell lines following its knockdown or 
overexpression: The mRNA and Protein levels in; A). The MDA-MB 231 cell stably expressing 
the FRK wild-type (FRK-WT) and Mutant (FRK-YF), knockdown of FRK in breast cancer cell  
lines B) SKBR3 and C) MCF-7. Cell lysates were subjected to SDS-PAGE analysis followed by 
immunoblotting with antibodies against the indicated proteins. FRK mRNA expression was 
quantified using RT-PCR. The data are presented as mean ± S.D (p-value ≤ 0.05).  

Figure 4.6: The effect of FRK overexpression on STAT3 phosphorylation. A) Parental 
MDA-MB 231 or control, FRK WT, and FRK YF stable MDA-MB 231 cells. The effect of 
FRK knockdown on STAT3 phosphorylation in B) SKBR3 and C) MCF-7 Cell lysates were 
subjected to SDS-PAGE analysis followed by immunoblotting with antibodies against the 
indicated proteins. Overexpression of FRK decreased STAT3 phosphorylation, while the 
knockdown had no significant effect 
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4.4. Overexpression of FRK regulates STAT3 downstream target genes 

Activated STAT3 plays a crucial role in tumorigenesis by up-regulating genes that promote cell 

proliferation (Cyclin D1, c-myc), survival (BCL-xL, MCL-1, and Survivin), migration and 

invasion (MMP-2, MMP10, and MMP-1) (Banerjee and Resat, 2016; Hsieh et al., 2005). 

Therefore, we next evaluated the effect of FRK overexpression and knockdown on STAT3 target 

genes. Real-Time (RT) PCR was used to investigate the effect of FRK overexpression and 

knockdown on the mRNA expression of some STAT3 downstream target genes; this includes 

Survivin, Cyclin D1, and MMP1. The overexpression of FRK-WT in MDA-MB 231 cells 

resulted in a significant downregulation of Survivin, Cyclin D1, and MMP-1. Although a similar 

observation was made for FRK-YF stable cells, on the other hand, we found that FRK-YF 

increased Cyclin D1 gene expression. We are not sure why this mutant increased cyclin D1 

expression, we hope to investigate this in future (Figure 4.7). However, These results show that 

overexpression of FRK not only decreased STAT3 phosphorylation but also resulted in the 

impairment of STAT3 downstream signaling events. Although we obtained no significant effect 

on STAT3 phosphorylation in both SKBR3 and MCF-7 breast cancer cell lines following the 

knockdown of FRK expression we observed an upregulation of STAT3 target genes in both cell 

lines. The knockdown of FRK led to the upregulation of Survivin and cyclin D1 mRNA levels in 

SKBR3 (Figure 4.7). There was no significant effect on the mRNA levels of Survivin and cyclin 

D1 in MCF-7. Likewise, we observed an upregulation of MMP-1 mRNA levels in MCF-7 

knockdown cells (Figure 4.7). MMP-1 mRNA expression was not observed in SKBR3. Taken 

together our data indicated that FRK overexpression decreased STAT3 phosphorylation and 

some of its downstream target genes. Although we obtained no significant effect of FRK 

knockdown on STAT3 phosphorylation, we observed an increase in expression of STAT3 target 

genes following FRK knockdown. Hence, our results show that FRK might regulate the genes 

through other mechanisms other than STAT3 signaling pathway. 
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Figure 4.7: The effect of FRK overexpression and knockdown on STAT3-target genes in 
breast cancer cell lines: A). MDA-MB 231 stable cell lines were transfected with the empty 
vector control, FRK wild-type (FRK WT) and mutant FRK-YF plasmid constructs. B). SKBR3 
and C). MCF-7. The mRNA levels of Survivin, Cyclin D1 and MMP1 in SKBR3 and MCF-7 
cells were quantitatively measured relative to their respective parental cell lines using 
quantitative RT-PCR. The data are presented as mean ± S.D. (p-value ≤ 0.05).  
 
4.5. FRK inhibits STAT3 activation through ERK1/2 activation 
 
We showed that overexpression of FRK in MDA-MB 231 cells decreased STAT3 

phosphorylation (Figure 4.6 A). However, we do not know the exact mechanism by which FRK 

decreases the phosphorylation of STAT3. Therefore, we decided to investigate if FRK directly 

binds to STAT3. An immunoprecipitation assay was carried out by using MDA-MB 231 (FRK-

negative breast cancer cell) transiently transfected with FRK-WT. Cell lysates were 

immunoprecipitated with an anti-STAT3 antibody or anti-IgG and anti- FRK antibody and vice 

versa. There was no direct interaction between FRK and STAT3 (Figure 4.8). The decrease in 

STAT3 phosphorylation with FRK overexpression could have been as a result of indirect binding 

of FRK to STAT3, or  FRK could have phosphorylated/ activated an intermediate, for example, a 

phosphatase and the latter subsequently dephosphorylating pSTAT3 (Figure 4.6A). It is worth 

mentioning that FRK is not a phosphatase, hence cannot directly dephosphorylate pSTAT3.  

Previous studies showed that activated ERK1/2 (pERK1/2) negatively regulates the 

activation of STAT3 (pSTAT3 Tyr705) by phosphorylation of STAT3 at Ser727. 

Phosphorylation of STAT3 Ser727 was shown to decrease the phosphorylation of STAT3 

Tyr705 (Chung et al., 1997; Wakahara et al., 2012). Based on this, we investigated the effect of 

FRK overexpression and knockdown on pERK1/2 and pSTAT3 Ser727. Cell lysates of MDA-

MB 231 stably overexpressing FRK-WT and FRK-YF as well as SKBR3 FRK knockdown cells 

were immunoblotted with antibodies against pSTAT3 Ser727, ERK1/2, and pERK1/2. We 

expected pERK1/2 to increase the phosphorylation of STAT3 Ser727 because data from our lab 

had shown an increase in protein expression pERK1/2 following FRK overexpression in MDA-

MB 231 (Figure 4.8). Interestingly, we saw an increase in pSTAT3 Ser727 in MDA-MB 231 

overexpressing FRK when compared to the parental cells (Figure 4.8). Several reports have 

shown that phosphorylation of STAT3 at Ser727 negatively regulates phosphorylation of STAT3 

Tyr705 (Chung et al., 1997; Wakahara et al., 2012). Hence, it is possible that FRK decreases 

STAT3 phosphorylation by phosphorylating ERK1/2, which activates STAT3 Ser727. However, 
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transient knockdown of FRK in SKBR3 cells did not affect the protein expression of pERK1/2 

and pSTAT3 Ser727 when compared with the parental cells (Figure 4.8). This could explain 

why we saw no effect of FRK knockdown on STAT3 phosphorylation in SKBR3 and MCF-7 

breast cancer cells (Figure 4.6 B and C). Our results suggest that activation of ERK1/2 by FRK 

could probably be the mechanism by which FRK downregulates STAT3 Tyr705 activation. 

It is worth mentioning that ERK1/2 is serine/threonine kinase, hence cannot be 

phosphorylated directly by FRK a tyrosine kinase. However, Jin et al. showed that 

overexpression FRK phosphorylates EGFR Tyr1173 (Jin and Craven, 2014) Phosphorylated 

EGFR Tyr1173 have been reported to activate ERK (Hsu et al., 2011). Therefore, it possible that 

FRK decreases STAT3 phosphorylation through EGFR signaling pathway, we intend to 

investigate the role of FRK in ERK1/2 activation and further identify the particular 

substrate/phosphatase activated by FRK which possibly dephosphorylate STAT3. 
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Figure 4.8: A and B) FRK does not interact with STAT3. FRK-negative MDA-MB 231 cells 
were transiently transfected with FRK-WT. Interaction of FRK with STAT3 was done using 
Immunoprecipitation assay. Cell lysates were immunoprecipitated with an anti-FRK antibody or 
anti-IgG to precipitate STAT3 and immunoblotted with anti- STAT3 antibody and vice versa. 
(TCL-Total cell lysate) β-Tubulin protein expression was not detected in the IgG and in the IP: 
STAT as well as IP:FRK lane of the bottom panel  C and D) FRK increases ERK1/2 and 
STAT3 serine phosphorylation. Cell lysates obtained from MDA-MB 231 stably 
overexpressing FRK-WT, FRK-YF, as well as FRK-depleted SKBR3 cells, was immunoblotted 
with an antibody against pERK1/2, ERK1/2, and pSTAT3 Ser727. Overexpression of FRK-WT 
and FRK-YF increases ERK1/2 phosphorylation and pSTAT3 ser727, while FRK depletion in 
SKBR3 did not affect ERK1/2 phosphorylation and pSTAT3 ser727. 

4.6 FRK expression is high in epithelial-like breast cancer cells and the normal breast 

epithelium  

Although we did not observe any change in the phosphorylation of STAT3 following the 

knockdown of FRK, we, however, noted upregulation of STAT3 target genes (Figure 4.5). We 

concluded that the tumor suppressive role of FRK might be through other mechanisms other than 

phosphorylation of STAT3. Hence, we further investigated other mechanisms by which FRK 

exerts its tumor suppressive role in breast cancer. 
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  In glioma cells, FRK has been shown to inhibit cell migration by suppressing several 

mesenchymal markers (Shi et al., 2015). Although FRK has been reported to be expressed 

mainly in epithelial cells but not in mesenchymal cells (Berclaz et al., 2000; Cance et al., 1994), 

there is no report on the mechanisms by which FRK suppresses cell migration in breast cancer 

cells. Hence, we hypothesized that FRK possibly regulates Epithelial to Mesenchymal Transition 

(EMT). EMT is a biological process by which cells undergo a transition from an epithelial to a 

mesenchymal phenotype (Nantajit et al., 2015). Breast cancer cells have been classified into 

three subtypes (luminal, Basal B and Basal A) based on their morphology and invasive 

properties (Neve et al., 2006). Luminal cells are more differentiated with epithelial-like 

phenotype while the Basal B cells are less differentiated and possess mesenchymal-like 

appearance; Basal A cells have either luminal-like or basal-like morphology (Neve et al., 2006).  

To investigate the role of FRK on EMT, first, we checked the protein, and mRNA 

expression of FRK, epithelial marker (E-cadherin) and mesenchymal marker (Fibronectin) in 11 

breast cancer cell lines classified based on their morphology and invasive potential using western 

blot analysis and RT-PCR. The cell lines used were MCF-7, T47D, SKBR3, and AU565 

(Luminal), MDA-MB 468, HCC 70 and BT20 (Basal A), MDA-MB 231, BT 549, and Hs 578T 

(Basal B). From our data, we found out that all luminal and Basal A breast cancer cells expressed 

FRK, as well as E-cadherin, except for SKBR3 and AU565 that don’t express E-cadherin (Neve 

et al., 2006).  However, basal B cells had low or no FRK and E-cadherin protein expression but a 

high expression of Fibronectin protein, a mesenchymal marker (Figure 4.9). The expression 

FRK in MCF10A was low/moderate. These results were generally consistent with the mRNA 

expression data showing high and low expression of FRK transcripts in Basal A and Basal B cell 

lines, respectively (Figure 4.9). To further validate our findings, we carried out 

immunohistochemical staining for FRK expression in both normal and malignant breast tissues 

using breast microarray (TMA) samples. The TMA used included TNM, clinical stage and 

pathology grade, from 6 cases of breast invasive ductal carcinoma and matched adjacent normal 

breast tissue, with quadruple cores per case). Immunohistochemistry (IHC) for FRK expression 

and scored for staining was performed on service by USBIOMAX and analyzed by their 

pathologist. We found that the majority of the samples (22 out of 24) displayed a score of 1 or 

less and only two samples (one normal and one tumor) showed a 2+ strength. This indicated that 

FRK protein expression was low/moderate in both normal and cancer tissues. However, when 
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expressed, FRK was localized predominantly in epithelial cells of intact mammary ducts in the 

normal breast tissue (Figure 4.9). These results indicate that FRK is differentially expressed in 

breast cancer cells and that expression of FRK is higher in epithelial-like cell lines, compared 

with those with mesenchymal characteristics. No apparent correlation was observed between 

FRK expression and the clinicopathological characteristics such as tumor grade and TNM in the 

small sample size used in this study. However, our expression data corresponding to cell lines 

and TMA together indicate that the expression of FRK is enriched in epithelial cells/tissue and 

downregulated in mesenchymal-like Basal B breast cancer cells 
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Figure 4.9: Protein and mRNA expression of FRK, E-cadherin and Fibronectin in 11 
breast cancer cell lines A). Protein expression, the immortalized normal mammary epithelial 
cell line MCF10A as well as the indicated breast cancer cell lines, corresponding to either the 
Basal A, Basal B or the luminal subtypes, were probed for FRK, E-cadherin, and Fibronectin 
expression, β-Actin was used as the loading control. B), C) and D). FRK, E-cadherin and 
Fibronectin mRNA levels in the same cell lines were determined via quantitative RT-PCR 
analyses using appropriate probes. FRK protein and mRNA expression positively correlate with 
E-cadherin (epithelial marker) protein and mRNA expression. However, there was an inverse 
correlation between FRK and Fibronectin (a mesenchymal marker) protein and mRNA 
expression. The data are presented as mean ± SEM. (p-value ≤ 0.05).  
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Figure 4.10: Expression of FRK in breast cancer tissues: Using FRK-specific antibodies, 
FRK expression was determined via immunohistochemical (IHC) analyses of a breast cancer 
tissue array containing 6 cases of breast invasive ductal carcinoma and matched adjacent normal 
breast tissue, quadruple cores per case. The array also contained clinical information that 
included TNM, stage and pathology grade (USBIOMAX, array BR243f) A) graphical 
representation of FRK staining strength. B) Shown here is a representative image of FRK 
expression in invasive ductal breast carcinoma tissues and matched normal control tissues. 
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4.7. FRK regulates Epithelilal to Mesenchymal Transition in breast cancer cells 

FRK have been shown to suppress EMT markers in glioma cells (Shi et al., 2015). Our results 

shown in Figure 4.9 show that FRK protein and mRNA expression was moderate/high in 

Luminal and Basal A cells that display an epithelial-like phenotype, and low or undetected in 

Basal B cells which are more mesenchymal. Further, we detected the expression of FRK 

predominantly in the epithelial layer lining the mammary ducts of the normal breast tissue 

(Figure 4.10). Based on these observations, we hypothesized that FRK might regulate EMT in 

breast cancer cells. To directly determine the effect FRK on EMT in breast cancer cells, we 

examined the expression of epithelial and mesenchymal markers in the MDA-MB 231 cells 

stably expressing either FRK-WT or FRK-YF, as well as in FRK depleted SKBR3 and MCF 7 

cells via Real-time PCR and Western blotting analyses. Overexpression of FRK-WT and FRK-

YF in MDA-MB 231 cells significantly upregulated the levels of E-cadherin mRNA and 

suppressed several mesenchymal markers such as Slug, N-cadherin, and Fibronectin (Figure 

4.11 A and B). Also, we observed a significant reduction in the levels of Fibronectin and N-

cadherin protein expression, but there was no change in Slug protein levels (Figure 4.11C). 

There was a minor increase in the protein levels of E-cadherin (Figure 4.11C). It is worth 

mentioning that there was a change in the cell morphology of MDA-MB 231 cells that stably 

overexpressed FRK when compared with the parental cells. We observed that the FRK-

expressing cells lost the typical mesenchymal stellate morphology exhibited by the parental 

cells, and acquired a more rounded shape (Figure 4.11D). To further verify the downregulation 

of mesenchymal markers with FRK overexpression, we took another basal B breast cancer cell 

line Hs578T and transiently overexpressed FRK in it. We also observed a decrease in 

Fibronectin, a mesenchymal marker (Figure 4.11E). Meanwhile, the knockdown of FRK in 

SKBR3 and MCF-7 breast cancer cells led to the up-regulation of Snail, Vimentin, and 

Fibronectin. We obtained a downregulation of E-cadherin in MCF-7 breast cancer cell lines at 

both mRNA and protein levels. The effect FRK knockdown on E-cadherin mRNA and protein 

expression could not be analyzed in SKBR3 because SKBR3 does not express E-cadherin (Neve 

et al., 2006). Together, our data consistently showed that the overexpression of FRK increased 

the expression of E-cadherin mRNA and down-regulated the transcript levels of Fibronectin, N-

cadherin and Slug, while knockdown of FRK in both MCF-7 and SKBR3 cells led to the 

upregulation of Vimentin and Fibronectin mRNA levels. Our findings, therefore, suggest that 
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FRK inhibits EMT by stimulating the expression of the epithelial marker, E-cadherin and 

suppressing the expression mesenchymal proteins, especially Vimentin and Fibronectin (Figure 

4.11F-I).  
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FIGURE 4.11: FRK-mediated regulation of EMT in breast cancer cell lines: A) and B). The 
mRNA levels of E-cadherin, Vimentin, Fibronectin, Slug, and N-cadherin, relative to GAPDH 
levels, were quantitatively measured in the control vector, FRK WT and FRK YF-expressing 
MDA-MB 231 stable cell lines. C).  Lysates from parental MDA-MB 231 or MDA-MB 231 
cells stably expressing either wild-type FRK (FRK-WT) or FRK-YF were probed for the 
expression of E-cadherin, N-cadherin, and Slug (left panel), or Fibronectin (right panel) using 
appropriate antibodies. β-Actin was used as the loading control. D). The microscope was used to 
examine the cellular morphology of the indicated stable cell lines generated. Arrows indicate the 
change from stellate to round shape. Phase-contrast images of the indicated stable cell lines were 
taken using the Olympus 1x51 microscope at 20x magnification. E). Parental Hs578T and 
Hs578T cells transiently expressing FRK- WT and FRK-YF(FRK YF) were probed for the 
expression of Fibronectin using appropriate antibodies. β-Actin was used as the loading control. 
F) and G) Endogenous FRK was transiently knocked down in MCF-7 cells and the mRNA 
levels of E-cadherin, Fibronectin and Vimentin were quantified relative to GAPDH transcript 
levels. Parental MCF-7 cells were used as reference H). Expression of E-cadherin, Fibronectin, 
and Slug was examined in MCF-7 cells following the transient knockdown of FRK. β-Actin was 
used as the loading control I). The mRNA levels of Vimentin and Fibronectin were 
quantitatively measured in SKBR3 cells following the transient knock-down of endogenous 
FRK. Parental SKBR3 cells were used as a reference.  The data are presented as mean ± S.D. (p-
value ≤ 0.05).  
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4.8 FRK expression negatively correlates with mesenchymal markers in a large cohort of 

breast cancer cells   

To further substantiate our findings that FRK is a negative regulator of EMT, we mined the gene 

expression database, GENT (Gene Expression across Normal and Tumors; 

http://medicalgenome.kribb.re.kr/GENT/reference.php) to determine the correlation between 

FRK, epithelial and mesenchymal markers expression using 56 breast cancer cells. We checked 

the relationship between the expression of FRK with mesenchymal markers Vimentin (VIM), N-

cadherin (CDH2), Fibronectin (FN1), Snail family transcriptional repressor 2 (SNAI2), twist 

family bHLH transcription factor 1(TWIST1), and epithelial markers E-cadherin (CDH1) and 

Keratin 18 (KRT18), in breast cancer cell lines stratified under Basal B (BB), Basal A (BA) and 

luminal (LU) (Figure 4.12). A Recent study on FRK shows that the level of FRK transcript in 

basal B breast cancers was low when compared to Basal A and Luminal cells (Bagu et al., 2017; 

Ogunbolude et al., 2017). Data obtained from the database also showed that the mean transcript 

expression of VIM, CDH2, FN1, and TWIST1 were higher in the basal B breast cancer cells 

with low FRK transcript levels as compared to Basal A and Luminal cells that express high FRK 

transcript levels (P˂0.05; Figure 4.12).  Mean transcript levels of SNAI2 were higher in the 

basal B breast cancer cells with low FRK transcript levels as compared to the Luminal cells 

(P˂0.05; Figure 10G). The Pearson′s correlation analysis that was run on 226 samples made up 

of 56 breast cancer cells showed that FRK transcript levels were negatively correlated with the 

transcript levels of VIM, CDH2, and TWIST1, with R-values of -0.28; -0.20; -0.25 respectively 

(P<0.001). The mean transcript expression of CDH1 and KRT18 were lower in the basal B 

breast cancer cells with low FRK transcript levels as compared to Basal A and Luminal cells 

(P˂0.05; Figure 10C, E). FRK transcript levels correlated positively with the transcript levels of 

CDH1 and KRT18, with R-values of 0.39 and 0.26 (P<1.0 x 10-5), respectively. However, this 

trend was not completely reciprocated when we interrogated the cancer genome atlas (TCGA) 

dataset (http://cancergenome.nih.gov/) for breast cancer tissues, a positive correlation was also 

observed with E-cadherin and FRK in the normal tissues, and a negative correlation was 

observed with Fibronectin and Vimentin in normal tissues samples (Figure 4.13). However, no 

correlation was observed between FRK and Vimentin, E-cadherin and Fibronectin in the tumor 

samples (Figure 4.13). This might be because the TCGA breast carcinoma dataset, unlike the 

cell lines, was not classified by Basal A/Basal B mesenchymal properties, and this may explain 

http://medicalgenome.kribb.re.kr/GENT/reference.php)
http://cancergenome.nih.gov/)
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the discrepancy in both datasets. However, the results obtained in Figure 4.12 suggests that FRK 

expression inversely correlates with mesenchymal markers in Basal B breast cancers cells and 

present a contextual nature for FRK in EMT-associated cellular processes. Taken together, our 

data demonstrate that FRK inversely correlates with mesenchymal markers in breast cancer cells 

and may, therefore, be a negative regulator of mesenchymal-like properties of breast cancer cells.  
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Figure 4.12:  Gene expression profiles of FRK, epithelial and mesenchymal markers in 
Basal A, Basal B, and luminal breast cancer cell lines. Relative transcript abundances of A). 
and B). FRK, C). Vimentin, VIM; D). E-cadherin, CDH1; E). N-cadherin, CDH2; F). Keratin 
18, KRT18; G). Fibronectin, FN1, H). Slug, SNAI2 and I). TWIST1 were assessed in Basal A 
(BA), Basal B (BB) and Luminal (LU) breast cancer cell lines (N=56). Mean transcript levels of 
the indicated genes in breast cancer cell lines were mined from the GSE10021, GSE10843, 
GSE3156, GSE10890 and GSK's cell line project  
(https://array.nci.nih.gov/caarray/project/woost-00041/) databases using the GENT software 
(http://medicalgenome.kribb.re.kr/GENT/reference.php). The data are presented as mean ± SEM. 
(p-value ≤ 0.05).  
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FIGURE 4.13: FRK gene expression correlation with EMT markers: Gene expression from 
RNA Seq V2 data from 114 normal mammary tissues (A, B, C) and 1104 breast cancer samples 
(E, F, G) from TCGA were downloaded and analyzed for FRK, E-cadherin, Vimentin, and 
Fibronectin expression. The scatterplots represent correspondence of FRK expression with E-
cadherin (A and D), Vimentin (B and E) and Fibronectin (C and F) in TCGA Expression values 
are presented are log2 intensities. Included in the scatterplots are the Spearman rank correlation 
with significant P-value and lines showing the linear fit. 
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4.9. Effect of FRK overexpression on apoptosis  

FRK is a candidate tumor suppressor in breast cancer known for its ability to inhibit breast 

cancer cell proliferation and migration. Previous studies have shown that FRK suppresses cell 

proliferation in breast cancer cells by arresting cells in the G1 phase (Meyer et al., 2003), 

negatively regulating the AKT pathway by stabilizing PTEN (Yim et al., 2009a), and inhibiting 

EGFR signaling (Jin and Craven, 2014).  From our  findings, we have shown that overexpression 

of the FRK wild-type or it's constitutively active mutant (FRK-YF) in MDA-MB 231 (an FRK-

negative breast cancer cell line) downregulates the mRNA levels of Survivin.However, the 

knockdown of FRK in SKBR3 and MCF-7 breast cancer cell lines that normally exhibit high 

levels of FRK resulted in the upregulation of Survivin transcript levels. Survivin belongs to the 

inhibitors of apoptosis family, known to negatively regulates apoptosis (Ma et al., 2016).  Based 

on this, we investigated the effect of FRK on apoptosis by using Annexin V-FITC Staining.  We 

found that overexpression of FRK-WT and FRK-YF in MDA-MB 231 cells had no significant 

effect on apoptosis when compared to the parental cells. The Annexin V-PI positive cells in both 

MDA-MB 231 stably overexpressing FRK-WT and FRK-YF were 3.5% and 4.3% respectively 

when compared with the parental cells of 2.6% (Figure 4.14). Although in glioma cells, transient 

overexpression of FRK-WT was shown to promotes apoptosis (Hua et al., 2014); we did not see 

any effect in the MDA-MB 231 cells when FRK was stably overexpressed. The reason for this 

cell-specific effect of FRK is unknown. Our results, therefore, suggest that FRK might not be a 

potent inducer of apoptosis. The inhibition of Survivin with FRK overexpression is possibly not 

the mechanism by which FRK inhibits cell proliferation.  FRK possibly inhibits cell proliferation 

through other mechanisms. 
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Figure 4.14: Effect of FRK on apoptosis. Representative micrographs of cell apoptosis with 
FRK stably overexpressed in MDA-MB 231 using Annexin V -FITC double-staining assay by 
flow cytometer. A. parental cells, B) FRK-WT stably expressed in MDA-MB 231 and C) FRK-
YF stably expressed in MDA-MB 231. Overexpression of FRK in MDA-MB 231 breast cancer 
cells had no significant effect on apoptosis 

4.10. Effect of FRK depletion on the cell cycle. 

FRK has been shown induce the G1 arrest of the cell cycle when overexpressed in BT549 breast 

cancer cells (Meyer et al., 2003).  However, how FRK depletion affects cell cycle progression 

was not validated in this study. To have an insight into the importance of FRK in arresting the 

G1 phase of the cell cycle, using a flow cytometer we investigated what the effect of knocking 
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down and overexpressing FRK would be on the different phases of the cell cycle. First, we stably 

overexpressed FRK in MDA-MB 231 and determined its effect on different stages of the cell 

cycle. We found that stable overexpression of FRK resulted in the G1 arrest of the cell cycle 

(Figure 4.15). This data not only confirms previous reports but also shows that the effect of FRK 

overexpression on the G1 phase of the cell cycle is not cell line-specific. When we transiently 

knockdown FRK in MCF-7 breast cancer cells, we observed a decrease in the number of cells in 

the G1 phase of the cell cycle, as anticipated (Figure 4.15). Although we expected to see an 

increase in the S-phase or the G2 phase, there was no significant change in the number of cells 

with or without FRK. Interestingly, we found a significant increase in apoptosis with FRK 

knockdown from 1.92% in the parental MCF-7 cells to 8.53% in the FRK-knockdown cells. Our 

results, therefore, suggest that FRK possibly inhibits cell proliferation by inducing the G1 arrest 

of the cell cycle, while the effect of FRK depletion possibly suggests that FRK might play a 

crucial role in maintaining the survival of some breast cancer cells.  



79 
 

 

 
Figure 4.15: Effect of FRK on the cell cycle. A and B) MDA-MB 231 and MDA-MB 231  
stably expressing FRK-WT C and D) MCF-7 with transient knockdown of FRK. Cells were 
harvested and stained with propidium iodide; cell cycle distribution was analyzed by flow 
cytometry. Left panel: Charts, the numbers indicate the proportion of cells in the different phases 
of the cell cycle. Right panel: the proportion of cells at G0/G1 phase. Overexpression of FRK-
WT in MDA-MB 231 breast cancer cells induces the arrest of more cells in the G1 phase, 
however, knockdown of FRK in MCF-7 breast cancer cell lines increases apoptosis. 
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4.11. FRK induces G1 arrest of the cell cycle by inhibiting E2F1 and upregulating p21 

The transition from the G1 to S is known to be associated with the phosphorylation of the 

retinoblastoma (pRb) tumor suppressor protein, leading to its inactivation and hence the 

consequent release of E2F from the pRb–E2F complex (Giacinti and Giordano, 2006; Hua et al., 

2014). Although FRK has been reported to bind with pRb in breast cancer cells, there is little or 

no data on the effect of FRK on the pRb-E2F1 pathway in breast cancers. Therefore, we 

investigated the effect of FRK overexpression as well as its knockdown on the pRb-E2F1 

pathway. As shown in Figure 4.16 A and B, stable overexpression of FRK-WT and FRK-YF in 

MDA-MB 231 led to upregulation of pRb mRNA and protein levels when compared with the 

parental cells; this corresponded with the downregulation E2F1 mRNA and protein expression 

(Figure 4.16 A and B).  Furthermore, we found that the overexpression of FRK decreased the 

phosphorylation of pRb. Although there was a decrease the mRNA levels of cyclin E (a 

downstream target of E2F1) (Figure 4.16 A and B), FRK overexpression had no significant 

effect on the protein expression of Cyclin E (Figure 4.16 B). The knockdown of FRK in SKBR3 

upregulated E2F1 mRNA expression but had no significant effect on pRb and cyclin E mRNA 

expression (Figure 4.16 C and D). However, at the protein level, we obtained an increase in pRb 

phosphorylation and upregulation of protein E2F1 expression in both SKBR3 as well as MCF-7 

with FRK knockdown (Figure 4.16 C, D, and E).  Our results, therefore, suggest that FRK 

might lead to the G1 arrest by regulating the pRb-E2F1 pathway. However, the inhibition of 

breast cancer cell proliferation by FRK was shown to be independent of pRb (Meyer et al., 

2003). Hence, it is possible that FRK induces G1 arrest via other mechanisms other than 

regulating the pRb-E2F1 pathway. 

 p21 is a cyclin-dependent kinase inhibitor reported to induces G0/G1 arrest and G2/M 

arrest by inhibiting and blocking both CDK2 and CDK1 activity (Abbas and Dutta, 2009). The 

inhibition of CDK2 by p21 was shown to dephosphorylate pRb protein, which leads to cell cycle 

arrest via the inhibition of E2F1-dependent gene expression (Abbas and Dutta, 2009; Kang et al., 

2016). In glioma cells, FRK was shown to upregulate p21. Therefore, we investigated the effect 

of FRK overexpression and knockdown on p21 protein and mRNA expression. Overexpression 

of FRK-WT and YF in MDA-MB 231 led to the upregulation of p21 protein levels, 

paradoxically associated with a decrease in p21 mRNA expression (Figure 4.16 F and G). 

However, we observed a downregulation of p21 protein and mRNA expression with the 
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knockdown of FRK in SKBR3 (Figure 4.16 I, and J). FRK overexpression and knockdown did 

not affect pCDK1 (a regulator of G2/M arrest) protein expression (Figure 4.17 H and K). Our 

result suggests that upregulation of p21 is another possible mechanism in FRK induces the G1 

arrest of the cell cycle. 
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Figure 4.16: Effect of FRK on cell cycle regulators A) and B). mRNA expression of pRb, 
E2F1, Cyclin E and p21. Total RNA was isolated from MDA-MB 231 cells stably transfected 
with FRK-WT and FRK-YF and C), D) and E) SKBR3 transiently transfected with control or 
FRK siRNA. The mRNA level of pRb, E2F1, and Cyclin E level was quantified using an RT-
PCR. F), G), and H) mRNA and protein expression of p21 and pCDK1 in MDA-MB 231 stably 
expressing FRK-WT and FRK-YF using western blot I, J) and K) mRNA and protein 
expression of p21 and pCDK1 in SKBR3 transiently transfected with control or FRK siRNA. 
Cell lysates were immunoblotted against CDK1, pCDK1, p21 and β-Actin as a control. The data 
are presented as mean ± S.D (p-value ≤ 0.05).  

4. 12. FRK induces G1 arrest of the cell cycle by inducing senescence 

p21 has been reported to induce the G1 arrest of the cell cycle by inducing cellular senescence 

(Campisi and d'Adda di Fagagna, 2007). Senescence is an irreversible form of cell cycle arrest 

that can be triggered by various forms of stress, such as DNA damage, or oncogene-induced 

senescence (Wen et al., 2014). Oncogene-induced senescence relies on the activation of tumor 

suppressors that mediate cell cycle arrest (Campisi and d'Adda di Fagagna, 2007; Wen et al., 

2014). Since we observed an upregulation of p21 with the overexpression of FRK, we, therefore, 
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examined the effect of FRK on cellular senescence by using Senescence-associated β-

galactosidase (SA-β-Gal) staining kit. MDA-MB 231 stably expressing FRK-WT and FRK-YF 

as well as the parental, were stained, fixed and examined under the microscope.  Senescent cells 

were stained blue in the presence of SA-β-Gal. We observed more staining with FRK-WT and 

FRK-YF when compared with the parental cells, which hadless stains (Figure 4.17A, B, and C). 

However, transient knockdown of FRK in MCF-7 cell had no significant effect on senescence 

(Figure 4.17 D and E). Our data as a whole suggest that FRK possibly arrests the G1 phase of 

the cell cycle, by inducing cellular senescence through p21 upregulation. 
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Figure 4.17: Effect of FRK on cellular senescence. A), B) and C). MDA-MB 231 or MDA-
MB 231-expressing FRK-WT or FRK-YF D and E) MCF-7, as well as MCF-7 FRK-KD, were 
subjected to an SA-β-Gal assay to determine the percentage of the senescent population. SA-β-
Gal staining (×20 magnification) was shown in bright-field images. Cells that have undergone 
senescence were stained blue under the microscope. However, the blue stains appeared black 
under bright-field images on the microscope. 

4.13 FRK suppresses breast cancer tumorigenesis. 

Finally, we investigated whether the tumor suppressive properties of FRK can be recapitulated in 

vivo using a nude mouse model. First, as proof of principle, we compared the proliferation rates 

of MDA-MB 231 stably expressing an empty vector (control), FRK-WT and FRK-YF using the 

Cell Counting Kit-8 (CCK-8). The CCK-8 assay measures dehydrogenase activity in functional 

mitochondria, which is a direct reflection of the cell viability. MDA-MB 231 cells stably 

expressing FRK-WT and FRK-YF displayed significantly diminished cell proliferation 

compared with parental cells after 4 days (P < 0.005) (Figure 4.18A). Similar results were 

obtained when cell viability assay was performed using 7AAD with transient transfection of 

FRK-WT and FRK-YF in MDA-MB 231 breast cancer cells (Figure 4.18 B, C, and D).  

Next, we used the FRK-WT and FRK-YF stable cell lines to determine their rates of 

tumorigenesis in vivo. At least four mice were allocated to each treatment group and housed in 

the same cage. The fourth mammary fat pad of these mice was injected with one of the following 

cells; parental MDA-MB 231 cells, MDA-MB 231 stably expressing FRK-WT, FRK-YF, while 

the control group received Matrigel. The mice were monitored and their body weights measured 

after every 7 days over a period of 60 days. The mice were then sacrificed, and the tumor mass 

(gm) and volume (cm3) was measured (Figures 4.19A and B). All mice developed tumors 10 

days after injection, however, mice injected with FRK-WT and FRK-YF had slow tumor growth 

rate when compared to the parental group. There was no tumor growth in the mice injected with 

Matrigel. At the end of the experiments, the average tumor mass weight was 0.37 g for the 

parental group and 0.25 g for FRK-WT group and 0.25 g for FRK-YF group. There was no 

significant difference between the tumor weight of the FRK-WT group and the FRK-YF group. 

Our results, however, suggest that FRK can potentially suppress breast cancer tumorigenesis in 

vivo.  
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Figure 4.18: Effect of FRK overexpression on cell proliferation:  Vectors encoding wild-type 
FRK (FRK-WT) or FRK Y497F (FRK-YF) were retrovirally introduced into MDA-MB 231 
cells and polyclonal populations derived and designated as indicated. A). Cell proliferation rates 
of the indicated FRK transfected cell lines and the control cells were measured using the CCK8 
assay. B), C), and D). The number of live and dead cells were quantified using 7AAD assay in 
the transiently transfected MDA-MB 231 cell lines. Overexpression of FRK suppresses cell 
proliferation and also increased the number of dead cells when compared to the parental cells. 
The data are presented as mean ± S.D. (p-value ≤ 0.05) 
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Figure 4.19: Effect of FRK overexpression in xenograft tumor growth 400,000 MDA-MB 
231 stably overexpressing FRK-WT and FRK-YF cells were injected subcutaneously into 
mammary fat pads of four animals injected per cell line. The tumors were monitored and 
measured weekly for about 8 weeks. Tumor volume was calculated as follows 0.50 X length X 
width 2 . A) The tumor volume for a period of 8 weeks was measured and represented 
graphically B) The tumors of these mice at endpoint were isolated and weighed, the average 
weights were represented  graphically. These figures representative are graph or image of mice 
tumor at endpoint showing the tumor mass, volume and size. 
 

5.0 Discussion 
Deregulation of  some PTKs is known to modulate critical pathways that drive the hallmarks of 

cancers, these include cell growth, survival, and metastasis (Krause and Van Etten, 2005; 

Manning et al., 2002; Parsons and Parsons, 2004). However, others members of the tyrosine 

kinases are known to suppress cancer growth, progression and metastasis, for example, SYK 

(Coopman and Mueller, 2006) and FRK (Goel and Lukong, 2016; Yim et al., 2009b).  FRK is a 

non-receptor tyrosine kinase that has been described as a candidate tumor suppressor in various 

cancers; this includes breast, glioma, cervical and non-small lung cancers (Brauer and Tyner, 

2009;  Goel and Lukong, 2016).  The tumor suppressive role of FRK have been widely studied in 

breast cancers, and several studies have shown various mechanisms by which  FRK suppresses 

breast cancer tumorigenesis. These include the arrest of the G1 phase of the cell cycle, (Craven et 

al., 1995b; Oberg-Welsh et al., 1998), AKT regulation (Yim et al., 2009a), stabilization of 
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BRCA1 (Kim et al., 2015), and internationalization of EGFR (Jin and Craven, 2014). Previous 

data from our lab also indicated that FRK could suppress breast tumorigenesis by regulating 

other signaling pathways (Bagu et al., 2017; Ogunbolude et al., 2017). Previous data from our 

lab showed that constitutively active form of FRK (FRK-YF) induced the phosphorylation of 

numerous cellular signaling proteins targets, including intermediates of the PI3K/Akt, MAPK 

and STAT3 signaling pathways (Ogunbolude et al., 2017). STAT3 was found to be one of the 

top targets of FRK, and overexpression of FRK in breast cancer cells was shown to downregulate 

the phosphorylation of STAT3 (Ogunbolude et al., 2017). Therefore, validating STAT3 as a 

downstream target of FRK was the main focus of this Ph.D. project.  

The STAT3 signaling pathway is one of the important signaling pathways that is 

activated in most cancers, including breast cancer (Yu et al., 2014). STAT3 is a transcription 

factor that regulates the expression of a wide range of genes that promotes cell proliferation and 

migration (Levy and Lee, 2002; Sansone et al., 2007; Siveen et al., 2014; Yu et al., 2014). To 

validate STAT3 as a target of FRK, first, we checked if there was any correlation between FRK 

and pSTAT3 expression in a panel of 24 breast cancer cell lines. We found an inverse correlation 

between FRK and pSTAT3 in the 24 breast cancer cell lines tested, since IL-6 (a cytokine) is 

known to activate the JAK\STAT pathway leading to constitutive activation of STAT3 (Hirano 

et al., 2000), we then investigated the effect of IL-6 stimulation on pSTAT3 in various breast 

cancer cell lines such as SKBR3, MCF-7 and MDA-MB 231. Stimulation of  SKBR3 and MCF-

7  with IL-6 stimulation increased STAT3 phosphorylation. However, we observed no respond to 

IL-6 or EGF stimulation with  MDA-MB 231 breast cancer cells. We are not sure why no effect 

was seen, it is possible that the phosphorylation of STAT3 in this cell line was already saturated, 

hence no response to both IL-6 and EGF stimulation. However, we found a decrease in the 

phosphorylation of STAT3 in MDA-MB 231 transiently expressing FRK-WT as well as FRK-

YF. This further supports our hypothesis that FRK is a negative regulator of STAT3 signaling. 

Transient knockdown of negative regulators of STAT3 for instance, N-myc downstream-

regulated gene 2 (NDRG2) has been reported to promote constitutive activation of STAT3 (Kim 

et al., 2014). However,  transient knockdown of FRK in SKBR3, as well as MCF-7, had no 

significant effect on STAT3 phosphorylation/activation. We expected to see an increase in 

STAT3 phosphorylation with the knockdown of FRK as was seen with NDRG2 gene (Kim et al., 

2014). However, we obtained no significant effect. It is possible that the stable knockdown of 
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FRK would have had a significant effect on STAT3 activation/phosphorylation other than the 

transient knocked down we performed.  

In order to determine the mechanisms by which FRK decreased the phosphorylation of 

STAT3,  we co-immunoprecipitated FRK with STAT3. We had hoped to establish that STAT3 

was a direct substrate of FRK but found no interaction between FRK and STAT3. Previous work 

from our lab showed that FRK regulates the MAPK signaling pathway by increasing ERK1/2 

phosphorylation. Phosphorylation of ERK 1/2 has also been shown to negatively regulate the 

activation of STAT3 (Tyr705) in specific cells by activating STAT3 (Ser727) (Chung et al., 

1997).  Phosphorylation of STAT3 (Ser727) has been reported to negatively modulate STAT3 

activation (phosphorylation of Tyr705) (Wakahara et al., 2012).  Interestingly, we also saw an 

increase in pSTAT3 Ser727 in MDA-MB 231 overexpressing FRK when compared to the 

parental cells; it’s possible that FRK inhibits STAT3 activation by activating ERK1/2, which 

activates STAT3 Ser727. The knockdown of FRK had no significant effect on the levels of 

STAT3 (Ser727), this could explain why we saw no effect with FRK knockdown on STAT3 

phosphorylation in SKBR3 and MCF-7 breast cancer cells. It is worth mentioning that a previous 

study on murine FRK-transgenic mice has been shown to demonstrate higher phosphorylation 

level of ERK1/2 but lower levels of phosphorylated p38 in islet cells compared with control 

islets (Anneren and Welsh, 2000).  Furthermore, Jin et al., showed that overexpression FRK 

phosphorylates EGFR Y1173 (Jin and Craven, 2014) and phosphorylated EGFR Tyr1173 have 

been reported to activate ERK (Hsu et al., 2011). Therefore, it possible that FRK decreases 

STAT3 (Tyr705) phosphorylation  through the EGFR signaling pathway and not the JAK/STAT 

signaling pathway. Future studies beyond the scope of this thesis will examine the role of FRK 

on ERK1/2 activation and identify the particular substrate/phosphatase activated by FRK which 

inactivate STAT3. 

Several of STAT3 downstream target genes associated with tumorigenesis have been 

previously validated (Carpenter and Lo, 2014). Some of the well-characterized STAT3 target 

genes include Survivin, matrix metalloproteinase 1 (MMP-1), Cyclin D1, BCL2, MYC and 

MCL1 (Carpenter and Lo, 2014). Thus, we examined the effect of FRK on selected STAT3 

target genes (Survivin, MMP-1, and Cyclin D1). Survivin (encoded by BIRC5 gene) is an 

inhibitor of caspases, while MMP-1 promotes invasiveness via the degradation of the basal 

membrane and Cyclin D1 is a cell cycle regulator (Carpenter and Lo, 2014). The presence of 
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FRK-WT or FRK-reduced the mRNA expression of Survivin, and MMP-1; however only  FRK-

WT had an effect on the mRNA expression of Cyclin D1. We are not sure why FRK-YF had no 

effect on Cyclin D1, it is possible that the constitutive form of FRK activates other genes that 

upregulate Cyclin D1. The levels of Survivin and MMP-1 were upregulated in FRK knocked 

down SKBR3 and MCF-7 breast cancer cells. The most dramatic effect of FRK was observed 

with Survivin. Survivin  is a member of the inhibitor of apoptosis (IAP) family, and one of its 

functions is to inhibit caspase activation thereby negatively regulate apoptosis (Banerjee and 

Resat, 2016). Immunohistochemical analysis of several invasive breast tumor specimens showed 

a positive correlation between Survivin protein expression and high STAT3 activity 

chemotherapy (Gritsko et al., 2006). The elevated levels of Survivin in the specimens tested 

were presumed to be responsible for promoting breast cancer progression and resistance to 

chemotherapy (Gritsko et al., 2006). In our future studies, we will examine how the expression 

of FRK correlates with STAT3 phosphorylation and Survivin expression. Although, the 

knockdown of FRK had no significant effect on STAT3 phosphorylation we observed a 

significant effect on some STAT3 target genes in both MCF-7 and SKBR3. It is possible that the 

downregulation of cyclin D1, MMP-1, and Survivin by FRK was through other signaling 

pathways other than STAT3 signaling pathway.  

In glioma cells, FRK has been reported to suppress glioma cell migration by suppressing 

several mesechenmyal markers (Shi et al., 2015). There is little  information on the mechanisms 

by which FRK suppresses breast cancer migration and invasion. Interestingly, FRK has been 

reported to be expressed mainly in epithelial cells or tissues but not in mesenchymal cells (Cance 

et al., 1994; Berclaz et al., 2000). Based on this, we hypothesized that FRK probably regulates 

EMT in breast cancer cells. Breast cancer is a heterogeneous disease with multiple criteria for 

classification based on clinical, histopathological markers and gene expression profiling (Coady 

et al., 2001; Musgrove and Sutherland, 2009; Perou et al., 2000; Prat and Perou, 2011; Weigelt 

et al., 2005). Some of the breast cancer subtypes include luminal A, luminal B, basal-like and 

HER2-positive profiling (Coady et al., 2001; Musgrove and Sutherland, 2009; Perou et al., 2000; 

Prat and Perou, 2011; Weigelt et al., 2005). Basal breast cancer cell lines have been classified 

into 3 subtypes based on the morphology and invasive potential; the subtypes include Basal A, 

Basal B and Luminal (Neve et al., 2006) . Luminal cells are more differentiated with epithelial-

like phenotype while the Basal B cells are less differentiated and possess a mesenchymal-like 
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appearance, Basal A cells have either luminal-like or basal-like morphology (Neve et al., 2006). 

Previous studies on the role of FRK expression in breast cancers were based on molecular 

subtypes of breast cancers (Yim et al., 2009a). We investigated the expression pattern of FRK in 

breast cancer cell lines classified based according to their morphology and invasiveness. We 

found that the expression of FRK was high in epithelial-like breast cancer cell lines and normal 

mammary tissue. The expression was low or lost in basal B breast cancer cell lines which display 

a mesenchymal phenotype. The expression patterns suggest that FRK might play a role in the 

maintenance of the normal epithelium.    

  Kenny et al. also classified breast cancer cell lines into four distinct morphological 

groups (Kenny et al., 2007). These groups were denoted as Round, Mass, Grape-like, and 

Stellate. The MDA-MB 231 breast cancer cell line was classified in the stellate group that also 

includes BT-549, MDA-MB-436, and Hs578T. Cells that were grouped in the Mass class  

display disorganized nuclei and include; BT-474, HCC70, MCF-7, and T-47D cell lines. While 

the Round cell class was comprised of HCC1500, MCF-12A, and MDA-MB-415 and the Grape-

like class characterized by a reduced cell-cell interaction included AU565, MDA-MB-468, and 

SK-BR-3 cell lines. The Stellate class cells are distinctively more invasive than members of the 

other three groups, and their stellate projections tend to bridge multiple colonies of cells (Kenny 

et al., 2007). In the present study, we noted that all three stellate-shaped cell lines (MDA-MB 

231, BT-549, and Hs578T) had very low or no detectable FRK protein expression. Interestingly, 

stable overexpression of FRK in MDA-MB 231 cells altered the morphology of the cells from 

stellate to a more rounded phenotype (Figure 4.11). Yim et al. described their MCF-7 cells as 

round and observed a dramatic morphological change to stellate-like in these cells upon the 

exogenous expression of FRK (Yim et al., 2009a).  It is unclear why FRK would induce different 

morphological phenotypes in the MDA-MB 231 cell line, which we used in our study, and MCF-

7 in the Yim et al. study (Yim et al., 2009a). Nonetheless, since stellate/FRK-negative MDA-

MB 231 cell line is characterized as highly invasive (Kenny et al., 2007),  and we observed that 

overexpression of FRK alters the morphology of rounded, we hypothesized that the tumor 

suppressor activity of FRK might play a significant role in suppressing EMT in breast cancers.  

EMT is a mechanism that enhances metastasis of breast cancer by enabling epithelial 

cells to become more like mesenchymal cells with increased motility and invasiveness (Felipe 

Lima et al., 2016). Mesenchymal markers include Vimentin, Fibronectin, Slug, Snail, and N-
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cadherin, whereas E-cadherin is a classic epithelial marker (Felipe Lima et al., 2016).  First, we 

found an inverse correlation between FRK and the mesenchymal marker, Fibronectin in the 

Basal B breast cancer cell lines, MDA-MB 231, BT549, and Hs578T. Vimentin, Fibronectin, 

Slug, and N-cadherin were downregulated, while the expression of E-cadherin was upregulated 

with FRK overexpression in MDA-MB 231 cells (Figure 4.11). 

E-cadherin is a cell-cell adhesion molecule that is essential for the formation and 

maintenance of the epithelium (Lecuit and Yap, 2015). Downregulation or loss E-cadherin 

expression or any other mechanisms that interfere with the integrity of the cell-cell interaction 

are phenomena in many cancers (Frixen et al., 1991). Cell-cell adhesion is altered by a switch 

from E-cadherin to N-cadherin expression (the so-called “cadherin switch”) (Kotiyal and 

Bhattacharya, 2016). The role of E-cadherin has been defined as anti-invasive or tumor 

suppressive because the loss of E-cadherin correlates with the loss of the epithelial morphology 

and in most cases with the acquisition of metastatic potential by the cancer cell (Pecina-Slaus, 

2003). In our study, we found that these properties are mirrored by FRK. 

The trend of correlation of FRK with the epithelial marker, E-cadherin that we observed 

in our study was consistent with the mRNA expression dataset mined from the Affymetrix 

platform 133plus2. FRK transcript levels were positively correlated with the transcript levels of 

E-cadherin and Cytokeratin 18 as well as in the breast cancer tissues mined from TCGA database 

where FRK correlated positively with E-cadherin in both normal and breast tumor tissue 

samples. Although, as expected, a negative correlation was observed with the transcript levels of 

Vimentin, N-cadherin, Fibronectin, and TWIST in the breast cancer cells lines mined from GEO 

accession numbers GSE10021, GSE10843, GSE3156, GSE10890 and GSK's cell line project 

(https://array.nci.nih.gov/caarray/project/woost-00041/). We, however, did not see an inverse 

correlation between FRK and Fibronectin/Vimentin in the breast tumor samples.  We believe that 

this may be due to the heterogeneous nature of the breast tumor sample cohort, represented by 

various breast cancer subtypes. The TNBC subtype, for instance, is sub-classified as, luminal 

androgen receptor positive, basal-like-1, basal-like-2, immunomodulatory, claudin-low-enriched 

mesenchymal, and mesenchymal stem-like (MSL) (Lehmann et al., 2011). We noted that FRK 

expression was low/lost in the mesenchymal-like basal B subset of TNBCs. Therefore, the 

availability of a stratified mesenchymal-like subset of breast cancer patient samples in the TCGA 

database or any other database will be a help to further validate the correlation between FRK and 
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the mesenchymal properties of breast tumor cells. Furthermore, the overexpression of FRK in 

both MDA-MB 231 and Hs578T lead to the decrease in menschenmyal markers such as 

Fibronectin. Based on these findings, it's possible that the suppression of EMT by FRK is not 

only limited to MDA-MB 231 cells but affect all basal B cells. 

Our findings as a whole suggest that FRK either may play a role in the maintenance of 

the cell-cell interaction and the protection of the normal epithelium by upregulating E-cadherin 

and inhibiting EMT via the downregulation of Vimentin, Fibronectin, and N-cadherin. 

Therefore, the restraint of EMT might be one of the mechanisms underlying the anti-

migration/invasion effect of FRK in breast cancer cells.  

In addition to suppression of cell invasion and metastasis, FRK have been reported to 

suppress breast cancer cell proliferation through various mechanisms that include promoting  

PTEN stability and function (Yim et al., 2009a), EGFR internalization (Jin and Craven, 2014), 

and induction of the G1 arrest of the cell cycle  (Meyer et al., 2003). The uncontrollable growth 

of cancer cells is as a result of defects in the cell cycle (Bendris et al., 2015). The roles of FRK in 

cell cycle have not been fully investigated. Apart from the arrest of the cell cycle, FRK  has been 

shown to interact with pRb, a known tumor suppressor known to regulate the G1-S phase 

transition of the cell cycle, suggesting a possible mechanism by which FRK induces the G1 

arrest of the cell cycle (Craven et al., 1995a). However, Meyer et al. found that the suppression 

of cell proliferation by FRK is independent of pRb. Interestingly, EMT has been reported to 

promote cell proliferation by regulating the cell cycle, TWIST a transcription factor that 

regulates EMT has been shown to inhibit oncogene-induced senescence by inhibiting the tumor 

suppressor proteins p16 and p21, alongside inducing EMT (Jiang et al., 2011; Karlsson et al., 

2017). Since data from our findings show that FRK suppresses EMT and EMT have been 

reported to inhibit other cell cycle regulators such as p16 and p21 (Jiang et al., 2011; Karlsson et 

al., 2017), we investigated the role of FRK on other cell cycle regulators and determined other 

possible mechanisms by which FRK induces the G1 arrest of the cell cycle other than binding 

with pRb. 

Previous studies in breast cancer cells on the role of FRK in cell cycle was done using 

Luminal/epithelial cells, for instance, FRK was reported to induce the G1 arrest in Luminal/ 

epithelial breast cancer cells such as MCF-7 and BT-474 (Meyer et al., 2003). We investigated 

the effect of FRK on the G1 arrest in mesenchymal breast cancer cell MDA-MB 231 and found 
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that FRK also induces G1 arrest in mesenchymal breast cancer cells. The arrest of the G1 phase 

of the cell cycle with FRK overexpression in MDA-MB 231 confirms that it is one of the 

primary mechanisms by which FRK suppress tumorigenesis, and this is irrespective of the 

molecular grade or subtype of breast cancer cells. Although, we hypothesized that the 

knockdown of FRK in MCF-7 cells would facilitate the transition of cells from the G1/S to the 

G2 phase as seen with the kinase-dead FRK when transfected in MCF-7 (Meyer et al., 2003). 

The little or no transition of cells from the G1/S to the G2 phase of the cell cycle shown in our 

data could be because partial knockdown in the MCF-7 cells.  

Cells undergoing G1 arrest mostly undergo apoptosis or become senescent (Gire and 

Dulic, 2015; Terzi et al., 2016) Our data shows that stable overexpression of FRK in MDA-MB 

231 breast cancer cells had no significant effect on apoptosis. Although, previous studies showed 

that transient overexpression of FRK in both breast and glioma cells induces apoptosis (Hua et 

al., 2014; Meyer et al., 2003). We are not sure why there was no induction of apoptosis with 

stable overexpression of FRK in MDA-MB 231. Based on our data, we believe that the induction 

of apoptosis is not one primary mechanism by which FRK suppresses cell proliferation. 

Furthermore, we investigated the effect of FRK overexpression and knockdown on cellular 

senescence. Cellular senescence can be defined as irreversible growth arrest or lack of 

proliferative potential characterized by distinct metabolic activity and dramatic changes in cell 

morphology (Gire and Dulic, 2015; Terzi et al., 2016). Our data shows that stable overexpression 

of FRK in MDA-MB 231 cells induce cellular senescence. 

 p21 is known to mediate senescence by blocking the inactivating phosphorylation of pRb 

by Cdk2 and Cdk4/6  (Gire and Dulic, 2015). Although FRK has been shown to interact with 

pRb (Giacinti and Giordano, 2006), there is little/no information on the role of FRK on the 

phosphorylation status of pRb. From our results, we found that overexpression of FRK resulted 

in a decrease in the phosphorylation levels of pRb and vice-versa with the knockdown of FRK. 

Hypophosphorylated pRb is known to bind with E2F1 thus preventing the progression of the cell 

cycle (Giacinti and Giordano, 2006; Hua et al., 2014). E2F1 is known to regulates the 

expressions of genes required for cell cycle progression; these genes include Cyclin E, Cyclin A 

(Giacinti and Giordano, 2006). Although, we obtained downregulation and upregulation of E2F1 

at both protein and mRNA levels with overexpression and knockdown of FRK respectively and 

also  found downregulation of Cyclin E mRNA levels with the overexpression of FRK in MDA-
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MB 231. We, however, found no effect on cyclin E protein expression with FRK knocked down 

and overexpression. Cyclin E is known to be regulated by other transcription factors other than 

E2F1, including DEC1 (Bi et al., 2015). It is, therefore, possible that the effect of FRK could be 

compensated by these- factor. 

Since, p21 promotes facilitates cellular senescence by dephosphorylation of pRb protein, 

subsequent inhibition of E2F transcription factor and triggering pivotal genes responsible for 

senescence  (Abbas and Dutta, 2009; Chakraborty et al., 2016). We also investigated the effect 

of FRK on p21, we found that FRK overexpression leads to the upregulation of p21 protein, but 

downregulation of p21 transcript levels. The reason for this discrepancies is unknown. However, 

the upregulation of p21 and induction of cellular senescence seen with FRK overexpression has 

also been seen with other tumor suppressors, For example, overexpression of SYK  in melanoma 

cells has been shown to induce senescence growth arrest via p21 upregulation (Bailet et al., 

2009). Together, our findings show that FRK regulates cell cycle progression potentially by 

inducing cellular senescence via upregulation of p21.  

From our result in vitro, we have been able to show that FRK significantly suppresses 

breast tumorigenesis. We were also interested in the tumor suppressive role of FRK in vivo. 

Although, in vivo studies by Yim et al. showed that the knockdown of FRK in MCF-10 A; a 

normal breast cell for xerograph studies promotes breast tumorigenesis (Yim et al., 2009a). 

There little/no information on the tumor suppressive role of FRK-WT and the constitutively 

active form of FRK, FRK-YF in vivo using breast cancer cell lines. Thus, we investigated the 

tumor suppressive role of FRK in vivo using MDA-MB 231 stably overexpressing FRK.  Our 

result shows that FRK-WT and FRK-YF suppress the tumor growth when compared to the 

parental groups. Although we expected FRK-YF group to significantly suppress the tumor 

growth when compared to the FRK-WT group, we, however, obtained no significant effect 

between these groups. We are not exactly sure why, but we hope to find a reason for this in our 

future research. Taking together, our data suggest that FRK suppresses breast tumor growth in 

vivo.  

5.1 Conclusion   

FRK is a non-receptor tyrosine kinase with unpredicted tumor suppressor activity. We have 

shown that stable overexpression of FRK suppressed cell proliferation, migration, and invasion 

both in vitro and in vivo. Our data presented provide first evidence that: 
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1) FRK is lost in breast cancer cells with mesenchymal phenotype: From our data, we found 

that FRK is highly expressed in luminal breast cancer cell or breast cancer cells with epithelial-

like phenotype, however, lost in basal or mesenchymal-like breast cancer cells. We also found 

the expression of FRK to be present in the epithelium of breast tissues. Luminal breast cancer 

cells are more differentiated with epithelial-like traits while basal B breast cancers are less 

differentiated with mesenchymal-like phenotype. Hence, our study suggests that FRK regulates 

Epithelial to Mesenchymal Transition in breast cancer.   

2) FRK expression correlates positively with epithelial markers: We found that luminal 

breast cancer cells with high FRK expression had high protein and mRNA expression of the 

epithelial marker, E-cadherin, while basal B breast cancer cells with little or no FRK expression 

had low levels of both protein and mRNA expression of E-cadherin. However, these basal B 

breast cancer cells had high protein and mRNA expression of mesenchymal markers such as 

Fibronectin and N-cadherin. We also found FRK transcript levels to correlate positively with the 

transcript levels of E-cadherin and Cytokeratin 18 in the breast cancer tissues mined from TCGA 

database. Also, FRK correlated positively with E-cadherin in both normal and breast tumor 

tissue samples. Although we did not see an inverse correlation between FRK and 

Fibronectin/Vimentin in the breast tumor samples, we believe that this may be due to the 

heterogeneous nature of the breast tumor sample cohort, represented by various breast cancer 

subtypes. 

3) FRK suppresses breast cancer cell migration by suppressing EMT: EMT is a mechanism 

that promotes breast cancer metastasis. From our data, we showed FRK to regulate EMT in 

breast cancer cells. Overexpression of FRK in basal B breast cancer cells such as MDA-MB 231 

and Hs578T suppresses EMT by downregulating the protein and mRNA expression of 

mesenchymal markers such as Fibronectin enabling mesenchymal cells to become more like 

epithelial-like cells with decrease motility and invasiveness. We also found the overexpression of 

FRK in basal B breast cancer cells to induce a change in morphology of the breast cancers cells 

from stellate shape to a round shape. However, the knockdown of FRK in luminal breast cancer 

cells such as MCF-7 and SKBR3 increased the expression of mesenchymal markers such as 

fibronectin and decreased the expression of the epithelial marker, E-cadherin.  

4) The overexpression of FRK suppresses STAT3 activation leading to reduced STAT3 

phosphorylation: In addition to regulation of EMT by FRK, we also found that FRK possibly 
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suppresses breast cancer cell migration and proliferation by regulating several signaling 

pathways, such as the STAT3 signaling pathway. Overexpression of FRK in FRK-negative 

breast cancer cell MDA-MB 231 decreased STAT3 phosphorylation and also the expression of 

STAT3 downstream target genes such as Survivin, Cyclin D1, and MMP-1. Although the 

transient knockdown of FRK in FRK-positive cells such as MCF-7 and SKBR3 did not affect the 

STAT3 phosphorylation, we, however, obtained upregulation of STAT3 target genes with FRK 

knockdown, suggesting that FRK may regulate these genes through other signaling pathways. 

5). FRK suppresses breast cancer proliferation by inducing cellular senescence via 

upregulation of p21: FRK has been known to suppress breast cancer cell proliferation by 

inducing the G1 arrest of the cell cycle (Meyer et al., 2003). However, the mechanism by which 

FRK induces this growth arrest is unknown. We found that overexpression of FRK in breast 

cancer cell line (MDA-MB 231) induces G1 growth arrest by upregulating pRb, p21, and 

downregulating E2F1 expression. We also found that overexpression of FRK in MDA-MB 231 

promotes cellular senescence and p21 expression. We conclude that upregulation of p21 

expression with FRK overexpression is probably one of the mechanisms by which FRK induces 

cellular senescence in breast cancer, hence suppressing breast cancer cell proliferation.  

Taken together, our findings indicate that FRK plays a tumor suppressor role in breast 

cancer by inhibiting breast cancer tumorigenesis both in vitro and in vivo. Hence, upregulation of 

FRK in breast cancers can be targeted as therapy for breast tumorigenesis. 

 

5.2. Future direction  

From our studies, we showed that FRK regulates several signaling pathways including the 

STAT3 signaling pathway. Overexpression of FRK in basal B breast cancer cells (MDA-MB 

231) decreased the phosphorylation of STAT3; however, the knockdown of FRK in luminal 

breast cancer cells such as MCF-7 and SKBR3 had no effect on STAT3 signaling pathway. Why 

the effect of FRK on STAT3 phosphorylation is cell line/subtype-dependent is unclear. The 

identification and characterization of FRK-specific substrates and signaling pathways may 

provide better information on the context-specific effect of FRK.   

Furthermore, our study shows that FRK-KM (i.e., kinase-dead FRK) decreased STAT3 

phosphorylation (Figure 4.4). Also, recently published data from our lab also showed that FRK-

VK, an FRK mutant with increased kinase activity, did not affect STAT3 phosphorylation 
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(Ogunbolude et al., 2017). We had hypothesized that the tumor suppressive function of FRK 

would correlate with it enzymatic activity. However, the kinase-dead FRK (FRK-KM) (with no 

kinase activity) decreased pSTAT3, while the mutant with high kinase activity FRK-VK did not 

affect pSTAT3. Hence, it would be interesting to investigate if the tumor suppressive activity of 

FRK depends on its kinase activity. Is it possible that the FRK domains (SH2 and SH3) to play 

critical roles in the tumor suppressive function of FRK? It would be interesting to investigate the 

effect of FRK SH2, SH3 and kinase domains on several cellular processes such as migration and 

proliferation in breast cancer cells.    

Lastly, we found out that overexpression of FRK in highly invasive/basal B breast cancer 

cells (i.e., breast cancer cells with little or no FRK expression) repressed breast cancer cell 

migration and invasion. Recent epigenetics studies from our lab found FRK to be 

hypermethylated in basal B breast cancer cells (Bagu et al., 2017). Epigenetics drugs such as 

DAC, (demethylating agent) and HDI (Histone Deacetylase Inhibitors) have been reported to 

reactivate silenced genes (Bagu et al., 2017; Ceccacci and Minucci, 2016). Interestingly, when 

basal B breast cancer cells such as Hs578T, BT549 were treated with both DAC and HDI such as 

Entinostat and Mocetinostat, it induced both mRNA and protein expression of FRK in these cell 

lines. However, there is no study on the use of these drugs on the re-expression of FRK in breast 

tissues. We hope to investigate the effect of FRK upregulation using epigenetics drugs such as 

HDIs in FRK-negative breast tissue samples using mouse models and determine its effect on 

Epithelial to Mesenchymal Transition. We hope this will highlight the clinical relevance of FRK 

in suppressing breast cancer tumorigenesis. 
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