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Abstract

The most compelling evidence of the complex interaction between the geomagnetic field

of the Earth and the magnetic field of the Sun is found in the polar ionosphere. Large

scale F-region plasma density perturbations result from the coupling between the two fields.

Plasma density enhancements known as ionization patches, and depletions can have life-

times of several hours in the F region and are almost always present everywhere throughout

the nighttime polar ionosphere. The perturbations can seed ionospheric irregularities that

severely hamper communication and navigational networks, even during times of subdued

geomagnetic activity. Up until recently, it has been difficult to study the perturbations due

to the remoteness of their location. In the past decade an array of optical and radio instru-

ments have been deployed to the Canadian sector of the Arctic, enabling a more thorough

sampling of the polar ionosphere and the large scale perturbations therein.

In this work, common volume measurements from the Rankin Inlet Super Dual Auroral

Radar Network (SuperDARN), Resolute Bay Incoherent Scatter Radar - North (RISR-N)

and Optical Mesosphere and Thermosphere Imagers (OMTI) system at Resolute Bay are

employed to investigate the generation mechanisms, transport properties, and optical and

radio signatures of the large scale perturbations. A model connecting the optical signatures

of patches to their velocity profile through the ionosphere is introduced and applied to OMTI

data. In addition, an algorithm is developed to detect the presence of patches using RISR-N.

Using the algorithm, a survey of patches sampled over several days is conducted, providing a

comprehensive account of the variable polar ionosphere in terms of its plasma state parame-

ters. Furthermore, the algorithm is used to diagnose patches as a primary source of coherent

backscatter for the Rankin Inlet SuperDARN radar. Lastly, the generation of a deep plasma

density depletion is analyzed using the three aforementioned instruments. Using a model,

it is shown that such perturbations can be forged by intense frictional heating events in the

polar ionosphere on a time scale of 15 minutes, and can subsequently be transported through

the region.
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volume, V , reproduced from Alcaydé [2001]. . . . . . . . . . . . . . . . . . . 51

2.2 A log plot of φ (k, ω) for an ISR operating at 443 MHz, probing an O+ plasma
with ne = 1× 1011 m−3, Ti = 1000 K, Te = 2000 K. Code courtesy of P. Perron. 55

x



2.3 The ion lines of φ (k, ω) for an ISR operating at 443 MHz, probing an O+

plasma with ne = 1× 1011 m−3, Ti = 1000 K, Te = 1000, 2000, 3000, 4000 and 5000 K.
Code courtesy of P. Perron. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4 The RISR-N system at Resolute Bay, Canada. Photo courtesy of C. Heinselman. 58

2.5 A closer view of the RISR-N face, showing some of the many thousands of
antennas. Photo courtesy of C. Heinselman. . . . . . . . . . . . . . . . . . . 58

2.6 A plot of a 42-beam RISR-N mode (top), with the projections of the 42 look
directions plotted in a geomagnetic coordinate system (bottom), courtesy of
SRI International. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.7 From Bahcivan et al. [2013], a plot of an HF ray trace model for a modelled
ionosphere. Ray tracing model courtesy of P. Ponomarenko. . . . . . . . . . 62

2.8 From Tsunoda [1988], an illustration of the GDI, in which γ > 0, the system
is unstable. If E0 is reversed, γ < 0 and the system becomes stable. . . . . . 64

2.9 The individual fields-of-view of the radar sites comprising the SuperDARN in
the northern hemisphere, in geomagnetic polar coordinates. Plot courtesy of
Virginia Tech SuperDARN. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.10 The individual fields-of-view of the radar sites comprising the SuperDARN in
the southern hemisphere, in geomagnetic polar coordinates. Plot courtesy of
Virginia Tech SuperDARN. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.11 From Fiori [2011], a depiction of merging two line-of-sight velocity measure-
ments from two SuperDARN radars, into a merged velocity vector. . . . . . 71

2.12 A convection plot of the northern hemisphere for 5:00 UT, Ocotber 2, 2013,
generated using the SuperDARN fit technique. Plot courtesy of Virginia Tech
SuperDARN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.13 A plot of the northern hemisphere for 5:00 UT, Ocotber 2, 2013, generated
using the SuperDARN merge velocity technique. Plot courtesy of Virginia
Tech SuperDARN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.14 The OMTI field-of-view (green) mapped to 250 km altitude, and the fields-of-
view of RISR-N (orange) and several SuperDARN sites (blue). . . . . . . . . 76

3.1 Calculated luminosity change as a function of time for vz = −40 m/s (red trace
with the lower maximum amplitude) and for vz = −60 m/s (blue trace). The
velocities were applied at t = 0. The parameters were chosen to be appropriate
for at 250 km starting altitude in the winter night-time polar cap. . . . . . . 86

3.2 Chart of the time, in s, taken to go down to 60% of the initial luminosity
(blue contours) and of the ratio of the maximum luminosity to the starting
luminosity (red contours) as a function of vertical drift (horizontal axis) and
of the ratio of the starting density to the density used in Figure 3.1 (vertical
axis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xi



3.3 Observations of patch B1 in Hosokawa et al. [2010] (the fast moving patch) ob-
tained at 630.0 nm on Dec 20, 2006 with the OMTI all-sky imager at Resolute
Bay (crosses connected with red dashed line). The two patches emanated from
a single broader feature divided into two parts, starting at 22:30 UT (roughly
the 300 s mark in this figure). The blue solid line was obtained with constant
vertical drifts of − 17 m/s, starting from an altitude of 265 km. See text for
details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4 Observations of patch B2 in Hosokawa et al. [2010] (the slow moving patch)
obtained at 630.0 nm on Dec 20, 2006 with the OMTI all-sky imager at Reso-
lute Bay (crosses connected with red dashed line). The two patches emanated
from a single broader feature divided into two parts, starting at 22:30 UT
(roughly the 300 s mark in this figure). The blue solid line was obtained with
constant vertical drifts of − 14 m/s, starting from an altitude of 265 km. See
text for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.5 Synthetic luminosity curve obtained by changing vz at various times during
the evolution of a patch. The patch descent initiated at an altitude of 265 km.
See text for details about the changes that were used. . . . . . . . . . . . . . 92

3.6 The plasma profile of a polar cap patch with a peak density at 250 km in
altitude. Above the peak (top-side) the patch has a density scale height of
250 km and below the peak (bottom-side) the density scale height is 25 km. . 95

3.7 Comparison between single delta-layer luminosity curved (red) and the result
of integrated multiple delta-layers together. The downward velocity of the
patches is 17 m/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.8 The vertical profile of plasma patch models used. The patch plasma density
(solid) and initial luminosity (dashed) profiles are plotted. The patch plasma
profiles here have a top-side density scale height of 100 km. The top-side den-
sity profile is colored black. Bottom-side density scale heights are distinguished
by color. All profiles are plotted relative to a 265 km altitude. . . . . . . . . 97

3.9 Luminosity profiles for the delta-layer case (red), descending at 17 m/s, and
integrated profile case (black) are plotted along side patch data from Hosokawa
et al. [2010]. The profiles in black are descending at 23 m/s. The blue profile
corresponds to a speed of 17 m/s for an integrated profile. Each patch has a
top-side density scale height of 250 km and a peak density at 250 km. . . . . 98

3.10 Luminosity profiles for the delta-layer case (red), descending at 17 m/s, and
integrated profile case (black) are plotted along side patch data from Hosokawa
et al. [2010]. Each patch has a top-side density scale height of 100 km and a
peak density at 265 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.11 Luminosity profiles for the delta-layer case (red) and integrated profile case
(black) are plotted along side patch data from Hosokawa et al. [2010] for patch
B1 and B2. All patches are descending at 22 m/s. Each patch has a top-side
density scale height of 100 km and a peak density at 250 km. . . . . . . . . . 102

4.1 A plot of the ne as function of altitude along RISR-N Beam 23, for the entire
day on March 11, 2010. Profiles from the IRI model for 03:00 UT (triangle),
09:00 UT (diamond), and 15:00 UT (square) are also plotted. . . . . . . . . . 111

xii



4.2 A plot of the ne as function of altitude along RISR-N Beam 23, between 05:30
and 06:30 UT on March 11, 2010. Profiles from the IRI model for 06:00 UT
is also plotted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3 A plot of a 25-beam RISR-N mode (top) operating on March 11, 2010, with
the projections of the 25 look directions plotted in a geomagnetic coordinate
system (bottom), courtesy of SRI International. . . . . . . . . . . . . . . . . 113

4.4 The geometry of a single RISR-N beam with unit k-vector, k̂, probing a patch
aligned along the local geomagnetic field, shown in blue. The component of the
beam parallel to the magnetic field is labelled k̂‖. The orthogonal zonal and

meridional components are k̂E and k̂N , respectively. Resolution cells along
the beam are marked by black lines. . . . . . . . . . . . . . . . . . . . . . . . 116

4.5 An OMTI keogram (top) from March 11, 2010, showing several optical signa-
tures at 630 nm consistent with patches moving in a North to South direction.
A plot of the ne (bottom) measured in RISR-N beam 23, as a function of
altitude. The RISR-N density signatures are consistent with patches and con-
current with the patches observed in OMTI, which has been highlighted to
guide the eye. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.6 The output of the RISR-N algorithm plotted with the optical data from the
zenith of the OMTI imager, for the same segment of time plotted in Figure 4.5.
A good correlation between the peaks of the RISR-N algorithm and peaks in
the OMTI luminosity data is evident. . . . . . . . . . . . . . . . . . . . . . . 120

4.7 An OMTI FOV plot (top) showing an arc event at 02:32 UT on December
11, 2009. RISR-N beams are shown as white circles. A keogram (bottom) of
the four hour segment surrounding the arc event. Both plots share the same
colour scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.8 A RISR-N parameter plot showing ne (top panel), Te (middle panel) and Ti
(bottom panel) from RISR-N beam 12 as a function of time and altitude. The
signature of the arc shown in Figure 4.7 can be seen starting at approximately
02:30 UT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.9 A plot of the RISR-N algorithm output (black trace), RISR-N output that
has had a temperature filter applied to it (green trace) and OMTI data from
the zenith of the imager (red trace) as a function of time between 00:00 and
04:00 UT on December 11, 2009. . . . . . . . . . . . . . . . . . . . . . . . . 123

4.10 A plot of the ne of the patches detected using the RISR-N algorithm, as a
function of time (UT and MLT) for March 10, 14, 16, 18 and 19, 2010. The
plot points are coloured according to the modelled solar zenith angle at the
location at the time of the patch detection. . . . . . . . . . . . . . . . . . . . 126

4.11 A plot of the ne of the patches detected using the RISR-N algorithm, as a
function of time (UT and MLT) for December 8, 9, 10, 11 and 12, 2010. The
plot points are coloured according to the modelled solar zenith angle at the
location at time of the patch detection. . . . . . . . . . . . . . . . . . . . . . 127

4.12 A histogram of the ne of all of the patches detected in the March, 2010 dataset
(left) and December, 2010 dataset (right) for sunlit (black trace) and dark
ionosphere (red trace) conditions. Note that the vertical scale changes from
March to December. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xiii



4.13 A plot of the Ti of the patches detected using the RISR-N algorithm, as a
function of time (UT and MLT) for March 10, 14, 16, 18 and 19, 2010. The
plot points are coloured according to the modelled solar zenith angle at the
location at time of the patch detection. . . . . . . . . . . . . . . . . . . . . . 133

4.14 A plot of the Te of the patches detected using the RISR-N algorithm, as a
function of time (UT and MLT) for March 10, 14, 16, 18 and 19, 2010. The
plot points are coloured according to the modelled solar zenith angle at the
location at time of the patch detection. . . . . . . . . . . . . . . . . . . . . . 134

4.15 A plot of the Ti of the patches detected using the RISR-N algorithm, as a
function of time (UT and MLT) for December 8, 9, 10, 11 and 12, 2010. The
plot points are coloured according to the modelled solar zenith angle at the
location at time of the patch detection. . . . . . . . . . . . . . . . . . . . . . 135

4.16 A plot of the Te of the patches detected using the RISR-N algorithm, as a
function of time (UT and MLT) for December 8, 9, 10, 11 and 12, 2010. The
plot points are coloured according to the modelled solar zenith angle at the
location at time of the patch detection. . . . . . . . . . . . . . . . . . . . . . 136

4.17 A histogram of the Ti of all of the patches detected in the March, 2010 dataset
(left) and December, 2010 dataset (right) for sunlit (black trace) and dark
ionosphere (red trace) conditions. Note that the scales are different in each plot.137

4.18 A histogram of the Te of all of the patches detected in the March, 2010 dataset
(left) and December, 2010 dataset (right) for sunlit (black trace) and dark
ionosphere (red trace) conditions. Note that the scales are different in each plot.138

4.19 The PI from the RISR-N algorithm plotted with the optical data from the
zenith of the OMTI imager, for the same segment of time plotted in Figure 4.5.
A clear agreement between the output of the RISR-N algorithm and OMTI
luminosity data exists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.20 The PI from the RISR-N algorithm plotted with the optical data from the
zenith of the OMTI imager, for the entirety of March 11, 2010. The RISR-N
was operational until just after 20:00 UT that day. . . . . . . . . . . . . . . . 141

4.21 (top) A plot of the colour filled FOVs of the Rankin Inlet (light blue), Inu-
vik (yellow) and Clyde River (violet, dashed line) SuperDARN radars. Each
Rankin Inlet beam is also outlined. The Clyde River FOV is dashed since
it was not operational in 2010. All of the RISR-N range gates between 200
and 500 km, in the World Day mode configuration, are plotted (red). The
OMTI FOV is also shown as an oval shape cut out of the SuperDARN FOVs.
(bottom) A closer view in the vicinity of Resolute Bay. The Rankin Inlet
SuperDARN beams are numbered. . . . . . . . . . . . . . . . . . . . . . . . 143

4.22 A plot comparing the PI (black) and the SuperDARN echoes (red) detected
in Rankin Inlet beam 5, as a function of time for March 10, 14, 16, 18, and
19, 2010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.23 A plot comparing the PI (black) and the SuperDARN echoes (red) detected
in Rankin Inlet beam 6, as a function of time for December 8, 9, 10, 11, and
12, 2010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.24 A plot of Γ for Rankin Inlet beam 5, as a function of time (UT and MLT) for
March 10, 14, 16, 18, and 19, 2010. The tally for each value of Γ is also provided.151

xiv



4.25 A plot of Γ for Rankin Inlet beam 6, as a function of time (UT and MLT)
for December 8, 9, 10, 11, and 12, 2010. The tally for each value of Γ is also
provided. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.1 OMTI 630.0 nm image on 11 December 2009, at 22:10 UT. The overplotted
small rings show the pointing directions of the 5× 5 RISR-N beam grid. White
dashed lines mark the geographical cardinal directions and elevation angles.
The arrow in the bottom right corner shows the general drift direction of the
patches from their formation region and through the zenith at Resolute Bay. 163

5.2 Backscatter power echo fan plot from the superDARN radars at Rankin Inlet
(gray scale, in center), Saskatoon (green scale, top left), Prince George (blue
scale, top center) and Inuvik (red scale, top right), at 22:13 UT. The full FOV
of the radars are indicated by black lines. The red tetragon marks the FOVs
of RISR-N data at 270 km altitude. The patch of particular interest is seen
here with the Rankin Inlet radar, within the FOV of RISR-N. Resolute Bay
and Qaanaaq are indicated by a red dot and star, respectively. The direction
of the sun is up in the figure. . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.3 RISR-N electron density contour is plotted in color on top of gray scale Super-
DARN echoes. The FOV of RISR-N is outlined by a dashed black line. The
coherent scatter in SuperDARN is seen next to the plasma density structure.
The white dashed oval in the enlarged figure to the right indicates the location
of the optical patch seen with the 630 nm channel on OMTI. . . . . . . . . . 166

5.4 a) Range-Time intensity plot of Beam 7 of the SuperDARN radar at Rankin
Inlet (top). The latitude of the center of the RISR-N FOV is marked as a black
line. (middle) The line-of-sight Doppler velocity and (bottom) the spectral
width. b) Same format as in a, for data from Beam 6 of the Saskatoon radar. 167

5.5 Three-dimensional view of an F-region plasma density structure. The slices
at 350 km and 250 km as well as the vertical slice show the electron density
as derived from RISR-N data. The location of the radar beams are marked
as black circles on the horizontal slices. At 300 km altitude, the SuperDARN
echo is shown. The simultaneous 630.0 nm OMTI image is projected to 200 km
altitude, for which the emission brightness over the background level is indi-
cated with the colorbar below the combined plot. Optical signatures are seen
in the location of plasma density enhancements, whereas the coherent echo
from SuperDARN is strongest to the side of the plasma structure. . . . . . 168

5.6 (top) OMTI 630.0 nm keogram along the meridian for the times 22:00 -
24:00 UT. (middle and bottom) The drift velocity of the optical enhance-
ments, and their drift angle (east of north), where north is 0 degrees. The
structures are drifting predominantly north east, with a velocity of 300 - 400
m/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

xv



5.7 Plasma velocity vectors constructed from line-of-sight velocity information
from multiple SuperDARN sites using the FIT technique [Ruohoniemi and
Baker , 1998]. The plasma flow at Resolute Bay (red dot) is predominantly in
the northeast direction. The estimated location of the cusp is marked with a
black dashed oval. The transitions to the light and dark gray regions mark
the day/night terminators at 300 km altitude and on the ground. . . . . . . 173

5.8 a) The 630.0 nm OMTI image at 21:48 UT shows the brighter edge correspond-
ing to the formation region of the patches. The red dot marks the location of
Resolute Bay and the black dashed oval the estimated location of the cusp.
b) The same OMTI image as in a), with the SuperDARN echoes from the
radar in Prince George overplotted. Echoes are seen in the region of the cusp,
indicative of the strong electrodynamic processes occurring there. . . . . . . 175

5.9 (top) Contour plots of vertical north-south aligned slices through the patch,
for the times 22:11:21 UT, 22:12:36 UT and 22:13:51 UT. (middle) Same as
top, but for an east-west aligned slice. Bottom row of panels: The weighted
average vertical density profile of the patch, for each time. . . . . . . . . . . 178

5.10 The modelled sunlit atmosphere (white) above Resolute Bay shows that the
ionosphere is sunlit above 200 km when the patch drifts through the RISR-N
FOV at 22:00 UT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.11 Anti-parallel ion drift velocity, derived from the RISR-N data in the center of
the RISR-N FOV. A small increase is seen at 22:12 UT, coincident with an
upward shift of the electron density peak in the altitude profiles displayed in
Figure 5.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.12 A second polar cap patch was observed in the RISR-N data (coloured contour
plots) on 15 December 2009, between 22:59 and 23:04 UT. The contemporary
SuperDARN echoes are plotted in gray scale, from the (top) Rankin Inlet
radar and (bottom) the Inuvik radar (bottom row of panels). The patch drifts
through the RISR-N FOV in the northeast direction and breaks up around
23:04 UT. Although the event is faint, a correlation between the coherent
and incoherent scatter data can be discerned. The Rankin Inlet SuperDARN
radar also measures strong echoes from large structures south of Resolute Bay
(around 70◦ lat). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.1 The FOV of the OMTI imager at Resolute Bay, with geographic directions,
showing emissions at 630 nm at 05:10 UT on February 20, 2012. Also shown
is the 6× 7 RISR-N grid with numbered beams, and magnetic latitude con-
tours. RISR-N beams 25, 27 and 29 are highlighted in yellow and are aligned
northwest to southeast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.2 RISR-N beam 29 measurements of ne, Te, Tilos , and vlos, as a function of
altitude along the beam, and time. The time segment in which the sun-aligned
arc was within the RISR-N FOV is indicated by the violet, dashed box. . . . 193

xvi



6.3 A time series of ne measured at 285 km altitude in RISR-N beams 25 (red),
27 (green) and 29 (black), with associated error bars (dotted lines). The time
segment in which the arc was observed within the RISR-N FOV is outlined by
a violet, dashed box. The shaded rectangles denote the approximate location
of the plasma density depletion in each beam. The yellow shaded rectangle
marks the appearance of the lower F-region ne enhancement. . . . . . . . . . 194

6.4 Combined plots of the optical data from OMTI (grayscale) and RISR-N con-
tours for ne (a–c), Tilos (d–f), |E⊥| (g–i), and J‖ (j–l). Dimensions of the FOV
and MLT meridians are indicated in (f). . . . . . . . . . . . . . . . . . . . . 195

xvii



List of Abbreviations

ACF Autocorrelation Function
AMISR Advanced Modular Incoherent Scatter Radar
AU Astronomical Unit
EISCAT European Incoherent Scatter Scientific Association
EMCCD Electron-multiplying charged coupled device
ESR EISCAT Svalbard Radar
FAI Field-Aligned Irregularity
FOV Filed Of View
FTE Flux Transfer Event
GPS Global Positioning System
GSM Geocentric Solar Magnetospheric coordinate system
HF High Frequency
GDI Gradient-Drift Instability
IGRF International Geomagnetic Reference Field
IMF Interplanetary Magnetic Field
IRI International Reference Ionosphere
ISR Incoherent Scatter Radar
MI Magnetosphere-Ionosphere
MLT Magnetic Local Time
MSIS Mass Spectrometry and Incoherent Scatter
OCB Open-Closed Field Line Boundary
OMTI Optical Mesosphere Thermosphere Imagers
PFISR Poker Flat Incoherent Scatter Radar
PolarDARN Polar Dual Auroral Radar Network
RISR-C Resolute Bay Incoherent Scatter Radar – Canada
RISR-N Resolute Bay Incoherent Scatter Radar – North
SuperDARN Super Dual Auroral Radar Network
TEC Total Electron Content
UHF Ultra High Frequency
UT Universal Time

xviii



Chapter 1

Introduction

1.1 A Short History of Space Physics

ᑳᓃᒥᐦᐃᑐᒋᐠ
Figure 1.1: Plains Cree for “The ghost dancing in the skies” [M. Boyce, Personal
Communication, 2014].

Records and artefacts from many cultures and societies spanning thousands of years

and vast expanses in the northern and southern high-latitude regions exhibit a rich history of

splendour, curiosity and mysticism regarding the aurora. The term aurora borealis, the “dawn

of the north”, is attributed to Galileo Galilei, who believed the aurora was due to sunlight

reflecting off the atmosphere that had risen beyond the shadow of the Earth [Kivelson and

Russell , 1995]. However, by the time Galileo coined the term, the aurora already had many

names and interpretations. Some Indigenous cultures associated the aurora with otherworldly

happenings. The Plains Cree in North America referred to the aurora as “the ghost dancing

in the skies”, written in Figure 1.1. Some Aboriginal cultures in Australia believed that the

aurora were bush-fires in the spirit world; others, as a fire set by an ancestral hero, warning

of a coming catastrophe [Hamacher , 2013]. Many reviews exist which chart the historical

development of our understanding of the physics of the aurora, the upper-atmosphere and the

near-Earth geospace environment. The following description is based on works by Kivelson

and Russell [1995], Schunk and Nagy [2000], and Brekke [2012].

Significant developments in our understanding of the aurora and the greater geophysical

environment were made as a result of solving problems caused by its effects on navigational
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instrumentation. The first connections between the aurora and its organization by geomag-

netic field were established by Edmund Halley after he conducted surveys of the geomagnetic

field in the north and south Atlantic Ocean. The influence of the aurora on magnetic compass

perturbations was first established by Olof Hiorter, after he identified a diurnal variation in

measured magnetic perturbations. This result was interpreted as the Earth rotating under a

fixed current source. He correctly attributed the perturbations to auroral activity.

Balfour Stewart 1882 is credited with being the first to claim that the currents responsible

for the geomagnetic disturbances measured on the ground and the aurora are both located

in the upper atmosphere. This was supported by Arthur Kennelly and Oliver Heaviside who

hypothesized that a layer of charged particles in the upper atmosphere could be responsible

for the transatlantic radio experiments performed by Guglielmo Marconi. They postulated

that in order to transmit radio waves over the horizon, a reflecting layer of charged particles

must exist in the upper atmosphere. Their theory was not verified until 1925 when Edward

Appleton and Miles Barnett used radio instruments, the first radar systems, to detect and

measure the height of layers which reflected the transmitted radio waves. Together, they

discovered and labelled the D-, E- and F-regions of the ionosphere.

In the mid-nineteenth century, the connection between solar activity, the aurora and geo-

magnetic fluctuations was made by Edward Sabine. He compared geographically distributed

magnetic observatory data to the sunspot cycle, the inversion of the solar magnetic field, and

noted a correlation between the two. The 11-year sunspot cycle had already been known

about since the development of the telescope, yet the connection between solar activity and

its effects on the Earth were not considered to be significant until the work of Sabine and later,

Richard Carrington. Carrington, in a true instance of serendipity, witnessed and recorded

a solar flare and the subsequent geomagnetic disturbances. In that event, now referred to

as the “Carrington Event”, auroral displays were recorded as far south as the Caribbean.

Meanwhile, a strong relation between the sunspot cycle and the occurrence of aurora had

also been recorded, independently, by Sophus Tromholt in Scandanavia. A plot of his work

is shown in Figure 1.2.

To further explain the link between geographically distributed geomagnetic disturbances

and solar activity, both Kristian Birkeland and Sydney Chapman advanced the idea that a
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meteorological observations at many weather stations in Scandinavia, than a
genuine increase in auroral occurrence.

A well-known and much used catalog of auroral observations is due to
Rubenson, the director of the Swedish Meteorological Institute in the last part of
the 19th century. The annual numbers of recordings are shown in Figure 7.6. The
increase in auroral observations towards the end of the 19th century is again
evident with respect to the earlier part of the time series. Although the Rubenson
catalog represents a meticulous work in collecting newspaper articles, notes,
diaries, meteorological journals, etc. for almost 200 years, the statistics have little
scientific value quantitatively because the catalog does not represent a homoge-
neous dataset. When studying auroral activity from annals and suspect old notes,
one also needs to know something about the activity of individual recorders and
this is often the most difficult part of the task. The likelihood of observing an
aurora and getting it written down on paper for later use was far higher toward
the end of the 19th century than at the beginning of the 18th. The fact that the
aurora has a tendency to appear in relation to variations in the solar cycle cannot
be denied, but to express this in a quantitative manner by, for instance, a correla-
tion coefficient, is far from well established, let alone an understanding of the
physical processes linking the appearance of sunspots with that of auroral dis-
plays.

Looked at annually, it appears that the aurora has a tendency to occur more
frequently at equinoxes than solstices (Figure 7.7), even when corrected for cloudi-
ness and number of dark hours per night. The reason for this is not quite clear,
but is most likely due to seasonal difference in electromagnetic coupling between
the solar wind and interplanetary field with the Earth’s magnetic field and
magnetosphere.

The aurora frequently shows a 27-day periodicity in relation to disturbances
on the Sun, which have a tendency to repeat themselves with a period determined
by the rotation period of the Sun as seen from the Earth (close to 27 days).

324 The aurora [Ch. 7

Figure 7.5. The annual numbers of auroras recorded in Scandinavia between 1780 and 1877
according to a survey made by Sophus Tromholt (1851–1896). These numbers are compared
with the annual sunspot number for the same period. (After Brekke and Egeland, 1983.)

Figure 1.2: A plot comparing the occurrence of aurora observed in Scandanavia and
the sunspot cycle, recorded between 1780 and 1877, by Sophus Tromholt. Reproduced
from Brekke [2012].

stream of electrons originating from the Sun was responsible for the disturbances and auroral

displays. Originally, this idea was refuted by others in the scientific community who noted

that such a stream of electrons could not exist since the beam should disperse due to the

like charge of the electrons. The idea was modified by Frederick Lindemann, who suggested

that a stream of electrons from the Sun could reach the Earth if the stream contained equal

amounts of electrons and positive charge, preventing the dispersion of the beam. In essence,

Lindemann described the quasineutrality condition of a plasma. Arguably, this development

marked the beginning of plasma physics, the theory of the solar wind and its relation to

geomagnetic disturbances.

Chapman and Vincent Ferraro recognized that if the stream of charged particles originat-

ing from the Sun was extremely tenuous and the space through which it travelled was tenuous

as well, the stream would have a nearly infinite conductivity. Thus, if one approximated the

stream as an infinite plane of infinite conductivity, a dipole magnetic field would be induced

in it as the stream approached the geomagnetic field. The superposition of the geomagnetic

field and mirror field would distort the geomagnetic field, and divert the solar plasma stream

around the geomagnetic field. This would create a cavity around the Earth, distinguished by

the absence of solar plasma within it, now known as the magnetosphere. Despite the absence

of in-situ measurements (satellites had not yet been invented) many characteristics of the
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Figure 1.3: A graphic depicting the complex nature of the near-Earth geospace system,
its phenomena, drivers and coupling mechanisms. Reproduced from Committee on
a Decadal Strategy for Solar and Space Physics (Heliophysics); Space Studies Board;
Aeronautics and Space Engineering Board; Division of Earth and Physical Sciences;
National Research Council [2013].

Chapman-Ferraro model for the magnetosphere proved accurate, including the generation of

current systems due to the interaction of the solar wind and magnetosphere, responsible for

magnetic perturbations measured on the ground.

Space physics: the physics of the ionosphere, magnetosphere and Sun-Earth geospace

system has undergone significant advances during the twentieth and twenty-first centuries.

The progress has been closely linked to the development of radio instruments such as radar,

optical instrumentation, rocketry and satellite exploration. Along with the experimental

branch of the field, the theoretical branch has advanced our understanding of plasma physics,

the terrestrial atmosphere, the ionosphere, and their coupling mechanisms, with clever phe-

nomenology, the aid of sophisticated computer modelling and experimentation to guide their

progression. A snapshot of the near-Earth geospace is given in Figure 1.3, and shows the
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complexity and richness of only a portion of space physics, the near-Earth geospace, as it is

understood today. An abundance of neutral atmospheric and ionospheric phenomena, their

coupling mechanisms and their drivers is depicted. The region of focus in this work is the

polar region, and the large scale ionosphere plasma density perturbations therein. A more

detailed description of the solar wind, magnetosphere and ionosphere is now given.

1.2 The Solar Wind and Magnetosphere

1.2.1 The Solar Wind

The Interplanetary Magnetic Field (IMF) produced by the Sun is transported into the solar

system by the solar wind, the super-sonic expansion of the atmosphere of the Sun. The solar

wind is a fully ionized plasma, primarily composed of protons and electrons [Baumjohann

and Treumann, 1997; Chen, 2010]. The state parameters of the solar wind vary depending

on the activity of the Sun, which is strongly coupled to the 11-year solar cycle – the period

of the solar magnetic field inversion. Table 1.1 provides information on the plasma density n,

proton temperature Tp, electron temperature Te, solar wind speed u, Alfvén speed VA, and

sound speed VS, for three solar wind speeds with colloquial descriptors of “slow”, “average”

and “high” speed.

An electromagnetic description of the solar wind may be obtained if we consider the

Maxwell-Faraday equation:

∇× E = −∂B

∂t
, (1.1)

where E and B are the ambient electric and magnetic field, respectively. Substituting in

Ohm’s law gives:

∂B

∂t
= ∇×

(
−J

σ
+ u×B

)
, (1.2)

in which J is the current density, u is the velocity of the plasma and σ is the conductivity of

the plasma. Substituting in Ampère’s law (the static case) gives:

5



Parameter Average Low-Speed High-Speed

n (m−3) 8.7× 10−6 11.9× 10−6 3.9× 10−6

u (ms−1) 468× 103 327× 103 702× 103

B (T) 5.9× 10−9 6.0× 10−9 7.3× 10−9

Tp (K) 1.2× 105 0.34× 105 2.3× 105

Te (K) 1.4× 105 1.3× 105 1.0× 105

VA (ms−1) 44× 103 38× 103 66× 103

VS (ms−1) 63× 103 44× 103 81× 103

Table 1.1: Solar wind parameters near the Earth, under various solar wind conditions,
distinguished by the radial velocity. Reproduced from Schunk and Nagy [2000].

∂B

∂t
= ∇×

(
−∇×B

µ0σ
+ u×B

)
, (1.3)

which is equivalent to:

∂B

∂t
= ∇× (u×B)− 1

σµ0

∇2B, (1.4)

in which µ0 is the permeability of free space. The first term on the right hand side of

Equation 1.4 describes the motion of the plasma, perpendicular to the direction of the ambient

magnetic field. The second term on the right hand side describes the diffusion of the magnetic

field, in which the diffusion coefficient is D⊥ = 1/σµ0. The density of the solar wind is

low; the mean-free-path of a solar wind particle is extremely large, of the order of 1011m

(approximately 1 AU), and therefore, the conductivity of the solar wind is extremely large.

The right hand side of Equation 1.4 is dominated by the first term.

Next, consider the total magnetic flux, Φ, passing through a surface S specifically,

Φ =

∫
S

B · n̂ dS, (1.5)

in which n̂ is the unit vector normal to the surface S. Taking into account that ∇ · B = 0

everywhere, it can be shown that [e.g., Siscoe, 1983]:
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∂Φ

∂t
=

∫
S

(
∂B

∂t
−∇× (u×B)

)
· n̂ dS, (1.6)

where once again u is the velocity of the plasma. Combining Equations 1.4 and 1.6, and

considering the case of the solar wind where σ →∞ yields:

∂Φ

∂t
= 0, (1.7)

which is Alfvén’s theorem [Alfvén, 1942], also known as the frozen in condition. Alfvén’s

theorem states that for a perfectly conducting plasma (such as the solar wind) the magnetic

flux through any closed surface remains constant. An implication of the theorem is that the

IMF carried by the solar wind remains unchanged throughout its propagation through the

solar system. For our applications in this work, the closed surface is of a cylindrical shape

and bounded by magnetic field lines, and is referred to as a flux tube. For a flux tube,

Φ =

∫
S

B · n̂ dS = 0. (1.8)

1.2.2 The Magnetosphere

Alfvén’s theorem breaks down in regions in which current sheets are present. In the Sun-

Earth system, this occurs when the solar wind encounters the plasma contained within the

magnetosphere, the geomagnetic cavity of the Earth [Schunk and Nagy , 2000; Hargreaves ,

1992]. The magnetosphere is a region enclosing the Earth in which the geomagnetic field is

the predominant magnetic field. When a solar flux tube and magnetospheric flux tube are

incident on one another a current sheet may be generated depending on the orientation of

the magnetic field associated with tubes, according to Ampère’s Law. Using Ohm’s law to

describe the induced current: ηJ = E + u×B, in which η = 1/σ ' 0 – the normal case for

a highly conducting plasma. However, according to the Sweet-Parker model for reconnection

[Parker and Krook , 1956; Sweet , 1958], there is a point at which antiparallel magnetic field

lines are sufficiently close such that the current, J, becomes large enough that the product

ηJ is no longer negligible. The ions and electrons become unmagnetized, they are no longer

gyrating around the magnetic field, to first order. D⊥ 6' 0 and the magnetic flux can diffuse

7



between flux tubes. The diffusion of flux is a fundamental step in magnetic reconnection, also

known as magnetic merging. During magnetic reconnection, a reconfiguration of magnetic

field topologies occurs whereby magnetic field lines can merge with other magnetic field

lines [Schindler and Hornig , 2001; Yamada et al., 2010]. Magnetic reconnection is not only

found in the Sun-Earth system, it is also used to explain solar flares, and many other cosmic

processes. Magnetic reconnection is not completely understood, and investigating any further

into it is beyond the scope of this work. Nevertheless, for this work, it is sufficient to describe

it as the interaction between two flux tubes: one of solar origin and the other of geophysical

origin, resulting in either an IMF line connecting with a geomagnetic field line, an IMF line

connecting with another IMF line, or a geomagnetic line connecting with another geomagnetic

field line. Reconnection is the main driver for many complex systems of current, charged

particle drifts, plasma transport and interaction in the magnetosphere.

Within a radial distance of 2 to 3 Earth radii (Re), the geomagnetic field can be approxi-

mated as a dipole field [Hargreaves , 1992]. Complex interactions, including the reconnection

process as well as the magnetic pressures from the solar wind and the magnetosphere, distort

the dipole field, compressing it in regions between the Sun and the Earth, i.e., the dayside,

and stretching it out on the nightside. This is illustrated in Figure 1.4, which is plotted in

the Geocentric Solar Magnetospheric (GSM) coordinate system, in which the x-axis is the

Sun-Earth line, and the x-z plane contains the geomagnetic dipole axis of the Earth [Kivelson

and Russell , 1995].

The geomagnetic field lines at the edge of the magnetosphere – the magnetopause – map

down to higher geographic latitudes. The field lines labelled 1 and 6 in Figure 1.4 undergo

magnetic reconnection. In this process, a geomagnetic field line is disconnected from one of

the two geomagnetic poles and reconnected to the IMF. This is shown with line 1′ and 1

reconnecting to create line 2 in the northern hemisphere (1′ and 1 become 2′ in the southern

hemisphere). In the nightside, lines 6 and 6′ also undergo reconnection creating lines 7 and

7′. From this, we can categorize two types of magnetic field lines connected to a geomagnetic

pole: those which are connected to the opposite geomagnetic pole, referred to as “closed”

field lines, and those which are connected to the IMF, referred to as “open” field lines. In

Figure 1.4, lines 1, 7, 8 and 9 are closed field lines, while lines 2, 3, 4, 5 and 6, and their
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Figure 1.4: The interaction of the IMF and the geomagnetic field [Kivelson and
Russell , 1995].

equivalents in the southern hemisphere, are open field lines. The footprints of the field lines

in Figure 1.4 are connected to the ionosphere, whose role will be introduced in more detail

shortly. As a field line transitions from 1 to 9 in Figure 1.4, its footprint in the ionosphere

traces out a path, as shown by the inset in Figure 1.4.

There are many regions and features of interest in the magnetosphere, which may be dis-

tinguished by the characteristics of the plasma present there, and the dynamics of the plasma

motion involved. A selection of the more significant regions and their plasma populations is

shown in Figure 1.5. Two regions that are closely related to this work are now described.

9



Figure 1.5: A depiction of the current systems and different regions of the magneto-
sphere [Russell and Luhmann, 1997].

Magnetosheath

The bow shock (depicted in Figure 1.4) is a region located approximately 12 Re in front of

the sunward side of the Earth [Schunk and Nagy , 2000]. The magnetosheath is the region in

between the bow shock and the magnetopause (the outer boundary of the magnetosphere).

At the bow shock, the solar wind plasma is suddenly decelerated and turbulent. The loss in

kinetic energy of the plasma is converted into thermal energy, increasing the temperature of

the magnetosheath plasma to 5× 106 K [Hargreaves , 1992].

Polar Cusp

The polar Cusp is a near-Earth deep minimum in the total magnetic field in the magneto-

sphere. The Cusp is typically situated at high latitudes on the dayside magnetosphere, as
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shown in Figure 1.5. The Cusp is a transition region in the magnetosphere, between an open

and closed field line configuration. Geomagnetic field lines originating from lower latitudes

than the Cusp are closed, while those originating at higher latitudes than the Cusp are gen-

erally open [Hargreaves , 1992]. At the Cusp, the geomagnetic field lines diverge as a function

of radial distance from the Earth, and the magnetopause extends down towards the surface

of the Earth. In Figure 1.4, the Cusp region is bounded by field lines 1 and 2 (1 and 2′ in

the southern hemisphere). The Cusp is also illustrated in Figure 1.5. Both the northern

and southern hemispheres have a Cusp region. The near absence of the magnetosphere at

the Cusp allows for solar wind plasma, decelerated in the magnetosheath, to stream directly

down to the upper atmosphere of the Earth, along the geomagnetic field lines [Russell , 2000].

1.2.3 Particle motion and magnetospheric current systems

An important condition placed on all plasmas is that of current closure:

∇ · J = 0. (1.9)

As illustrated in Figure 1.5, there are many current sources in the magnetosphere. Some are

a result of its geometry, others are due to the interaction between the magnetosphere and

solar wind. Nonetheless, since there are current generators there must be current closure. In

the magnetosphere-ionosphere (MI) system, the ionosphere acts to facilitate current closure.

In some circumstances, the ionosphere may act as a load, while the magnetosphere acts as a

generator, a coupling that is analogous to an electrical circuit. The magnetic field lines act

as the wires, and allow the current to flow between the generators (in the magnetosphere)

and the load (the ionosphere).

General particle drifts

The geometry of the dipole geomagnetic field and its distortions due to its interaction with

the solar wind are responsible for the many complex particle drift and current systems in

the magnetosphere. The motion of the particles comprising the collisionless magnetospheric

plasma can be described by the guiding centre drift of a charged particle in a magnetic field.
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It is assumed that the gyrofrequency of the charged particle is much greater than the rate

of change any other dynamic process in the system (e.g., the time variation of the ambient

magnetic field). Thus, only the geometric centre of the gyromotion about the magnetic field

line needs to be considered. This is referred to as the guiding centre approximation [Kelley ,

2009; Baumjohann and Treumann, 1997]. Using this approximation, the general force guiding

centre drift is:

vF =
1

ωg

(
F

m
× B

B

)
, (1.10)

where vF is the guiding centre drift of the charged particle, ωg = qB/m is the gyrofrequency

of the particle, q is the charge of the particle, m is the mass of the particle, B is the ambient

magnetic field, and F is the force acting on the charged particle [Baumjohann and Treumann,

1997].

To give an example of Equation 1.10, consider a charged particle moving in a spatially

varying magnetic field. The particle will experience a force F∇ = −µ∇B, where µ is the mag-

netic moment of the particle. This force results in the gradient drift: v∇ = (mv2
⊥/2qB

3)(B×∇B)

where v⊥ is the perpendicular velocity of the particle with respect to the magnetic field. As

the sign of the drift depends on the charge of the particle, q, the gradient drift can result in

currents, and is in fact partially responsible for the ring current (shown in Figure 1.5). This

current system is established in the magnetotail by plasma moving toward the Earth, in the

x-direction due to plasma pressure gradients. As it travels closer to the Earth, the plasma

encounters the positive magnetic field gradient of the geomagnetic dipole field, establishing a

gradient drift. Here, the electrons are directed eastward towards the dawnside of the Earth,

while the ions are directed westward towards the duskside of the Earth. The gradient drift

combines with other particle drifts, not discussed here, to produce the full ring current.

Field-Aligned Currents – Regions 1 and 2

Field aligned currents are another important component of the MI system. In the magne-

tosheath, the solar wind decelerates due to its interaction with the magnetosphere. The

deceleration is equivalent to a force density directed towards the Sun – in the x–direction.

The force density is in the form of ρdv/dt = J×B, where J is an induced current density,
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Figure 2. Sketch of the polar cap current circuit (long dashed lines), in which the dawn-to-dusk Pedersen 
current in the ionosphere closes in the magnetopause current via Region 1 FAC flowing on the outer surface 
of the plasma sheet. The current circuit produces sunward-directed perturbation magnetic fields ABe in the 
polar region (in the northern hemisphere), which, combined w•th the dawn-to-dusk electric field E 
associated with the flow, produces a net downward Poynting flux S: of electromagnetic energy into the 
ionosphere (short-dashed lines). 

at potential (p = (I)/2 volts, while that of the dusk cell is at (p 
--(I)/2 volts, where (I) is the total transpolar voltage 
associated with the flow, then it is easy to see that 
Rj--I(I) W, where I is the total Region 1 current. For 
typical values (I)--50 kV and I--2 MA we thus have 
Rj--10 • W. This represents -10% of the energy 
consumed by the magnetosphere in cislunar space, and -1% 
of the total kinetic energy of the solar wind which is 
incident on the magnetospheric cross-section. With regard 
to the total force exerted on the ionosphere by the 
magnetosphere, it is easy to show that if the conductivities 
are uniform, the total j x B force integrated around each 
ionospheric streamline is zero. The net force on the 
ionosphere will thus depend upon the distribution of 
conductivity, and will in general be directed sunward, due 
to the larger conductivity, and hence drag, in the auroral 
zone. The total antisunward force acting on the polar cap 
ionosphere is typically -10 8 N, comparable to the total ram 
pressure of the solar wind acting over the magnetospheric 
cross-section, while the total sunward force acting on the 
auroral zone ionosphere is typically about double this. 

3. MAGNETOSPHERE-IONOSPHERE CURRENT 
CIRCUITS 

As indicated above, the currents flowing in the 
ionospheric "load" must close in a magnetosphere- 
magnetosheath "generator", involving a large-scale system 
of FACs flowing between these regions. Figure 2 shows 
the large-scale circuit associated with the polar cap current, 
where the ionospheric Pedersen currents close in the tail 
lobe magnetopause via Region 1 FACs flowing on the outer 
surface of the plasma sheet. The magnetopause currents are 
the "generator" currents where j.E < 0, the ionospheric 
Pedersen currents are the "load" where j.E > 0, and there 
is a net downward Poynting flux from one region to the 
other via the perturbation magnetic field produced by the 
current circuit. In the northern hemisphere the perturbation 
fields are directed opposite to the flow, while in the 
southern hemisphere they are directed parallel to the flow. 
These fields constitute the "transverse magnetic 
disturbances" originally observed by Zmuda et al. (1966). 
Just above the conducting layer of the ionosphere the field 

Figure 1.6: A depiction of the Region 1 current system, from [Cowley , 2000]. In
this image duskside of the Earth is on the left and the dawnside is on the right. The
position of the dusk-to-dawn current flow is depicted above the x-z GSM plane here.
Sz is the downward Poynting flux due to the current system, and ∆Bp is the magnetic
field perturbation due to the field-aligned currents (neither are discussed in the text).

directed from dusk-to-dawn, the negative y–direction [Kelley , 2009]; v is the velocity of the

decelerated plasma; and B is the geomagnetic field. In this situation, we neglect any other

factors such as gravity and pressure gradients, since they are negligible compare to the J×B

force. The induced current density is labelled as a magnetopause current in Figure 1.6. The

generation of this current is also shown in Figure 1.7, from the perspective of the x-z GSM

plane. A magnetic field line that has recently merged with the IMF is shown in red. When

the incoming solar wind plasma in the newly merged flux tube enters into the magnetosheath

region it undergoes a deceleration (vector is shown in blue) while the rest of the flux tube

outside of the magnetosphere is carried along by the solar wind, v. This creates a kink in the

flux tube in Figure 1.7. The deceleration is associated with the J×B force, and is associated

with the current density, J, directed into the page in Figure 1.7.
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Figure 1.7: A side view of the magnetopause current and Region 1 generation mech-
anism, as seen in the x-z GSM plane. The magnetosheath is the location in which the
incident solar wind becomes decelerated by its interaction with the magnetosphere. A
flux tube connected between the solar wind and geomagnetic field is shown in red. The
acceleration (blue dotted line), velocity (black dotted line), current density and geo-
magnetic field vectors on a portion of the flux tube in the magnetosheath are indicated.

Current closure (Equation 1.9) must be maintained throughout the plasma. Therefore, if

a current is present and it is directed perpendicular to the magnetic field, a current parallel to

the magnetic field must also be present in order to satisfy Equation 1.9. In the magnetosheath,

this parallel current is a field-aligned current. As illustrated in Figure 1.6, field-aligned current

is directed parallel to the magnetic field on the dawn side of the Earth and anti-parallel on

the dusk side of the Earth. The current is completed through the ionosphere, in the form of a

Pedersen current which will be introduced in a later section. This current system is referred

to as the Region 1 current system. In the magnetosphere, an electric field is produced in the
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non-rotating frame of reference of the Earth; it is known as the dawn-to-dusk electric field,

EDD, and is directed opposite to J. The product of the two is J · EDD < 0; the interaction

of the MI system at the magnetopause is a current generator. In the ionospheric portion of

the current system, J · EDD > 0, in which case the ionosphere acts as a load.

Whereas the magnetosphere current drives the Region 1 current system, a space charge

build up due to the partial ring current in the magnetosphere is responsible for the Region 2

current system. The ring current is established by the gradient drift of plasma being directed

in the x-direction – towards the Earth – by a dawn-to-dusk electric field in the magnetotail.

A steep radial gradient (directed from the Earth) in magnetospheric plasma temperature can

establish a charge build-up, with positive charges accumulating at the duskward edge of the

gradient, and negative charges near dawnward edge [Cowley , 2000; Lotko, 2007]. Plasmas

dissipate space charge build-up quickly; a field-aligned current with a downward current into

the ionosphere on the duskside of the Earth, and an upward current out of the ionosphere

on the dawnside, will be created to dissipate the charge build-up. Since the ring current is

interrupted, a partial ring current forms. This is illustrated in Figure 1.8. Like the Region 1

currents, the Region 2 currents are closed by Pedersen currents in the ionosphere, and here

JRC · E > 0 as well. The Region 2 current system is situated at lower geographic latitude

than the Region 1 current system.

An important implication of the Region 1 and 2 current systems, for this work, is that

they conspire to impart an E×B drift on the plasma comprising the ionosphere. The current

systems generate plasma circulation, throughout the high latitude and polar region. This

topic is discussed in more detail shortly.

1.3 The Ionosphere

The density of the terrestrial neutral atmosphere decays exponentially with increasing alti-

tude. For a single species gas in hydrostatic equilibrium the vertical pressure gradient force

and the force of gravity on the gas are balanced. The density of the gas is:

n (z) = n0 exp

[
−z − z0

H

]
, (1.11)
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Figure 8.2 (a) Schematic diagram of the currents and electric fields that exist as a result
of the extended magnetic field in the tail of the magnetosphere and the interaction between
the solar wind and the earth’s magnetic field. (b) Three-dimensional view of the electric
and magnetic field geometry on auroral zone flux tubes.

Figure 1.8: A depiction of the Region 1, R1, and 2, R2, current systems, from Kelley
[2009]. Here, EMS is the magnetosheath electric field; EM is the dawn-to-dusk electric
field; JMS is the magnetosheath current; JT is the tail current; JR is the ring current;
JPR is the partial ring current; JPC and J0 are the ionospheric portions Region 1 and
2 current systems, respectively; and, EPC and E0 are the ionospheric electric field
established by the Region 1 and 2 current systems, respectively.

in which z is the altitude and z0 is a reference altitude; n0 is an initial density; H = kbT/mg

is the scale height, the e–folding height of the neutral density of the gas. H is a function of

thermal energy, kbT , and the force of gravity, mg, in which m is the mass of a gas particle

and g is the acceleration due to gravity, kb is Boltzmann’s constant and T is temperature. A

vertical profile of the main constituents of the neutral atmosphere: N2, He, O2, O and Ar,

between 50 and 1200 km altitude is shown in Figure 1.9.

1.3.1 Plasma production

At an altitude, z, above the surface of the Earth the solar flux, Φ, as a function of wavelength,

λ, and solar zenith angle, χ, can be described as [Tohmatsu and Ogawa, 1990]:
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Figure 1.2 International Quiet Solar Year (IQSY) daytime atmospheric composition,
based on mass spectrometer measurements above White Sands, New Mexico (32◦N,
106◦W). The helium distribution is from a nighttime measurement. Distributions above
250 km are from the Elektron 11 satellite results of Istomin (1966) and Explorer XVII
results of Reber and Nicolet (1965). [C. Y. Johnson, U.S. Naval Research Laboratory,
Washington, D.C. Reprinted from Johnson (1969) by permission of the MIT Press,
Cambridge, Massachusetts. Copyright 1969 by MIT.]

ratio as in the lower atmospheric regions—about 4:1—and dominate the gas.
Near 120 km the amount of atomic oxygen reaches that of O2, and above about
250 km the atomic oxygen density also exceeds that of N2. This trend is due to the
photodissociation of O2 by solar UV radiation coupled with molecular diffusion
and the absence of turbulent mixing above the turbopause. The dominance of
atomic oxygen in the neutrals is mirrored by the plasma composition. The curve
labeled e− is similar to the right-hand side of Fig. 1.1 and represents the electron
density (thus labeled with e−). Near the peak in the plasma density, the ions
are nearly all O+, corresponding to the high concentration of atomic oxygen in
the neutral gas. The altitude range 150–500 km is termed the F region, and the
maximum density there is termed the F peak. (The F region is often separated
into F1 and F2 during daytime due to the role of molecular ions.) Below the
peak, NO+ and O+

2 become more important, dominating the plasma below
about 150 km. The altitude range 90–150 km is called the E region, and the
ionization below 90 km is, not surprisingly, termed the D region. These rather
pedantic names have a curious history. The E region received its name from the
electric field in the radio wave reflected by the “Heavyside” layer (the first name
for the ionosphere). The other layers were simply alphabetical extensions. It was
assumed initially that a plasma is absent between the layers. Unfortunately, many
phenomena have been named for the instrument used to measure them or some
other obscure parameter.

At the highest altitudes shown in Fig. 1.2, hydrogen becomes the dominant ion
in a height regime referred to as the protonosphere. Helium ions are quite variable
but sometimes reach 50% of the total ions at the base of the protonosphere. The

Figure 1.9: The vertical density profiles of the neutral atmosphere and the ionosphere,
between an altitude of 50 and 1200 km, in units of cm−3 [Johnson, 1969].

Φ (λ, z, χ) = Φ (λ,∞) exp [−τ (λ, z, χ)] , (1.12)

where Φ (λ,∞) is the incoming solar flux at the top of the atmosphere. τ is the optical depth

of the atmosphere, a measure of its opacity:

τ (λ, z, χ) = secχ
∑
X

σ (X,λ)

∫ ∞
z

n (X, z′) dz′. (1.13)

Here X denotes a atmospheric species and σ is its absorption cross-section and n is the

number density of a neutral gas. The amount of energy density, qT , deposited into the

atmosphere by the solar flux is:

qT (z, χ) = ε (z)

∫ ∞
0

Φ (λ, z, χ)σ (X,λ)n (X, z) dλ, (1.14)

where ε is the heating efficiency that describes how well the incoming solar flux transforms

into thermal energy. At the altitude where τ is a maximum, zmax, the incoming solar flux is

decreased by a factor of 1/e. It is also at this altitude that the amount of thermal energy

deposited by the solar flux is maximized, qTmax . A plot of where this occurs as a function of

λ for incoming solar flux is given in Figure 1.10. Taking this into consideration for a single

species we get:
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Figure 2.1a Depth of penetration of solar radiation as a function of wavelength. Alti-
tudes correspond to an attenuation of 1/e. The principal absorbers and ionization limits
are indicated. [After Smith and Gottlieb (1974). Reprinted with permission of Kluwer
Academic Publishers.]
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Figure 2.1b Spectral distribution of solar irradiance and its variation with solar activity.
The logarithmic representation emphasizes the contribution of x-rays and extreme ultra-
violet radiation. [After Smith and Gottlieb (1974). Reprinted with permission of Kluwer
Academic Publishers.]

Figure 1.10: A profile of the altitude at which the incoming solar radiation decreases
by 1/e [Kelley , 2009; Smith and Gottlieb, 1974]. The ions indicate where their cross
section is at a peak, and the neutral molecules indicate the principal absorbers.

Figure 1.11: Two calculated production rates for each of O+
2 , H+

2 and O+, as a
function of altitude [Schunk and Nagy , 2000]. The lesser production rate is by pho-
toionization, while the larger rate is the total production rate by photoionization and
photoelectrons.
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Ch (z, χ) =
qT (z, χ)

qTmax

= exp

{
1− z − zmax

H
− secχ exp

[
−z − zmax

H

]}
. (1.15)

Equation 1.15 is known at the Chapman production function, Ch (z). A plot of Equa-

tion 1.15 is given in Figure 1.12 for a case in which χ = 0 (the Sun is directly overhead).

The Chapman function provides an accurate description of the thermal energy deposition in

the neutral atmosphere, by the incoming solar radiation. A Chapman production function

is modelled in Figure 1.11. One process by which the thermal energy is deposited into the

neutral gas is through photoionization. Above 60 km altitude, the neutral atmosphere is

tenuous enough that the production of charged particles by photoionization cannot be com-

pletely neutralized by chemistry. This results in a weakly ionized plasma and the region

above 60 km which is referred to as the ionosphere. A vertical profile of the ionosphere is

given in Figure 1.9, showing the profiles of its main ion constituents.

1.3.2 The F region

The ionosphere is vertically stratified, and classified into three regions: the D region, located

between 60 and 90 km altitude; the E region, located between 90 and 150 km altitude; and

the F region, located between 150 and 1000 km altitude [Hargreaves , 1992]. The main focus

of this work is on processes occurring in the F region.

In the F region, O+ is the main ion constituent, produced via photoionization:

O + hν → O+ + e, (1.16)

where hν is solar extreme ultraviolet (EUV) radiation. Subsequently, O+ can be produced by

collisions between the photoelectron in Equation 1.16 and atomic Oxygen, if the photoelec-

tron has sufficient ionization energy [Tohmatsu and Ogawa, 1990]. According to Figures 1.10

and 1.11 the EUV absorption by atomic oxygen peaks at 150 km altitude, and thus the

production of O+ peaks there as well. Yet, Figure 1.9 places the peak O+ density at 250 km

altitude. This apparent discrepancy can be resolved if one considers the main O+ sinks:

O+ +O2 → O+
2 +O, (1.17)
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Figure 1.12: A plot of Equation 1.15, the Chapman function.

and

O+ +N2 → NO+ +N. (1.18)

In terms of photochemistry,

[
O+
]

=
Ch(z)[O]

k1 [O2] + k2 [N2]
, (1.19)

in which Ch(z)[O] is the production of O+ by photoionization, and k1 and k2 are the re-

combination rates for Equations 1.17 and 1.18, respectively. As shown by Figure 1.9,

[N2] > [O] > [O2], between 150 and 250 km altitude. At 250 km, [N2] ' [O] > [O2], and

above that [O] > [N2] > [O2]. It turns out that in the F region, up to 250 km altitude,

d[O+]/dz > 0. The photoproduction of O+ decreases with increasing altitude above 150 km
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(Figure 1.11), but the concentrations of its main sinks, N2 and O2, decreases with altitude

more quickly. Above 250 km, ambipolar diffusion along the magnetic field line becomes im-

portant [Hargreaves , 1992; Schunk and Nagy , 2000]. The scale height of the plasma becomes

much larger than that of the neutrals and the plasma density profiles turns around starting

at 250 km, as shown in Figure 1.9.

In general, the F region has the highest plasma density in the ionosphere. There are two

important points in the F-region plasma density profile, the F1 ledge and the F2 peak, at

approximately 175 and 250 km altitude, respectively. Due to photochemistry, the F1 ledge is

only present when the ionosphere is sunlit. On average the F1 ledge has a plasma density of

the order of 1011 m−3. The magnitude of the F2 density peak is the largest in the ionosphere

and can be of the order of 1012 m−3 [Tohmatsu and Ogawa, 1990].

1.3.3 The E region

The E region is below the F region, between 90 and 150 km altitude. The main ion constituent

in the F region is an atomic ion, O+, which is only produced directly via photoionization.

The molecular ions NO+ and O+
2 are dominant in the E region. The former is produced by

a number of reactions [Tohmatsu and Ogawa, 1990]:

O+ +N2 → NO+ +N, (1.20)

N+
2 +O → NO+ +N, (1.21)

O+
2 +NO → NO+ +O, (1.22)

and

NO + hν → NO+ + e. (1.23)

Photoionization is responsible for the production of N+
2 and O+

2 . The first two equations are

the main contributors to NO+ production in the E region; the other two equations contribute
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very little since there is not much NO at E-region altitudes. The E-region plasma density

reaches a peak of 1011 m−3, at approximately 110 km altitude.

NO+ is only removed via:

NO+ + e→ N +O, (1.24)

a reaction which has the quickest reaction rate of any E or F region chemistry. O+
2 is removed

with a similar reaction, but at a slower rate. As a result, the E-region ionosphere recombines

quickly once photoionization ceases after sundown, becoming significantly depleted on a time-

scale of 100 s [Tohmatsu and Ogawa, 1990].

1.3.4 Ionosphere electrodynamics

Ionospheric Currents

In the ionosphere, the motion of the ions and electrons have two components: the Pedersen

drift, which is along a transverse electric field with respect to the geomagnetic field, and the

Hall drift, an E×B drift where E is a transverse electric field and B is the geomagnetic field.

The magnitude of each drift depends on the mobility of the plasma, which itself depends on

the collision properties of the plasma. In general [Baumjohann and Treumann, 1997]:

j = σ · E, (1.25)

where σ is the conductivity tensor. In the ionosphere,

σ =


σP σH 0

−σH σP 0

0 0 σ‖

 , (1.26)

where σ‖ is the plasma conductivity and is sometimes labelled σ0; σP is the Perdersen con-

ductivity; and σH is the Hall conductivity. More precisely [Kivelson and Russell , 1995],

σP =

(
νen

ν2
en + ω2

ge

+
me

mi

νin
ν2
in + ω2

gi

)
nee

2

me

, (1.27)

σH =

(
ωge

ν2
en + ω2

ge

− me

mi

ωgi
ν2
in + ω2

gi

)
nee

2

me

, (1.28)
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Figure 2.6 Typical conductivity values for the midlatitude daytime ionosphere. Notice
the change of scale for σP and σH . The dashed curve is a typical nighttime profile of σP
also multiplied by 106.

For κi ≫ 1 (above 130 km) this expression becomes even simpler,

σP = ne2vin/M#2
i = nMvin/B2 (2.40b)

The Hall conductivity σH falls off more rapidly with height than does
∑

P
and is important only in a narrow height range where three conditions are met:
κe ≫ 1, κi <∼ 1, and n is large. A typical nighttime curve for σP is also given.

Finally, we remind the reader that the calculations have thus far been per-
formed in the neutral reference frame, where J′= σ · E′. More usually we measure
the neutral wind U and electric field E in the earth-fixed frame. However, since
E′ = E + U × B and J = J′ for nonrelativistic transformations, we have the
important and most usual form of the current equation

J = σ · (E + U× B) (2.41)

where all parameters are measured in the earth-fixed coordinates. Earth-fixed
measurements of electric fields, of course, can determine only the E in (2.41),
not the entire quantity E′ = E + U× B.

To summarize, we note that the ionospheric plasma is subject to electromag-
netic forces in addition to those felt by the neutral atmosphere. The dipole nature
of the magnetic field is not greatly affected by ionospheric currents. The result
is that the magnetic field creates geometric constraints on the plasma behavior,
constraints that are quite different at different magnetic latitudes. Electric fields,

Figure 1.13: The vertical profiles of the plasma, Pedersen and Hall conductivities, as
a function of altitude. The Pedersen and Hall conductivities have been multiplied by
106 [Kelley , 2009].

and

σ‖ =

(
1

νen
+
me

mi

1

νin

)
nee

2

me

, (1.29)

where νen is the electron-neutral collision frequency, ωge is the electron gyrofrequency, me is

the electron mass, mi is the ion mass, νin is the ion-neutral collision frequency, ωgi is the ion

gyrofrequency, ne is the electron number density, and e is the fundamental charge. A plot of

the ionospheric conductivities is given in Figure 1.13.

Equation 1.25 can be re-written as:

j = σ‖E‖ + σPE⊥ − σH
(

E×B

B

)
, (1.30)

in which E‖ is the electric field parallel to the magnetic field; and E⊥ is the electric field,

transverse to the magnetic field. The second term in Equation 1.30 is the Pedersen current,
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and the third term in the Hall current.

An alternate form of Equation 1.30 can be derived from j = niqi(vin⊥ − ven⊥), in which

vin and ven are the ion-neutral and electron-neutral differential velocities, respectively. The

momentum equation for an ion in the ionosphere can be written as [J.P. St. Maurice, personal

communication, 2007]:

m
∂vi⊥
∂t

= qiE⊥ + qivi⊥ ×B−mνin (vi⊥ − vn⊥) , (1.31)

in which, ‘·⊥’, signifies a vector perpendicular to B, νin is the ion-neutral collision frequency.

Defining vin⊥ = vi⊥ − vn⊥ , the ion-neutral differential velocity, a modified electric field vec-

tor, E
′

⊥ = E⊥ + vn⊥ ×B, is introduced such that we transform into the frame of reference

of the neutrals. Re-arranging Equation 1.31 and assuming steady-state conditions:

νinvin⊥ =
ωgiE

′

⊥
B

+ vi⊥ × ωgi, (1.32)

in which

vin⊥ × ωgi =
qiE

′

⊥ × ωgi
miνin

− vi⊥
ω2
gi

νin
. (1.33)

Finally, introducing αi = νin/ωgi:

vin⊥ =
1

1 + α2
i

[
αi

E
′

⊥
B

+
E
′

⊥ ×B

B2

]
(1.34)

Recall that j = niqi(vin − ven). Above approximately 80 km altitude, ωge � νen (αe � 1)

[Schunk and Nagy , 2000; Tohmatsu and Ogawa, 1990], thus, the electrons always ven = E
′

⊥ ×B

drift above that altitude. Therefore,

j⊥ = niqi

[
αi

1 + α2
i

E
′

⊥
B
− α2

i

1 + α2
i

E
′

⊥ ×B

B2

]
(1.35)

In this form:

σH = −niqiα2
i

(
1 + α2

i

B

)
, (1.36)

and
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σP = niqiαi
1

(1 + α2
i )B

. (1.37)

Equation 1.35 is a convenient way of interpreting how ionospheric currents vary as a

function of altitude. In the F region, both the Hall and Pedersen conductivities are low

compared to the plasma conductivity; current densities are low. This is due to the fact that

at F-region altitude the neutral atmosphere is tenuous; the gyrofrequency is much larger than

the collision frequency, ωgi > νin (αi < 1). In the E region, however, the neutral atmosphere

is more dense, and accordingly ωgi < νin (αi > 1). As a result, currents in the E region are

high; the bulk of the current is carried by the electrons. As can be seen in Figure 1.13, the

peak conductivities are found in the E region

High-Latitude plasma convection

Electric fields generated by the interaction of the solar wind and the geomagnetic field, and

the Region 1 and Region 2 currents system establish an E×B plasma circulation flow in

the high geographic latitudes. Since the F-region plasma is highly conducting (although

its conductivity is considerably less than that of the solar wind) and magnetic field lines

are essentially perfect conductors (i.e., σ‖ =∞ is a good approximation) the plasma flow is

equivalent to the transport of magnetic flux, confined within magnetic flux tubes, flowing

along equipotential lines. That is to say, in the high-latitude F-region, plasma E×B drifts

along equipotential lines. The plasma circulation is also referred to as convection, a term

which will be used throughout the rest of this work.

The convection at high latitudes illustrated in Figure 1.14 in which the EDD (labelled

as Epc) and Ea are the electric fields associated with the Region 1 and 2 current systems,

respectively. The convection pattern illustrated in Figure 1.14 is for an ideal situation in

the northern hemisphere, under southward IMF conditions. It is plotted in a magnetic local

time (MLT) coordinate system, in which the geomagnetic lines of longitudes are divided

into 24 hours – each hour representing 15◦ of geomagnetic longitude. The MLT coordinate

system is stationary, and the geocentric coordinate system of the Earth (i.e., the geographic

lines of latitude and longitude) rotates eastward with respect to the MLT coordinate system.

12 MLT corresponds to noon, 06 MLT is dawn, 18 MLT is dusk and 24 MLT is midnight.
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Figure 8.3a Representation of ionospheric electric fields in the northern hemisphere
polar cap and auroral zone, as well as the plasma flow due to those fields.

encompassing a width w in the current sheet and extending a distance d/2 in
each direction perpendicular to the current sheet. We further take d >> dx. For
such a loop, the steady-state integral form of Ampère’s law can be written

∮

1
δB · dI = µ0

∫∫

S1

J · da

When the surface S1 is far from the magnetosheath and ionospheric ends of
the current sheet, we may assume that the magnetic perturbation, δBx, is zero at
the surface edges. We may also assume from symmetry that δBy along part (a)
of the loop is equal and opposite to δBy along part (h) of the loop. Thus, evalu-
ating both sides of the previous equation gives

2δByw = µ0Jzwdx

Hence,

δBy = µ0Jzdx/2 (8.16)

Note that the magnetic perturbation amplitude is independent of the distance
from an infinite current sheet. Thus the magnetic perturbations from the two
equal and opposite current sheets shown in Fig. 8.4 will add together in the region
between the two sheets and exactly cancel each other in the regions outside. The
result will be a magnetic perturbation, δBy = µ0Jz dx, confined completely to
the region between the current sheets.

Figure 1.14: A schematic of the electric field regions and plasma convection lines in
the high-latitude ionosphere in the northern hemisphere, plotted in the MLT coordinate
system, from Kelley [2009]. The geomagnetic field, driving electric field and convection
flows are all orthogonal to one another. The lines of geomagnetic latitude are labelled.
The dashed lines indicates the polar-cap boundary. Epc and Ea are associated with the
Region 1 and 2 current systems, respectively.

The geomagnetic latitudes are indicated; the polar cap is indicated by a dashed line. The

polar-cap boundary (also termed the open-close field line boundary) is defined as the locus

at which the plasma convection lines transition between sunward and anti-sunward flow, and

vice versa. In other words, the magnetic field lines in the polar cap are open field lines, and

those outside the polar cap, convecting sunward, are closed field lines. Despite this formal

definition, the region above 75◦ latitude is generally referred to as the polar cap, or the polar

region.

For “southward” IMF, the z–component of the IMF, Bz, is negative. Open magnetic field

lines and F-region plasma move in an anti-sunward direction (negative x–direction), across

the polar cap. This motion establishes the EDD (labelled as Epc in Figure 1.14). On the

flanks of the high-latitude region, the plasma flows in the positive x–direction. This flux is
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established by closed magnetic field lines being driven in the sunward direction. The flows are

driven by a poleward electric field on the duskside of the convection flow, and an equatorward

electric field on the dawnside (labelled as Ea in Figure 1.14).

IMF By also has an influence on the convection at high latitudes. The high-latitude

convection pattern varies depending on the orientation of the IMF that is incident on the

magnetosphere. Different contours of equipotential are formed and therefore different con-

vection patterns are generated for various IMF orientations. Depending on its strength and

orientation By will skew the convection patterns either towards the dawn (positive IMF By)

or dusk (negative By). This is shown in the equipotential structure associated orientation of

the IMF, depicted in Figure 1.15. The influence of IMF By has important implications for

the entry of F-region plasma into the polar cap. If By > 0 and Bz < 0, then plasma from the

dawnside ionosphere can be convected into the polar cap. Under these conditions, the Cusp,

the entry point for plasma into the polar region, shown as the convergence of equipotential

contours on the dayside in Figure 1.15, is shifted towards dawn. Plasma for the duskside

enters the polar cap when By < 0 and Bz < 0. Often, dawnside F-region plasma is less dense

than duskside plasma. This is because the duskside upper atmosphere has been exposed

to solar EUV radiation for a longer period of time than the dawnside upper atmosphere.

Therefore, IMF By can act as a regulator for F-region plasma density in the polar cap. This

effect will be mentioned again, shortly.

For “northward” IMF conditions Bz is positive. The average EDD is significantly re-

duced, and the plasma flows in the high-latitude ionosphere are severely altered and highly-

structured, as shown in Figure 1.15. The reason for this is that under southward IMF

conditions magnetic reconnection occurs upstream allowing for magnetic flux to enter the

magnetosphere. The increase in magnetic flux into the magnetosphere produces an effect

similar to Lenz’s Law: currents and electric fields (i.e., Region 1 and 2 currents) are induced

to counteract the increase in magnetic flux in the magnetosphere [Cowley and Lockwood ,

1992]. However, under northward conditions, magnetic reconnection is significantly reduced;

very little magnetic flux enters the magnetosphere. The electric fields and currents that are

induced for southward conditions are markedly reduced for northward conditions, resulting

in reduced average plasma flows as illustrated in Figure 1.15
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Figure 1.15: A variety of equipotential contours, sorted by IMF orientation, for an
IMF magnitude greater than 7.25 nT, from Weimer [1995].
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Other parameters of the solar wind and IMF can also have a significant effect on the con-

vection patterns at high latitude. The velocity of the plasma flows and the overall convection

pattern are intrinsically linked to the velocity of the solar wind. Both are more enhanced for

high solar wind velocities, and subdued for lower velocities. This follows from the fact that

EDD is a product of the solar wind velocity. The convection patterns and plasma flows show

a similar correlation with the magnitude of the IMF [e.g., Milan et al., 2012, and references

therein].

1.4 F-Region plasma density perturbations

At high and polar latitudes (which will be referred to generically as the polar region, from

this point forward), perturbations in the F-region plasma density – both enhancements and

depletions – can be produced by a variety of electrodynamic processes. The perturbations can

then act as fertile ground for subsequent irregularities over a large spectrum of wavelengths

[Kelley et al., 1982; Keskinen and Ossakow , 1983; Tsunoda, 1988; Moen et al., 2012]. In

this work, we focus on large scale perturbations – those with scale sizes of the order of 10

to 1000 km. To provide some guidance when studying these density perturbations, consider

the continuity equation [Schunk and Nagy , 2000]:

∂ni
∂t

+ ni∇ · vi + vi · ∇ni = Pi − Li, (1.38)

where ni is the number density for a plasma species, vi is the drift velocity of the plasma,

and Pi − Li are chemical production, Pi, and loss, Li, terms, respectively.

Any chemical process involving the production of plasma is described by the first term

on the right hand side in Equation 1.38, Pi. One major contributor to the production of

F-region plasma is photoionization, e.g., Equation 1.16. In the F region, above 200 km

altitude, it is reasonable to approximate ni ≈ [O+], where [O+] is the concentration of O+.

The chemical loss of O+, Li, is described by Equations 1.17 and 1.18. The associated reaction

rates are both altitude and temperature dependent. In the F region, below 500 km altitude,

the ambient temperature of the neutral atmosphere and plasma is of the order of 1000 K

[Kelley , 2009], and any large variation in temperature, of the order of 50%, is atypical. Below
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250 km altitude the reaction rates are large; a fully ionized F-region can be depleted within

an hour via Equations 1.17 and 1.18. Above 250 km the reaction rates are considerably less;

the time scale of the depletion is of the order of several hours.

Another contributor to the production of O+ in the F region is from impact ionization

by electrons with energies in the range of 100 – 300 eV. Charged particles can travel along

magnetic field lines and collide with the neutral atmosphere, in a process termed particle pre-

cipitation. A visual byproduct of particle precipitation is the aurora. Precipitation provides

a positive perturbation to the plasma density in the F region, namely, a localized plasma

density enhancement. Notwithstanding photoionization, precipitation is the only mechanism

by which O+ can be produced in any quantity of significance. In the polar regions, precipita-

tion and its corresponding density enhancements are spatially and temporally sporadic, and

cannot compete with photoionization, in terms of plasma production.

If the energy of the precipitating particle is below 1 keV it is “soft” precipitation; above

1 keV it is “hard” precipitation. On closed field lines the source of precipitation is the mag-

netosphere; on open field lines the source is the solar wind. The energy of soft precipitation

is well above a typical energy of thermalized F-region plasma (approximately 0.1 eV). The

minimum ionization energy for O+ is 13.62 eV [Tohmatsu and Ogawa, 1990]. Several O+

ions may be produced from a single precipitating particle during a soft precipitation event.

For hard precipitation, the energetic particles penetrate into the E region, depositing most of

their energy there and do not significantly contribute to the ionization at F-region altitudes.

During the daytime both photoionization and particle precipitation occur simultaneously.

During the night time, or during winter, impact ionization due to precipitation has a more

important role since photoionization is absent.

The F-region ionosphere is assumed to be incompressible; namely, ni∇ · vi = 0 (the left

hand side of Equation 1.38) [Rishbeth and Hanson, 1974]. As noted by Kelley [2009], this

assumption is true in most cases, though it should be verified in each case (a good example of

verifying incompressibility can be found in Perry et al. [2013]). Assuming incompressibility,

all that remains of the left hand side of Equation 1.38 is the convective derivative:

Dni
Dt

=
∂ni
∂t

+ vi · ∇ni = Pi − Li. (1.39)
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Equation 1.39 has important implications in the absence of chemistry, or in a situation

where plasma production is counterbalanced by loss, and their rates are much less than

vi · ∇ni; Equation 1.39 reduces to: ∂ni/∂t = −vi · ∇ni. This case stipulates that the change

in plasma density of a volume of plasma at a fixed point in space is the product of the spatial

plasma density gradient and the velocity of the plasma. More specifically, if ni is being

measured at a specific point in the ionosphere, ∂ni/∂t 6= 0 is only true if there is a spatial

gradient in the plasma density, ∇ni, and it is moving through the point of measurement,

with a velocity vi, with respect to the point being measured.

F-region plasma transport was investigated using computer simulations by Robinson et al.

[1985]. In that work, a parcel of plasma entrained within the polar E×B convection flow

was simulated, assuming incompressible flow and no chemistry – i.e., Dni/Dt = 0. Their

results, summarized in Figure 1.16, posit that a parcel of plasma in the F-region will become

severely distorted after being displaced along convection streamlines for several hours. This

is a direct result of the incompressibility condition. If we consider the same scenario – one

in which the blob is a plasma density enhancement (or a depletion) – and are in the frame

of reference of the moving blob, Dni/Dt = 0 holds since the flow is still incompressible. If

we place an instrument that measures plasma density, at point A, as shown in Figure 1.16,

and measure the plasma density, from the stationary frame of reference of that point, then

∂ni/∂t = 0 remains true up until vi · ∇ni 6= 0. This would occur 1-hour into the simulation

shown in Figure 1.16. At this point ∂ni/∂t = −vi · ∇ni, since the instrument at point A

would measure the ∇ni passing by with a velocity vi.

The results from Robinson et al. [1985] have important implications for this work when

considering plasma density perturbations in the F-region ionosphere. Most pertinent is the

notion that in the absence of chemistry a plasma density perturbation will be transported

through the ionosphere indefinitely, in a similar fashion to what is shown in Figure 1.16.

Moreover, in a frame of reference outside of that of a moving plasma parcel, e.g in the co-

rotation frame of the Earth, at point A in Figure 1.16, any case in which ∂ni/∂t 6= 0 can

only be due to the transport of a plasma density perturbation, in the absence of chemistry.

Evidently this is an idealized case since we know photoionization is an important plasma

production mechanism, and so chemistry would be constantly present during the day. How-
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Figure 10.2 Distortion of a circular blob of ionization as it convects from the polar cap
through the auroral zone. The first panel shows the initial conditions and the assumed
convection model. [After Robinson et al. (1985). Reproduced with permission of the
American Geophysical Union.]

the ionospheric plasma composition changes from H+ at lower latitudes to O+

at higher latitudes. At ionospheric altitudes the width of this high-flow region is
between 150 and 200 km. These meridional scales are in the intermediate range
but, through shear instabilities, can create larger scale longitudinal structures, as
discussed in the next section. Modest small field-aligned currents were detected
during this pass (Providakes et al., 1989).

These large poleward electric field events have come to be called subauroral
ion drifts (SAID) due to their signature in drift meter instruments (Spiro et al.,
1979). There are two ways to think about their origin. The combination of
E × B, gradient, and curvature drifts yield eastward zonal pressure gradients
deep in the magnetosphere and thus radially inward currents. These currents
close through poleward electric fields in the low conductivity nighttime subau-
roral ionosphere, creating large poleward electric fields. The second viewpoint
is that these same factors cause ions to precipitate equatorward of electrons

AA

A A

Figure 1.16: The results from a simulation showing the evolution of a blob of plasma
entrained in the E×B convection flow, from Robinson et al. [1985]; Kelley [2009]. The
magnetic local times are indicated as well. In this simulation, the ionosphere plasma is
assumed to be incompressible.

ever, it is an accurate description for the F-region under some conditions, such as those in

northern polar latitudes during nighttime or winter.

Since photoionization has a diurnal variation and is a large contributor to plasma pro-

duction, and chemical recombination is the main sink, a diurnal variation in the F-region

plasma density is expected. This is observed at low- and mid-latitudes, but the diurnal trend

is subject to a great deal of variability [Roble, 1975; Hargreaves , 1992; Rishbeth and Mendillo,

2001]. The variability at these latitudes is attributed to other factors that are not discussed

in this thesis, such as solar conditions, geomagnetic storms and dynamic coupling between
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the ionosphere and the neutral atmosphere [Kazimirovsky and Kokourov , 1991; Forbes et al.,

2000]. A diurnal variation is not always observed in the F region in the polar regions either.

In one study, Moen et al. [2008] reported a regular, semi-diurnal variation in the F-region

plasma density at polar latitudes. In Figure 1.17 the peak F-region plasma density, labelled

NmF2, and the height of the peak, hmF2, are plotted as a function of Universal Time (UT).

The traces labelled “ESR” (EISCAT Svalbard Radar) are a median of 19-days of measure-

ments in February, 2001 (panels a and b), and 28-days of measurements in October, 2002

(panels c and d), made by the incoherent scatter radar (a type of radar which will be in-

troduced later) located at polar latitudes, in Norway, at (78.15◦ N, 16.03◦ E) in geographic

coordinates. Also plotted is a model of the NmF2 and hmF2 provided by the International

Reference Ionosphere (IRI) model [Bilitza, 2001].

It is clear that for NmF2, the model and measurements do not agree for all times. The

IRI model describes a diurnal variation, with a peak near 12 UT, while the measurements

show a semi-diurnal variation, with peaks near 12 UT and 21 UT. This trend is consistent for

both panels a and c. The hmF2 measurements agree with the IRI model in panel b, but not

as well in panel d. The reasoning behind the latter are not discussed here; its implications

do not affect the results shown in panels a and c.

At the location where the measurements were taken, geographic noon is 11 UT, coincident

with the IRI peak and the first measured NmF2 peak. These peaks are due to plasma

production by photoionization, which has also been supplemented by soft precipitation as

the field-of-view of the ESR passed through the Cusp [Moen et al., 2008]. On the other hand,

the second measured NmF2 peak cannot be explained by photoionization. In this season, at

21 UT, plasma production by solar radiation incident on the atmosphere at or below F-region

altitudes is nearly negligible. Furthermore, all measurements were taken within the Arctic

Circle during the northern fall and winter seasons. Thus the atmosphere would have not been

exposed to solar radiation for an extended period of time. Chemical recombination would

have dissipated any remaining plasma. The additional peak cannot be accounted for entirely

by particle precipitation since the presence of the peaks are a regular feature. The traces in

Figure 1.17 are a median of several weeks of measurements and would indicate a consistent

and relatively fixed region of precipitation to produce the peak in the F-region, such as the

33



2432 J. Moen et al.: F2-region peak variability at 75.1 MLAT

30 min averages Feb 2001
ESR data
IRI model

ESR data
IRI model

lo
g1

0 
N

m
F 2

(m
-3

)
h m

F 2
(k

m
)

30 min averages Oct 2002

ESR data
IRI model

ESR data
IRI model

lo
g1

0 
N

m
F 2

(m
-3

)
h m

F 2
(k

m
)

Figure 4

(a)

(b)

(c)

(d)

Fig. 4. (a) A comparison between averaged NmF2 data derived
from ESR (full line) and the corresponding values from the IRI2001
model (full line with dots), for the month of February 2001. (b) ESR
and IRI model curves of hmF2 corresponding to the NmF2 density
curves in panel (a). (c–d) Similar to (a–b) but for October 2002.

postnoon for IMF BY negative, as illustrated in the schemat-
ics in Fig. 2b and f. No such asymmetry is seen for the two
hours around magnetic noon (Fig. 2c–d; 11:00–13:00MLT),
where it appears that the intake of high density plasma/patch
material has no clear dependence on IMF BY polarity. Re-
cently Moen et al. (2007) presented a statistical distribution
of 630.0 nm airglow patches at night from which they con-
cluded that high-density plasma populates the morning cell
as well as the evening convection cell.

Figure 4 demonstrates the comparison between the NmF2
and hmF2 values derived from the ESR data and the IRI
model ionosphere. We used the IRI-2001 model available on
SPDF Modelweb. It was operated in default mode with the
STORM model on for the geographic position of the ESR
site. The model NmF2 curves with dots in panels (a) and
(c) peak around local geographic noon, while the observed
NmF2 peaks at magnetic noon and one hour pre midnight.
Modelled and observed hmF2 in panels (b) and (c) both dis-
play a minimum near geographic noon, i.e. when the observ-
ing site is closest to the source of solar EUV ionization. This
comparison illustrates clearly that the IRI values represent an
extrapolation of data from latitudes where transport of F2 re-
gion plasma is less important and hence the model fails to
represent cross-polar transport of plasma, which is a well es-
tablished physical phenomenon controlled by IMF. The mod-
elled log NmF2 peaks at 11.8 for both February 2001 and
October 2002, while the measured noon values are 12 and
11.85, respectively, i.e. a discrepancy of measured relative to
model peak density of 90% in February 2001 while 7% in
October 2002. An explanation for the large discrepancy in
February 2001 has yet to be found, but it may well be related
to F-region dynamics and transport effects as well.

5 Summary and concluding remarks

Two separate months of continuous operation of the EISCAT
Svalbard Radar (ESR) observing along the magnetic field
line have been analysed with respect to the variability in the
F2 region peak. The major results are as follows:

1. The diurnal variation in the F2 region peak den-
sity displays one maximum located almost exactly at
12:00MLT and one around 23:00MLT, consistent with
cross-polar transport of solar EUV ionized plasma.

2. High density plasma patch material is drawn into the po-
lar cap independent of IMF BY , although its trajectory
is strongly dependent on IMF BY .

3. The IRI model does not account for the cross-polar
transport of F2 region plasma, which is the dominating
factor in polar cap plasma dynamics.

In order to parameterize the intake region of Solar EUV ion-
ized plasma and transport across the polar cap, we recom-
mend that future ionosphere models make use of the same
ordering parameters that Ruohoniemi and Greenwald (2005)
introduced for the classification of convection patterns; i.e.
IMF, seasonal and universal time factors. The data resulting
from the continuous operation of the ESR during the IPYwill
provide a unique resource for such an effort. To put a scale
on the improvement that could be realized in the IRI model
by such an approach, midnight values of NmF2 peak would
be replaced by values comparable to noon values, and Oc-
tober values (but not February) of hmF2 would be increased
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Figure 1.17: A plot from Moen et al. [2008] comparing the mean magnitude of the
F-region plasma peak, NmF2 (a, c), the height of the F-region peak, hmF2 (b, d), to
a model of the same quantities by IRI, as a function of time. The data in (a, b) and
(c, d) were derived from 19 and 28 days of measurements, respectively.

Cusp. Soft precipitation is a characteristic of the Cusp, but atypically high fluxes would be

required to produce the amount of plasma measured in the second peak. Most importantly,

the Cusp is located on the dayside of the magnetosphere, and its ionospheric footprint is there

as well. The peak in question is located in the night side ionosphere. It would have been

highly unusual to have a consistent Cusp signature in the night side ionosphere [Haerendel

et al., 1978]. Thus, the conditions during which the data in Figure 1.17 were measured are

described by Equation 1.39 in which the terms on the right hand side are negligible; the local

chemistry is negligible and advection dominates. The ESR radar is fixed in position and, as
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the observations of Moen et al. [2008] show, rotates into two regions of enhanced F-region

plasma density, over a 24-hour period. The only explanation for the results in Figure 1.17

is advection – i.e., vESR · ∇ni 6= 0, where vESR is the co-rotation velocity of the ESR. The

ESR encounters each region approximately every 12-hours, meaning that the regions are

on opposite sides of the northern pole from one another; one is located near local noon, the

other near local midnight. It turns out that the transport of volumes of photoionized F-region

plasma density across the polar cap, from the dayside to the night side, by the high-latitude

E×B convection streams was the culprit in this case study [Moen et al., 2008]. These

volumes of F-region plasma are known as “patches”, and will now be discussed in detail.

1.4.1 F-Region ionization patches

F-region ionization patches are a class of large scale plasma density perturbations in the polar

ionosphere. A patch is defined as a volume of plasma with a plasma density that is at least

twice that of the ambient ionosphere, and spatial dimensions of the order of 50 – 1000 km

[Crowley , 1996].

Instead of being smooth and continuous, the plasma that is transported by the convec-

tion flows in the polar ionosphere can be highly structured by patches. Their presence is

indicative of the many complex plasma processes that occur in the polar ionosphere. Patches

are believed to be a major contributor to the horizontal transport of plasma in the polar

ionosphere, and from one serendipitous observation, may even be a significant contributor to

vertical plasma transport into the near Earth geospace [e.g., Semeter et al., 2003]. Observed

under all geomagnetic conditions, patches can be studied optically and with radio instru-

ments, i.e., radars. Their effects on radio wave propagation and Global Positioning System

(GPS) signals can be significant, even during periods of subdued geomagnetic activity [Moen

et al., 2013].

Previous patch research

“Moving clouds of ionization” (i.e., patches) in the polar region, at F-region altitudes, were

first reported by Meek [1949], who used radio instruments to detect them. Hill [1963] was

the first to identify patches as large volumes of F-region ionization that are displaced through
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the high latitudes by E×B convection drifts. Hill [1963] also demonstrated that the sunlit,

dayside ionosphere, is a source of patches (see Figure 2 in that work).

As noted by Crowley [1996], it is generally accepted that there are multiple mechanisms for

patch production, although not all are well understood. Of the mechanisms, those involving

the transport of a patch from its distant sunlit source into the polar region have received

the most attention, as opposed to those involving in-situ production. A strong correlation

between the occurrence of patches and the polarity of the Bz component of the IMF was

established by Buchau et al. [1983]. They found that the polar F region is heavily populated

with patches under southward IMF conditions. This was later modified by Coley and Heelis

[1998] who reported that patches are observed under all IMF conditions, in both hemispheres;

however, patch occurrence is greatest in the northern hemisphere under southward IMF

conditions. Southward IMF drives anti-sunward convection in the polar ionosphere, from the

dayside to the nightside ionosphere, which implies that patches are related to the injection

of photoionized plasma into the polar ionosphere from lower latitudes. Southward IMF

enables plasma to flow into the polar-cap region from lower latitudes, whereas northward

IMF conditions do not, as inferred in Figure 1.15. Observations by Hill [1963]; Knudsen

[1974]; Foster [1984, 1993]; and Foster et al. [2005] detailed how the E×B convection

streams are able to move dense, photoionized plasma from lower to higher latitudes and into

the polar regions. Buchau et al. [1985] and Moen et al. [2008] demonstrated that the densities

of measured patches were equivalent to those expected from photoionization, and were not

a result of precipitation (recall Section 1.4 in this work), pointing to the sunlit ionosphere

as their source. Plenty of compelling evidence exists supporting sunlit F-region plasma as a

dominant source of patches.

Despite the fact that particle precipitation provides a secondary contribution to overall

plasma production in the F-region ionosphere, its role in patch production should not be

ignored. Oksavik et al. [2006] reported observations of the formation of a polar-cap patch,

under northward IMF conditions. The patch was located in a high latitude region during the

winter season, eliminating photoionization as a explanation for its production. Furthermore,

since the IMF was northward at the time the patch could not have convected in from lower,

sunlit latitudes. It was concluded that the patch was created in-situ, by particle precipitation.
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Another case study, by Walker et al. [1999] gave an example of a patch being locally produced

by precipitation in the polar Cusp under southward IMF conditions.

Another facet of patch generation mechanisms focuses on the partitioning of the plasma

into patches as it is injected into the high latitude and polar ionosphere. Knudsen [1974]

described the plasma being injected into the polar region as a “tongue of ionization” – a

large, continuous, plume of plasma with a scale size of several thousand kilometres. Some

mechanisms must exist to discretize the injected plasma into the patches that are observed.

One way this could be done involves geographically narrow and extended channels of en-

hanced plasma temperatures. Increased plasma temperatures can be created via Joule or

frictional heating, when intense electric fields are present, or when the differential velocity

between the plasma and neutral atmosphere is significant [St.-Maurice and Hanson, 1982].

The enhanced temperatures increase the reaction rates of the F-region chemistry relating to

the depletion of O+ plasma, i.e., Equations 1.17 and 1.18. Thus, a large plume of plasma can

be subdivided by regions of large density depletion, created by enhanced plasma temperature

channels. This mechanism for patch generation was put forward by Valladares et al. [1994]

and Rodger et al. [1994], who supported it with multiple observations of patch production in

the polar region.

Milan et al. [2002] proposed that varying IMF conditions alter the source region of plasma

entering the polar region. Under positive IMF By conditions, plasma is more likely to be

drawn in from less dense plasma being circulated from the dawn sector (see Figure 1.15),

while under negative By conditions, the plasma is drawn from the more dense afternoon

sector. If the IMF By polarity switches with some regularity it would have the effect of

injecting plasma of alternating densities into the polar region, appearing as patches. Using

computer simulations, Sojka et al. [1993] reinforced the notion that variations in the IMF

and the resulting structure in the polar-cap electric potential have a significant effect on the

injection of plasma material into the polar region, and its discretization into patches.

Lockwood and Carlson [1992] developed the idea that flux transfer events (FTE) may be

a major source of patches. FTEs are a result of the magnetic reconnection process, where

a solar wind flux tube merges with the magnetosphere. The effect of an FTE on the high-

latitude ionosphere is an expanded convection pattern with enhanced convection velocities.
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considerably greater than the reconnection burst repetition 
rate, the plasma distribution would be similar to that f/or 
steady reconnection at the average rate. Hence a tongue• of 
plasma will be produced, extending into the polar cap, as 
solar-enhanced plasma is moved anti-sunward by the 
convection, as shown in (2) and this mechanism alone does 
not appear likely to give patches within the polar cap. 

In figure 4, the merging gap ab is allowed to migrate 
equatorward during the reconnection pulses. The theory 
presented by Cowley and Lockwood (1992) predicts that 
when the reconnection ceases, the open-closed boundary will 
relax back poleward toward an equilibrium configuration. 
From both theory and observation, this relaxation time is 
thought to be about 10-15 min. Because the electric field 
along ab, in its own rest frame, is zero at these times (i.e. no 
reconneetion is taking place) the plasma around the boundary 
moves with the boundary (i.e. it is said to be 'adiaroic'). The 
flow patterns in figure 4 are similar to those derived by 
Cowley et al. (1991), other than that the reconnection pulses 
are considered to be longer and less frequent. 

From the same initial conditions as in figure 3, figure 4 
considers conceptually the evolution of the flows and regions 
of high plasma density, with snapshots 2.5 min. apart. 
Starting from the same initial conditions as in figure 3 at 
time t=0 in (1), the burst of reconnection starts at time t=2 
min. At t--2.5 rain (2), the merging gap is moving 
equatorward, and there is some weak flow excited. Because 
the enhanced reconnection is envisaged as occurring f'zrst at 
the centre of the X-line and subsequently spreading away 
from noon, the merging gap has moved furthest near its 
centre. In (3) the flow has increased and is starting to 
significantly move the high-density plasma on the dayside, 
distorting the plasma density contour as shown. Indeed, in 
this snapshot, the reconnection burst has begun to reconnect 
field lines on which the F-region plasma density is high 
because it previously resided in sunlight. At time t--7 min. 
the reconnection burst ends. Hence the merging gap begins 

to return poleward with the local plasma flow. As with the 
onset of reconnection, this is envisaged to commence at the 
centre of the merging gap and then spread east and west. The 
distortion of the plasma density contour continues in (4) and 
(5) as the flows decay, and the magnetosphere-ionosphere 
system tends towards an equilibrium with the new amount of 
open flux. By t = 15 min., the flows have returned low density 
plasma sunward of high density plasma and the patch is 
"pinched off" by the time the flows have ceased (8). In 
principle, the flows shown in fig. 4 would leave the patch 
connected to the dayside by a narrow tongue between the 
two flow cells. However, in practice small movements of the 
zero-potential contour (e.g. due to fluctuations in !MF By) 
will probably act to disperse such a feature. At t=19.5 min. 
the next reconneetion burst commences and the flows in (9)- 
(12) are the same as in (2)-(5). While producing a second 
patch, these flows are also moving the fin-at patch poleward 
and tending to elongate it in the dawn-dusk direction (for this 
case with zero IMF By). 

Discussion 

Figure 4 demonstrates a mechanism whereby discrete 
patches of enhanced plasma density are produced in the polar 
cap by transient bursts of dayside reconnection. To illustrate 
the mechanism we have considered reconnection bursts 17.5 
rain apart, and lasting 5 min. Although there is little doubt 
that such periods can and do occur, shorter intervals are more 
cormnonly inferred from the ISEE and AMPTE 
magnetopause data (Elphic, 1990). To consider their effect, 
we must recall that the density varies significantly over a few 
100 km transverse to the single contour discussed in figures 
3 and 4. Hence we would expect shorter-lived events to give 
less equatorward motion of the merging gap and to cause 
smaller differences in density between inside and outside the 
patch. For FTE repetition rates which are very short (1-2 
min.), it is possible that the resulting density fluctuations 

1. 2. 3. 

5. 6. 7. 8. 

9._. .... . . 12. 

Fig. 4. Sequence of flow snapshots 2.5 min apart, for a sequence of reconnection pulses during which the merging 
gap migrates equatorward (adapted from Cowley et al., 1991). The solid line is a high plasma density contour. 
Figure 1.18: A sequence showing the evolution of a FTE, from Lockwood and Carlson
[1992]. In step 1, a close solar wind flux tube approached the closed field lines of
the magnetosphere. Steps 2 through 11 illustrate an expanded convection flow with
enhanced flow velocities. The solid line in steps 9 through 12 border a region of enhanced
plasma density – a patch – that is subsequently convected anti-sunward.

The equatorward movement of the enhanced polar convection pattern entrains segments of

dense, sunlit F-region plasma (i.e., patches) into the enhanced anti-sunward convention flows.

This process is illustrated in Figure 1.18. Subsequent observations by Carlson et al. [2006]

provided strong support for the FTE mechanism and also confirmed it as an important patch

generator. More recently, Hosokawa et al. [2013c] provided optical evidence of patches with

almost identical shape and size to those depicted in Figure 1.18.

The displacement of a patch is influenced by the large scale electric potential pattern

in the ionosphere. Hosokawa et al. [2009b] determined that the magnitude of −Bz is well

correlated with the velocity of a patch travelling through the high-latitude and polar region,

and the By component is well correlated with the dawn-to-dusk component of the velocity.

The time constant of the chemistry that depletes the patch plasma above 250 km altitude is

of the order of several hours [Pedersen et al., 2000]. The speed of the convection streams is

typically 300 – 500 m/s, allowing for patches to be transported entirely across the polar cap,

before being depleted by chemical recombination. With the right electrodynamic conditions,

the circumnavigation of the high-latitude convection region by a patch is feasible, and was
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recently verified by Zhang et al. [2013]. This result was indirectly postulated by Robinson

et al. [1985], in Figure 1.16. That work did not account for a polar region with a highly

structured convection flow field, however.

Once inside the polar region, patches are subjected to further influences that can distort

their shape, and even break them apart. A spatially and temporally structured electric field

produces variations in the flow, such as shears. These can partition and subdivide patches

into smaller patches, a process that was observed optically by Hosokawa et al. [2010]. Oksavik

et al. [2010] further demonstrated the influence of a structured polar-cap electric field on the

motion of a patch, by providing evidence that patches undergo significant rotation during

their transit through the polar region. In one case, the rotation was substantial enough that

the leading edge of a patch quickly became the trailing edge of a patch during its transit.

A vast amount of focus has been placed on the generation mechanisms for patches, and

how they enter the polar-cap region. However, the processes surrounding the exit of patches

from the polar-cap region is not very well understood. Observations by Zhang et al. [2013]

and simulations by Sojka et al. [1993] demonstrate that patches do exit the polar-cap region,

after transiting through it. Once outside of the polar region, patches return to the dayside

ionosphere, along the low latitude convection return flows. Tail reconnection, merging be-

tween open and closed IMF field lines in the magnetotail (step 6 in Figure 1.4), appears to

play a major role in the exodus of patches from the polar region. It was noted by Zhang et al.

[2013] that without tail reconnection the open-closed field line boundary (OCB) is “adiaroic”,

meaning that no plasma can flow across it. The same deduction was made by Lorentzen et al.

[2004], who provided optical observations of patches crossing the OCB. In that work, the OCB

appeared to expand poleward to entrap the patch, in a sequence of events that was, visually,

very similar to descriptions of patch injection by a FTE on the dayside ionosphere. This

has led others, such as Lyons et al. [2011], to postulate that patches may be associated with

other processes occurring in the tail of the magnetosphere, such as the infamous substorm

onset mechanism(s) [Akasofu, 1964]. Despite the scarcity of research pertaining to patches

exiting the polar-cap region, that which does exist describes the processes as very similar to

patches entering the polar region on the dayside. Although there is even less knowledge about

patches during their trip back towards the dayside ionosphere, it is likely that the patches
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are subject to further distortions and perturbations, from convection shears or precipitation,

similar to what they experience as they travel through the polar region.

1.4.2 F-Region ionization depletions

Within the scope of investigating a variety of plasma density perturbations in the polar iono-

sphere, we now briefly turn to the topic of F-region ionization depletions. Since the plasma in

the F-region is incompressible, in general, any significant depletion can propagate throughout

the F-region. The physics governing the transport of plasma depletions throughout the iono-

sphere is identical to that governing the transport of patches – unless a depletion encounters

a source of ionization, it will remain unchanged if transported along plasma convection flows.

As noted by Crowley et al. [1993], unlike patches, depletions have historically received little

attention, despite their common occurrence in the polar ionospheres.

As mentioned earlier, O+ plasma is depleted via chemical recombination, described by

Equations 1.17 and 1.18. The reaction rates and neutral concentrations at 250 km altitude are

such that a plasma parcel with a density of approximately 1.0× 1011 m−3 can be depleted in

an hour. Therefore, the longer a parcel of plasma does not encounter a source of ionization,

such as photoionization or precipitation, the more depleted it will become. In the high-

latitude F-region, E×B and the co-rotation electric field can conspire in such a way as to

entrap and stagnate the displacement of plasma in certain regions, preventing the plasma

from encountering any source of ionization for several hours.

At polar latitudes, the motion of the plasma is driven by electric fields associated with

interactions between the magnetosphere and the solar wind. At lower latitudes, a co-rotation

electric field becomes more prominent and drives the plasma eastward, such that the plasma

co-rotates with the Earth [Kelley , 2009, and references therein]. The co-rotation electric

field is a function of geographic latitude; it peaks at the equator, while its minimum is at the

geographic poles. Referring to Figure 1.15, one can see that in the 18 to 24 MLT sector, the

motion of the plasma due to the co-rotation electric field is opposite to that of the convection

electric field. This can establish regions in which the plasma flow stagnates, with respect

to MLT coordinate system. Where this occurs the plasma can remain entrapped in the

nighttime ionosphere, without any source of ionization, slowly depleting due to chemistry.
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This region has been named the sub-auroral trough, since it is located equatorward of the

auroral oval. This region of depletion is also referred to as the main trough, and was first

reported by Muldrew [1965] who used a topside sounder aboard the Alouette 1 satellite to

identify it as well as other large scale plasma density depletions in the mid- and high-latitude

ionosphere.

Poleward of the auroral region, plasma convecting in an eastward direction in the 00 to

06 MLT sector can be devoid of a source of ionization for lengthy periods of time. This

is especially the case during the northern winter, at geographic latitudes above 70◦. Here,

there is very little photoionization due to its geographic location. Secondly, there are very

few sources of particle precipitation; the region is poleward of a large region of precipitation –

the aurora oval. If the plasma convection velocities are low, plasma in this region will spend

more time in the region, away from ionization sources, allowing more time for the plasma

to deplete. This region has been identified with a variety of instruments and is referred to

as the polar hole [Brinton et al., 1978; Sojka et al., 1981]. The position of the sub-auroral

trough and the polar hole in the high-latitude region is given in Figure 1.19.

Another mechanism for creating significant plasma depletion in the polar ionosphere was

put forward by Sojka et al. [1981]. In the vicinity of the magnetic pole, in the midnight sector,

the anti-sunward E×B convection has a non-negligible downward component. Accordingly,

the plasma is driven vertically downward into the neutral atmosphere and encounters an

exponentially increasing neutral atmosphere density. For slow convection flows, the downward

component is very low and the effect on the plasma is nearly negligible. However, if anti-

sunward plasma flow is enhanced the downward flows can become significant – of the order

of 100 m/s [Sojka et al., 1981]. In this case, the descending plasma recombines quicker than

plasma that is not descending, since it encounters larger neutral densities. As a result, the

region where the downward component of the E×B drift is significant becomes appreciably

more depleted than the surrounding region – a different type of polar-hole.

Arguably the most frequently cited mechanism for plasma depletion in the ionosphere is

frictional heating between the ion and neutral gases. Both the electrons and ions E×B drift

in the F-region, while the neutral atmosphere does not. A differential velocity between the

ions and neutral atmosphere can become significant enough to increase the temperature of
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Figure 9.9 The plasma stagnation that may produce the depletions seen in Fig. 9.8 occur
when the magnetospheric convection pattern and the corotation velocity are combined,
as shown here. [After Brinton et al. (1978). Reproduced with permission of the American
Geophysical Union.]

JP = σPE. When all of these effects are considered, the ion temperature can be
expressed as (St.-Maurice and Hanson, 1982):

Ti = Teq + (mnφin/3kBϕin)|Vi − Vn|2 (9.11)

where

Teq = Tn + [(mi + mn)νie/miνinϕin](Te − Ti). (9.12)

Here the dimensionless parameters φin and ϕin depend on the nature of the colli-
sional interactions between the ions and the neutral gas, but above about 200 km,
where O+ collides principally with atomic oxygen, both of these parameters are
approximately unity.

These expressions show that the ion temperature will increase from its equilib-
rium value whenever a relative velocity exists between the ion and neutral gases.
This relationship between the ion drift velocity and the ion temperature can eas-
ily be seen at high latitudes, where the magnetospheric electric field can rapidly
produce ion velocities that greatly exceed the neutral gas velocity. One such
example is shown in Fig. 9.10, where an extremely good correlation between

Figure 1.19: A plot showing the average location of the polar hole, sub-auroral trough
and the auroral oval, in MLT coordinates [Brinton et al., 1978; Kelley , 2009]. The
plasma flows of the high-latitude convection, along with the lower latitude co-rotation
plasma flows are indicated.

the ion gas, due to frictional heating; namely [St.-Maurice and Hanson, 1982]:

ψin3kb (Ti − Tn) ' (Vi −Vn)2 φin, (1.40)

where ψin and φin are coefficients describing the heat transfers between ions and neutrals,

and are approximately 1; Ti and Tn are the ion and neutral temperatures, respectively; Vi

and Vn are the velocities of the ion and neutral gases, respectively, and kb is Boltzmann’s

constant.

Equation 1.40 outlines the relationship between the ion and neutral gas in the F-region;

the temperature of the ion plasma can be increased if it has a significant enough relative
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velocity with respect to the neutral gas (assuming that the collisions are non-negligible). An

increased ion temperature will enhanced the reaction rates for Equations 1.17 and 1.18. If

the enhanced reaction rates persist, the plasma can become significantly depleted. Frictional

heating is a significant contributor to the energy budget in the polar ionosphere, and is com-

monplace in the literature regarding the high-latitude and polar ionosphere [e.g., St.-Maurice

and Hanson, 1982; Maeda et al., 2009; Goodwin, 2013]. In fact, frictional heating is invoked

for some of the ionization patch creation mechanisms mentioned earlier in Section 1.4.1.

1.4.3 F-Region ionization depletions and enhancements

A method by which plasma density depletions and enhancements can be created together is

through the gradient-drift instability (GDI). Up until this point, the plasma density deple-

tions discussed were a byproduct of chemistry. The GDI does not use chemical recombination

to create plasma density depletions. Instead, the GDI redistributes the plasma with respect

to plasma density gradients that may be present. The GDI is reintroduced in more detail

shortly, but for now, the GDI and its effect on plasma density can be explained via a classic

Rayleigh-Taylor instability analogy involving two liquids of different density, for example,

water and oil. If one places water and oil into a container (in a laboratory on Earth), both

substances will separate and stratify as the system reaches equilibrium. The oil will rest on

top of the water since the density of oil is less than that of water; a density gradient will

exist, parallel to the gravitational field. In this configuration the system is stable. If the

system is suddenly inverted, the density gradient becomes anti-parallel with respect to the

gravitational field of the Earth. In this configuration, the system is unstable. When unstable,

any perturbation along the interface between the two liquids will grow as an instability. The

less dense oil will migrate vertically into the layer of water in “finger” like structures, creating

density depletions within the water. An example of a Rayleigh-Taylor instability is given in

Figure 1.20, which depicts the time progression of the instability as a more dense liquid, in

blue, migrates into a less dense liquid, in yellow. The GDI instability produces very similar

results in ionospheric plasma; however, in the F-region ionosphere, the E×B drift takes the

place of the gravitational field. Its orientation with respect to the density gradients in the

system governs the systems stability.
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Mathematical Modeling and Analysis

Parallel AMR Code for
Compressible MHD or HD
Equations
Shengtai Li, sli@lanl.gov
Hui Li, hli@lanl.gov

Numerical simulation for astrophysics phe-
nomena has become popular and important in
the last decade. Many astrophysics problems
can be formulated as hydrodynamics (HD) or
magneto-hydrodynamics (MHD) system of equa-
tions. Therefore, many numerical simulation
codes are based on correctly solving these equa-
tions.
We have developed a modern code to solve

the magneto-hydrodynamic (MHD) and hydrody-
namic (HD) equations. The code consists of sev-
eral approaches for solving the MHD (and HD)
by high-resolution schemes with finite-volume
and finite difference methods. Currently, we have
implemented HLLE, HLLC (including our newly
developed version for MHD [4]), Roe’s approx-
imate Riemann solvers, CLAWPACK of Lev-
eque, and Colella’s multi-dimensional scheme for
second-order method, PPM (available only for
HD) for third-order, and WENO for fifth-order
methods. Both dimensional split and unsplit ver-
sions are included in our code. Our framework
has a capacity to incorporate other solvers easily
without much recoding.
A real astrophysics problem contains multiple

time and length scales that must be resolved si-
multaneously. Therefore a framework that im-
plements adaptive mesh refinement (AMR) with
nested block-structure is developed in our code.
Our adaptive mesh refinement framework basi-
cally inherits all of the features of Berger and
Colella’s method [1]. We also enhanced Berger’s
AMR by an improved clustering algorithm and
user flexible control over the refinement [3], by
allowing staggered grid variables for vector-field
components, by adding the cylindrical and spher-
ical geometries. We implemented a novel ap-
proach [6] for maintaining divergence free condi-

tion for AMR. The novel approach can be applied
to any refinement ratio and any curvilinear grid,
and is more efficient and flexible than the previ-
ous full-reconstruction approach of Balsara [2].
Our code can handle cylindrical and spheri-

cal geometries as orthogonal curvilinear grid as
well as Cartesian geometry. We also enhance the
AMR capabilities by preserving the conservative
quantities and preserving the divergence free con-
straint for vector-field.
The code is fully parallelized with message

passing interface (MPI) and a dynamic load bal-
ancing scheme is incorporated to improve the par-
allel efficiency. The computation and communi-
cation are interlaced to achieve full paralleliza-
tion.
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Figure 1.20: An illustration of the Rayleigh-Taylor instability, for a more dense liquid
(blue) migrating into a less dense liquid (yellow) [Li and Hui , 2006]. The Rayleigh-
Taylor instability is analogous to the GDI which operates in the ionosphere. Both
produce density depletions without the use of chemical recombination.

1.5 Motivation for research

Interest in F-region ionization patches and depletions has waxed and waned since they were

first studied over 50 years ago. It is apparent that increased research efforts have been well

correlated with the introduction of new instruments and experimental techniques. With each

evolution comes new questions. Patches were first detected and studied with radio and op-

tical instruments, and interest in them grew as instruments were installed deeper into the

polar regions. In the last quarter of the 20th century the development of more sophisticated

radio, rocket and satellite borne instrumentation reinvigorated interest in patches. This was

bolstered with the introduction of sophisticated computer modelling and simulations which

provided a deeper understanding of the physics behind the perturbations. Most recently, the

scientific infrastructure in the high-latitude and polar region has undergone further develop-
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ment [e.g., Hosokawa et al., 2006; Chisham et al., 2007; Nicolls et al., 2007; Bahcivan et al.,

2010]. In the northern hemisphere, above 40◦ geographic latitude, a significant portion of

the sky is now covered by a comprehensive network of radio and/or optical instruments. The

instruments have become more sensitive and sophisticated. Their geographic distribution

in the polar region enables common volume measurements with multiple radio and optical

instruments, opening up new opportunities to gain new insight into polar ionospheric system.

This thesis is motivated by the new questions emerging from the refocused attention

on the polar ionosphere. Using existing and recently deployed instruments in the polar

region the aim of this research is to advance our understanding of large scale plasma density

perturbations in the polar ionosphere, their generation mechanisms, transport properties and

signatures at optical and radio wavelengths. This will be carried out by directly addressing a

selection of some of the many outstanding questions pertaining to these features, including:

• Is there a link between the optical signature of F-region ionization patches and their

motion in the ionosphere?

• Using radar, can our existing capabilities in identifying and characterizing F-region

ionizations patches be improved?

• How strong is the interconnection between the occurrence of high frequency (HF) radar

echoes from the polar-ionosphere and the presence of F-region ionization patches there?

• Are patches a dynamic or stagnant feature of the ionosphere? Is there any evidence of

internal morphology?

• What geophysical phenomena are related to the frictional heating events producing

plasma density depletions in the polar ionosphere?

• What is the time scale of generating plasma density depletions in the polar-ionosphere

via a frictional heating mechanism?
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1.6 Thesis outline

This dissertation is written in the traditional thesis format. Chapters 3 through 6 each focus

on one or two of the aforementioned questions regarding F-region ionization enhancements

and depletions. Chapter 2 provides a thorough description of instruments used to detect

and investigate the polar F-region ionosphere. Particular attention is given to the instru-

ments supporting the research in Chapters 3 to 6, including: optical imagers, HF radar, and

incoherent scatter radar (ISR).

Chapter 3 discuses the interconnection between the optical signatures of an F-region

ionization patch and its motion through the polar region. A case study showing that the

optical intensity of a patch is highly correlated with the velocity of a patch is discussed in

detail, using the support of both an optical imager and an HF radar. The results of this case

study and a model developed from it are tested in another patch event, using the same two

instruments with the addition of an ISR system.

Chapter 4 details the work conducted to improve methods of detecting patches and de-

pletions. Using the formal definition of a patch – an F-region plasma density enhancement

that is twice as dense as the surrounding ionosphere [Crowley , 1996] – an algorithm is devel-

oped to detect ionization patches, with an ISR located in the polar cap. Currently, there is

no reliable technique to detect patches or depletions using HF radar systems. The link be-

tween the occurrence of patches and depletions detected by the ISR, and HF radar signatures

originating from the same geographic region is also investigated.

In Chapter 5, a case study of an individual ionization patch detected with an ISR, HF

radar and optical imager is presented. Close inspection of the plasma density properties

suggest a quickly evolving plasma density profile, according to the ISR system. The results

indicate that the patches are not necessarily stagnant features of the F-region ionosphere,

and that they may be home to significant plasma redistribution processes. An alternate

theory to account for the plasma signatures is also outlined. It proposes that the detected

patch could be a grouping of several patches that cannot be resolved by the ISR system.

The signature of several small patches may be represented as the dynamic plasma density

properties measured.
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Chapter 6 focuses on an event featuring a sun-aligned arc – a longitudinally extended

line of particle precipitation – and an associated plasma density depletion that is also lon-

gitudinally extended and adjacent to the arc. Using an optical imager, an HF radar and

ISR system, the plasma density properties of the depletion and arc are probed in detail. A

field-aligned current system associated with the arc is inferred using estimates from the ISR.

In Chapter 7 a summary of the results from Chapters 3 through 6 is given in the context

of the questions posed in Section 1.5. Suggestions for future research avenues concerning

plasma density enhancements and depletions are also discussed.
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Chapter 2

Instrumentation

In this chapter instruments and measurement techniques used to probe and investigate

F-region ionization patches and depletions are discussed. Three instruments of particular

interest to this work are the Resolute Bay Incoherent Scatter Radar – North (RISR-N),

the Super Dual Auroral Radar Network (SuperDARN), and the Optical Mesosphere and

Thermosphere Imagers (OMTI). The capabilities and techniques for each instrument are

outlined in some detail.

2.1 Incoherent Scatter Radar

Incoherent scatter radar (ISR) data is featured prominently in the analysis throughout this

research. An ISR system transmits radio waves into the ionospheric plasma, which are then

backscattered via the incoherent scattering process. From this, many important plasma

parameters can be obtained including plasma density, ion and electron temperature and the

line-of-sight velocity of the plasma.

To understand the incoherent scattering process we must first consider the radar equation

for the setup in which the transmitter and receiver are at the same location [Skolnik , 2003]:

Pr =
PtGt

4πR2

σ

4πR2
Ae (2.1)

where Pt and Pr are the power transmitted and received by the transceiver of the radar,

respectively; Ae is the effective aperture area of the transceiver; σ is the radar cross-section

of the radar target, in our case plasma density fluctuations in the ionosphere; Gt = 4πAe/λ
2

is the antenna gain in which λ is the radar wavelength; and R is the range to the radar

target. Except for σ, each of the terms in Equation 2.1 can be obtained with relative ease. In
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most cases with radar, σ is well defined, discrete, and considered a “hard target”; a coherent

object with a cross-section well within the scattering volume defined by the beam width of

the radar e.g., a plane, satellite, car, etc. In general, the ionosphere is not a hard target

and is considered a “soft target”. Ionospheric plasma is composed of equal numbers of ions

and electrons (i.e., the quasineutral condition) in thermal equilibrium and fill up the entire

scattering volume. Both the ions and electrons are in constant motion. The ions have much

more inertia than the electrons, and are often assumed to be stationary [Chen, 2010]. Thus,

the electrons oscillate about the ions at the plasma frequency, ωp:

ωp =

√
neq2

e

ε0me

. (2.2)

In a plasma, an electrostatic potential is “shielded-out” beyond a distance, λD, the Debye

length:

λD =

√
ε0kbTe
neq2

e

. (2.3)

In the above equations, ne is the number density of the plasma; ε0 is the permittivity of

free space; qe is the fundamental charge; me is the mass of the electron; kb is Boltzmann’s

constant; and Te is the electron temperature. The plasma comprising σ is a collection of

charged particles, with a given velocity distribution (typically a Maxwellian distribution).

The incoherent scatter process is sometimes referred to as the Thomson scattering process,

in reference to the notion that the received power at an ISR receiver is a sum of the radiated

power of all of the plasma particles in the ionospheric scattering volume. The name also

implies that the incident radio waves scatter off each and every particle in the plasma, which

is not necessarily the case. For radar wavelengths that are larger that the λD of the plasma,

the incident radar waves undergo coherent backscatter analogous to Bragg scattering. The

backscattering is due to low amplitude plasma density fluctuations ever-present in the plasma.

When the first ISR systems were brought online, it became quickly evident that σ for the

ionosphere was largely determined by the electrons, and not the ions [Gordon, 1958; Bowles ,

1958]. The electrons have much less inertia and therefore are more easily accelerated by

the applied electric field (i.e., an incident radar wave). The opposite is true for the ions,
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due to their large inertia. In order to undergo genuine incoherent scattering, the incident

radar signal must be at a wavelength that is less than the λD. Despite the mislabelling,

the incoherent scatter moniker remains – any radio wave scattering measured by an ISR is

termed incoherent scattering, despite the proper definitions.

Guided by Sheffield [1975] and Alcaydé [2001] the interconnection between Pr, σe and

ne, Te, ion temperature Ti, and the line-of-sight plasma velocity, vlos is now considered. The

product of an incident electric field, Ei, scattering off of an electron in a volume, V , can be

expressed as:

Es = Ei exp (iω0t− iki · rp(t))
σe sinχ

|R| exp (−iks ·R) exp (iks · rp(t)) , (2.4)

in which Es is the scattered electric field with wave vector, ks; ω0 is the angular frequency of

the incident electric field; ki is the wave vector of Ei; rp(t) is the position of the electron as

a function of time, with respect to the origin; |R| is the magnitude of the vector between the

observer (radio receiver) and the origin, R; χ is the angle between ki and R; c is the speed

of light; and

σe =
q2
e

4πε0

1

mec2
, (2.5)

is the classical radius of the electron. The geometry of Equation 2.4 is shown in Figure 2.1.

For direct backscatter, ki = −ks. Now, taking the number of electrons, p, within the

volume, V , each contributing a scattered electric field, Equation 2.4 becomes:

Er =
Eiσe sinχ

R
exp {i(ω0t−

ω0

c
R )}

∑
p

exp (−2iki · rp(t)) . (2.6)

Now, the density of the electrons in the volume, V , can be expressed as:

n (r, t) =
1

V

∑
p

δ {r− rp(t)} , (2.7)

and taking a Fourier transform of both sides:

V

∫
n (r, t) exp (−ik · r) dr =

∑
p

∫
δ {r− rp(t)} exp (−ik · r) dr (2.8)

produces:
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4

Figure 1. Scattering from electron at position rp(t).

where χ is the angle between the electric field vector of the incident wave and K, i.e.
the direction toward the observer. Certain complications might arise through the
presence of an external magnetic field, but these will not be considered here.

We see that the scattering is determined by the difference of the wave vectors of
the incident and the scattered waves, k = ! - K. On the assumptions of weak scat-
tering the total field at the observer becomes:

Eobs = 
Ein σ0

R0
 exp 









i (ω0 t - 
ω0
c  ) R0   ∑

p

 
 
 
  exp {-i k.rp (t)} (4)

where the summation is extended over all the electrons within the volume V.

It will prove convenient to express the scattered field in terms of electron density
n(r,t). Because electrons are here considered as point particles the number density is
most easily expressed as a sum of δ-functions in space:

n(r,t) = ∑
p

 
 
 
  δ {r - rp (t)} (5)

We now expand in spatial Fourier series within a periodicity cube of volume V:

→!ki rp(t)

ks
R

Figure 2.1: The scattering geometry of an incident electric field and electron inside a
volume, V , reproduced from Alcaydé [2001].

V n (k, t) =
∑
p

exp (−ik · rp (t)) . (2.9)

Since we are dealing with Bragg scattering, k = 2ki. Equation 2.9 can be inserted into

Equation 2.6, producing:

Er = n (k, t)
Eiσe sinχ

R
V exp

{
i
(
ω0t−

ω0

c
R
)}

. (2.10)

The ISR (or any radar) receiver receives Equation 2.10, a modulated signal centered about

the carrier frequency of the radar, ω0, with an arbitrary phase shift added to it. However,

notice that the density information is encoded in the amplitude; namely:

Ar (t) = n (k, t)
Eiσe sinχ

R
V. (2.11)

In order to obtain any useful information from the received signal, such as range to the

scattering volume, Doppler shift or phase of the signal, it must be compared to the original

transmitted signal. This is performed via the autocorrelation function (ACF):

Pr(t) =

∫
Ar (t) · At (t+ τ) dt. (2.12)
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in which At is the original, transmitted signal. Via the Wiener-Khinchin theorem, the Fourier

transform of the above ACF is the power spectrum of the received signal:

Pr (ω) = nePeφ (k, ω) . (2.13)

where ne is the total number of electrons in the scattering volume, V ; Pe =
(
E2
i σ

2
e sin2 χV 2

)
/R2

is the power received from the scatter from a single electron; and φ (k, ω) is the power spec-

trum of the electron density fluctuations in the scattering volume, as a function of the Doppler

shift of the received signal, ω = ω0 − ωr, in which ωr is the received carrier frequency.

An important property of Equation 2.13 is that the received power, Pr, is directly propor-

tional to the number of electrons in the scattering volume. Thus, by measuring the received

power, ISR systems provide information about the plasma density within scattering volume,

V . It should be noted that this is an extremely difficult measurement to make. The ISR

scatter is very weak compared to the transmitted power of the ISR system. It is not un-

usual for Pr be 20 orders of magnitude less than Pt [P. J. Erickson, personal communication,

2014]. This excludes many radar systems from being able to measure Pr (including the Su-

perDARN system, which will be discussed shortly) since they simply do not have a sufficient

power-aperture product to measured the weak scattering process [Kelley , 2013].

The other important feature of Equation 2.13 is the ISR spectrum, φ (k, ω). If we assume

the collision frequency of the plasma is sufficiently small and of a single species composition

then:

φ (k, ω) =
2π

k

∣∣∣∣∣1− Ge

(
ω
k

)
ε
(
ω
k

) ∣∣∣∣∣
2

fe0

(ω
k

)
+

2π

k

∣∣∣∣∣Ge

(
ω
k

)
ε
(
ω
k

) ∣∣∣∣∣
2

fi0

(ω
k

)
, (2.14)

where ε is the permittivity of the plasma; fi0 and fe0 are the velocity distribution of the ions

and electrons, respectively. In this formula we are assuming that both exhibit a Maxwellian

distribution. Ge

(
ω
k

)
and Gi

(
ω
k

)
are the electric susceptibility of the plasma for the ions and

electrons such that ε
(
ω
k

)
= 1 +Ge

(
ω
k

)
+Gi

(
ω
k

)
. Since we are assuming that both the ions

and electrons exhibit a Maxwellian velocity distribution, Equation 2.14 is recast to:

φ (k, ω) =
2
√
π

ka

[
Γe

|ε|2
+

Γi

|ε|2
]
, (2.15)
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where:

Γe = exp
(
−x2

e

) [(
1 + α2Te

Ti
<{Z (xi)}

)2

+

(
α2Te
Ti
={Z (xi)}

)2
]

(2.16)

and

Γi =

√(
miTe
meTi

)
exp

(
−x2

i

) [(
α2<{Z (xe)}

)2
+
(
α2={Z (xe)}

)2
]
. (2.17)

Furthermore, |ε|2 in the denominator is given by:

|ε|2 =

[
1 + α2

(
<{Z (xe)}+

Te
Ti
<{Z (xi)}

)]2

+

[
α2

(
={Z (xe)}+

Te
Ti
={Z (xi)}

)]2

(2.18)

Here, Z (xe) and Z (xi) are the plasma dispersion functions for the ions and electrons, re-

spectively, and [Fried and Conte, 1961]:

Z (x) = x exp
(
−x2

)(
i
√
π − 2

∫ x

0

exp
(
x′

2
)
dx′
)
. (2.19)

In Equations 2.16 and 2.17, α = 1/kλD; xi and xe are the ratios of transmitted angular

frequency, ω, and the thermal velocity of the ions and electrons:

xi =
ω

k

√
mi

2kbTi
, (2.20)

and

xe =
ω

k

√
me

2kbTe
. (2.21)

There are some important features of the previous equations 2.14 which help provide

a qualitative description of the ISR spectrum. Firstly, notice that for the α� 1 case,

Γe → exp (−x2), |ε|2 → 1, and Γi → 0. This is a high-frequency case; the probing wavelength

of the radar, λ� λD. At this scale, the plasma does not undergo any collective motion.

The electrons mimic a free electron gas. For λ� λD the electrons provide the Debye shield-

ing for the ions, and therefore their motion through the plasma is heavily influenced by the

ions. The plasma displays collective motion. The ISR spectrum is different for each case.
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In a high-frequency case the spectrum takes on a Gaussian shape with a broadening that is

governed by the thermal properties of the plasma.

For cases in which α & 1 the contributions from the ions become more important. When

xi > 1 but small, the Γi term dominates in Equation 2.15. This is simply due to the fact that

x2
i ∼ 1836x2

e – the mass ratio of a proton and electron (for a plasma in which Ti = Te; for

the O+ dominated plasma in the F region, this ratio would be 16 times higher). A resonance

peak occurs as xi → xac, the ion-acoustic peak; |ε|2 reaches a minimum at this point. The

resonance peak is centered near the ion-acoustic velocity in the plasma. Ion-acoustic waves

are analogous to sound waves in a neutral gas, and have a phase speed [Chen, 2010]:

vs =

√
kbTe + γikbTi
me +mi

, (2.22)

in which γi = 3. This resonance peak is referred to as the “ion line” or the “ion-acoustic line”.

The amplitude of the resonance peak is determined by the ratios of the ion and electron mass,

and ion and electron temperature in the plasma.

Lastly, for large values of xe, Γe → exp (−x2
e), and Γi → 0. However, unlike the scatter

case described earlier, |ε|2 → 1 + α2<{Z (xe)}2. It can be shown that 1 + α2<{Z (xe)}2 is

minimized when

ω2 ' ω2
p +

3

2
k2v2

the (2.23)

– the Bohm-Gross plasma dispersion relation, in which vthe is the thermal velocity of the

electrons [Chen, 2010]. Thus, an additional notable feature of Equation 2.15 is the “plasma

line”, also known as the “electron line” – a peak at a Doppler frequency that is the sum of

the plasma frequency, ωp, and the Doppler frequency of the thermal electrons.

Equation 2.15 is plotted in both Figures 2.2 and 2.3, for an F-region plasma (O+ is the

main ion constituent) with ne = 1× 1011 m−3, Ti = 1000 K, Te = 2000 K (a range of Te is

plotted in Figure 2.3), for an ISR at a wavelength of 443 MHz. In the first, a log of the

φ (k, ω) is given. This is done in order to show the relative positioning and magnitudes of the

ion and electron lines (the spectrum is symmetric about ω = 0). The ion line is centered at

∼ 5700 Hz, a v ' 1930 m/s, which is the fluid ion-acoustic speed of vs = 1610 m/s (according

to Equation 2.22).
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Figure 2.2: A log plot of φ (k, ω) for an ISR operating at 443 MHz, probing an O+

plasma with ne = 1× 1011 m−3, Ti = 1000 K, Te = 2000 K. Code courtesy of P. Perron.

In Figure 2.3, the plot range is narrowed to focus on the ion lines – the “double-hump”

spectrum. In practice, this feature is of most interest. For one, this spectrum provides a

variety of information about the plasma being probed, e.g., plasma density and temperature.

The electron lines are extremely difficult to detect in normal ISR operation, due to other

complications not discussed here. They also only provide plasma density information, and

not plasma temperature information. When the plasma lines cannot be measured an absolute

plasma density measurement is unavailable. To obtain a density measurement without the

plasma line, the ISR spectrum must be calibrated against another instrument which can

provide plasma density information. A nearby ionosonde is typically used. In Figure 2.3,
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Figure 2.3: The ion lines of φ (k, ω) for an ISR operating at 443 MHz, probing an O+

plasma with ne = 1× 1011 m−3, Ti = 1000 K, Te = 1000, 2000, 3000, 4000 and 5000 K.
Code courtesy of P. Perron.

several profiles are plotted to show the variation of the ionic spectrum as a function of the

ion and electron temperatures. The spectrum plotted in Figure 2.2 is plotted as Te/Ti = 2 in

Figure 2.3. As one can see, the valley in between the two ion line peaks becomes deeper as

Te/Ti increases. Other variations in the spectrum due to varying ion compositions and other

effects also occur, but are not shown here.

Once a measurement of the double-hump spectrum, Figure 2.3, is obtained, calculating ne

via Equation 2.13 is relatively straightforward since ne is a density proportional to the area

under the curve in Figure 2.3. However, Ti and Te factor into this estimate. Their influence
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on the spectral shape is ascertained using fitting techniques – fitting the measured spectrum

to a model of an expected ISR spectrum [M. J. Nicolls, personal communication, 2010]. An

additional instrument, an ionosonde, is typically used to calibrate the ISR ne measurements.

vlos, the bulk plasma flow, is simply a measure of the offset of the spectrum from the centre

frequency.

2.1.1 The Resolute Bay Incoherent Scatter Radar – North

The RISR–N system is an example of an Advanced Modular Incoherent Scatter Radar

(AMISR) system [Bahcivan et al., 2010]. There are currently two AMISR systems oper-

ational in the world. The first is located at Resolute Bay, Canada (74.7◦ N, 265.1◦ E, in

geographic coordinates). A second AMISR system, RISR-Canada (RISR-C), is located at

the same location in Resolute Bay, and was scheduled to begin operations in summer, 2014.

The second operational AMISR system, the Poker Flat Incoherent Scatter Radar (PFISR) is

located at Poker Flat, Alaska, in the United States (65.13◦ N, 212.53◦ E, geographic) [Nicolls

et al., 2007].

The RISR–N radar transmits ultra high frequency (UHF) radio waves, at 441.9 MHz,

into the polar ionosphere. The system uses an ingenious method of electronic beam steering

in order to obtain an “image” of the ionosphere. The first generation of ISRs feature large,

fixed or steerable antenna dish with a single beam look direction. For these systems, it is

time consuming to change the look direction of the radar, which may not be desirable for

certain experiments. This can produce unwanted spatiotemporal ambiguities when processes

in the ionosphere are changing more quickly than the steering rate of the radar dish. The

AMISR class of radar systems overcome this by employing electronic beam steering tech-

niques. Instead of a single radar dish, an AMISR system is composed of several thousand,

stationary, double-dipole antennas, on a stationary face, as shown in Figures 2.4 and 2.5.

The transmitted radar signal can be phased differently for each section of beams, allowing

for the look direction of the radar to be changed rapidly, from radar pulse to radar pulse.

This is known as electronic beam steering. As a result, the entire AMISR field-of-view can be

sampled much more quickly than that of a single, steerable dish system, and on a time-scale

that is of the order of the temporal characteristics of the ionosphere. A RISR-N mode with
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Figure 2.4: The RISR-N system at Resolute Bay, Canada. Photo courtesy of C.
Heinselman.

Figure 2.5: A closer view of the RISR-N face, showing some of the many thousands
of antennas. Photo courtesy of C. Heinselman.
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Figure 2.6: A plot of a 42-beam RISR-N mode (top), with the projections of the 42
look directions plotted in a geomagnetic coordinate system (bottom), courtesy of SRI
International.

42 beams, configured in a rectangular, 6× 7 grid, is plotted in Figure 2.6 with the geographic

coordinate direction. Concentric circles indicate elevation contours from the zenith. In the

bottom-half of Figure 2.6 the look directions of the beams are plotted with respect to a

geomagnetic coordinate system.
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2.2 Coherent Scatter Radar

HF radar signals transmitted into the ionosphere may undergo coherent backscatter in both

the E and F region. Like an ISR scattering process, an HF transmitted signal backscatters off

of plasma density irregularities with spatial scales that satisfy the Bragg scattering condition.

The main difference between the ISR and coherent backscattering is the amplitude of the

density irregularities and therefore the amplitude of the backscatter signal is much larger in

the latter. Whereas the ISR cross section is linked to small amplitude irregularities due to

the thermal fluctuations in the plasma, the HF cross section is established by large amplitude

field-aligned irregularities attributed to plasma instability mechanisms, such as the gradient-

drift instability (GDI). Overall, in order to receive backscattered HF signal, or “echo”, two

conditions must be met: plasma density irregularities must be present in the radar beam

and the HF radar signal must undergo sufficient refraction to backscatter off field-aligned

irregularities. This is a result of the nature of the irregularities in the F-region ionosphere,

of which the GDI is regarded as the primary source. This will be discussed in detail shortly.

2.2.1 HF propagation

For a plasma immersed in a magnetic field, such as the E- and F-region ionosphere, the index

of refraction, n, is described by the Appleton-Hartree equation [Hargreaves , 1992; Appleton

and Builder , 1933; Hartree, 1929]:

n2 = 1− X

1− iZ −
[

Y 2sin2θ
2(1−X−iZ)

]
±
√[

Y 4sin4θ
4(1−X−iZ)2

+ Y 2cos2θ
] , (2.24)

in which X = ω2
p/ω

2
0, where ω0 and ωp are the probing and plasma frequencies, respectively;

Y = ωB/ω0, where ωB is the gyrofrequency of the electron; θ the angle of incidence of an

HF ray with respect to the magnetic field; and Z = ν/ω0, where ν is the electron collision

frequency.

For the HF radio band, 3 MHz ≤ ω0/2π ≤ 30 MHz, and in the ionosphere, ω0 � ωB, thus

Equation 2.24 can be reduced to that of an unmagnetized and collisionless plasma; namely,

ν � ωB above 100 km altitude:
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n2 ' 1− ω2
p

ω2
0

' 1− f 2
p

f 2
0

. (2.25)

As mentioned in Section 1.4, ω2
p undergoes a diurnal variation in the F-region. Other varia-

tions may occur due to enhanced geomagnetic conditions or localized, particle precipitation.

To first order, in the polar F-region, 4 MHz ≤ fp ≤ 8 MHz [Moen et al., 2008]. If the HF

signal probing the ionosphere has a frequency fp = 10 MHz, then 0.60 ≤ n ≤ 0.92, in general.

Equation 2.25 has significant consequences for HF radio waves propagating through the

ionosphere. Taking Snell’s Law into consideration, HF propagation – and more specifically

– HF refraction play a vital role in HF coherent backscatter [e.g., Gillies et al., 2009; Gillies

et al., 2012, and references therein]. In essence, the ionosphere acts as a stratified medium in

which the plasma density, and therefore n varies in altitude. An incident HF radio wave will

propagate and refract through the ionosphere, according to Snell’s Law. This is illustrated

Figure 2.7. Here, a 2-D trace in altitude and latitude of the propagation of several HF

radar beams transmitted at f = 12.0 MHz is shown, with several different incident angles

from a single point (on the left side of the figure), into a model of the terrestrial ionosphere,

with an index of refraction, n, that varies with altitude. The interface between the neutral

atmosphere (nair ' 1) and the ionosphere is just below 100 km altitude. Since, nair ≥ n at

the interface, the incident HF radio wave is refracted away from the normal, in accordance

with Snell’s Law; the HF beam becomes more horizontal. Some rays refract towards the

vertical. This is a result of the stratification of the ionosphere and the fact that the ray is

transmitting into a layer of the ionosphere with a larger index of refraction at those points,

unlike the transition from nair to n at the bottom of the ionosphere.

With the appropriate ionospheric conditions, the phase front of an HF radio wave may

turn downward in the ionosphere, be refracted, and propagate back towards the surface of

the Earth as shown in Figure 2.7. The refracted HF wave may then reflect from the surface

of the Earth, and re-enter the ionosphere. This is an important property of HF propagation,

and is a distinct advantage of HF radar systems. Essentially, an HF radar can “hop” its

radio waves over large geographic regions, extending its field-of-view beyond the line-of-sight

range. This also provides a more subtle advantage to using HF radio waves for studying the

ionosphere. The plasma density irregularities comprising the HF radar backscatter cross-
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ray racing model shows that E and F region echoes may arrive
from various ranges, depending on the ionospheric density
profile. Moreover, the ray tracing model assumes an isotropic
ionosphere between the radar and scattering regions, which may
not necessarily be true. We therefore expect significant variability
in the backscatter location for long ranges and it is difficult to
conclusively sort out E and F region echoes based on arrival angle.
Nevertheless, E region echoes at these long ranges have been seen
before (Lacroix and Moorcroft, 2001; Milan et al., 1997) and this
strengthens our hypothesis that PolarDARN radars are able to see
E region echoes.

We now visit the previous work on the propagation speed of F
region irregularities. One of the earliest works on this topic is that
of Ruohoniemi et al. (1987) who compared Sondrestrom ion drifts
to HF radar. They found a slope of 1.4, after manually removing
some of the data points most inconsistently with the least squares
fit of the data. This is the only paper so far that showed HF
velocity larger than EXB drift. One can see from a comparison of
Figures 10 and 11 in their papers that some of those removed
points occurred for large ion drifts exceeding about 600 m/s,
suggesting that another instability process is being excited at
large plasma drifts, perhaps involving the Farley–Buneman
instability in the E region. Another study is by Baker et al.
(1990) who compared drift measurements using DMSP-F9 satel-
lite to irregularity drift velocity measurements from the HF
coherent radar sited at Halley Bay in Antarctica. There were only
7 data points matching well with the EXB drift assumption,
although only 2 points were for plasma drifts above 600 m/s.
Moreover, Villain et al. (1985) compared HF Doppler spectra to
EISCAT ion drifts. The mean spectral shifts were shown to closely
(within 451) match the cosine component of the EXB flow. More

interesting to us was the actual projection of the cosine compo-
nent on the spectral shape itself (see their Figure 10). The spectra
generally composed of multiple peaks and, in almost every
spectral example shown, the EXB cosine component was coincid-
ing with one of the distinct peaks. We consider this work as a
clear evidence of the EXB drift–FAI motion equivalence, although
the tendency in this work and later ones is to consider the mean
Doppler shift alone as a quantity describing the ion drift, which
often provides poorer correspondence.

Xu et al. (2001) were the first ones who clearly stated that the
SuperDARN F region velocities are below EXB. The data came from
an observational geometry similar to what is considered in this
manuscript. In particular they reported the effect of stronger HF
velocity underestimation at larger EXB velocities. Meanwhile,
Davies et al. (1999) compared 4 h of CUTLASS Finland HF radar
velocities with the projected F region ion velocity measured
by the EISCAT UHF system. Although the HF velocities follow
well the cosine component of EXB for flows smaller than several
hundred km/s, for larger velocities the discrepancy grew signifi-
cantly (in line with the result from Xu et al., 2001). Combination
of all the data points yielded a slope of 0.73. Davies et al. (1999)
attributed some of the discrepancies to contamination by E region
echoes as the CUTLASS-EISCAT distance is not sufficiently large to
guarantee that any scatter observed over EISCAT will be from the
F region. In a subsequent study, Davies et al. (2000) compared a
much larger set of measurements collected over 4 days from the
CUTLASS Finland HF radar with the EISCAT Svalbard and VHF
radars. Davies et al. (2000) concluded ‘‘remarkable’’ agreement
between HF irregularity drift measurements and the ISR mea-
surements, without a least-squares-fit to determine the slope. A
closer inspection of the Figure 3 in their work shows significantly
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Fig. 5. Scatter plots of Doppler velocity of PolarDARN radars vs. the F region ion
velocity projected along the lines-of-sight. Top and bottom panels for Rankin Inlet
and Inuvik radars, respectively. The blue and red line fits are together defined by
two parameters (slope and offset). (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this article.)

Fig. 6. Ray traces of HF beams (red), shown at 11 elevation angle increments for
two sets of ionospheric parameters (top and bottom panels). Yellow segments
mark the locations where the HF beam is within 11 of perpendicularity to the
magnetic field. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this article.)

H. Bahcivan et al. / Journal of Atmospheric and Solar-Terrestrial Physics 105-106 (2013) 325–331 329

Figure 2.7: From Bahcivan et al. [2013], a plot of an HF ray trace model for a modelled
ionosphere. Ray tracing model courtesy of P. Ponomarenko.

section are strongly field-aligned; that is, their growth is perpendicular to the geomagnetic

field lines (described in more detail shortly). To satisfy the Bragg scattering condition,

the incident HF radio wave must have a nearly negligible angle of incidence with respect

to the geomagnetic field lines. In the polar region, the geomagnetic field lines are nearly

vertical with respect to the surface of the Earth. Since HF radio wave undergo a significant

amount of refraction as they propagate through the ionosphere, they are able to satisfy the

Bragg condition at several locations along the propagation path – extending the coverage

for studying HF coherent backscatter, beyond the line-of-sight regime. In Figure 2.7, points

along the HF ray path in which the incident ray satisfies the aspect angle condition are

marked in yellow.
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2.2.2 The Gradient-Drift Instability

Focus is now placed on the mechanism behind the processes responsible for the decametre (HF

band) plasma density irregularities in the F-region ionosphere. The theoretical underpinning

of the HF, coherent scattering process is not as well developed as that of the ISR scattering

process. Nonetheless, it is generally believed that the gradient-drift instability (GDI) is the

main mechanism behind backscattering at HF frequencies [Simon, 1963; Cerisier et al., 1985].

The GDI occurs due to naturally occurring plasma density gradients. Consider a plasma

that has a density gradient, ∇N , immersed in an electric and magnetic field, E0 and B which

impart an E0 ×B drift velocity field in the direction of x, as illustrated in Figure 2.8. If a

plasma perturbation develops, plasma protruding into a region of higher density plasma will

develop a polarization electric field, Ep, in the direction of the ambient electric field, E0, along

y, while plasma moving into a less dense region will develop a polarization electric field in

the opposite direction, along −y. When the ions encounter a perturbation introducing a less

dense plasma with a lower conductivity the ion drift will decrease, creating a charge build-

up. The opposite occurs when the ions encounter a denser plasma with a higher conductivity

as illustrated in Figure 2.8. A result of the polarization field is a Ep ×B drift that will

develop either in the +x or −x direction. The drift will push less (more) dense plasma into a

region of higher (lower) density. A positive feedback instability ensues. In the case of a large

density enhancement moving in the −x direction, it is pushed further along due to diffusion

and pressure gradients. The perturbation is amplified due to the larger density gradients

(between the invading plasma and the ambient plasma), thereby increasing conductivity

gradients and increasing the polarization electric field, pushing the protrusion even farther

in the −x direction, etc..

A very thorough quantitative description of the GDI operating in the F-region ionosphere

is given by Keskinen and Ossakow [1982], which is also applicable to the polar ionosphere.

In it, the GDI is described by the dispersion relation ω̃ = ωr − iγ, in which the growth rate,

γ, for a plasma density perturbation with a wavevector k = kxx̂ + kyŷ + kzẑ is given by:

γ = cosα

νei
Ωe

1
L

(
νin
Ωi

E0

B
cos (α− β) + θVd

)
θ2 + νin

Ωi

νei
Ωe

−D⊥k2
y −D‖k2

z (2.26)
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738 TSUNODA' HIGH-LATITUDE F REGION IRREGULARITIES 

ities and large-scale plasma structure is found in the auroral 

oval: (1) the equatorward irregularity-source region with 
boundary blobs (and, perhaps, subauroral blobs) and (2) 
the poleward irregularity-source region with auroral blobs 

and localized plasma depletions. The spatial collocation of 

scintillation patches with both a boundary blob and a sub- 

auroral blob is seen in Figure 14. Although a similar exam- 

ple is not available to illustrate the spatial collocation along 
the poleward auroral boundary, we have shown that both 

the poleward HF curtain (Figure 3) and the auroral blob 
(Figure 16) occur in a region of sunward convection, i.e., 
in the auroral oval, not the polar cap. We speculate that 

the slightly enhanced irregularities found in the Harang dis- 

continuity region by C'iark and Raitt [1976] (see Figure 6) 
and by B•u and Aaro• [1980] might actually represent the 
passage of polar cap structure into the auroral region. 

From the foregoing, there is good reason to expect fluid 

interchange instabilities to play a dominant role in irregular- 

ity production by MI•TI across a mean horizontal gradient 

associated with the large-scale plasma structure. We also 

might argue that the similar morphologies simply indicate 

that the fractional fluctuation in plasma density is actually 

distributed throughout the polar regions and that the ab- 

solute fluctuations in plasma density are determined by the 

mean plasma density (i.e., the large-scale structure). That 
this is not the case is demonstrated by additional evidence 

presented in section 4.4. 

4. INTERCHANGE INSTABILITIES 

In this section, we review the basic properties of inter- 

change instabilities; then, using experimental evidence, we 
evaluate their effectiveness in the polar ionosphere. Being 
interested in the underlying physics, we presen• analytic 
forms of the linear growth rate of irregularities to illustrate 

explicit dependences on physical parameters. All of the 

forms presented have been derived using small-amplitude 
perturbation analysis. We also discuss results from nonlin- 

ear numerical computations to assess whether predictions 

from linear instability theory remain valid under more re- 

alistic conditions. (Readers interested in a more detailed 
mathematical description are referred to the review paper 

by Keskinen and Ossakozy [1983b] and references therein.) 

4.1. Basic Theory 

4.1.1. • X J• (gradient drift) instabilit•t. The • x J• insta- 
bility is schematically described in Figure 21. With a plasma 

density gradient directed in the z direction and an applied 
electric field in the I/ direction, the geometry is unstable 
to development of polarization electric fields. The positive 

feedback loop operates as follows. When a perturbation pat- 
tern is imposed on the plasma density contours, the pattern 
associated with the ions drift to the right in the "Pedersen • 

direction (represented by the solid curve) leaving the highly 
magnetized electrons (dashed curve) behind. The resulting 
charge separation is accompanied by a polarization electric 

field,/•,p. The/•,p x/• motion is in a direction such that the 
initial perturbation is amplified by moving less dense plasma 
further into regions of more dense plasma, and vice versa. 

Irregularities, therefore, grow as a result of 1V[FTI along an 

existing mean gradient. (The above scenario is assumed to 
take place in a coordinate system drifting in the positive z 

VN 

• E o 
B 

PERTURBED CONTOUR OF ION DENSITY 

PERTURBED CONTOUR OF ELECTRON DENSITY 

x• 

•Y 

Fig. 21. Simplified schematic diagram showing the basic mechan- 

ics of the/• X • instability. A Pedersen ion drift (to the right) 
leads to charge separation and the development of polarization 

electric fields, /•. The sense of/• is to drive /• X • motion 
that further enhances the original plasma perturbation. 

direction with a speed Eo/B relative to the neutral gas.) 
In the simplest one-dimensional case with/•.• = 0 ('flute 

mode), the linear growth rate of the • x • instability [Lin- 
son and Workman, 1970] is 

where Vo is the "slip • velocity, i.e., plasma drift rela- 

tive to the neutral gas, L is the gradient scale length, 
co (= co, + •'ro) is the wave frequency, and •,•, is the ion- 
neutral collision frequency. When there is no neutral wind, 
Vo is equal to Eo/B, where Eo is the applied electric field. 
The growth rate is derived using a local approximation 
(kL >> 1), which is equivalent to ignoring the presence 
of any conducting background plasma. In other words, lin- 
ear analysis assumes that L remains constant over distances 

much greater than the wave displacement amplitude; there- 
fore, the wave is unaffected by the presence of any back- 

ground plasma. Note that there is no wave number (k = 2 
•r / ,•) dependence, implying that all irregularity scales are 
amplified equally. 

Ossakozy et ai. [1978] extended collisional theory (equation 
(1)) to include ion-inertial effects. In this inertial (or high- 
altitude) domain, the linear growth rate is given by 

! 

= >> (2) 

This form of the growth rate also is independent of k but 
decreases slowly with altitude through its dependence on 

(•,,)•. Equating equations (1) and (2), we find that the 
crossover altitude occurs where u•,, = Vo/L. Ossakozy et al. 
[1978] showed that the domains governed by equations (1) 
and (2) require the conditions u•. >> 4Vo/L and u•. << 
4Vo/L, respectively. For example, if L = 20 km and Vo = 
4 kin/s, the boundary between the two domains is around 
350-kin altitude. The • x/• instability, therefore, is active 
at all ionospheric altitudes of interest. 

In the polar ionosphere, structuring of blobs must be con- 

sidered as a two-dimensional process [Perkins et ai., 1973]. 

Figure 2.8: From Tsunoda [1988], an illustration of the GDI, in which γ > 0, the
system is unstable. If E0 is reversed, γ < 0 and the system becomes stable.

with respect to the geometry presented in Figure 2.8. In Equation 2.26, E0 = E0 sin βx̂ +

E0 cos βŷ; k̂⊥ = sinαk̂x+cosαk̂y; θ = kz/ky; Vd = (v0 − V0)ẑ is the differential velocity of the

ions and electrons along the magnetic field line; νin and νei are the ion-neutral and electron-

ion collision frequencies, respectively; Ωi and Ωe are the ion and electron gyrofrequencies,

respectively; 1/L = (1/n0)(∂n0/∂y) is the plasma density scale length; B is the magnitude of

the magnetic field; and, D⊥ and D‖ are the perpendicular and parallel diffusion coefficients

with respect to the magnetic field.

Plasma irregularities, i.e., the GDI protrusions, grow when γ > 0; however, this is strongly

dependent on the orientation of the plasma density perturbations and the ambient electric

field with respect to the density gradients. For a situation in which β = 0 and α = 0 or 180◦

(i.e., Figure 2.8) Keskinen and Ossakow [1982] analyzed the maximum growth rate for γ in

terms of θ; namely, ∂γ/∂θ|θ=θm = 0 for

θm =
νin
Ωi

E0y

BVd
±
√(

E0y

BVd

)2(
νin
Ωi

)2

+

(
νeiνin
ΩeΩi

)
, (2.27)

in which E0y = E0ŷ is the magnitude of the ambient electric field. They used numbers

which are applicable to the polar-ionosphere: νin/Ωi ' 10−4, νei/Ωe ' 10−4, E0y ' 10 mV/m,
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j‖ = n0eVd ' 1 µA/m2, B = 0.5× 10−4 T, n0 ' 1011 m−3, which gave θm = 10−4, meaning

that the growth rate γ is maximized in a direction that is perpendicular the magnetic field

– the GDI is strongly field-aligned. Consequently, the following approximation is commonly

used:

γ|θ=0 =
E0

BL
= v · ∇ lnn0, (2.28)

in which v is the plasma drift velocity. The plasma is unstable, γ > 0, in regions where the

v · ∇N > 0, and stabilized, γ < 0, in regions in which v · ∇N < 0. The first case is one which

was described previously and illustrated in Figure 2.8. One can construct the opposite case,

in which v · ∇N < 0 and γ < 0, by switching the direction of the plasma drift in Figure 2.8,

from the +y to −y direction. As a result, the directions of Ep will be flipped as well. The

initial protrusion of less dense plasma along the +x direction will be halted and reversed by

the Ep ×B–drift; the same will occur for the denser plasma protrusion.

An important property to note is that, on average, the irregularities produced by the GDI

will move at the same speed as the ambient plasma flow in the F region. This was verified

experimentally by Ruohoniemi et al. [1987]. It is also important to note that the theory

described by Equations 2.26 and 2.27 is a first order, linear theory. Other non-linear theories

exist which account for the subtler properties of E- and F-region plasma density irregularities

observed [e.g., Fejer et al., 1975; Kelley , 2009, and references therein]. Nonetheless, the linear

theory is sufficient for studying the irregularities encountered in this work, including F-region

ionization patches in the polar ionosphere [e.g., Tsunoda, 1988; Hosokawa et al., 2013b].

2.2.3 SuperDARN

SuperDARN [Chisham et al., 2007; Greenwald et al., 1995] is a network of HF coherent scatter

radars located at mid-, auroral-, and polar-latitudes, in both the northern and southern

hemispheres. A map of the current operational SuperDARN radar sites with their nominal

fields-of-view is given in Figures 2.9 and 2.10, respectively. Tables 2.1 and 2.2 give a brief

description of each operational radar in the northern and southern hemispheres. Subsets of

the SuperDARN carry their own moniker, for example, the SuperDARN radars at Inuvik,
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Rankin Inlet and Clyde River are collectively referred to as the Polar Dual Auroral Radar

Network (PolarDARN).

Each individual SuperDARN radar measures HF backscatter from the E- and F-region

ionosphere over a vast geographic region. This is accomplished by using the ability of HF radio

waves to propagate beyond the line-of-sight range (see Section 2.2.1) to provide an extended

FOV radially, combined with the electronic beam steering capability of each radar to expand

the field-of-view azimuthally. The result is a triangle shaped field-of-view coverage, as shown

in Figures 2.9 and 2.10. Each radar site also has a secondary, passive array of antennas

that provides interferometric information providing an angle-of-arrival measurement of the

received radar echo.

An individual SuperDARN system implements similar radar techniques to those of an

ISR, to provide information about the plasma in the scattering volume; that is, an ACF is

constructed by transmitting and receiving HF radio waves into the ionosphere (e.g., Equa-

tion 2.12). The line-of-sight Doppler shift of the plasma is estimated from the rate of change

of the phase of the received radar signal with respect to time. However, unlike an ISR sys-

tem, which can provide information about the state parameters of the ionosphere, the only

information that can be retrieved from the SuperDARN ACF is the backscatter power of the

received echo (the square of the amplitude of the ACF), a function of the amplitude reflec-

tion coefficient of the plasma [G. J. Sofko, personal communication, 2012]; and, the spectral

width, which is linked to the turbulence of the plasma [Villain et al., 1996], and measured

as the decorrelation time of the ACF.

Beyond a certain range from the radar site the HF beams penetrate into the F region; it is

assumed that the radar echoes received originate from the F region, and are due to coherent

backscatter from field-aligned irregularities drifting at the E×B velocity [Ruohoniemi et al.,

1987]. In Figure 2.7, this occurs as close as 600 km downrange from the radar. The yellow

markings indicate that the aspect angle condition for coherent backscatter is satisfied at these

ranges – the k-vector of the radar wave is perpendicular to the geomagnetic field line. If one

wants to make sure that echoes being investigated are only from the F region, the typical

practice is to simply only consider echoes from beyond 750 km range. For this work we are

only concerned with F-region echoes since they only drift at the E×B. At lower altitudes,
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Figure 2.9: The individual fields-of-view of the radar sites comprising the SuperDARN
in the northern hemisphere, in geomagnetic polar coordinates. Plot courtesy of Virginia
Tech SuperDARN.

Figure 2.10: The individual fields-of-view of the radar sites comprising the Super-
DARN in the southern hemisphere, in geomagnetic polar coordinates. Plot courtesy of
Virginia Tech SuperDARN.
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Radar Name Code Latitude Longitude Boresite

Adak Island East ADE 51.88◦ -176.62◦ 31.60◦

Adak Island West ADW 51.88◦ -176.62◦ -34.20◦

Blackstone BKS 37.10◦ -77.95◦ -41.50◦

Christmas Valley East CVE 43.27◦ 47.66◦ 40.2◦

Christmas Valley West CVW 43.27◦ 47.66◦ -31.20◦

Clyde River CLY 70.49◦ -68.50◦ -42.50◦

Fort Hays East FHE 38.86◦ -99.39◦ 41.30◦

Fort Hays West FHW 38.86◦ -99.39◦ -32.30◦

Goose Bay GBR 53.32◦ -60.46◦ 11.00◦

Hankasalmi HAN 62.32◦ -26.61◦ 1.50◦

Hokkaido HOK 43.53◦ 143.61◦ 23.90◦

Inuvik INV 68.42◦ -133.50◦ 4.40◦

Kapuskasing KAP 49.39◦ -82.32◦ 15.30◦

King Salmon KSR 58.68◦ -156.65◦ -31.30◦

Kodiak KOD 57.62◦ -152.19◦ 11.9◦

Pykkvibaer PYK 67.77◦ -20.54◦ 40.20◦

Prince George PGR 53.98◦ -122.59◦ -16.20◦

Rankin Inlet RKN 62.82◦ -93.11◦ 1.80◦

Saskatoon SAS -52.16◦ -106.53◦ 16.90

Stokkseyri STO 63.86◦ -22.02◦ -33.00◦

Wallops Island WAL 37.93◦ -75.47◦ 46.70◦

Table 2.1: A table of the geographic locations of the SuperDARN radars in the
northern hemisphere. The boresite is the pointing direction of the radar at the midpoint
of its FOV. Table information courtesy of Virginia Tech SuperDARN.

68



Radar Name Code Latitude Longitude Boresite

Dome C DCE -75.09◦ 123.35◦ -105.5◦

Halley HAL -75.52◦ -26.63◦ 174.10◦

Kerguelen KER -49.22◦ 70.14◦ -163.00◦

McMurdo MCM -77.88◦ 166.73◦ -148.20◦

Sanae SAN -71.68◦ -2.85◦ -162.40◦

South Pole Station SPS -89.995◦ 118.29◦ -20.30◦

Syowa East SYE -69.00◦ 39.58◦ 143.00◦

Syowa South SYS -69.00◦ 39.58◦ -157.70◦

Tiger TIG -43.40◦ 147.20◦ 169.40◦

Unwin UNW -46.51◦ 168.38◦ -152.20◦

Zhongshan ZHO -69.38◦ 76.38◦ 123.50◦

Table 2.2: A table of the geographic locations of the SuperDARN radars in the
southern hemisphere. The boresite is the pointing direction of the radar at the midpoint
of its FOV. Table information courtesy of Virginia Tech SuperDARN.

in the E region, those irregularities do not necessarily have the same drift properties. In

Figure 2.7, one can see that there are some yellow markings over a wide range of altitudes,

indicating that SuperDARN radar receives scatter from both the E and F region, at distances

where only the latter is expected. There is some experimental evidence to support this notion,

[e.g., Bahcivan et al., 2013, and references therein], but it is beyond the scope of this work.

Some echoes received by SuperDARN are considered “ground scatter”, a product of the

HF beam refracting and backscattering off of the surface of the Earth (see Figure 2.7). These

echoes have a distinct spectral width that is very small since the scattering target which they

are backscattering from – the ground – has a very large decorrelation time. Ground scatter

echoes also have very low Doppler velocity magnitudes, since the ground is not moving.

These two properties allow for ground scatter echoes to be easily identified and segregated

from other SuperDARN coherent echoes from the ionosphere. Ground scatter echoes can
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be used to infer other ionospheric phenomena [e.g., Ponomarenko et al., 2005, 2010, and

references therein].

Arguably the most important measurement a SuperDARN system provides (notwith-

standing an echo itself) is the line-of-sight Doppler velocity measurement. Villain et al.

[1985]; Ruohoniemi et al. [1987] showed that the phase velocity of F-region irregularities

measured by an HF coherent radar travel at the bulk flow velocity of the F-region plasma;

namely, the Doppler shift of the coherent backscatter signal is equivalent to the E×B drift.

This property has very important implications for SuperDARN and measuring the high-

latitude plasma convection flows. The irregularities, for example those produced by the GDI,

act as tracers for the plasma flows. If the phase velocity of the irregularity can be measured,

then the electric field driving the E×B plasma flows can be measured as well. Next, the

method of obtaining accurate velocity information is discussed.

SuperDARN merge technique

SuperDARN offers a real advantage for studying the F-region ionosphere when the Doppler

velocity measurements from multiple radars with overlapping fields-of-view (as see in Fig-

ures 2.9 and 2.10) are considered. A single SuperDARN radar can only provide line-of-sight

Doppler velocity information. By adding a second radar with a field-of-view that overlaps

with the first, information from both radars can construct a horizontal plasma flow vec-

tor; hence, the “Dual” in SuperDARN. This is illustrated in Figure 2.11, which shows how

the horizontal flow vector, v, is constructed. With two line-of-sight velocity measurements,

v1 = v · k̂1 and v2 = v · k̂2, with unit wave vectors k̂1 and k̂2, respectively, measured by two

SuperDARN radars, the horizontal flow vector v can be solved by recognizing that [Cerisier

and Senior , 1994; Chisham et al., 2002; Fiori , 2011]:

v = ak̂1 + bk̂2, (2.29)

in which a and b are coefficients. They can be calculated by solving the following system of

equations:
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Figure 2.13: Illustration of the derivation (merging) of the full convection vector v from
l-o-s velocities v1 and v2 measured in two different directions.

To get a large-scale picture of the convection flow, observations from all available

velocities must be considered. For the example presented in Figure 2.12b, 1094 individ-

ual gridded l-o-s velocity measurements are reduced to 175 merged velocity vectors. Fig-

ure 2.12c illustrates the convection determined from the merge technique. These veloc-

ities represent pairings between the Kodiak/Prince George, Saskatoon/Kapuskasing, and

Pykkvibaer/Hankasalmi radars. Although the merged convection velocities are determined

directly from the gridded l-o-s velocities, the limited number of overlapping grid cells, and

therefore the limited number of convection vectors, does not provide a complete or detailed

picture of the global convection pattern. Another technique, called the FIT technique, was

developed to alleviate this problem.

2.3.3 SuperDARN FIT technique

The FIT technique is a method by which SuperDARN gridded l-o-s velocities are used to infer

a convection pattern over the entire convection zone (Ruohoniemi and Baker , 1998; Shepherd

and Ruohoniemi , 2000). Figure 2.14 illustrates a thin spherical shell of radius r representing

42

Figure 2.11: From Fiori [2011], a depiction of merging two line-of-sight velocity
measurements from two SuperDARN radars, into a merged velocity vector.

v1 = a+ b
(
k̂2 · k̂1

)
v2 = a

(
k̂1 · k̂2

)
+ b,

giving:

v =

[
v1 − v2

(
k̂1 · k̂2

)]
k̂1 +

[
v2 − v1

(
k̂1 · k̂2

)]
k̂2

1−
(
k̂1 · k̂2

)2 . (2.30)

The process of combining dual velocity measurements in this way is referred to as the Super-

DARN “merge technique”. The technique is a robust method of determining the F-region

plasma flow in a localized region. However, it can only be used in regions where data from two

SuperDARN radars overlaps, which is less common. To rectify this, and to obtain velocity

measurements on a global scale the velocity information from many more SuperDARN radars

– such as all of those shown in Figures 2.9 or 2.10 – must be used. A more sophisticated

technique is required.
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SuperDARN FIT technique

In an effort to study the global convection patterns in each hemisphere, Ruohoniemi and

Baker [1998] introduced the SuperDARN “FIT’ technique. All SuperDARN line-of-sight

velocity measurements in a hemisphere are placed onto a grid, projected onto a spherical

geometry of the Earth within the boundaries of latitude poleward of the auroral oval. The

problem of turning the gridded line-of-sight velocity measurements into a global map of

plasma flow vectors is one of solving Laplace’s equation in spherical coordinates [Ruohoniemi

and Baker , 1998; Fiori , 2011]:

∇2Φ = 0, (2.31)

in which Φ is the electrostatic potential, and related to the electric field:

E = −∇Φ, (2.32)

which is of course related to the E×B convection velocity, v:

v =
−∇Φ×B

B2
. (2.33)

A solution to Equation 2.31 in spherical coordinates may be expressed as:

Φ (θ, φ) =
kmax∑
k=0

k∑
m=0

[Akm cos (mφ) +Bkm sin (mφ)]Pm
k (cos (θ)) , (2.34)

in which Pm
k are the associated Legendre polynomials of degree k and order m; kmax is the

maximum degree of the Legendre polynomial, θ and φ are the geomagnetic colatitude and

longitude, respectively. Akm and Bkm are coefficients solved for a given set of boundary

conditions by minimizing [Ruohoniemi and Baker , 1998; Fiori , 2011]:

χ2 =
N∑
i=1

1

σ2
i

(
vi · k̂i − vlosi

)2

, (2.35)

which is the familiar χ2 expression for N line-of-sight velocity measurements, vlosi , which

have a variance σi. vi is a fitted velocity vector projected onto the line-of-sight of a radar

via vi · k̂i. In essence, SuperDARN vlos measurements are used to constrain the solutions to
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Equation 2.31. The solution is an electrostatic potential for the auroral and polar-latitude

regions. For areas that do not contain any SuperDARN line-of-sight velocity measurements,

artificially gridded velocity vectors derived from historic SuperDARN data sets and other

instruments are used as constraints [e.g., Ruohoniemi and Greenwald , 1996; Shepherd and

Ruohoniemi , 2000; Ruohoniemi and Greenwald , 2005].

The product of the SuperDARN fitting technique is a global convection map, which

provides a snapshot in time of the global E×B convection pattern, in both the northern

and southern hemispheres. Convection maps may be generated on a time scale as quick as

1-minute. A plot of a convection map in the northern hemisphere, in polar geomagnetic

coordinates, from October 2, 2013 is given in Figure 2.12. The derived velocity vectors are a

straight line with a point denoting the base of the vector. The merged velocity measurements

from each radar are shown in Figure 2.13 to illustrate the advantage of using the fit technique

over the merged velocity vector technique, to infer global convection field. Both plots were

generated using data from some of the radars in the northern hemisphere, shown in Figure 2.9,

i.e., those that were in operation at the time the data was collected.

In Figures 2.12 and 2.13, information regarding the orientation of the IMF is given,

along with other quantities (which are not discussed in this work) including: the polar cap

potential, Φpc; the “Heppner and Maynard Boundary”, ΛHM [Shepherd and Ruohoniemi ,

2000; Heppner and Maynard , 1987], which is plotted as a black and green line equatorward

of the data; the number of radars used to produce the map Nrads; and the number of velocity

vectors plotted in the map, NV C . The convection equipotential contours derived from the

SuperDARN fit technique are shown in both plots. By comparing the two plots, it is clear

that the merge technique is unable to produce velocity flow vectors that show the large scale

structure of the auroral and high-latitude convection flows. This is simply due to the fact

that there was not enough overlap of SuperDARN echoes in much of the northern hemisphere

for the merge technique to be very effective. However, since the fit technique does not require

overlap between echoes, it is able to provide a more detailed estimate of the convection flows

in the high-latitude and polar-cap regions. The structuring in these convection flows is very

important to study as they relate to plasma structuring and dynamics in the near-Earth

geospace, since electric fields map along magnetic field lines.
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Figure 2.12: A convection plot of the northern hemisphere for 5:00 UT, Ocotber 2,
2013, generated using the SuperDARN fit technique. Plot courtesy of Virginia Tech
SuperDARN.

Figure 2.13: A plot of the northern hemisphere for 5:00 UT, Ocotber 2, 2013, gener-
ated using the SuperDARN merge velocity technique. Plot courtesy of Virginia Tech
SuperDARN.
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More recently, other data assimilation techniques for obtaining an accurate picture of the

auroral and high-latitude convection have been developed [e.g., Cousins and Shepherd , 2010;

Fiori et al., 2010]. Although they are not discussed here in any detail it is important to ac-

knowledge as deriving convection maps from SuperDARN line-of-sight velocity measurements

is not a resolved problem, and efforts to improve the accuracy of these analysis techniques

are ongoing.

2.3 Optical imagers and OMTI

Undoubtedly, optical imagers have been the backbone of experimental space physics since

the inception of the field. The application of an optical imager is simple: use a camera

to study the optical emissions of the aurora, or airglow, using filters specific to the op-

tical wavelength of those phenomena. The sensitivity and sophistication of the imagers

used has improved steadily with camera technology. Today, the newest optical imagers fea-

ture electron-multiplying charged coupled device technology (EMCCD), [e.g., Taguchi et al.,

2012], and are capable of detecting optical features below 100 R in brightness, over a short

integration time.

In this thesis work, all of the optical data was derived from an Optical Mesosphere Ther-

mosphere Imager (OMTI) all-sky instrument installed at Resolute Bay, Canada (74.73◦ N,

265.07◦ E, geographic) [Shiokawa et al., 1999]. A second OMTI imager operates at Athabasca,

Canada (54.7◦ N, 246.7◦ E, geographic); however, this station is situated for auroral observa-

tions. The OMTI imager at Resolute Bay has a field-of-view that is nearly horizon-to-horizon.

Its coverage in the northern polar region, mapped to 250 km altitude, is shown in Figure 2.14.

The optical filters, bandwidth, exposure time and sensitivity of the imager are outlined in

Table 2.3.

The optical wavelengths of 557.7 and 630 nm are of particular interest for observations

in ionospheric physics. Both wavelengths correspond to optical emissions from energetically

excited atomic oxygen. The former emission corresponds to the forbidden atomic transition

between an excited singlet S and an excited singlet D orbital. More specifically, 1S0 ↔ 1D2.

We are using the LS Coupling notation: 2S+1LL+S where S is the spin multiplicity of the elec-
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Figure 2.14: The OMTI field-of-view (green) mapped to 250 km altitude, and the
fields-of-view of RISR-N (orange) and several SuperDARN sites (blue).

tronic state, and L is the quantum number of the total orbital angular momentum [Tohmatsu

and Ogawa, 1990]. The transition produces an emission at 557.7 nm, and is referred to as

the “green-line emission”. Although this emission can occur due to chemistry, its most in-

tense emissions are caused by auroral precipitation. These auroral emissions are associated

with 1 keV precipitation energies, in which incoming electrons penetrate down to the 100 –

120 km altitude. The mean lifetime of the excited state is on the order of 1 s, and therefore

monitoring the green-line emissions serves as a good proxy for particle precipitation location

and flux.

The 630 nm emission is dubbed the “red-line emission”, and corresponds to another for-

bidden transition: 1D2 ↔ 3P2 [Tohmatsu and Ogawa, 1990]. This transition may be excited

by either auroral excitation or chemical recombination. Both are important for polar-region

observations. The auroral excitation of the red-line emission is a signature of soft precipi-
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Emission Wavelength Bandwidth Exposure Sensitivity

(nm) (nm) (s) (count/R/s)

OI 557.7 1.76 105 0.029

OI 630.0 1.90 165 0.038

OH∗ 720 – 910 190 15 –

Na 589.3 1.83 105 0.032

background 572.5 1.75 105 0.031

Table 2.3: The bandwidths, exposure time and sensitivity of the optical filters of the
OMTI all-sky imager at Resolute Bay. Reproduced from Shiokawa et al. [1999].

tation, and occurs at F-region altitudes. Emissions related to chemical recombination arise

from the following set of reactions, starting with Equation 1.17:

O+ +O2 → O+
2 +O

which is followed by:

O+
2 + e→ O∗ +O, (2.36)

in which O∗ is the excited state referred to earlier. The mean lifetime of the red-line emission

is on the order of 100 s.

The lifetimes of both the red- and green-line emissions have important implications for

altitudes below 250 km. The electronic transitions involved are considered forbidden; they

are vulnerable to collisional deactivation, a process known as “quenching”. However, since

the neutral atmosphere is tenuous at E- and F-region altitudes the forbidden transitions are

able to occur since collisions are so infrequent at higher altitudes. Below approximately 95 km

altitude, the green-line emission is heavily quenched; below approximately 250 km, the red-

line emissions is heavily quenched [Jones , 1974]. Below those altitudes, for each respective

emission, quenching increases with the collision frequencies – exponentially with decreasing

altitude. The green-line emission is predominately excited at E-region altitudes, at which
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the red-line emission is quenched; the two emissions can be used to monitor processes in the

E and F regions, respectively.

2.4 Summary

In this work, data from RISR-N, SuperDARN and OMTI are predominately used to inves-

tigate mesoscale plasma density perturbations in the F-region polar ionosphere. Data sets

from multiple instruments can be combined to increase the level and quality of research. To

help illustrate this point, consider the optical properties of a patch. We are able to opti-

cally detect it via the red-line emission described in Equation 2.36. From Equation 1.17,

the neutral density also plays a role in the red-line emissions; the altitude of the patch is

an important consideration. If a patch is at an altitude in which the neutral atmosphere

is sparse, its red-line emissions may be undetectable using optical techniques. The lack of

optical emissions does not negate the presence of the patch; it may be detected using radar

techniques, i.e., with the ISR, or from coherent backscatter (i.e., SuperDARN) from the edge

of a patch that is unstable. Therefore, utilizing other instruments offers a distinct advantage

for studying the polar ionosphere.

It is important to note that many other instruments in the polar region are able to

provide insight into the processes investigated, including: satellites using optical imagers,

and radio instruments for providing total electron content (TEC) measurements; ionosondes;

and ground based GPS receivers which measure radio scintillations. Notwithstanding their

value, the analysis presented in the proceeding chapters does not include data from any other

instrument except for RISR-N, SuperDARN and OMTI.

78



Chapter 3

The luminosity of F-region ionization patches

3.1 Introduction

This chapter focuses on the optical properties of F-region ionization patches and their value

as diagnostic tools for the F-region ionosphere. By monitoring their luminosity (the bright-

ness), patches may be used as a “tracer” for E×B convection flows in high-latitude and

polar ionosphere, since the optical emissions move in conjunction with the patch plasma,

which itself is E×B drifting. Also, the optical emissions of a patch are product of chemi-

cal recombination between the patch plasma and surrounding thermosphere. Therefore, the

luminosity of the patch can be used to study the local ionospheric and thermospheric chem-

istry in the vicinity of the patch. Both of these concepts are touched-upon in this chapter.

The optical properties of a pair of F-region ionization patches detected over Resolute Bay

are linked to the E×B motion of the patches and local F-region chemistry. It is shown

that variations in the polar-cap electric field strength can actually also lead to detectable

modulations in the luminosity of the patches through the vertical component of their E×B

motion. As we show, this relates to observed temporary increases in luminosity that are not

related to a source of ionization like soft particle precipitation. Results from this chapter

have been published for the most part in Perry et al. [2013].

3.2 Background

The brightness of F-region patches has its root in the reaction

O+
2 + e→ O +O∗. (3.1)
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The excited O emits the red line 630 nm emission that is used to monitor the motion of

the patches [e.g., Weber et al., 1984; Weber et al., 1986; Hosokawa et al., 2006]. The other

recombination reaction of interest in the F-region comes from the dissociative recombination

of NO+ ions. However, NO+ recombination does not produce excited atomic oxygen, but

rather excited atomic nitrogen, which therefore does not lead to 630 nm emissions [e.g.,

Wayne, 1985, section 6.4].

Polar cap patches are large volumes of F-region plasma that convect over the polar regions

(see Crowley [1996] for a review). One idea about patches is that F-region ionization increases

while the plasma circulates on the day-side and passes through the cusp, where further

ionization can be triggered by soft particle precipitation. The plasma then continues its

circulation over the polar cap. However, temporal and spatial variations in the electric field

magnitude and direction break the plasma into “patches” of ionization as it moves into the

polar cap. Cowley and Lockwood [1992] proposed that pulsed magnetic reconnection in both

the dayside and nighttime magnetosphere would modulate the polar cap electric field, thereby

inducing chaotic plasma flows throughout the region. The impact on the plasma of a changing

electric field in time and space was further explored by Sojka et al. [1993, 1994] through model

calculations that showed that patches would form and evolve while circulating over the polar

regions during winter. Subsequent observations by Moen et al. [1995] and Lorentzen et al.

[2004] reinforced the notion that pulsed reconnection events were associated with a dynamic

polar region – the latter providing a link to the evolution of patches.

In the next section a quantitative description of the evolution of the density inside a patch

is presented, based on the ion continuity equation and associated chemistry. From that an

equation describing the variations in the luminosity of a patch in association with a change

in the convection speed is developed.

3.3 Basic quantitative description

While polar cap patches circulate through the polar regions, the plasma also slowly undergoes

recombination. In the process, faint light is emitted by the reaction described by Equation 3.1,

which allows observers to monitor the passage of the patches [Weber et al., 1984]. This can
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be described by the continuity equation of a particular species with number density ni is

given by [Schunk and Nagy , 2000]

Dni
Dt

=
∂ni
∂t

+ vi · ∇ni = Pi − Li − ni∇ · vi, (3.2)

where D/Dt is often referred to as the “convective derivative”, Pi and Li are the chemical

production and loss rates, respectively, while vi is the ion drift. We are dealing here with a

situation for which there is no sunlight and no particle precipitation; therefore, Pi ≈ 0. We

also assume that the F-region is made mostly of O+ ions. This is a well-known fact and

is based on the notion that, above 200 km, it takes far longer to convert an O+ ion into

a molecular ion than it does to recombine a molecular ion once it has been created. The

slow conversion of O+ ions into molecular ions is due to the scarcity of molecular neutrals.

Specifically, the reactions that turn O+ into “fast” recombining molecular ions in the F-region

are

O+ +O2 → O+
2 +O (3.3)

and

O+ +N2 → NO+ +N. (3.4)

3.3.1 Derivation of a leading order description

In order to obtain a basic description of the fluctuations in patch density and luminosity, it

is necessary to first study the relative role played by each of the terms in Equation 3.2. First,

for patches on scale sizes of a few hundred kilometers, the term vi · ∇ni is greater than all

the terms on the right-hand-side (RHS) of Equation 3.2. This is simply due to the fact that

patches are large plasma density perturbations, enhancements, and therefore by definition

they have large density gradients on their edges. Furthermore, the recombination term Li

should normally have a much larger magnitude than ni∇ · vi, since ni∇ · (E×B/B2) = 0 in

the electrostatic case [Rishbeth and Hanson, 1974]. Finally, as stated above, we assume that

there is no ion production over the night-time polar cap, i.e., Pi → 0. We obtain this hierarchy

of terms from a calculation of their various contributions. The recombination rate at 250 km is

of the order of 6× 10−4ni. By comparison, even with a drift as small as 100 m/s and a gradient

scale as large as 100 km, the convective derivative is of the order of 10−3ni and therefore, even
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then, greater than a typical loss rate associated with Li. Finally, even with a 50 mV/m polar

cap electric field, which is exceptionally large for the polar-ionosphere, we obtain, for a 1000

km scale in the change of said field, ni∇ · vi = ni(νi/Ωi)∇ · E/B ≈ ni10−21000/106 = 10−5ni,

meaning that the divergence of the velocity field is clearly smaller than the chemical recom-

bination term. These numbers refer to a horizontal drift; however, the ordering is equivalent

for vertical drifts as well. Our equation becomes:

Dn0

Dt
= −L(n0). (3.5)

The description provided by Equation 3.5 is that of a patch moving at vi, namely at the

E×B drift, while slowly decaying at a loss rate determined by local chemistry.

3.4 Temporal evolution of a patch and its luminosity

We can now apply Equation 3.5 to the dominant O+ F-region ion population to obtain

D[O+]

Dt
= −[O+] (k1[O2] + k2[N2]) , (3.6)

where k1 and k2 are the reaction rates associated with Equations 3.3 and 3.4, respectively.

The square brackets are used to denote chemical concentration.

The [O2] and [N2] are not constant since the altitude of a patch changes as a function

of time. Normally, the E×B velocity of a patch is assumed to be horizontal in the polar

region since the geomagnetic field in nearly vertical and the polar-cap electric field is nearly

horizontal and in a dawn-to-dusk direction. However, here we refrain from making this

approximation for reasons that will become clear shortly. From the reference frame of the

patch, at a starting altitude z0 at t = 0, we have

[O2] = [O2]0 exp

[
−(z(t)− z0)

HO2

]

= [O2](z0) exp

[−vzt
HO2

]
, (3.7)

and similarly for [N2]. In Equation 3.7, the oxygen is assumed to be in diffusive equilibrium,

and HO2 = kbT/mO2g is the scale height of O2 in which kb is Boltzmann’s constant, T is the
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temperature of the neutral gas, mO2 is the mass of molecular Oxygen and g is the acceleration

due to gravity. Note that we are particularly interested here in negative values of vz, i.e., in

the effects of descending motion on the ion concentration and ultimately on luminosity.

According to Equation 3.1, the 630 nm emission rate is proportional to the rate at which

O+
2 recombines, i.e.,

J = Aα[O+
2 ][O+] (3.8)

where A ∼ 0.8 and is a product of the quantum yield of the recombination reaction and the

total transition coefficient [Gudadze et al., 2008], and α is the recombination rate for O+
2 ,

which is in principle a function of the electron temperature (assumed here to be constant in

time). In this expression, we have also used ne ≈ [O+], which is a very good approximation

for the F-region.

The O+
2 concentration in Equation 3.8 is in turn given by equating production with loss

for that ion. Using k1 for the reaction rate associated with Equation 3.3, we obtain

α[O+
2 ][O+] = k1[O+][O2]. (3.9)

We must also consider the effect of quenching in Equation 3.9; that is, the de-activation

of Equation 3.1 due to collisions with the neutral atmosphere. Guided by Gudadze et al.

[2008], Equation 3.9 is modified using Equation 3.8 to give the volume emissions rate, and is

referred to as the luminosity, J ,

J =
Ak1 [O+] [O2]

1 + dN2 [N2] + dO2 [O2] + dO [O]
, (3.10)

where dN2 , dO2 and dO are the quenching coefficients due to collisions with the molecular

nitrogen, molecular oxygen and atomic oxygen, respectively.

After some straightforward manipulations, we obtain the rate of change in the luminosity

D ln J

Dt
=
D ln[O+]

Dt
+
D ln[O2]

Dt
− D

Dt
ln(1 + dN2 [N2] + dO2 [O2] + dO[O]) (3.11)

Solving for the luminosity, J :

J = exp

{∫ t

0

Dt′
(

1

[O+]

D [O+]

Dt′
+

1

[O2]

D [O2]

Dt′

)}
·
∫ t

0

Dt′
[
D

Dt′

(
1

1 + dO2 [O2] + dN2 [N2] + dO [O]

)]
. (3.12)
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In this derivation, we consider vz (e.g., Equation 3.7) to be constant in time. Evaluating the

above gives:

J = J0 exp

{
− vzt

HO2

+
k1[O2](z0)HO2

vz

(
e
−vzt
HO2 − 1

)
+
k2[N2](z0)HN2

vz

(
e
−vzt
HN2 − 1

)}
·Q,

(3.13)

in which J0 is the initial luminosity of the patch, Equation 3.13 with t = 0, and Q is the

quenching factor:

Q =
1 + dN2 [N2](z0) + dO2 [O2](z0) + dO[O](z0)

1 + dN2 [N2](z0)e
−vzt
HN2 + dO2 [O2](z0)e

−vzt
HO2 + dO[O](z0)e

−vzt
HO

.

For t > 0, the last two terms inside the exponential in Equation 3.13 are always negative

and account for the decrease in ion density owing to steady recombination. At the same time,

the first term in the exponential is positive in the case of downward motion (vz is negative).

The intensity can increase while the overall ion density decreases, provided the downward

speed is large enough. Therefore, as a patch moves downward the 630 nm emission tends

to increase in response to an increase in [O2]. However, at the same time the [O+] density

also decreases. We therefore have to combine the two processes in order to assess whether or

not the intensity of a patch will increase as a result of its downward motion. Equation 3.13

describes the competition between these two processes.

3.4.1 Numbers

The reaction rates for Equations 3.3 and 3.4 depend on the ion temperature. We have

assumed here that the ion temperature was comparable to the neutral temperature, i.e., that

the polar cap electric fields are typically too weak to generate large ion temperatures through

frictional heating. We have used the chemical reaction rates published by St.-Maurice and

Torr [1978] which are based on cross-sections obtained by McFarland et al. [1973]. We

therefore chose our reaction rates to be k1 = 1.5× 10−11 cm3 s−1 and k2 = 6.5× 10−13 cm3

s−1. The initial altitude of the descending patches was chosen to be 250 km. Guided by

the Mass Spectrometry and Incoherent Scatter (MSIS) model [Hedin, 1991] for the event

presented in this paper, we picked a neutral temperature of 850 K, and neutral densities at

250 km equal to 3.7× 107 cm−3 for O2 and 4.0× 108 cm−3 for N2.
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The initial altitude of the patch is an important parameter for the results that will be

discussed shortly. Most patch studies suggest that the altitude of patches should be near

and above 275 km and perhaps higher than 300 km [Rodger et al., 1994; Pedersen et al.,

1998, 2000; Moen et al., 2008; Hosokawa et al., 2011]. Lorentzen et al. [2004] used triangu-

lation with two imagers to determine the altitude of two patches to be 320 km (± 25 km)

and 310 km (± 25 km), respectively. The patches investigated in those studies were situated

deep within the night-time polar-cap, and had spent several hours circulating through the

polar ionosphere. Their patch densities would have been significantly depleted from their

long lifetime in the polar ionosphere, especially at altitudes below 300 km. The two patches

studied in this case study were observed in the afternoon sector, and would have not spent

as much time in the night-time polar-cap. Hence, their plasma densities below 300 km would

not have been as depleted which is why patch altitudes in the region of 250 to 275 km are

considered here.

Results from our calculations for constant velocities are shown in Figure 3.1 for downward

vertical velocities vz = −40 m/s and −60 m/s. For our choice of parameters, the luminosity

in the first case goes up by nearly 30%, reaching its maximum value after about 8 minutes.

However, after another 8 minutes the luminosity rapidly goes to values much less than the

initial value. At first, the luminosity increases as the O+
2 ion production increases, as the

layer decreases in altitude. However, in the long run, the very processes that increase the

luminosity are those responsible for the decrease in the ion density through the reduction of

O+ ions.

With a faster downward speed of−60 m/s, Figure 3.1 shows that the evolution is obviously

faster than in the −40 m/s case. However, the brightening becomes quite large even though

the phenomenon is shorter-lived. The maximum increase in luminosity is now more than a

factor of 1.6. An important point to notice is that the time taken for the intensity to return

to the initial value is actually longer with the −40 m/s case. In the long run, at least for this

comparison, the patch that goes through the brightest phase is also the one that becomes

less luminous, more quickly. Clearly, this is because the ion density rapidly decreases in the

−60 m/s case.

As shown in the next section, optical observations can provide information on the lumi-
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Figure 3.1: Calculated luminosity change as a function of time for vz = −40 m/s (red
trace with the lower maximum amplitude) and for vz = −60 m/s (blue trace). The
velocities were applied at t = 0. The parameters were chosen to be appropriate for at
250 km starting altitude in the winter night-time polar cap.

nosity gain when a patch starts moving down, and also on how long it takes for the patch

to go down to a certain luminosity level. As just shown above, one parameter that clearly

controls this evolution is the vertical drift. Another parameter is the starting values for the

neutral densities, which is equivalent to choosing a different starting altitude for a patch. We

have run a series of cases where we varied the starting neutral densities and the constant

vertical drift. We held the neutral temperature fixed at 850 K. We recorded the maximum

intensity and the time interval it took for the intensity to fall back to 60% of its initial value.

The results were compiled in the form of a chart, which is presented in Figure 3.2. On the

vertical axis we have posted the ratio of the starting neutral density to the “standard” value

that was used in Figure 1 (a 250 km altitude). On the horizontal axis we have posted the
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value of the drift. We only used negative values with magnitudes in excess of 10 m/s because

for slower downward drifts the luminosity always decreases monotonically, without peaking

(though it of course decreases more slowly, the less negative or more positive the drift is). We

have posted two sets of curves in the chart. One set, posted in blue is the time it would take,

in seconds, for the intensity to fall back to 60% of its initial value. The numbers associated

with these contours are typically of the order of 1000 to 2000 s. Contours posted in red

represent the ratio of the maximum intensity to the starting intensity and are of order 1.

With allowances for uncertainties in the relaxation time and in the peak intensity, the chart

could be used to identify the kinds of densities and vertical velocities that would be involved

in a brightening event. The chart can also be used, of course, to simply assess the relaxation

time and the amount of increase in the brightness that can be found for particular conditions.

3.5 Comparison with OMTI observations

An Optical Mesosphere Thermosphere Imagers (OMTI) [Shiokawa et al., 1999] all-sky airglow

imager has been in use at Resolute Bay (74.73◦ N, 265.07◦ E; AACGM latitude 82.9◦) since

January, 2005. The data of interest here were obtained with a 630 nm filter to capture the red

line emission produced by patches through Equation 3.1 [Hosokawa et al., 2006, 2009a, 2010].

Images were obtained every 2 minutes with an exposure time of 30 s. Background continuum

emission from the sky was sampled every 20 minutes at a wavelength of 572.5 nm and used to

derive the absolute intensity of the airglow lines [Shiokawa et al., 2000, 2009]. On December

20, 2006, shortly after 22:25 UT, a patch that had been temporarily devoid of horizontal

motion broke into two separate patches that started to move towards lower latitudes at

different speeds. The faster horizontally moving patch, referred to as patch B1 in Hosokawa

et al. [2010], had a larger increase in its intensity than the slower moving one – patch B2. To

obtain the relative intensity, contributions from the van Rhijn effect [Tohmatsu and Ogawa,

1990] had to be removed and the atmospheric extinction was taken out using the procedure

proposed by Kubota et al. [2001]. More details about the data set can be found in Hosokawa

et al. [2010].

What we wish to focus on here is the temporal evolution of the intensity (more specifically,
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Figure 3.2: Chart of the time, in s, taken to go down to 60% of the initial luminosity
(blue contours) and of the ratio of the maximum luminosity to the starting luminosity
(red contours) as a function of vertical drift (horizontal axis) and of the ratio of the
starting density to the density used in Figure 3.1 (vertical axis).

the relative intensity) of the two patches. Figure 3.3 shows the evolution of patch B1 and

Figure 3.4 that of patch B2. The increase in relative luminosity for the horizontally faster

moving patch reached a maximum 15% higher than its initial value, while the time needed

for the patch luminosity to fall back to 60% of its initial value was of the order of 1700 to

1800 s. For the slower patch, the time taken to fall back to 60% of the initial luminosity was

about 5 minutes shorter, of the order of 1400 to 1500 s while the peak intensity was about

5% greater than its initial value. According to the chart in Figure 3.2 these numbers are

fairly consistent with the model used in Figure 3.1, though they suggest a density 60 to 65%

of what we used there. The inference is that the vertical drift of the faster patch was of the

order of −17 m/s and an altitude somewhat higher than the nominal 250 km that we have

selected as our starting point. Figure 3.3 shows how good a fit we can get, using a drift of
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Figure 3.3: Observations of patch B1 in Hosokawa et al. [2010] (the fast moving patch)
obtained at 630.0 nm on Dec 20, 2006 with the OMTI all-sky imager at Resolute Bay
(crosses connected with red dashed line). The two patches emanated from a single
broader feature divided into two parts, starting at 22:30 UT (roughly the 300 s mark in
this figure). The blue solid line was obtained with constant vertical drifts of − 17 m/s,
starting from an altitude of 265 km. See text for details.

−17 m/s and a starting density that is 65% of the value at a 250 km altitude (approximately

265 km altitude), recommended by MSIS. The observations in Figure 3.3 agree quite well

with the theoretical calculations up until the 1800 s mark, when the theoretical calculations

begin to underestimate the luminosity of the patch. The underestimation may be due to

the simplified model, which only describes the luminosity from a peak altitude of 250 km,

and not the optical contributions from the descending patch volume above and below the

peak altitude. Furthermore, the velocity of the patch may have changed during the period

of observation. Since our theoretical prediction assumes a constant velocity, it would not

account for any additional brightening or dimming of the patch caused by sudden changes in
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Figure 3.4: Observations of patch B2 in Hosokawa et al. [2010] (the slow moving
patch) obtained at 630.0 nm on Dec 20, 2006 with the OMTI all-sky imager at Resolute
Bay (crosses connected with red dashed line). The two patches emanated from a single
broader feature divided into two parts, starting at 22:30 UT (roughly the 300 s mark in
this figure). The blue solid line was obtained with constant vertical drifts of − 14 m/s,
starting from an altitude of 265 km. See text for details.

its velocity which may occur due to varrying geomagnetic conditions. Both of these points

are discussed in more detail shortly.

For the profile in Figure 3.4 we have used the same starting altitude as Figure 3.3, that

is, 65% of the value the densities would have at 250 km, according to MSIS. This choice is

consistent with the fact that the patches were observed to be initially two parts of an original

elongated patch [Hosokawa et al., 2010]. However, as can be seen from Figure 3.4, we had to

use a slower downward drift to fit these observations, since the observed increase in luminosity

was smaller than the patch in Figure 3.3. As shown by the red dashed line, we could fit the

first 600 s well with a steady −14 m/s downward drift. However, for times exceeding 600 s,
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our theoretical curve ended up systematically overestimating the observations.

We should note that the velocities of the patches, as determined by PolarDARN data, were

approximately 320 m/s for the faster moving patch and 240 m/s for the slower one [Hosokawa

et al., 2010] (The Polar Dual Auroral Radar Network consists of the SuperDARN radars at

Rankin Inlet, Inuvik and Clyde River. At the time of these observation, only the first two

were operational.). The ratio of these two speeds is very similar to the ratio 17/14 obtained

from the fit to the intensity curves during the first 10 minutes (note that after the first 10

minutes of observations, radar echoes were not available anyway, as they disappeared from

the patches). This agreement in the ratios suggests that the vertical component of the E×B

drift was indeed responsible for the changes in luminosity. This stated, the dip angle near

Resolute Bay is rather large, of the order of 87.2◦ according to the International Geomagnetic

Reference Field (IGRF) model. There is an uncertainty here due to the meandering of the

pole and the presence of iron ore in the area. Taken at face value, a 17 m/s downward drift

(of the faster patch, in Figure 3.3) would require of the order of 350 m/s for the speed of the

patch, i.e., a drift 9% greater than reported from the PolarDARN observations. However, the

PolarDARN speeds do not include a correction for a non-unity index of refraction. Applying

this correction means that the speed produced by the SuperDARN data inversion algorithm

could be of the order of 10% smaller than the actual speed [Drayton et al., 2005; Gillies et al.,

2009; Ponomarenko et al., 2009; Gillies et al., 2012]. We conclude from these considerations

that the vertical speeds inferred by the theoretical fits to the luminosity curves are consistent

with the radar observations of the cross-cap E×B drift.

3.6 Effects associated with plasma drift variations

We have concentrated our study thus far on a situation where a patch begins to descend

from a given altitude and keeps a fixed speed thereafter. However, the data set that we have

used makes the case that the plasma drift can change with time. While the patches started

nearly at rest prior to acquiring their equatorward motion, the latter occurred at a fairly

constant (but not exactly constant) speed. Indeed, for the slower of the two patches there

was a need to introduce a change in speed after the first 10 minutes of observations. In fact,
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Figure 3.5: Synthetic luminosity curve obtained by changing vz at various times
during the evolution of a patch. The patch descent initiated at an altitude of 265 km.
See text for details about the changes that were used.

just a change in the distance of a patch to the pole and subtle changes in the direction of

the convection can introduce changes in the vertical velocity associated with an otherwise

constant looking convective motion. For all these reasons, we should at least briefly consider

how changes in the vertical velocity can affect the results.

One easy way to assess how a changing velocity can affect the evolution in the luminosity

is to consider a succession of constant velocity steps instead of the formal solution given by

Equation 3.13. Going through a succession of velocity steps is simply a matter of making

repeated use of Equation 3.13 with different vz values. If we follow this procedure, we simply

have to replace z0 and J0 in Equation 3.13 by the altitude and intensity reached by the patch

at the end of the previous vz step.

By altering the vz values, we can reproduce the various sudden changes in the luminosity

of patches (which, of course, could just be noise anyway). This is illustrated with Figure 3.5,

92



which shows the results of an attempt to mimic the various jumps in observed luminosity

shown in Figure 3.3. In particular, we sought to reproduce the two maxima, with a minimum

in the middle. The profile in Figure 3.5 was constructed with a starting altitude of 265 km

(i.e., the density correction used in Figure 3.3), plus the following evolution for the downward

drift: vz = −13 m/s for the first 120 s, vz = −24 m/s for the next 360 s, vz = −10 m/s for the

next 120 s, vz = −27 m/s for the next 240 s, vz = −21 m/s for the next 480 s, and vz = −38

m/s for the rest of the time. Clearly, by playing with vz over the desired time intervals we

could get quite close to the changes seen in the observations.

The separation in time between the two maxima in the measured patch luminosity, located

at 480 s and 840 s, is equivalent to the separation between two critical points at which

the patch speeds peaked [Hosokawa et al., 2010]. This provides additional support to the

notion that sudden changes in the luminosity profile in Figure 3.3 may be due to sudden

changes in the velocity of the patch. The horizontal convection speed data was not directly

measured but inferred past the 840 s mark, causing any additional comparison to be unreliable

[Hosokawa et al., 2010]. We reemphasize that the jumps in the intensity may well just be the

result of uncertainties in their extraction, i.e., just noise artefacts. Our point here is simply

that plausible fluctuations in vz can also generate changing features that are similar to the

observations.

3.7 Line-of-sight integration

Up until this point, we have only considered the luminosity of a single emitting plasma layer;

that is, we have only investigated the luminosity of a patch with an infinitesimal thickness,

or a “delta-layer”. To account for the finite thickness of a patch we now consider the line-

of-sight integration through a plasma patch and its contribution to the luminosity profile.

Effects introduced due to the positioning of a patch within the field-of-view of an all-sky

imager, which include the Van Rhijn effect, atmospheric extinction and imager sensitivity as

a function of the angle of the patch with respect to the zenith, are corrected for in the OMTI

data in a procedure described in Kubota et al. [2001]. Therefore, we only need to consider

the line-of-sight integration along the vertical profile of a plasma patch.
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3.7.1 Line-of-sight integration methodology

A variety of patch density profiles have been investigated for their effects on the line-of-sight

integration results. We used a modified Chapman profile (recall Equation 1.15),

[
O+
]

=
[
O+
]

(z0) exp

[
1− z − z0

H
− exp

(
−z − z0

H

)]
, (3.14)

with a different scale height, H, above and below the plasma density peak. Here, z is the

altitude and z0 is the altitude of the peak density.

It is well known that the plasma profiles of plasma patches have smaller e-folding distances

below the plasma peak than above the peak. This is due to the increased reaction rates at

lower altitudes [Smith et al., 2000]. Above the peak plasma density of the patch (top-side),

scale heights ranging from 100 to 250 km were investigated, and we considered scale heights

ranging from 10 to 100 km below the peak (bottom-side). Hereafter, the term “scale height”

will be used when referring to the e-folding distance of a patch plasma profile. An example

of a patch profile is shown in Figure 3.6. The patch profile is normalized to a peak height,

z0, of 250 km, with a top-side scale height of 250 km and bottom-side scale height of 25 km.

The procedure for performing a line-of-sight integration along the vertical profile of the

patch is as follows: the initial luminosity J(t = 0) is calculated for a given altitude using

Equation 3.10, J is then calculated for t > 0 using Equation 3.13, producing a delta-layer

luminosity profile. This process is repeated for each discrete altitude along the vertical profile

of the patch. The luminosity profiles of each delta-layer, composing the patch profile, are

then summed to complete the integration process.

The line-of-sight integration of two, and three delta-layers is demonstrated in Figure 3.7.

Here, the relative luminosity profile of a delta-layer patch at a 265 km altitude is compared

to the integrated profile of two delta-layer patches at 250 and 265 km, and three delta-layer

patches each at 240, 250 and 265 km. All the layers are descending at 17 m/s. It is evident

that the relative luminosity profile becomes more diminished as additional discrete layers

are accounted for. This is a counterintuitive result. The addition of discrete layers to the

descending patch broadens the relative luminosity profile of the patch. Recall from Figure 3.2

that the magnitudes of the relative luminosity peak and the point in time in which the peak
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Figure 3.6: The plasma profile of a polar cap patch with a peak density at 250 km in
altitude. Above the peak (top-side) the patch has a density scale height of 250 km and
below the peak (bottom-side) the density scale height is 25 km.

will be reached, will be different for each discrete layer in the patch profile. Discrete patch

layers that start at lower (higher) altitudes will have luminosity profiles that peak more

quickly (slowly), with lower (higher) magnitudes. It must be stressed that integrating over

the discrete layers produces an overall subdued relative luminosity profile compared to the

delta-layer profile; however, the luminosity magnitude of the patch (the brightness of the

patch) will be higher since there will be more O+ and O+
2 by virtue of adding in discrete

patch layers.
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Figure 3.7: Comparison between single delta-layer luminosity curved (red) and the
result of integrated multiple delta-layers together. The downward velocity of the patches
is 17 m/s.

3.7.2 Line-of-sight integration results

An investigation into the luminosity characteristics of a descending plasma patch was per-

formed for a variety of patch profiles. The profiles differ in top-side and bottom-side density

scale heights, though all have a plasma density peak at 265 km in altitude. Patch density

profiles and their resulting initial luminosity profiles are plotted in Figure 3.8. The initial

luminosity, J (t = 0), is plotted using Equation 3.10. Each plasma patch plotted in Figure 3.8

has a top-side density scale height of 100 km, although the bottom-side density scale height

is varied.

A feature of note in Figure 3.8 is the increased distance between the peak patch density

and the peak initial, relative luminosity J (t = 0). As the bottom-side density scale height

increases, the peak altitude of J (t = 0) for the associated patch decreases. One might expect
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Figure 3.8: The vertical profile of plasma patch models used. The patch plasma
density (solid) and initial luminosity (dashed) profiles are plotted. The patch plasma
profiles here have a top-side density scale height of 100 km. The top-side density profile
is colored black. Bottom-side density scale heights are distinguished by color. All
profiles are plotted relative to a 265 km altitude.

the peak in J (t = 0) to coincide with the peak patch plasma luminosity, indicating a strong

coupling between the luminosity and [O+]; however, Figure 3.8 shows that J (t = 0) is most

dependent on [N2] and [O2]. The increased bottom-side initial luminosity profiles are a result

of reaction rates for the patch-associated chemical reactions described by Equation 3.1 –

increasing with a decreasing altitude.

The integrated luminosity profiles for a variety of patch profiles descending at 23 m/s

are plotted in Figure 3.9. Also plotted is the luminosity profile for a single delta-layer patch

descending at 17 m/s and the data from Hosokawa et al. [2010]. Each integrated luminosity

profile in Figure 3.9 is for a patch with a top-side density scale height of 250 km, centered

at 265 km in altitude. Bottom-side density scale heights of 10, 20, 25 and 50 km are plotted
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Figure 3.9: Luminosity profiles for the delta-layer case (red), descending at 17 m/s,
and integrated profile case (black) are plotted along side patch data from Hosokawa
et al. [2010]. The profiles in black are descending at 23 m/s. The blue profile corre-
sponds to a speed of 17 m/s for an integrated profile. Each patch has a top-side density
scale height of 250 km and a peak density at 250 km.

to demonstrate the effect of the bottom-side patch density scale height on the integrated

luminosity curve. Also, an integrated luminosity profile for a patch descending at 17 m/s

with a bottom-side scale height of 25 km is plotted in blue. Comparing this profile to that

of the profiles descending at 23 m/s highlights the effect of the line-of-sight integration.

Of the integrated profiles, the luminosity profile with a bottom-side scale height of 25 km,

descending at 23 m/s, appears to have the best agreement with the Hosokawa et al. [2010]

data in Figure 3.9.

The effect of changing the top-side plasma density scale height for a plasma patch on the

luminosity profile is noticeable, but not as significant as changing the bottom-side density

scale height. This is consistent with Figure 3.8 which suggests that the majority of the
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luminosity from a patch is generated below the density peak, due to the higher O2 and N2

densities there. In Figure 3.9, the integrated profile for a patch with a bottom-side scale height

of 25 km agrees well with the luminosity data and the delta-layer profile, for the first 1000 s.

After this time, integrated profile over-estimates the luminosity of the patch. The need to

increase the speed (and therefore luminosity) of the integrated profile is consistent with the

diminished luminosity profiles seen in Figure 3.7; the thickening of the patch diminishes

the relative luminosity profiles. The integrated and delta-layer luminosity profiles begin to

diverge from each other when their luminosities both peak at 1000 s. The integrated profile

takes longer to decrease, which is due to the contribution of the luminosity from the additional

patch plasma above the density peak reacting with the neutral atmosphere. This sustains

the relative magnitude of the patch luminosity.

In an effort to match the integrated profiles in Figure 3.9 to the Hosokawa et al. [2010]

data, the top-side patch density scale height was lowered to 100 km and is plotted in Fig-

ure 3.10. The luminosity profile in Figure 3.10, corresponding to a patch with a bottom-side

scale height of 25 km provides the best agreement with the Hosokawa et al. [2010] data,

compared to any of the other integrated profiles investigated. The most accurate integrated

luminosity profile in Figure 3.9 is in good agreement with the Hosokawa et al. [2010] data

up until the 1300 s mark, when the theoretical luminosity curve begins to overestimate the

patch luminosity. The integrated luminosity profile in Figure 3.10 remains in good agreement

with the Hosokawa et al. [2010] data throughout the duration of the observations. We can

therefore conclude that the inclusion of contributions from to the line-of-sight integration

along the vertical density profile of the patch also agree with the Hosokawa et al. [2010] data.

Even though the integrated luminosity profiles appear to agree well with the imager data,

some inconsistencies still need to be addressed. In Figure 3.10, the delta-layer profile model

is for a patch descending at 17 m/s, while the integrated profiles are for patches descending

at 23 m/s. A larger speed was required to account for the dimmer relative luminosity curves

of the patches with finite thickness. The increased vertical speed equates to an E×B

speed of 470 m/s – 47% higher than the speed determined from the PolarDARN data. As

mentioned earlier, one must consider radio wave propagation conditions when dealing with

the PolarDARN velocity data; however, it is unlikely these conditions could account for such
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a large discrepancy in speed. In Hosokawa et al. [2010], the horizontal speed of the patch is

also estimated from the optical data. Starting at 22:30 UT (the 300 s mark in Figure 3.3),

the horizontal speed of the patch increases from 225 to 425 m/s (only 11% higher than the

model) in 420 s, and then suddenly drops back down to 325 m/s in the next 120 s. The

integrated model (as well as the delta-layer model) assumes a constant speed, and therefore

the luminosity profile discrepancy may be an acceleration affect (the result of speed variation

on the delta-layer model was discussed in Section 3.6). This would also support the larger

patch speeds suggested by the integrated luminosity model. There are many factors which can

affect the precision of the luminosity profile and the patch velocities it suggests including: a

varying patch velocity, instrumental effects or even inaccurate information about the neutrals.

It is therefore important to re-iterate the purpose of this work: to provide a model that can

qualitatively explain the relative luminosity profiles observed over Resolute Bay.

It is interesting that the delta-layer model appears to agree well with the imager data, since

it is a first order approximation. In an effort to determine the robustness of the delta-layer

model, the luminosity profile of patch B2 – the slower of the two patches in the Hosokawa et al.

[2010] data – was considered. In Figure 3.4, it is evident that the delta-layer model deviates

from the data quite significantly. Using the line-of-sight integration method, a plasma patch

with similar characteristics (a peak at 265 km, similar velocity and plasma density scale

heights) can not account for the luminosity profile of patch B2. If the starting altitude of the

patch is lowered to approximately 250 km and the line-of-sight integration technique is used

once again, a better agreement with the luminosity data in Figure 3.4 is achieved. This is

shown in Figure 3.11, where the relative luminosity profile for patches descending at 22 m/s

is plotted along with the patch B1 and B2 data. This case demonstrates the superiority of

the integrated luminosity technique since it provides a better agreement with the patch B2

data than the delta-layer case.

Figure 3.11 raises another question, however. It suggests that patches B1 and B2 may be

at different altitudes. Hosokawa et al. [2010] reported that patches B1 and B2 result from a

larger patch being sheared apart, suggesting the patches should be at the same altitude. In the

Hosokawa et al. [2010] data, the luminosity of patch B2 is well defined several minutes before

that of patch B1 and the luminosity of B2 subsides before that of B1. This is an indication
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Figure 3.10: Luminosity profiles for the delta-layer case (red), descending at 17 m/s,
and integrated profile case (black) are plotted along side patch data from Hosokawa
et al. [2010]. Each patch has a top-side density scale height of 100 km and a peak
density at 265 km.

that the plasma in B2 was reacting with a larger concentration of neutral atmosphere, perhaps

at lower altitudes. The imager data only offers a two-dimensional projection of the sky, and

so with a combination of the diffuse patch emissions and a parallax effect it is difficult to

determine whether patch B1 and B2 both originated from a larger patch or were located at

the same altitude. The results also suggest that the downward velocity of the patches are

approximately equivalent, which seemingly contradicts the PolarDARN data.

Although the agreement between the integrated profile and the data is not ideal, it is im-

portant to remember that the luminosity profile is sensitive to variations of many parameters.

We have shown that the luminosity profile is sensitive to both a starting altitude change, as

well as any variation in the downward velocity of the patch. The values for [N2] and [O2]
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Figure 3.11: Luminosity profiles for the delta-layer case (red) and integrated profile
case (black) are plotted along side patch data from Hosokawa et al. [2010] for patch B1
and B2. All patches are descending at 22 m/s. Each patch has a top-side density scale
height of 100 km and a peak density at 250 km.

are provided by the MSIS model and not by any direct measurement. Any under-/over-

estimation in the values of [N2] and [O2] by the MSIS model, may account for the difference

between the profile and data in Figures 3.10 and 3.11. The velocity of the descending patch

is assumed to be constant and although it was not done here, we are confident that creating

a synthetic luminosity curve using techniques discussed in Section 3.6 would establish better

agreement between the integrated profile and the Hosokawa et al. [2010] data.

3.8 Conclusion

We have shown that the very fact that polar cap F-region patches can be used to track the

plasma drift motion means that their chemical evolution can be described to first order just
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by knowing their mean altitude and characteristic density scale lengths. Given that once the

patches are injected into the polar cap, there is typically no production from photoionization

or particle precipitation, a change in altitude amounts to a change in the recombination

rate. We have shown that under winter nighttime conditions, for patches starting near and

above 250 km in altitude, a descending motion in excess of 10 m/s, starting from rest,

introduces an initial increase in the intensity of the 630.0 nm patch emissions. The increase

can be as large as a factor of 2 for a 50 m/s downward drift. The increase is related to the

accelerated conversion of O+ ions into O+
2 ions which then recombine to produce the observed

red line emission. However, after the initial increase the intensity goes down relatively fast

(20 minutes time scale) owing to the resulting decrease in the O+, i.e., in the net patch

density, precisely because of the accelerated recombination rate. We have shown that the

theory provides an excellent explanation for red line patch observations made over Resolute

Bay at the end of December, 2006. On that day we found a clear instance of patches that

started near rest as a result of changes in the interplanetary magnetic field. Following the halt

in convection, the patches moved equatorward. The vertical component of the E×B was

downward in this case and of the order of the 10 to 20 m/s needed to explain the change in

brightness that was observed in two adjacent patches over time. We showed that even small

modulations in the intensity of the patches could be explained through plausible variations

in the plasma motion.

The present work opens up the possibility of using changes in patches intensity to monitor

the vertical motions of patches and possibly even their vertical position (through the deter-

mination of neutral densities required to determine the time evolution of their brightness).

As far as the motion of the patches is concerned we note in particular that the magnitude and

direction of the plasma E×B drift control the vertical drift in the plasma. Changes in the

intensity could be used to constrain other pieces of information related to plasma drift. For

instance, the motion of patches is determined by monitoring the position of the patches with

time. However, as the patches deform over time, this determination is not always as easy to

perform as it looks. Similarly, under favorable conditions, one can use coherent radar data to

determine the Doppler shift of the irregularities carried out within the patches. From this one

can monitor the plasma drift, although, in principle, only along the line-of-sight of the radar.
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The intensity modulations are related to the equatorward motion of the plasma and could,

in this context, be used as additional information to constrain the motion of the patches. We

have for instance shown that for the December 20, 2006 event that we discussed, the vertical

motion inferred from changes in the intensity would have been more consistent with drifts

measurably greater than reported by the PolarDARN Rankin Inlet HF radar data. Recent

work [e.g., Gillies et al., 2009; Ponomarenko et al., 2009; Gillies et al., 2012, and references

therein] has demonstrated, however, that such an underestimation of the plasma drift is en-

tirely possible once one takes into account the fact that the index of refraction is not unity,

but could be as small as 0.7 to 0.8 for HF radars. In addition to this, the neutral densities

provided by MSIS may be over-estimated. In this context, the inferred vertical motion of

the patches can be used to constrain the index of refraction of the medium so as to have

agreement between the vertical drift and the horizontal component of the plasma motion.

We also notice that the present work offers a possible explanation for the disappearance

of HF radar echoes, starting 10 minutes after the onset of the cross-cap plasma drift. In

particular, the calculation of the changes in the patch density associated with the changes in

the luminosity reveals that the patch density had gone down by a factor of 2 after about 800 s

and by a factor of 10 after about 1800 s in the case of the fast moving patch (Figure 3.3).

The accompanying reduction in the patch density gradients would surely mean a reduction

in the production of irregularities through the gradient-drift mechanism, the overall plasma

density having become more uniform.

3.9 Summary and future work

In this chapter, the optical properties of F-region ionization patches was investigated through

a case study involving two patches observed over Resolute Bay. It was concluded that the

vertical motion of a patch can have a drastic effect on the luminosity and chemistry of

the patch, establishing a connection between the polar-cap convection electric field and the

luminosity of F-region ionization patches.

At the time of the observations, the RISR-N radar was not yet operational, preventing

plasma density measurements which could constrain the model developed in this work. It
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would be extremely beneficial to incorporate measurements from the RISR-N and soon to be

operational RISR-C radars, to test the luminosity model introduced in this chapter. In this

chapter only the relative luminosity was considered since the plasma density characteristics

were not known. With RISR-N/-C, one could link the magnitude of 630 nm emissions to the

neutral dynamics, plasma properties and electrodynamics of the region.
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Chapter 4

An algorithm to detect F-region ionization

patches

In this chapter, an algorithm to detect F-region ionization patches in RISR-N data is

introduced. The output of the patch detection algorithm is compared to OMTI data to verify

its ability to detect patches passing through the RISR-N FOV. The algorithm is then used to

investigate the relationship between SuperDARN radar echo occurrence and the presence of

patches in its FOV during March and December, 2010. The comparison between the presence

of patches and SuperDARN echoes is done in an effort to clarify the interconnection between

patches and SuperDARN echoes in the polar ionosphere. A survey of the patches detected

in March and December, 2010, in terms of the standard ISR parameters, ne, Ti, and Te is

also conducted.

4.1 Motivation

The vast majority of previous patch research is in the form of a case study in which an individ-

ual or a group of patches were probed with an ISR and another radio instrument [e.g., Buchau

et al., 1983; Dahlgren et al., 2012a; Dahlgren et al., 2012b, and references therein], or moni-

tored with an all sky imager [e.g., Hosokawa et al., 2011; Perry et al., 2013; Hosokawa et al.,

2013b, c]. These studies are beneficial for gaining insight into patch generation mechanisms,

[e.g., Valladares et al., 1994; Walker et al., 1999; Oksavik et al., 2010], or the morphology or

evolution of a singular patch or group of patches, as they transit through the ionosphere [e.g.,

Lorentzen et al., 2004; Zhang et al., 2013]. One of the interesting characteristics of patches is

their persistent presence in the nighttime polar ionosphere, under southward IMF conditions
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(recall Section 1.3.4). Carlson [2012] reasoned that patches are the distinctive feature of the

polar ionosphere in a southward IMF state. Therefore, patches should not be investigated as

an evanescent feature of the polar ionosphere, but as a fundamental component of the polar

ionosphere. Patch research should include studies incorporating large data sets populated

with numerous patch events spanning over long periods of time. With such studies, com-

parisons can be made between patch characteristics, such as their absolute density or their

occurrence, to other long term trends such as solar wind conditions and variations in the

IMF.

ISRs are a very effective tool for investigating F-region ionization patches. Their ability

to provide accurate and precise diagnostic measurements of the ionosphere, namely, their

ability to detect a patch, an F-region plasma volume with a density that is twice that of

the background ionosphere [Crowley , 1996], is fundamental to patch research. The location

of the EISCAT Svalbard Radar (ESR), RISR-N and PFISR radars, in the high- and polar-

latitudes is also ideal for observing patches. Despite this, an automated method of detecting

patches in ISR has yet to be developed, even though algorithms have been created for other

instruments and datasets, which are discussed shortly. The intent of this work is to remedy

this by establishing an algorithm that effectively identifies ionization patches within the FOV

of the RISR-N.

4.2 Previous work featuring patch detection algorithms

Coley and Heelis [1998] analyzed a patch dataset containing 225 patches detected by the

Dynamics Explorer 2 (DE2) satellite. They used an algorithm developed by Coley and

Heelis [1995], which identified a patch in a multi-step process. First, a candidate patch

“edge” was detected if the ne measured by the retarding potential analyzer (RPA) onboard

the spacecraft increased by 40% over a spatial scale of 140 km. If the positive gradient was

followed by a second edge with a negative gradient shortly thereafter (as the spacecraft moved

through the candidate patch), the candidate patch was selected for further inspection, after

which, if the RPA data revealed that the ne between the patch edges was twice that of the

background ne (their definition of the background ionosphere is discussed in the next section),
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then the candidate patch was confirmed as a patch. With this method, only structures of

scale size between 100 and 875 km were analyzed. From the dataset, the authors found the

distribution of patch occurrence was asymmetric with respect to the orientation of the IMF,

with the most patches occurring during negative Bz and By IMF conditions. The distribution

of patch occurrence during northward IMF conditions was found to be reduced and nearly

symmetric about IMF By = 0 [Coley and Heelis , 1998]. The authors also reported on the

structuring of patch edges and the velocity of the patches.

Separate, alternative methods for patch detection were introduced by Noja et al. [2013]

and Burston et al. [2014], who reported on datasets containing several thousand and 71

patches, respectively (a precise number was not given in the former). In both methods,

patches were identified via a satellite-based total electron content (TEC) measurement. TEC

is an estimate of the total number of electrons along the path length, in this case, between

a GPS receiver and transmitter. With a high precision timing signal, such as one provided

by GPS, the ionospheric ne along a GPS patch length can be estimated by measuring the

dispersion of the GPS signal as a function of its carrier frequency [Garner et al., 1996]. With

the large dataset in Noja et al. [2013], a thorough comparative analysis of the spatial and

seasonal distribution of patches with respect to solar and IMF conditions was performed,

in both the northern and southern hemisphere. This was accomplished for patches of at

least 75 km in scale size. In Burston et al. [2014], an assimilative computer model using

TEC measurements as an input, was able to not only detect patches but track their motion

through the ionosphere as well. However, this method was only effective for patches with a

scale size of at least 500 km.

Hosokawa et al. [2006] developed an algorithm which tracked the motion of 19 patches

detected by the OMTI imager at Resolute Bay. The tracking method involved the cross-

correlation of sequential 630 nm OMTI images in time. Patches were identified as enhance-

ments in 630 nm emissions which did not have a corresponding increase in the 557.7 nm

emissions, distinguishing patches from other optical phenomena such as aurora. The mag-

nitude of the emissions was required to be 30 R above a baseline emission intensity which

was estimated for a 12-minute “search window”. Whereas Hosokawa et al. [2006] tracked

patches that were manually identified from the data, Hosokawa et al. [2009b] were able to
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track the motion of patches that were automatically detected. It should be pointed out that

the Crowley [1996] definition of a patch is specific to ne, and not optical emission intensity.

As it stands, a working definition of an optical patch does not yet exist since emissions at

630 nm are a function of the altitude of the patch, as well as the vertical velocity of the patch

[e.g., Perry et al., 2013, and Chapter 3 of this work]. Nonetheless, the definition put forward

by Hosokawa et al. [2009b] was shown to be effective at capturing the optical signature of

patches. This allowed for the optical database of patches observed by OMTI to be signifi-

cantly augmented to include 561 patches. Analysis on the larger dataset revealed a strong

correlation between the magnitude of southward IMF Bz and the speed of the patch. Also,

a strong correlation between the velocity and the IMF By component, in which the velocity

of the patch is directed in the dawn-to-dusk (dusk-to-dawn) direction for positive (negative)

IMF By, was also reported.

4.3 RISR-N patch detection algorithm

4.3.1 The “background” ionosphere

The patch detection algorithm developed for the RISR-N system, hereafter referred to as

the “RISR-N algorithm”, which will be introduced shortly, is based on the Crowley [1996]

definition of an F-region ionization patch; that is, a volume of plasma with a ne that is

greater than twice that of the background ionosphere. Despite the simplicity of the definition,

there is a caveat: what constitutes the “background” ionosphere? As it turns out, a concise

definition does not exist. A working definition of “background” was discussed in each of the

communications featuring patch detection algorithms reviewed earlier.

In Coley and Heelis [1995], the ne data was filtered to eliminate any ne features outside of

the 100 to 875 km scale size along the trajectory of the DE2 spacecraft. Any features outside

of the desired scale size were considered as the background. Burston et al. [2014] used a

mean of all of the TEC measurements above 50◦ geographic latitude, over a time-frame of

15 minutes as a measurement for background. As was mentioned previously, Hosokawa et al.

[2009b] used a 1 hour mean of the 630 nm emissions, excluding patches, as an estimate for
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the background. Noja et al. [2013] chose a different tact; spatial and temporal smoothing

was not used. In that work the next-to-lowest ne measurements in the vicinity of a peak

in TEC (bounded by a positive and negative slope in TEC) as a proxy for the background

ionosphere. A more coarse definition of a patch was used by Moen et al. [2008], who labelled

any measurement of ne > 1 × 1012 m−3 as a patch, thereby designating any measurement

below 0.5 × 1012 m−3 as the background ionosphere.

In this work an estimate of the background ionospheric density is based on ne measure-

ments obtained within the RISR-N FOV. RISR-N offers a distinct advantage in providing

a background estimate; it is able to provide a multipoint volumetric measurement of the

ionospheric ne upon which a patch detection will be based. An alternative to this would be

to use a model such as the International Reference Ionosphere (IRI) [Bilitza, 2001; Bilitza

and Reinisch, 2008] as an estimate for the background ionosphere. However, as the results

from Moen et al. [2008] and Gillies et al. [2012] show, the IRI does not sufficiently describe

the F-region polar regions to justify its use there.

A plot of the F-region ne measured by RISR-N as function of altitude along RISR-N

Beam 23 for the entire day of March 11, 2010 is plotted in Figure 4.1. A plot of a shorter

time segment on the same beam during the same day is given in Figure 4.2. The IRI model

output is also plotted in both figures. In Figure 4.1 error bars are not plotted with the data,

to avoid cluttering the figure; however, error bars are plotted with the data in Figure 4.2 as

dashed lines. A plot of the RISR-N beam geometry for this date is shown in Figure 4.3. The

goal of these plots is to demonstrate the amount of fluctuation the ne profile can undergo

in the polar ionosphere. The variability of the ne profile in both Figures 4.1 and 4.2 is

substantial. Throughout the day, the ne varies by over an order of magnitude. In Figure 4.1,

there are several examples of disagreement between the IRI profile and the RISR-N measured

profile. For example, at 03:00 UT, the IRI model (triangle symbols) suggests a ne peaking

near 1× 1011 m−3, while the RISR-N ne peaks are about twice that amount during that

time frame. As it turns out, the variability of the RISR-N measurements at this time was a

signature of patches moving through the FOV. At 15:00 UT, the IRI model (square symbols)

systematically underestimates the measured RISR-N vertical profile. On closer inspection

of Figure 4.2, it is clear that the large changes transpire on a time-scale of minutes. Some
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IRI - 3 UT

IRI - 15 UT

IRI - 9 UT

Figure 4.1: A plot of the ne as function of altitude along RISR-N Beam 23, for the
entire day on March 11, 2010. Profiles from the IRI model for 03:00 UT (triangle),
09:00 UT (diamond), and 15:00 UT (square) are also plotted.

of this variability may be attributed to patches passing through the RISR-N FOV between

03:00 and 11:00 UT (see Section 4.3.3). Once again, the IRI model appears to systematically

underestimate the RISR-N ne measurements. Not only does the magnitude of the density

vary considerably, but the general shape of the altitude profile as well as the positioning of

the peaks show marked fluctuations as well. It is difficult to justify using IRI since it does

not accurately model the variability of the polar ionosphere, even though the variability is

seemingly due to the presence of patches.

One strategy to obtaining an estimate describing the background polar ionosphere would

be to model a vertical ne profile that would be representative of the region given an input

of other parameters, such as solar and IMF conditions. In this case, to detect a patch, one
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IRI - 6 UT

Figure 4.2: A plot of the ne as function of altitude along RISR-N Beam 23, between
05:30 and 06:30 UT on March 11, 2010. Profiles from the IRI model for 06:00 UT is
also plotted.

would need to detect an ne profile that is at least twice that of the background density profile.

This is a difficult task to accomplish not only because of the short time-scale on which the

magnitude of the profile changes, but also because of changes in the shape of the profile,

as evidenced in Figure 4.2. Also, by comparing measurements to a modelled profile, we

would also be introducing a bias into the patch detection method. An estimate of the profile

of the background ionosphere would be a product of some filtering, and would invariably

resemble a standard F-region ne profile, i.e., an IRI modelled output. Some patch generation

mechanisms may produce vertical plasma profile that may not take on the same shape of

the vertical F-region plasma profile, such as patches created by particle precipitation. Even

though patches created by this mechanism may satisfy the Crowley [1996] criterion, they
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Figure 4.3: A plot of a 25-beam RISR-N mode (top) operating on March 11, 2010, with
the projections of the 25 look directions plotted in a geomagnetic coordinate system
(bottom), courtesy of SRI International.

would risk being overlooked by a detection algorithm comparing them to a background ne

profile. It is therefore most suitable to create an estimate of the background polar ionosphere

which can serve as a threshold over which a candidate plasma density enhancement must

surpass in order to be registered as a patch.

In order to obtain a suitable estimate of the background ne of the polar ionosphere a

characteristic time of the ionosphere is needed, a time over which we can assume that the

polar ionosphere is static. For the RISR-N algorithm, the characteristic time is considered

to be the length of time a patch takes to drift through the RISR-N FOV. The definition
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of a patch is relative; identifying a patch requires a comparison to the background iono-

sphere. It is therefore most appropriate to compare a candidate patch to the ionosphere in

which it is immersed. The RISR-N FOV at F-region altitudes spans approximately 500 km

meridionally and 600 km zonally. Patches have been observed to drift through the polar

ionosphere at speeds ranging from 300 to 1000 m/s. However, the patch speeds are gener-

ally below 500 m/s [MacDougall and Jayachandran, 2001]. The distribution of patch speeds

reported by Hosokawa et al. [2009b] is centred at approximately 300 m/s, and the data from

MacDougall and Jayachandran [2001] showed median velocities nearing 400 m/s. This cor-

responds to a travel time across the RISR-N FOV of the order of 30 minutes. The time-scale

of chemical recombination must be considered here as well. Using Equation 3.6, with the

chemical reaction rates cited in Section 3.4.1, at 300 km altitude, it would take of the order

of 60 minutes to deplete a ne of 2× 1011 m−3 (consistent with measurements in Figure 4.2)

by 35%. It would take two hours to deplete that amount of plasma by a factor of e, thus

the chemical recombination time-constant is approximately 2 hours. This estimate is higher

than time-constants inferred by Pedersen et al. [1998]. They attributed the steepness of the

horizontal gradients of patches to chemical recombination, and therefore inferred the chem-

ical recombination decay time from the horizontal gradients they measured with an ISR.

They reported a time-constant of 1 hour. This means that a volume that started out as a

patch would not be depleted by chemical recombination during the 30 minutes time-frame.

Thus, 30 minutes is an appropriate estimate for a characteristic time for the polar ionosphere

within the RISR-N FOV. This has more to do with the sensitivity of RISR-N rather than the

formal definition of a patch. A patch and the background ionosphere deplete at an equal rate

since they are both immersed in equal neutral densities. However, below a certain plasma

density a patch or the background ionosphere may be too tenuous to detect and quantify with

RISR-N. We wish to avoid this circumstance while a patch is drifting through the RISR-N

FOV.

The diffusion time-scale should also be considered here. In the F region, the diffusion

coefficient for ions diffusing perpendicular to the magnetic field, Di⊥ = r2
gνin, is a function

of the gyroradius of the ion, rg and the ion-neutral collision frequency, νin [Kelley , 2009].

In the polar F region, at 300 km altitude, Di⊥ ' 3002 × 0.3 ' 27× 103 m2s−1. Using a
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gradient scale length of 100 km for a patch, consistent with measurements by Pedersen et al.

[1998], the perpendicular diffusion rate for a patch with a density 2× 1011 m−3 is two orders

of magnitude slower than the chemical recombination rate, equating to a time constant of

the order of days. According to Schunk and Nagy [2000] diffusion along the magnetic field

line, ambipolar diffusion, has a diffusion coefficient about an order of magnitude larger than

perpendicular diffusion. Thus a patch will recombine long before it is dissipated by diffusion.

Taking the aforementioned into consideration, a 30-minutes running average of the me-

dian ne in the RISR-N FOV, between 200 and 500 km altitude, will be considered the

“background” for the RISR-N algorithm.

4.3.2 The RISR-N algorithm

The RISR-N algorithm is relatively straightforward. Focusing on the 200 to 500 km altitude

range within the RISR-N FOV:

1. Calculate a 30-minute running average of the median ne in the RISR-N FOV. Each

RISR-N scan (RISR-N scans typically range from 2 - 5 minutes in length, depending on

the number of beams in the FOV and the operating mode) is represented by a median

of the ne measured in that scan. This is the “background” estimate.

2. Sample each resolution cell along a RISR-N beam, comparing each ne measurement to

the background estimate.

3. If the measured ne along three consecutive resolution cells along a beam are twice that

of the background estimate, a patch has been detected in that beam.

4. Repeat steps 2 through 3 for each beam in the RISR-N FOV.

The RISR-N algorithm takes advantage of the field-aligned nature of patches, the slant

of the RISR-N beams and the acute angle they make with respect to the surface of the

Earth and the local geomagnetic field. The geomagnetic field-lines are nearly vertical in

the RISR-N FOV. Their dip angle, measured with respect to the surface of the Earth, is

approximately 87◦. Patches are therefore approximately vertically aligned; they are strongly
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Figure 4.4: The geometry of a single RISR-N beam with unit k-vector, k̂, probing a
patch aligned along the local geomagnetic field, shown in blue. The component of the
beam parallel to the magnetic field is labelled k̂‖. The orthogonal zonal and meridional

components are k̂E and k̂N , respectively. Resolution cells along the beam are marked
by black lines.

field-aligned as a result of the low diffusion coefficient, Di⊥. RISR-N beams have elevation

angles which range from 30◦ to 70◦, with respect to the surface of the Earth, and will thus

intersect patches at an acute angle with respect to the geomagnetic field line. By requiring

three consecutive RISR-N resolution cells along the beam to have a patch ne that is twice

that of the background ionosphere (Step 3, above), satisfying the Crowley [1996] criterion,

the algorithm identifies volumes of plasma that are approximately the scale size and density

of patches, by virtue of the RISR-N beam geometry.

Three resolution cells along a slanted RISR-N beam can have sizeable projection that

is normal and parallel to a patch. To help illustrate this point, the geometry of a single

RISR-N beam intersecting a patch is shown in Figure 4.4. Here, k̂ is the unit vector of the

radar beam; k̂‖ is the parallel direction of k̂, with respect to the geomagnetic field; k̂N is

the northward direction of k̂, with respect to the geomagnetic field; and k̂E is the eastward
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direction of k̂, with respect to the geomagnetic field. RISR-N beam 23 in Figure 4.3 reaches

308 km altitude at a distance of 318 km along the beam (i.e., downrange). At this point,

k̂‖ = 0.96, k̂E = 0.05, and k̂N = 0.28 (information courtesy of SRI International). Starting

at 308 km altitude, three consecutive resolution cells span a cumulative distance of 108 km

along the beam. With the given beam geometry, the three cells span 104 km in altitude,

5 km zonally and 30 km meridionally. These values vary between beams in the RISR-N FOV,

from 55 to 110 km in altitude, 5 to 75 km zonally, and 10 to 90 km meridionally. Therefore,

any beam with a patch signature encompasses a non-trivial portion of the ionosphere. Along

with the beam geometry, it should be pointed out the beams in Figure 4.3 are separated

by approximately 30 km. This spacing governs the spatial resolution of the RISR-N system

and RISR-N algorithm. Crowley [1996] stipulated that a patch must have a scale size of

the order of 100 km, which is larger than some of the scales stated here. Nonetheless we

believe the RISR-N algorithm and its associated scale sizes is still suitable. One reason is

that the Crowley [1996] criterion is rather arbitrary and biased. In the regime above the

10 km scale length, there is no physical justification for placing a lower limit on the scale

size of a patch. Moreover, there is enough evidence to suggest that patches can be smaller

than the 100 km scale size [e.g., Kelley et al., 1982; Dahlgren et al., 2012a; Dahlgren et al.,

2012b]. By arbitrarily placing a lower limit on the scale size of patches at 100 km, we may

be underestimating their population and importance in the polar ionosphere.

4.3.3 RISR-N algorithm test

The RISR-N algorithm was tested against an OMTI dataset showing an unambiguous case

of patches drifting over Resolute Bay. An OMTI keogram showing 630 nm emissions, from

03:00 to 10:00 UT on March 11, 2010 is plotted in Figure 4.5. The keogram shows the data

collected from the North to South meridian within the OMTI FOV. The dim, slanted features

showing a North to South displacement are clear signatures of patches over Resolute Bay

[cf. Hosokawa et al., 2006; Hosokawa et al., 2013a]. The optical data has not been corrected

for atmospheric extinction or the non-uniformity of the viewing geometry, i.e., the van Rhijn

effect. Also shown in Figure 4.5 is a plot of the ne measured by RISR-N in beam 23, as a

function of altitude along the beam. The ne enhancements measured are signatures of patches
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passing through the RISR-N beam. In Figure 4.5, it is clear that the optical signatures in

the OMTI keogram are concurrent with the ne enhancements measured in RISR-N beam 23.

Similar ne signatures appeared in all of the other RISN-N beams as well.
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Figure 4.5: An OMTI keogram (top) from March 11, 2010, showing several optical
signatures at 630 nm consistent with patches moving in a North to South direction. A
plot of the ne (bottom) measured in RISR-N beam 23, as a function of altitude. The
RISR-N density signatures are consistent with patches and concurrent with the patches
observed in OMTI, which has been highlighted to guide the eye.

A plot of the output of the RISR-N algorithm output is plotted in Figure 4.6. The patch

detection “count” is plotted along with OMTI data, for the same segment of time displayed

in Figure 4.5. A patch detection count is registered when a patch has been detected by

the RISR-N algorithm. Since RISR-N beams have many resolution cells along the beam in

the 200 to 500 km altitude range, multiple counts can be tallied for a single RISR-N beam.
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Counts will be converted into a more meaningful quantity, the “patch index”, shortly. The

OMTI data plotted is from the zenith of the imager, labelled as Z in Figure 4.5. From the

collocation of the luminosity and patch Figure 4.6, it is clear that the RISR-N algorithm is

capable of detecting density enhancements within the RISR-N FOV that are consistent with

patches. For nearly all of the peaks in the OMTI trace, there is a corresponding peak in the

patch count output by the RISR-N algorithm. This indicates that bright optical features and

ne signatures, which are both a signature of patches, were passing through the same region

of ionosphere at the same time. It is important to note that the OMTI measurements are

biased to an altitude of approximately 250 km. Above that altitude, the neutral atmosphere

becomes too tenuous to produce significant amount of luminosity at 630 nm, and below that

altitude the 630 nm emissions become quenched [Perry et al., 2013]. This may be why the

RISR-N algorithm showed a peak at approximately 08:30 UT while the OMTI emissions

remained relatively featureless. The emissions of these patches may have been quenched, or

the altitude of the patches may been too high to produce any significant luminosity feature.

Non-patch events: identifying “false-positives”

In order to further gauge the effectiveness of the RISR-N algorithm, it was also tested against

instances in which other ionospheric phenomena were passing through the RISR-N and OMTI

FOV, such as a case of polar aurora, and one of a sun-aligned arc. A four hour segment

on December 11, 2009 featuring a brilliant sun-aligned arc event was selected to test the

algorithm. A keogram of the event along with a general FOV plot of the OMTI imager from

02:30 UT is given in Figure 4.7. A plot of the plasma density, ne, ion temperature Ti, and

electron temperature, Te, measured in RISR-N beam 12 for the same segment of time is

plotted in Figure 4.8. The results of the patch detection algorithm are plotted in Figure 4.9,

and are presented in the same form as Figure 4.6.

In Figure 4.8, the plasma density, ne in the polar ionosphere was quite low until the

arrival of the arc, at approximately 02:30 UT. The RISR-N was not operational after ap-

proximately 03:20 UT. In Figure 4.8, the absence of colour is not due to the absence of RISR-N

data, but due to ne < 1 × 1010 m−3, which does not register on the provided colour scale.

Since the ionosphere being measured is at polar latitudes and the measurements occurred
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Figure 4.6: The output of the RISR-N algorithm plotted with the optical data from
the zenith of the OMTI imager, for the same segment of time plotted in Figure 4.5. A
good correlation between the peaks of the RISR-N algorithm and peaks in the OMTI
luminosity data is evident.

during the winter, no photoionization would have been taking place. Chemical recombina-

tion would have had nearly an entire day to deplete ne levels in the region. The arrival of

the arc is marked in the top panel of Figure 4.8, by a sudden increase in ne, by an order of

magnitude, with a peak near 300 km altitude. Signatures of the arc arrival are also seen as

ion temperature, Ti and electron temperature Te increases. The former being a byproduct of

enhanced electric field and frictional heating between the ion and neutral gasses.

Enhanced ne and Te are indicative of particle precipitation, and can be attributed to

arcs [e.g., Carlson et al., 1984; Mende et al., 1988; Dahlgren et al., 2014]. The main optical

body of the arc is due to an upward field-aligned current (FAC), carried by precipitating

electrons. However, it is difficult to identify an arc strictly from ISR data, and so optical

data is normally used to confirm the presence of an arc. The results of the RISR-N algorithm
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OMTI ASI PARAMETER PLOT
Imager No.6 at Resolute Bay: Absolute Intensity

11 Dec 2009 (345)

filter id: C62
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Figure 4.7: An OMTI FOV plot (top) showing an arc event at 02:32 UT on December
11, 2009. RISR-N beams are shown as white circles. A keogram (bottom) of the four
hour segment surrounding the arc event. Both plots share the same colour scale.
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Figure 4.8: A RISR-N parameter plot showing ne (top panel), Te (middle panel)
and Ti (bottom panel) from RISR-N beam 12 as a function of time and altitude. The
signature of the arc shown in Figure 4.7 can be seen starting at approximately 02:30 UT.

in Figure 4.9 show that the arc passing through the RISR-N FOV produces a similar patch

count to that of a patch moving through the FOV, as shown in Figure 4.6. This is clearly an

undesirable result, since the arc presents a “false-positive” result for the RISR-N algorithm.

This notion can be extrapolated to concluding that any phenomena producing aurora, not

only arcs, would also result in a false-positive result with the RISR-N algorithm, as long as

ne became enhanced as a result.

One possible solution to this is to incorporate a temperature filter in the RISR-N al-

gorithm. If the RISR-N algorithm detects an ne enhancement that is consistent with a

patch, but the temperature of the plasma is above a level that is more indicative of parti-
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Figure 4.9: A plot of the RISR-N algorithm output (black trace), RISR-N output
that has had a temperature filter applied to it (green trace) and OMTI data from the
zenith of the imager (red trace) as a function of time between 00:00 and 04:00 UT on
December 11, 2009.

cle precipitation, or an arc such as the case studied here, then that patch detection event

can be disregarded. Such a filter was implemented with the RISR-N algorithm for the arc

event presented here. The filter was set to disregard any patch detections which had Ti or

Te > 1000 K. The results of the RISR-N algorithm with the temperature filter are plotted in

green in Figure 4.9. Evidently, the filter was successful at reducing the patch count by 50%

in some instances, but did not completely eliminate all of the patch counts. It would not

be feasible to lower the temperature threshold of the filter any lower than 1000 K. 800 K is

approximately the ambient temperature of the thermosphere in altitude range of interest –

200 to 500 km [Kelley , 2009].
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On the definition of a patch

The results of the temperature filter RISR-N algorithm presented in Figure 4.9 have impor-

tant implications for patch detection in the polar ionosphere, more so than simply highlight-

ing the inability of the algorithm to identify and disregard aurora. Using optical imagers to

identify patches introduces a bias into the detection process itself [J. L. Semeter, personal

communication, 2012]. Had it not been for the OMTI data in the arc event presented in Fig-

ure 4.7, the ne enhancements measured by RISR-N in beam 12 would have been identified as

patches by the RISR-N algorithm, even with the temperature filter included in the analysis.

According to the Crowley [1996] criterion patches were created since the ne created by the arc

precipitation measured twice that of the background ionosphere. This underlines a dilemma

for patch identification: is an ne created by an auroral event, i.e., particle precipitation, still

a patch? To address this question, we present the following thought experiment. Suppose

a patch passes through the RISR-N and OMTI FOV, displaying the “normal” features of

a patch, i.e., ne enhancement that is twice that of the background, red-line luminosity, etc.

Now, restrict the possible generation mechanisms for that patch to that of particle precipita-

tion. It cannot be discerned whether the patch was generated by precipitation several hours

prior to its passage through the RISR-N and OMTI FOVs, or by a precipitation several

minutes prior to its passage through the FOVs. The ion gas has a large heat capacity, and

the electron gas will reach thermal equilibrium with the neutral atmosphere within approx-

imately 30 s [Mantas et al., 1981; Carlson et al., 2002] (There is clear evidence of this in

Figure 4.8. After the arc passed through the RISR-N beam, at 02:30 UT, the Ti and Te

returned to temperatures below 1000 K almost immediately). Moreover, since the RISR-N

algorithm temperature filter proved ineffective against ne production by precipitation, the

only way one could single-out particle precipitation as a generation mechanism for the patch

is if an optical imager, such as OMTI, observed the precipitation event. Therefore, since the

generation mechanism and the time-history of the patch are irrelevant in the definition of a

patch, any ne enhancement that satisfies the Crowley [1996] criterion is a patch even if the

ne enhancement is being actively generated within the RISR-N and/or OMTI FOV in the

form of a aurora or an arc.

124



4.4 A survey of patches over Resolute Bay

With the characteristics of the RISR-N algorithm outlined, it will now be used to survey

patches detected over Resolute Bay, during two, five-day datasets. The first dataset consists

of RISR-N data from March 10, 14, 16, 18 and 19, 2010. The second dataset consists of RISR-

N data from December 8 to 12, 2010. These datasets were chosen for two main reasons. First,

the datasets use the same RISR-N beam configuration, a 5 × 5 “World Day” mode, which

is displayed in Figures 4.3 and 4.7. Secondly, each dataset offers a nearly continuous sample

of the polar ionosphere under equinox and winter conditions. This provides an opportunity

to compare and contrast the polar ionosphere and patches during times with and without

extended periods of pronounced photoionization.

4.4.1 Patch survey results: plasma density, ne

Figures 4.10 and 4.11 show the plasma density, ne, of the patches detected by the RISR-N

algorithm, as a function of time (both UT and MLT at Resolute Bay). The solar zenith angle

at the location at which the patch was detected is also provided (the solar zenith angle was

provided by SRI International). The solar zenith angle is the angle subtended between the

vertical and the geometric centre of the Sun. The zenith angles in Figures 4.10 and 4.11 are

mapped down the surface of the Earth such that sunrise/sunset occurs when the solar zenith

angle is 90◦. The ionosphere is sunlit for solar zenith angles below 90◦.

Each day in Figures 4.10 and 4.11 shows significant variability in the ne of patches. Effects

due to photoionization (or lack thereof) can be seen in both figures. In March, 2010, sunrise

occurred at approximately 13:30 UT. After this time, less patches were detected, as evidenced

by the marked decrease in the number of data points after that time. This trend reversed

just before 24:00 UT, the approximate time of sunset. The decrease in the number of patches

is expected since plasma production due to photoionization of the neutral atmosphere will

increase the ne of the background ionosphere under sunlit conditions. Since patch detection

is subject to ratio of the ne of the patch and the background ionosphere, of which the latter

increases in the presence of photoionization, less ne enhancements will satisfy the Crowley

[1996] criterion under sunlit conditions – fewer patches will be detected. This is also why
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Figure 4.10: A plot of the ne of the patches detected using the RISR-N algorithm,
as a function of time (UT and MLT) for March 10, 14, 16, 18 and 19, 2010. The plot
points are coloured according to the modelled solar zenith angle at the location at the
time of the patch detection.
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Figure 4.11: A plot of the ne of the patches detected using the RISR-N algorithm,
as a function of time (UT and MLT) for December 8, 9, 10, 11 and 12, 2010. The plot
points are coloured according to the modelled solar zenith angle at the location at time
of the patch detection.
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fewer patches were detected in March than in December, 2010, in general.

During the December, 2010 time period surveyed, the solar zenith angle was never below

100◦; the ionosphere over Resolute Bay suffered little photoionization throughout the entirety

of these days. Overall, the ne of the patches detected in December appear to be similar to

those detected in March. There is one subtle difference, however. In the 00:00 to 12:00 UT

sector (17:00 to 05:00 MLT, see Figure 1.15), the ne of some of the patches detected in

December, 2010 are lower than those detected in March, 2010, in general. This is not

an unexpected result. Patches travelling along a trajectory from the sunlit ionosphere to

Resolute Bay in March will have been subject to less depletion by chemical recombination

than patches travelling the same route in December. This is due to the seasonal variation of

the solar EUV exposure at high-latitudes. This will be discussed in more detail shortly.

A ne distribution for all of the patches displayed in Figures 4.10 and 4.11 is given in

Figure 4.12. The patches detected in March and December are sorted by solar zenith an-

gle: patches that were detected at locations at which the solar angle was less than 90◦,

i.e., sunlit conditions, are plotted in black; all others, i.e., “dark” ionosphere conditions, are

plotted in red. These conditions are labelled as dark even though the ionosphere may have

been still exposed to sunlight, since the photoionization at altitudes above 200 km it ex-

tremely low for high solar zenith angles. Recall that photoionization declines exponentially

with increasing solar zenith angle, i.e., Equation 1.14. The bin size of the distributions in

Figure 4.12 is 2 × 1010 m−3. The characteristics of the patches displayed in Figures 4.10

and 4.11 are easily identifiable. In Figure 4.12, the March, 2010 distribution shows that the

number of patches detected in sunlit conditions is less than the number detected in dark

ionosphere conditions. It also shows that significantly fewer patches were detected in March

compared to December; the magnitude of the sunlit distribution has been multiplied by a

factor of five to make it easier to see. For ne> 1.5× 1011 m−3 in Figure 4.12, the combined

shape of both distributions for March is somewhat similar to the distribution in December (if

we neglect the magnitudes of each distribution). The dark ionosphere distribution in March

has a peak near ne = 1.5× 1011 m−3. In the December, 2010 distribution a “shoulder” fea-

ture is centered at approximately the same ne. Both the sunlit distribution (there is only one)

and the dark ionosphere distribution have a relative peak centered at ne ' 3.5× 1011 m−3.
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Figure 4.12: A histogram of the ne of all of the patches detected in the March, 2010
dataset (left) and December, 2010 dataset (right) for sunlit (black trace) and dark
ionosphere (red trace) conditions. Note that the vertical scale changes from March to
December.

Notwithstanding the magnitudes of each distribution, the only significant difference be-

tween the patch ne distribution for March and December in Figure 4.12 is that in December

there is a peak in patch occurrence centered just above ne = 0.5× 1011 m−3. In March,

there are very few patch detections for ne < 1.0× 1011 m−3, relative to patches detected in

December, 2010. The low ne population of patches in December, 2010 was briefly discussed

earlier. This population may be patches that have been depleted more by chemical recom-

bination than patches in March. Assuming no other source of ne production, and no source

of ne depletion besides chemical recombination (i.e., we are considering Equations 3.5 and

3.6), patches measured in December would have been more depleted than those measured in

March, since a greater portion of the polar ionosphere is exposed to photoionization (i.e., ne

production) in March. Recall that increased plasma production reduces the patch detection

count. The duration of the trip between sunlit ionosphere and Resolute Bay is shorter for

the patches in March than it is in December, and therefore chemical recombination has less

time to erode the ne of a patch in March.

For an estimate of the difference in ne magnitudes for patches in March and December, we

consider the following. In Figures 4.10 and 4.11, the value of the solar zenith angle at 16:00 UT

is approximately 80◦ and 100◦ in March and December, respectively – a difference of 20◦. This
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difference is equivalent to the latitudinal migration of the boundary between the sunlit and

dark ionosphere – the day/night terminator, over those months, with respect to Resolute Bay.

In other words, a patch starting from the terminator in March, convecting along a meridian

towards Resolute Bay, will have travelled 20◦ in latitude less than a patch starting from the

terminator at the same time and travelling the same path in December. At 300 km altitude,

20◦ in latitude traces out an arc length of s = 20× (6371 km+300 km)× π/180 ' 2300 km.

Using the patch velocity of 300 m/s quoted earlier [Hosokawa et al., 2009b] in Section 4.3.1,

a patch would take 2 hours to travel this distance. This amount of time is of the order

of the time required to deplete the ne of a patch by a factor of e, a calculation described

earlier, in Section 4.3.1. The largest peak in the patch distribution for March in Figure 4.12

is at ne ' 1.5× 1011 m−3. Dividing that value by a factor of e gives 1.5/e × 1011 m−3 =

0.55 × 1011 m−3, which is approximately the ne at which the largest peak in the December

patch density distribution is centred at, in Figure 4.12. Thus, it seems plausible that this

population of patches only found in the December patch detection data were more depleted

by chemical recombination as a result of the seasonal migration of the day/night terminator.

ne results: comparison the previous studies

To the best of our knowledge, the distributions plotted in Figures 4.10, 4.11 and 4.12 (and

other distributions that will be shown in this section) are the first of their kind. Previous

studies have not analyzed the state parameters of patches with as many events as presented

here. An analogous study was presented by Moen et al. [2008], who investigated two datasets

of the ne values measured by the ESR radar. In both months they investigated, unexpectedly

large ne values measured during times which the ionosphere was dark, peaking at approxi-

mately 20:00 UT, as illustrated in Figure 1.17. Moen et al. [2008] attributed the abnormally

large ne to patches. Assuming that postulate is correct the ne measurements of the patches

displayed in Figure 1.17 were at least as large any patch measured in March or December,

2010 by RISR-N. This discrepancy is likely a signature of the increased solar EUV flux

present during the Moen et al. [2008] study, which compiled measurements from February,

2001 and October, 2002, in the midst of the peak of Solar Cycle 23.

Solar EUV flux is strongly correlated with the solar cycle; the solar EUV flux is at its
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most intense during the peak of a solar cycle. The EUV flux can vary substantially between

the maximum and minimum of a solar cycle, by as much as a factor of two or three [Chen

et al., 2011]. Since the F-region ne is strongly coupled to the solar EUV flux, it also has a

significant variation over a solar cycle. A standard proxy measurement for solar EUV flux is

the F10.7 index, a measure of the solar flux density at the 10.7 cm wavelength [Schunk and

Nagy , 2000]. The magnitude of the peak F-region ne, the solar EUV flux and the F10.7 are

strongly correlated to one another for F10.7 values below 150 (the units of the F10.7 index

are 10−22 Wm−2Hz−1 ) [Richards , 2001].

During the months surveyed by Moen et al. [2008], February, 2001 and October, 2002, the

F10.7 flux was 144 and 166, on average, respectively. During the months surveyed with the

RISR-N algorithm, March and December, 2010, the F10.7 flux was 85, on average. Estimates

from the IRI model show that this difference in solar EUV flux translates into a nearly five-

fold increase in the peak ne in the F region. Thus, we should expect to see a similar variation

in the ne of the patches measured in both studies. This is not the case, however. The peak

ne of the patches for the Moen et al. [2008] survey were approximately 6.3× 1011 m−3 –

nearly three-times as dense as the patches detected with the RISR-N algorithm, not a five-

fold increase as suggested by IRI. Nonetheless the increased densities substantiate the notion

that since the ne was higher in February, 2001 and October, 2002, due to the increased EUV

flux, then the patches drifting from the dayside to the nightside ionosphere during that time

would have been denser than those patches detected in March and December, 2010 with the

RISR-N algorithm. It is therefore not unexpected for the ne of the patches referenced in

Moen et al. [2008] and plotted in Figure 1.17 to be higher than the ne of those displayed in

Figure 4.12.

4.4.2 Patch survey results: plasma temperature

The ion and electron temperatures, Ti and Te, of the patches plotted in Figures 4.10 and 4.11

are plotted in Figures 4.13, 4.14, and Figures 4.15 and 4.16, respectively. When comparing

Ti and Te for patches in March and December, a stark contrast emerges: the characteristics

of the Ti of the patches remains approximately the same under sunlit and dark ionosphere

conditions; however, the characteristic of the Te of the patches shows significant variation
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between sunlit and dark ionosphere conditions.

Distributions of Ti and Te for the data presented in Figures 4.13, 4.14, 4.15 and 4.16 are

plotted in Figures 4.17 and 4.18. Like the previously discussed distribution plots, the black

traces correspond to patches detected under sunlit conditions and have been increased by a

factor of five for readability. The red traces correspond to patches that were detected when

the ionosphere was dark. The bin sizes in both Figures 4.17 and 4.18 is 100 K.

Ion temperatures – Ti

In March, 2010, the mean Ti of the patches detected during sunlit conditions is approximately

855 K, while the Ti of the patches under dark ionosphere conditions is approximately 801 K.

By inspection the Ti values of these patches are on par with what has been observed over

Resolute Bay at this time of year with RISR-N. These temperatures are in the expected

range of Ti for this altitude [Schunk and Nagy , 2000], assuming that the ion gas is in thermal

equilibrium with the neutral atmosphere.

The mean Ti of the patches detected in December is 769 K. These cooler temperatures

are likely a result of a cooler neutral atmosphere in that month. During December, the

neutral atmosphere is exposed to less sunlight and is therefore cooler than a month where

it is exposed to more sunlight, e.g., March. Since the ion gas is in thermal equilibrium with

the neutral atmosphere, it will be cooler as well, producing cooler patch ion temperatures.

Electron temperatures – Te

The mean Te of the patches detected by the RISR-N algorithm in March, 2010 in the dark

ionosphere is 1185 K, and the mean Te for the same conditions in December, 2010 is 875 K.

Both the March and December, 2010 values of Te are consistent with a previous study of the

region by Brinton et al. [1978], who compiled satellite measurements for altitudes near 300 km

during the summer season in the northern hemisphere. The results of that study show that

the northern high-latitude ionosphere is highly structured in terms of Te; several latitudinal

bands of Te are present. The coolest bands measured 500 K, and were located in the polar

regions. Meanwhile, the hottest bands were associated with the auroral zone and measured

3500 K. The dayside coverage of those measurements was limited, but showed a range of
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Figure 4.13: A plot of the Ti of the patches detected using the RISR-N algorithm,
as a function of time (UT and MLT) for March 10, 14, 16, 18 and 19, 2010. The plot
points are coloured according to the modelled solar zenith angle at the location at time
of the patch detection.
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Figure 4.14: A plot of the Te of the patches detected using the RISR-N algorithm,
as a function of time (UT and MLT) for March 10, 14, 16, 18 and 19, 2010. The plot
points are coloured according to the modelled solar zenith angle at the location at time
of the patch detection.
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Figure 4.15: A plot of the Ti of the patches detected using the RISR-N algorithm, as
a function of time (UT and MLT) for December 8, 9, 10, 11 and 12, 2010. The plot
points are coloured according to the modelled solar zenith angle at the location at time
of the patch detection.
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Figure 4.16: A plot of the Te of the patches detected using the RISR-N algorithm,
as a function of time (UT and MLT) for December 8, 9, 10, 11 and 12, 2010. The plot
points are coloured according to the modelled solar zenith angle at the location at time
of the patch detection.
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Figure 4.17: A histogram of the Ti of all of the patches detected in the March, 2010
dataset (left) and December, 2010 dataset (right) for sunlit (black trace) and dark
ionosphere (red trace) conditions. Note that the scales are different in each plot.

2000 K ≤ Te ≤ 2666 K, consistent with the sunlit distribution Figure 4.18. The sunlit Te is

governed by the influence of solar radiation, which will be discussed shortly. Brinton et al.

[1978] attributed the latitudinal variations of Te to differing particle precipitation energies and

intensities. After being exposed to a heat flux, such as particle precipitation, the electron gas

will reach thermal equilibrium with the neutral and ion gas on a time scale of approximately

30 s [Mantas et al., 1981; Carlson et al., 2002]. Therefore, signatures of enhanced Te can be

used to identify active particle precipitation – an active heat flux. There are examples of

patches with Te of the order of 3500 K, e.g., March 16, 2010, but these cases were sporadic.

The increase (decrease) in Te that occurred when the solar zenith angle decreased (in-

creased) through 90◦ in March, 2010, is a signature of solar heating and an expected re-

sult [Schunk and Nagy , 2000]. Kitamura et al. [2011] studied the Te in the polar iono-

sphere using ESR and measurements from the Akebono satellite. They found very similar

Te trends: Te ≤ 1500 K under dark ionosphere conditions, with a drastic increase for sun-

lit conditions in which Te ≥ 2500 K. They also noted a strong coupling between the solar

zenith angle and Te. A similar trend between the solar zenith angle and Te can also be seen

in Varney et al. [2014] who compared a polar region Te model to RISR-N data.

It is interesting to note that for dark ionosphere conditions, the Te distributions in March

and December, 2010 are not similar. In March, 2010, the mean Te is over 300 K hotter
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Figure 4.18: A histogram of the Te of all of the patches detected in the March, 2010
dataset (left) and December, 2010 dataset (right) for sunlit (black trace) and dark
ionosphere (red trace) conditions. Note that the scales are different in each plot.

than of the December, 2010 distribution. This is likely a result of the relaxation time of the

electron gas. Once the sun sets on the ionosphere, the electron gas cools since its temperature

is enhanced above the ion and neutral gas. As mentioned previously, this relaxation time

is quick for an event involving precipitation, which is restricted in altitude. In the solar

heating case, we must consider heat conduction of the electron gas from higher altitudes

which have been heated by solar radiation as well. The relaxation time of Te is proportional

to ne [Tohmatsu and Ogawa, 1990; Schunk and Nagy , 2000] and therefore the electron gas at

300 km, for example, will cool much quicker than the electron gas at 1000 km (cf. Figure 1.9).

This will create a heat flow from the higher altitude electron gas to the lower altitude electron

gas, extending the relaxation time of the electron gas at 300 km from minutes to of the

order of an hour [R. H. Varney, personal communication, 2014]. Therefore, the enhanced Te

measured in March, 2010 may simply be patches which had been exposed to solar EUV within

the previous hour, and whose electrons have not yet cooled down to the levels measured in

December, 2010.
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4.5 The Patch Index

Up until now a patch detection with the RISR-N algorithm has been referred to as a “count”.

In its current state the descriptor does not offer any information. A patch extending over

several RISR-N beams produces several patch counts, which cannot be distinguished from one

another. That is to say, we cannot distinguish whether patch counts from adjacent RISR-

N beams are from a large patch spanning those beams, or two smaller, separate patches

intercepted by each beam. The patch count is not a useless quantity, however. Since there

is a finite and constant number of RISR-N beams and range gates between 200 and 500 km

altitude in the RISR-N FOV, for which a count can be registered, an estimate of how much

of the RISR-N FOV contains a patch ne signature can be calculated. This estimate is termed

the “patch index”.

4.5.1 Definition of the Patch Index

The RISR-N World Day mode illustrated in Figure 4.3 features 25 beams which have 14

range gates each, between 200 and 500 km altitude – 350 range gates in total. Patch Index,

PI, in defined as:

PI =
patch count

350
× 100%. (4.1)

The PI quantifies the amount of the RISR-N FOV that contains a ne that generates a patch

count according to the RISR-N algorithm outlined in Section 4.3.2. It is defined for a single

RISR-N integration period, which is typically of the order of two minutes but may vary. It

is important to note that the PI does not quantify the number of patches with the RISR-

N FOV. A value of PI = 100% is undefined. The PI may approach 100% but can never

achieve that value. As the PI approaches 100% the RISR-N FOV becomes more occupied

with patch material which would increase background ne estimate used by the RISR-N,

thereby decreasing the number of patches detected by that algorithm and decreasing the

patch count.
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Figure 4.19: The PI from the RISR-N algorithm plotted with the optical data from
the zenith of the OMTI imager, for the same segment of time plotted in Figure 4.5.
A clear agreement between the output of the RISR-N algorithm and OMTI luminosity
data exists.

Patch Index: examples

Figure 4.6 is re-created in Figure 4.19 using the PI instead of patch count to describe the

patch material moving through the RISR-N FOV. For times in which patches were seen

moving through the OMTI FOV, the PI is increased. There are five peaks in PI during

the interval displayed which approach 10% in Figure 4.19; each has a corresponding optical

peak. It is apparent that there is some correlation between PI and the optical emissions

measured by OMTI; however, the maxima and minima in the OMTI data do not correspond

to the maxima and minima in PI. This is an expected result. As described in Chapter 3, the

emissions of a patch are not only related to its altitude and concentration, but its vertical

motion as well. Furthermore, soft particle precipitation may be responsible for some of the

observed enhancements in Figure 4.19, rather then patches. At the present time, it is too
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Figure 4.20: The PI from the RISR-N algorithm plotted with the optical data from
the zenith of the OMTI imager, for the entirety of March 11, 2010. The RISR-N was
operational until just after 20:00 UT that day.

difficult to extract any connection between the value magnitude of the PI and the optical

emissions.

The PI for the entirety of March 11, 2010 is plotted in Figure 4.20. On this day, RISR-N

was operational from 0:00 to just after 20:00 UT. OMTI was operational between approxi-

mately 03:00 and 10:00 UT, presumably while the OMTI FOV was dark enough such that

the solar light would not saturate the imager. This day is not among those displayed in

Figures 4.10 through 4.18. Nonetheless, many of the trends found in those figures can be

seen in Figure 4.20. This includes a somewhat reduced PI while the ionosphere was sunlit,

after approximately 12:00 UT, as well as an increase in patch occurrence at around 12:00

and 16:00 UT, as evidenced by PI values exceeding 5%.
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4.6 On the interconnection of SuperDARN radar echoes

and patches

Patches have long been recognized as a significant source of HF coherent backscatter at high-

latitudes [Milan et al., 2002; Oksavik et al., 2006; Hosokawa et al., 2009a]. A combination of ne

gradients and the E×B drift produce decametre ne irregularities that permeate throughout

a patch [Cerisier et al., 1985; Gondarenko and Guzdar , 2004, 2006], and are a large target

for HF coherent scatter radars such as SuperDARN. What is not clear is what portion of the

HF coherent backscatter echoes from the polar regions are due to patches. It is a common

yet unsubstantiated belief that the majority of HF radar echoes from the polar ionosphere

originate from patches. In this section we investigate the interdependence between the F-

region ionization patches and HF coherent backscatter echoes in the polar ionosphere to

provide insight into this commonly held notion, using the newly developed RISR-N algorithm.

The RISR-N, OMTI and SuperDARN FOVs intersect over Resolute Bay. Figure 4.21

shows all of the RISR-N range gates (in the 5× 5 RISR-N World Day mode) between 200

and 500 km altitude plotted along with the FOVs of the Rankin Inlet, Inuvik and Clyde

River SuperDARN radars, and the OMTI imager. The OMTI FOV cuts out an oval shape

from the SuperDARN FOVs.

The common FOVs of the SuperDARN, OMTI and RISR-N systems are ideal for studying

the interconnection between SuperDARN echo occurrence and patches. In theory, either of

the Rankin Inlet, Inuvik or Clyde River radars may detect SuperDARN echoes, and either

the OMTI or RISR-N system can be used to confirm the presence of patches at the location

of the SuperDARN echoes. Previous work has focused on patches and SuperDARN echoes on

a case-by-case basis [e.g., Hosokawa et al., 2009a]. In this section, we explore the relationship

between the SuperDARN echo occurrence and patches on a larger scale by considering all of

the SuperDARN echoes and patches that were present within the RISR-N FOV over several

days, namely, the 10 days studied in Section 4.4: March 10, 14, 16, 18 and 19, 2010 and

December 8, 9, 10, 11, and 12, 2010.
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Figure 4.21: (top) A plot of the colour filled FOVs of the Rankin Inlet (light blue),
Inuvik (yellow) and Clyde River (violet, dashed line) SuperDARN radars. Each Rankin
Inlet beam is also outlined. The Clyde River FOV is dashed since it was not operational
in 2010. All of the RISR-N range gates between 200 and 500 km, in the World Day
mode configuration, are plotted (red). The OMTI FOV is also shown as an oval shape
cut out of the SuperDARN FOVs. (bottom) A closer view in the vicinity of Resolute
Bay. The Rankin Inlet SuperDARN beams are numbered.
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4.6.1 Instruments

The PI introduced in Section 4.5 is implemented in this study to detect the presence of

patches in the RISR-N FOV. There are a few reasons why the PI is used to detect the

presence of patches, and not the OMTI imager. First, the presence of 630 nm optical emissions

does not guarantee the detection of a patch. The Crowley [1996] criterion for a patch is

subject to the ne of a patch and the ionosphere in which it is immersed – not the luminosity

of the patch. For example, soft particle precipitation may present an optical signature similar

to that of a patch, but not the requisite ne. Furthermore, OMTI data is ineffective if clouds

are present in its FOV, unlike RISR-N. In addition to that, OMTI is only operational after

sunset so as to not saturate or damage its optical sensors. This prevents it from detecting

patches during sunlit conditions, which we know exist, according to our work in Section 4.4.

It is therefore most appropriate to use the RISR-N algorithm and the PI to study the

interconnection between SuperDARN radar echoes and the presence of patches, since the

RISR-N algorithm is immune to the aforementioned issues.

The RISR-N FOV is situated within the FOV of eight SuperDARN radars, three of which

are shown in Figure 4.21: Rankin Inlet, Clyde River, and Inuvik. The Clyde River radar did

not begin full operation until 2012 [J.-P. St.-Maurice, personal communication, 2012], and so

its data is of no use in this present study. Its role in future studies will be discussed near the

end of this section. The Inuvik radar receives backscatter echoes from the region covered by

the RISR-N FOV. However, the echo occurrence is only a fraction of that of the Rankin Inlet

radar [Bahcivan et al., 2013]. Although these echoes should not be discounted in general, we

wish to start this study with a dataset that is most likely to contain radar echoes within the

RISR-N FOV. Therefore, backscatter echoes from the Rankin Inlet SuperDARN radar were

used in this study.

4.6.2 PI and Rankin Inlet echo occurrence: preliminary results

As shown in Figure 4.21, beams 4 through 10 of the Rankin Inlet radar intersect with the

RISR-N FOV and the OMTI imager. Plots of the Rankin Inlet echo occurrence and the PI

for the SuperDARN Rankin Inlet beams 5 and 6 for the days in March and December, 2010,
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respectively, are given in Figures 4.22 and 4.23. A modified version of the PI, Equation 4.1,

in which the denominator is changed to reflect the number of RISR-N rage gates within

SuperDARN beams 5 and 6, respectively, is used instead. This alters the meaning of the PI

to: the amount of the RISR-N FOV bounded by the SuperDARN beam that contains a ne

signature of a patch (this is responsible for the “discreteness” of the PI in those figures, due

to the lower number of RISR-N beams in the PI calculation). Both quantities are binned

in three minute intervals, the temporal resolution of the RISR-N scans. A SuperDARN

scan is two minutes in length for the period studied. Rankin Inlet beams 5 and 6 were

chosen since they had continuous data for the 5 days in each data set. Only RISR-N data

taken from within the FOV of Rankin Inlet beam 5, for March, and beam 6, for December,

are considered in this survey. In terms of SuperDARN echoes, both Figures 4.22 and 4.23

show a high amount of day-to-day variability. Nevertheless, their occurrence does show good

correspondence with PI. At this point in the analysis, the correlation between PI and the

echo count has no value; more analysis is needed to investigate the link between the PI to

the number of echoes expected. We are only concerned with the presence of SuperDARN

echoes, i.e., whether or not there is any echo count and an accompanying, non-trivial PI

value.

The SuperDARN echo count scaling is highest for the December, 2010 dataset; more

SuperDARN echoes were detected in the December dataset than the March dataset. This is

consistent with the earlier described results which showed that more patches were detected

by the RISR-N algorithm during December compared to March, and that more patches

are detected during dark ionosphere conditions compared to sunlit conditions. Another

interesting feature is the drop-off in both SuperDARN echoes and PI at around 05:00 and

12:00 UT in both datasets. In December, there were almost no SuperDARN echoes during

those hours. A very similar trend can be seen in the ne of the patches plotted in Figures 4.10

and 4.11, in which the ne of the patches detected with the RISR-N algorithm decreased

considerably at those times. In the December, 2010 data set, the ne of the patches was rarely

above ne = 1× 1011 m−3 during the 05:00 to 12:00 UT time segment. Even so, the number

of patches during this time segment does not disappear completely, unlike the SuperDARN

echoes.
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Figure 4.22: A plot comparing the PI (black) and the SuperDARN echoes (red)
detected in Rankin Inlet beam 5, as a function of time for March 10, 14, 16, 18, and
19, 2010.

146



Figure 4.23: A plot comparing the PI (black) and the SuperDARN echoes (red)
detected in Rankin Inlet beam 6, as a function of time for December 8, 9, 10, 11, and
12, 2010.

147



The lack of SuperDARN echoes during this time segment, despite the clear presence of

patches, may be due to poor HF radio wave propagation. Recall that in order to have a

HF coherent backscatter echo two conditions must be met: a target in the form of a FAI

must be present in the radar beam; and, the requisite HF propagation conditions that would

allow for the HF beam to sufficiently refract and satisfy the aspect angle condition must

be present [Milan et al., 2002]. Presumably the former is satisfied since patches are present

during this time and are a reliable source of FAIs [Hosokawa et al., 2009a; Moen et al.,

2012]. This leaves the HF propagation condition to consider. SuperDARN Rankin Inlet

was transmitting at approximately 12.5 MHz for the majority of March 10, 14 and 19, and

transmitted at approximately 10.25 MHz for most of March 16 and 18. In December, Rankin

Inlet transmitted at approximately 12.5 MHz for each day except for December 12, when it

transmitted at 10.25 MHz from 0:00 to 16:00 UT. Recall that according to Equation 2.25 the

index of refraction, n = 1− f 2
0 /f

2, is related to both the carrier frequency of the radar wave,

f , and the plasma frequency, f0. For March, 2010, ne = 2× 1011 m−3 is a representative

value for the patches during the 05:00 to 12:00 UT (approximately 22:00 to 05:00 MLT) time

segment. This means the ne of the surrounding ionosphere was at least half that value; the

RISR-N algorithm only picks out ne values that are twice that of the background ionosphere.

This gives [Chen, 2010] n = 1− (8980
√

1× 105)2/(12.5× 106)2 = 0.9 (notice here that ne

is in units of cm−3) for a SuperDARN operating frequency of 12.5 MHz and n = 0.92 for

10.25 MHz. For December, 2010 ne = 1× 1011 m−3 is a representative value, giving n = 0.97

and n = 0.96 for 12.5 MHz and 10.25 MHz Rankin Inlet transmitting frequencies, respectively.

When the ne of the patches detected by the RISR-N algorithm was lower, the ne in the

surrounding area was lower as well – half the ne of the patches, or less, so the HF radar

beam transmitted by SuperDARN would not have undergone as much refraction. Therefore,

one possibility is that the coincidental decline in the ne of patches and disappearance in

SuperDARN echoes during the 05:00 to 12:00 UT time segment was due to the inability of

the HF to achieve enough refraction to satisfy the aspect angle condition.

Admittedly this postulate is somewhat naive since HF ray propagation is a complex

process, as shown in Figure 2.7, and has many subtleties and modes [e.g., Ponomarenko

et al., 2009, and references therein]. For example, if the difference between sufficient and
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insufficient HF propagation is a variation in n as little as 0.05, then we would expect to

have seen some variation in the SuperDARN echo count when the Rankin Inlet transmission

frequency switched from 10.25 MHz to 12.5 MHz at approximately 16:00 UT on December

12, 2010. But, this is not the case. The HF propagation postulate seems plausible, but it

is not conclusive. To proceed further, the intricacies of HF propagation must be taken into

account before a conclusion can be drawn for the data sets presented here. More analysis is

required, and a novel experiment may be necessary. This is discussed further in Section 4.6.3.

4.6.3 Simultaneity of PI and Rankin Inlet echoes

The parameter, Γ, has been developed to provide a more quantifiable way of describing the

simultaneity of patches and SuperDARN echoes in a given SuperDARN beam. For a given

time bin (which is three minutes in length, the duration of a RISR-N scan), and SuperDARN

beam, three cases are considered: both patches and echoes are present; only echoes are

present; or, only patches are present. By definition, Γ is a Boolean-like function, and is

defined as:

Γ =


0 RB · SD +RB · SD

1 RB · SD

−1 RB · SD

, (4.2)

in which ‘+’ is the OR operation, ‘·’ is the AND operation; ‘∗’ is the negation operation.

RB = 1 for any patch count value, i.e., for any non-zero PI value, and SD = 1 for

any SuperDARN echo count value. Equation 4.2 states that at a given time Γ = 0 in two

cases: if a patch and SuperDARN echo are present, or if neither is present. If a patch is

present but a SuperDARN echo is not, Γ = 1. If a patch is not present but a SuperDARN

echo is, Γ = −1.

The premise of Section 4.6 is to explore the interconnection of the patches and Super-

DARN echoes in the polar ionosphere. In this context, Γ = −1 is a crucial case. If the

majority of SuperDARN echoes in the polar ionosphere originate from patches then very few

cases should exist in which SuperDARN echoes are present but patches are not; namely, very
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few occurrences of Γ = −1 should exist. Those cases indicate that SuperDARN echoes are

being generated by some mechanism other than patches and therefore contradict the stated

hypothesis that patches are at the origin of most of the SuperDARN echoes in the polar

ionosphere.

A plot of Γ for the March and December, 2010 datasets is given in Figures 4.24 and 4.25,

respectively. For a majority of the March, 2010 dataset, 60%, Γ = 0, i.e., the majority of

patch and echo cases happened simultaneously. The second most common case was Γ = 1, a

patch was present but without a corresponding SuperDARN echo. This occurred 35% of the

time. As discussed in Section 4.6.2, this may be due to HF propagation conditions, but more

work is needed to test this hypothesis. The rarest case was Γ = −1, for which a SuperDARN

echo was present, but a patch was not. Of the all cases in the March, 2010 dataset, only 5%

were of the Γ = −1 variety. Therefore, it appears that the majority of echoes in Rankin Inlet

beam 5 during March, 2010, originated from FAIs associated with patches.

The day with the most Γ = −1 cases in the March, 2010 dataset was March 10. On closer

inspection, the majority of those cases occurred during the 05:00 to 12:00 UT sector. It is

interesting to note that according the Figure 4.10, there was an increase in patch occurrence

in this time segment (we must keep in mind that Figure 4.10 shows the patch occurrence

for the entire RISR-N FOV, and not just the portion bounded by SuperDARN beam 5). In

other words, there were more patches in the RISR-N FOV during this time segment, but

there were also more Γ = −1 cases in which SuperDARN echoes were present but patches

were not. This is an unexpected result, but may be another byproduct of HF propagation,

which will be discussed shortly. Also, the Γ = −1 cases may be patches with densities that

are just below the Crowley [1996] criterion, e.g., a patch with a ne that is only 1.75 times as

dense as the background ionosphere. This patch may generate FAIs, but would be neglected

by the RISR-N algorithm.

The March and December, 2010 datasets share one common trend: for the majority of

the dataset, 66% in December, Γ = 0. Once again this indicates that patches are indeed a

considerable source of SuperDARN echoes in the polar ionosphere. The major differences

between the two datasets can be found with the Γ = 1 and Γ = −1 cases. As shown in

Figure 4.25, there are very few instances of Γ = 1 – only 10% for the entire dataset. Thus,
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Figure 4.24: A plot of Γ for Rankin Inlet beam 5, as a function of time (UT and
MLT) for March 10, 14, 16, 18, and 19, 2010. The tally for each value of Γ is also
provided.
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Figure 4.25: A plot of Γ for Rankin Inlet beam 6, as a function of time (UT and
MLT) for December 8, 9, 10, 11, and 12, 2010. The tally for each value of Γ is also
provided.
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24% of the SuperDARN echoes (Γ = −1) detected in December, 2010, did not have a patch

associated with them. Like the March dataset, most of these cases occurred in the 05:00 to

12:00 UT time segment. As shown in Figure 4.11, the number of detected patches declined

significantly during this time segment, which is a different result than what was seen with

the March dataset.

Simultaneity of PI and Rankin Inlet echoes: HF propagation

Up to this point when talking of HF propagation we have only focused on the vertical

refraction, i.e., what is displayed in the two dimensional slice in Figure 2.7. We have neglected

the lateral refraction of HF radio waves. In general, refraction can have a significant effect on

determining the location the scattering volume [Villain et al., 1985]. Typically, the position

of a radar target is ascertained using the a priori knowledge of the beam pointing direction

and the delay between the transmission and reception of the radar signal. This is a relatively

straightforward procedure if the transmitted radio wave propagates in a straight path and

does not undergo any significant refraction in the ionosphere. This is the case for ISR radars

since their transmission frequency is well above the plasma frequency of the ionosphere.

But, as explained earlier, in Section 2.2.1, this is not the case for SuperDARN. Its radar

beams refracts in the vertical and the horizontal [e.g., Koustov et al., 2008]. Even though the

propagation delay of the signal can still be determined accurately, uncertainty in the location

the scattering volume is introduced by the mere notion that the ray path is distorted due

to refraction. This is illustrated by the black contours in Figure 2.7, which are range gate

markers along the beam. Closer to the HF ray source, the contours are radially distributed

nearly isotropically. However, at further distances from the ray source, once the HF ray begins

to refract in the modelled ionosphere, the range gate contours become heavily distorted,

showing the increase in location uncertainty for HF radars. The only location information

available is the propagation delay of the radar signal. All other information such as the ne

profile of the ionosphere along the ray path must be inferred [e.g., Gillies et al., 2009; Gillies

et al., 2012], or modelled.

Not only will a HF radar wave refract vertically, it was also refract horizontally, producing

even more uncertainty in the location of the scattering target. A good example of this is given
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by Dahlgren et al. [2012b], who studied a single patch detected with the RISR-N, SuperDARN

Rankin Inlet and OMTI. That work can also be found Chapter 5 of this document. Figure 3

in Dahlgren et al. [2012b], which is reproduced in Figure 5.3 in Chapter 5, demonstrates

the possible effects of refraction of the location accuracy of SuperDARN. The majority of

the patch was located within Rankin Inlet beam 7; a portion of the RISR-N and OMTI

signature were also located in beam 7. What is interesting is that the backscatter power

of the SuperDARN echoes associated with the patch were detected in beams 7, 8 and 9,

but were most enhanced in Rankin Inlet beams 8 and 9 – adjacent to the beams in which

the patch was determined to be by RISR-N and OMTI. This shows that it is possible for

a coherent backscatter signature of an individual patch to appear in multiple SuperDARN

beams as well as range gates. This effect may be a byproduct of horizontal refraction; radar

waves from Rankin Inlet beam 8 and 9 are being refracted into adjacent beams with contain

FAIs generated by the patch. More work is needed to verify this, however. Nonetheless, the

generation of backscatter echoes in the adjacent beams has important implications for Γ as it

would be a case in which Γ = −1. This may provide an explanation for some of the Γ = −1

cases described in Figures 4.24 and 4.25.

Simultaneity of PI and Rankin Inlet echoes: summary and future Work

For the March and December, 2010 datasets, a SuperDARN echo was present without an

associated patch 5% and 24% of the time time in Rankin Inlet beams 5 and 6, respectively.

Although these results do not fully confirm the notion that the majority of SuperDARN

echoes from the polar region originate from patches, they do provide a strong indication that

this may be the case.

At this point in time this study is incomplete. More consideration must be given to the

HF propagation conditions to verify whether the Γ = 1 and Γ = −1 are indeed a byproduct

of HF propagation effects. This can be done by expanding the analyzed datasets to include

echoes from other radars, such as the Inuvik and Clyde River radars. HF ray trace modelling

would also be required. It was mentioned earlier that the Inuvik radar only receives a fraction

of the radar echoes from the RISR-N FOV that the Rankin Inlet radar does. As illustrated

in Figures 2.9 and 4.21, Rankin Inlet and Inuvik have FOVs that are nearly at right angles
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to each other. As it turns out both radars are approximately equidistant from the RISR-

N FOV; each has ground range of approximately 1500 to 2000 km from the RISR-N FOV.

Thus, the discrepancy in echo count between the two radars is a HF propagation effect and as

such should be investigated as it may provide further context to the simultaneity of patches

and echoes detected within the RISR-N FOV. For example, the Inuvik radar can be used

as a secondary confirmation for SuperDARN echoes (or lack thereof) in a scattering region

intersected by the Rankin Inlet radar.

The Clyde River and Rankin Inlet radar FOVs are also at nearly right angles to one

another. As Figure 4.21 illustrates, only a portion of the RISR-N FOV is covered by the

Clyde River FOV. The ground distance between Clyde River and the RISR-N FOV is

approximately 1000 km. This is nearly half the distance between Rankin Inlet/Inuvik and

Resolute Bay, and has important implications in terms of HF propagation considerations.

The HF ray paths from the Rankin Inlet and Inuvik radars are termed “one and a half

hop” paths. For a 1-1/2-hop path, the HF ray propagates up to the ionosphere, refracts

back towards the ground at which point it is reflected back towards the ionosphere where it

undergoes coherent backscatter (assuming there is a FAI present). The HF rays modelled

in Figure 2.7 that satisfy the aspect angle condition at 2000 km ground range are 1-1/2-hop

paths. The Clyde River radar is close enough to the RISR-N FOV that the echoes it receives

from the region are 1/2-hop (“half-hop”) ray paths [G. J. Sofko, personal communication,

2013], meaning that the HF ray is backscattered upon entering the ionosphere for the first

time. The HF rays that satisfy the aspect angle condition at approximately 700 km from the

ray origin in Figure 2.7 are an example of 1/2-hop paths. One important difference between

1/2- and 1-1/2-hop ray paths is that the latter spends more time in the ionosphere, and is

subject to more refraction and dispersion. As a result, the location uncertainty along these

ray paths will inherently be higher than the location uncertainty in the 1/2-hop ray paths.

Clyde River can also be used in conjunction with the Rankin Inlet and Inuvik radars to

confirm the presence of echoes from a common scattering region within the RISR-N FOV.

With all of the aforementioned details in mind an experiment can be performed with the

objective of providing a deeper understanding of the interconnection between SuperDARN

echoes and patches in the polar ionosphere. The RISR-N radar should be run in a mode
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similar to the World Day mode used in March and December, 2010. Furthermore, the radar

should be run continuously for several days at a time. This way, a variety of geomagnetic and

ionospheric conditions may be investigated. Several iterations of these multi-day experiments

should be conducted at different times throughout the year as well, so as to ascertain the

influence of seasonal variations. All three SuperDARN radars in the region: Rankin Inlet,

Clyde River and Inuvik should also be used to detect and confirm the presence of echoes. In

this section, all of the echoes from within the region of the RISR-N FOV bounded by a selected

SuperDARN beam were considered, but there is no reason why smaller or larger regions of

the RISR-N FOV cannot be considered either. If the majority of SuperDARN echoes from

the polar ionosphere are originating from patches, then their simultaneity should be observed

in any portion of the RISR-N FOV explored regardless of its size.

4.7 Summary

In this section, an algorithm designed to detect patches within the RISR-N FOV has been

developed, the RISR-N algorithm, and shown to be an effective tool for detecting and inves-

tigating patches in the polar ionosphere.

In Section 4.4, the algorithm was used to conduct a survey of the patches detected in the

RISR-N FOV over 10 days: March 10, 14, 16, 18 and 19, 2010, and December 8, 9, 10, 11

and 12, 2010. Results of this survey include:

1. The ne of patches varies significantly throughout the day, by as much as an order of

magnitude in some cases, e.g., March 10, 2010. A distribution of patch ne for March

and December, 2010 is given in Figures 4.12.

2. The patch population in a strongly “sunlit” ionosphere is much less than a poorly

illuminated “dark” ionosphere.

3. The December, 2010, dataset has population of patches with a low ne that is not seen in

March, 2010. This distinct population is attributed to greater ne depletion in December

due to the lack of photoionization.
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4. The Ti of patches is relatively consistent throughout a 24 hour period. On average, the

Ti of patches in a strongly sunlit ionosphere is only approximately 100 K higher than

patches in poorly illuminated conditions.

5. The Te varies significantly between strongly and poorly sunlit conditions. The Te of

patches in a strongly sunlit ionosphere is approximately twice as large as the Te of

patches in a poorly illuminated ionosphere.

6. The Te of patches detected in March, 2010, during poorly illuminated conditions is

systematically larger than the Te of patches detected during the same time frame in

December, 2010. The difference in Te was attributed to the increased cooling time of

the electron gas in December, 2010.

In Sections 4.5 and 4.6 a patch index, PI, was introduced to quantify what proportion of

the RISR-N FOV contains a patch. The PI was then used to investigate the interconnection

of SuperDARN echoes originating of the polar ionosphere and patches. With the same

datasets used in Section 4.4, it was determined that the occurrence of SuperDARN echoes

measured by Rankin Inlet are strongly linked to the presence of patches in its FOV. For

March, 2010, only 5% of the dataset featured SuperDARN echoes that did not appear to be

associated with a patch. 60% of the echoes were associated with patches. For December,

2010, those numbers were 25% and 66%, respectively. However, more work is need to gauge

the influence of HF propagation on these results, and is left for future work.

4.8 Future work

In addition to the future work discussed in Section 4.6.3, there are additional avenues of

investigation that should be discussed.

Other patch trends which were not discussed in this chapter should be explored using the

RISR-N algorithm, and are left for future work. One such avenue of inquiry includes investi-

gating the many ne variations observed through the March and December, 2010 datasets. In

some instances, such as December 10, 2010, the patch ne variations appear to be sinusoidal

with a fixed frequency. What is driving the ne of patches to exhibit this pattern? Are these
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variations due to a local effect; are alterations in the background ionosphere or thermosphere

being reflected in the ne of the patches? Or, are these oscillations related to the orientation

of the IMF, which is strongly coupled to the polar-cap plasma convection pattern (see Fig-

ure 1.15) [Weimer , 1995]? Milan et al. [2002] proposed that the movement from the polar

cusp may be a moderator in the ne of patches entering the polar-cap. Are we witnessing the

results of this effect?

The RISR-N algorithm should be modified to include an estimate on the size and shape

of a detected patch. It its current state, the RISR-N algorithm does not attempt to compare

patch detections in adjacent beams. Since the RISR-N beam configuration is static and well

known, it should be possible to infer the shape and size of a patch detected in the RISR-N

FOV. This would require the development of a sophisticated algorithm that would compare

patch detections in one RISR-N beam to any beam adjacent to it, and so forth. If successful,

a survey could be conducted to infer the general shape and size of patches passing through

the RISR-N FOV. Admittedly some patch shapes may extend beyond the RISR-N FOV

itself. Nonetheless, if the algorithm is successful it could be used to study whether the size

and shape of patches is linked to any other geomagnetic or IMF conditions.
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Chapter 5

Structuring and Morphology of F-region Ion-

ization Patches

5.1 Introduction

In this chapter, emphasis is placed on the internal structuring and morphology of F-region

ionization patches as they convect through the high-latitude and polar-region. This chapter

features a thorough investigation of an individual patch detected over Resolute Bay by the

RISR-N system, two SuperDARN radars, and the OMTI imager at Resolute Bay. Patches

are a well-know source of plasma irregularities, with the GDI instability as their source (see

Section 2.2.2). By amalgamating the data from multiple instruments, several aspects of the

patch can be monitored as it convects through the ionosphere. For example, irregularities

associated with the patch can be investigated by monitoring the coherent backscatter power,

or spectral width properties of the of the patch, with SuperDARN. This data can then be

complemented by any plasma density or temperature variations detected by RISR-N. Using

multi-instrument analysis techniques in the case study presented here, it becomes clear that

F-region ionization patches can be extremely complex and dynamic features of the nighttime

ionosphere.

The research presented in this chapter was performed alongside Dr. Hanna Dahlgren,

currently at the University of Southampton. Its results are presented in Dahlgren et al.

[2012b]. My participation in this research included compiling and interpreting all of the

SuperDARN related data, some of which is plotted in Figures 5.2, 5.3, 5.4, 5.5, 5.8 and 5.12.

Figures 5.2, 5.4 and 5.8 were generated by me. In addition to this, I helped author and edit

large portions of the manuscript for Dahlgren et al. [2012b].
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5.2 Previous multi-instrument investigations

Historically, optical imager experiments have been a popular method for patch observations.

Due to their large plasma density gradients and speed, patches are subject to the GDI

[Chaturvedi and Ossakow , 1981; Moen et al., 2002, 2012]. The irregularities produced from

the GDI may set-up a Bragg scattering condition, allowing the patches to be detected outside

of the optical spectrum, at radio frequencies, by coherent scatter radar systems [e.g., Rodger

et al., 1994; Milan et al., 2002; Carlson et al., 2002; Carlson, 2004; Lockwood et al., 2005;

Zhang et al., 2011; Hosokawa et al., 2010]. Incoherent scatter radar systems [Moen et al., 2006;

Smith et al., 2000], ionosondes [MacDougall and Jayachandran, 2007], riometers [Nishino

et al., 1998] and rocket-borne instruments [Lorentzen et al., 2010] have all contributed to

patch research as well. The majority of early patch research only features data from individual

instruments. To test the self-consistency of our understanding about dynamic processes at

work within and around patches, multi-instrument observations are crucial. Recently, the

scientific community has placed more emphasis on the high-latitude and polar cap region,

investing in new scientific instrumentation there. Within the last decade, the installation

of several all-sky imagers at Resolute Bay, like the OMTI, two SuperDARN sites at Rankin

Inlet, Inuvik and Clyde River, and the installation of the RISR-N (as well as RISR-C, which

is expected to be operational soon), has increased the opportunity to conduct patch research

using a variety of complementary instruments.

Multi-instrument observations of polar cap patches have been carried out by for example

Carlson [2004]; Carlson et al. [2006]. In the patch case-study by Lorentzen et al. [2010]

observations from a meridian scanning photometer (MSP), rocket borne instrumentation

and the European Incoherent Scatter (EISCAT) Svalbard Radar (ESR), as well as derived

ionospheric convection patterns from the SuperDARN radars were featured. The use of

multiple instruments in that study culminated in a significant contribution to patch research:

compelling evidence of a strong link between fast convection flows on the edges of a Poleward

Moving Auroral Form (PMAF) near the cusp region, and the formation of polar cap patches.

The PMAF was observed optically with the MSP, the ESR and rocket were used to measure

the plasma density of the PMAF, and the SuperDARN radar was used to infer plasma flows
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in and around the PMAF and patches. It is important to note that each of the instruments

used in this work offered unique and complementary measurements.

Some studies have shown that radar echoes are often stronger on the trailing edge of a

patch, attributing this to the notion that GDI growth conditions are more favorable there

[Milan et al., 2002; Cerisier et al., 1985]. Observations of multiple patches made both op-

tically and with the Rankin Inlet SuperDARN data by Hosokawa et al. [2009b], found no

evidence to support this. The radar echoes corresponded well with the optical emissions,

even though the lifetime of the patch was shorter than the time needed for the GDI to spread

through the patch. A process to account for this discrepancy was presented by Carlson et al.

[2008], who argued that shear-driven instabilities could rapidly structure the patch during

its formation, which was also supported by their measurements.

The complexity and dynamic properties of polar cap patches necessitate a systematic

approach for their investigation. Previous work gives credence to the value of using multiple

instruments for patch studies. However, each instrument is often limited to measurements

in one or two dimensions. In the work presented here, we continue to develop the multi-

instrument approach by combining patch measurements from an ISR, a coherent scatter

radar and optical instruments. The fast beam-steering technique of the phased-array RISR-

N provides a novel three-dimensional view of the plasma parameters in a polar cap patch.

This technique was demonstrated on a polar cap patch by Dahlgren et al. [2012a], who dis-

cussed that multiple time-dependent mechanisms can lie behind the high degree of structuring

seen in the electron density of the patch. In this chapter, we expand on those results, by

further investigating the same event, with more depth and a more extensive suite of instru-

mentation. Reminiscent of the combined observations by Hosokawa et al. [2009b] of a patch

with SuperDARN and an all-sky imager, where a good correlation between the HF echoes

and the optical response was found, we use the RISR-N radar to obtain data on the actual

electron density in the polar cap, to compare with SuperDARN echoes, and optical images.

The advantages of direct electron density measurements for polar cap studies are many. In-

stead of projecting line-of-sight integrated optical emissions onto a two-dimensional plane,

which does not always reflect the true location of the denser plasma, a three-dimensional

distribution of the electron density can be obtained. The observations are also not weather-
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dependent. Previous probing of the plasma properties in the polar cap by ISRs have been

conducted by the EISCAT Svalbard Radar and the Sondrestrom radar, during slow azimuth

or elevation scans [e.g., Carlson et al., 2002; Valladares et al., 1998]. With the capabilities

of the RISR-N radar, the probing is no longer limited to two dimensions, and data can be

captured simultaneously from all beam directions.

At 22:10 UT on December 11, 2009, a patch was observed for approximately 10 minutes

with both the OMTI and RISR-N instruments. At the same time, and in the same region,

radar echoes consistent with a patch were detected by both the SuperDARN sites at Rankin

Inlet and Saskatoon. The combined data sets allowed for detailed investigation of the iono-

spheric properties of the patch, and a high degree of intrinsic structuring and variability was

indicated in the patch.

5.3 Instrumentation and analysis techniques

The instrumentation used in this study consists of incoherent and coherent scatter radars

and all-sky imagers, which are detailed below.

5.3.1 RISR-N

RISR-N was introduced in detail in Section 2.1.1. In this study, RISR-N was operating a

480 µs long pulse experiment, limiting the line-of-sight range resolution to 72 km. The radar

was pointed in a 5 × 5 beam grid, with a beam separation of 14◦ on average, corresponding

to a coverage of about 300 × 400 km at an altitude of 300 km. The pointing directions of

the beams are illustrated in Figure 5.1, as small rings overplotted on one of the 630.0 nm

OMTI images during the time of the event discussed further below. The geographic cardinal

directions as well as the radar beam elevation angle are marked by white dashed lines in the

figure. By using a trilinear interpolation technique of the data (illustrated in Dahlgren et al.

[2012a]), based on the techniques described in Nicolls et al. [2007] and Semeter et al. [2009],

a volumetric image of the plasma parameters is obtained at 1 minute resolution.
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dimensional distribution of the electron density can be
obtained. The observations are also not weather-dependent.
Previous probing of the plasma properties in the polar cap by
ISRs have been conducted by the EISCAT Svalbard Radar
and the Sondrestrom radar, during slow azimuth or elevation
scans [e.g., Carlson et al., 2002; Valladares et al., 1998].
With the capabilities of the RISR-N radar, the probing is no
longer limited to two dimensions, and data can be captured
simultaneously from all beam directions.
[9] At 22:10 UT on December 11, 2009, a patch was

observed for approximately 10 minutes with both the OMTI
and RISR-N instruments. At the same time, and in the same
region, radar echoes consistent with a patch were detected by
both the SuperDARN sites at Rankin Inlet and Saskatoon.
The combined data sets allowed for detailed investigation of
the ionospheric properties of the patch, and a high degree of
intrinsic structuring and variability was indicated in the
patch, suggesting that the patch was subject to an internal
redistribution of plasma during its transit across the polar
cap.

2. Instrumentation and Analysis Techniques

[10] The instrumentation used in this study consists of
incoherent and coherent scatter radars and all-sky imagers,
which are detailed below:

2.1. RISR-N
[11] The northward-looking Resolute Bay Incoherent

Scatter Radar, RISR-N, located in Resolute Bay, Canada
(74.7!N, 265.1!E, 83.6!N MLAT), is a modulated phased
array radar operated at 449 MHz. Utilizing a beam-steering
technique, the pointing direction of the radar can be changed

on a pulse-to-pulse basis, providing simultaneous measure-
ments of the polar cap ionosphere in multiple directions
when integrating the data over seconds or more. For the data
in this study a 480 ms long pulse experiment was run, lim-
iting the line-of-sight range resolution to 72 km. The radar
was pointed in a 5 " 5 beam grid, with a beam separation of
14! on average, corresponding to a coverage of about 300 "
400 km at an altitude of 300 km. The pointing directions of
the beams are illustrated in Figure 1, as small rings over-
plotted on one of the OI 630.0 nm OMTI images during the
time of the event discussed further below. The geographic
cardinal directions as well as the radar beam elevation angle
are marked by white dashed lines in the figure. By using a
trilinear interpolation technique of the data (illustrated in
Dahlgren et al. [2012]), based on the techniques described
in Nicolls et al. [2007] and Semeter et al. [2009], a volu-
metric image of the plasma parameters is obtained at 1 min-
ute resolution.

2.2. SuperDARN Data
[12] The HF SuperDARN radars [Greenwald et al., 1995;

Chisham et al., 2007] at Rankin Inlet (62.8!N, 287.0!E),
Prince George (54.0!N, 237.4!E), Saskatoon (52.2!N,
253.5!E) and Inuvik (68.4!N, 226.5!E) monitor coherent
backscatter from the northern polar cap. SuperDARN radars
operate between 8 and 20 MHz. For the times from which
the radar data was used, the Rankin Inlet radar was operating
at 12.2 MHz, the Prince George radar at 10.7 MHz, the
Saskatoon radar at 10.8 MHz and the Inuvik radar at
10.5 MHz. Each SuperDARN radar is capable of electronic
beam-steering over an azimuth of approximately 55! that is
divided into 16 beams. Each beam is subdivided radially into
100 range gates with a radial resolution of 45 km. These
SuperDARN radar field-of-views (FOVs) encompass Reso-
lute Bay, providing backscatter power and line-of-sight
velocity estimates with a temporal resolution of 2 min. The
FOVs of the four SuperDARN radars are outlined in black in
Figure 2, with Rankin Inlet in the center (data colored with
gray scale), Saskatoon to the top left (green scale), Prince
George to the top center (blue scale) and Inuvik to the top
right (red scale).The RISR-N FOV at 270 km altitude is
outlined with a red tetragon. The Prince George radar also
monitors a region encompassing the cusp during the event
discussed here.

2.3. Airglow Imagers
[13] One of the OMTI airglow all-sky imagers is located

in Resolute Bay. The imager was developed by the Solar-
Terrestrial Environment Laboratory, Nagoya University
[Shiokawa et al., 1999; Hosokawa et al., 2006; Shiokawa
et al., 2009], and captures a 30 s exposure in 630.0 nm
every 2 min and regularly 30 s exposures in 557.7 nm. The
630.0 nm red channel is background corrected, by subtract-
ing a one-hour running average for increased contrast. Due
to gaps in the imaging sequence, a similar correction cannot
be made for the green 557.7 nm channel. Additional 3 s
exposures of N2

+ at 427.8 nm every 30 s were provided by
the NASCAM (Narrow-band All-Sky Camera for Auroral
Monitoring) imager owned by the University of Calgary and
installed in Resolute Bay.
[14] Data from an all-sky imager installed in Qaanaaq,

Greenland (77.5!N, 290.8!E, 85.1!N MLAT) operated by

Figure 1. OMTI 630.0 nm image on 11 December 2009, at
22:10 UT. The overplotted small rings show the pointing
directions of the 5 " 5 RISR-N beam grid. White dashed
lines mark the geographical cardinal directions and elevation
angles. The arrow in the bottom right corner shows the gen-
eral drift direction of the patches from their formation region
and through the zenith at Resolute Bay.
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Figure 5.1: OMTI 630.0 nm image on 11 December 2009, at 22:10 UT. The over-
plotted small rings show the pointing directions of the 5× 5 RISR-N beam grid. White
dashed lines mark the geographical cardinal directions and elevation angles. The arrow
in the bottom right corner shows the general drift direction of the patches from their
formation region and through the zenith at Resolute Bay.

5.3.2 SuperDARN data

The SuperDARN radars at Rankin Inlet (62.8◦N, 287.0◦E), Prince George (54.0◦N, 237.4◦E),

Saskatoon (52.2◦N, 253.5◦E) and Inuvik (68.4◦N, 226.5◦E) monitor coherent backscatter from

the northern polar cap. For the times from which the radar data was used, the Rankin Inlet

radar was operating at 12.2 MHz, the Prince George radar at 10.7 MHz, the Saskatoon

radar at 10.8 MHz and the Inuvik radar at 10.5 MHz. Each SuperDARN radar is capable

of electronic beam-steering over an azimuth of approximately 55◦ that is divided into 16

beams. Each beam is subdivided radially into 100 range gates with a radial resolution of

45 km. These SuperDARN radar field-of-views (FOVs) encompass Resolute Bay, providing

backscatter power and line-of-sight velocity estimates with a temporal resolution of 2 minutes.

The FOVs of the four SuperDARN radars are outlined in black in Figure 5.2, with Rankin

Inlet in the center (data colored with grayscale), Saskatoon to the top left (greenscale), Prince
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the U.S. Air Force Research Laboratory are also available
for this study. The imager captures 55 s exposures in the red
line, at 630.0 nm. The FOV is partly overlapping with the
FOV of the OMTI and NASCAM imagers, so that it is
possible to continue monitoring the patches as they move
out of the range of OMTI.

3. Observations

[15] The polar cap density enhancements discussed in this
paper were observed on 11 December 2009, during a very
quiet (Kp = 0) period of negative IMF Bz, and negative and
positive IMF By and Bx, respectively. Faint plasma struc-
tures which drifted anti-sunward from their formation region
into the polar cap were seen during a time period of a couple
of hours following 18 UT. A snapshot of the structures at
630.0 nm taken with the OMTI imager at 22:10:36 UT is
shown in Figure 1. The patches come into the FOV from the
bottom right corner (geographic south-west) and then drift
anti-sunward across the FOV to the north-east. The general
direction of the drift is marked in the image with an arrow.
[16] One of the patches drifted through the RISR-N FOV

around 22:13 UT, producing enhanced echoes in both the
incoherent and coherent scatter radars. Figure 2 shows the
SuperDARN power returns at this time, with data from
the Saskatoon, Prince George and Rankin Inlet radar. All
three color scales are normalized to 30 dB. A stronger echo
(darker region) can be seen in the Rankin Inlet data colo-
cated with the RISR-N FOV. The white regions do not
necessarily signify the absence of a radar echo, but are most
likely due to problems with the fitting of the measured sig-
nal, due to low signal-to-noise ratio. Figure 3 shows the

correlation between the electron density as measured by
RISR-N in a horizontal slice at 270 km altitude (plotted as
colored contours in the figure) and the power echo measured
by the Rankin Inlet SuperDARN radar (gray scale) at the
same time. An enhancement in red line emission could also
be detected in the OMTI data, and the location of the emis-
sion is marked in the magnified image by a white dashed
oval. In Figure 4, range-time plots for backscatter power,
velocity and spectral width, from the Rankin Inlet and
Saskatoon SuperDARN radar are given. In the former, a
transient backscatter power feature – consistent with a patch –
can be seen just after 21:50 UT, drifting in a magnetic
poleward direction. A similar feature is coincidentally detec-
ted by the Saskatoon radar.
[17] A three-dimensional composite of horizontal and

vertical slices from the RISR-N data is displayed in Figure 5
for this patch. The slices at 340 km, 250 km and the vertical
slice are produced by extracting cuts of the trilinear inter-
polation of the radar electron density measurements. The
positions of the radar beams are marked on each horizontal
slice as black circles. This method of visualization and a
discussion of the RISR-N data for this particular event has
been previously presented in Dahlgren et al. [2012]. The
structure has a peak electron density of 1.5 ! 1011 m"3,
close to 250 km in altitude. The contemporary 630.0 nm
OMTI image is mapped to 200 km altitude rather than
250 km, to keep the figure from being cluttered. The emis-
sion ratio brightness of signal over average background is
given by the horizontal color bar at the bottom of the figure.
The optical enhancements correspond to the location of the
plasma structures seen in the radar data. The coherent scatter

Figure 2. Backscatter power echo fan plot from the SuperDARN radars at Rankin Inlet (gray scale, in
center), Saskatoon (green scale, top left), Prince George (blue scale, top center) and Inuvik (red scale,
top right), at 22:13 UT. The full FOV of the radars are indicated by black lines. The red tetragon marks
the FOV of RISR-N data at 270 km altitude. The patch of particular interest is seen here with the Rankin
Inlet radar, within the FOV of RISR-N. Resolute Bay and Qaanaaq are indicated by a red dot and star,
respectively. The direction of the Sun is up in the figure.
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Figure 5.2: Backscatter power echo fan plot from the superDARN radars at Rankin
Inlet (gray scale, in center), Saskatoon (green scale, top left), Prince George (blue scale,
top center) and Inuvik (red scale, top right), at 22:13 UT. The full FOV of the radars
are indicated by black lines. The red tetragon marks the FOVs of RISR-N data at
270 km altitude. The patch of particular interest is seen here with the Rankin Inlet
radar, within the FOV of RISR-N. Resolute Bay and Qaanaaq are indicated by a red
dot and star, respectively. The direction of the sun is up in the figure.

George to the top center (bluescale) and Inuvik to the top left (redscale). The RISR-N FOV

at 270 km altitude is outlined with a red tetragon. The Prince George radar also monitors a

region encompassing the cusp during the event discussed here.

5.3.3 Optical imager

One of the OMTI airglow all-sky imagers is located in Resolute Bay. The imager captures a

30 s exposure in 630.0 nm every 2 minutes and regularly 30 s exposures in 557.7 nm. The

630.0 nm red channel is background corrected, by subtracting a one-hour running average

for increased contrast. Due to gaps in the imaging sequence, a similar correction cannot be
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made for the green 557.7 nm channel. Additional 3 s exposures of N+
2 at 427.8 nm every

30 s were provided by the NASCAM (Narrow-band All-Sky Camera for Auroral Monitoring)

imager owned by the University of Calgary and installed in Resolute Bay.

Data from an all-sky imager installed in Qaanaaq, Greenland (77.5◦N, 290.8◦E, 85.1◦N

MLAT) operated by the U.S. Air Force Research Laboratory are also available for this study.

The imager captures 55 s exposures in the red line, at 630.0 nm. The FOV is partly overlap-

ping with the FOV of the OMTI and NASCAM imagers, so that it is possible to continue

monitoring the patches as they move out of the range of OMTI.

5.4 Observations

The polar cap density enhancements discussed in this paper were observed on 11 December

2009, during a very quiet (Kp = 0) period of negative IMF Bz, and negative and positive

IMF By and Bx, respectively. Faint plasma structures which drifted anti-sunward from their

formation region into the polar cap were seen during a time period of a couple of hours

following 18:00 UT. A snapshot of the structures at 630.0 nm taken with the OMTI imager

at 22:10:36 UT is shown in Figure 5.1. The patches come into the FOV from the bottom right

corner (geographic southwest) and then drift anti-sunward across the FOV to the northeast.

The general direction of the drift is marked in the image with an arrow.

One of the patches drifted through the RISR-N FOV around 22:13 UT, producing en-

hanced echoes in both the incoherent and coherent scatter radars. Figure 5.2 shows the

SuperDARN power returns at this time, with data from the Saskatoon, Prince George and

Rankin Inlet radar. All three color scales are normalized to 30 dB. A stronger echo (darker

region) can be seen in the Rankin Inlet data colocated with the RISR-N FOV. The white

regions do not necessarily signify the absence of a radar echo, but are most likely due to

problems with the fitting of the measured signal, due to low signal-to-noise ratio. Figure 5.3

shows the correlation between the electron density as measured by RISR-N in a horizontal

slice at 270 km altitude (plotted as colored contours in the figure) and the power echo mea-

sured by the Rankin Inlet SuperDARN radar (grayscale) at the same time. An enhancement

in red line emission could also be detected in the OMTI data, and the location of the emission
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from the SuperDARN radar is then plotted at 300 km
altitude. The strongest echo (up to 30 dB, color bar to the
left in the figure) comes from the region to the north-east of
the vertical slice, partly overlapping the RISR-N plasma
structure.

[18] The structure at 22:13 UT is seen in the optical data to
arrive from the cusp region (the identification of the cusp
will be discussed shortly) and then drift anti-sunward and
through the RISR-N FOV at a constant speed. Figure 6 (top)

Figure 4. (a) Range-time intensity plot of beam 7 of the SuperDARN radar at Rankin Inlet (top). The
latitude of the center of the RISR-N FOV is marked as a black line. (middle) The line-of-sight Doppler
velocity and (bottom) the spectral width. (b) Same format as in Figure 4a for data from beam 6 of the
Saskatoon radar.

Figure 3. RISR-N electron density contour is plotted in color on top of gray scale SuperDARN echoes.
The FOV of RISR-N is outlined by a dashed black line. The coherent scatter in SuperDARN is seen next
to the plasma density structure. The white dashed oval in the enlarged figure to the right indicates the
location of the optical patch seen with the 630 nm channel on OMTI.
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Figure 5.3: RISR-N electron density contour is plotted in color on top of gray scale
SuperDARN echoes. The FOV of RISR-N is outlined by a dashed black line. The
coherent scatter in SuperDARN is seen next to the plasma density structure. The white
dashed oval in the enlarged figure to the right indicates the location of the optical patch
seen with the 630 nm channel on OMTI.

is marked in the magnified image by a white dashed oval. In Figure 5.4, range-time plots

for backscatter power, velocity and spectral width, from the Rankin Inlet and Saskatoon Su-

perDARN radar are given. In the former, a transient backscatter power feature – consistent

with a patch – can be seen just after 21:50 UT, drifting in a magnetic poleward direction. A

similar feature is coincidently detected by the Saskatoon radar.

A three-dimensional composite of horizontal and vertical slices from the RISR-N data is

displayed in Figure 5.5 for this patch. The slices at 340 km, 250 km and the vertical slice

are produced by extracting cuts of the trilinear interpolation of the radar electron density

measurements. The positions of the radar beams are marked on each horizontal slice as

black circles. This method of visualization and a discussion of the RISR-N data for this

particular event has been previously presented in Dahlgren et al. [2012a]. The structure has

a peak electron density of 1.5 × 1011 m−3, close to 250 km in altitude. The contemporary

630.0 nm OMTI image is mapped to 200 km altitude rather than 250 km, to keep the figure

from being cluttered. The emission ratio brightness of signal over average background is given

by the horizontal colorbar at the bottom of the figure. The optical enhancements correspond

to the location of the plasma structures seen in the radar data. The coherent scatter from
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from the SuperDARN radar is then plotted at 300 km
altitude. The strongest echo (up to 30 dB, color bar to the
left in the figure) comes from the region to the north-east of
the vertical slice, partly overlapping the RISR-N plasma
structure.

[18] The structure at 22:13 UT is seen in the optical data to
arrive from the cusp region (the identification of the cusp
will be discussed shortly) and then drift anti-sunward and
through the RISR-N FOV at a constant speed. Figure 6 (top)

Figure 4. (a) Range-time intensity plot of beam 7 of the SuperDARN radar at Rankin Inlet (top). The
latitude of the center of the RISR-N FOV is marked as a black line. (middle) The line-of-sight Doppler
velocity and (bottom) the spectral width. (b) Same format as in Figure 4a for data from beam 6 of the
Saskatoon radar.

Figure 3. RISR-N electron density contour is plotted in color on top of gray scale SuperDARN echoes.
The FOV of RISR-N is outlined by a dashed black line. The coherent scatter in SuperDARN is seen next
to the plasma density structure. The white dashed oval in the enlarged figure to the right indicates the
location of the optical patch seen with the 630 nm channel on OMTI.
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Figure 5.4: a) Range-Time intensity plot of Beam 7 of the SuperDARN radar at
Rankin Inlet (top). The latitude of the center of the RISR-N FOV is marked as a black
line. (middle) The line-of-sight Doppler velocity and (bottom) the spectral width. b)
Same format as in a, for data from Beam 6 of the Saskatoon radar.

the SuperDARN radar is then plotted at 300 km altitude. The strongest echo (up to 30 dB,

colorbar to the left in the figure) comes from the region to the northeast of the vertical slice,

partly overlapping the RISR-N plasma structure.

The structure at 22:13 UT is seen in the optical data to arrive from the cusp region

(the identification of the cusp will be discussed shortly) and then drift anti-sunward and

through the RISR-N FOV at a constant speed. The top panel of Figure 5.6 shows the OMTI

meridian-aligned keogram for the time period 22:00 – 24:00 UT, where each slanted structure

illustrates a poleward drift. The middle and bottom panels show the derived average velocity

and direction of the optical enhancements as they pass the zenith of the OMTI imager. At

22:00 UT the structures have an optically measured velocity of close to 300 m/s, in the

northeast direction. The speed then increases and the direction becomes more eastward.
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shows the OMTImeridian-aligned keogram for the time period
22–24 UT, where each slanted structure illustrates a poleward
drift. The middle and bottom panels show the derived average
velocity and direction of the optical enhancements as they pass
the zenith of theOMTI imager. At 22UT the structures have an
optically measured velocity of close to 300 m/s, in the north-
east direction. The speed then increases and the direction
becomes more eastward. This is consistent with the plasma
velocity vectors in the region as constructed from data from the
SuperDARN network of HF radars for the same segment of
time.
[19] The faint 630.0 nm emissions are also visible in the

all-sky data from Qaanaaq, Greenland. At this time, Qaanaaq
is located anti-sunward of Resolute Bay and there is some
overlap in the FOVs of this imager and the OMTI imager,
but unfortunately it was not possible to track a specific
patch through both imagers. Even so, red line emission could
be seen drifting in the north-east (anti-sunward) direction

through the Qaanaaq imager (J. M. Holmes, private com-
munication, 2012).

4. Discussion

[20] In this paper we present simultaneous coherent and
volumetric incoherent scatter measurements of polar cap
irregularities. The results are compared with optical all-sky
measurements in order to clarify the dynamic evolution of
polar cap patches, and investigate their intrinsic variability.
The weak structures (electron densities of the order of
1011 m!3) seen to drift through the RISR-N FOV have
spatial sizes of about 100 km " 100 km " 100 km, which is
small for typical polar cap patches. Similar horizontal sizes
are measured from the optical data. The emissions are also
very faint, with brightnesses in the all-sky data of only up to
300 R in 630.0 nm and 50 R in 557.7 nm. The NASCAM
imager shows no or very faint emission in the N2

+ 427.8 nm

Figure 5. Three-dimensional view of an F region plasma density structure. The slices at 350 km and
250 km as well as the vertical slice show the electron density as derived from RISR-N data. The location
of the radar beams are marked as black circles on the horizontal slices. At 300 km altitude, the Super-
DARN echo is shown. The simultaneous 630.0 nm OMTI image is projected to 200 km altitude, for which
the emission brightness over the background level is indicated with the color bar below the combined plot.
Optical signatures are seen in the location of plasma density enhancements, whereas the coherent echo
from SuperDARN is strongest to the side of the plasma structure.
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Figure 5.5: Three-dimensional view of an F-region plasma density structure. The
slices at 350 km and 250 km as well as the vertical slice show the electron density
as derived from RISR-N data. The location of the radar beams are marked as black
circles on the horizontal slices. At 300 km altitude, the SuperDARN echo is shown.
The simultaneous 630.0 nm OMTI image is projected to 200 km altitude, for which
the emission brightness over the background level is indicated with the colorbar below
the combined plot. Optical signatures are seen in the location of plasma density en-
hancements, whereas the coherent echo from SuperDARN is strongest to the side of the
plasma structure.

This is consistent with the plasma velocity vectors in the region as constructed from data

from the SuperDARN network of HF radars for the same segment of time.

The faint 630.0 nm emissions are also visible in the all-sky data from Qaanaaq, Greenland.

At this time, Qaanaaq is located anti-sunward of Resolute Bay and there is some overlap in

the FOVs of this imager and the OMTI imager, but unfortunately it was not possible to track

a specific patch through both imagers. Even so, red line emission could be seen drifting in

the northeast (anti-sunward) direction through the Qaanaaq imager (J. M. Holmes, private

communication, 2012).
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wavelength region at around 22 UT, which indicates that
there is no significant electron precipitation in the polar cap
at this time. The structures in the OMTI imager data appear
to originate close to the poleward edge of the auroral oval
and drift poleward.

4.1. Correlation Between Coherent, Incoherent,
and Optical Data
[21] The location of the optical signatures in OMTI cor-

respond well to the enhancements seen in RISR-N for the
few hours of contemporary measurements in the two data
sets. The coherent backscatter power data from Rankin Inlet
SuperDARN radar are indicative of patches in this region
during the same time period. In Figure 3, the strongest
coherent scatter signal originates from the range gates adja-
cent to the plasma enhancement seen within the RISR-N
FOV. The OMTI all-sky data show a faint optical signature
collocated with the RISR-N enhancement at this time. An
enlargement of the region of interest is shown in Figure 3,
where the location of the optical structure has been marked
with a white dashed oval. This comparison shows that the
optical structure seen in OMTI overlaps well with the
RISR-N structure, and both features straddle two beams
(beams 7 and 8) in the SuperDARN FOV, with the strongest
echo found in beam 8.
[22] Field aligned irregularities (FAIs) likely produced by

the gradient drift instability (GDI) in the plasma set up the
Bragg scattering conditions required for coherent backscat-
ter. These FAIs are closely associated with polar cap patches
[e.g.,Weber et al., 1984; Rodger et al., 1994b; Ogawa et al.,
1998; Hosokawa et al., 2009b]. An asymmetry between the

irregularity intensity on the leading and trailing edge of a
patch is a common feature in patch observations [Milan et al.,
2002; Cerisier et al., 1985]. This has been used to infer
stronger structuring on the trailing edge and weaker struc-
turing on the leading edge of a patch. The GDI is least sta-
bilized where the E ! B velocity of the patch is parallel to
the density gradient of the patch, and most stabilized when
the E ! B velocity of the patch is anti-parallel to the density
gradient of the patch. It is therefore expected that the FAI
intensity and thus the backscatter power would be higher on
the trailing edge of patches [Cerisier et al., 1985]. This
explanation for the observed asymmetry was further rein-
forced by Milan et al. [2002], who used the CUTLASS
SuperDARN radar in Finland together with an ionosonde
located on Svalbard to investigate the structuring of polar
cap patches near the cusp. Hosokawa et al. [2009b] per-
formed combined SuperDARN radar and all-sky optical
measurements on several patches over Resolute Bay. The
radar data showed decameter-scale FAIs extending over all
of the optically observed polar cap patches, with no prefer-
ence for the patch edges – contradicting the supposed FAIs
preference for the trailing edge of a patch. In their work,
Milan et al. [2002] and Ogawa et al. [1998] speculated that
FAI structuring is distributed along the trailing edge of a
patch shortly after the formation of the patch. The FAIs then
spread over the entire patch during its travel through the polar
cap. This was supported by numerical three-dimensional
simulations of the nonlinear evolution of instabilities and
show that FAI structuring penetrates through the entire patch
over a time period of about one hour after its formation
[Gondarenko and Guzdar, 2004], beginning at the trailing
edge of the patch. The patches studied by Hosokawa et al.
[2009b] were estimated to be only 20–25 min old as they
entered the all-sky FOV at Resolute Bay, and were found to
be almost fully structured. In other work, in-situ measure-
ments of 18 patches in the polar cap region by the Dynamics
Explorer 2 spacecraft showed that the majority of those pat-
ches were either fully structured or were structured at the
edges, regardless of the distance between the patch and the
cusp where they are believed to have formed [Kivanç and
Heelis, 1997]. Thus there does not appear to be any con-
nection between the spread of FAIs throughout the patch, and
the proximity of the patch to the region of its formation. It has
also been suggested that auroral particle precipitation in the
cusp can give rise to km scale plasma structuring, onto which
the GDI can operate [Kelley et al., 1982; Moen et al., 2012].
Oksavik et al. [2010] pointed out that polar patches may
undergo substantial rotation as they travel, constantly re-
defining the trailing edge of the patch, increasing the rate at
which FAIs occupy the entire patch. In a recent paper by
Carlson et al. [2008], a possible explanation was offered: a
velocity-shear instability may rapidly structure a patch as it is
formed, upon which the GDIs then grow. SuperDARN
observations were used to support this new mechanism by
showing several cases of flow shear in the region where
patches were formed. However, no clear evidence of velocity
flow shears was detected in the cusp region probed by the
Prince George SuperDARN radar during the present event.
[23] The location of the cusp is estimated from the plasma

velocity plot in Figure 7 as the region where the drift velocity
arrows turn and change from a sunward to an anti-sunward
direction, near 75"NMLAT and 12:30 MLT. This location is

Figure 6. (top) OMTI 630.0 nm keogram along the merid-
ian for the times 22–24 UT. (middle and bottom) The drift
velocity of the optical enhancements and their drift angle
(east of north), where north is 0 degrees. The structures are
drifting predominantly north east, with a velocity of 300–
400 m/s.
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Figure 5.6: (top) OMTI 630.0 nm keogram along the meridian for the times 22:00
- 24:00 UT. (middle and bottom) The drift velocity of the optical enhancements, and
their drift angle (east of north), where north is 0 degrees. The structures are drifting
predominantly north east, with a velocity of 300 - 400 m/s.

5.5 Discussion

We present simultaneous coherent and volumetric incoherent scatter measurements of polar

cap irregularities. The results are compared with optical all-sky measurements in order to

clarify the dynamic evolution of polar cap patches, and investigate their intrinsic variability.

The weak structures (electron densities of the order of 1011 m−3) seen to drift through the

RISR-N FOV have spatial sizes of about 100 km × 100 km × 100 km, which is small for

typical polar cap patches. Similar horizontal sizes are measured from the optical data. The

emissions are also very faint, with brightnesses in the all-sky data of only up to 300 R in

630.0 nm and 50 R in 557.7 nm. The NASCAM imager show no or very faint emission in

the N+
2 427.8 nm wavelength region at around 22:00 UT, which indicates that there is no

significant electron precipitation in the polar cap at this time. The structures in the OMTI
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imager data appear to originate close to the poleward edge of the auroral oval and drift

poleward.

5.5.1 Correlation between radar and optical data

The location of the optical signatures in OMTI correspond well to the enhancements seen in

RISR-N for the few hours of contemporary measurements in the two datasets. The coherent

backscatter power data from Rankin Inlet SuperDARN radar are indicative of patches in

this region during the same time period. In Figure 5.3, the strongest coherent scatter signal

originates from the range gates adjacent to the plasma enhancement seen within the RISR-N

FOV. The OMTI all-sky data show a faint optical signature collocated with the RISR-N

enhancement at this time. An enlargement of the region of interest is shown in Figure 5.3,

where the location of the optical structure has been marked with a white dashed oval. This

comparison shows that the optical structure seen in OMTI overlaps well with the RISR-N

structure, and both features straddle two beams (Beams 7 and 8) in the SuperDARN FOV,

with the strongest echo found in Beam 8.

Field aligned irregularities (FAIs) likely produced by the GDI in the plasma set up the

Bragg scattering conditions required for coherent backscatter. These FAIs are closely associ-

ated with polar cap patches [e.g., Weber et al., 1984; Rodger et al., 1994; Ogawa et al., 1998;

Hosokawa et al., 2009b]. An asymmetry between the irregularity intensity on the leading

and trailing edge of a patch is a common feature in patch observations [Milan et al., 2002;

Cerisier et al., 1985]. This has been used to infer stronger structuring on the trailing edge

and weaker structuring on the leading edge of a patch. The GDI is least stabilized where

the E × B velocity of the patch is parallel to the density gradient of the patch, and most

stabilized when the E × B velocity of the patch is anti-parallel to the density gradient of

the patch. It is therefore expected that the FAI intensity and thus the backscatter power

would be higher on the trailing edge of patches [Cerisier et al., 1985]. This explanation

for the observed asymmetry was further reinforced by Milan et al. [2002], who used the

CUTLASS SuperDARN radar in Finland together with an ionosonde located on Svalbard

to investigate the structuring of polar cap patches near the cusp. Hosokawa et al. [2009b]

performed combined SuperDARN radar and all-sky optical measurements on several patches
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over Resolute Bay. The radar data showed decameter-scale FAIs extending over all of the

optically observed polar cap patches, with no preference for the patch edges – contradicting

the supposed FAIs preference for the trailing edge of a patch. In their work, Milan et al.

[2002] and Ogawa et al. [1998] speculated that FAI structuring is distributed along the trail-

ing edge of a patch shortly after the formation of the patch. The FAIs then spread over

the entire patch during its travel through the polar cap. This was supported by numerical

three-dimensional simulations of the nonlinear evolution of instabilities and show that FAI

structuring penetrates through the entire patch over a time period of about one hour after

its formation [Gondarenko and Guzdar , 2004], beginning at the trailing edge of the patch.

The patches studied by Hosokawa et al. [2009b] were estimated to be only 20 – 25 minutes

old as they entered the all-sky FOV at Resolute Bay, and were found to be almost fully

structured. In other work, in-situ measurements of 18 patches in the polar cap region by the

Dynamics Explorer 2 spacecraft showed that the majority of those patches were either fully

structured or were structured at the edges, regardless of the distance between the patch and

the cusp where they are believed to have formed [Kivanç and Heelis , 1997]. Thus there does

not appear to be any connection between the spread of FAIs throughout the patch, and the

proximity of the patch to the region of its formation. It has also been suggested that auroral

particle precipitation in the cusp can give rise to km scale plasma structuring, onto which

the GDI can operate [Kelley et al., 1982; Moen et al., 2012]. Oksavik et al. [2010] pointed out

that polar patches may undergo substantial rotation as they travel, constantly re-defining

the trailing edge of the patch, increasing the rate at which FAIs occupy the entire patch. In

a recent paper by Carlson et al. [2008], a possible explanation was offered: a velocity-shear

instability may rapidly structure a patch as it is formed, upon which the GDIs then grow.

SuperDARN observations were used to support this new mechanism by showing several cases

of flow shear in the region where patches were formed. However, no clear evidence of velocity

flow shears was detected in the cusp region probed by the Prince George SuperDARN radar

during the present event.

The location of the cusp is estimated from the plasma velocity plot in Figure 5.7 as the

region where the drift velocity arrows turn and change from a sunward to an anti-sunward

direction, near 75◦N MLAT and 12:30 MLT. This location is also consistent with modeling
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for Kp = 0 [Sigernes et al., 2011] and coincident with optical signatures consistent with cusp

precipitation and dynamics (e.g., Milan et al. [1999] and references therein). The distance

from Resolute Bay to the cusp is estimated to be 800 km at 22:00 UT. With an average

drift velocity of 300 m/s the patches would be ∼ 45 minutes old when they reach the FOV

of RISR-N, assuming they were formed in the cusp region. Compared with the patches

observed by Hosokawa et al. [2009b] we would thus expect the patches in this event to be

fully structured by the time they reach Resolute Bay. In Figure 5.3, the SuperDARN data

indicates strong backscatter power throughout the plasma density enhancement observed in

the RISR-N data; but the strongest SuperDARN echo is located on the eastern edge of and

adjacent to the RISR-N structure. This observation further highlights the indifference of

FAIs to align along a leading or trailing edge of patch. It is important to note that the

spatial resolution of this SuperDARN data is 45 km radially and ∼50 km azimuthally, with

an estimated accuracy of ∼15 km [Yeoman et al., 2001], though the accuracy can be up to

100 km, depending on the HF propagation conditions. Since the RISR-N patch appears to

straddle Beams 7 and 8 in the SuperDARN FOV, the coherent backscatter echo may have

been shifted into an adjacent range gate, creating the appearance of radar echo power in

adjacent range gates. A correlation does exist between the SuperDARN echoes in Beam

7 and the RISR-N and OMTI signatures; however, their power is less than that of the

SuperDARN echoes in Beam 8. HF radar backscatter power is not strictly dependent on a

large density gradients or the amplitude of the FAIs; other effects must be considered. Radio

wave propagation conditions play a major role in coherent backscatter. To undergo coherent

backscatter, the wave vector of an incident radar beam has to be close to perpendicular

(within a few degrees) with the magnetic field in the scattering volume. At high latitudes

the magnetic field lines are nearly vertical. In order for the HF radio waves to meet the aspect

angle for coherent backscatter, an HF radio wave must undergo refraction, which is possible

due to the dispersive properties of ionospheric plasma. The aspect angle condition can be

quite sensitive and it is not uncommon to measure a large variation of backscatter power

from adjacent range gates or beams, due to propagation conditions. Ray tracing models

show that discrete F-region density enhancements (i.e., patches) have similar properties to

converging optical lenses causing radio waves incident on the patch to be focused by the patch
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also consistent with modeling for Kp = 0 [Sigernes et al.,
2011] and coincident with optical signatures consistent with
cusp precipitation and dynamics [e.g.,Milan et al., 1999, and
references therein]. The distance from Resolute Bay to the
cusp is estimated to be 800 km at 22 UT. With an average
drift velocity of 300 m/s the patches would be !45 min old
when they reach the FOV of RISR-N, assuming they were
formed in the cusp region. Compared with the patches
observed by Hosokawa et al. [2009b] we would thus expect
the patches in this event to be fully structured by the time they
reach Resolute Bay. In Figure 3, the SuperDARN data indi-
cates strong backscatter power throughout the plasma density
enhancement observed in the RISR-N data; but the strongest
SuperDARN echo is located on the eastern edge of and
adjacent to the RISR-N structure. This observation further
highlights the indifference of FAIs to align along a leading or
trailing edge of patch. It is important to note that the spatial
resolution of this SuperDARN data is 45 km radially and
!50 km azimuthally, with an estimated accuracy of !15 km
[Yeoman et al., 2001], though the accuracy can be up to
100 km, depending on the HF propagation conditions. Since
the RISR-N patch appears to straddle beams 7 and 8 in the
SuperDARN FOV, the coherent backscatter echo may have
been shifted into an adjacent range gate, creating the
appearance of radar echo power in adjacent range gates. A
correlation does exist between the SuperDARN echoes in
beam 7 and the RISR-N and OMTI signatures; however, their
power is less than that of the SuperDARN echoes in beam 8.

HF radar backscatter power is not strictly dependent on
large density gradients or the amplitude of the FAIs; other
effects must be considered. Radio wave propagation condi-
tions play a major role in coherent backscatter. To undergo
coherent backscatter, the wave vector of an incident radar
beam has to be close to perpendicular (within a few degrees)
with the magnetic field in the scattering volume. At high
latitudes the magnetic field lines are nearly vertical. In order
for the HF radio waves to meet the aspect angle for coherent
backscatter, an HF radio wave must undergo refraction,
which is possible due to the dispersive properties of iono-
spheric plasma. The aspect angle condition can be quite
sensitive and it is not uncommon to measure a large variation
of backscatter power from adjacent range gates or beams, due
to propagation conditions. Ray tracing models show that
discrete F-region density enhancements (i.e. patches) have
similar properties to converging optical lenses causing radio
waves incident on the patch to be focused by the patch and
then backscatter on the far side of the patch, with respect to
the radar. In SuperDARN data this effect would resemble that
of Figure 3, in which the strongest backscatter power return
in the SuperDARN data is behind the patch in RISR-N and
the optical patch in the OMTI data. Therefore, the discrep-
ancy between the locations of the SuperDARN backscatter
power and the RISR-N enhancement (Figure 3) may be the
result of a combination of the HF propagation conditions and
the positioning of the patch between two beams within the
SuperDARN FOV.

Figure 7. Plasma velocity vectors constructed from line-of-sight velocity information from multiple
SuperDARN sites. The plasma flow at Resolute Bay (red dot) is predominantly in the north-east direction.
The estimated location of the cusp is marked with a black dashed oval. The transitions to the light and dark
gray regions mark the day/night terminators at 300 km altitude and on the ground.
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Figure 5.7: Plasma velocity vectors constructed from line-of-sight velocity information
from multiple SuperDARN sites using the FIT technique [Ruohoniemi and Baker , 1998].
The plasma flow at Resolute Bay (red dot) is predominantly in the northeast direction.
The estimated location of the cusp is marked with a black dashed oval. The transitions
to the light and dark gray regions mark the day/night terminators at 300 km altitude
and on the ground.

and then backscatter on the far side of the patch, with respect to the radar. In SuperDARN

data this effect would resemble that of Figure 5.3, in which the strongest backscatter power

return in the SuperDARN data is behind the patch in RISR-N and the optical patch in the

OMTI data. Therefore, the discrepancy between the locations of the SuperDARN backscatter

power and the RISR-N enhancement (Figure 5.3) may be the result of a combination of the

HF propagation conditions and the positioning of the patch between two beams within the

SuperDARN FOV.
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5.5.2 Formation mechanism

The substantial amount of instrumentation available for this event is an important asset

when characterizing the properties of the polar cap patches, but also in gaining insight into

how the structures were formed. Theory suggests that patches may be formed from pho-

toionized plasma originating from subauroral latitudes. The plasma may be transported into

the cusp region by convection streamlines and undergo structuring as they reach the cusp

[Foster , 1993]. The structuring of plasma within the polar cap or cusp region is attributed

to a variety of mechanisms such as: transient reconnection and flux transfer events (FTEs)

(see Section 1.4.1 in this work) [Lockwood and Carlson, 1992], enhanced recombination rates

discretizing dense plasma flows, leading to the plasma depletions between the patches [Val-

ladares et al., 1996], and soft particle precipitation creating plasma density enhancements

[Walker et al., 1999]. The polar cap itself can be a source of patches; they have been seen

to form in the polar cap due to soft precipitation in a region free of photoionization [Oksavik

et al., 2006; Moen et al., 2012]. Observations by Lorentzen et al. [2010] have also shown that

patches may merge from much larger poleward moving auroral forms (PMAFs). In those

observations the newly formed patches subsequently convected into the cusp region.

Observations from OMTI in Figure 5.8a show strong emissions at the 630.0 nm wavelength

in the region of the cusp. In the figure, a red dot marks the location of Resolute Bay and the

black, dashed oval is roughly the estimated location of the cusp. The SuperDARN radar at

Prince George detected an isolated region of backscatter in the same region, which is over-

plotted with the OMTI data in Figure 5.8b. Both of these observations are consistent with

previous work investigating HF radar and optical signatures of the cusp and FTEs [Milan

et al., 1999; Moen et al., 2000]. In the OMTI data, the position, direction and velocity of

the patch was consistent with the convection flow estimates provided by the SuperDARN

coverage, as well as the expected ionospheric response to FTEs under IMF By < 0 conditions

[Milan et al., 1999]. Additional observations from NASCAM also show patches emerging

from the same region of high optical emissions (the cusp region) first identified in the OMTI

data, drifting along the same convection trajectories.

The range time power plot for Beam 7 from the Rankin Inlet SuperDARN radar (Fig-
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4.2. Formation Mechanism
[24] The substantial amount of instrumentation available

for this event is an important asset when characterizing
the properties of the polar cap patches, but also in gaining
insight into how the structures were formed. Theory sug-
gests that patches may be formed from photoionized plasma
originating from subauroral latitudes. The plasma may be
transported into the cusp region by convection streamlines
and undergo structuring as they reach the cusp [Foster,
1993]. The structuring of plasma within the polar cap or
cusp region is attributed to a variety of mechanisms such as:
transient reconnection and flux transfer events (FTEs)
[Lockwood and Carlson, 1992], enhanced recombination
rates discretizing dense plasma flows, leading to the plasma
depletions between the patches [Valladares et al., 1996], and
soft particle precipitation creating plasma density enhance-
ments [Walker et al., 1999]. The polar cap itself can be a
source of patches; they have been seen to form in the polar
cap due to soft precipitation in a region free of photoioni-
zation [Oksavik et al., 2006; Moen et al., 2012]. Observa-
tions by Lorentzen et al. [2010] have also shown that patches
may merge from much larger poleward moving auroral
forms (PMAFs). In those observations the newly formed
patches subsequently convected into the cusp region.
[25] Observations from OMTI in Figure 8a show strong

emissions at the 630.0 nm wavelength in the region of the
cusp. In the figure, a red dot marks the location of Resolute
Bay and the black, dashed oval is roughly the estimated
location of the cusp. The SuperDARN radar at Prince George
detected an isolated region of backscatter in the same region,
which is over-plotted with the OMTI data in Figure 8b. Both
of these observations are consistent with previous work
investigating HF radar and optical signatures of the cusp
and FTEs [Milan et al., 1999; Moen et al., 2001]. In the
OMTI data, the position, direction and velocity of the patch
was consistent with the convection flow estimates provided
by the SuperDARN coverage, as well as the expected

ionospheric response to FTEs under IMF By < 0 conditions
[Milan et al., 1999]. Additional observations fromNASCAM
also show patches emerging from the same region of high
optical emissions (the cusp region) first identified in the
OMTI data, drifting along the same convection trajectories.
[26] The range time power plot for beam 7 from the Rankin

Inlet SuperDARN radar (Figure 4a, top) shows numerous
features during a one hour period between 21:30 and
22:30 UT. Magnetic latitude coordinates are provided along
the vertical axis and a black horizontal line denotes the
magnetic latitude of the center of the RISR-N FOV. A strong
echo, identified as the patch of interest from Figure 3, pro-
ceeds from a much larger backscatter feature, starting just
prior to 22 UT, at !82"N MLAT. At 22:13 UT, the back-
scatter power of the patch increases. The same feature is
present in the backscatter data measured with the Saskatoon
radar, displayed in Figure 4b, but reaches just out of range of
this radar at 22:05 UT. The line-of-sight velocity is plotted in
the middle panels. The direction of the Doppler velocity is
directed away from the radar, with a magnitude of approxi-
mately 300 m/s. The velocity features in Figure 4 are con-
sistent with those of pulsed ionospheric flows (PIFs). The
poleward moving transient feature in Figure 4 has a velocity
that is larger than the surrounding plasma. This is a signature
of FTEs [McWilliams et al., 2001; Provan et al., 2002]. The
spectral width, a measure of the spread Doppler velocity
components within the scattering volume, is plotted in the
bottom row of panels in Figure 4. The spectral width of the
patch echoes are relatively low, between !150 and 200 m/s,
but seem to have undergone a subtle evolution from a higher
spectral width of 250–300 m/s at 79"N MLAT (at about
21:45 UT). The low spectral width and its decrease over time
for the patch observed here is again consistent, albeit not as
prominent, with the measurements by McWilliams et al.
[2001] and Rodger and Rosenberg [1999], where the spec-
tral width of echoes associated with FTEs evolved from
large values, near 400 or 500 m/s, to lower values near 100
to 200 m/s.

Figure 8. (a) The 630.0 nm OMTI image at 21:48 UT shows the brighter edge corresponding to the
formation region of the patches. The red dot marks the location of Resolute Bay and the black dashed oval
the estimated location of the cusp. (b) The same OMTI image as in Figure 8a, with the SuperDARN
echoes from the radar in Prince George overplotted. Echoes are seen in the region of the cusp, indicative
of the strong electrodynamic processes occurring there.
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Figure 5.8: a) The 630.0 nm OMTI image at 21:48 UT shows the brighter edge
corresponding to the formation region of the patches. The red dot marks the location
of Resolute Bay and the black dashed oval the estimated location of the cusp. b) The
same OMTI image as in a), with the SuperDARN echoes from the radar in Prince
George overplotted. Echoes are seen in the region of the cusp, indicative of the strong
electrodynamic processes occurring there.

ure 5.4a, top panel) shows numerous features during a one hour period between 21:30 and

22:30 UT. Magnetic latitude coordinates are provided along the y-axis and a black horizontal

line denotes the magnetic latitude of the center of the RISR-N FOV. A strong echo, identified

as the patch of interest from Figure 5.3, proceeds from a much larger backscatter feature,

starting just prior to 22:00 UT, at ∼82◦N MLAT. At 22:13 UT, the backscatter power of the

patch increases. The same feature is present in the backscatter data measured with the Saska-

toon radar, displayed in Figure 5.4b, but reaches just out of range of this radar at 22:05 UT.

The line-of-sight velocity is plotted in the middle panels. The direction of the Doppler ve-

locity is directed away from the radar, with a magnitude of approximately 300 m/s. The

velocity features in Figure 5.4 are consistent with those of pulsed ionospheric flows (PIFs).

The poleward moving transient feature in Figure 5.4 has a velocity that is larger than the

surrounding plasma. This is a signature of FTEs [McWilliams et al., 2001; Provan et al.,

2002]. The spectral width, a measure of the spread Doppler velocity components within the
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scattering volume, is plotted in the bottom row of panels in Figure 5.4. The spectral width of

the patch echoes, expressed in velocity units, are relatively low, between ∼ 150 and 200 m/s,

but seem to have undergone a subtle evolution from a higher spectral width of 250 – 300 m/s

at 79◦N MLAT (at about 21:45 UT). The low spectral width and its decrease over time for

the patch observed here is again consistent, albeit not as prominent, with the measurements

by McWilliams et al. [2001] and Rodger et al. [1999], where the spectral width of echoes

associated with FTEs evolved from large values, near 400 or 500 m/s, to lower values near

100 to 200 m/s.

Several other structures are also seen to reach the same latitudes as the patch, north of

Resolute Bay, during an interval of a few hours around 22:00 UT. FTEs between the IMF and

the geomagnetic field differ from quasi-stationary reconnection at the dayside magnetopause

due to their bursty nature. In the event reported here, bright emission bands are seen in the

OMTI optical data to form in the cusp region with 4 – 8 minute intervals, which then break

up to smaller structures as they drift to the northeast with the modeled convection streams.

This repetition rate is consistent with the mean period of 8 minutes found for FTEs in the

statistical study by Rijnbeek et al. [1984]. The longitudinal motion of the emissions towards

the east, observed by OMTI, is also expected during periods of IMF By < 0 in the northern

hemisphere, due to the curvature force on newly opened field lines [Sandholt et al., 1992;

Lockwood et al., 1993].

5.5.3 Variations in patch plasma density profile

Figure 5.9 shows RISR-N data of the temporal evolution of the patch monitored in Figures 5.3

and 5.5. In the top row of panels, electron density contours along a vertical north-south

directed slice through the center of the patch are displayed for three subsequent time steps.

These slices and their horizontal locations were also discussed in Dahlgren et al. [2012a],

Figure 3. Each slice in Figure 5.9 is through the center of the patch, and therefore moves

with the patch. The northward drift component of the patch is evident in the three time

segments. The electron density of the patch is approximately twice that of the background

ionosphere. The middle row of panels show the corresponding east-west slice for the same

times. The bottom row of panels in Figure 5.9 show the weighted average of the electron
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density taken over the whole patch, encompassed by approximately the white dashed circle

in Figure 5.3, as a function of altitude during each of these three time intervals. At 22:11 UT

(first column), the electron density peaks close to 260 km altitude. During the next minute

of integration the density peak moved up in altitude to 320 km and marginally decreased

in magnitude. The data from the subsequent minute (starting at 22:13:51 UT) shows an

increased electron density, where the peak altitude dropped to 280 km. The observations are

not consistent with patch depletion due to recombination with neutrals. The time sequence

illustrates a significant variation in the plasma density of the patch over a short period of

time. Since the position of the region over which a weighted average of the electron density

is being taken (the white dashed line in Figure 5.3) is moving with the patch, the density

variations are not due to the motion of a patch through a stationary reference frame. This is

also evident from the bottom row of panels, since they depict the total average density over

the whole patch, the variations are not the result of horizontal displacement. The sudden

electron density enhancements with a lowering of the peak altitude at 22:13:51 UT suggest

that the patch may be experiencing some degree of internal turbulence, resulting in a re-

distribution of plasma density, possibly initiated by local precipitation, solar irradiance, or

another unknown mechanism.

If soft precipitation is present, an increase in the electron temperature, Te, would be ex-

pected, but the Te/Ti ratio measured by RISR-N did not show any associated enhancements.

The O and N+
2 emission rates would have increased due to precipitation in the region; how-

ever, a close study of the NASCAM imager data associated with these emissions show no

significant enhancements indicative of electron precipitation.

The altitude at which the patch event takes place on December 11, 2009 is sunlit at

22:10 UT, which corresponds to 14:25 MLT at Resolute Bay. At this time, the atmosphere

is sunlit above 200 km (Figure 5.10). Photoionization would therefore be underway in the

region in and around the patch. The photo production rates of O+ are significant enough to

cause density increase on the order of 1011 m−3 during the plotted time-segment [Tohmatsu

and Ogawa, 1990], but the increase would be over a larger region and not as localized as the

observed enhancements. Analysis of the density profiles of the ionosphere surrounding the

patch do not indicate any significant plasma density changes, consistent with photoionization.
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[27] Several other structures are also seen to reach the
same latitudes as the patch, north of Resolute Bay, during an
interval of a few hours around 22 UT. FTEs between the
IMF and the geomagnetic field differ from quasi-stationary
reconnection at the dayside magnetopause due to their bursty
nature. In the event reported here, bright emission bands are
seen in the OMTI optical data to form in the cusp region
with 4–8 minute intervals, which then break up to smaller
structures as they drift to the north-east with the modeled
convection streams. This repetition rate is consistent with the
mean period of 8 min found for FTEs in the statistical study
by Rijnbeek et al. [1984]. The longitudinal motion of the
emissions toward the east, observed by OMTI, is also
expected during periods of IMF By < 0 in the northern
hemisphere, due to the curvature force on newly opened
field lines [Sandholt et al., 1992; Lockwood et al., 1993].

4.3. Investigation of Local Ionization
[28] Figure 9 shows RISR-N data of the temporal evolu-

tion of the patch monitored in Figures 3 and 5. In the top row
of panels, electron density contours along a vertical north-

south directed slice through the center of the patch are dis-
played for three subsequent time steps. These slices and their
horizontal locations were also discussed in Dahlgren et al.
[2012] (Figure 3). Each slice in Figure 9 is through the
center of the patch, and therefore moves with the patch. The
northward drift component of the patch is evident in the
three time segments. The electron density of the patch is
approximately twice that of the background ionosphere. The
middle row of panels show the corresponding east-west slice
for the same times. The bottom row of panels in Figure 9
show the weighted average of the electron density taken
over the whole patch, encompassed by approximately the
white dashed circle in Figure 3, as a function of altitude
during each of these three time intervals. At 22:11 UT (first
column), the electron density peaks close to 260 km altitude.
During the next minute of integration the density peak
moved up in altitude to 320 km and marginally decreased in
magnitude. The data from the subsequent minute (starting at
22:13:51 UT) shows an increased electron density, where
the peak altitude dropped to 280 km. The observations are
not consistent with patch depletion due to recombination

Figure 9. (top) Contour plots of vertical north-south aligned slices through the patch, for the times
22:11:21 UT, 22:12:36 UT and 22:13:51 UT. (middle) Same as top, but for an east-west aligned slice.
(bottom) The weighted average vertical density profile of the patch, for each time.
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Figure 5.9: (top) Contour plots of vertical north-south aligned slices through the
patch, for the times 22:11:21 UT, 22:12:36 UT and 22:13:51 UT. (middle) Same as top,
but for an east-west aligned slice. Bottom row of panels: The weighted average vertical
density profile of the patch, for each time.

The contours suggest a relatively steady plasma density in the vicinity of the patch over a

period of a few minutes.

5.5.4 Interior plasma transport

Plasma drift velocities in the horizontal and anti-parallel directions with respect to the back-

ground magnetic field can be derived utilizing inversion techniques from the RISR-N line-of-

sight ion drift measurements. The horizontal components are split in northward and eastward

and are found to correspond well with the SuperDARN (Figure 5.7) and OMTI data. From

178



with neutrals. The time sequence illustrates a significant
variation in the plasma density of the patch over a short
period of time. Since the position of the region over which
an weighted average of the electron density is being taken
(the white dashed line in Figure 3) is moving with the patch,
the density variations are not due to the motion of a patch
through a stationary reference frame. This is also evident
from the bottom row of panels, since they depict the total
average density over the whole patch, the variations are not
the result of horizontal displacement. The sudden electron
density enhancements with a lowering of the peak altitude at
22:13:51 UT suggest that the patch may be experiencing some
degree of internal turbulence, resulting in a re-distribution of
plasma density, possibly initiated by local precipitation, solar
irradiance, or another unknown mechanism.
[29] If soft precipitation is present, an increase in the

electron temperature, Te, would be expected, but the Te/Ti
ratio measured by RISR-N did not show any associated
enhancements. The O and N2

+ emission rates would have
increased due to precipitation in the region; however, a close
study of the NASCAM imager data associated with these
emissions show no significant enhancements indicative of
electron precipitation.
[30] The altitude at which the patch event takes place is

sunlit at 22:10 UT, which corresponds to 14:25 MLT at
Resolute Bay. At this time, the atmosphere is sunlit above
200 km (Figure 10). Photoionization would therefore be
underway in the region in and around the patch. The photo
production rates of O+ are significant enough to cause den-
sity increase on the order of 1011 m!3 during the plotted
time-segment [Tohmatsu, 1990], but the increase would be
over a larger region and not as localized as the observed
enhancements. Analysis of the density profiles of the iono-
sphere surrounding the patch do not indicate any significant
plasma density changes, consistent with photoionization.
The contours suggest a relatively steady plasma density in
the vicinity of the patch over a period of a few minutes.

4.4. Interior Plasma Transport
[31] Plasma drift velocities in the horizontal and anti-

parallel directions with respect to the background magnetic
field can be derived utilizing inversion techniques from the
RISR-N line-of-sight ion drift measurements. The horizontal
components are split in northward and eastward components
and are found to correspond well with the SuperDARN
(Figure 7) and OMTI data. From the three dimensional
imaging of the patches with RISR-N, we can establish the
plasma rest frame in the polar cap ionosphere such that the
convection term corresponding to the direction perpendicu-
lar to the geomagnetic field, r? " (neue?), in the electron
continuity equation,

∂ne
∂t

¼ Pe ! Le !
∂
∂r

neuek
! "

!r? " neue?ð Þ ð3Þ

can be disregarded. The rate of change of the electron den-
sity, ne, of the patch is therefore only governed by ion pro-
duction (Pe) via impact ionization, chemical loss terms (Le)
and any electron transport along the magnetic field line,
∂
∂r neuek
! "

. The RISR-N data indicates that the patch studied is
a closed system with no additional plasma being transported
into the region. Despite this, the three profiles in Figure 9
show density variations of around 10% which may be
explained by an ionization source between 22:11 UT and
22:13 UT, but none was observed.
[32] The magnitude of the plasma density fluctuations in

Figure 9 exceeds the standard deviation, suggesting a
redistribution of plasma within the patch. The anti-parallel
ion drift obtained from RISR-N data at 84.2&N MLAT,
corresponding to the center of the RISR-N FOV and inte-
grated over all altitudes, is displayed in Figure 11. The data
suggest that there is little vertical plasma motion in the
region, which is further supported by the lack of temperature
enhancements due to frictional heating. Upward motion due
to neutral winds are also not expected at this latitude, since

Figure 10. The modeled sunlit atmosphere (white) above
Resolute Bay shows that the ionosphere is sunlit above
200 km when the patch drifts through the RISR-N FOV at
22 UT.

Figure 11. Anti-parallel ion drift velocity, derived from the
RISR-N data in the center of the RISR-N FOV. A small
increase is seen at 22:12 UT, coincident with an upward shift
of the electron density peak in the altitude profiles displayed
in Figure 9.
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Figure 5.10: The modelled sunlit atmosphere (white) above Resolute Bay shows that
the ionosphere is sunlit above 200 km when the patch drifts through the RISR-N FOV
at 22:00 UT.

the three dimensional imaging of the patches with RISR-N, we can establish the plasma rest

frame in the polar cap ionosphere such that the convection term corresponding to the direc-

tion perpendicular to the geomagnetic field, ∇⊥ · (neve⊥), in the electron continuity equation

(which is equivalent to the ion continuity equation, Equation 1.38), can be disregarded. The

rate of change of the electron density, ne, of the patch is therefore only governed by ion pro-

duction (Pe) via impact ionization, chemical loss terms (Le) and any electron transport along

the magnetic field line, ∂
∂z

(neve‖). The RISR-N data indicates that the patch studied is a

closed system with no additional plasma being transported into the region. Despite this, the

three profiles in Figure 5.9 show density variations of around 10% which may be explained

by an ionization source between 22:11 UT and 22:13 UT, but none was observed.

The magnitude of the plasma density fluctuations in Figure 5.9 exceeds the standard

deviation, suggesting a redistribution of plasma within the patch. The anti-parallel ion drift

obtained from RISR-N data at 84.2◦N MLAT, corresponding to the center of the RISR-N

FOV and integrated over all altitudes, is displayed in Figure 5.11. The data suggest that

there is little vertical plasma motion in the region, which is further supported by the lack of

temperature enhancements due to frictional heating. Upward motion due to neutral winds
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are also not expected at this latitude, since the magnetic field lines are close to vertical and

perpendicular to the winds. There is a small increase in anti-parallel velocity at 22:12 UT,

coinciding with the upward relocation of the electron density peak seen in Figure 5.9, which

then moves to lower altitudes again in the subsequent minute. Nonetheless, it is clear that

even the extremum of the velocities measured in Figure 5.11 can not account for the large

density variations seen in Figure 5.9. This indicates that a large component of the plasma

redistribution within the patch may be occurring horizontally. Previous studies [e.g., Kivanç

and Heelis , 1997; Hosokawa et al., 2009b] have shown that patches are subject to structuring

over a range of scale lengths, which may be driven by multiple instabilities [Basu et al., 1990;

Gondarenko and Guzdar , 2006]. Simulations by Gondarenko and Guzdar [2006] illustrate

that only a short time is needed for a patch to be fully engulfed with plasma instabilities. In

addition, Carlson et al. [2008] showed that the irregularities can appear during the formation

of the patch, due to shear motion. The observations in Figure 5.9 may be an example of these

instabilities and provide a unique ISR observation of density fluctuations within a patch, due

to field-aligned irregularities. Previous observations, specifically those by Kivanç and Heelis

[1997], were performed by satellite and therefore were unable to provide an unambiguous

stationary observation of a patch. However, Hosokawa et al. [2010] demonstrated that a

polar cap patch can be split into two due to larger scale shear motion in the background

convection. The presence of a velocity shear in the patch would indicate the existence of a

field-aligned current, which might change the vertical structure of the patch.

The variations of plasma distribution shown in Figure 5.9 indicate fluctuations within the

patch of both intensity as well as spatial distribution of the electron density, with possible

velocity shear. A patch is driven by the E × B drift; therefore if E is structured in altitude

then the velocity of the patch could be as well. This is assuming that the electric fields within

the patch are significant enough to counteract the influence of the large-scale convection

electric field. Reports have been made of plasma density fluctuations combined with electric

field fluctuations observed by satellites within several patches [Basu et al., 1990; Kivanç and

Heelis , 1997]. On this note, Basu et al. [1990] observed electric field deviations over a range

up to ∼ 30 mV/m – magnitudes on par with the convection electric field. It is however

questionable if the presence of intense electric field fluctuations within the patch would be
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with neutrals. The time sequence illustrates a significant
variation in the plasma density of the patch over a short
period of time. Since the position of the region over which
an weighted average of the electron density is being taken
(the white dashed line in Figure 3) is moving with the patch,
the density variations are not due to the motion of a patch
through a stationary reference frame. This is also evident
from the bottom row of panels, since they depict the total
average density over the whole patch, the variations are not
the result of horizontal displacement. The sudden electron
density enhancements with a lowering of the peak altitude at
22:13:51 UT suggest that the patch may be experiencing some
degree of internal turbulence, resulting in a re-distribution of
plasma density, possibly initiated by local precipitation, solar
irradiance, or another unknown mechanism.
[29] If soft precipitation is present, an increase in the

electron temperature, Te, would be expected, but the Te/Ti
ratio measured by RISR-N did not show any associated
enhancements. The O and N2

+ emission rates would have
increased due to precipitation in the region; however, a close
study of the NASCAM imager data associated with these
emissions show no significant enhancements indicative of
electron precipitation.
[30] The altitude at which the patch event takes place is

sunlit at 22:10 UT, which corresponds to 14:25 MLT at
Resolute Bay. At this time, the atmosphere is sunlit above
200 km (Figure 10). Photoionization would therefore be
underway in the region in and around the patch. The photo
production rates of O+ are significant enough to cause den-
sity increase on the order of 1011 m!3 during the plotted
time-segment [Tohmatsu, 1990], but the increase would be
over a larger region and not as localized as the observed
enhancements. Analysis of the density profiles of the iono-
sphere surrounding the patch do not indicate any significant
plasma density changes, consistent with photoionization.
The contours suggest a relatively steady plasma density in
the vicinity of the patch over a period of a few minutes.

4.4. Interior Plasma Transport
[31] Plasma drift velocities in the horizontal and anti-

parallel directions with respect to the background magnetic
field can be derived utilizing inversion techniques from the
RISR-N line-of-sight ion drift measurements. The horizontal
components are split in northward and eastward components
and are found to correspond well with the SuperDARN
(Figure 7) and OMTI data. From the three dimensional
imaging of the patches with RISR-N, we can establish the
plasma rest frame in the polar cap ionosphere such that the
convection term corresponding to the direction perpendicu-
lar to the geomagnetic field, r? " (neue?), in the electron
continuity equation,

∂ne
∂t

¼ Pe ! Le !
∂
∂r

neuek
! "

!r? " neue?ð Þ ð3Þ

can be disregarded. The rate of change of the electron den-
sity, ne, of the patch is therefore only governed by ion pro-
duction (Pe) via impact ionization, chemical loss terms (Le)
and any electron transport along the magnetic field line,
∂
∂r neuek
! "

. The RISR-N data indicates that the patch studied is
a closed system with no additional plasma being transported
into the region. Despite this, the three profiles in Figure 9
show density variations of around 10% which may be
explained by an ionization source between 22:11 UT and
22:13 UT, but none was observed.
[32] The magnitude of the plasma density fluctuations in

Figure 9 exceeds the standard deviation, suggesting a
redistribution of plasma within the patch. The anti-parallel
ion drift obtained from RISR-N data at 84.2&N MLAT,
corresponding to the center of the RISR-N FOV and inte-
grated over all altitudes, is displayed in Figure 11. The data
suggest that there is little vertical plasma motion in the
region, which is further supported by the lack of temperature
enhancements due to frictional heating. Upward motion due
to neutral winds are also not expected at this latitude, since

Figure 10. The modeled sunlit atmosphere (white) above
Resolute Bay shows that the ionosphere is sunlit above
200 km when the patch drifts through the RISR-N FOV at
22 UT.

Figure 11. Anti-parallel ion drift velocity, derived from the
RISR-N data in the center of the RISR-N FOV. A small
increase is seen at 22:12 UT, coincident with an upward shift
of the electron density peak in the altitude profiles displayed
in Figure 9.
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Figure 5.11: Anti-parallel ion drift velocity, derived from the RISR-N data in the
center of the RISR-N FOV. A small increase is seen at 22:12 UT, coincident with an
upward shift of the electron density peak in the altitude profiles displayed in Figure 5.9.

able to produce such large effects as those shown in Figure 5.9. The optical patches in the

OMTI data show no corresponding significant dynamic as they pass the RISR-N FOV. This

is to be expected, since the electron density does not change much below 250 km altitude,

which is the altitude most of the optical emission originates from. Some variations can be

detected in the SuperDARN power, but the changes in the data are not significantly larger

than the noise fluctuations.

5.5.5 Multiple patches postulate

A possibility that was not contemplated by Dahlgren et al. [2012b] was that the patch un-

der study may have been composed of several patches with scale sizes below the resolv-

ability of RISR-N [J.-P. St.-Maurice, personal communication, 2013]. It was assumed that

Dne/Dt = −∇⊥ · (neve⊥) = 0, and that the traces in Figure 5.9 are measurements made

in the frame of reference of the patch. Presumably one or both of those assumptions was

false since the ne profiles showed substantial variations in time; namely, Dne/Dt 6= 0. In
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Dne/Dt = −ne∇ · ve⊥ − ve⊥ · ∇ne, the first term on the right hand side is negligible [Rish-

beth and Hanson, 1974]; only the passage of a drifting density gradient, i.e., a patch, would

result in Dne/Dt 6= 0. This is only true if the measurement is not taken in the reference

frame of the drifting gradient. Since the results in Figure 5.9 are measured in the frame of

reference of the patch ve⊥ = 0, indicating that another factor must be contributing to the ne

fluctuations.

Recall that the traces in Figure 5.9 are spatial averages of measurements from multiple

RISR-N beams. The single patch in question could simply be a combination of several

patches. If the scale size of the smaller patches is at or below the separation distance of

the RISR-N beams, which is this case is of the order of 30 km, then a different patch may

have contributed to the overall average in each scan plotted in Figure 5.9. If each patch had

a unique plasma density characteristic, this could generate the appearance of a fluctuating

plasma density as a different patch entered the RISR-N beams for each successive scan. Each

profile plotted in Figure 5.9 could be an average of a different set of patches in each scan.

This is a difficult postulate to confirm due to the coarseness of the resolvability of the

RISR-N mode used in this experiment. Other methods such as simulating conditions that

would recreate the density profiles in Figure 5.9 would be required to test the postulate. This

is left for future work. To test the existence of small scale patches, such as those postulated

here, other experimental RISR-N modes with closer beam separations may also be useful. In

fact, RISR-N 42-beam mode described in Chapter 6 and the RISR-N algorithm presented in

Chapter 4 were both designed with this in mind. Using them to explore the existence of the

small scale patches is left for future work.

5.6 Event on 15 December 2009

The RISR-N 5 × 5 beam experiment was carried out during a few consecutive days in De-

cember 2009, during very quiet geophysical conditions. Despite the length of the observations,

events with strong electron density enhancements in RISR-N and simultaneously measured

echoes in the SuperDARN data from the same region were difficult to find. For this segment

of time, most SuperDARN echoes are seen south of Resolute Bay. On 15 December, another
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data, with the same scale sizes of the regions in all data sets.
No evidence of stronger coherent scatter from the trailing
edge of the patch is seen, which would be expected for GDI
growth on non-rotating, stagnated patches. Instead the irreg-
ularities seem to be present throughout the patch, or even
strongest on the leading edge. A second event on 15
December 2009 showed a similar correlation, with the
measured HF SuperDARN radar scatter taking place
throughout the patch. This event is even fainter than the first
and the patch is quickly breaking up. Interpretation of the
data from these two events should therefore be done with
some precaution. Future observations are planned with a
specially designed SuperDARN mode with higher spatial
resolution over the RISR-N FOV, for a more detailed anal-
ysis of similar patches.
[37] From the ISR volumetric data of the individual patch

under study, it was indicated that during a short time interval
of only a few minutes, significant variations took place, with
shape deformations in all spatial directions and velocity
shears across the patch. It is noteworthy that these dynamic
deformations were observed during a period of Kp = 0. The
data indicate that even under these quiet conditions, the
patch should not be considered a stagnated feature, but a
dynamic and constantly varying structure. This supports the
findings by Oksavik et al. [2010] who observed rotations of
patches during their transit across the polar cap, and suggests
that internal motion may also be present, and the patch
cannot always be considered a rigid plasma body. It has been
learned [Carlson et al., 2008] that irregularity structures in
ionospheric patches can be initially driven by the shear
instability, not gradient drift, due to strong shears associated

with the patch formation process. This leads to structure
throughout the patch, a view which our data supports, and
establishes the required electron density gradients in the
patch to maintain structuring downstream from the high
shear formation region. However, our data go beyond this to
show that the downstream patch is also actively structured
throughout, by dynamics not previously recognized until this
work as a further structuring process.
[38] In a novel approach, compared to earlier observations

of polar cap patches, optical emissions were not used to first
detect the structures; instead the electron density structures
measured with the RISR-N radar defined where the patches
were located, a method also used in Dahlgren et al. [2012].
The patches were then searched for in the SuperDARN and
all-sky imager data. The dimness of the patches would have
made their initial detection in the all-sky imager data diffi-
cult. The faint optical emissions could be mapped to the
same geomagnetic latitudinal and longitudinal location as
the electron density enhancement, but the altitudes of the
two signatures will differ, with the electron density being
larger at higher altitudes. This is important to note since
patches at higher altitudes will not react with neutrals to
produce emissions, and therefore could only be detected
with radio instruments. An exception to this is patch detec-
tion using 777.4 nm O emissions, since that emission occurs
between 250 and 350 km altitude as a result of radiative
recombination of O+ and electrons, and is independent of the
neutral atmosphere. The emission was used by Makela et al.
[2001] for F layer topography maps. However, this emission
is also normally very faint which makes it a difficult tracer.
The ability to conduct multi-instrument patch experiments

Figure 12. A second polar cap patch was observed in the RISR-N data (colored contour plots) on
15 December 2009, between 22:59 and 23:04 UT. The contemporary SuperDARN echoes are plotted in
gray scale, from (top) the Rankin Inlet radar and (bottom) the Inuvik radar. The patch drifts through the
RISR-N FOV in the north-east direction and breaks up around 23:04 UT. Although the event is faint, a
correlation between the coherent and incoherent scatter data can be discerned. The Rankin Inlet Super-
DARN radar also measures strong echoes from large structures south of Resolute Bay (around 70! lat).
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Figure 5.12: A second polar cap patch was observed in the RISR-N data (coloured
contour plots) on 15 December 2009, between 22:59 and 23:04 UT. The contemporary
SuperDARN echoes are plotted in gray scale, from the (top) Rankin Inlet radar and
(bottom) the Inuvik radar (bottom row of panels). The patch drifts through the RISR-
N FOV in the northeast direction and breaks up around 23:04 UT. Although the event is
faint, a correlation between the coherent and incoherent scatter data can be discerned.
The Rankin Inlet SuperDARN radar also measures strong echoes from large structures
south of Resolute Bay (around 70◦ lat).

event of enhanced electron densities was measured with RISR-N, at around 23:00 UT. The

Kp index at this time was 1, IMF Bz < 0, IMF By < 0, IMF Bx > 0 and the plasma features

were seen to drift anti-sunward. Figure 5.12 shows the Rankin Inlet SuperDARN power for

three consecutive times in gray scale (with darker regions being stronger echoes). The for-

mat is the same as for Figure 5.3, with the RISR-N electron density contour plot at 300 km

altitude superimposed in color on the SuperDARN radar data. A patch of less than 200 km

in diameter drifted in from the south into the RISR-N FOV, dispersed and diminished as it

reached the center of the FOV. No vertical redistribution of plasma like the one noted for the

11 December event could be seen in this data. At the time of this event, the farmost edge

of the SuperDARN scatter reached to halfway through the RISR-N FOV, and larger power

is recorded throughout the regions where the patch is seen in the RISR-N electron density

data. No specific increase in scatter is seen from the edge of the patch. Larger structures are
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evident in the radar data from the Rankin Inlet SuperDARN radar, located further south and

also drifting anti-sunward at the time. It is possible that these larger patches break up into

smaller structures as they drift across the pole [Hosokawa et al., 2010], so that the smaller

patch seen by RISR-N is a segment of the larger structure. However, it was not possible to

trace the origin of the structure seen in the SuperDARN data.

This event highlights the difficulty in capturing an individual patch with multiple instru-

ments. During this event, the OMTI imager was unusable due to cloud cover over Resolute

Bay, leaving only RISR-N and the SuperDARN radars for the observations. Even though

RISR-N clearly detected patches, the SuperDARN radars had a more difficult time due to the

propagation conditions. Although the event from December 11 demonstrates the validity and

usefulness of using multiple instruments to study patches, it should be noted that capturing

such a clear event is difficult.

5.7 Conclusions and summary

In this chapter, a thorough investigation of the structuring and morphology of F-region

ionization patches was undertaken. Polar cap patches were observed with incoherent and

coherent scatter radars as well as all-sky imagers, as they passed over Resolute Bay. Vol-

umetric imaging of the RISR-N data revealed that the electron density enhancements were

largest at around 270 km altitude, with some temporal variations. The low electron densities

of ∼ 2 × 1011 m−3 as well as the height of the patches lead to very faint optical emissions,

but it was still possible to trace the patches from their formation region in the cusp, across

Resolute Bay and continuing into the FOV of the all-sky imager located further north in

Qaanaaq, Greenland. The transient nature of the optical emissions in the formation region

and SuperDARN measurements of the patch suggest that the patches may have been formed

by the FTE mechanism described by Lockwood and Carlson [1992]; Carlson [2004]; Lockwood

et al. [2005]; Zhang et al. [2011]. It is also possible that the internal structuring was initiated

by particle precipitation in the cusp [Kelley et al., 1982; Moen et al., 2012]. A more focused

study of one of the plasma patches demonstrates a close colocation of the RISR-N, Super-

DARN and the all-sky data, with the same scale sizes of the regions in all data sets. No
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evidence of stronger coherent scatter from the trailing edge of the patch is seen, which would

be expected for GDI growth on non-rotating, stagnated patches. Instead the irregularities

seem to be present throughout the patch, or even strongest on the leading edge. A second

event on 15 December 2009 showed a similar correlation, with the measured HF SuperDARN

radar scatter taking place throughout the patch. This event is even fainter than the first and

the patch is quickly breaking up. Interpretation of the data from these two events should

therefore be done with some precaution. Future observations are planned with a specially

designed SuperDARN mode with higher spatial resolution over the RISR-N FOV, for a more

detailed analysis of similar patches.

From the ISR volumetric data of the individual patch under study, it was indicated

that during a short time interval of only a few minutes, significant variations took place,

with shape deformations in all spatial directions and velocity shears across the patch. It is

noteworthy that these dynamic deformations were observed during a period of Kp = 0. The

data indicate that even under these quiet conditions, the patch should not be considered

a stagnated feature, but a dynamic and constantly varying structure. This supports the

findings by Oksavik et al. [2010] who observed rotations of patches during their transit across

the polar cap, and suggests that internal motion may also be present, and the patch cannot

always be considered a rigid plasma body. It has been learned [Carlson et al., 2008] that

irregularity structures in ionospheric patches can be initially driven by the shear instability,

not gradient drift, due to strong shears associated with the patch formation process. This

leads to structure throughout the patch, a view which our data supports, and establishes the

required electron density gradients in the patch to maintain structuring downstream from the

high shear formation region. However, our data go beyond this to show that the downstream

patch is also actively structured throughout, by dynamics not previously recognized until

this work as a further structuring process.

In a novel approach, compared to earlier observations of polar cap patches, optical emis-

sions were not used to first detect the structures; instead the electron density structures

measured with the RISR-N radar defined where the patches were located, a method also

used in Dahlgren et al. [2012a]. The patches were then searched for in the SuperDARN and

all-sky imager data. The dimness of the patches would have made their initial detection in
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the all-sky imager data difficult. The faint optical emissions could be mapped to the same

geomagnetic latitudinal and longitudinal location as the electron density enhancement, but

the altitudes of the two signatures will differ, with the electron density being larger at higher

altitudes. This is important to note since patches at higher altitudes will not react with

neutrals to produce emissions, and therefore could only be detected with radio instruments.

An exception to this is patch detection using 777.4 nm O emissions, since that emission

occurs between 250 and 350 km altitude as a result of radiative recombination of O+ and

electrons, and is independent of the neutral atmosphere. The emission was used by Makela

et al. [2001] for F layer topography maps. However, this emission is also normally very faint

which makes it a difficult tracer. The ability to conduct multi-instrument patch experiments

provides the opportunity to gain further insight into the properties and dynamics of patches

and is crucial when trying to understand and investigate their formation, evolution and char-

acteristics. In most cases, like the one reported here, a single instrument cannot provide

sufficient measurements to investigate the intricacies of a patch.
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Chapter 6

Spatiotemporally resolved electrodynamic

properties of a sun-aligned arc over Reso-

lute Bay

The focus of this chapter is plasma density depletions in the polar ionosphere. This

chapter has been submitted as a manuscript to Geophysical Research Letters as Perry et al.

[2014], hence its brevity and conciseness. The role of enhanced chemical recombination rates

in the generation of plasma density depletions and their subsequent transport through the

polar ionosphere is discussed. This generation mechanism was introduced in Section 1.4.2.

This chapter is one of the first results of a campaign involving the SuperDARN network,

RISR-N system and OMTI imager, organized by myself and Dr. Hanna Dahlgren, who is

currently at the University of Southampton.

In this chapter, common volume measurements by the Resolute Bay Incoherent Scat-

ter Radar - North (RISR-N) and Optical Mesosphere and Thermosphere Imagers (OMTI)

have been used to clarify the electrodynamic structure of a sun-aligned arc in the polar cap.

The plasma parameters of the dusk-to-dawn drifting arc and surrounding ionosphere were ex-

tracted using the volumetric imaging capabilities of RISR-N. Multipoint line-of-sight RISR-N

measurements of the plasma drift are inverted to construct a time sequence of the electric field

and field-aligned current system of the arc. Evidence of dramatic electrodynamic and plasma

structuring of the polar cap ionosphere due to the arc is described in detail. One notable

feature of the arc is a meridionally extended plasma density depletion on the leading edge of

the arc, located partially within a downward field-aligned current region. The depletion is

determined to be a byproduct of enhanced chemical recombination operating on a time scale
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of 15 minutes. A similarly shaped electric field structure of the order of 150 mV/m, and

line-of-sight ion temperatures nearing 3000 K were collocated with the depletion feature.

6.1 Introduction

Sun-aligned arcs are the hallmark of a polar ionosphere under northward interplanetary

magnetic field (IMF) conditions [Carlson and Cowley , 2005]. The arcs are often referred to as

transpolar arcs, of which there are many identifiable types and classifications [Kullen, 2012].

Zhu et al. [1997] provide an excellent review on the electrodynamic properties of sun-aligned

arcs. Many of the models, measurements and conjectures regarding sun-aligned arcs agree

on a few features. First, the optical emissions of a sun-aligned arc mark the location of an

upward field-aligned current (FAC), carried by precipitating electrons. The magnetospheric

source and energization mechanisms of the electrons remains unresolved; both soft and hard

precipitation have been measured in the arcs. Corresponding downward FACs have been

measured with the arcs [e.g., Cumnock et al., 2011, and references therein], and sometimes

multiple FAC pairs are detected. The arcs superpose an electric field on the background polar

cap electric field, which can establish velocity shears in the polar cap convection [Carlson

et al., 1984; Koustov et al., 2012].

Sun-aligned arcs are intrinsically linked to processes in the magnetosphere and its inter-

action with the solar wind [Zhu et al., 1993a; Hosokawa et al., 2011; Fear and Milan, 2012].

Their interconnection to polar cap dynamics and structuring via magnetosphere-ionosphere

(MI) coupling has been thoroughly investigated, although a complete understanding of its

mediators and agents remains elusive. Zhu et al. [1993b] noted that inhomogeneities in the

Pedersen conductivity are non-trivial in MI coupling. They alter the reflection coefficient of

the ionosphere, and can cause a rotation between the wave field of an incident and reflected

Alfvén wave. For further insight into MI coupling in the polar cap, its impact on the plasma

structuring and electrodynamics of the region must be investigated in detail. To accomplish

this, accurate and spatiotemporally resolved diagnostics of the ionospheric component of the

MI system are required.

The electrodynamics of sun-aligned arcs are measured indirectly by estimating horizontal
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electric fields, from Doppler velocity measurements of plasma drifts obtained with radar [e.g.,

Carlson et al., 1984]. Seminal work in this technique includes de la Beaujardiere et al. [1977]

who used the Chatanika incoherent scatter radar (ISR) to estimate the current structure

of three auroral arcs, with estimates of upward FACs measuring 6 and 9 µA/m2 for two

of them. ISRs also provide valuable diagnostic information of the electron density, ne, and

the ion and electron temperature, Ti and Te, in the plasma. Carlson et al. [1984] measured

a four-fold ne increase within a sun-aligned arc, consistent with plasma production by soft

electron precipitation. They also detected significant Ti enhancements in the vicinity of

velocity shears associated with the arc, presumably a signature of frictional heating. Using

EISCAT, Opgenoorth et al. [1990] also identified enhanced Ti values located on the edges of

auroral arcs. The location of the enhanced Ti was coincident with significant ne depletions and

strong electric fields (some approaching 125 mV/m) both of which are elements of enhanced

chemical recombination rates.

Previous sun-aligned arc research with ISR was conducted using a single, steerable an-

tenna. With the development of the Advanced Modular Incoherent Scatter Radar (AMISR)

systems and their electronic beam steering capabilities [Nicolls et al., 2007; Bahcivan et al.,

2010], it is now possible to investigate the electrodynamics of polar cap arcs with multiple

beams, in a customized beam configuration which can encompass a large volume of the iono-

sphere. The beam is directed by adjusting the phase of the signals from the many antenna

elements on a pulse-to-pulse basis, eliminating the need to mechanically steer a radar dish.

In this way, precise, volumetric measurements are provided without spatiotemporal ambigui-

ties when integrating the measurements on the order of minutes [e.g., Dahlgren et al., 2012a;

Dahlgren et al., 2012b].

In this chapter, we present a novel experimental perspective to polar cap dynamics and

MI coupling by providing the first spatiotemporally resolved images of the organization and

morphology of the ionospheric plasma and electric fields for a sun-aligned arc. The data show

a clear connection between the structuring in the F-region polar cap ionosphere and the elec-

trodynamics of the sun-aligned arc. In particular, we provide direct estimates of auroral arc

electric fields, current systems, and associated plasma density cavities. We demonstrate that

these observations are consistent with existing arc models and dynamic plasma structuring
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mechanisms. Our observations confirm that intense electric fields and FACs are sufficient

enough to ignite strong chemical recombination and current closure processes giving rise to

the depletions. These processes have been demonstrated indirectly in the auroral zone [e.g

Zettergren et al., 2014]; we report a direct confirmation that they are present in sun-aligned

arcs as well.

6.2 Observations and instrumentation

For a more general overview of the sun-aligned arc event described here, including information

about the IMF conditions and a postulate on the generation mechanism of the arc, we direct

the reader to Dahlgren et al. [2014].

6.2.1 OMTI

At 05:04 UT (approximately 22 MLT), February 20, 2012, two closely separated sun-aligned

arcs became visible on the duskward edge of the field-of-view (FOV) of the OMTI all-sky

imager installed at Resolute Bay, Canada (74.73◦ N, 265.07◦ E, geographic) [Shiokawa et al.,

1999]. An image of both arcs at 05:10 UT after they entered the FOV of RISR-N is given in

Figure 6.1. Both arcs travelled towards dawn (eastward) and were identifiable and collocated

at the 557.7 and 630 nm wavelengths. At 05:14 UT, the arcs were near the zenith of the

OMTI imager. The leading arc was much less intense than the trailing arc, at both opti-

cal wavelengths, and became indistinguishable from the brighter, trailing arc at 05:16 UT.

It could not be determined whether the leading arc ceased to exist, or was rendered indis-

tinguishable due to a parallax effect. The brighter arc, hereafter referred to as the “arc”,

remained visible until 05:26 UT. During its transit, the luminosity of the arc varied between

350 and 450 R in the red- and green-line emissions.

6.2.2 RISR-N

At 05:06 UT, the arc entered the duskward edge of the RISR-N FOV, an AMISR class

radar installed at Resolute Bay. RISR-N transmits at 441.9 MHz, providing diagnostic mea-
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Figure 6.1: The FOV of the OMTI imager at Resolute Bay, with geographic directions,
showing emissions at 630 nm at 05:10 UT on February 20, 2012. Also shown is the 6× 7
RISR-N grid with numbered beams, and magnetic latitude contours. RISR-N beams
25, 27 and 29 are highlighted in yellow and are aligned northwest to southeast.

surements of the polar ionosphere, including ne, Ti, Te, and line-of-sight (LOS) ion velocity

measurements, vlos. For this study, the RISR-N was operating with a custom 42-beam mode,

in a 6× 7 grid, which is shown as a grid of white circles in Figure 6.1 (beams 25, 27 and

29 are coloured yellow). The system transmitted interleaved Barker and long-pulse coded

radar pulses, giving approximately 750 m and 36 km range resolutions, respectively. The arc

moved with an average speed of 250 m/s towards the dawn, and exited the RISR-N FOV at

05:22 UT.

A plot of ne, Tilos , Te, and vlos as a function of time, measured in RISR-N beam 29 with

the two-minute integrated long-pulse mode is given in Figure 6.2. We have chosen to label

the ion temperatures as Tilos for reasons that will be explained shortly. A time series of ne
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measured at 285 km altitude in beams 25, 27 and 29, which are along a row in the RISR-N

FOV (coloured yellow in Figure 6.1) is plotted in Figure 6.3. In both plots, the time segment

during which the optical arc was seen to be within the RISR-N FOV is outlined by a violet,

dashed box.

A substantial ne depletion region is seen in Figures 6.2 and 6.3, centred at approximately

05:12 UT in beam 29. The ne decreased from 4.6 to almost 1.3× 1011 m−3 in 10 minutes,

starting at 05:01 UT. It is clear that the depletion progressed towards dawn, from beam 25

to 29. The depletion feature is marked by a shaded box coloured for each beam in Figure 6.3.

At 130 km altitude (not visible in any figure), an increase in ne from 1 to 3 × 1010 m−3

was measured with the long-pulse mode. The enhancement was centred at 05:16 UT which

is marked by a yellow shaded box in Figure 6.3. The increase was short lived, and was

only present in beam 29 between 05:14 and 05:18 UT. A similar ne enhancement was also

measured with the Barker code mode (not presented here), although those observations are

less reliable due to their relatively high measurement uncertainties. A more subtle signature

of an ne increase is indicated by the appearance of ne values plotted below 200 km altitude in

Figure 6.2, starting just after 05:12 UT. They appeared because the ne had increased to above

the minimum plot value in that figure. The ne enhancement in the lower F region marks

the arrival of the electron precipitation region of the optical arc in RISR-N beam 29, which

trailed the ne depletion feature on its dawnward trajectory. The appearance and ordering

of the aforementioned signatures are evident in nearly all of the other beams comprising the

RISR-N FOV.

During the arc event, both Te and Tilos in beam 29 increased dramatically, each changing

from 800 K to above 2500 K over several minutes, starting at 05:01 UT. The Tilos enhance-

ment was collocated with the ne depletion region as it moved through the RISR-N FOV,

and maximized at 3000 K for several minutes, starting at 05:15 UT. Te reached 2500 K at

approximately 05:20 UT, and only briefly maintained this temperature. In the majority of

the RISR-N beams, the Tilos increases were measured into the lower F region, in some cases

down to 175 km altitude. The Te increases displayed a different characteristic, and only

generally kept above 250 km altitude.
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los

Figure 6.2: RISR-N beam 29 measurements of ne, Te, Tilos , and vlos, as a function of
altitude along the beam, and time. The time segment in which the sun-aligned arc was
within the RISR-N FOV is indicated by the violet, dashed box.

6.3 Analysis

In this chapter, we focus on the plasma and electrodynamic structuring of the arc observed

over Resolute Bay. A technique that was recently developed by Nicolls et al. [2014] was used

to estimate the electric fields within the RISR-N FOV during the arc event. The approach

centres on modelling a spatially varying electrostatic potential, φ, that reproduces the RISR-

N vlos measurements. When a suitable φ is determined, the electric field, E⊥, is computed

from E = −∇φ. The technique builds and improves on previous work by Heinselman and

Nicolls [2008] and Butler et al. [2010], who developed effective procedures for inverting RISR-

N vlos measurements into full velocity vectors. However, those previous methods had difficulty
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Figure 6.3: A time series of ne measured at 285 km altitude in RISR-N beams 25
(red), 27 (green) and 29 (black), with associated error bars (dotted lines). The time
segment in which the arc was observed within the RISR-N FOV is outlined by a violet,
dashed box. The shaded rectangles denote the approximate location of the plasma
density depletion in each beam. The yellow shaded rectangle marks the appearance of
the lower F-region ne enhancement.

reproducing vectors in the presence of velocity shears, such as those measured with this event,

i.e., the shear appearing just after 05:00 UT in Figure 6.2. The technique introduced by

Nicolls et al. [2014] and used here is able to mitigate these difficulties.

To obtain estimates for the FAC, J‖, for the arc event, we enforce current closure,

∇ · J = 0, expressed as [Sofko et al., 1995]:

J‖ = −ΣP∇ · E⊥ − E⊥ · ∇ΣP −∇ΣH · b× E⊥, (6.1)

in which b is the geomagnetic field unit vector, and J‖ · b > 0. In this form, only mea-

surements of the height integrated Pedersen and Hall conductivities, ΣP and ΣH , and E⊥
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are needed. The ne measurements from RISR-N and neutral density estimates from MSIS

[Hedin, 1991] are used to derive the conductivities. Obtaining an estimate for E⊥ is done

using the procedure previously described. The first term in Equation 6.1 is the dominant

term given what we were able to ascertain about the conductivity gradients from the RISR-N

data.

6.4 Results and discussion

Contour plots of ne, Tilos and estimates of |E⊥| and J‖ are plotted with the OMTI data, in

Figure 6.4. The altitude of the contours for ne and Tilos is 325 km. The |E⊥| and J‖ contours

are constructed from data integrated over several hundred kilometres in altitude and mapped

to 300 km altitude. The OMTI data is mapped to 250 km altitude, the normal practice for

630.0 nm emissions.

Structuring in |E⊥| due to both arcs is significant and easily identifiable. Between 05:10

and 05:18 UT, meridionally extended |E⊥| structures moved towards dawn, coincident with

the two optical arcs discussed earlier. At 05:10 UT, three structures with low |E| were in the

FOV. Two of the structures, both with |E| ∼ 15 mV/m, were collocated with two optical

arcs shown in grayscale. The low |E⊥| structures are indicative of the upward J‖ region of an

arc; a region of electron precipitation in which plasma production is enhanced, increasing the

ionospheric conductivities. With enhanced conductivities |E⊥| decreases to uphold current

closure. The upward J‖ associated with the low |E⊥| structure of the brightest of the arcs

is estimated to be approximately 1.5 µA/m2, and maintains its intensity during the transit

of the arc through the RISR-N FOV. Enhancements in ne due to the electron precipitation

were also detected by RISR-N and are evident in Figure 6.2 and Figures 6.4a–c.

During the same time frame, a structure of substantially enhanced |E⊥| was also present,

moving towards dawn, ahead of the two low |E⊥| features previously described. The structure

measured |E⊥| ∼ 150 mV/m at 05:10 UT, and remained above 100 mV/m for several minutes

afterwards. The electric field was predominantly directed towards dusk, towards the arc. This

structure is the counterpart to the low electric field structure discussed earlier. It partially

overlaps with a region of downward J‖. We postulate that the ne depletion is created in
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part by electrons moving upwards, away from the region, thereby lowering the conductivity

of the plasma and necessitating an increase in |E⊥| to enforce current closure. This will be

discussed in more detail shortly. A downward current, J‖ ∼ 1.5 − 2.0 µA/m2, was in the

vicinity of the enhanced |E⊥| structure during the 05:10 to 05:18 UT time segment, as shown

in Figure 6.4.

A striking feature of the |E⊥|, J‖, ne and Tilos contours is the similarity between their shape

and that of the optical arc throughout the event. This is most prominent at 05:14 UT when

the shape of the optical arc is kinked. This distinct spatial structuring is seen in the |E⊥|,
J‖, ne and Tilos contours as well. This kind of interconnection between the electrodynamic

structuring and the optical morphology of arcs is well documented [e.g., Lanchester et al.,

1996].

It should be noted that even though Ti is not a vector, when the electric field is strong

(50 mV/m or greater) the observed value of Ti will depend strongly on the aspect angle, α,

namely the angle between the radar beam and the magnetic field direction. This is due to the

significant anisotropic character of the ion velocity distribution in the F region under such

circumstances [St-Maurice and Schunk , 1979]. It has been shown [Raman et al., 1981] that

the line of sight temperature is given by Tilos = Ti‖ cos2 α + Ti⊥ sin2 α. Analytical as well as

Monte-Carlo calculations of Ti‖ and Ti⊥ have been obtained for various situations of interest

[e.g., Winkler et al., 1992]. For example, Tilos is of the order of 2000 K less than the actual

temperature, Ti, at 125 mV/m for O+ at 300 km altitude at an aspect angle of 30◦. For the

RISR-N beams used in the observations presented here the aspect angle varied between 20◦

for the high beam numbers and 50◦ for the low beam numbers. It is for this reason that we

have chosen the Tilos notation when referring to RISR-N measurements.

The downward J‖ region was responsible for considerable structuring of the polar cap

ionosphere. This is evidenced by the grouping of the enhanced |E⊥|, enhanced Tilos and

depleted ne features near the downward J‖ region in Figure 6.4, and their simultaneous

movements towards dawn. Velocity measurements from the Rankin Inlet SuperDARN radar

[Greenwald et al., 1995; Chisham et al., 2007] also confirm velocity signatures consistent

with a downward FAC on the leading edge of the arc, moving dawnward. However, the

SuperDARN measurements were only line-of-sight, and could not be fitted into full vectors
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[e.g., Ruohoniemi and Baker , 1998] due to the lack of coverage from other SuperDARN radars

at the time. The measured increases in Tilos and a significant vlos reversal measured by RISR-

N and SuperDARN (not shown), which can be seen in bottom panel of Figure 6.2 shortly

after 05:00 UT, are symptomatic of frictional heating and augmented chemical recombination

reaction rates – an appealing candidate to account for the large ne depletion [Doe et al., 1995].

Evacuation of plasma via current closure must also be considered as a factor in the depletion

[Doe et al., 1993].

Zettergren and Semeter [2012] noted an altitude dependence on chemical recombination

and current closure mechanisms in the vicinity of a FAC system. The current closure mecha-

nism dominates in the E region and lower F region, while the chemical recombination mech-

anism dominates in the F region, at least in the larger-scale currents (∼ 10 km). Combining

current closure with chemical recombination can culminate in a positive feedback if the FAC

sourced by the magnetosphere is held constant: the decrease in ne leads to an increase in

|E⊥| and ne gradients; this increases the convection flows parallel to the arc, thereby heating

up the plasma, depleting ne even more, forcing another increase in |E⊥|; etc. For this study,

their simulation was modified to model the advecting FAC current system of the arc reported

here. The plasma parameters measured by RISR-N were used as constraints to set a uniform

background ne and then a convecting current system was added which produced a peak Tilos

enhancement roughly matching the data in Figure 6.4. This simulation test reproduced the

basic behaviour of the ne depletion near the upward J‖ region of the arc, as well as the

location and order of magnitude for the upward and downward J‖ as estimated from the

data.

In Figure 6.4 it is evident that the depletion travels in conjunction with the leading edge

of the arc. This would mean that the ne depletion was generated several minutes before it

entered the RISR-N FOV. Results from Zettergren and Semeter [2012] support this, as well

as the modified simulation outlined above. The convolution of heightened chemical recombi-

nation and current closure has the capacity to generate significant depletions of the F-region

plasma on the order of 15 minutes in model runs, drastically modifying the state parameters

of the ionosphere. Chemical recombination dominates in generating the depletion in this

event. Evacuation and recombination of the E and F regions has important implications for
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MI coupling in the polar ionosphere, for example, by structuring the Pedersen conductivity,

which is an important component in the reflection coefficient of an Alfvén wave [Zhu et al.,

1993b]. The traces in Figure 6.3 are very coherent from beam to beam. At 250 m/s the

depletion moved between RISR-N beams in roughly two minutes, which was likely why no

substantial growth in the depletion can be seen in Figure 6.3 – the depletion moved through

the FOV too quickly.

In the hours surrounding the arc event ne exhibited appreciable variability; several polar

cap patches were discernible in the OMTI and RISR-N data. A signature of one of the

patches is seen in Figure 6.2 at 05:00 UT, immediately before the ne depletion and arc were

detected. It is conceivable that the quick decrease in ne associated with the depletion feature

was merely the signature of the tail-end of a patch advecting through the RISR-N beam;

namely, ∂ne/∂t = −vp·∇ne, in which vp is the velocity of the patch. Even so, other features

in Figure 6.3 show that an advecting patch could not be solely responsible for the ne depletion

feature. In Figures 6.2 and 6.3, the depletion marks the absolute minimum in ne for the two

hour period; it is also an absolute minimum for a six hour period surrounding the arc event.

Furthermore, the depletion signature extends into the lower F region – into altitudes that

are too low for patches. Therefore, other mechanisms such as chemical recombination must

have been at play and were a leading contributor to generating the ne depletion.

6.5 Conclusion

We have used multipoint measurements from RISR-N to, for the first time, resolve the elec-

trodynamics and plasma structuring of a sun-aligned arc in time and space. Estimates of a

moderate J‖ associated with the arc were observed, and are on par with previously reported

arcs and models. |E⊥| approaching 150 mV/m, and Tilos of up to 3000 K were also mea-

sured in the vicinity of the arc. The arc was responsible for a significant enhancement of

the ionospheric electric field and remarkable plasma structuring in the region. One of the

most spectacular arc features was a prominent, meridionally extended ne depletion, located

partially within the auroral downward current region on the leading edge of the arc as it

progressed towards dawn. The depletion was largely a byproduct of heightened chemical
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recombination rates and was generated on a time scale of 15 minutes.
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Chapter 7

Summary and Conclusions

The objective of this research was to study large scale plasma density perturbations in the

polar ionosphere to gain new insight into their generation mechanisms, transport properties

and signatures at optical and radio wavelengths. This was accomplished by studying mea-

surements from radio and optical instruments that have been deployed in the polar region

within the past decade. In Section 1.5, six points of inquiry into the role and dynamics of

the plasma density perturbations were outlined. Each section of this thesis focused on one

or two of these questions. The results from those chapters are now summarized.

Is there a link between the optical signature of F-region ionization patches and

their motion in the ionosphere?

This question was the focus of Chapter 3. In that chapter, the link between the vertical mo-

tion of two F-region ionization patches and their luminosity were investigated. Equation 3.13

was developed, and describes the luminosity of a patch as a function of its vertical velocity

in the neutral atmosphere. Equation 3.13 was shown to adequately describe the optical data

of two patches measured by OMTI, that were both moving through the OMTI FOV.

Equation 3.13 describes that the luminosity of a patch with a vertical velocity directed

towards the surface of the Earth resembles a parabola in time. Once a patch begins to move

downwards, its luminosity will increase, owing to the increased 630 nm emissions due to the

enhanced chemical recombination of O+ with the neutral atmosphere. After a short while,

the luminosity will begin to decrease since the O+ supply of the patch becomes depleted by

the enhanced chemical recombination rates.

Results from this chapter link the luminosity of a patch to its velocity through the polar

ionosphere, offering new insight into the chemistry of the polar ionosphere at F-region alti-
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tudes. The results of this chapter were published in Perry et al. [2013]. Future work for this

line of research was discussed in detail in Section 3.9.

Using radar, can our existing capabilities in identifying and characterizing F-

region ionizations patches be improved?

This question was discussed in detail in the first part of Chapter 4. To address this question

an algorithm that detects patches moving through the RISR-N FOV, the RISR-N algorithm,

was introduced. The algorithm is founded on the Crowley [1996] criterion of a patch: a

volume of plasma that has a ne that is twice that of the background ionosphere. The RISR-

N algorithm was shown to be extremely effective at detecting patches over Resolute Bay.

The RISR-N algorithm was then used to conduct a survey of patches detected over Reso-

lute Bay during a total of ten days, five in March and December, 2010, respectively. The state

parameters of the patches, i.e., ne, Ti and Te, were each analyzed separately. Some general

results from the surveys include that less patches were detected during sunlit conditions in

the ionosphere. In general, the ne of patches was less under dark ionosphere conditions, and

were lowest in December, 2010. The Ti of patches remains relatively constant in either sunlit

or dark ionosphere conditions. The Te of patches is very sensitive to the solar zenith angle.

To our knowledge this survey is the first of its kind for F-region ionization patches.

How strong is the interconnection between the occurrence of high frequency (HF)

radar echoes from the polar-ionosphere and the presence of F-region ionization

patches there?

This question was the topic of the second part of Chapter 4. Using the RISR-N algorithm

developed in the first part of the chapter, SuperDARN echo return from within the RISR-N

FOV were analyzed and compared to the presence of patches in that same area. It was

determined that in March, 2010, 60% of the SuperDARN echoes originating from a Rankin

Inlet beam located within the RISR-N FOV were associated with patches. For December,

2010, that number increased to 66%. In each dataset, only 5% and 24% of the SuperDARN

echoes were not associated with patches, respectively. These results give strong support to

the notion that the majority of SuperDARN echoes originating from the polar region are
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associated with F-region ionization patches. However, more work is needed to gauge the role

of HF propagation on these results.

Are patches a dynamic or stagnant feature of the ionosphere? Is there any

evidence of internal morphology?

This question was a focal point of Chapter 5 in which a single F-region ionization patch was

investigated using SuperDARN, RISR-N and OMTI. The patch was studied as it travelled

through the polar ionosphere. Using RISR-N measurements in the frame of reference of the

patch, it was determined that the ne of the patch displayed significant variability in time.

This result indicates that patches are not stagnant features.

An alternate theory explaining the extreme variability of the ne measurements of the patch

was also given. It was posited that the patch in question may have been a group of patches

with spatial scales below the resolvability of the RISR-N system. Probing this grouping of

patches may give the appearance of a varying ne profile since a different patch may have

contributed to the ne profile of the patch in question in each scan. Further investigations

along this front were left for future work. The results of this chapter were published in

Dahlgren et al. [2012b].

What geophysical phenomena are related to the frictional heating events pro-

ducing plasma density depletions in the polar ionosphere?

What is the time scale of generating plasma density depletions in the polar-

ionosphere via a frictional heating mechanism?

These two questions were addressed in Chapter 6, which investigated a sun-aligned arc that

passed through the RISR-N FOV. In this chapter a novel analysis technique was used to

invert the line-of-sight ion velocity measurements from RISR-N to infer the electrodynamics

of the sun-aligned arc system. The effect of the arc on the F-region ionosphere was also

investigated.

The results of the analysis showed that the arc system generated a large meridionally

extended ne depletion on the leading edge of the optical arc. By consulting an auroral arc
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model, it was determined that the depletion was a result of enhanced electric fields located

on the leading edge of the optical arc. The enhanced electric field created fast flows parallel

to the optical arc, thereby increasing the frictional heating and chemical recombination of

the ionosphere in this region. The time scale of generating the depletion was determined to

be of the order of 15 minutes. In another fascinating result from this chapter, it was revealed

that the depletion generated by the sun-aligned arc moved in conjunction with the arc. The

results of this chapter were submitted to a peer-reviewed journal under Perry et al. [2014].

Final words

One of the more significant results from this thesis was presented in Chapter 4; that is,

ionization patches are almost always present in the polar ionosphere and they display a

significant amount of variability in terms of plasma state parameters. This reinforces the on-

going paradigm shift in our view of the polar ionosphere which is that the polar ionosphere

is not a relatively homogenous region with transient plasma density perturbations, such as

patches; on the contrary, homogeneity is atypical in the polar ionosphere. This shift was

initiated in previous work studying plasma density variations in the high-latitude ionosphere

using radio and optical instruments, and has been bolstered here with the addition of mea-

surements of plasma density and temperature. Also, the lack of complementary datasets in

previous work may have led to an underestimation of the level of structuring in the polar

ionosphere by large scale plasma density perturbations. This has been rectified by the use

of multi-instrument studies in this work. Results from Chapter 3 may provide a reason as

to why this underestimation may have not been realized earlier. Optical data has been fea-

tured most often in patch studies. Since the luminosity of a patch is interconnected with its

altitude and vertical velocity, many patches may have been missed due to their high altitude

and lack of vertical motion, making them too dim to detect optically as they passed through

the polar ionosphere.

This has important implications for the global communications infrastructure in the Arctic

region. The HF band is an important frequency range for military and civilian communica-

tions and monitoring systems, including those for aviation and maritime traffic. As shown
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in this thesis, plasma density perturbations can affect HF radio wave propagation. On one

hand this may benefit HF communications by enabling refraction in an otherwise tenuous

ionosphere, extending the effective range of radio communications. However, the perturba-

tions may also have an adverse effect on radio communications since the perturbations seed

field-aligned irregularities which present a scattering cross section for HF radio waves. Other

research has detailed the negative effects of density perturbations on the higher frequency

radio bands, such as those used for GPS and other satellite communications.

More work is needed to understand the drivers behind the population of patches and

depletions in the ionosphere. With the tools and techniques introduced in this thesis, along

with theory and computer simulations, and other instruments such as ionosondes and GPS

receivers, we can pursue a goal of understanding the polar ionosphere to a point, for example,

in which forecasts of plasma density perturbations are possible. This would be a profound

milestone in our comprehension of the coupling between solar processes and the terrestrial

environment, i.e., Space Weather.
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