 AUTOMATIC ELECTROCARDIOGRAM INTERPRETATION

Thtsis TR
Submitmd to the
?aculty of Graduate Studies and aescatch
1n Partlal Mulfilment of the Requiremtnts
- for the :
3 . Degree of Master of Sciange
in the Division of Blomedical Enginee:ing
: University of Saakatchewan :

by
Robert James Pirby
- Sagkatoon, Saskatchewan .
June, 1983

The author claims cépyright.' Use'shall‘nct‘be made 5 
of the material contained herein w;thout proper

acknowledgement as Lndicated on the follcwxng page.



Ce i <

. The authbr' has ag:eed that the Libra:y, Univetsity ef;,f-
Saskatchewan, shall. make this- thesis freely avajilable for
‘inspectﬁon. Moreaver, the aythor has agreed that permission

ffar extensive copying of this thesis for scholarly purpcses may .

be granted to the prafessor or professors whe supervised the.
thesis work racorded herein or, in their absence, by the Head
«of the Department or Dean of the (ollége in which the thesis
work was done. It is understaod that due recognition will be:

given the authoz of this thesis and the University . af; 

Saskatchewan in any use of material in this thesis, Copying or
publication or any other use of. this thesis for financial gain
without appsoval by the University of Saskatchewan and the‘ ,
, autho: s weitten pormissian is prchibited. - . L

- Réquasﬁs for yermission ﬁo cdpy or- 8¢ make other ruse of
, material in this thesis in whole or. in part should be addressed
to: s .

Head of the Blvision af Bnomedlcal Engzneerinq -
Universlty of Saskatchewan _

‘Saskataon , Saskatchewan

_ Canada - _ ,



- iii -

I uauld likerta‘thank my supervisors, Dr. J.F . Lopeaz and
B:ur. x. Takaya. ﬂar their helpful canmanta whila wtiting this
thesis end for their assiatance in getainq it p:intnd I would
alsa like to achnawledqa ‘the uork of Mx Sﬁence: ‘Banson in
gathering the sample BCG traces uaed to tesa the pragrams in
this thesis. anﬂ, the Hﬂtk of M: noug Eall which helped his
Acomputer talk tn mine., Jaannn ri:by also daserves :ecaqnition
as it was she who typed most ef the thesia and helped to find
the many quotes which shed ext:a lxght on the subjact mattez
within it. It shaulﬂ alsa be natod that 1 was supparted by a
scholarship fnom the CAnadian Natural Sciencca and Engineerxng
aasearch cguncil while doing this uork.

Pinally, I would like to thank Alfred Lo:d Tennyson who
helped me keep thlngs 1n pe:spactive by writing in Memo:ium I:
'Our llttle systems have their day/ They have their day and

GEasa l:.O b‘ -



- iy -

Umivutzity of saskahcheuan
Biauedical znqiaeerinq Abstract Na. 835230

ATTOMATIC ELECTROCARDIOGRAM INTERPRETATION

Stndcnt Rabe:t Janes ?irhg
Supcrvisara- J.F‘ Lopaz and K. akaya

aaggnag;
The goal ef thc uark bahind this thesis wad to deaign and
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\elactrucardnog:ams.
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reality, a lack of expreasiveness at the-:eductlon ‘stage,
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1mplementatxOn be;ng gzven. Future uork on the dlaanSLS stage
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 INTRODUCTION TO ELECTROCARDIOGRAM INTERPRETATION

140 0 step doward heaith to kmew the diseass.
 (Brasmaus, Adagis: No. 8}

Tht!Hmhawﬁm%qfthihﬂnurthﬂ.! “*“‘””“‘“ﬂ”ﬂahhruaampf‘
“sband it i, like all the other wovks of nature, very wenderful, dut
| vevy simpls. When i does not werk well, mmumtmmg_,

.:VﬂuwﬁhwﬂﬁButﬁ%ﬂﬂwﬂ&ﬂﬂﬂﬂ“ﬂ# L
'j'rrc.ﬂdﬁmﬂmmlhmuuandHuumnﬂhuwc18&ﬁ

5 Ths heart haa always been one of the nost qnigmatic patts
,of the body bec:ause of its inaccessahility. gowevqx,. in the
'_1ate 1830 s Einthovan beqan explaring-the-actiuity*ofathe heirt

f: by measuring the electric field it genenates while eont:acting.‘

51nce ‘then, the electnacardxogram, or ECG, has beccme one of

the most impa:tant clinical t@@ls for the - dxaqnosxs of hea:t'.:‘

--ldxsease. ’;;jrhi importance. alcng with the nownqxtensivejﬁglf

‘knowledge cf hna:t functxon, has led naturally to many attempts
at automating thc ECG: diagnostza pnacess. ‘While. these p:ograms
have been very successful 1n scme areas, the:e remain many ECG

“rproblems‘ that appea: qu1te- dlfﬁicult-‘to computerrzef fhls_

;thesis is eoncerned uzth understandmng why some ECG features.-f"

are more d;fficult to diagnose thah others and how sobutzons to

o theSe-p:oblems mzqht be approached. El:st,_hqwevgr, to p;ov1dg



R L
a2 comnen backgzound; a b:icﬁ intna&uct&an o the heart and thesf-

-'oriqin.of ths elcatracn:diog:an is necessary.

.1 !hu nnart

Thn hunan heart ennlzsts ot tuo punpa, ane to sand trcshlyu;

  oxygenat¢d bhnod fzom' the Iungs to- the: :est c: thn bady,, lndf“   @

one_ 1o send the hhaed, on-. its :etu:n. back thzaugh the luaqs. )

' Bach pnnp eansists of tun chambers, and thn actiau ot the  four -

‘chnubers is cna:dinated by a systen of :pceialized elect:ically'i -

| -,Vcanéucting tissua. A basic dasczipﬁan of ‘the hﬁg:t_chguhczsf
'7g'rand cnaduction system is qivtn in this snctian.- N

' . i1 1.1 1&0 Ieart‘uuxclo sYstqn :f:

- Tht musenlaz anateuy of the heart is simpln in eencgpg as

i'shmn in ﬁ.gure J.-nl.‘

Thn THRO. input chanbers of the haazt a:e the atria. Bload ; :

'flows- trom the body through the superior and iaferiot vcuae,,

- cavae intc the :1ght atriun'and from the lungs thncuqh ~the

.-_pulnoua:y- veiu into the left atriu-... The ventricles are the,:-*'

"output chambczs uith the :1ght ventricle pumping blnod 1nta tha;

Plﬂ-mmrr artery and through the 1ungs, and the. Ieft vent:wle]_&r

: puﬂplng 1nto the aerta and the rest of the body.--

The blacd flaw‘betwean‘thé hea:t chambers‘is-cantzblleﬁ by |

four val?es- ' The mitral and tricuspid valves;,bgtﬁeen the"1eft*

‘atrium  and ventricle, and between the 'tight “atrjum and.

- Vvént:icié respectively, éteyént ‘backflow of bheod-ffnom_ the . .

ventricles to the atria whén ' the ventricles contract. The




Superior
Vana Cava

thfes
thackwa

?iqura Irl. The Muacular Anaunmy of the Heart.
pulnonary valve in the tight ventricle and the aartjc valve in
the 1a£t.pravunt ths bamkflaw of blocd fnna- the cinculatary

system into the ventricles when they expand (1.e., relax).

he pumping action of . the heart accurs each beat, and has
three phasesﬁ' At the begznnlng af the beat the atria aontract
tegethcr, push:ag blaad thnough nhe mitral and trxcuapid valves
Lntc the twc ventrlclga« When: thzs cmntnacticn is ccmplete,
back pressure closes the valves and the tuo ventxxcles contract
toge ther . ‘This fo:ces blood.through the pulmcnary and aortic
valves into the pulmonary artery and aorta, and then into
cxrculation. - In the flnal phase, the heart muscle relaxes and
hlood flows from the vena cava and pulmonary vein into the

at:ia and ventrncles.



P
1..; 2 The !.}.!etz:lul contral Sy-tu of the aca:t

| mc symh:aniutian of tho hurt chambers required f.or ‘the -

s&quenciag deac:ibed above is achievtd through an alectrical

" contzol system. The' qumtiala of t.his system arve shwn in

figure 1-2. | | |

rigure 1—2= 'rhe ﬁlecerical Control 9ystm of the -
Beart. _ ,

'rhe hea:t muacle like all muacle in the hedy, beging to |

' mntract when it rre.ce-i’ves‘ n -e-xternal negat:.ve electrical.

' ) imPulsa“r or -acéion .potential; . In a ncrmal heart, the

'si‘ncs#ai:ria-‘l (8K} ncde pasi&iene'd- on ‘the s-.urfa»ce\ of the _ nght-
gtriuﬁ- Spanianeouslﬁ' pro&uées"a' feQular series of action
- potentials '._ V:-All spec-ifalizéd heartwﬁ-irssue _'_ha_s- ‘this pé’ce’rﬁaker-..

'propezty, ‘w-i-th ‘th‘e natural period "Betweén potential—s being

longest for the Puxkinje fibres, then the bundle of HIS, and. .



- Ko
shortest for the- SA node. '-Beé'au#-n' the SA ncd“‘e"ﬁal;f "_the-".fj_.s.t.est
ghytham, and pacemaka: ceils are reset whe-n-, f:hey-' re.ccive' lan-
 action potential, the :ata ef 8A nnda aation potentials is the
rate of the‘hea:tbaat. Al:haugh the rate is thus ccntrnlltd

kithih fthe' heact, it can be increascd or decreased by the=;

1action of the autenamtc nervaus system . on’ the sA nﬂde.  '

!heseto:a, ‘in- a normal’ hnn:t, each beat bqgins with an aetian" B

fPOthtial tram ahe SA node.“

. The action‘patential is‘ccnduﬁtad'away*fram the*sa nade by "

the nuscis tissua of the dttia.ﬁ_ The pctantial causcs the

muscie to ccnt:act, and a w;ve ot action patcntial and muasle:

contractioa‘sptgads-ova:-the -atria, pumpinq blaad- inty -tne;

‘vent:icies. ' On  reaching -the boundary hetween the atria and
ventricles, the action potential s&ops qverywhare except aa ‘&
bundlc of tissue called the at:ia-ventricnla: (Aﬁ) acde. Heru

‘it is delayed to allow cnmplete eaptyxng af th& at:ia. R B

- From the. AV node, -the action potential tnav@ls  aLcng"th§
-"Bundle of EIS. splits along the left and zxght bundle branches. |
_ana spreads ove: the inside. af the ventricles alonqyth¢~
“‘Purkinje fibres., Thxs conductiom is at’ hlgh speed.‘ ahdut .six'
.‘tumes faster than along ordxna:y muacle, and reaches the entzre'
'ventricular muacle' almost szmultaneously. . The 'ventrlcles.r
therefo:e cantract as a ‘strong unit pumplng chod out of the |

heart.

At this point, the action potential is exbausted and there

is a pause for the heart muacle to relax before the next SA



"'6‘"

node 1mpulsa stacts another beat.

1.2 The Blect:acardioq:al

Tha ECG is a rccn:diug. fnen ﬁht suztacn of the body, of
. the electrical ;ctivity of the heart. This.,activi;y 18 the
shift of electrical charge in the muscle as the action
2pntantixl noves through it. Tb uadn:stand the features of an

. EcG waveform, it is  firsg nacassary te raview the way this

muscle ele:trical potential :acnz&ing 13 wadc.,_.

f 1.2.1 Bltct:ical ?ottntials tzon-unacles

The p:opagatieu ct an action potnntial ahanq a: musale, and f

the electrical signal meaauxed from it is shown in figure L—3.

. Due to the hinchnmistry- and physioloqy of the muscle
tissue, it is polariznd in the relaxeé atate having a positive
(+v¢) cha:ge an the outside and a. negative {=-vea) cha:qe on the
ingide. If elect:odes are placed near - tbe muscle, as shown in
figure 1—3, and cennacted ko a davice for reccrdinq :he
potentzal betwaen -them, no voltage will be registered in the

relaxed state.

If a ~ve actlon petentxal impulse is applied to. . the
outside of the muscle at one end, it uzll depolac;ze at that
peint, shifting charge so that it Decomes ~ve outside and +ve
inside. This -ye outSLGQ‘charge causes the muscle next to it
to depolarxze as  well, and, in this way, the -ve action
potential "flows" along. the outside of the muscle. Due to the

charge shift, the muscle contracts. During this contraction,.
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rigu:e 1-3: The Measured Electrical potential of _'
uuaele (from [24]). _

the electnodes sae 4 ~ve. charge zloW'tnwards the ve electrcde

;and a pcsitive gczng wave is recorded

- A short time after the. action potential passas. the
,physiolcqy'of the~mugc;efCauses ;tvuq-:epolagzze again. Durzng
repolarizatibn the musgle_.rélaxes. and a +ve charge " flLows™

along the muscle. In this stage, therefore, a negative going‘



'-.-8.-.!
wavé‘uill”bg';qﬁqrdﬂd‘it'thn‘elobtrpdgs.~
zrhead‘.degglizizaticu-ﬂand"repolartzatioh"wavbs can be

'\ a¢asurad Iﬁ&on any muscle contracts, with the amplitude

dapaadiaq on thu amount of muaﬁle and the poriaﬁ dtpendiaq o

the specd a: the ictien pnttntial propagat;ou. o

1.2.3 EQG Llad SY!tnla

© The baaie idea ‘betiind the BCG is that, since heart muscle
| behavus elactrically as. deacribed in  the last section,
eltct:adnS' placed anauuﬁ thé heart  will racord. tha#

depolarizaticn and.rnpolartzation of the at:ia and ventricles. ; T

Sinee the electrxcal potcntial from heart d&pnl;rizuticn
spreads easily thtaugh the surreundlng body tiasud, it'is
pessible ta use leads attacheﬂ to the skin rather than to the
heact for this recnrding. Several systems . for positianing £CG
| leads: anouné- the- hndy exist,, dapending on exaetly' what
iafa:matiou is to be recorded. The two mast inpottant sfstems
arg the; F:ank 3 lead orthogonal - system  used in
vecto:cardiagtaphy [48].. and  éhé lZ’iead-systam-ustﬂ‘in m&st_
_diagnostic electnacardiograﬁhy; The lattar systen, béinq. the

. one’ most enmmanly uaeﬂ by docta:s, is deacribed he:e.'

The position of the electrodes used in the 12 lead system.
 is'shdwn in figure l-4. These leads are usually considered in |
ﬁhfce sets. 7 | | ‘l |
| The first set of. 1eads is knbwn as'the bipelar limb leads.
It congists of 3 1eads, I,I1I, and 11T, measurlng the potential

between the alectncdes marked L-R, R-R, and "L-F respectively.



Pigure I-4: ‘I‘he 12 mad Bugnastic Elactrode
5ystem

zach lead will “see® that componeut of the hea:t dopclazization
along the line joining the electrodes. Thus, as shown in the
diagram, this lead set records the heart - weim akong three |

~lines, 120 degrees'apart‘in thé'body frontal plane.

‘Tbg\'sécond~sét of leads is the uniﬁblat limb leads: aVR,
avL, and QVE. These leads nse'the electzrodes R, L, and P,
nespectiwely-as ‘the +¢e:te£minai‘andrthe*othek two from the set
R, L P connected taéethe: as thé ~ye eermlnal,“whesh'three_i
: leads add informatzon along anothar three lines in*the"frcntal

plane perpendlcular to those of the bipolar limb leads.

"T - final set of leads is the precordzal or chest leads.

- These six electrodes are placed at: heart level on  the chest

approxinately equally spaced from the sternum to the left side
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unﬂ§£ ‘the arm, ,anﬁ  a?q,lahnliiﬁjl tb 6 on the diagrxh. The
leads are known .as vl to 'vs,.;andh use - the ca:iespondiﬂQly
aumbokadf_elgetrodes:as-thnrﬁve terminal and the electrodes R,L
and P connected tnqéther,;sgtherqvo terminal. A view Gf the
heart is thuasaﬁtéined'alapﬁ skx liaeg\in‘a‘plaﬁa'thfbugn the
hody. | o |

1.2.3 The Normal 2CG |
The 12 diagnostic leads give a fairly Getailed

-threa-dimnnsional view of the. depula:izatxon of ‘the heatt, ,am

'.lfdtacribe,what is "seen”, and thereﬁore what .information is_ ,

contain§dflin. zhe‘zéé. it,is enlighteninq‘to discuyss in detail
lsad 11, the lead éhich, displays the most *classic® ECG
ﬁavefﬂkhs._ The ezqectiva'positianshof the 1¢ad'II'e1act;édes_
N are qi&én-in-f&gh:e 15, and’ it is-—uséful to compare this
‘arrangement  to that in figure 1*3. . . | | '
Bofora the heart beat begiaa. the elecz:ical potential of
-the heart is unchanging ‘and the lga& 1t ECG records 0 valtsf
wneﬁ the SA node prodﬁces-an'action—potantial, tao waak ta_be
recardad in its aown right, a potential wave aspreads aver the
atria and they ccntract. ‘The depclarization accampanylng the

¢untra¢tionlms recorded as the P*ﬁave shown in figure 1~&. -

At the AV node, the ‘action potential 'anSéSg"and then
rapidly moves down to the Purkinje fibzres and the interior of
the veatﬁicular wall. Because the 'pctential“travels- te the

ventricles so gquickly,  their depolarization occurs in three

very short stages. The left bundle branch allows the action
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Figure 1-5 The Effective Lead I
Electrocardioqram.

potential ‘to‘ reach the septum between-the_ventkidlés first,
which depqlarizés from the left to right vent:ible,'p:oducing a
smﬁll dowrnward Qéwaie in the ECG. The“ act;on potential then
reaches the bottom por tion of the ventrncles 31multaneously,

and they polar;ze outward, pnoduclng a large posztlve‘ R—wave,
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dus to the thick Buscle invel ved. pznalz.y. the upper pm:‘tian |
of the vent:icular wall contracta, ﬁreducing 2 small downward  ‘
Sewave .

oucc the beat is camplete..tbc ventricular muscle rclax&s:
‘reaolazizznq slawly fran -outsxdn tﬂ ingide, pnoducing the
Tewvave in £&gurc 1*5 (nate this diractinn is appasite te that
of the isolated m—.uach shown in figure 1-3). The &;ri—a also
produce a repolarization wave, but it is usually small @ and
falls .on the Q’as mple: and is rlast-.

-

erefcte, a mmally beating hea!:t pmdums a lead 11 ECG
like that illuat:rated in figure 1-6. Also shw.n in that figure
is the same beat sequence _aa. - seen by the eleven other
‘electrodes of the d-iagnas‘tic é:cc.i  The 'diﬂarhnf deflection
shapes and aaplitudes are due’ t.a thq diﬁferent m:iantat:ian of

the leads ﬂith respect ‘to the heart.

1.3 The Abnormal Bleﬁtrocardiogram

?ram the last section, it can b’a' seen that 'the ECG
measures only the depolarization and hence the cﬁntramtian of
t.ber haa,:t-mu—sclea- r_.How_e've:', by apply:r.ng the know.ledgre of heart
function from section 1.1, & great deal beyond mere muscle
contraction can be deduced from the ECG. In particular,
information is contained in both the position of each wave in

the ECG (rhythm) and in the shape of each wave (contaur).
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Pigure 1~6: The ECG of the 12 Diagnostic Leads.

, 1.3;1 Contour: | | ,

| An example of ‘an BCG with~abncrmal contour is given in
figuré 1-7. The clznical diagnosxs for this ECG lS :ightﬁ
~bundle branch block, | This self~explanatory condition arises
éithe: conéénitaily or'when some = form of - cardiac trauma or
&isease blcdks the- bundle branch in the right ventricle from '
conducting the action potentxal from the bundle of BIS. Its

ex1stence is deduced with the follouing model.

Ag the action pctentlal leaves the. AV ncde. it travels
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rtgﬂ:e 1#7: Right Buﬂdle Branch Blochk.

alonq che bundle of azs and down the left bundle branch to the

leﬁt ventricle. but is,stnppsd.gn the right side and cunnat‘lg

reach the . right ventricle. 7 Thus thc septum and thu left'-.
ventricle depolartze nn:mally pr@ducinq a Q and R«wave. --the-
rright ventricle, however, must waits until the action,patential
t:avels through the saptum and reaches the Eurkinje ﬁibres. It
- then depalarﬁzts, p:o&uaiaq another, dalayud waave, daaignatad
R, The heart finally zepolazizes, producing ‘a T-wave and the
ECG illustrated in the figure.

this right bundle branch Block is .only one conditzon whlch
displays an ECG  wave with -abnormal cantour. ther notable

examplgs‘arurvantrzcula:‘aypertrophy,gnd magt forms of Infarct. .

1.3,2 Rhythm an8.Arrhythnié8

_VPiq#re‘lés‘shows ah ECG wiﬁh abnormal”rnythm. Ag with the
ccnﬁour example;-this arrhythmia 1¢an‘ be diag{osed* és 2° Aﬁ,
 Block, using deéuct;on based on a knowledge of heart funct;on.r
| In 2° Av Block, the AV node: 1ntarm:ttently fails to conduct an |

actien potential from the atria to the ventricles. That this
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is ‘the corgect dié'gnasiia;_tdr the ECG in figure 1-8 is easy to

saa; -

>H'.

_riéure' 1-8 2"' AV Block. - , |
rnuéts 1 and 2 in'thé‘tigﬁ:é #re conducted ncfmal;y‘ and
appear nermél. In DBeat 3, hdweverp the SA node triggers a
dogola:izaticn of the at:ia. pzaducinq a nermal awave. At the
AV node, the action potential from the atria stops and no
QRS-complex  is gl;cited.--' The next beat 4. is once again

conducted normally.

'.'mis is a fa-i-r."ly- simple example of literally tt;éusa’n-ds,- of
arrhythmias descrlbed by cardiologists, 5oma df which like
‘thkebach 8yndrome and 3° AV Block appmar véry complex ‘on  the
- ECG. | |

1 .3 3 Supary :

In practzce. the largo number of patients involved ensyres
‘.‘that,  ini a clinical environment, almast avery cencelvable
.problem'with'the heart will be encountered.ln some -ECG- trace. .
| To‘makQ:a'propez diagnosisi the éardiol&gist must;‘in éach cage
from normal to complex comblnatlans of koth contOuz and rhythm
abnormalitles, extract the useful information from the ECG

trace and deduce exactly what is wrong with the heart.
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1.4 The Automation of ECG Diagnosis

With  the lazge amount of xnﬁo:mation in" an ECG, and uith'

the ralativc ease and innxpeasivnness of obtaining one, it has :

become a very importast and cammcnly used diagnmltic aid. The |
ainc:easing use of the ECG cver the la:t century ‘has btought
- prassuce  to  automate the measu:ament and diaqnasis a: ghe:

-wmform t:aces obtaimd.

- This ptesaure cqmes'for séﬁeral féasens flll; : 'with‘ £ha.
very cnmman5 use of the éés at. che time of writing, up %o ane -
' hundred are takan each ‘day at the Unzvaraity of Saskatchewan -
Haspital._ Evon fex- a skilled cardxolagist who avetages a

\ diagnosis ae one ECG pez minute, that mnans every day nearly -

.tuo hcu:s are taken up in this very machanzcal task. Anather.,

probiem is that, in cardiac care units (Ccw)  and emergcncy
- nooms, abnaxmallties in ECGs can be overlookeﬂ bacause doctors -
are not, and,should,not-bqr-available for cgnstant monitéfihg7
and diagnosié fESI.. Burthérmofe; to increase the-hsefulness'of“
BCGS,‘ moré #nd mote' mea§urements of wave . durétieh; spécing,
etc., must be nade. for -each diagnosms. and ca:diohcglsts do not
have the time to ane:porate " such camplexities in zoutine “

- reading.

Machines  can overcome each of these problems. If a
machine‘cOuld be made to 4o me#t or all ;cut;ne ECG diagnosis,
thg-'skilléd"catdiclogisﬁ_ wbuld be free for a bonéidérable 
portion of each day to deal with morérimpartant ﬁasks;' In the

CCu, the machine could be constantly monitoring for simple and
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complex at:hythmias and conuoux changns, a&d ceuld notify the-"
| ttendant uurses immediately nith 2 diagnesis, should they -
occur. | A machxne c!ould also expand l:he usefulness of the'_
diagnosis madn. by incnrporatinq mo:e measu:enents wlth less

”*humaa va:iability thau a cardiologist can affu:d {391.

- 1. &.1 cutlinc of !hesis
The pu:pese af this thesis. is to deserihe the beginniaqsr

of a system being constructed at thc Unmversity ot SQIkatchewan"

as a research tacl.‘intu “computer diaQnosis of" ECGS._. 'The B

_ research behind t@é-bhesié‘baa three main goals:

l TO construct a usetul qualitative ‘aodel oﬁ human ECG
diagnosis, so that it can be compared and centrasted'
with prcposcd machine algorithas. :

2. To review the considerahle litorature existing on
past attempts at computer ECG‘diagnoszs.,

3. To bqgin implementation of an actual computar
p:ogram aimed at detailed BCG diagnnsis. ,
The organiSation Caf therthesis'is as follows .. Chiptér 2
_descrlbes an etxginal model of the procedu:e used‘ by human
dactorS- to diagnose an ECG.. Chapter 3 gzves a :evzew of the

i literature on cemputar ECG d;agnosis, w1th ‘emphasis placed on .

snnzlar;tles "anﬁ differences to this human madel,  and in -

Chapter 4} the,algotitth‘for'thefimﬁlementatlanrdf— the‘ firstf.'“

two stages - of the . ECG program this thesié is.based‘on are
described. Chapter $ concludeé the thesis with a suﬁmary of

the work produced and a discussion of future extensions.



Chapter 2

A MODEL OF HUMAN ELECTROCARDIOGRAM DIAGNOSIS

!a-tycsuml«MW1dh¢tm¢nu-di:gﬂqunmdlbcwqu!hmut
{Rahm&amnntﬁmmﬁnuawuudhnglaﬁn

when preducim; an autmr.ic ECG diaqmsis gystem, the
first step is to have a theozy or'model cf the way pecple maka
diagnases. Examinatién of such a model,gives insight into the
way . the automation may be accamplished by suggasting an
alqcrxthm of the most succnssful mcthad of makinq 2 diagnosis:
the human method. A-mndel also givvs a uanful standara against

whieh previous wark on autamation ¢an be compared

Any model of ECG dlagnosis should, for -several related
,reasons; be of the p:ccess most cemmmnly usad by doctors. - The
most lmpo:tant reason IS that almesn ‘all currently available
diagnostxc informatxon is based on long research lnto the most
used pracedures. Significant deviations from the human madel
will therefore ':eqnire that a good deal of research be redone
in erder te derive dzagnostlc criterla for the new. method.  Por
almost the same reason. it 1s zmportant that & human-like model

be used, so that doctors can easily appraeciate the system ‘and
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help. it to gain acceptance. ' 'Einally,.bacause'A‘diggnQSia
program which closely follows human procsdure can be expacted
to have human failings, when it does make mistakes they will be

easy to find and correct.

Thii'chlptef‘inseats‘the key aspects of an original model -~

of human ECG analyais alonq with asgunents for ies plausihility‘
"from such diverse areas as médicine, psychology, eduaation and

. computer scignce.

2. I'Iht':odndtion 1) thi Model - _

e way to derive the essentials of the human ECG analysis.f'
jp:ocess is by a consideratian of those things which aust occur
if a diagnosis’ is to. be~ nade.- This s&gtxanrdiacusses_tha ;
aspeéta af’the'madel‘whieh can ba,idehtifigalini&his uay.‘f_

| The:éiaQnosis pioblem'chn be-'prrESSQd' as a cantinueusv
]abstrachion f:om the original ECG trace, to a set of waves, to,'
a set of clinical labels (P, QRS,T,etc). and flnally o 2
_' diagnosis cf*- the unde:lyxng heart problem. This vlew‘f
-iﬁenrporatés‘ the human aspects of -the p:qcedure while o
tntroducing a useful mechanical quality. Any'd;visionjathhé.:9
continuous process of abstractien into sep&raté- éiécﬁé is
"somewhatr-a:tificial, but by taking cues from human behavieur
and the types of -knowlédge reﬁuired,‘at -each level, three
;inﬁependént,stages_émerge: reduction, labeliingdhd_diégnosis.
) Examples of the output 6f‘each stage-are*givén'iﬁ,figq:e-ﬁ~1,

Before any other processing of an'ECGVtracé.can begin, it
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| !19u:¢ 2-1: An exam#le of the stages of the
o human analysis model.

must be,brnken dawn.inba some qot‘of.law lavel components, snch
- as ootngés;j péaksf -waﬁes, pla;eaus.‘etcg ‘Thi&'l&adg‘ta the'
first stage of the human énaiysis,wcdel‘in which.th¢ ECG trage
is. reduced from a caniinuoas'wavdform to a ccllectian.af known
‘primitive shapes or features. In the figure, this reduatian zs
shown as a 5eparation £rom the trace of qnly ;hase fgatu:es‘
(i.e.,waves) -which are _nacessary . to make the'aiagnosis. In
people. reduction is normally an 'uncanacleud' pracess although
it clea:ly'must,occur. ‘ Another important characteristic of
rﬁhis séégg is gﬁﬁt it requirés'knouledgeloﬁ shape and size, but

no direct knaVIQGQe-of‘thérfunationing of the heart. .

- After simple features are extracted fromfthe_trﬁce, théy ,
must-be'g:duped together and a  particular meaning, i.e. a
specific haart acticn, associated with each feature or group.
This assigning of meaning leads to a sg;ond diagnosis stage,
match;ng exactly the human action of attaching.clinical'labels'

(i.e., P,QRS,T, etc.) to the waves in. an BECG trace. As seen in
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scction 1 2. 3, oach label coz:eaponds te a spacifzc conttaction~

"in tho heart muscles; therefo:e, this stage leads naturally to-

~ the type-oﬁ output-shawn in the tigq:e. C Por  a dacto:, thu:

| clinical labelling is always the lowest level of analysis which .

is\coﬂsciaﬂsly recognized.

The. third and final stage of the analysis process is ont '
of graupxng the labels and abstracting the tesul ting string .of
'hgart.\eceicns. into a diagnosis oflany underlying ;bnosmnlity.
!his'is-théjare#-1n~human analysis which ‘requi:ek the most
'knawledge of the wctkinga of the heart, anﬁ is ther&tore ehe_ |
subject of the greataz part of all textbooks . on ECG r&ading
(13)128). |

wnile the three stag&s of the human ECG analysis moael are
derived Erom a simple eonsideration oE the kxnds of processing
and knowledge needed for each, it is 'aqmpelling that almost"
identicai.'staqaéhave.&g?ﬁ diaccrﬁgd‘in-éevera;'other areas of
human expertise {73]..f?gn_:eiample, the-,dvidane \Da1ew puts  '
| forth on the é?oéass ‘of language leérning-in children [17}
Sugggsts the Eolhcuing: model ';forr_ ianéunge | ﬁcquisition:
discovering éiagle words, identiffihg an'abjéct‘Imeaning).with-
each word, and fiﬁal;y-léarning to usg‘the' ﬁd@ds in abstfé¢t
_santencesf“ These models of ECG analysiS"and' language
'a:quisitibn are compared s;aée by stage in table 2-1. '
| Whilg. this CQt:eSpondencé- between models of . sﬁch'
apparently different human processes is not complete evidence -
for the‘gorreétnessréf the models, it ié-persuasive. | Ih the

next sections of this chapter, more evidence will be brought



| ’zcsnugnoau .| Language Learnin
\ Stnl_oqlnpntriEEG’&‘ace . Spoken Language

| Reduction Singling ot | Stngiing out
, | teatures and waves: amumdnnndumrd:-
Labelling Associating waves | Associsting words
. - | 'with heart actions vmhphwﬁmuahkéur

qunm . | Absmungmmm Ahttrmﬂm from & juets -
. .‘tnﬁnnntonnal ,anﬁ!nmmﬂngstn |

Table 2~1: A com@a:isan of human ECG anaiysis
~ and J.anguagn learning..

'£a:ward £ran similar saurces ta elaborate the th:ee stages of

~ the ECG model and to reintorca their pPlausibility.

2.2 The ﬂotails of the m-an 2CC Model | -

| The th:ee stage model of human ECG analysis introeduced in
the previous saction ‘has . the interesting prop-e:,:ty that each
stage is similar in function; a set of input data is praéessed
into an ébstracﬁéd‘ get .of outpﬁt Gata. This sxmilarity._

highllqhts several key concepts common to each stage.

mﬁe.moSt‘directrproceduré fot'geueratingaoutput5frdm'inyﬁt‘"
‘is‘the-application af a sét‘of rules thcb maps one ‘;ntq the
'othe.\.". Therefore , each stage  in the human analysis model can
be thought of as a-éet of procedures which go- from ‘trace to
primitive .f—eatures,. features to c-liniéal. 1abeis ahd labels to-
'_ diagnosis of the heart éo‘nditiotx. ' The output from each stage

will often be . ;eferéd ,to in this thesis as a set of tokens,
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where a tokan _rnpresénts, in an abhstract form, soge”spggigic

feature in the input. For examplé. ‘the reduction stage may

id:ntify Sevcral pieces of ECG trace whlch together form a wave

and will pass this intormation_ on. as a sipgla,wave token,

:eptésanting all‘eﬂ the pinc.s at'onca;

A sat of rules usad in ahis way, to abstract from input te
output,’ must have two inaortant characte:istics. it must ber
‘expressive, and it must be—cauplete. In a qualitativsrwayg
c:p:essivenes; can be defined as ‘the amount of information

available in the input that'thg_rulesuof the staqe can actuallyl

~extract. Therefore, for an Ecsf‘ahalysis- pnécéss,'to be ‘,“

sﬁfficiently'expreésive. it must- be able tq"ext:act svery
 important . ECG featuze trem the input trace, For etample;'the
first stage of the BCG?model must be capable of identifying the
characteristics of each type of wave likely to be found in the
input.  1If iﬁ-can‘cnly de tect whethg:‘a-#ava-iS'présent:;t'a
particular point in a;tface-then,‘cleaxiy,'ho-'diagnesis 'baséd"
'qn—contour'can be made by ﬁhg later stages. Such an example is
illustrated in figuré‘2~2, | | , |

This same figure shows that the rules for later.staggs-in
the'mOdel“.must: also §e- sufficientlj eﬁp:éésivq;. if ﬁhe‘
laﬁelling stage,is net éapable of dealihg,with the shape of the
R7, even ah.exptessive‘reduction'stage would allow an inccr;ect

final diagnosis..

The other important characteristic of rules is their
completeness. Completeness can be defined in an intuitive ”way:

as the amount of input data extracted which is actually passed
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Piga:n 2-2: The p:oblems af an insufficxently
expressive rule set. -

“en to the output. Thetefure, 2 gezfectly‘cnmplete EﬁG,analysis
‘system would nét only pe:cnive' gviry  important ECG trace
feature, hqifﬁénld"alaa‘reﬁott gve:y‘;aievant féaﬁure in its
final "diaQnosis.- . PQr example, even for a sufficiently‘
exptessivé\sét of'rulgs,'if‘all‘iaétances-af.an' output choice
are not passad on, anincb:rectdiagnosiscanresult; Figure
 2-3 shows a clear mmple of this problem .;nf the labelling
stage. - | | | I

As seen in figures 2-2 and 2—3 fazlure of a rule set to

be ezthar expressive or camplete results in a loss of important o

information in a model stage and therefore an - incorrect
diagnogis based on incomplete information. The rest of this
saction explores the implications of these concepts ~-rule

sets, - expressiveness and completeness-- on the three stages of
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Trace
Cotplete |
Labelling P R T P R T P B T
‘13a§goduu“ Normal
P
| Lebelling P R T P R I S
| Dingnoats 2 AV Black -

riguxe 2-3z An a:ample of the problens with an
incomplete rule set. -

' the buman ECG diagnasis model.

3.2.1 Reduction | |
‘The rule set for the first-stagerbf‘ﬁhe hﬁhan ECG analysis 
nodel takes as. input the type of ECG trace cbtained using the_
no:mal measu:ement pracedure eutlined in < section - 1. 2.2, -As'“
-output, the staqe myst produce a set of tokens representing the
clinlcally impcttant waves in the trace. These output tokens
" must exptgss bothrthe pcsition and the shape of. each wave,
gince both of these_‘propeﬁties are crucial to  a correct
diaqnds@s (see sgction-1.3.3)"Every-wave must alsOr'be ‘found,

as every heart action is important.

The type of knowledge necessary in the rules of the
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redn¢tion staga of the- modal is anly- to'.a 'snallfcxtenf
knawledQQ of the heart. While it is true that tor'tho‘nulesrto 
be su!ficiently expsessive, all possiblé' shapes of waves
exﬂiatsd in  the 2CC  must. h& knawn, the actual methods of
,diacavoting peaks, valleys and wavqs do not in any way have to
relate to the'henrt.‘ Oncc the expreasiveness af the rules is
defined, their applicaticn is essentially a@nte;t-f:ee.i-
réquié;nq no knnwlnéga7af what'may ﬁ9‘wédhq-with*thi ECG't?ace.,

- Direct evidancﬁ‘that ECG analysis\begfns with a reduction
- stage based on :ules ganexating f:ature toktns from the ECG . _
. trace is' acarce. Hawever, evidsnce that. genaral law lavnl )

human perceptzon works in this way is readily AVailable.

_-"gHubei*aadjwieiel dxamaticzlly denoﬁstratad the existénce
of low l'cire-l '-v'isi.ml ‘tokens with their watk et cats in 1962
-{32}. They invtstigatad cells in the " visual anrtex with:
.elcct:odes, and found that couplex cartical qells axist. Theae'
a:e actlvated by a single well defined feature 1n a speczflc
a#ea of the v1sua1 field, Pp: example, a partzcula: cell might

be activated by a sinqlelline';t a specific orientétiqn, But

#ill_ remain inaqtive‘for the Same'1ine‘at,a‘slightlyldifferent‘- 

>‘angle - In fadt}=§imila: ﬁo:k has shewﬁ that aicoﬁplex lay&fing‘
of tokens is used- in the abstractlon of the visual field. The
‘retinal- ganglion cells in the eye ‘are known to be grouped in
sucﬁ a way that each responds to a single‘.ciréular spot of
light. 1In the visual cortex, s:mple cortical cells respond to

small llne segments at specif1c orientatzon occurrlng anywhetre

in a larger area. ~There even exist "hypencomplex cortical
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‘cullk‘ which respend only-when two lines meet at a particulat'
' angle (201(25] . | |

In additien to. this evidcnc& for tokens. thefé are. also
experiments which demonstrate that the tokens are not hardnizcd
at bi:ph,-but.qgﬁthﬁ ba most expressive for the-anviranmgnt-at:'
| hand.'“;d Reqtak'[521. seve:a1 related studies in this3argé:are- 
described. } In'tﬁe'maét.:evgaling, newborn kittens wgkg'pLaced
,ih~éages vhich éont;ined’anly vertical or hbriz@ntal stripes.
Aﬁtet several months, upon' their release, it was'found with'
electrades ‘that the "vertical cats” lamked, ca:tical cells -

respond to ho:izontal lines, while the 'ho:izental cats" lacked

'u.ve:tical cells. In the experxmeatal caqes. the cnlls wh1ch did

exist were sufficiently expressive for the eavironment and the-
cats had no txouble, but in thesoutside world they lacke& -the
low Iavel exgressiveness needed and haq,stniaus Qitt;culties
ﬁith their‘environment;.faf exanple, 7'horizontéi 'cﬁts': aftcn‘
walked into table legs because they .could not see the vertical

" lines of the legs.

-While-thé evidenée fos';akens. and _expreésiveness exists
- for lawer anxm&ls only, it c&n.reaSanably-be inferred in man as
well. In fact, anothe: bedy of evxdence ex;sts which suggests H
-that the bulléing of ‘tokens occurs in man .even at’ cagnztlve:,
-1evels too abstract to measu:e iﬁt single cells. Ih,1963,
Segall et al. did'arstudy'dsing optical illusion§‘ drawn ‘with
straight lines (57]; fhe.illuéidns were shown to members 6f
"Western® and "Non-Western" cultural groups, and the number of

times an individual wag focled was recorded. It was. found that
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‘Nhstcrners vere nore Otteu fooled by illusxons containinq acute
~ and qhtuae angles, while non*Weste:ners were fooled by right
anglc‘illusggng,”?Qhe cqnc1ﬁsion reached was that Westerners
interpreted Ehe' Acutﬂégbtuser'angles, as tokens reyzeaanting
tight-adgles.btcanae of”the,la;qa:numher:of :eatanqlés:'in'_ou:
environment (i,c,,-'buildinga,_ windows, égnzi; etc.). The
 nen~w¢st¢rn§§sninte:pfet,stficglqlines as tak;nsf‘zspr¢seﬁting
lines axtending;aw#y in thﬁ hor izontal plane, Likg.a path in a
fileld. fThere is also ‘current reéearch into theories of
learning which suggest, that this abstracting of tokens is
‘crucial to any explanaticn az human :casuning a&ilities {541.

,Int-suﬁmaty, thé "firse stagt of huﬂan ECG anqusis,
teﬁuctiaa,.consists:pffa,sataf rules to: abstract the ECG trace -
inte 2 ' set  of wavesﬁape tokens which are  ¢u£ficiengly
e:p#eaéive to suppo:t_tu#the:.diﬁénesiaa :Alﬁhodgh.cvideneeato:
theirﬁéxisﬁeﬁce at highex cdgnitiv§'10v51§ is less ‘cenclusive,
evidence foﬁ the existence of such tokens in low level human_
vision ié"quite strong. the' evidence alsc explalns'jan

-_interestlng phenomenen that -occurs in classes in whlch ECG

reading is being taught.. Often a _ngw-‘student will make 'an' -

‘incor:eét diagnosis' because‘ aniimbortant wave is overlooked,

and the wave cannot be seen nntil it is physzcally poxnted out,

and sometimes not even then.. Perhaps this occurs because the

rules: for generatxng tokens that the- student had before the.

class are not suff1c1ently expresslve or complete for 'ECG
.

reading, and therefore the wave in question c¢an actually not be:

seen.
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2.2.2 Labelling . | | | -
| ‘The :ule;"seg-fot' thé.'sacbndi'étago_in' the human ECG
analysis ﬁcdei‘mustftake asrinput_the:;okan 1ist'from the first
#tﬂqe_.gndl p:o&uca  an‘oatput‘ a séﬁf'of clinicﬁll' l#be;s_"
'aés‘a.aaiatir;q a specific tha;:.t‘ ;aet’:ion”:o each tdm:ﬁ or -set .of
tokens input. .in;this case, the eﬁpr:#sivencsa- criterion
_:equifes.'that_ﬁoth thn-type ©of heart action and the gaﬁticula:‘
gontour 9£'each~typ§'qt waveQi‘i£~‘mo£e-'than- anaf‘giiSﬁs,l be
#cconnted‘.£e¥¢ AQain,|in'this.staqe. it is-cruciai th&t-cvery
:heart action be. dzscovercd, since each ‘muscle depolarizaticn.'

or lack of,cne, is impertant.

me nature of this labelling atage dxctates that much nore

direct knowledge of the heart be. known than in- stage one. In

par:zc&larr-a;knowledge of the way the heaxtrprqduces-an ECG 13 
required so that each type of wavé_in'thé'input tﬁkanﬁ can he

asSﬁciatéd -with' the action p:oduciﬁg it; Some knowledge of
‘possible heart abnowmalities is also necessary, as problens

often produce irregularly shapeduwavgs,xn»unusual,posiﬁions.fj'

Paycholdgical  evid§nce Suppozting the activities in this
stage is that gtven 1n sectlon 3.2.1 for ‘a.continucus lay@:inq'
of mdre abstraet tokens.(hea:t,actlons) on less ahst:act 6nes ”
'r_(the inputlﬁaveshapg tokens). There is, however, more &i:ect"

, eﬁidgnce .thét lébellinglcccgrs:in ECG diagnosis: evékybﬁe-doeé
-_it. The fundamentéi téa¢hing‘in‘ECG teading is to first label
each wave in the trace a'P.QRS.T,etéfu[131[18][24}..Talking 1:q"'j
‘a dcétof'about'the canten£ of an ECGitnace wili also'invériably

bring a discussion of the various waves .displayed in it



In. sdmmazy,; the sacond ‘szgqa;? labellinq, in human zccf

-:analysis consists of a set of rules. to assacinte 2 heart action}“

label to each token or- set a: tokons in the output from the ,-"

reduction stagn. ) Although the psychological evldence leavea~'

. the beunda:y between the first and ‘second staqus of the model

-seﬂgwhat :a:hitx§:y. the ﬁinal labels the :ule set producaa at

this‘stagg-a;é\dictaeed by the - actua;, praatice \pf; dccta:s. S

Tis existence of real clinical labels should help in maghine
Tanalygis hy‘supylfimg—a'zeadily available set éﬁ';8u£ficientlyj‘;

expressive labels for use in further diagnosis.

-2 2.3.niagnosis

Like the previcus tuo stages. the £1nal stage, diaqnasis,'

'ot tbe human ECG analysis model cunsists of ‘a  get of rules. .

 These rules ahstxact ‘an . output diagnosis of the undezlying
heart conditians from tha inpat snt of clinical 1abcls.",11n :
'this stage, the output must first be able tc signal evary'
,possible abno:mal;ty of the heart, and. second,_it must be able
l to  express it ;n the ,correct.accepted\medieal‘te;m1nology- |
'IbQSe‘tgé-probiﬁms may at first appear to be the‘sémé,:fbut:ait ‘
-~ is gﬁtinély“pﬁssibleto create a set Of rules ﬁhat diséa&eﬁéf
s#ebiﬁicﬂprcblem&-in'gheheart, for example "a P-wave wa§ not
coﬁdu#ted  through 'the_AV*ngdéu;.and then'énqthér set'ﬁﬁ;ru;esi'
to transform  that statement of heart function . into ‘the
 diagnosis 'Z’AV"Blch“ The completeness critefion, aléo
applies to this -stage in which it*lis 1mportant to find-
everythxng' the ECG trace holds, often even multiple unrelated '

diagnose5¢



At this'“itage 1n ,the diagnasis, the knavledge required }

 ‘¢°&!$ in twa va:zeties. FirSt. this is the stage which muat.: 

-ccntains a ‘complete knowledga nct ¢nly of the functionlng of .

~ heart but alaa of all possible 1n£luencns on: it, like drugs.

'”?fwhich can  affect htart activity and hencn the ECC p:educedar;‘“

s=cond, knawledge is :equired about medical tn:minoleqy and the-l'. '

"p:oper way to report each speciflc abnormality

rne wnst dirsct eviéence that 'this- staqe' df-‘diaénosis1,."

-_occu:s separately as a set Qf rules in. human analysis ig the
fact that the la:gest patt of evnry ECG textboak 1s deveted te_

- duscrihing the rules useﬂ to generate Py duquosis trom clinical,

labals [13][18}. In tact,i at. 1east- one report bas’ bcgn'

“expressly written . by dncta:s as.a dttailed, rigid cadificutien
'- of hundreﬂs of. these rul.as far ‘the use in mchine malysis
'  [40] . 1In addition to this direct cunfirmatinn. marez‘general7

- evidence . exists in compntu scisnce work. on expert- systems,

E fwhi¢h suggests that ‘tasks going from a well—knawn set of labels

.to a well-known set of diagnoses through a clearly def;ned‘
: problem space are mast naturally expressed as a set of rules,

' mapping the input to the cutput [14](301[33} (451160].

In-sﬁmma:y,fthethird"stégﬁ'qf 1ﬁhe‘:humin JECé; diagﬁosisj“
médgl; ‘diégnosis;-is,most ciéariy ﬁnde:stood as a:#et-ofafules-'
abst#’act’ing'f_r;om clinical lal‘:ae'is to a medical ‘diégnosis." _ This
understandinq has e‘éen- led - to books on ECG diagnos:.s rules

which should azd computes analyais a: great deal.
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2. 3.4 Informatiou nw
| Thc final important ‘area of discuss;on about human Ecs.»
analysis has remaincd 1mplicit to this point-' the £low of
‘,infaraaticu f:om ane stage of the mndel tn the next. With the

'ﬁﬁifp:evions descripti¢n of the three stages of the mndcl, and tha

B emphasis ou cumpleteness, it uculd be cxpgctad that the ECG

'“tracn be. xnput tn the reduction staqa and cumpletely bnakqn_-'
dmn into toluns.- passad to the Iahcnmg ‘stage to be
| aompletely labelled and £inally, ngen to the last stage for , 
diagnosxs. - Bawevat._ fon real £CG t:acas “this straightf.
-';bottomwup intcrnatiqn flaw dnes not Work because somt featuresi'
';cannct be labelled,,-.' “even dctected, .until put in an
unamhiguqus cantext uith a Giaqnosis." Ea; ,qmample, ‘cengider

o tbe two tracas in ﬁgure 2~4,

’ Figure 2-4- Labelling an ambzqueus wave..;f

| ' -Both tracas contazn an identmcally shaped laxge wave ulth‘r'
- a notch in lt.' At the reduction stage,~‘this shape would‘ ‘
prnéuce identical, output tdkens; “'Hawéver. at.the labelling
stage, it is important to make the distinctioen that the "first
is a Tewave .with a notch, and the second is a T-wave thh a

i

P=-wave overlapping.
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10 handla this ambiqueus situatian, and. others like it,‘
the human model adopts an informatian flow based on helding
_'back ambiguous data at the lowe: stages of aaalysis, and- thenf;

'cottecting for thc incempleteness this intzoéuces through the- _;

- use ‘of feedback que:ies‘enca a,centext has benn establishqd.ff'”"

”'In the !xample above - for. instance, a human would ncrmally just 
1assume-bathrno;ehe§ pavgs wargar—waggs at firat.‘.xn the rfxxst
'cééa ‘thiif*wbuldﬁ 1&#& 5¢9,¢ no;mﬁl‘diaqnokis-bécadse a narmal

PQQavﬂ'aan be*,1denti£ied 'sepé§at§1y" In éne‘ second case

. however, tho diaqnosia stago uauld note that no B-wava bad heen+ 
: teund botwaen the T and the Qns .and would augqest possihle AV ;-:

Block.' Ta confirm this, a. feedback query would then be. usnd te J
'1:check the T-wave far a notch bacaase in the ccntext ef Av quckj

.- such a teature would most prwbably really be a P-wave. In ehis1‘ .
:rexample, findan the notch establishes ehe existence"af' the

-'F—wave and the AV Block ﬂiagnosis can be rejected.‘i 

‘fas 7another‘ example,'oﬁ this informatzan flow, consider
,figdre 2=-5. A quick laok will show that ‘the P=waves. in thzs"

txace are diffzcult to unambiquously differentzate ‘from the_

basel;ne and hence are easily missed._ The usual human prucess-  f

' \_>would he to flnd the QRS- and T-waves and reach the cnnclus;en

.that the diagnoszs would be normal but fcr the mi331nq P*vaves.
Hewever, in order to be sure, the eupected position for ,the
P-ﬁav@s derived from the labelllng already done would be
examined,mo:e closely through a feedback que:y, and the m1ssing
waves dlacevered, gzvzng a- corzect dlagnoszs.

‘as illustrated in these two examples,. feedback has the
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| riquxe 2~5: An cxamvle'of the use of faedbtck o
queries. | ) N '
, general p:aperty ot ccmpaaa&ting fo: axlack at completeness 1n?;'

the lawnr stages of the cnalyais model. It ‘ahaald- be uatgd,j

howeves, that feedbagk\ canqot,.correct. far deficiencies in -

‘-'cipzcssi&eﬁiés. -Cléariy. if duting the feedhackV'qaery. “the

xlowest pc:ccption level is incapablc of danecting as small 3 ,,)' 

wave as above. chero is no. ather way ta £ind ig.

' 1beJuﬁe'_a£  tepéback"queriesy"the:efo:g'3allovs"rfer,-§' "

”*Iaéséning"of ﬁhﬁf}rtatri¢tion: en'ﬂcnmpletgne&$' in the human"'

analysis mcdel.. Aﬁ*lnﬁé as:the-autput-'df tha' téduﬁti&ﬁ_ ind‘ 
,'labolliﬂg stages contain enough unambigueus data. they need not
~be 1008 complet& in their treatment ot amhiguous data.
Bowever, this 1oosening cannot apply to the diagnos:.s stage '

well,‘because there is no :eedback inta ie. N

‘Thig. 1ack of feedb&ck to the diagnos;s stage leads to one 
~ final adjustment to the human ECG analysis model. A complete

set of dxagno51s' rules ‘is extremely unlikely. even amcng'
doctors, because of the thousands of heart prcblems, and

~ therefore the excessively large sizé of any Such set [44]).

There is, however, a way to avoid thls diffzculty. and it' 13"'

common practlce-ln human analysis: the creatlon of artlflclal
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. fesdback é;uéziek" thzough 1aarning not only a set ef rules !.os:- :
comton dlagnoses, but alsora detailed representatxan of hhe
heart. The ‘feedback is gene:ated by de:xving 3 trial diagnasza
usinq the 1ncnmplete rule sat, and thea applying that diagn¢Sisi.
to - the intafnal heart :epresentation. : £, undst thev‘

assumptions ef the trial d;agncsis, ‘the heazt :epresentacian‘-l

| produces a hygcthttical ECG trace uitb features that match
those of the input~zcs trace, the trial dzaqnasis is‘ ca:zezt;

and is reé‘c}rteﬁ. If the hypathetzcal trace does not match the

:eal"-one._thén' the diipqnoais is ;nca::es_t.. Nat onl.y dau this -

.uso;'cfﬁﬁieeﬁﬁackj tbusﬁ d;scnve:' inaccuratc diagnoses; but by |
B manipulétiné the. heéft- :epresantatibn ﬁntil an -dintiail
'-hypothetxcal tracn is produced, a. report on'what is actuallyr
wrong thh the heart can alsa be made. In fact. thig heart ,
':epresentation methad af diaqncsis is precisely that used in..
- gectien 1.3.1.,when;the problems‘ behind rgighg bundle ,branch .
block and 2°AV block -were dis&usSéd‘_‘xtzis'évidght'as well -
that this is the way the accepted ECG - &iaqnosis tﬁléé; ya:e'
worked out in the first place 1131{1&1. - R

- AS an example censider the‘ECG't;ace in fiéuxe 2-6.

Pigure 2~6: An example of feedback from a heazt
representation.
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 \I£ therdiaqnoszs staQe 1qckcd a tule for 2fnv black tﬁefiébcls.'"
might point to 2 diagnasis of~normal—rhythm.. With no feedback,;k
this would have to be reparted as the final diaqnasis."

| 'nwwevu:,_ if the diaqnosis staqe contaias‘,a facilicy for |

 —!99§0$¢ntiﬁg beazt hahaviour. thxs diagnasis cauld be usnd 1-{- N
generate a hypothctical set ot nnrmal elinacal 1abals.‘_ The - R
- and r-waves -missing fzom the o:iginal tzace wauld then be
immadiately evadent thrOugh feedback qantias.'aud a digqnasis

'ef "a P—wave failed to pass chrough the AV node®™ eould be

) rqpcrted._ o

Psycholegical lirerature catrina a constant debate on the_

\neeessity and  uses of feedback 1n human ccgnitive praceases,*

 and discussions which cnmpliment that given here can bae found o

in '{ar and {46]. Computer science is alsa dealing with the

: prohlem of feedback quorzes 126], as well as with producing.
systens which alhaw regtesentation of the functianal aspeets of=r

procassas like the heart [59].

. In sum_ary,-*the‘ information flow in the "lhuman analysis
model, {llustrated in figure 2-7, allovs feedback 'qaeﬁes- from
the diagndsis staqe to compensata for the lack of completenesS'
that. ambzguous Lnfcrmation forces on the :eduction '<and

.labélling stage. ?eedbaek_ can also dcéur within the third
- stage, diagnoéié, if'-it' contains a method cf producing
hypothetlcal ECG tracas using an zntetnal representation of the
heart. The completeness.restrlctlon.on the diagnosis rule set
is then relaxed as well., It must be remembered, however, that

feedback cannot gompensate for insufficient expressiveness at
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"any stage in the model because: no amount of exptetation will

__'-azl.low- fnndaxqental 1nad_gqua,cies in perception tqbe overccmg .

STl L T Dlagnosts
, . Faedback Queriew ‘
. Raduction = [ ‘t,‘fg?’&% : Heart Reference Model
M:Lgneullnata o o e . o ‘
Labelling R e ———— e o | Possibla Diagnosis
- | - Unapbiguous Data : . : .
. - -+

Final ns.agnosis

riiure 2-7¢ The human BCG analysis madel
ntozmat:an flow. -

2.3 summary of the Human BCG Model . | o
In the previous sections of this chaptec,;-thc various

aépects of th—_-human ECG analysls problem wece discussed,

-frlculminating'in the three stage model: reductxen. lahellzng and

'diagnosis;_ The reéuction stage abstracts from the iaput ECG.

|  7ttace a set of tokens which must: capture the shape and posit1au

of each wave in the trace. The 1abelling stage asaoclates with‘ ”

- gach of the tokens or set of takens, a. speclfxc heart action.
Finally,‘the diagnosis stage produces & final description of
the underlying heart abnormalities using proper nmedical

terminology

Each stage consists of a set of rules which map the input

into the output. .These rules must be sufficiently expressive
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'ta: th! output -3 inebaﬂc all the information requi:ed by the
‘,1ater stages ‘of the madel. Tb compensate for the dxfticulty in"-
produaing 3 petfactly complete ulg-,'set ':o;-l ambiguous',"
,in:a:matianfr thece are feedback que:iea from later . stages to _-
- heip 'e1ininatg< the‘tamhiguity.  - In ocrder tor.b:iag this
.apmpenSqtion’ o the thiid staqéﬁin7the.modél; fhe'di#gndsis.f'
stage Shauld &onéain} in additien‘ to the :uig- _sat.- a}"

repmsentation of the heart which can he manipuz,ated ta produc:a -

,a. trial BCG txace mtchxng the 1nput so 3 aiaqnosis can be

_eithe: conf.:.med cr workad out,

A -smaxy_.of t:ha wde‘lfif.s'*shwn in table 2-2.

> mmﬂ s;meturu SIS T

| 1) Reduction 'Antauokensupmﬂ.u | Arale set to go from the
: | the position amd shape - | input trace to the :
. |ofeachwsveinthetrace | outputtokems
1 2) Labelling | A set of labels (P.QRS.T) | Arule set togo from the
: _ : | which associate a heart input tokens to the
I - | action to each token clinical labels
3) Diagnosis | Diagnoses of the underiying | A rule set for a trial
. | heart problems in proper . | diagnesis. =
proper medical terminology | ' o B
: o . | Abeart representationto |
-eompare the trial dx’o.gnoszs '
to the input the ECG o

e E'QQME ' Passes in!.ormathn about poasible problems at
- | one stage backto the previous stages tor motv -
e complete elaboration -

Table 2-2: Summary of the Buman F’..CG Analysis
Model S , o

With ‘th‘e-' completion of the outline of the human analysis

model, it remains, in order to produce a working automatic ECG
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aaalysis syszem, to. supply the. actual rula s:ts in each staqn.

JIhe rest of this thesis concentrates on hhat prcblem.




Chapter3
. AREVIEW OF EXISTING DIAGNOSTIC EcG'PROGMS., :

' hmmm&m«#mmwawﬂu
[Lasite i Frost, ﬂdnmuﬁmmiﬁﬁl L

“The nuaanf.acc  analy§is‘ ﬁgddl  0§£1ih§d'ih.the;pnﬁviauz‘.
chapt&r wculd lemd itéglt easilyi té .inplementatieﬁ' as a .
'computer autqmat;c analysis system 'if the rule sets for its .
- three stages we:awknown,- The fizst step. in discovering whatll'
 these rule sets shauld be is to r;vx&w the alqozithms behind_
 1existing dimgnosis aystems. However, the literature in the
autamatlc_ ECG diagnosis field preéents-tnc problems. Pirst, '
the field is very difficult to review in a Gcomprehensive
.‘manner, bécauée of the large nﬁmber-of programs'whicﬁ hava‘been"

,attempted,; th diffe:zng goals of each, and the multitude of
o tachhiqﬁes_”used,- A few attempts have been made in this
difeétion,-though, by dﬂﬁsidering the overall"étructurelof_the
field.tather tﬁan'particular‘prcgfam- detaiIS‘.[4]£12]f34]{371.
The second problem is that the successes of the various
programs are extremely hazd-ta comparé, since their goélsuoften.
differ and there is a lack of 5oth _méaningful‘ standards and

test results in the literature 1[3]1(27].
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'°ee‘ overdbme' theee 7prcblems;'-the.iiteretuxe.revieﬁeﬁ'Ln
-,this'chaéter.;s greuped'by'éeneral technique-uﬁdee- the._ﬁtagesl-
of the human 'an'alys-is-meel;_ -ruis‘ap-proecu was chosen with the |
realization that the philosophy behind any tule set preduced"
f:em previeus wu:k would be gove:ned generally by eeehniquc,.

while only the detnzls ueuld be - inzhuenced by particula:[_

implementaﬁicu. .fhe‘g:ouping:underrthe-humaa- mcéel~-h§sv_alae‘,-
beenvcompxe35§d from thfea stages to two ﬁecause the imﬁdﬁtande,-‘
of  feedback betweene tﬁe;“first\ etege3~-h&e: meaat tbet *all

| computer programs for analysis of ECG data are kogically

divided f“ ' intéf _ :_twa o parts, pattetne:eceqnitian-e
[:eductionﬁlabellingj'and . diagnostic 'egeluation“‘[diagnosis]'
[69]. B | - - .

3.1 nnduetiouvnabclling Algerithms
as outlined in 'sections 2.2.1 and 2.2, 2, the reductien

stage of the human ECG analysisr'model abstracts from the, .

‘initial ECG t:ace to lau«lavel tokens, and ‘the labelllng staqe

maps the tokens into a set of clinxcel labels.-These ‘tokens and

labels must both retaln-the position of the relevant waves in

lthe_ trace,} and cpde their shape for later contour d;agnos;s.
The artiflcial nature of the division between ‘the stages and
the ‘impottance af feedbeck- from labellzng to reduction,
however, has meant that in moet Caees; éxiSting analysis
systems have develcped the tuo as a 51ngle unit and therefore :

they will be reviewed tegether.

In the literature, there are Literally dozens of
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'algofithms- Eor thaso two stages. each dirferinq slightly frcm
£h¢ next. Eowavux, ‘small. dotails aside. they can for the most
Patﬁ"bec'dlvid&d .Lnto - two separate eatnqcries; '-slqpe and- :

-apati§1 vu1ocity téghniqugs;.ang‘upken.techniques, |

This séttiOn r@#in&k'therimﬁa:t!nt'fgatures-qt ch§£q Vtw°.~
\technaques and relates the‘ chaéactnristics éf each t@*thef'
:mquiteucnts for - the rule sats belenging ao-tha reduction rand
labelling stages .of the humai ECG model. '

3.1.1 sxape and spatial vulacity thhniqucs

§lope and spatial velocity techniqucs for tinding and
labellxng vaves in the EﬂG trace are the ZOsE widaly uaed ard,
although the ‘iMplementation details vary ﬁromrlproqiaﬁ Lo
program, the same batiﬁl_algérithm is used in each.  -Th1s

. section givcs an outline of that algoriehﬁ.

The .spatial velacity reduct10n~1abelling technzque breaks o
' &oun easily into a set of rles based on the slope of the  ECG

- trace:

- Calculate the slcge or spatial velacity of the trace

- Pind the positzon of the Qas-complex usxng a slope
threshold

- Find the posxtions ef the P and T-waves using another
slope threshold - - _

\‘*

, Por examples of the fspatial velocity reductiondlabelllng‘
%:g?n% iﬁsf7u?ee [1a] {21} (28] {29] [38] [41] {S0] (53] [s6]
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-« Code the shapoiof the Qﬁs—camplwx‘
chly,thc,detqils of,each-rulé vary ahgng programs.
'l‘he spatial ve.hocity._ v, 1is defined for the three lead

annk electzade system. with simuleaneous traces XeYr 2 samplcdj
at time lnterval &, as [521:

V= A

gesayve ryw: 5 (3.3)

. However, a singlentr&t§, x,-from-uhe l2'1ead diagnostic,syStgm

is often used inastead, where equation 3.1 :ééﬁées',to.‘the

absolute value afrthe slope cf[therbrace.f -

The QRsﬂcamplex is found with this tachnique by compa:xng.

the spatial velocity to a threshold value, if it is ‘over ‘the

thresheld, a QBS 1is present '(.s'e_er figure 3-1). This simple

‘method- ofr.extxacting"the QRS wazks.f'béuause' the  rapid

dapelarizétian of the‘vantriclés pradnéas a steéﬁ slope in the

ECG t:ace, evan when the amplitude is very Low. QRS"detectien

using a th:eshold is universal among programs using the spatzal

velocity, but the mechanism fa:r detenmjnzng. the threshold

varies. FPor example, it is fixed at 3.75 V/ms in [10}, but is

“‘;‘floating l/G of the'maximum-ttace slope in {5&1.

Af ter thé QRS~complexes have been found, the trace betﬂeén

 adjacent QRS’s is searched for P and T-waves. The usual methadi

‘used here is to apply another, lower threshold to the spatial

velocity which will catch all waves, as shown in fJ.gu.re 3-1
The T-wave zs then labelled as the first wave found after each

QRS , and the remain;ag waves Dbetween QRS S .are labelled p

e ...m:l-,.‘ i|'||‘. e .a_..
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 (3gi(earf7al.

- BCG Trage.
. Absolute |
Value of ' '
- Derivative QRS Threshold

rigar; 3~1: using spatial velﬁcity and khresheld
tnchntquae to identity the waves in an ECG
traee.L. |

The final step in this reduction—lab&llinq technique is to

- cbdb the shape of the Qns-camplex for later. cantaur diagn051s.‘

A?; th;s po@nt, the many. p:ogramg, difte:, - esach having a
. aiffexént-_ca&ing scheme . Tworepregentative_gxamgies, thoughrﬂ'
are [38] and {71]. In the former, shown in figure 3~2A, the
shape of.g;¢h793$-i§ defined by four vahuesiHA,. the amplitude
of the fifét'¥ve peak-in'tﬁa QRS§ Ay, the ampiiiudé‘ éf .the |
| follewlng -va peak D, the time between these two peaks, and S,'
the avarage s;ope of the‘rising side ef‘the -verpeak; ,In‘the
other example,rﬁigure:3~231 théjshape is represented uith"é
poxnt by poznt codlng scheme representlng each sampled po;nt

wzth;n the QRS as & +ve, ~ve, or Zero slope.‘ Hewever, shape




e |

'cading .schemei like theat two fail to . carzy a tzue 'fenl' for*
the actual zhane ef the wave,. and tbus often fail to be us:ful 
in uynusual GRS eas:s.r Anqcher problem is that these are net
| %L*diaqnﬂgticalyy siqniﬁiaann.ﬁavafcrmparanettrs" r381. ' ;dma;'
 shape ofl th!f.?--;nd_ﬁrwavus,is  étidch:'mengx§d ‘£ﬁ2th€Su=

programs .

A 4D 5] N TR | ol
Shachoch o 81-.apst:2;c:lc?'01 .

riquze 3~212 Exaﬂples of shape ceding schemas..
- Diagram A is from [38) and B 13 £rom [211.
Por details see text. .
While the QRS threshold dst&ctian step ai thls algo:iﬁhm 
- is well. tegted and-;ppears ve:y-auccessful [331{671, the-rest' 
of the ‘tgchntqua_ has  serious drawbacks whicﬁflhavi,- been -
‘ :ecégn;zpd in -the,'litq:a#hxe.; The fitst'andfm§3t iméotgant :
- problem is that sihce‘ P“ and _r-wave. detection is bdséd__onzﬁ
thresholds, very small waves a:e'difficult—to'&ataet unless the
~thzeshold is so low as to falsely detect neisy fLuctuatxons of‘:
the trace. For the same reason, inaves ‘superimposed on
nawaves; as shown in‘figuré-BfB are almost impossible to-detect
‘with simple threshdlds, sinée the ?~Qave is anlikely to change
the T-slope a significant amount.  Furthermore, since P  and

T~waves must be extracted together (because of similar slopes)




and the first found is labelled T, & Brwave which'occurs'ih an.

- uncxpeeted place, such as between the QRS and T, will ctten .bQ

nissed or mzslabelled.

ECG Trage

Absolute
Value of
Derivative -

-T j 1; ;Ji? x; 1f?Fm“mm

rigurc 3-3: A misscd P~wav¢ superimposed en a
t-wavn. ‘ , _ _ , |

- Bvan. with thest problems the spatial velocity alga:ithm‘
does fit very . well into the—human:E¢G éﬁalysis model, however.
The sLope and threshold criteria can be viewed as definzng a
set of lou-level.:okens which can.immedzately be lahelled as
clinically meortént waves . Eeedbaék gueries é:e'a;so evident .
in the‘tecnnique, ﬁinseitherT«weve is_ labelled as- the. fiESt
lower threshold wave.fbund,;ﬂtez the QRs; which musﬁ therefcré
be préviauély labelled. The problems with this technique can
be'phzase&,“in terms‘of the human model too. Since‘P~waves.can£
often slip undetected bhelow the thresholds, it is clear that

the thresholds ﬁo not define a sufficiently expressive set of
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okuns."_ This is also true of the shape coding examples whxch‘

cannat deal uith unusual QRSncomplexes. ~ This lack of

gxpression of detazl means that all the relévant 1n£ormation
for a diagnosis is not avallable zo: later - stages ofi

processding. -

3.1. 2.rek¢n T!chntques

While not in the madcrity, a few ECG progxam designers
have expliciely :e¢aqnizoﬂ the separate existencc of both the
 reduction and labelling stages i.n ECG diagnosis [zusuamss] .
of .thﬁﬁg systams, the mnst hﬂnandliko, and. thezetarc mast
relevant in this-'cantnzt, _1s a retinenent of the spatial
valocity teebniquc which uses the slopt of the trace aLang ‘with
several thresholds to divide: the ECG into a set of sLope
snctiaa tokans {21{5] - The slope tokens are grouped 1nne

segments which are then labelled as P, QRS, and T-waves.
The slope tokens are gene:ated using the following steps:

- Calculate tht derivative of the ECG tzace

~ Establish two. #we and two ~ve ¢lipping levels well
separated from the noise (seﬁ figure 3~4A)

-~ Establish one +ve and one ~ve clipping level to float
just above the noise level of the derivative

-+ Flag a poxnt on- the ECG~trace as significant if the
derivative at that point c¢rosses a elipping - level in
any direction (see figure I-4R)
Once this method has been used to flag significant points
on the ECG trace, the points are joined together by straight

lines, each line being a slope token. The rest of the




rigure 3-4« ?1aqging the end points cf slope
tokens, from [2]. Diagram A shows the cllpping

. levels for the BCG derivative and B shows the
paints tlagqed by those clﬁpplng lcvels.

_prbéessinq than sees an ECG divided into slope tokens, ag in
figure 3-5. - '

. Avnplitodo {Conmvarter Unin
YRR NREEEEEE

Eiqure 3~5: An ECG trace dzvided 1nto slope

The-wext step in this technique is to’ grbup' the \slopé
rtekens into segments or -"bumps“.'each havingzélope sections
with: opposite sign at eithef end, as shown in f;gure 3-6. - The
sagments that represent QRs-complexes are Ldentlfxed by usxng a
"wdynamic derivative threshold, ;xke those examined - nl_;he

spatial.velocity aLgorithm‘in,saction 3Ll;l. and 'matching the
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-pesition of detactad QRS*conplexes with the pqaitiou of &
sequment . Fach QRS s*gment is then examined with a complex ‘set
. of #uies to see whethez the seguent next’ to it also bclanqs to
the QRS. In this way,‘ens~com9Laxes ace ideneified and grawﬁ'
{ta‘thuir praperwézﬁeut. rhe tules gnvozning'the thWth censist -
of several tests Lo see if thq next. seqment to add s toe
small, koo \la:gar- a pe-wave, etc. an example-of\pa:t of the -

ldgic involved is shown in figure 3-7.

Pigure 3~5: Gxouping slope takans iato segments
~or bumps, from (s].

- Afts: all QRs-camplzxes have been identifiad‘ and 'théir
dnset and offset positi&ns dete:mined 'a'sea:ch is made for P
\an&‘T~Wavns; This seazch consists of examining each segmeht -

_between adjacent Qas-camplexes ~and ,using. a . set af'rules-te'-,
”_'dec;ée.whether 1: reprgsen;sra-P §f-T§wa§e}  Ihéfffin§l‘ resﬁlt'
‘éf" the :omplé&e"'ptoﬁedurai is a'séﬁ' of elinical labels
describingjthé't;aée, as shown in figure 1-8.

This slope tbken algorithm appears very 'similar to tﬁe
spatial ‘v§lo¢ity ~technigque discussed in sectiqh 2.1.1 and,

while it does retain some of'éhe probiems-cf that method, it

incorporates several impor tant imp:oveménts; - The low~level
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Pigﬁr¢:347ézsom§ of the logic for adding a = .
 gsegment to the P side of a QRS-complex, froa

o an an rnna N o non qtnn.r_:_ " at
- Pigure 3f85 The‘fina1~3§t of.cliﬁical iabels for
the slope token technique, from [5].
slope ‘section§7 are 'similar to the spatial velocity tokens,
sincalthrgsholﬂs ﬁre used, but the labelling  rules use . much
. more ofrﬁhe1inf¢rmat10n aéaiiabie.in the-ECG-trace and thus are
far more expressive. Another impo;taht‘distinction is that -the

slope segments or ““bumps”®, by their nature, immediately code
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~ the shape of the QRS in. an- intuitivu manner., Finally,‘hdﬁevgt,

the use of thresholds to dolincatg.the slope.takens means there

still :éﬂains 'tha problem of small R-waves- slipping past
_undetected. This loss of information about the trace is
evident in the "flatness” of thg prbcgssad,SCG trace in figure
3-5. D o |

- This slepe token to clinical labelling algorzthm also fits
in well with the human ECG analysis madel. ' vthe
traca—ta-slope~s¢ction and slapewsactionwtawsegment steps: 1n
the procedure are an exauplq'ax layered ahatzaction from one
set of takens"gc'-anather'aceo:dinq,toa fixed set’of‘rﬁl&s._
.ihe‘method'ﬁsgﬁ to grow QBS*ceﬁplexas and test P-and T-waves
are sets of rules to abstract thetcliniéal labelling'ffam the
f inal token sat. ‘The compquity of the ‘method simply reflects
the effort used to. make the labelling rules as complete and[

expressive as possible. 

Ovarall, then, this'tokén techniqﬁefis more expressive and. -
more complete than the spatial velacity technique and therefore.
is a better set of tules to use as a sxmulation of the human'
' ECG analysis procedure. ‘This"intuitian is supported with the 1
fact that the little cﬁﬁparative tésting'of the twc- t§chniqﬁes
which  exists shows the token technique to bé suﬁerior |
(37i12]1172]1. However, the fact that small P-waves are migsed
at the lowest level suggests that, while this set .of slope
tokens is better than the spatial velocity set, it is still not

sufficiently expressive for truly general ECG diagnosis.
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3.2'niagn¢ii§ Algorithms _ |

In the"hpmin- ECG ‘analysis madel,' étter, the trace is
.réduced t0'a'$et_o£clinié;l labels, the thirdidiagn¢ais stage
abstracts from the labels s medical disgnosis of the underlying
| hﬁa:t &i;ét&er._,rhis diagpoéis staqa 1s,ﬁniv!rsa1ly recognized

as a separate p:oblem;inftha autam&ticVECG'anaiysis literature.

| - As with the reductienflabelliﬂg algor ithms,: there éziSt
“'many diaqncsis'coﬂgdﬁgr.programs;reaﬁh\slithly diﬁfereatlzfron

the‘iothg:sf._;ndronce again_the liueratuxe dividns casily into
two majot'ateés; decision treas andrlstatiStiﬁal diggaoﬁis
. methods. - | | | - |

This section digcusses the hasis--af 'each‘ of these
diagnosis systess, and relates their characteristiés to the

dxagncsis'stage of the human ECG analysis nodel.

3.2.1 neciSioﬁ Tr&es _ _ |

cof the ‘diagnostic algorzthms whzch have appeared 1n the
- literature, the most popular by far is the decisicon tree. The
decision tree algorithm is very simple in cencept, and works

- the Same way in all programs.

To build a decisiOn tree, heart knowledge required for all

the different diagnoses possible is assembled into a set of.

] - " .
For - examples of pregrams u31nq decision trees, see [8] [7]
(23] [21] [43] [44] (471 [sQ] [63] (68] (69] [70] and (71}.
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rules. The :nlnk a;e-thgﬁ programmed into a £irxed férm which
resembles in gharacter that ozla- tree in graph .:héery; A
'diagnési;"is ﬁade:rby t:avel;ing‘ down the tree and, at each
b:anch,Aéheosing-aidirectionibasidron the information contalned
" in the inyut.ciihicallayei agﬂ. The only place the decision
#:sé algorithﬁs.differfis in the g:aétfspeciticatidns of their
:ulas.‘ ﬁhaﬁé differences are necessary be;;useéaghalgatithm |
has a .differgnt ;haée- coding scheme ind therefore éifftreat
input labels ind-decisicns.aa”be made. Two exceilent ‘examples

of decision trees are shown in figures 3-10 and 3-9..

. Figure 3-9: The decision tree used in the
diagnosis section of the program in (70].
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'Figure 3-10: The‘deciSIdn tree used in the
diagnosis program of {63]

The concept of a decision tree again fits smoothly into
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the diagnogis stage Rcf the human  BCG analysis modql In
--partiaula:} it is a set of rules. to map the -cllnxcal 1ab¢l -
inpﬁt: set into a diagnosis. However, all thg-diﬁadvantages;ef
us;ngﬁan;y.a rulé'sgt.atathis.staqe'algé.apgly, as discussed in
‘sectibms 2.2.3 and 2.2.4. rheltirst of these i#.ﬁhe=p:ﬂb1gu‘otf
' -producingraacampieté' kxpxassiva’éet of rules, with . the large
r‘nnaber3“o£ possible heart pzcblems,‘ and hence diath&e#:
inéalvad;] An example of this problem is shewn in fiqure 3=10,
in ;thch. -the'_ only . arrgytnmig : diaqnoszs availahle‘-is
%arcrhythmia®. The other major problem is that of producing
diagnoses £romr 1ncbﬂpiete" in:orﬁation"ranﬁrﬁct being able to |
"iverify them b&fo:e repor:ing. If a dqcisioh in 'the- treé Is.'

hased on a miss;ng clinic&l label or a bcrdexline thresheld,_

. the nature of the algarithm is. such that the rest of the

diagnosis car:ies on with: little or no ability to tec@qn:zo or
evaluata the erro:. 3 ro: thls reason, the decisian tree
algorithm cannot compensate for a lack of &xp:essivencss in

earlier stages of analysis.

‘3. 2.2 Statisticul Methods |

Statistical methods of abstractxng 2 diagnaszs from a set
of ¢linical labels are . - used. by fewer system,designers aﬁ_
present than is the techniQue of decision trees, buﬁ rthey
appear tO ‘ be gaining popularity | in-  the litératﬁre_
[221[23][36}[49]; Of the few programs which do exist, ﬁhe mést
influential,usés the theory of ~Bayesiah .classifiers to make

QRS-complex contoutr diagnoses [49]
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_ The first step in the zayesun classitier technique is to
choose a zefg:enae .po;nt m-e_ac_h;qns-.-.camglex that -appearsy in-r
thﬁ- clinical labél‘inputer-This point is uSually chaseﬁ ag the
point of maximym ~ve slope, as that = appears. to be the most B
censxstently reproducible [18]. The BCG trace__i.s.sgnpled at.‘ )
".ftzedfpasitionszcn each side éf'this_‘rdzg:ence to gzaauénf ;f

,savcglled 'featﬁ;e veétor', represanting ;hg-QRSQQdapiéx-as
shown in figure 3~ll. o o

‘alﬂﬁﬂmge.

‘[0 0 3 12 10 ]
' Featyre Vector

Pigure 3-11: A feature vector for Bayesian
- classification of the QRS contour. -

This- rfeatua:é-.' vector is compared té ‘previously-' determined
, ‘dlagnosxs feature vectors using Bayesian clas&x.f:.catmn methcds:‘

[1&]  and the. cJ..esest match becomes the dxagncsm.

. This diagnos;‘.s' method‘ has been shewn to be very s‘uccessfull
in _li.mited - cases [34] . but  in éeheral,- sho,ws‘ severe
limit&tioﬁs-.. Bayesian’ -classification, where the feature
vectors for many diseases are quite. szmilar, is very sensitwe.'
.t-orthe prior probah:lit:.es of each known d;sease vector, i.e.

the probability of ‘the disease occurring in the general 'ECG )
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popﬁlatiﬁn._ Assambling thesa Gata accutately, ahﬁng,uitha
producing the knowa diagnosis fea:ure~vect033*fa:- hund:gds"or_j
evcn- ;housanda‘ of .contour aﬁdarrhyﬁbmia'diagndsgsis a.vary‘
diﬁfidﬁlh' and, at p:esent,; unfinished task. staﬁistiaal
rethods of diaqnosis are therefore generally limited to only,‘

Qas--complex cont.ouz d.ugmses‘ ‘

Although,Statis;ieal BayesiahTclassificatign-daés .th aé
first appear to b% particnlarly human~like, it is possible that
a similar type of pta¢essing does accu: at coqnitive lcvels.
 above the mest basic,anes d;scussgd in saection 2.2.1. .!hg.
diagnostic  feature vecto:s,. along uith ~the  Bayesian
classgification rules, .can alse be conside:ed ‘as forming an
implicit rule set ﬁar diagneszs similar in natuze to dcezsioa
trees.: This- similaxity is supported by the faet that the
statistical methad shares the same probl«ms af completeness and
expressxvenessfas.:he decision tree: d;fficulty in prcduczng a
set .of rules (diégnasis7 vectors) for all possibler heact
' abnormalxtles, and sensitivity of the diagnosis to missing or  .
inexpressive lewer level p:ocessxng {i. .. an 1nsufficiently"

detailed feature vecton). '

'3,3-Summaryf3 |
| The human ECG analysis modai éividesAEtﬂ_ pracessing into
three stages but,' as seen abéve , the literature intertwines the.
first two, forming the reduction-labelling stage and‘fthe

‘diagnosis stage. The reduction~labelling algor.ifthmé'bre:ak the

ECG into tokens .and then akstract from the results a set of
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.elinical _labqls;i ;ﬂrhe éiﬁgn¢3i5~stégé‘abstraats £a:§hﬁr:r:umf

the clinical labels to an understanding of the underlying heart

disar@et."

A reviéw of the lite:ature shows that the Important

algorxthms yaed for the rqductioa~labelling staqe fit very well -
into the framework of the human model. First; a fixgd set of :

rules;islaéplied.to‘ bra;kr the n?ags cup intc tokens, i.e. |
” spatial ‘velocity thresholds And akape séetions- than aﬁc&he:
set of rules is used.ta abstract the -tokens into . a list of
¢linical - labels. The litgratnre also ccncludes that as the
'rulcs sets beceme more cumplex. and the:efore mo:e cempletn.r  
the result:s of the labelling" also get better [21(671.  However,
as discussedu in se:tions 3.1.2, ;he usa cﬁ"th:eshaids still
‘ieaves:even the bnst‘alg@tithﬁs 'insuffiéientlya expre#;iveﬂ-at

the,lawast'tokan.levai,

The dxagnosis alg@:;thms presented in the 11terature sha:e 
the same human<like qualztzes of the reductionwlahellxng ones.f'
ihe concepts of both decmsion . trees and. statzstical'
elassification can - be thought of zs sets of rules to map the
clinical labels Lnto final med;cal &zagnoSLS. - Both
diagnosls algorlthms also share the defect of belng unwieldly,
hard to assemble rule sets for any truly realistic number  of

diagnoses.

In general, then, it c¢an .be concluded that the best
combinations of algorithms in the literature improve by using

more complex and complete labelling and diagnostic rule sets




- 59 =
[34][721.:‘ Bawovnr.'all tho algurithms are Lzmited in genaral
by a 1ack 61 exp:essiveness at the lawest stages of analysis,*
which allows information toé slip by unprgcesagd.‘ This defect.
is noted by one researcher who states in d'r&view article that
one of the maj or *digficulties encountered included lack of
reliability -:uf_zpl-wa'n recognition” 112}, This lack of Powave
" recognition \Viéaves the information at. thc--labélling ahq:
diagnostic lavels ',i.nc‘omplgte,. 80 ::;xat even the most complete

rule setsscannot‘make'gzapér rhythm diagnoses.

- A £inal major daﬁiciﬁncy—inrthe E¢G.analysi3-literatura is

‘thgt ;ﬂo'sySEQm hasg yet been put fo:ﬁard.ﬁor simulating & heart .

' reptesentation, a;leuihq-vntiﬁication of a‘susp&cted' di&gh§Sis
or _-=gvnn . develapzng ~ one rfzon the representation 8
'chazaéte:istics. A8 discussed in saction 2.2.3, this aspect of
diagnésié 1# ctuczal for the praductien‘of a-cmmpleta,-relaqble
analysxs of all pasaible ECG txaces., It dces. aépeaf-that nbrkﬂ
has begun in this area; however, it is naot at p:esent complete
591 | | |
| Tha summary'of the lztarature in table 3~l suggests that'
"to improve on the algorithms that have already appea:ed, and to

adhere wmore closely to the human ECG analysis:modal, the first
| wotk qq an-autématic‘éiagnosis system ghould be eﬁ‘ increasing
£h§ 'gxpressiveness of the ,reduction_stageftokens.l The next .
chapter3 ﬁes;ribesr new algorithms for- the reductidn ~and
labelling stages, whiéh. put emphasis on increasidg -the‘ 
expreggiveness of these léwest leval tokens, allowing ﬁotéf

information to be available for the later diagnesis stage.




Existigg Techquue

Chara.cterisucs

Spatm Velocity

Shnpe 'raktus

Insuficisntly expre:mva wlth
incomplete labeiling rules .

More complete labelling rules
byt still lacks exiprusiun

Dtagnosug Trets

St;ﬁ:ﬂeal
Classifcation

Beth get better as the rules get

more complete but suffer from
diMicuity in assembiing a
comapiets rule set

No work yet comiplete in this area |

Table 3-»1 A summary ef the major BCG analysis
algogithms from the literature, and their
important chaucteristic:s.




_Chapter 4
'IMPROVED REDUCTION AND LABELLING ALGORITHMS

c‘““‘*?“'h’mﬁwhrpurquiaﬁhm
[Mee. du Deffand, 1763] _

The uiﬁiiua-tebﬁrpése of the work behind this thesis is to
| davelop ,'an autqmatic eomputgrubaséél systen for ’ ECG
interpretation #hich-improves cn\theiearlier systema discussed
in the. literatuze raviaw of chapter 3. As stated ther&, this
improvement nust start by increasing the exp:essiveness of the
“earliest staggs' Qf processing. and must: keﬂp the ‘detailgd -
infokmatian sa obtained a§ailable-fot later staéés. _Tb'aehieve.
this imprévement; the algerithms fér,automaticrscc‘;nalysis-
given in Eﬁis qhaptnf are deSigﬁed to réaﬁture"the ‘éssential_

feature;fof the-human\model put fe:waté in chapter 2,

| Uszng a system deszgn which incorporates the human ECG.
'analySLS model has resulted in tuo 1mportant design declsxons..f
. Pirst,  the a;gor;thmsn are both | loqically ‘ and, in
implgméngation,'phyéi@ally divided into the thrée stages of the,
human modeb: reduction, labelling and diagnosié. Seéond,'f

basing the algorithms ‘on ‘thg'human model'haslihfluenced-the
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type and lesvel of - information "fléﬁ‘betwqen,staées.- In the
discnasian-dz_the.model.in'seﬁtien z}3.-it_was- suggesied t&at._
Lnitialiy_ only glé@:g -unahbiduous-infarnationi;-pasgeé.froﬁ |
-.one stage to-tha next, with a moreﬂ&etﬁiled.picture of the - ECG
tracn ‘being solicit&d later thzcugh feedback ‘queries once some
initial diaqnnsis possibilitias have bcea fotﬁulleed. - qsinq« 7
this inforuat;anrflcw-has.zgsuited;tnstha dgciszon:ta have the
‘reductign-and-lébellinq szagas'firstloutput7 only. “those waves
which have a reaaanable probahility of being cm:rece. h@lding.'
. back amhigueus data until f!eﬁback qua:aes from the dimgnesisgl
stage fequests thnm., The inf.haenca of these duign ﬂecitions.,-
w;ll be-saen throughaut this chapter. | " '

fAchieving.ahcompletnidiaqnesis ay;ten‘based~on;the 'dqs1gn'

goals of incrsased expressiveness and adherance to . the

impor tant ﬁgatu:§s7ut the human model is a 'véry  1§:§¢_.£&3£. S

Terefore, the work behind this thesisrimplqmcnés\dnly £hé
- geduction and 1abe111ng ‘stage algarithms. "'This'.‘limitg& .
implgmentatign cannat, of cau:se, ‘make dxaqnosea,"but itsr‘

' idprovekants.in.expxéssivenessc;n be i;lustrated_, forming a

firm basissfor'future.expahsioﬁ;_

This ch&pter discusses a novel réduction_stage algorithm

based on-three'layéré of tokens with fixed rules"forrude:iving

them from the ECG trace. .The new approach described is more

expressive than the gystems in the litéfatdre, 'and supplies,
information to ‘the later stages at three levels of abstraction.

corresponding to the thzee layers of tokens.
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| ",the_' lahalling algnrithm deacribed is less noﬁﬁl‘fin‘
| éoncept., drawing baav;ly fraom the-_litaratuze,‘ but it is
ncneﬁhiiqés. uniqu§;:siné$’it must uorklonithe:diﬁfe:eﬁt,tnkegs'
qeﬁe;atldr‘by;'the*_zeductiéﬁu stage.' ‘This._algorikhm' nakes

vaiiahlésauly‘the-fiiit.output-waves'ta the diéqhéais stagd at
present hecause, withougt a diagnosis algorithm impleacntat;on,:'

:'the:e is as yat no need ﬁor it to deal with faedhack queries.\

Also given in this chapter are the results of applying the-
implementatien of tha reductzon and. 1ab¢lling stages to several
'aauplewzcc\tracas‘, Unto:tunately, while adequate, nhis testing
has not'be§n exténsive. The'p:esent dxfticulties in obtaining
*interesting™ (i.e;."abﬁdrmai} ECG data in machzne teadable‘
 £°:3, hawevcr,are being- :ectified, and further testing. is an

- area ot future extension. |

Only' outlina diacuss1ons of the alga:ithms useé are givan
| in this chapter, with the details of the ‘actual implamentation

. the Unzvez31ty of Saskatchewan College of Enginegring vax
11—780 in Appendix C.

4.l !he ngduction Algorithn
When designing 2 machine algorlthm for the :eductaon stage
of automatic ECG analysis, there are several important design

consjiderations.

First, on a 'general lewel, the algorithm must be both
expressive and complete. As discussed in section 2.2.1, - this

means -that the algorithm must identify ewery whole wave, or
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pazt of wave, in thofqggé-cf.cveéiap; whichappeﬁzs in the ECG
tr;cs. ﬁothuthe pesitioueand the shape of each of thgsé' y@ﬁea'

' nust“.bg coded  for tntthér précessing-f'Frbmthts exp;essiﬁe
‘; snt\fthe-kadﬁctipu-itage"muStgpass'to'the lghéliing  ﬂﬁagﬁ-.311 
'. idcﬁtiﬁiid:ihelewavesfcr initial aaalysisy‘holdiug\haﬁk the
'pa:tial wavgs unhtl feedﬁaekgqﬁeries tequeat them;: ' |

To achigve the idqnti!ication and shape coding af the wave
in the tracq. tha ‘human medel ef ECG analysis sugqaats breaking
the ttacs inta tokens, each raprelenting a wave or partial
wave. ~ This is dene by using a set of fixed rules designnd far
the SGG ﬂGﬂtQ!t; uith the literature review of chaptez‘.s
auggesting _some further restraints on the: form Qf thesc :ules."
Jhe most important restraint is that thg .rults should aveid
applicatian of thresholds ‘whenever passible‘ Phis is dus to -
two related phanmmena.‘ Pi:st. therva:;ahility in the amplitude
" and éh&?e-ofpscs{wives-:fgbm-:ptréon',té.'ée:scn ‘makes useful
| 'thrcahclds.éeéy-difficuli'tg set, and second, the variation of

- waves frém beat to béat-in a -sinqi§"=race 'méans that some
fettdré in a beat ve:y nea: a threshold may ptoduee dxfferent
- tckens ané di&gnoaes as it va:ies sliqhtly abuve and below ;he~_t

threshold..

Aﬁot&er’-iﬁportgnt“.:eétréint -anf th§jshles fdt p:educihg-
tokens, and on thertokebs Ehemsglvés. is that there should be 1
' no 'artificial 'codiné schemes in#olved'such as those_fo: shape
discussed in section 3.1.1. That is, all rules-;and:.coding
schemes should preduce tokens which are'intuitively‘meaningfui'

to human observers. This trait insures that the algorithm
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ﬁill be more easily undarstecd and accepted, and that thera

will exist proper stanﬁazds for their interpretatzon.

Ddciding'an‘a pa:ticuiar algorithm to incamparatér-all-'ef
thUSQ design goals ia dit!icult4 but the algb:ithm presented in
this secticn achieves the goals using three layers af tokens,

each‘dccivgd f:am‘the-one‘bnlow:,'

1 The ECG txaca and 1ts,darivative in digit;zed fozm
2. Pa:t;al Wave shape Tokens'

3, Hh@lg Wave-snape Tbkans

Tha first layer af takens, beinq the ECG_.erg¢e, -dérivas,

' f:em the neod t6 retain the t:ace-in ghe cdﬁﬁhtef'aS'a finalia_'

resource for feedback queries, to insure exptessiveness. | The.
seeond laynr of tokens ma;ntains expzeaszveness, but isolates.
each wave and partial wave in the etane for latar‘ prcceasing'
: and the thxrd layer of tokans extracta fram,the pa;tial tokens.'

only whcle waves to pass on. to the labclling stage. o

. -

| , The rest of this secticn descri&es the’;rope:ties of each

layer of tckens in detail, andtshéwSLexamples:of theit use.

4.1.1 ECG Tfﬁcéran&'neriiativef  |

| The first step in ' implemeniing én‘-autdmatic' ECG
interp:etatioh system is to-ﬁgt the ECG trace into a fd:m which.
cﬁh‘be undezsiobd'by'the machine. In past systems, several

‘ analog data ccmpression technlques have been used to aid data
input [1][15]{16][62], but because a cemputer is used in ;hls

system and computer’ memory‘ and speed'are no Lonqer serious
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limitatians, st:aight diqiti:ation of the trace is used

. An. BCG traﬁé'is diqitized by instaﬂtaueoﬁSly-samplianit;V
at a fixed tine intetval Ax..and in the eomputar the trace is a -
string of nunbn:s zeprescnting ene trace amplitude at cach ‘
"sample- t;me. No- actual methad of dlgitkzatiau is deacribcd~
here bec&use any reliahle technique will do (38, - ‘The data
- used as s:mple tzacns in this thesis wege raccived. alzeady in{=:
digitized form, from the Ebnoﬂynamics Labqtato:y of the
,University of Saskatchawan Hcspital.

_ The éntire ae:iva;ive of the trace is alse calculateﬁ and- '
N stoted in the conputer tbr use in dnfiaing the later ‘takens - in‘

the reductzon _algofithn and to - be avaxlable‘ far feedbaak._
.'que:ieg. The. dorivative, £7, 1is. calculateﬁ- at each sample

point;‘-n,- assuming the tzacn. £, was sanpled at interval.at.

B using equatian 4. 1*

o f, _._,'f-'n-;Z afn-l + B-fﬂ-ﬂ. fn.+2

(4;l)f

| This derivative formula is similar to tha standacd central
, difference formuyla, but is slightly more acoyrate {91 (for a
more.-detalled_ discussian' of the~szgnal processing 35pect§-ef'

cherzcduCtiQn .a;garithm,'see, Appendix A) . - It may also be

‘recalled that the derivative is . often uSQd' as a one,leéé_

sp&tial'Veiccity in'thé systems discussed in 3.1.1.

Retaining the whole BCG. trace' and, derivative ihi the

computer as the first layer of reduction stage tokens has the
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‘-aavantage-' of maintaininq rxptessiveness by :etaining all
5into:matien in - the trace.j,- preve:t digitization has 'Ehe'

isadvantageﬁ ‘that certain '£ixed 'thzesﬁoldr values {i,e;.
sanpling interval At, amplitude measuzement :esobuticn. eta)
are integtnl to the uatura of &he pracess and can. i£ not
praperly se: up, linit the basic exg:essivenass af the entire
diagnostic system.

Bxamples of the digitized BECG traces used to test this
system are shown in figure 4-1, along with their calculated

derivatives,.

ECG Trace 2

Derivative

T - ECG Trace 3

Der jvatjve

-

rigu:e 4-~1: Examples of dlgltized ECG traces _and
theit derivatlves.
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- 4.1 2 Partial whve Shapc !bkens
Thc secand layut of reduction stage tekans is desxgned ta
pvé:eomefthe-p:cblem.that each yave in the dig;tized,scc trace .
is spread. ovefra Largﬁ:auﬁbgr-o!.saﬁple pqinté, ?6731Low't59 ‘
lath# diagnasiafstagas‘to*deal only with waves‘fér- pakts of

waves, it 1# advahtaqeaus* to redyce each ‘to a single tokon

“’"rathez than a variable snrics of amplituda ' samples. The

teﬁucticn,, to remaia erpressive, muse fznd every pa:tink wave

in tha trace and also ratain infnrnation about each wave shape. -

The idna of a set of tokens at uhis sttqe 'td chresen:
éaeh BCG anQ is almaat unknown.in the ECG l;turatu:e¢ The .
"ncarqst approach is tha-token nechniqug diacussed in se¢tian :
3'1.2. whzch introduces the concept of b:aaking ‘the t:aﬁo into

‘ sagments hased on slape thresholds,. Thean:—sagmenta.- hawcvlz,

| -1 ‘not directly try to code wave Pieces and, becauaa af the

' ttxed thresholds, are not pa:ticulazly exp:usa;va [S}._ '

' Ihe tokens.uscdlin"this,iﬁplementation of.:the*":edn¢tion*'
alqetithm;  however,. have been chosen to code‘dlréétlysﬁartialﬁ
. waves as ene of the seven passible shapes illustrated in. fzgu:e
4-2. | | o

couszderaticn of ‘these seven =tekens will show that nej
'_partial wave can appear in an ECG trace thhOut causing at
‘least one of the:tokans ta appearm Egr egample._ cons;der thg-
three - cases in figure 4-3.- In. thé first case, two waves are
quxte close together and a:e separated by a réundeé valley;
hawevar, each generates na"typé 3 hoken.j In the otheﬁ two

cases, a short wave overlaps a larger one on aither the left or
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e s 8 o
ﬁgn:ia -4-*2: The: sélwi: partial wavé shape ftaire-r;s.
the*right. ‘Thu*Iazqar'wavé'geherateé Q'type.3:tbken¢ whi1e-the
smaller wave, if v;sible at . all, must ganecate qither a type 2

or type S token.

W W |
Pigure 4-3: Overlapping partial waves and the .
rezultxng wave shape tokens.

This set ot seven partlal wave shapelf;okéas'Tis quiﬁeﬂ
eésily derived from a_digit;zed-trace andfi#sfdérivative. -Theﬂ
~ reason for thiS'is the-interesting' pfoperty that. each token
‘bégins and rends at a maxima or minlma of either the. trace or
the derivative. and the token type is unLquely defined by the

properties_ qﬁ these endpo;nts, ~Therefore,,the algorlthm :oc

generating the tokens can be briefly stated in‘tWQrsteps:
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- Pind  all- lacal maxima and minima in bcth the trace
-and dezivativt (i.e., £ind the endpoints of each
token) : :
-~ To each pair cf' endpoints fcund, apply one of 13
rules to identify-whiah token type they define.
The token type rules are given in detail in Appendix <,
but as-aarexawplég‘thtje a:e nna rﬁl&s‘!a: typc 5 :okens:-1
1. 1f the first poLnt of the teken is a ma:imum in the .
derivative where the derivative is negative and the
endpoint of the token is a minimum in the derivative
- where the dearivative is negative, then the BECG trace .
~is sloping downward with an increasingly negative
slope for the duration of the token, and hence it is
a type 5 (see the third case in figure ¢-3).
2. If the first point in the token is a maximum in the
- trace and the endpoipnt is a wminimum in the
derivative , then the ECG trace slopes dcownward with
increasingly neqative slope, and hence is a type S.
The advantages of this:ﬁnfhdﬂ'forVQanratinq,pa;tiai wave
- shape tokens are many. Pirst; ‘there ‘are no . thresholds
“iavolved, 80 no waves in the trace can slip by unnetzced (for
real tzac&s, hawave:,' the electrical noise ultimately lmits_‘_
 the expressiveness possible-ét‘this'étage; -Seeqkpgendixza for
. a discussionlcf thia}; Second, be¢aﬁse eie:y'wa#evia the trace
nust generate at least one taken that also cades its end peints
“and orientati@n, thxs layer of tokens relalns both su!fxcxentlyj
 expressive fo: fur ther dlagnosis and complete. . Pinally,‘ and
perhaps most lmportantly, each of the seven wave shape tokens
is intuitively meaningful to human ohse:vers. | Therefore, the
| different combinations of tokens that mlgh; aceur in any ECG
trace can be accommodated in,ilater diagnoStic stages using

easily understood criteria.
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There are also two minor disadvantages which are - chosely

teiated. The genetatian of  the tokens- depends oa "Local'

.__p:opertxes of the BCG trace, such as maxima ‘and minima, an&f-.~

therefore, the actual tokena which a wave generates may vary

from beat to beat in the same trace, as shown in flgut; 4—4.

riguze 4-4: Variaus partial wave shape—tokens
for very similar ECG traces.

V-This variation in 1ab0111ng is not as serious as that which may
occu; with th:eshol#s,: howevecy.,as no waves are-actually
missed, 5ut it~&qqravatés tﬁelotﬁér minof diéa¢vantagé~ﬁaf the
procédure:'mahy-tokénsére gehetétéé,*suchfaé £he 4,6,7 in the

figﬁre,\ ﬁhich‘rdd" not"necessarily-represent waves or partial :

. waves. Unfortunately. this dlsadvantage cannoct. be overcome,

since it is posszble that in the first example in figuze 4-4.,'

the ove:lapplng partial wave is. actually a. downward one, and is

"—_in fact properly repreSented by’ the type 4 tqken ‘rather .than‘

the 5.

The detai1$ of the‘iﬁplementation of this token generation
algorithm ‘are given' in Appendix C, and examples of actual

output are shown in figure 4-5.



?iquxe 4-5 The partial wave shape tokens
‘ generated by-actual ECG trages._ _

4.1-3 whole wtve Graus Iutens : :
The thirﬂ and final layer of reduction algorzthm tokens is

designed- to -eliminatc 'the' ambignoua-.extra tokens from the

partial wave shape token list. in‘:his way, anly whole-'waveé' |

willj be retained for ‘output  to rthe iabgllingfélgofithﬁ in,:
acébrdance witB‘the'initial design decision to use the zhuman
ECG analysis model information £low. | -

CcnSLderatlcn of the gewen partial wave shape tokens shews 
'that the only ones which unambzguously deflne whole waves are
types 3 and 6. Therefore. generatzng a new list .0f tokens for
| the ECG trace which cantains-only‘whole waves :ednceS‘tc the
task of keeping ai; type 3 and typé.s partial wave ;okehs; In
:gality; it is ﬁc:é'édmpliCaEed than this, because there ére
two other cases simijlar to type‘37and,6'which define peaks that

may be whole waves. These two cases are ilbustrated in f£igure
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4-6.

or

or

rignre 4~6: Cases of . pa:tial wave shape takans o
which define whole wave group tokana. '

. The details ﬁf the algorithm ror generating whola wave

shape tokens is given in Appendix C, but in genezal 1t finds

 all cases of the four defining; sets 'af‘figure 4~6 in the
pértiai.wave shape takehxf-and expands the endpoints of each

token outward until they meet (see figure 4-7).

?iqura 4=7 3 Remov1ng amb;guous 1nfo:mati@n wzth
whole wave group tokens. ,

The: advantages of generating - this layer of'tokehs'are
twofold. First,:it codes directly only those waées’in the ECG
trace  which have éJ. reasonably ‘unamhiguous labelling,
immediately enforcing the design gqoal - of initiall? pasging‘

along only good data. Second, as with the-pértial wave shape



‘tokens, these tokens have an 'e&éiiy understood intrinsie
meaning which. allows 1:;&: interpretation to be based on

nnll-kncwa.ckiterga.a7

| _.',rho, major éi_.'sa,dv.‘aﬂﬁ_age;' of : this élgo_.-:ﬂitm'i.s__-'thag ic is L
15:0&91&:&} §1&¢9 pargialwaves-arenot rup:eiént;ﬁ; However,
if only whole wQVQS-arato-bepassod-qn ta tﬁd»l&belling stage, |
this diéadﬁaﬂzaqe' cannot be avaidid;' In additiou.,‘thq,'
: exprgssiven§s$- ¢£ the whole reducticn alqorithm 'is‘,'nat'
éompromise&, -becauéé th§ partial wave shape tokens and the'
 _1nput BCG ttace are both available to feedback querias.-'
Actual whole wave graup labellings of sample ECG traces  o

" ate shown in fiqure 1-8.

R Trace 1

Pigure 4-8; Examples of whole wave group t@kené.

4.1.4 Summary _
 In Summary, the automatic reduction algorithm developed

for the work behind this thesis cbnsists of rules to generate
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. three 1@1&;:‘3 of tokens: the ECG trace and de-rivat_i\;re} ‘pattial

wave shape tokens, and whole wave group tokens.

.The.EGG'traea and its‘dérivativé form- aﬁ exptessive énd.
complete tekan set, and'they'are kept available as the lowest
level of intocmatzan tor fqudhack queries Lrem. the' labelling
and diagnasis stages. | ' '

The second 1ayar of partial wave shape tokens is again an
expresszve. ccmplete sat, but in it each. token rnep;esents a
single wave .or pa:tial wave, The seven cakens,uSQ&-aLao-¢o&e
every possible ECG wav53 in . a’ way which is ‘intuitiveiy
maningful to human observm:s.' Hnwewr. some émbiquous tokens

are. generated at each wave boundary.

Tb-élininate the‘imbigubus ﬁokens, th§  final.‘whole .§ave'
gr oup élgorithm 'searchés*ftﬁéaﬁQh' uhﬁ'pa:tialrﬁakehs-td gind
only those whish represent whole waves.. -This ‘set of tokens
5thus ‘codes only those featuzes in the trace. which are surg to

be individual waves.

| The labeling :and“diagnésis"-aLQinthm:] ‘Shaqldr' wotk'
-iﬁitially' with 'thii incomplete whélg- wave: token layer to
‘farmuiéte ?asSiblg &i#gnoﬁes for tbe‘ECG? ttace;'zbetails'éb
.cenfi:m3br,reject these'possiblé:diagnéses'céh_thenAbe~obtained”'

from the lawer level tokens thrcdgh féedbaak queries.

4.2 The Labelling Algorithm
The oVe#all, deSign' decision ‘té pattern ' the autcﬁatic‘

interpretation aléofithm On-the‘human ECG.én31YSis.model means
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- the :espenaibility of the laballing algczithm is 1nitially to
assign a spceific heart action tP.QRs,r.etc)\ cnly;‘ to 
_unambigueus waves in tbe ECG trace. Furtherlceﬁsldergtign'of
the human model also shows that to allow p-‘rdpe: 4 iagmﬁi "
later, the labelling algdtithm must ‘be bcth exptussive and.r
complete. By basing the . algorithm on the three 1ayers of
tokens gener;ted at the; reduction stage, gaprcssivenesg‘is‘

maintained, byt by initislly labelling only ummhiq‘umu waves,
‘completeness i§~"no£. f' Hedeve:, this lack af initlal

cnmpletaness is desxgned to be overcnme uith feedback ;qneries o

from the diagncsis stage. Only the initial labelling algorithﬁ_‘
'is described in ‘this section, bacause no_diaQn@aisjaléﬁrithm
has yet begen imﬂlemgntad'to sapply the_fcedha@k;queties;' '

_ o perfarm the taak of assxgning ;nitlal hea:t actians.
the lahallxng algorzthm first accepts as input the whale wave':
group~token8'from-the reductian.sta@e., These tokens represent
 .thg. mast unambzguous whole waves in 'ﬁhergéCG ftf&ce and
therefore, the lahellxng shculd be able to . assign a 'spécifia:
heart athon_ to each.. However,‘careful cdnéidebation'ﬁf the
derivation of thése  tekénS' will shcw that' e&ch represents '
either a wave or a space between waves, as in f;gure 4-9.- |

One way to 'overcoge th;s problgm is to e$tablish a
:eférence of’either_é wave or ‘a 'Spéée, te which the other
'tokens réan'be comparea¢ i happens that the easiest xeferenae
to establ;sh 'is the positions of the QRS-complexes. The:efore.
the labelling algorlthm melemented in this uork bréakg dewn

naturally into four steps:
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?igﬁze 4-9: An axanple'to'shaw that some whole
wave takens represent waves while others
- represent the space between waves. -
1. Find-thc approxinate-Locatien of each QRs—aomplex. |

2, gse a £ixed set. of rules to find the extqnt ef each .
ors.

| 3..c§:ssi£y the QRs-cauplexes znto groups ancaxéing to
shape, ,

4, Use the extended Qas-eamplexes as a reference and
_ £ind whole P and T-waves between. ‘
sach éf'these:faut steps is diacussed in thisi anction,
along with preliminaty test results. The detaxls of the
'implenanted algcrithms ¢an be Eound in Append;x c.;”

© 4.2.1 BS Position o | |
 The ﬁiréﬁ' step in  the -1abel1ing alqﬁrithmfr is to-
1,unambxguously labex some of the whole wave graup tokens for -
refetence. A human belng loaking at an ECG trace is 'regulazly
dréwn initially ¢to the QRS-complexes, and ruses theée'as a
| reference for furthet analysis?'therefore, it would"be' maét
useful’ if the computer did the same. In fact. previous work on.r
ECG d;agnosxs, as discussed in sectien I ) l has shown that

QRs-ﬁomplexes can be easily and rel;ably located by examxnxng 

the derivative of the ECG trace [21][3d].



- The elgo:ithm used in this uork fallews much of the

lit!ratnre by using a dynamzc threshold technique =o examine'

the derivatzve., first, the entize trace 13-5earchad for the
flangest absolute vabue of ‘the derivative amplitude and a
th:eshold ‘is .sgt at 350% of thaa value. A QRseecmpiex'issghen:.~
ﬁuspécttdiat aﬁefy-péint\ia.thg grageiwherd{the&bsolute value

- of the derivative 9:o$s¢é~;herthrﬁsha1d.” |

_ - phis _ai&a:ithm has .ﬁany advintaQeQ,,ujth tha,-masﬁ
important being its ease of implementatign and its;high
-:eliahili&yz‘ih 'absﬁ fca#a#:‘[671.::'the~st§pslinvelﬁéd'in the

'.pracess can also be thcught of as 'a feedback query to the
- derivative leve; of - reductian tokens, bypassing the whcle wave '

grqup.tekens- _

-Bntortﬁua35131 the algorithm relies 6& a th:eshbld' anﬁ‘j
therefo:e cannat be cousidcred to be perfectly camplete sone

abncrmal Qas-camplexes may slip under the th:eshcld. Ear‘ the

same rgason;- the . algar;thm is not ccmpletely unambxguous, as

aomeﬁlaxge T-waves may be falsely detected. | However. these
problems occur only in unusual casas, and can be correct;ed by

rfeedback queries from the diagnosis stage.

7 The details'of.the al?@rithm arefgiVen in'Agéeﬁdfx_C. and

. the resuylts of applying thai algorithm to actual tra¢és are

shown in figure 4-10, | | |
To test the reliability, five lO0-second long ECG traces

were ahalysed and '190% of the.QRS—comﬁléxes were correctly

identified with no false indications recorded.



Trace 1

Trace 5

_ Pigure 4-10: Detecting QRS~complexes..

4.2.2 QRS Extent |

Once  the' positions of the Qas-complexes have been
identified in the traCe, it remaina to discnve: p:eclsely which
.7 whole wave group - tokens are mepbers Qf each QRS.  This
,iden:zfication _ not- only 'gives g_ reteréncé"far Eu:thez 
praocessing, but also gzves the .contour of the QRS by defining

the width and orientation of each wave uithln‘it.

The algorithm uSed to flnd the extent of the QRS-complexes"
fulthin the whole wave qroup tokens ‘is s;mllar to tha QRS‘
grawlng" technxque dlscussed in SECtlon 3.1.2 [51 quever.
'this implementation .can.-use a much smaller rule set as the“f
whole wave group tokens: hold more natural meaning. The
,éssential_featﬁres-df‘thé technique are:

~ FPind the first whole wave group token in the QRS,
i.e., the one which contains the QRS detection point.



- Apply & sat of: rules to the tokena on either side of
this initial CRS-wave to see whether they too shculd
be past of the QRS. | |
<« When the whole wave group tokens on hoth sides should
. no. longer be added, :he QRS is complete.
: only an cutline ot the implemuntation of thxs alqarithm is

given here; the detazls can be found in Appendi: C. o

After the zi:st\waﬁa in‘tbe‘QRSegogplex is idenéitieﬂfby,
_matchinq~it-td'a ﬁas-Loeatien. it is exaﬁinkd‘with a _fiédhnck'
query to determine whether 1t should he expanded , Thiiiquery
nis callad the g:aup-prupezty que:yr and it censists o: laokzng'

_in _the t:aca.,:o;_thenfollguingquatures wzghinAgherwave (see

iigure-d-li}é

l. The location of the peak af the wave, _
2. Either a flat plateau of 25 ms duration or a corner.
where the . slope changes by more than 30% within 25

ms to the left of the peak- called the lert atop.

3. A similac plateau ar.ccrner.on the right s;de»of the
peak; called the right stop.

peak

lef=_§F°P= o peak ' right stop -
Pigure 4~ll: Features sought by the.
rgroup-property'feedback Query'
" If either a left or rlght stop is found w;thln the lnltlal_.

QRS whole wave group token, the QRS is assumed to end at the
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stop. If one sida oz thq other is not stoppqd the wave next to |
it is exam;ned to see whethe: it should be added to the QR8.7
"If both sides a:eofree fo:_additiog,-the‘smallest-wave on the
righg_;o;‘ LnfﬁliS_éxamiaed'ﬁitgt;'Theﬁdecisiooof'whcthor tho--
wave should:be added is base&ooﬁ & set of rules which ,é&ffor
slightly on each side. fhg 'tu.lgs:f:ﬂOﬁ adding a vave to the léf;l :
side are5givon-’belod, Zﬁptcﬁthat.tﬁafSixth::to§~uscs Anothe$ :
feedback query. . S

- Use the groyp~property feedback quary on the wa ve
bexng considered.

. - Do not add it if it has a right‘hanﬂ stop. ‘uanc of
S it belongs, the QRS ends at the stop.,-“ ' S

- ?lag it as the ‘end if adding it uill m&ka the total
QRS width greater. than 220ms. ,

- Plag it as the end if 1t is wider than 115 ms.
f‘Always adé it if it is narrower than 50 ms. . |
- If the avezage slope of the wave under consideration-- |
is less than 40% of the average for the. Steepest wave
of the trace, flag it as the end., This,wave ‘is tao
shallow to be part of the QRS. R
- If the wave is flaggad as the erxdr keep it only uo'a__
~ its peak. .This token represents a space between.
 waves, o o S
- If the wave is to be added, add only to the left stop
- if there is one. Otherwise add the whole wave. and
.c¢n51der addzng the next one over.,
When no more yave'tokené can be added tofeithorVSide,_ the
extent of the QRS~complex has been determjnedir‘ |
 This ‘QRS“~growth algorxthm has two. 1mportant properties.

Fi:st, only com@lete wa ves are considered for addltion, {8 the

QRS must end in reasonable places | in the trace. Second, each of
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the wave additzen rules hag a maanianul Lntenpretatzon frcm‘an

o outside polnt of .vicw. _ anever, the algor;thm also has the -

f‘disadvantage that it is based on saveral fixed threshold
values. . These threaholds occasionally :esult 1n similer
Qnsuaomplexes havimg different. extents, if the sxgnificant 
‘platesuz or cornars are very near the. berderline,r.zxamgles of

fthis p:ablem_can bg sgnn in £1gu:e.4512.

?h&*implemeéiﬁk£on of zﬁis éiqwrithh has heen-testgd  with
'eight 1Q-sécond ECG tr&aes{and,fwhile ‘most QRS~complexes are
‘axtended corrndtly, as shmn in £ igure 4-12. s‘m are -'aot.
These results do not, _howeve:. mean that the labelling
algofithm is un£él1ah1e;-singe theralgorithm déacribed -in-_the

next section corrects for most extension errors.

Trace 3 L

VThacé 5

Figure 4-12: Results of the QRs-complex
extension algorithm L
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4.2.3 oms cmsmcauau e o
The next stap in the labelling algorithm, class;fzcation. -
,13 necassazy for twn reasons., Pirst, i atten‘eccu:s_ ‘that in
"-abnm'mal BCG tuas, there are 's’sﬁgra}.j differently shaped

Qns-camplsxes; ;rongff teptesentinq :_-ﬁdtmal‘ - antfi:u;axkf

| - depalarizaticn, :' and: the others - :epresentihg rabnotmal'

| dgpolarizat;ons. This is an impartant diaqnestic distinctxon,-
1and since it is baged primarily an shape, it can be deternined,.

- without ‘g\-diagnostic context. o Second, _ﬁuer te the many

w‘threshd;ds involved in the previous éi:enSicn'aléotithmphéxrarsu'-"

are oftan. made in3£hg endpoints of tha=QRS%cé@pigxas;f‘Thesb'f
 ::errd£§'q&ﬁ-alsd be-daﬁecttd”at' this stage by examining ‘ka

shape.

| "The' shaperéf a QRsEcamplsx at-this'étage in*thé diathsi§ 
i5ystem ‘can be deﬁned by the number and type (1.:. .3 or 5) of
whole wave g:oup tokens uithin i:, the u:dth of each token, ‘and
the app:oximate "peakedness“ of each represented by average_ 
_,sldpe-oéef tﬁe token. Therefoze, the solutions to the problems

‘of labelling and extension both start with gtouping the;

'QRS-camplexes;.inr tgrms of these variables.,' The-grquptgd; _f

‘-dlass; with:ﬁhﬁ?mosﬁ_meﬁbe;s is then~§ssumed tc_be, of"co:;ect=-
. extent aﬁd td' gépfeéént‘ £he dominant Qﬂsltype in the"tra#a}
'Each othe: class of QRS is compared to. the dominant class. If
it is sufflciently simslar, it 13 assumed ta be the same class,_
and- its extensioa ;s eor:ected accordingly. Any.classeswhlch'
'a:e-ndt similat;dre‘aSSumed:to be abndrmai'béats; and-;éach is

labelled 'separately;\ " The <details of thé-algorithm outlined
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":‘q belcw are given in appendix c. - E

| The first stay in the alqorithm is to grOup the diffa:ent
'Qas-aamplexes into \ elasses. '¢ fhi_ﬁf cla331£icatxon iﬁ;-
\aecomplished with the £ullowinq algorithm (see !igure 4-13)-‘"
- Choose- the next Qas-camplex. Calculate the average
slope of each wave in the QRS and designate . thaoge S
- waves with an average g:eater than 404 of the maxinum;:‘ "
avarage as essenzxal.=r

‘  * Qampare - this QRSvaomplwxr ta *each‘ class aLready_
defined.using,fhé:ﬁellawing ¢riﬁ3fi&:‘] | R

* I8 thd nu&be: aad tYP% ef waves da- nct uateh itlwh;
- is in 2 different class. | o

* If essenbial waves do not match. iﬁ?~is‘ in7~a;
laiggerent class. N R
o If,  with this QRS added to the class. thq o
~ variation of the average width of any wave in

" the c¢lass is greater than 25 ma, this Q8S is 1nv"
a diﬁtexent clasa. ,

- If this ka doas not match any previaus cléé§, *it |
defiues a new class. - o

~ Once the classification ef the QRS-aomplexes is complete,

it remains ea look for. '”sumila:“ classes and co:rect their:-

'1*extansions.,, The simila:ity of tnc classes is based on. therl

© width and shage of the essentlal waves within the classes, ‘as

-.spec1fied belcw (see figure 4~14),_

. = Choose the next QRS class'to examine.

- Compare this QRS class to each class with a greater
. number. of members according to the  following
criteria. S : B L .

* If the ‘type»of essential waves does not match,
they are not similar classes. ' They have




. _eiass_kxtrige' - | - Same Class

3 6

75 60 e :f,“~' 70 25 - '
n&tfnrent Guum T D&ﬁfur&nt Clamn.‘n

rigute 4-13' CIassifying QRs~camplexas.. S
basically diffe:ent shapas. '

* 1 the variations. of the avexaqe uidth of ang

- gssential wave except the ocutside two do not

overlap, they are not similar .classes. .The
outside two waves are not indluded as they may
have incorrect extensiens. : _ '

% 1f. the va:iation in average slape of the two
- outside waves does not match, they are not
- gimflar classes. Even with extension’ errers.;
the avetage slopes should be sxmila:. o : _

- If this ﬂRS‘class is -similag to the ~class being
" compared, correct the extension of each of its

memkers to the average extension of the larger class
' and ‘assign them to that class. o

- If this QRS class is not sxmilar to any larger class,'f
it forms a class by itself. , ‘

Corrected Extent

)
'
1
!
!
|
t
1
|
|

Dominant Class =~ gimilar Class  Different Class

. Pigure 4-1l4: Compatingloasrclasses.
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With complotzon uf this clasa compa:xson and ccrrection.,”

the algozithm is left with one or nore “classes *rofﬂ B

anS~¢omplex¢s, anﬂ each QRS shnuld be. corracted to its ‘proper
extent. Thnse classgs are numha:ed according to the number of
,-ﬁQRs camplexas in each. | aenec. -the dcminant vqnt:iculer-

'~‘depalasizat1on events will be labelled 1,‘the next most commor

2, etc.‘_ S |

| | Busidé& 1abclling' éach‘ QRSacbmpIek' with a elasé-nuuad:
,related to the trtquency of its conteur in tha BCG trace, ‘this
.QRS classizicatien algorithm has twn other advantages.,-?irat.-A-
:it‘corrects axtﬂnsion e:ro:s nade - in the pravious labelling.:'
Step for simila: Qas wavo fcrms, but ltaves vexy different QRS
 types alone. Secand the algarithm uses oaly whale wave g:eup 
.tokans,‘ 39 it is tmle:ant to minor variations in canst;:uentf

wave‘saapes.

 There ate still a few disadvantages' u;th the pracess, ..

_hawever._‘ Thxs algorithm, like the QRS- extent, relxes on- someﬂf

thresholds; hence, it may still have problems in some nusual

_ cases and cannot be con51dered complete, . In add;tioﬂ. by'

o assuming the most common class is correct, a' common extensxan

: erra:- may be fo:ced onto all QBS types in the traee. Anf
‘gxample-ef this is the retrograde R~wave-shewn in flguze 4-185.
Jhis _problém"be &bz:edtéd_ with féedbabk queries from the
 diagnosis stage.' | | |

In the small sample of five. lo-second ﬁormal ECG traces
available for test;ng,.this algor ithm properiy-cléséiﬁied and

corrected 100% of the CRS-complexes.  Examples 1aré“sh6wn in



. Retrograde Pﬂﬂhﬂl\\\‘ AN -
S P*w—**+1Calgﬂahcdlﬁmizx:mm:
. _ rigurn 4*15: A possihlc Qas cxtnnsien exro:._
 figure 4-16.

hﬂm§?1

rigure 4~16¢ Bxamples of aetual QRS-camplex
1dent1f1cation.

.4.2,§'R§r Wavg'netectich 2 |

' With th§QR$*c6mpléxesto use as a reference, thd final
stép in'thg initial labelliné of the ECG tgaca‘LS- .identify
any ?,or'T~waves;.'The_baéis of the solution to this problem is
 very simple, and is used‘repeétedly‘in thg_literature discussed.
" in sectian '3.1: = find each significant. wéve between the -

QRS=complexes, then label the first found T and the‘:estla}
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. Implementation of this step would be straightforward if

.eaeh.whoie wave-gxdup token between the QRsacomplexés -aétually

represented a single vave, but, as previeusly stated, some of

 the tokens nep:esent spaces. To overcone this prablem in most:ff
caSQSQw tﬁe following algerithn has baen devekaped tfer detailsf ,
soe Appandxx C). |

- aetween each two- QRsﬂcamplexes, examine each camplete-
~ whole wave group token.

- 1If the absolute valuu of the psak amplitude of the
wave i3 larger than that of the wave on each side of -
it, it is significant. Other vaves represent spaces.

- {see figure 4-17) . : - S

- The first ‘signifidaﬁt' wave €0 the rxgbt of a
" QRS-complex is a  T-wave, and all other significantx
waves are P-waves, -

rigure 4-17- slgnlficant whole wave grcup
tokens.\ . ‘
‘Althquh this 'a1gorithm is ‘very simple. it héS' ohe
fimportant feature. 1t passes on only large cemplete wavns for *
'rinitlal dlagnasis, #e that stage canp be \confldent - that -each ”
wavej-:eceived actually representsla heart action.. Tﬁis same
feature is élse a-disadvantage; hcwever,‘ be&ause all - partial |
" waves and some low amplltude whole waves are. not passed on &ee',
fiqurer 4-18) . This incbmplgteness, cannqt-be unambigquously

overcome howaver, so the diagnosis stage must correct for it by -

using feedback queries. Another disadvantage is thatj ia some‘



abncrmalitiqs} a P-wave may be found between a QRS and the

following Tewave. again, this problem cannot be corrncted' )

"withaut an ~idea of what may be wrong with the hea:t. and must

'thezefo:e be coupensatcd for in the diagnosis staqe.‘.mf_

Figure 4-18: A missed P-wave. | |
 'T§§ting this algorithm on actual ECG tracggr reveals the -

e#pected:_ only 'welxasdparated_:cbmvlﬁtev wave#'werﬁléetﬂcted;

Examglep'a:é shown in’tigure 4éL§ibe1ow.

. Trace 3

?igura 4=19: Examples of actual 1n1t1al P and _
T-wave detection. R

To summarize,  the labeilihg *a;gofithm used in  this
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automatic ECG. inta:p:atation system -conaists of four steps-j

- finding- QRS»camplexes, discove:ing the extent of each Qns,_ 

ciassify:ng the QRS . types accord;ng to contaur, and~£ina11y g

locating any siqnizicant T and Pewaves which fall between the
'QBS s, Therefare, ehe information passed on to the ncxt

3 diagnasis stage cansists.of a list of all QRS#complexes in the

‘  ECG trace,f oach having a olass number tn~1dent1£y-1t a: a

'dcainant or abnormal beat, and a lzst of all easily identified l _'

P and T~wave candidates.

A major pcherty of these output lists is that they are
incompleta that is, they do not. nectssarily ccntain eve:y QRS ,
P, and.ﬁ-wave‘;n the tracs, and thase,that are included may be.
'ﬁisiaballéd;_' anevnr; thnﬁrules of each Step éfé-deﬁigned 80

that the majority of the infarmatioa passes ‘on to the dzagnasis
 staqe is reliable, the:efnre, the diagnosis algorithm shoula be
able to formulate :eascnable posszble d:.agnoses--, even with a
-£éw ef:o:s.' ‘Once these possible dzagneses are. generated the
1ncompleteness af the labellxng algar;thm can be corrected with-

V\feedback queries. .

' To illustrata the way this feedback correctlon can work, a

81ngle diagnosis query is zncludad in the systam implemented in

this werk This feeéback query is:

- If only one signlflcant wave is found ahead of a
- dominant QRS-complex, then assume it is a T-wave and
lock for a partial wave shape token between its peak
and the QRS. - This, if found, should be a P-wave.
(see. Appendlx C for detazls)

'By employing .thig gimple diagnosis‘ rule, the five
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lnqagcnnd ECG tsst ttacas can all be carrectly 1abelled.
-including the traces with E-*waves which ova:lap T--waves and do -
not appear  as whole wave g:oup tokens.. Fgr an example,-seea;

figure 4-20. '7"

v Trace 3

Figure 4~2G- Antual ECG ttaces lahelled aftar 2 f
) singla diagnasis feedback query

4.3 smuy of Reduction and Labelling Algotithms |
o The raduczion and labelling algarxthms implemented 1n the'
\automatxc ECG analysxs system descrlhed in this thesis are
. mndelled afts: the human analysxs model put forth in chapter 2..
‘Therefore, both algorithms consist of rule ~sets ‘that extract

the signlficaﬁt 1nformation from the input ECG trace.

: The? reduction algcfithmn'has threefsteps, each of which
generates a%more abstract layer of output tdkéns. The first
layer consists of the digitized ECG trace and its derivative,

| while the second layer is madefup of partial wavershépe tokens,
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each rcprésentihg7fag extended segment of the trace. Both of
these-téken léy!:s ar§ ¢xpressivu and'cbmpletej--ret;ininé- ail
of the . 1n£o:matiou originally in the ECG traee. Theftinal set
of whole wave group tokens representiug only the nost
significant pﬂrtiai wévt"shaper tokcns, absorbing ambiguous
'pértial VaVGS; . .ihi§' causes 2 loss .at ¢ompleteness, buat .
',dﬁniniéhas th§ amodnt-a£-exﬁraneaus-dotaii~whilg';etﬁininq,t&c

nost imgnrtant waves for latgr‘an;lykis..

The 1abe111ng;alg&:ithm works t§ assign a speﬁiﬂic .heirt :
action to each of the whdle‘wave gtouﬁ tékens; This laaqiling' J
is done in four steps: finding cach QRS-complex in the = trace,
:rdi#ﬁﬁvering the g:tant df each Qns;~cléssi§yiﬁg tha5QRs types
hceprding_ta contour, and then laca:inqugtentihl\f'and QﬁﬁaVQr
céndidétes ‘between QRS’s.  Eagh of'theaeistapsuis 1nitia11y o
incémplfta, sinaa.tyeyare based primarily on the incomplete -
list. of whole Qaéérgronp;takgns..prhis incompleteness is the
'result of a eanscioﬁs design decision to follok thga.hugén ECG
anglgéis- mcd@l' of infcﬁmatiﬁn floé;"ln order to iﬁcréasé'the'
ease and réliahility af the rxnztxal formulatzan of possible
- dlagnnses, the diagnosls algcrxthm should begin with only. those'
, 'ECG- waves‘\whxgh can‘unambxguausly beiassigned‘a.hearc»a¢tign.
Once these lpossible diégndses have béen workéd cut, rthe
incompletenéss ofi the '1nput label set is elzmxnated through'
feedback queries to the lcwer token levels. Therefore,. the
final output of the labelling algorithm cbnsists.of a lisﬁrof
Q#S*édméle#es g;ouped égco?ding'to.cantour and a list of the

unambigquous T and'2~waves betweén-thema
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-..le' zinall £up¢:tantf"a:éa\  of diséuSSian-,,on the
-.1mp;§mchtitian o£ thé::e§uctions\and labelliﬁq algorithms is of
tﬁe actuél' tesning  @fi thgir porf&rmahce ahdnlreliahility.--'
Relisbility testing of systems such as the one implemented in
this werk #cues*tn*ewo phases. pirst, the actual lcgic‘dt each
algorzthm must be tastad to. sue whether it performs as planneé.
The exanples ot prcg:am eutput included in this chaptor are
'tzcm this type of testing_ and, in the lim;ted‘tiva t:aée
sample, ﬁhe: Programs. perfofm -pc:fectly.r. Eu:therr‘caﬂplete
examples,_of  cﬁefanalysis of tthe\fivé traces ace given in

" Appendix B,

.Tnbiecond:typi'of-;eliaﬁiliﬁy testing tequi:éd i# dne of'
detakm;ning..thg -ultimgta'usefninmss of the tokens and-initié;
'lsbellinq a;g@:iﬁhmin' forﬁulatingh first paaﬁible' and _theaﬂ
£inal Bcsrdiagﬁnaas. This testing :equirea both a large sample
 0£ abnormal data and a- diagnos;s algorx:hm to supply—feedback

‘queries. . Ag- thg- implementa;ion of _the systemu_has not
' p£0§res§ed ‘o that extent ,. such testing has not, as yet, been

possible.,

e final measure of algorithm perform&nce whmch can be
-'measured,, howaver, is execution tzma, or thg‘time to produce
the f£inal o&tput from ﬁhe labellihg algorithm. -Unfortunéﬁely;
while it can be measured for each trace, the resylts are only a
guideline, because the gxecution time depends on machinef
related. factars such as 1nternal speed, real memo:y avallable,
ete, and - also on‘ input trace facto:s;SQCh.as data samp;Lng

rate, heért; rate, length of‘ trace, etc.  However, as a
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: tefarencé;' the avcrage execution times on the vax 11-780 for

'the flve lc-seennd test zcc traces are given in table 4-1,

- Ehuuﬂﬁ:;!huas o

. Snuxph Sam " Heart Analyst.-.'m:m
{ ECC Tracs | Rats (Hz} (m} Rate ‘(prm) (CPU sec)
1 100 CI 115
2 100 10 . 114 a2

& 250 10 120 289
4 280 . 10 84 - 428 |
8 - 280 10 . B . 440

| '1!blér4»1;‘shhgle*élgﬁriﬁhﬁ'exeauiion'timaa;

ﬁithithis description. of the :reductian' and  l§hellinq g

~ elgorithms,  ‘the work behind this thesis is complete.’ e next

 chapter cdntains a discnssian of the wotk thus far, and
includes recnumeadatians for the direccinns futu:e work on this‘

--automatic ECG lnte:prenaticn system mxght ‘take.



 Chapter&
 DISCUSSION AND RECOHATIONS‘- -FOR‘-FUTURE WORK'

nuw:suaiaﬂnmmua
U&u&ununmmlhnﬁuapan]

With the work behind this thesis explained in detail in
the ptevious.¢hqgt¢r,'1t-w1§‘.traﬂitional at"thii pqint*.to
summarize 'its=lk§y aspects., qurhaps'the bést way'to'sumﬁarize 
in this case is to outline the experience which led to - the
algorithus and 1mplenentation.descrihed.

When initiallyr given' a pzabxen“ such as producing an
autdmétic'ECG #nalysis system, the first Step tpwaéd a.soiution
is’ to read the relevant literature. unfortunately, the

literatuze on ECG analysis is filled with dozens of systems,

each slightly different, with very little:consensus as to gn‘i—chgg. L

Lsystams‘aze hetter<ana why. To make sense of thzs multipllcxty
rof views. a2 standard cf comparlson is requlred and, for' this
work, the human ECG analysis procgdure‘was chosen to be that
standérd;‘ This choice was based oh_‘:he grounds that human
doctors  indisputably  have the best rate of - success: in_

interpréting diagnostic ECG s..
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In‘ ¢hapte: i2¢ a- novel modei of the human ECG analY81S‘-.
system is suggested, with argunents supporting its plaus:bility
. coming. . from ‘such seemingly diverse areas " as experimental;

psychology, computer science, education, mdicine, and pe:sonai

experience. Several featu:es of this human mn&el play central

roles in the wetk deacribed in chapters 3 and 4. the most
) strikinq_ aspgct -of;the;modeliis,that.it isncomprised;oi three’
 logically séparake stagess"; _-'fuductioﬁ;- labelling. 3 and
| diagnnéi#;“ In  the- reducticn stage, the ECG trace is broken
_. down-into'piecesf_or,tokens,' each representing . a meaningful ‘
| wave infr' the hraae. The 1abelling stage matches each af these ’
-waves with a specific heart action, “and finally ftom this
,_string of - heatt actioas,- the diagnosis stage formulates a 

’-diagnosis af the unde:lying heart p:nblan.

'ihe secgnd-majot feature,ﬂﬁ the humaﬁ.ECG.;énélysis 'ﬁadelil )
is the'-way informationVis passdd.beiween stages. The simple ‘
'Vdivision of the process into th:ee steps would suggéat that the
ECG trace first be accepted into the- reduction algorithl ,and'i

all waves in it identified Then, every wave would be assxgned o

a heart action and finally, the diagnosis staqe uould need‘only

_,those actions ‘to produce a diagnosis.‘ In the caSe of actual.r"

- BCG traces, hewever, this simple bot tom—up data flow is not.
"possible“becguse, until put 1nto context by a reasonable'
idi&gnosis;-the labeiiihg'of-many.wéves, and even the _éxistence_
-;'df' some, is‘ambiqu¢si>;The:efore; in the humén,model, moSt-of‘
the ambiguous information”issheld-back' at the. redﬁctiﬁn énd

_labeliing, stages to permit possible initial diagnoses td'be



uorkgd out using only the most teliable data. Thesewpctential
diagnoses can then be confi:med by extracting and placing the
ambiguous  information .into \co-ntext, by m®eans ‘of feedback

queries.

| fhe third, and most important feature ©f  the human
analysis model is that it suggests ‘the concepts ef'“‘

"eiptessiveness‘and~¢bmpletenéss; Each stage of the uodel must
be 'expfessive' in the sense' that-it exttact-all sxgnificant'

1n£ormation from its 1nput: it BUSt also be complete in passing

"~ that 1n£ormation.on to the next stage.. A 1ack of comp}.eteness- -

«wan be aver@o#s by using 'feedback queries:to retrieve mo:e”‘
irifofﬂaii:idn and, in fact the informtim 'Af.hov} mdel- above
.‘ feqﬁires - that the reduction and lab@lling algorithms be~
| initially incomplete. VHaueve:, a lack of expressiveness at-any 
stage implies a basic inabilityltc pgrceiv¢ 1m@brtan£ pieces of
infotmatibn, énd'uilljuhavoidabiy lead to ingorrect diéqnuies 7

in some cases.

 W1thf‘the adoption of this modeLfas‘a-referenﬁi; rehding
theflitgraﬁﬁre‘on“automatic ECG analysis diacussed iﬂVchapter'B'
produces several 1mportant*ohéer§atidns; Fizst, while no real
effort -seeﬁs to have been made to attempt an understanding of -
the human analysis pracess, vxrtually all programs ‘developed
include reduction-labelling and diagnosis_sectlons. Second;'
the trend toward impzoving”$yétems has‘been-merely to add mére
rﬁlesilfor labelling - and ;diagnosis,- hence increasing,their
cbmpleteness; but leaving the baéic tedhction' stage unchanged
from program to program. As can be seen'in'section 3.1, this

A
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rfcduction 'algdrithﬁ-‘ié not sufficieatly expressive to permit

identification of all Pﬂwaves in all traces, and thezefore.
some incorrect diagnosas must be expected. While t:he improved_‘_
sdnmpleteneas.of the later stages does alhow more co:rect"
‘diagnoses, this lack of expruasiveness creates-the impression
~ in the lxte:ature of a fixed lewel of accuracy which cannat be
improved, inplying that certaxn p-wavas are simply 1mp¢ssxb1e,

to £ind [12]138]. The huuan ECG analysis model suggests that'

this barrier to P-wave detection is artitiaial,rand;can‘be"'

removed with a more expressive reduction algorithm.

' aenée a néw éutamatie ECG inthtptetaﬁion systen was"
designed bagsed heavily on the human ECG analysis model, with
particular enphasis placed on the reduction stage. _'_ As
deacribed in chapte: 4, the reduction algorithm is designed to f
produce: as output three layers of tokens.. The first layer
consists of the digitized ECG trace and 1ts de:ivative. thus

zultimately'retaining‘expressivengss by kegp;ng,~all the data
“available..  The ‘néﬁtﬂ layer of partial,wavé éhapg‘tokenélis_
caéefully-chosen to £epresent'intuitively meaningfﬁl ﬁieces of
ECG - trace. Speczal ‘care was taken to ensure that the rules .

which form the tokens flnd e‘ary wave in the trace. s0 that the;

“output set remains both expressxve and\complete.r The third and :
final ‘layer of whole wave group. tokens represénts uhaﬁbigﬁoﬁs-

waves bonly, and: thus passes on only reliéble waves for initial
labelling. The lack of .completeness in thié layer is-offaet by
the ability to méke-'feedbaék uneties to the’ more detailed

partial wave shape tokens below.
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The initial labelling algorithm designed for this systen

has four steps: £ind the Locatxon of'each QRs-complex- in the"

trace, discover the extent of each QRS classify the QRS types
according to contoux,- and identify definite T and vaave _
, candidates ‘betwaen each-rpairf qf QRS ‘8. . With thése,s:epsl'

aperatiﬁg primarily on the .whole wave groﬁp"tdkensr.o£  the
' redugtid# algorithm, the resulting-oﬁtput from the'labelling

‘si':a.gql is a reliable list of well-defined waves | for imitial

diagnosis, as reéuired by the human ECG anaiysis rodel. At the
: time of writing, no diagnosis algorithm has been implenentad.

_ The reﬂuctioﬁ and labellinq'algorithms haVe been teatad‘on"""'

a VAX 11—780 using a limited sample ef ECG data, asg explained'

s in chaptet 4. These test results. shew that the. algorithms

| perform as expeétedr Thisr success of a more cxprussivn
algorithm ihdicaﬁes that the design goal " of an improved
fqutomaticA‘ﬁCG interpretation system 1is nearing achievement.

although this cannot bgléonfi:med until a diagnosis _algor;thmi
is implémented‘ to ﬁ&ke- fﬁll use -of the pawer of théradded
expression;. The rest of this chapter d;scusses the future uork~

_needed to aocompllsh this task.

5.1 The niagnosis Algoritha B | )

Cleatly, the most impor tant area of future work is the
implementation of a diagn081s algorithm. The aqtual.form of
the algorithm applied may vary, but several guidelinés 'éhould
be followed in order to match it‘uith.the'existing'reductién'_'

and labelling stages. The'fiISt and most important 'guideline
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is 'thaﬁ. the algﬁtighm‘shoula'be patte:ned aft@r'the human‘ECG‘
analysis model. It musﬁrthereforg have two steps: first, the
jfo:mat;oﬁ- of SQVeralf-pessiblé diagnoses uaing the inéomplege
but unambiguous output from the - initial l&bé;ling' aiggtithm,
‘and second the confirmation or rejection of each possible -
diagnosis th:ough the use of feedback que:ies to the two lower

layers of reduction stage tokens. ‘

 One way to—implement this‘type“af praocess iﬁ the decision
| tree.'aé discussed in section 3. 2.1, Tne' possible. diagnoses
wculd be achieved by ttavarsing the tree as far as pOSSible on
‘the initial data. and then the final path would be decidcd -
using feedback .qnerigs at each,furthez branch.. Altheuqh this
. method_uéuld\be thersimplest to.ihéiémeni at’first, and‘may be
worthwhile in a preliminafy i@#estigation.?it wngld?hava all
| the'problem§ outlined in section 3.2.1,' and would be very

difficult €o update when incorporating new diagnoses.

A betté; choicé‘;for the diagnosis élgorithﬁ is the more
-'intuitivé'apptoaCE of fot@ulétihg'dhe set of rules to make the
iniﬁial diagncseé, and a furthgr-éet of_ruies to cohfi:m or
reject them. In fact, it uduid be best if‘some "of the rules
' actually canstructed a heart reference model for simulatlng the
final diagnosis and ‘then compared its output to the input trace
| through feedback «queries, as _suggested in sect;on 2. 2 4.  It
would be advantageous for the rules to be explicitly coded as ‘
separate . rules rather than llnked,together in the fo:m.of a
itree. A great deal of‘wérk is being \doné on .thi§ {type of |

algorithm in the computer science field of expert medical
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systems  [30](35) [59) (6011651,  mhis readily  available
expetlence. the intuitive nature of rules, and‘ the ‘relative-
_ ease of addzng new diagnosls rules makes this type of algorithm'

the most attractive.

5.2 Impmvments to the mdnction and Labeninq Alqo: it;hms _‘

| Another avenue. of future research 1s the improvement of
the reduction and labelling algorithms outlined in chapter 3,
IWhile' they perform adequately’ in. the present implementation.

. there are several minor adjustments,which could make ;hem more

ganera;iy‘applicablz.‘u -

- The first ﬁessihle~.improvement is thﬁ- Iﬂﬁlhsieﬁ of‘a- '
‘preprocessor ﬁo remove from the trace certain ext:aneous data:
such as sudden shifts of basnline, bursts af high amplitude

'noise and pacemaker spikes. In therdiagnostac'enviranment,-the'_
first two problems are not savere, but the oauﬁ?ténce - of
V'paeemakers is fairly common. Pacemékers; in an ECG trace,
usually pzoduce very harrow high amplitude spikes which haver
.very steep slopes. The resulting spikes in the derivatlve uill'
,confusé: the QRS‘.de;ectxen algorithm, used ip.the labelling: .-
stagé.:'The-solutién,iS‘the addition of a préproces#or ‘which ‘
contains an algorithm to filtez out the pacemaker spxkes while

retazning their positions {56].
Another‘madification whichgmightibe made is in the aréa of -
noise measufement and elimination. As-outliﬁéd'inﬂApéendix ‘A,

the ultimateA expressiveness of the partial.wavg-shape token
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algorzthm is . dependent on an accurate {measuéement ot‘thg'
"amplitude of the noise in the ECG trace." The algorithﬁ fgt
.'npise measurement: uSQd 1n‘this melementation is‘deséxlbgd_in
detail in Appendix C, and is adequate for-diagnoétic_tzaces' of
telativeiy loﬁ noise. 1In harsher enﬁirénﬁants;,such-as a Ccu,
hovuver, a more genaral noise measurement’,pgacedure'gwill‘:bef

required.

FPinally, a‘rthird area of merqvemehtisincxegaing the
| éfﬁiciency of the algorithm uséd te find the Laca}‘lméxima and
minima in the ECG trace and its derivative. On the VAX 11-780,
proc@asqr épeéd-isgng barriét,-so ghis'glgbxithmwaa wiittan‘te
be easily underﬁtgod'rafher thén maximally fast. If a smaller,
slower computer is‘ dsed,-a'major decrease in ptécesging‘time
might be effected by finding a more efficient algorithm for

thla epe:ation‘

- 5.3 System Teating .

A final suggestion for future work on thJ.S, or on any ECG
interpretatxon system, is the building or acguisition of a
' database ‘of sample ECG traces for pragram\ test;ng and
‘eompatlsen at the University of Saskatchewan. Such a . databage
would ideallyl consist of several hundred normal and;abnormal
 ECG traces.-each trace having previously been diégnosed ‘bf o !
physiciaﬁ. While thié type and amount of data is not
R immedlately necessary to test the algorithms in this thesis, it .

is crucial for the testlng of a diagnos;s algorithm.



S.Q—Conclusicn _ 3

The abilxty ,of a machine to interpret automatically“"
electrccardiog:ams in a :eliable human-like fashion will cpan'
up new avenues of heart research and free heart specialists to

‘.sconduct that research. -This 15 already evident in-the area of

- routine computer comparison of new ECG's wzth oid ones from the

same patient 151[42][513. It ia hoped that the insights into

the .ECG diagnosis p:ccess repcrted in. this th351s -will hqlp;;:j_- 

advance automatic 1nterp:etaticn a step clcser tc that goal.
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Appondix A. SIGNAL PRQC!SSING ASIECTS or TBE S!STEH .

_ In any system which deals with signals generated by real
physical sources, there are two low level engineering aspects
'which must be cOnsxdered. Ihe ££rst aspdct is the cahculation'r
of the theoretical effeet ‘the syatem will have aoh‘ an  ideal
noise free gignal. - fhis theory defiues the ultimate limit of.-‘
éystém perform&nce. Second, ‘the _effect noise in the ;nput‘,
' siqnal has on the pequwmance 0f . the . syatdﬁ musf ilko-be-‘
calculated. This calculatman showa how well the system will -
deal with the real world -

This appendix d;scusaes the signal processing aspects of -

the automatic 1nterpretation $ystem described in chapter ¢

under the-f0110Wing;heaaings:

Initial sampling of the ECG trace.

t

- Calculating the derivative of the trace,
= Measuring. the noise in the trace to aid
'~ identification of the signi£1cant extrema in the
trace anﬂ derivative. ,

- Smoothing_thg trace to eliminate some noise.

‘Aol Sampling the BCGxtrace ‘ 7

" The thebretical limits of ‘the ECG 1nte:pretat1on system o
; arefvety much dependent on the resolutxon of . the-,dlglt121ng
method used to sample thg ECGftraée for input to-thé ¢omputén.:‘
For example, sgveral‘éf‘the algorithms in the labelling stage
search for,-featurés in the BCG.tface with a-ﬁidth'of 25 msec.

 For these.searchés tof £ind meaningful results, the initial
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- trace should  be sampled éf, an,fatq bigh’enqugh-go3generate-'
soveral-aata:peint# uiﬁhih tﬁe 25 m$é¢-timelwinddﬁ; fhe'nﬁmber
| of points actually nectssary depends on the specifig degree  of
accuxacy ngeded in the measurement. The sample ECGitracas in
this thusis could-be properly processed with a sampling-:ite as
low as 100 8z, ot 2.5 samples 1a"zs msec;\;but"a ’étandard
squastnd in Sherwood [58] claims a sumpllnq rate aof $0Q¢ Hz is
necessary to diagnasa some abnatmalities properly.  This
standard also suggests the amplitude resabutian nee&ed by the
digitize: as well as discuss;ng the types of analoq filtazs
neeessazy to p:aparly eliminate elgctrical nais- abave the
" Nyquist frequency. Puture ECG. work should fallaw _thia 

standard.

'3.2 Calculating t:ho Decintive - | |
As - dxscuased at the beginning of thix ap?cnd1x. the:
.'derivative c;lculat;op used in,this system must Dboth properly
takE'-tha'derivativeand perform well in thé presﬁnce éf noise.
If the.dézivati&n:ﬁckks.well for all signals, the problem of
noise is ,unimpoitaht; the_ncise uill‘simply-be-differentiatéd.

as wellr.

. The formula used to také‘ the derivative is given in

chaptet'4-as=

! zfﬂ-'z — 8fﬂ-.-r-i + Bf'n_-!- 1= fn+2
n 1248 L :

- £ is the input trace

~ £ is the derivative
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_ Censidnrzng this as - a digital filter with input V and -
output W, the amplitude tzansfer"charactg:istic. ‘can  be

calculated for the general sinusoid:

'—-T is the'sampling,int&rval
 ew s the sinusoid fruquen¢y

=~ A is the amplituda

Since no frqqutnciagi will éccqr in the input with
'wjgreattf than 1/2T (the Nyguist frequency), the quantity w?
,will always ‘be less than one, and the calculated transfer

.charactaristic'can be writtaa app:oximately as:

'”h';” . AlafT*'-'
VT (- 55

The iﬁcal ddtivatiﬁe of Vv wculd be a _ transfer'
=ch§tﬁcteristie of just.;w, but over the frequency range cal/zr
the eqguaticn given differs from (w by less than 0.2%.
 Therefore, .tﬁis fotmulaﬂis'quité good and need not be iﬁprbved
mpan.unlasésmeasurements need be made in ﬁhe diagnosis stage

with‘accuracy.better'th@h:e.zsy

A.3 maasunng the ECG Trace Noma

Noise in the ECG trace comes from several sources, such as
myscles in the bedy other_than the heart and looss electrodes.
and it results in a low amplifnde raﬁdom siqnél superimposed on

the trace. This noise shows up in the same bandwidth with the
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BCG- sighals as extra peaks and valleys in the trace and thus

affects the algorithm which finds the extrema in the trace.

_ 'One mathod of minimizing--the' axtra minima and maxima
generatad in this way is to have the algoritnm ignote those
extrema separated 'framr theix- neighbou:s by - less than  the
aﬁplitude of the noise in the. trace.. wo_accouplxshathiA'
selectivityf hcquet}ithe algcrithm'ne§da augaqafmegsu:ement of
“the noise amplitudé;‘: Qhe'agcgracy' 6£"the neasurement ;;“
.czucial to. the‘éxpfe#siveaess of the token algarithms: if Ehé
measgrnmentgis tao large, taktns'uill be-missed; and if it- isg

teo small;‘ many tokens that de not tepresent heart activitzes ‘

- will be generated

While the impbrﬁaﬂce of the noise mqasu:emept'_can-ﬁe'
'Simply stated, it is very difficulﬁ'ta'make'aénuraﬁtly;'In'the‘,
'algorithm used in this systﬁm the naisa is estimated as ﬁavinq'
an amplitude equal to the most common change found in the trace

over all 10 msec segments;' Tnat is, a 10 msec window is moved

over the ECG trace and the largest change in £ ulthln the

window is calculated at—each point, Since the dig;tlzar has a
ﬁinite rgsolution, the ,measu:ed changes ‘wlll ‘be of finite
number and ,the' mast common .change .is 'taken ,t6 te g, the

'épproximate noise amplitude.

This is a very simple algorithm which c¢an be best
justifiéar_th:ough_ a qualitatiVE- argument. = For low noise
amplitude, the‘sloﬁly‘varying ECG trace will: givé. changes of

only a few digitkz&r ‘units and a low g, but a high noise
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'aaplitude will suptriﬁpose many high amplitude short duratian

changes on the siaw trace and g:ve a larger g.

A similaz;vdluq; dg,-is.caléulated'gar thg d&rivﬁtiv& as:
| .3 JL% | | |
WA
',Eﬁamining;the e§uat1on giveu for the derivative in tha
last 'seetionrwill shaw‘dg‘ta*be sliqhtly mere-than‘ﬁhe max imun
change in the . darivativu if one point in the trace  over the -

interval n~2 ta n+2 is. incarrect by an ameunt g.

| This simple method tcr measu:ing g unrks adequately for
| the sample ECG traces used foc testing the algorithms in this -
thesis. anever,- because the a¢curacy of the meaauzement is

| 'crucial tez the sufficient exp:essiveness of the entire systes,
£utuxe werk should include a more saphistieateé_rmnthed for

rmeasu:ing it, :U.' possible.

A4 smosthing te Eli.minate mise

, Anather way to min;mize the effccts of naise of the
‘ alge:ithm far findzng extrema in” the trace is to eliminate as,
much of the noise as possible from the trace. . Eliminat;ng the
naise is diﬁfxcult.rsxnce the nolsg resides in ‘the same
fiequency‘ band Lgs' thé~-ECG‘ signals, but, since all the high
fkgquenéy_éontent of thé ‘tzécg 15' céncéntrated in the . QRS-
camplekes, some:‘noise can’be-:educed,Ey-séleCtively filtering

the trace'bgtween QRS ‘s.

The QRS complexés.cantain f:equencY‘compbﬁentS; from zero



to several f30337 of ‘Bz, but the P and T-waves are mainly

constructed of{cbmponents,wigh ﬂ:eﬁﬁaﬁcy less than 10 Bz~ [29].

Thersfé:e, digitall? fiitering the P‘aud Q-WGVQS'dGWn to“lﬂ-ﬁz'_f'

will eliminata the highe: trequency noise superimpmsed upen'J
‘them. ta acconplish this task a two step p:ocess is used.

. pirst, tht entire ECG tzace is filtered using a tlat,
moving average £iltqr of the form:

a:t#a

fm(t)= 5 [ Jal@)z

smt -y

- t ia the time . . ,
- mﬁ is the width of the ‘smoothing wlndow

_Pdr.the,genetal‘31nu3aid}"'
La(t) = dutet
- This filter has'amplitﬁde;t:&nsf@f,characte:tatic: -

SLout(2) - sﬁm:a.
f’éﬁ(f) .

This cha:acte:istic has no. phase shift and fo:cxa.ﬂso sec,

- as used in the p:ogvams in this thesis, has g fraquency cut .

off, i.e. 3db down point, of apprexlmately 9 Hz.

Applyin97 this"filter- to theiwholertrace elimiaates not
only the noise in the P énd. T-waves, but most of the QRS
 complexes as well. Therefore, to return the QRS‘c@mplexés,.thé
.sécond‘.étep of the algorithm;cheéké each filtered point to sée

~ whether the origihal trace'anYwhe:e'uithin + or - & differs



from the filtered curve by more than 2g (from section A.3y. If

30, the filtered point is replaced with the original point. -

This_comparison“aha replactmcnh‘ensnreé that changes in the ECG

thGt-la:gcf thnn neise-a:é pﬁt-ba¢krinﬁo the filedrdd trace,
'rnm:niag eiu QRS camplexas, and the + or <« & windaw minimizuf"'
the - diaguntinuitigs that | can - occur in a straight

peint~for=-point zcampa-r i‘san .

The width of the mmparimn uindaw, howamr, can interact
wmth an -inaccuracy in measuring g to elim1nate from the_
filtered output 'sull‘ waves very neag QRS compleaxes. ?m—.'-

examé_1§,. #cnsi&er figure A-l.

- filtered trace
original trace

© resulting trace

filtered . original filtered

!igure A-1l: The elimination of some small waves
by the smothing algorithm.

_ In the figure, the filtered_trace‘has,'smoothedr away thé;
small wave cdmplet‘ely,. as“woulé be expected. Hﬁwever, in the
 comparison of.tﬁe original.td filtered traces, the Vtw‘o -traces
do not differ' over the small wave by gr-eater‘. than_wzg;
'!‘he_refc:rie, it cannot be,put-'back]i'.'n‘. This e‘r:mr- can also be

Seen in fignré H-3.
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‘Ihis ' Problem be smoothing out small-wavgs7hear-£he‘ons
complexes can ba-ove#came in tﬁp 'ways,_-l Firsﬁ;f é dif ferent
gsmoothing -techniqﬁe could be cohbined with.a mofe accu:ate:
measuremehé of g ﬁo retain the smaller  waves‘ séCond} by
acknouledging that the loss ccecurs and knowing it uill happen \

- only near QRS-complexes,‘it‘can be eompensgted for late: in the
diagqosis stage'thrbugh-feedback.qﬁeries'that cbeck"rfor‘.smﬁll
waves near the QRSfa.‘ In prﬁctice..a'comprdhise betwaen:t5o-
ability to petain all waves and the amount of extra: work

necessary in the diagnosis stage will have to be reached.

E.5 Summary ‘ o ,
In]' summary, the vatioﬁs' signal processing - aspgbts |
discussed with respect to the algorithms used in this thesis
. suggest three points to .consider in future work: |
- 1. A standard for ECG trace data input like that given ,
in [58] should be adhered ta. .
2. The det;vatlve calculation used should be adequate-
unless diagnosis measuyrements more accurate than

0.2% are needed.

3. The noise 'measd:ement and smoothlng alqofithms
. should be made more robust. :
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Appendix B. EXAMPLES OF THE pnocnsszuc OF r:vx BCG wnaczs

To aid in the unde:standing of the material contained in -
the previous chaptets of th;s thesis, and to Supply examplesxof
the output from the different algorithmg described in detail in'
Appendix C, five-eomplétely ptaéesséd Sampld'rncc traces are
included in this appendix. |

Wit:h- each sampléf ti:ac:é are shown the'p-a-ttial wa§e1 grcu-p
tokens and whole wave group tokens that it breaks into, along'_
with the QRS- cmplexes and P and 'r-waves fmmd by the
iabe_l.ling 'allg;o;rithm and s:.ngle diagnosis feedback | qu-eny
: described in chapter 4. | |
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" ‘Sample ECG trace 1

AT

Ie‘@u@ tokens

QRS detection

St

Final output

-Figure B-1: The first sample trace. Sampling
rate is l100Hz , and the noise value is 6
digitizer units. :
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 Semple ECG trace 2

Partial wave tokens

QRS detection

1 Final output

?igure B-2: The second sample trace. Sampling
rate is 100Hz, and the noise value is 15 :
dlgltlzer units. ‘ ‘ ,
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Sample ECG trace 3

1 ' Hu%iallumw’umens"

- Pigure B~3: The third sample trace. _Sampling
rate is 250Hz, and the noise value is 10 .
digitizer units.
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Sﬁwﬂeﬁﬂﬂitrace-4 :

Partial wave tokens

AT IO A SN N I TN S r

, hhbléum&w uﬂ«wm’- 

3

' GRS detection

Final output .

Pigure B-4: The fourth sample trace. Sampling
rate is 250Hz, and the noise value is 2
dlgitlzer units.
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‘Squﬂe‘ﬂﬁitr&x-s

-'Pigure B-S:‘The fifth sample trace;l Sampling
. rate is 250Hz, and the noise value is 1
‘digitizer unit. - |
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Appendix C. ALGORXTHMS FOR THE ECG INTERPRETATION SYSTEM

- The a190t1thns for the teduction and labelling stages of
the automatic ECG interpretation system outlined in chapter 4
are ineluﬂed in-more-detail in this appendix. The presentation
format has been kept deliberately infoxaal. as many of the
details of general p:acedu:es, such as searches and qata.
stuctures, are 'uninpoftant-'and can-‘bé\ ﬁmplemented in many
different ways. These algorithms have been 1mplementéd in
Fortran-?i ~on ‘the University of saskatchewan COIIege of
Engineering VAX 11-780 and if more details are desired. the
p:ogran aou:ces may be obtained through the eddress on page 11A 
of this thesis. | | |

This appendfx is organized in thrée sectians: 'first,
-algorithms for the main prograa and aon-spccific subroutines;
second, the reduction algorithma; and third, the labelling
algorithms. ,All_vaxiables quoted in the algorithms are those
in the Fortran“s§utces. Examples of the reSults‘of each stage

of processing'ugihg_these,algorithms are given‘in7appendix'3.
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c.1 ngorim of the llain acs Interpreutien Progru

'rh:.s section contains the algonthm of the main program
used in the ECG ‘i,nte’rpretation syste-m, | along._ with:‘- several
ro.ixt;ines 'uaed- to take care of details not discussed in the main

text of the thesis.
The routines 1nchﬂed ares

- "he main program | |
- ECGSREAD: to read the trace into the pregj:a_m

- BCGSNOISE: to n&asu:e tﬁe noise. é-mplitude-in- th-e-
trace . .

- ECGSGROSS DRI?T. to remove severe a:tifacta from the
~ trace A S

- ECG$BASELINE BRIM’* to rerove baseline drift from the
trace
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‘The‘algofithm for the main program of the

e oy " -rﬁ&‘-“ﬁﬁwﬂlﬂ““-““””-ﬂ“—qw-ﬂ---

AUTOMRTIC ELECTROCARDIOGRAM INTERPRETATION SYSTEM

Purpose- ‘rhis. is the main.psog:am used . tn procﬁss an
EGGefraee and generate the iaitial clxnieal
labels.

‘Methodz Lrhe program works by calling sevezal routines
. %o actually do the wark

Algor ithm:

i)VCall ECGSREAD to read the ECG trace off _

~ the disk (already diqitxzed) and save it -
in array “in’.. Set "h° to be the tims o
between samples of “in’. .

ii),Call BQG$HQISB to'meaaura'the-nOise in‘, .

- in in m¥. Save the noise amplibude in
" ‘gq”. Set -the derivatxve noige amplitude

to J75% g ‘/ h’. & 10 msec windaw is. used.

- 11d) Call ECGSGROSS DRIRT to remove ‘the worst
bageline drift from ‘in‘. 500 masac is
uaad as- the smoothing width,

iv) Call ECGSSMQOTB DIFP to smooth in to
~remove some of the noise with the result
- saved in ‘£°. fThe derivative “df” is also
calculated. 50 msec is used as the
smoothing uindew.

v} Call ECGSFIND _QRS to locate the '
approximate positions of the QRa s in the
- trface and save them in ‘rlist’. These are
used later in RCGSGROW._QRS and also give
the ‘space’ between the QRS s to use as the
initial width in searching for lacal
extrema in the t:ace. , :

vi) Call ECGSPOINTS to find the max; min and
"\ - zexo~crossings in the derivative ‘ag’.
These are saved in ‘list’ and define the
start and end positions of the partial
.wave shape tokens. The intjial window
width used is one third the average time
between QRS complexes.

vii) Call ECGSTORENIZE to divide the ttace-into
partial wave shape tokens, saved in
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'tokens'.. The endpoints come from ‘list’ .

viiﬁ) call ECGS$GROUP to find only the
unambiguous whole wave group tokens within
“tokens’ and save them in “groups”’.

ix) Call ECGSGROW QRS to calculate the initial
extent for - eaEh GRS in the trace and save
them in - qrs .

x) Call ECGSQRS _CLASSIFY to group the QRS s
- into similar “clasaes and correct those
QRS ‘s which had incorrect exteats. The
- correct QRS extents are saved in ‘grg” and
~ the class of each QRS is saved in “gstat’.

© xi) Call sce&ass:.ms nnw'r to eliminate all
: baseline drift ir"the trace ‘f°.

xiﬁ) Call ECGSPIND_ SBBNAVES to find the
‘unambiguous P and T waves represented by o
. whole wave group tokens and save them in
wave o _ ,

Extension: Once gtep xii is coapletg, the ar:ays
- ‘wave’, ‘qrs’, and "gstat’ hold all the
“information which is necessary for figuring
out initial pessible diagnoses. The arrays
*£°, "df°, ‘tokens’, ‘groups’ contain all
the 1nformation required by feedback
- queries from the diagnosis stage.
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Sub:.' outine ECG$READ

a {fname, s:ate,calib, trace.np,naxt, ierr)
Variables: |
'tnamt = the, file name of the ECG trace to read
srate = the sampling rate in Hz (returned) -
~ ¢éalib = the calibration in mV/pirxel (returned) .
: this is a constant that can be multiplied
with each sampled value to convert it to mV
trace = the trace in mV (returned)
np = the number of points read into trace (returned) .
maxt = the maximum size of trace
ierr = 0 for okay {zetu:ned) .
Purpose : The purpose of this routine is to get the ECG
trace off the disk add ready for processing.
This routine is all that need be changed if the
format of the ECG t:ace data on diak is
. ahanged., - . _
' Method: The data is Just read off the disk and .

canverted o mv. .



Subroutine ECGSNOISE (f,np, calib,g, width,h, iern)

variables:

" £ - = the ecg trace (in mV)

'np - = the length of f '

calib = the step size of £ (in mV/pPixel)

- = the approximate noise (in mV) (returned)
width = the time windcw for noise check (in mseq)

h = the between points in £ (in sed)

iexrr = 0 for okay, 1 for noise > 60 steps (returned)

Purpose: The purpose of this routine is to estimate

Method:

"the amplitude of the electrical nuise in the

ECG trace. The value obtained, ‘g, is
crucial to the correct uorking of routine
ECGSPOIHTS. : _ _

70 estimate the noise, a histogram is forned
measyring the numher of times the change in

" the trace over ‘width’ ig 1-60 steps. The

most common change is taken as the amplitude .
of the ncise. :

The histegram;has 21 slots. SIots 1-10 are
one step wide for changes of 1-10, 11-12 are
5 steps wide. for chages of 11-60 (ie. 11 is

for 1l-15, 12 for 16-20, etc.) and slot 21 is
- for step changes greater than 60.

_ Algor ithm:

1) For each point 'k’ in "£° find the maximum

change in ‘f° over the interval ‘width’

. centered on ‘£(k) . The change in steps
1s then the change in ‘£° divided by

‘calib’. If this change in steps is less

than 10, increment the histogram value
which equals it. If this change is
gteater than 10 but less than 60, :
increment the histogram value equal to the
change: divided by 5 + 9. If the change is

- greater then 60, increment the vabue for
60 or greater,

ii) Pind the largest histogram vaLué;'it'is

the most common step change,

| iid) Examine the histogram values for steps

larger than the most common one and look’
for the first one .lt. a percentage,
‘percnt’ of the most common; this is the
noise value.
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iv) Gani'e,r't the ‘noi.ru step si;zé back to mvV and
return it. N .
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_Subroutine ECGSGROSS_DRIET (in,np, wk, h, width)
Variables: | |

in = the input trace (input and. returned) oy
np. = the length of in,wk N e

wk = a work array of length np '

‘h = the time between dat points (in sea)

width = the smaothmg width (in msec) '

Purpose: The purpose of this routine is to remove
gross disturbances from the ECG trace. In
. particular, 9ross baseline drift. (This
is also the place to add a'pacem;ker spike
detector)

Method: To remove’ the baseline drift. the ttace is-
. first smoothed using a very wide, flat moving
average filter to remove all ECG waves. This
smoothed trace is then subtracted from the
}input removing most of the basaline drift.

,Algoxithm:

1) Calculate the smoothed trace; ‘wk’, by
' assigning each point, "k, a value equal
to the average of all points of “in’
within “width’ centered on poxnt k7.

ii) R?move the dr1£t by subtracting wk from
’ i . ‘ ) .
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Subroutine ECG$BASELINE_DRIET (£,np, Wk, qrs,ng).
variables: | |

f = the ECG trace (1n mu) (input and returned} -
np = the length of £

wk = a work array of 1ength np

qrs = the QRS complex onset’s and offset 8

' qrs (2,n) = the onset {in£)

ng .= the nuamber of QRS 8 (ie. length of qr&)

rPurpose- The purpose of th;s goutine is to cnrzect the

ECG trace for baseline drift once the QRS -
complexes have been found., This allows for
the ‘correct comparison of sub wave aupliEudes
in rOutine ECG$PIN3  SUBWAVES .

Method: This routine works by'calculating a linear

interpolation between the onset of successive .

QRS complexes and subtracting it from the ECG
trace.

:_ Algorzthm. _

i) Bor each pair of Qns complexes , “qre(2,n) °
and ‘grs (2,n+1)’ calculate the slope and
intercept of the line joining their onsat
points in ‘£° (“f£(gze Z.n)) and

£@a(2.n+1)").

ii)fSubtract the line defined by tha slape and.
“intercept from -f between the QRS .
complexes . '

iii) Go .to i to do the next pair of QRS :
: complexes.r
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C+2 Reduction Algorithms -
This section presents the reductxon algo:ithms used in the
\ ECG interpretation system. For a.mo;e general discussion -see

chapter 4.
The':outines given are:

- eccssnoawn DIFF. to smooth some noise and calculate
the detivative '

- ECGSPOINTS: to £ind the minima, maxima and
zera~crossings in the derivative which define the end
points of the partial wave shape tokens

- Eccsulﬂ Maxa to find the extrema 1n a traca

- Bcssmoxzuxzz. to £ind the partial wave shape tokens
in the trace

- ECG$GROUP: to find,the whole wave group takens in the
trace
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Subrautine ECG$SMOQTH DIFP -

2 (trace, f df.wk, np, b, dy.noise, width)

Variables:

trage = the trace to be smoothed (in aw)

- £ = the smoothed output trace (in mv¥) (zeturned).
df = the derivative of £- (in nyv/sec) (returnad)

wk = a work array

np = the number of data points in trace £,4f,wk

b ‘= the time between data points (in sec)
dy = the zero threshold for the derivative
{in mV/sec)

noise = the smoothing threshold for the trace (in my)

width = the moving average filter width (in mseq)

Puxpose This program has two purposes. The first is
to smooth the ECG trace to eliminate most of
the influence of electrical noise and the
second is to calculate the derivative of the
trace, _

Method: The txace is first smoothed be paSslng it~
through a flat, moving average filter. Then,
the output trace is taken point by point as
either the smoothed trace if the difference
‘between the input and the smoothed trace is
less than a threshold, ‘noise’, or as the

“original trace if the difference is greater.
The derivative is then calculated point by
point, using either the smoothed trace or the
original trace, depending on which trace the
output point was chosen from.

Algorithm:

- i)'éélculate the smoothed trace, ‘wk®, by

assigning each point, ‘k°, a value equal
- to the average. of all points of “trace’
within “width’ centered on point “k’.

11}'For each poxnt ' 'k’, compare ‘wk(k)  and
‘“trace’ over width - If, at any p01nt in
the interval, the difference between ‘wk’
and “trace’ is greater than ‘noise’ then:
f k) .= trace (k) :
df(k) is found u51ng “trace’
else:
fk) = wkik)
~df (k) is found using ‘wk’

1ii) Cahculate the derivative of . “trace’ using
the formula below where ‘g’ 'is either ‘wk’
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or trace as determined f.or each point
above:
d£ k) = (g (g.-z}-ag tk=1) +ag (k+l)—q(k+2))
- '/ I2’h’°

 To further reduce the influence of noise,

set “df (k)" to (zero for every point k
where the ahsohute value of éf(h)
less than ‘ay”.



Subroutine mccspozuts
a (f,df,ap, work,workz, 115t.n1 maxl, gkég h, wzdthy

Var1ab1es.
£ = the ECG curve (in mW)
at. = the derivative of £ {in mV/sea)
np =« the number of points in f»df,work,work2
work = a2 work array
work2 = another work array ' '
list = the list of significant points {retur ned)
. " 1list(l,n) = the position of the point in £
1ist(2.n) = ] for max in derivative
- 2 for min in derivative
4 for zeracrossing in derivative
nl = the number of points found (returned)
maxl =« the maximum gize of list . ,
g » the ncigse amplitude in £ {n mV)
dg = the noise amplitude in d4f {in mVVSaa)
h = the time between gsample points in £ (in sec)
width = the initieal min max window width (in msec)

Purpose: This routine finds'the list‘of points in the

trace which define the endpoints of the-
_partial wave shape tokens used 1n

ECGSTOKENIZE. |
Method: FPirst the mins and mazs ate found in ‘£ (ie.
" these are the zero cr0831nqs) and then the
mins. and maxs are found in df . .
Algorithm

i) Call ECGSMIN MAX to fxnd the mins and maxs
in f with the results 1n uork

iﬂ)rﬁorce ‘df° to have only these zero

crossings by setting all points in “df’
between a 1 and 2 which are +ve to zero
and all points between a 2 and 1 which
are -ve to zero. , , ,

xii) Call ECG$MIN MAX to find the mins and maxs

~in ‘df*® with the tesults in "work2’.

iv) ‘add all 1°s and 2 s ln- ‘work’ which do not
. fall on 1°s or 2°s in “work2’ to ‘work2’
as 4 s.

W) Search through 'workz' and set any 1°s
where the derivative is -ve that follow a
4 to zero and the same with +ve 2°s that
follow a 4. (This ensures only physically



poSsible sets of points are generated«1

vi) Porm . list by looking through . ‘work2”’ and
. for each 1,2,4 found, setting listtl.k)

to its posation and listtz k) ® to the
number..
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 Subroutine zcasnxu;nax (y .nP, minmax, dyrdx, uidth}‘,”

variables:

Yy =
- hp
- minmax

\.lﬁ

dy -
az’ B
width =

the input curve (in mVv)
the length of y - :
‘the positions of the minimums and
maximums (retuzned)
minmax(u) = 1 for max, 2 for min, 0 fot
: ‘neither
the maximum spread for two equal points cin mvl)
the minimum closeness of two points (in pixels)
the initisl width of the min max window
(in pixela)

- This routine finds the local maxima and

minima in ‘the input trace. :

A window ‘of initial width ‘width’ is moved
over "y’ and at each po;nt. the maximum and
ainimum points of y within window are
flagged in "minmax” (if there are any). Then
the window is made 10% smaller and moved over
‘y’ again. Once all mins and maxs are found
this way, those which are icloser togethar
than ‘dx” points are eliminated. Note that
several constraints are used to insure that .

. only physically real sets of extremna are

produced..

Algor:thm-r

i) Move the window over the entire input

trace and at the center point ‘'k’:

1) See if this point is more than dg
smaller than avery point in the window

7 (a min) ‘minmax (ki) =2

2) See if this point is more than ‘dy’
larger than every point in the windcw
(a max) ‘minmax (k) ‘=1

| ii) Make‘the windowVIO% smaller.- If it is

i

larger than "dx” then go to i.

it) Search through minmax for two 1°s or 2°s
in a row. If found, find the min or max
between them. When this step is complete
gll émportant ming and maxs have been
ound.

iv) Look for mins and maxs that fall in an
area of ‘y° where the amplitude does not
‘'vary more than ‘dy’. Find the centre of
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this plateau. . Then- .

1) 1f the number of mins and maxs in the
-plateau is odd remove them all from
“minmax’ and replace them with a single .
minmax (the same as the out31de ones)
in the centre.

3) If the number of mins and maxs is odd,
leave the one farthest from the centre -
and replace the rest with a single

' minmax at the centre.

search throngh ‘minmax’ to find strings of

: minmax s that are .cloger to each other

than ‘dx’ with amplitudes differing by
less than 10*dy €umpirical). Then:

1) If the end minmax’s are the same,

replace then with a single minmax at
the most extreme point between. '

- 2) 1f the end minmax's are diﬁferent,

remove them all.

Search through minm&x‘.ﬁor-tworl'a or 2°s
in a row. Replace then with a single -

mimmax at the most extreme point between.



Subroutine EccsﬂbeNIZE

Variableéz

df =
- np =
list:“-

(df,np, llst.nl, tokens,nt,maxt. h)

the derivative of the ECG trace (in mV/sec)
the number of points in 4f
‘the min _max list from routine ECG$POINTS

 list(l &) = position of the min _max in d4df
_list(Z.n) = a code for the min max = -

nl = =
tokens

At o=
maxt -

Purpose:

,Méthodzr'

tokens {1 ,n)

1 = a maximum in 4T
"2 = a minimum in 4£
S 4 = a zero crcssing in df

the length of the min max list
list of ECC partial wave tokens (returned)
‘= a code for the token {ie. 1-6)
tokens {2,1) = gtart position of the token in
tokens 3.n) = end position of the token

[

- tokens { n) * width of token in =av -

the length of tokens @eturned)
the maximun length of tokens ‘
the txme between sample points in 4f (in sed)

The purpose af this routine is to divide the
input ECG trace up inte partial wave sghape.

This toutine wotks by axaminiﬁgrthe”atart and

end positions of each ,token which are defined

by successive min_: max’s (le. “list(l )’ and
‘list (1,n+1) " ), and applying a set of rules

: hased on the endpoints to decide on the type
- of token in between. .

Once this division into ‘tokens is complete,
the routine applies two rules to remove
tokens generated by noise. First, .some

- single sample point wide tokens are removed

as there is a high probability they are
caused. by nolse (for any reasonably high .
sample rate, ie. >100Hz). Second, duplicate.

"tokens are campressed into a s;ngle oned(le.

two 7°s in a row become one 7, etc.).

Algor ithm:

i) For each min _max, “listl k) ’, examine the
min max before llsttl.K-l)’.(and perhaps
the one after “list {l,k+l) ") to see which
type of token this min_max ends. Use the

‘following rules and put the result in
tokens :

-



1)

2)

1)

4)

8)

6)

n

8

9)

11)

12)

1

- 142 -

If this mgn max is a max and the one
before is a min and the derivative at .
this point is .~ve then this min Jax
ends a type 4 tokeﬂ. S

Ifrthis,is a max and the one before is
a min and the derivative at the one
before is ~ve then this is a 6, -

1f thig is a max and the one befcre.is'
a min and the derivative at the one R
before 1s +ve then this is a l.

If this is a max and the one before is
a zero c:oss;ng then this is a 1.

If this {s a min and the one before is
a max and the derivative at th15 cne is
+ve then thzs is a 2,

If this is a min and the one before xs-

‘a max and the derivative at the one

before is +ve then this is a 3.

If this is a. min and the one betore is

-a max and the derivative at the one.

before ig -ve then this is a 5.

If this is a min and the one before is
a zero c:ossing then this 18 a 8.

If thxs is a zero cr0531ng and the one

‘begore is a zero crossing then this is
a 7. - - ' ‘

10)

If this is a zero érossing and. the one
before is a max and the one after is a
min then this is a 3. :

1£ this is a zero cr0331ng and the one
befote is a max then this is a 2. :

1f this is a zero .crossing and the one
before is a min and the one after is a
max then this is a 6.

If this is a zero crossing. and the one

~before ia a min then this is a 4.

ii) After all tokens have been found. search
' ‘tokens’ for tokens with width "h’ If
any are found, .check to see if they fall
in one of the following sequences (where
- the token in the middle is the single
sample wide one) and replace the sequence
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‘.with‘the one shown: . -

‘) 6,2'1 =3 6'1
5) 5,4,5 => 5
6) 3.,4,5 => 3,5
7) 4,5,4 => 4
9 4,71 => 6
10) 2,7,5 => 3

iik) Search threugh tokens for the same token
appearing tuice in 2 row anpd merge thew if
faund.‘, ‘

iw) Fb:_each token , ¢a1cnlage 1ts width‘in msec.
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Subroutine ECGSGROUP

a (f,np, tokens,nt, groups ﬂgr axg.-g,m)  
Variables: |

£ . = the ECG trace {(in mV) _

np = the number of points in f

tokens = the input set of ECG tokens
(see ECG$TOKENIZB)

nt | ‘= the number of tokens '
groups = the set of output whole wave . group tokens
{returned)

- group (l,n) = the group code (ie. 3 .or 6)
group(2,n) = start position of group in f
group(3,n) = end position of group in £ :
group(4,n) = width of the group token »in mv)

ng = the number of groups found (returned)
maxg = the maximum size of groups

g = the noise amplitude in £ #in nmv) -

h = the time between'sample peints (in seq)

Purpose: This routine merges the partial wave shapa
tokenz into unambzgueus whole wave group
tokens. : , ,

Method: The tokens which déf;ne an unambiguaus wave
are found. .Then, these tokens are expanded
outward until they touch.

Algorithm.

1) Find the next set’ of tokens definlﬂg an .
unamb iguous whole- wave group, ie. one of

the following: - -

3o0or 6 or 2,7,5 or 4,7,1

ii) Apply these rules to see where this group
- begins, jie. meets the last one found-

- 1) If this group touches the previous one
- then 1t begins where they touch.

2) 1f th;s -group is separated from ‘the
previous one by 1 token and that token
is a 7, then this group starts at the
end of the token, else it starts at the
beginning.

1) If this group is separated from the
" previous one by 2 tckens then this
‘group starts between the tokens.

'4) If this group is separated from the
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prevzous one by 3 or more tokens then. .

a) Pind the midpoint in £ between the
. end of the last group and the start
of this one. g

.b) Find the token contain;ng this poinﬁ.

.¢) 1f the token is next to the last
group, this group begxns where the
. token ends.

d) If the token 13 néxt'to thzs group,
this group begins where the token
‘ begins.'

e} If the token is not next to thxs cr
- the last grouprthen. .
- = 1f the token is a 7, this group
- beging at the end of the token
closest to the midpoint.
~ if this group is downward. (e. 6)
"~ and the token is 5, this group
begins at the atart of the token,
else the end of the token., .
- if this group is upward fie. 1)
. and the token is 1, this group ,
begins at the start of the token,
elge at the end,.

iiL) This group group ends at the place the S
“next group begins (ie. go to ﬁ). :

ig) Calculate the width.of each group in msec.
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c.3 Labelling Algo:ithms : .

“This section presents the algorlthms used in the labelling

staqe of the automatic ECG interpretation system.

further discussion of the algorithms, see chapter 4.

The'rautines given in this.section ate:-

- ECG$FIND _QRS: to find the approximate positiens of

the QRS complexes in the trace

- ECGY¥GROW_QRS: to grow the \QRS complexes‘té their

proper extent

POI.' a

-,ECG$GROUP PROPERTIES: to find the relavant properties 

of whole wave gr oup token

- ECGSWAVE SHAPE- to calculate the shape _of a whole

' ‘wave group token i

~ ECGSQRS_ CLASSIFY: to classify and correct the QRS.

;complexes into types '

*'ECG$FIND SUB%AVES.. to fiad the unambiQuGMS‘ waves

betwean'the'oks’s

- — BECGRTOKEN_SUBWAVE: to f£ind overlapping waves withzn

the part;al wave’ shape token set
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| Subroutine ECG$FIND_ QRs (@x,Ix, list,ls, nf, peak,period)

Variables- |

dx = the derivative of the ECG trace

1x ~ = the.length of dx

list = the position ct the QRS complexes detected
'~ (returned)

1ls = the maximum length of list'. :

nf .- = the number of QRS complexes found (returned)

peak- = the threshold for QRS detection as a fraction
‘ . of the peak derivative amplitude found. '
period = the average period between QRS's tin pixels)

_Purposé. This routine détects the approximate. position -
' of the QRS complexes in the trace as reference
points for ECG$GROW _QRS . \

- Method: .The QRS cnmplexes are detected at po;nts
where the derivative crosses a threshold
defined by ‘peak’ times the maximum value of
the derivative amplitude.. ,

-Algerithm-

1) Search through the derivative for the
- largest absolute value of the derivative.
dxmax - ‘ _

ii) set the th:eahol& at 'dxmai‘*'peak‘;

iii) Search through the derivative from the :
beginning for a point where the absolute .- -
value of the derivative is greater than
the threshold. . Save this as a QRS in
‘list’ and resume the search at the point
where the derivative falls below the
‘threshold aga;n.

‘iw)‘CaLculate pericd ‘as the avarage number
- of sample points between QRS S. '
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e

~ subroutine zccscaow QRS | | -
a +,df,np, rlist an, groups.ng. grs, nq.maxq. 9,dg,h,ds)

VariableSz

£ = the ECG trace (in mu)

asg = the derivative of f (in mV/seg).

np  « the length of f and d4f : '

rlist = the approximate grs positions (in prxels)
from BCGSF IND_QRS

the number of grs .positions.

the whole wave group tokens from ECG$GROUP

groups {1 ,A) = the group (ie. I or 6)

groups(2,n) = the start position in £

qroups(Bam) = the end posztlon in £

ng = the number of groups .

the qrs complexes (returned)

nrl
groups

Jgrs =
grs{l,n) = onset of qrs in £ .
: grs (2,n) = offset of grs in £
ng . = the number of grs s (treturned) -
maxg = the maximum size of qrs -
g,dg,h = the ecq trace parameters (noise, sample intervaL)
ds = the division between poxnty and ‘shallow” =

_wavg shapes

Purpose : This routine "grows” the QRS ccmplexes found
- in ECGSPIND_QFS to their proper extent.

Methed: The whole wave group tcken that the grs
P position from ECGSFIND QRS falls in is
“jdentified and then the whole waves on each
side are .checked to see if they should be .
- added to it to form the QRS. -

'Algarithm.

i) For each qrs marker {ie. “rlist(knrl) ")
find the whole wave group ‘token that it
falls in. |

ii) call ECGSGROUP PROPERTIES to flnd the

-~ properties of The first grs group token
found above. ‘Left{l) ‘=l for a left stop
and ‘right (1) ‘=1 fot a right stop.

iii) If a left stop is found stog—the grs’ -
. growing on the left and set “grs ﬂ..nq} to
the position of the stop | leftia) ). Do :

the same on the right. -

_1u111f either the left or right side of the
' grs still needs to be added to {ie. no .
stopa) then call ECGSGROUP_PROPERTIES for
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the-whole'wSVQ gtOup token on that’side.“

. w) If the width of the group on the left is
' less than the group on the right and the
‘group on the left. should be added then-

1) If the left group has a right stop, end
addition to the left side at the stop.

2) If adding the group on the left would

- bring the total grs width to >220ms
- then add the group only to its peak.
3) If the left group is wider than 150ms
. then add it only to itg peak.

4) 1f the left group has width <50ms then
add the whole thing and con81der the
next one over.

8) If the left group has width >50ms and
<150ms check its shape to see if it is

- "peaked"” enough to add. JIe., if the
avarage slope of the left group is.
greater than ‘ds” times the average

. 8lope of. every wave added to this QRS
so far, add the whole groyp and
congider the next, else add the greup

- only to its - peak.- .

vi) If the right group width is less than the
left and the right gzide is .free to be
added to, check the right side with the
game rules as above but make the following
changes: .

1) 115me => 150ms
2). S50ms => 60ms '
3) right = left and left > right

viil) If-there is a Stlll a sxde to’ be added to
- go to iv. .

viii) If there are more qrs ‘s to do go to i.

ix) Once all .gqrs’s are extended check their
end p01nts to see if any overlap. I1f two -
QRS's overlap, move their end points to
the middle of the overlap so they only
‘Just tauch.
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' Subroutine ECGSGROUP PROPERTIES

a . §€,df7np, groups, kg, peak, tlﬂér'
b o o 1e£t,right,shape, g,dg,h, 1d1n)
Variables: _ , _
, f df,np = the acg trace, its derivative, and its
‘ length .
grpups = the list of ecg groups . - . :
kg = the group for which the propertles are to
o be found o
peak = the location of the group peak (returned) 4in £i)

time = the various important widths in the grOup
. (returned) (in msec)
time (1) = time to the left plateau or corher
time(2) = time between plateaus or cotrners
. time (3) = time to the right plateau or corner
- left = a left stop (returned) - -
S left(l) =1 a left corner '
o left ) = the poaition of the ccrner in £
right = a right stop (returned). . :
. right(l) = I a right corner
s : right (2) = the position of the stop if £
shape = the average slope over the group . (returned)
g,dg,h = the ecg trace parameters (noise, interval)
~ idix . = the type of group properties wanted '
(lnleft, 2=middle, 3=:ighu) : -

Purpose This routine looks For the peak, shape, and
. gstops of a group as requlred for ECG$GROW _QFS
and ECGSQRS CLASSIFY. . _

Method: First, the - peak of the group is found, and
S then the left side and right side are.
.searched for a stop which could be either a
,corner or a plateau.‘

Algorlthm.

) Search £ between ‘the ends eﬁ the group
to find the ‘peak” of the group. (ie. the
highest point for a type 3 group or the
lowest point for a type 6 group)

ii) Look for 2 left stop using a 2Sms window -
and the follcwxng rules: ,
1) If “idir’ is 1 or 2 start the window at
‘peak” and move it to the left, else
gtart at the left edge, “groupsgiZ,kd) *,
_ rand move right.
- 2) 1f “4f° over the whole window is < &g
' then a plateau stop has been found. (at
~the right edge of the window for ‘idir’



iil)

- 151 ~-

 ﬁ-‘1 or 2 ‘and - the left edge for 161: 3)
3) If the change in “df° from one endpoint

- of the window to the other is more than
30 degrees then a cornetr stop has been
found. (at the left edge of the window
_fc:\ idir* 1 or 2 and the right edge

. for “idir” 3) '

4) Move the window over one point .and go
~to 2. Stop at the left edge for ‘idir”
1 or 2 .and at ‘peak” for . id;: 3.

Look for a right stop using a 25ms wlndow
and the above rules, but for “idic " 1

. Search right. and for “idir’ 2 or 3 search
 left. (also 1eft->right and right?>1e£t)

Aw)

v)

Call ECGSWAVE SHAPE to find the ‘shape’ of
the group. : _

calculate the ‘time’ values in msec.
time {1) = time from left edge to left
-~ gtop.
time(Z) = left stop to right stop.
time(a) = right stop to right edge.
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‘Subroutine ECG$WAVE SHAPE (df,np, L/R, shape{}
‘Varlables' -

~ af = the derwative of. the ECG trace (m mV/sec)
np = the length of df - _

L,R. = the left and right boundaries cf the wave in df

shape = the shape (returned) _ :

' Purpt:se 'rhis reut:.ne calculates & value to represent
\ _the ‘peakedness’ of an ECG wave.

Méth.cd:-. "Bae shape is calculated smply as the '
: ,ave:age of ‘ag’ from. L to R... -
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‘Subroutine scc-sons cLassIey

(£,8%,rp, groups,ng,qrs,nq, qstat.
g.dg9,hk, ds, 1erﬁ)

variables:

£,4f -

np
groups
ng ) H
qrs -
ng
gstat

‘0 alAui "

grdgih =
ds =

 lerr -

‘Purpose:

the ecg traca ‘and derivative

“the length of £,df

the ecg trace group tokens from ECGSGRQUP
the number of groups

the qrs boundaries in f from. ECG$GROW QRS
the number of ¢rs complexes

the grs classifications (returned)
gstat(l,n) = first group in the qrs
gstat(2,n) = the initial clasg of the qrs
gstat (3 ,n) « the final class of the grs -
the parameters of the trace (nocise, interval)
the fraction of a shape' to consider the
same .

0 for okay

This-roﬁtine has two purposes. The first is

to classify the QRS complexes into classes of
similar shape, thus separating the normal

" beats from the abnormal ones, The second is

- ﬁﬁthcd:

to check the classifications and if two are
found to be very similar, assume the smallest
has had its extent anorrectly measured and
correct it.

The QRS complexes'are initially.classified by
comparing the width of each whole wave token
within the QRS to thoge in the other QR§’s.
If they are within +or- 2%5ms of each other, -
the ORS ‘s are assumed to be in the same .class. .

' Once all ORS’s are classified, the class

AlgOIIthm°

averages are compared inm the same way, and
those classes with widths that ¢overlap are
considered to be similar, and the smaller
class is corrected to have the same average
extent as the larger. - ,

i) For each QRS, calculate the 'shape’ of
each whcle wave tcken within it using
ECGSWAVE_SHAPE. Then, flag each whole
wave token within it as SLgnlflcant if it

- has a shape greater than "ds’ times the
maximum shape found in the QRS. Conmpare
this QRS to every QPS class already.

~defined. .
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1) 1£ thé QRS contains a different number
of whole wave tokens then it is not in
this class. : .

'12) 1f the significant waves in the QRS
do not line up with those in the class
.then it is not in this class.

3) If with this QRS added into the average.
the maximum deviation from the average
of any whole wave token within the QRS

~ is more than 25ms then the QRS is not in
this class. .

4) If the QRS passes the above tests it is
in the clazs it is being compared ta.

. 8) If the QRS is not in any already
deflaed class it defines a new class.

ii) For every QRS class calculate:
"~ the average width of each wave in the
. class .o | _
~ the maximum +ve and -ve deviation ¢of any
wave in the class from the average
~ the maximum and minimum “shape” for each
wave in the class .

iii) Once all ORY ‘s have been clagsified above
compare all classes to see if any were ,
formed due to an error in calculating the
QRS extent. Use the following rules: o

1) Pind the class uith the. most members
that hasn’t been checked and compare
all other unchecked classes to it.

2) when comparing two classes compare only
the significant waves (as others may be
in errorl)., "Slide"™ the .classes back
and forth trying every orientation

‘where at least one significant wave
matches in each ¢lass..

3) Compare the widths of all sigmificant
waves (except the outside two which may
be the measurement error). If the
maximum deviations from the average dc
not overlap for even one wave, these
classes are not similar.

4) Compare the shapes of the outside
significant waves. 1If the maximum
deviations do not overlap, these are
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,not s;milar classes.

If these ‘two classes are similar, mark
the the smaller one as due to measuement
error which should be. corrected to the
width of the larger one.

For every class that is marked for
correction set up the corrected extent

uging the following rules:

1) tinxng up this class with the cocrect

class, find the last whole wAves on the '
left and :ight which match.

;.2) Cal¢ulate the time to add or‘subtiect‘

: )

from the boundary of this last correct
‘token, to correct the extent of this

class to match that of the correct

class. L

For every'class that needs to be cerrected,
- ¢orrect each QFES in the class usxng the
data calculated in iv. :
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Subroutine ECG¢FINB SUBWAVES

a.
b

(f;df,np, tokens,nt, gtoups"ng'
grs,ng,gstat, wave,maxw,nw, ¢g,dg,h}

Variables:

£,4f =
np =
groups =
ng -
qrs,hq =

gstat =
wave =
maxw . =

nw | =
- g,49,h =

Purpose:

the ECG trace and Lts derxvative

the length of f£,4df

the whole wave group tokens from ECG$GROUP

the number of group tokens .

the positions and extents of the QRS complexes
- from ECGSQRS CLASSIFY ,

statistics about the QRSs from .

ECGSQRS CLASSIFY -

qstat;?,n) = the class of each QRS

the subwaves found between QRS s t:eturned)

wave {Z,n) = the label of the wave (1 .7, 2 P)
the maximum size of wave

the number of subwaves found

the parameters of'the trace {neise, interval)

Thig routine fxnds the unambiguous waves in
. the ECG trace which fall between the QRS
complexes. These waves are to be used as
initial ipoput for the diagnostic section.

" This routine at'preéent also simulates a

single diagnostic rule which finds-sowe
partial (ie. overlapping P waves). This part

- of the routine should be removed in future

Method:

- work.

o find thé.initial sub waves.‘thé,whdletwave '

group tokens are searched between the offset

of one QRS ( qrs(B.u) ‘Y and the onset of the

next (‘grs¢2.n)’) for a token with a peak
larger than that of the tokens on elthe:
side. These sub waves are returned in ‘wave’

The diagnosis rule 31mulat10n checks the suh-
waves already found, and if only one is found
between CRS ‘s, then a partial wave token of
the appropriate type is searched for between
the peak of that wave and the next QRS onset.

Algorithm:

i) For'each.QRS.'find‘the‘first whcle wave
group tcken after it, “isg”, and the last
whole wave group token before the next
. QRS, - 1eg .

-

- wave(l n) = the position of the wave peak in £



ii)

1ii)
iv)

- 157 -

For each group from 1sg ‘to “ieg’, find
the position of its “peak” and the peaks

of the groups to its right ‘peakR” and

left peakL « 1If the absolute value of
z&:eah) 1s larger than that of o .
‘£ (peakL) * and “f(peakR) ‘ then this wave

group token represents a sub—wave. Save

it in ‘wave”’. ‘ .

1f there are more QRS S go to i. _
Label the flrst subnwave found between

each pair of QR§’s a T wave and any others
found P waves. ,

‘Algotithm for the diagnosis rule: '

_ "

ii)

I1f no sub-waves were found between two
QRS ‘s then. call ECGSTOKEN_SUBWAVE to

search for a partial wave shape token that -

may be a Por 7 overlapplnq a QRS,

If only one sub wave was found between

'QRE s then call ECGSTOREN_ SUBWAVE to

search for a partial wave shape token

between the peak of the wave found and the.
" ohset of the next GRS that has the same
orientation as the syh-wave and may be a

P overlapping aTor QRS.



Subrout1ne ECG$TOREN SUBWHVE

a
b

€ ,af,np, tokens,nt, is ,Je,-peak,
| ~width, g,dg,h, idir)

Variables:

-f,df,nﬁ-: the ECG trace, derivatlve, and length

tokens
nt ,
ig, ie
peak
4,49 ,h
idir

Ulﬂl*l

the number of tokens

the start and end points in f to search
the peak point in the token found lreturned)
‘the parameters oOf the ECG trace ‘

the type of subwave te laok: for
'(180@,3-dawn,2aboth)

Purpose- This routine is a feedback query to the

partial wave shape tokens to pick out those
tokens which may represent overlappxng waves.

'Method: -The partial wave tokens, ‘tokens”’, are
searched from “is” to “ie” and the token
- found with the greatest amplitude in
, direct;on “idir’ is returned.
'Algorzthm. | | |

i) Find the partial wave shape token
containing 1& ' ist + and the token
con;ainingr ie’, - aet .

ii) If ‘idir" is 1 then search from “ist’ to

“fet’ for the token of type 2,5,3 with the
largest amplitude.

iii) If “idir’ is 2 then search from “ist”

“jet” for the token of type 1, 4 .6 with the‘
largest amplitude.

i) “idir° is 3 search for the largest.
amplitude type 1,2, 3 4,5,6 token.

v) Return the location of the peak of the .
token found. _

the partial wave shape tokens from ECGSTOKENIRE
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