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Abstract

The research reported here was designed to validate our hypothesis that non­

invasive imaging could delineate the evolution of a small ischemic infarct.

Furthermore, the alterations observed by MR were correlated to histological and

inflammatory markers. Finally, intervention with a calcium buffering agent was

hypothesized to prevent many of these changes.

The first part of this study investigated the development of a small focal

cortical lesion produced as a result of a cortical devascularization injury. Diffusion­

weighted images (DWI) were collected before injury and at 12, 24, 48 hours and 3, 5,

7 and 14 days after injury and apparent diffusion coefficient (ADC) maps were

calculated from the DW images to quantify lesion development. As a second

measure of injury, tissue morphology was analyzed using cresyl violet

histochemistry. Results indicated a significant reduction in ADC values within the

lesion cortex that first appeared at 12 hours after injury and then recovered to control

levels by 14 days. ADC changes were also observed in the contralateral cortex. This

type of injury also resulted in the progressive but relatively slow formation of a pan­

necrotic infarct. Both astrocyte and microglia activation occurred early and were

present in both hemispheres, however inflammatory cell infiltration was delayed

until 48 hours after the injury. Many of these inflammatory cells were tumor

necrosis factor a (TNF-a) and interferon y (IFN-y) immunoreactive. Overall, the

quantitative and histological measures of this lesion were consistent with those



observed in ischemic injury. Moreover, we found DWI to be a sensitive measure of

damage associated with a cortical devascularization injury.

The second part of this study used 2-aminophenol-N, N, O-triacetic acid

acetoxymethyl ester (APTRA-AM) to determine the effectiveness ofa calcium buffer

in providing neuroprotection after a cortical devascularization injury. Animals were

given two intravenous injections of either saline, DMSO, or APTRA-AM at 1 and 12

hours after injury. Animals were then imaged using a multiple b-value DWI

sequence prior to injury and then at 12, 24,48 hours, 3 and 7 days after injury. After

7 days the animals were sacrificed and correlative histological and

immunocytochemical studies were done. Our results indicate that saline injection

after injury resulted in a decrease in the ADC of the lesion cortex within the first 12

hours of injury, which then slowly returned to prescan levels. In contrast, the

injection of either DMSO or APTRA-AM after injury resulted in no significant

changes in the ADC within the lesion area. Histologically, both saline and DMSO

injected animals had pan-necrotic infarcts with concomitant glial activation and

inflammatory cell infiltration. APTRA-AM treated animals showed an 86%

reduction in lesion area and no evidence of inflammatory cell infiltration. The results

presented here clearly demonstrate the effectiveness of APTRA-AM in preventing

neuronal cell death and the accompanying inflammatory response when administered

post-injury, suggesting that this molecule may be an excellent candidate for future

clinical neuroprotection studies.
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1.0 Introduction

Magnetic resonance imaging (MRI) has been used to monitor patho­

physiological changes involved in the development of temporary and permanent focal

ischemic injury in various animal models (Calamante et aI., 1999); (Gill et aI., 1995); (Li

et aI., 2000); (Minematsu et aI., 1992); (Moseley et aI., 1990); (Pierpaoli et aI., 1993);

(van Bruggen et aI., 1994). Diffusion weighted imaging (DWI), detects injury prior to

the onset of vasogenic edema, when tissue death results from cytotoxic edema (Armitage

et aI., 1998); (Benveniste et aI., 1992); (Busza et aI., 1992); (Moseley et aI., 1990);

(Rumpel et aI., 1997); (van Gelderen et aI., 1994). Other imaging modalities, including

T2-weighted MRI (T2WI) and gadolinium-enhanced T I-weighted MRI (Gd-T1WI) have

also played a role in the identification of areas affected by an ischemic event. During

ischemia, the T2 relaxation time is prolonged in areas with an increase in water content

(Lin et aI., 1997) such as those affected by vasogenic edema (Ueda et aI., 1999). Using

Gd-T1WI, changes in blood-brain-barrier permeability and cerebral perfusion can also

be identified (Reith et aI., 1995); (Kastrup et aI., 1999). Typically, these imaging

modalities have been used in models of ischemia that involve large areas of the brain. In

the experiments reported here, I have used the cortical devascularization model of

hemorrhagic brain injury that causes a highly localized permanent focal ischemic event

(Herrera, Cuello, 1992); (Berezovskaya et aI., 1996); (Bartnik et aI., 2001). The results



clearly demonstrate the ability of DWI to identify pathological changes associated with

such a small injury.

The cortical devascularization model of ischemia is relatively unknown within

the ischemia field, and as such, numerous histological and immunocytochemical

experiments were performed to characterize the cellular events associated with infarct

formation. While this model was originally chosen because of the small size of the

resultant lesion, it also provided an opportunity to study ischemic pathology without the

added complication of a reperfusion event. The results obtained from these experiments

show that this type of injury results in delayed cell death, which is associated with

reactive gliosis and an inflammatory response featuring leukocyte migration and pro­

inflammatory cytokine secretion. The characterization of these events is extremely

important in understanding the significance of the changes observed by MR!.

Based on the results of the studies detailing the temporal and spatial evolution of

a cortical devascularization injury, we chose to examine the effectiveness of the cell­

permeant calcium buffer, 2-aminophenol-N, N, O-triacetic acid acetoxymethyl ester

(APTRA-AM), on ameliorating the ischemic cell death and its associated inflammatory

response when administered after the ischemic injury. Moreover, a multiple b-value

DWI study was used to ascertain if APTRA-AM treatment also inhibited the diffusion

changes typically associated with a cortical devascularization injury. The results of this

neuroprotection study show a significant reduction in infarct volume and diffusion

related changes, suggesting that this compound may be an excellent candidate for

clinical neuroprotection studies.



2.0 Literature Review

2.1 Cerebral Ischemia

Cerebral ischemia is a state of reduced cerebral blood flow resulting in both

immediate and delayed cell death (Sweeney et al., 1995) with the severity and

progression of cell death being directly proportional to the extent and duration of the

ischemic event (van Bruggen et aI., 1994); (Lipton, 1999).

The following sections briefly describe the differences between animal models of

global and focal ischemia followed by a review of neuronal cell death. Changes in glial

activation and the role of inflammation after an ischemic insult are also discussed.

2.1.1 Types of Ischemia

2.1.1.1 Global Ischemia

In rodent models of transient global ischemia, blood supply to the brain is

interrupted for variable periods of time (usually ranging between 3 and 30 minutes) by

occluding all four extracranial arteries under hypotensive conditions (reviewed in (Stoll

et aI., 1998); (Lipton, 1999)). Similarly, transient forebrain ischemia is produced by a

temporary ligation of the two common carotid arteries (reviewed in (Stoll et aI., 1998);

(Lipton, 1999)). While the two-vessel occlusion model does not produce a global



ischemic event, it produces damage in a large portion of the forebrain similar to the

global ischemia models (Lipton, 1999).

Global ischemia causes cell damage without pan-necrosis in the selectively

vulnerable regions of the hippocampus, basal ganglia, and neocortex depending on the

duration of the ischemic event (reviewed in (Stoll et aI., 1998);(Lipton, 1999)). The

hallmark feature of this injury is the delay between the insult and resultant cell death. As

such, these models are useful to study the pathological mechanisms associated with

delayed cell death in the absence of infarction.

2.1.1.2 Focal Ischemia

Typically models of focal ischemia involve either a proximal or distal occlusion

of the middle cerebral artery (MCA) (Hoehn et aI., 2001); (Hossman, 1998). In

proximal occlusions, the MCA is occluded close to its branch point off the internal

carotid artery whereas distal occlusions involve the smaller terminal branches off the

MCA. Proximal MCA occlusion leads to infarctions of the basal ganglia and neocortex

whereas a more distal occlusion will lead to a cortical infarction only (Stoll et aI., 1998);

(Hoehn et aI., 2001). Currently, the most common methods of occlusion include the

insertion of a nylon suture into the lumen of the carotid artery (Longa et aI., 1989) or

injection of a photothrombic substance such as Rose Bengal (Watson et aI., 1985);

although numerous other methods exist (reviewed in (Hossman, 1998)). Occlusion may

be temporary or permanent, resulting in injuries that either affect only the selectively

vulnerable cell populations of the hippocampus or all cell populations resulting in a pan­

necrotic infarct.



After a transient focal ischen1ic insult, the resultant lesion will contain a core

region where blood flow is reduced to < 15% surrounded by a penumbra region where

blood flow is reduced to < 400/0 (Lipton, 1999). The core also undergoes rapid anoxic

depolarizations, a rise in extracellular potassium (K+) and intracellular calcium ([Ca2+]i)

(Harris et aI., 1981); (Harris, Symon, 1984). In contrast, the penumbra is subjected to

waves of spreading depression, which result from the spread of increased K+ and

glutamate from the core of the lesion (Lipton, 1999). Spreading depression is a wave of

reversible electroencephalogram (EEG) suppression that propagates at a rate of2-5

mm/min across the cortical surface which is accompanied by a severe disruption in ion

homeostasis (Shimizu et aI., 2000); (Sonn, Mayevsky, 2000). The resultant disruption in

ion homeostasis can then enhance brain damage in this region by increasing [Ca2+]i and

acidosis and causing the release of glutamate (Sonn, Mayevsky, 2000). It is important to

note that although the penumbra is considered potentially salvageable (van Bruggen et

aI., 1994); (Small et aI., 1999) the duration of the insult will determine if the penumbra

becomes part of the infarct (Lipton, 1999); (Small et aI., 1999) as is the case with a

permanent ischemic insult.

2.1.2 Pathophysiology of Cerebral Ischemia

2.1.2.1 Neuronal Cell Death

Immediately after injury, neuronal cell death occurs in the core ischemic territory

as a result energy failure, acidosis, and the disruption of critical ion ratios notably, high

intracellular sodium and calcium levels (Moseley et aI., 1990); (Siesjo, 1992); (Sweeney



et aI., 1995); (Iadecola, Ross, 1997). In contrast, delayed cell death, which is observed

primarily in the surrounding penumbra, is thought to be mediated in part by spreading

depression, calcium shifts, glutamate excitotoxicity, free radical production, and

inflammation (Siesjo, 1992); (Iadecola, Ross, 1997); (Dimagl et aI., 1999); (Small et aI.,

1999).

There are two distinct modes of cell death that are part of ischemic cell death,

apoptosis and necrosis. Neurons have the ability to exhibit both forms of cell death and

the pathway taken will be a function of the nature of the insult, the cell type, the age of

the cell and the state of the cell at the time of the insult (Martin et aI., 1998).

Necrosis is the result of acute cellular dysfunction and is a passive process

associated with ATP depletion (Chandra et aI., 2000). Morphologically, this process is

characterized by membrane dysfunction, cell swelling, rupture of the plasma membrane,

and the spilling of cellular contents into the extracellular space (reviewed in (Choi,

1992); (Chandra et aI., 2000)). In contrast, apoptosis involves ordered, energy­

dependent physiological processes that require the cell to degrade its own DNA resulting

in chromatin condensation, marginalization and fragmentation without any change in

cell membrane (reviewed in(Stoll et aI., 1998); (Lipton, 1999)). DNA fragmentation

gives rise to DNA fragments of 180 base pairs that can then be identified by gel

electrophoresis or by terminal deoxyribonucleotidyl transferase (TNT)-mediated 2'­

deoxyuridine-5' -triphosphate (dUTP)-digoxigenin nick end labeling (TUNEL) staining

of tissue sections (reviewed in (Choi, 1996); (Stoll et aI., 1998). Neurons undergoing

apoptosis have been identified in both transient and permanent ischemia models. After

transient ischemia, apoptotic neurons were found within the inner border zones as early



as 30 minutes, peaking at 24-48 hours and persisting for up to 4 weeks after the onset of

reperfusion (Li et aI., 1995). Similarly, apoptotic neurons were found throughout the

infarct area within 12 hours ofpermanent focal ischemia (Braun et aI., 1996).

The gene products associated with apoptosis have been studied in ischemic

models and it appears that the Bcl-2 protein family regulates this process (Davis,

Antonawich, 1997). The Bax protein actively promotes apoptosis unless it is bound to

either Bcl-2 or Bcl-x long, which renders it less susceptible to apoptotic stimuli (Dixon

et aI., 1997). Thus the relationship ofBax to its anti-apoptotic homologs Bcl-2 and Bcl­

x long seems to be the critical determinant of resistance to apoptotic cell death. In focal

ischemia, neurons undergoing apoptotic cell death within the core and surrounding

border zone express the Bax protein while surviving cells within the peri-infarct regions

express Bcl-2 (Chen et aI., 1995); (Isemann et aI., 1998).

2.1.2.2 Mechanisms of Cell Death

2.1.2.2.1 Glutamate Excitotoxicity

Glutamate is a major excitatory neurotransmitter in the mammalian central

nervous system (CNS). The post-synaptic effects of this excitatory amino acid are

mediated by a number of distinct cell merrlbrane receptors including the metabotropic

and ionotropic N-methyl-D-aspartate (NMDA), kainate, and 2-amino-3- (3-hydroxy-5­

methylisoxazol-4-yl) (AMPA) receptors (Kandel, Schwartz, 1991); (Lyden, Wahlgren,

2000). Activation of the ionotropic receptors leads to the opening of their associated ion

channels, which are permeable to Na+, K+, and Ca2+depending on the receptor type. The



metabotropic glutamate receptors are not necessarily associated with an ion channel pore

but mediate their actions through second nlessengers, resulting in a mobilization of Ca2
+

from internal stores (Lyden, Wahlgren, 2000).

Excitotoxic ischemic cell death is thought to result from an excessive release of

glutamate. For example, during focal ischemia there is a rise in extracellular glutamate

that begins within the first 2 minutes ofMCA occlusion (Wahl et aI., 1994). Glutamate

release occurs via exocytosis, Ca2
+ dependent vesicular release, and the reversal of the

high-affinity Na+ dependent glutamate uptake mechanism (Lipton, 1999). Although

virtually every glutamate receptor subtype has been implicated in neurotoxicity, the

NMDA receptor sub-type has received most of the attention as it is generally accepted

that glutamate excitotoxicity is initiated by Ca2
+ flow through this receptor/channel

complex (Choi, 1988); (Tymianski, 1996); (Lyden, Wahlgren, 2000).

2.1.2.2.2 Calcium Overload

Intracellular Ca2
+ plays an important physiological role as a cellular messenger

and under normal circumstances; signal transduction begins with the release of

glutamate from the pre-synaptic terminal resulting in the activation of the post-synaptic

NMDA receptors. This results in nlembrane depolarization, an opening of the voltage

sensitive Ca2
+ channels (VSCCs) and the removal of the Mg2

+ block of the NMDA

receptor, allowing Ca2
+ to enter the cell (reviewed in (Kandel, Schwartz, 1991); (Lyden,

Wahlgren,2000)). Because of its' importance, there are numerous mechanisms that

tightly regulate both the intracellular location and concentration of free cytoplasmic



Ca2
+. These mechanisms involve a complex interaction between Ca2

+ influx, buffering,

storage, and efflux.

Energy failure after an ischemic event has been hypothesized to cause an

increased Ca2+influx, decreased efflux and altered buffering and storage leading to an

increase in intracellular Ca2+(Figure 1) (Silver, Erecinska, 1990); (Tymianski, Tator,

1996); (Kristian, Siesjo, 1998). Specifically, the membrane depolarization that results

from pump failure causes an opening of Ca2
+ sensitive voltage gated channels as well as

dislodging the Mg2+ ion from the NMDA channels facilitating Ca2
+ influx (Tymianski,

Tator, 1996); (Kristian, Siesjo, 1998); (Lipton, 1999). Second, when transmembrane

Na+ gradients collapse during energy failure, the Na+j Ca2+exchanger operates in reverse

such that it begins to pump in Ca2
+ instead ofpumping it out (Tymianski, Tator, 1996).

Finally, the disruption of energy levels also inhibits the storage of Ca2+, as this process is

ATP dependent in both the endoplasmic reticulum and mitochondria (Tymianski, Tator,

1996); (Kristian, Siesjo, 1998); (Sattler, Tymianski, 2002). The rise in the intracellular

Ca2
+ concentration results in neuronal death via the activation ofphospholipases,

endonucleases, proteases (i.e. calpain), protein kinases, phosphatases and enzymes that

activate reactive oxygen species and nitric oxide (Figure 1) (Tymianski, Tator, 1996);

(Kin1 et aI., 1998); (Kristian, Siesjo, 1998); (Lipton, 1999); (Sattler, Tymianski, 2002).
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2.1.2.2.3 Free Radical Formation

Normally the rate of free radical production is equal to that of free radical

scavenging, however, ischemia creates several conditions that result in a net increase in

the production of superoxide (02), hydrogen peroxide (H202), nitric oxide (NO) and

peroxynitrite (ONOO-). First, an accumulation of hypoxanthine due to the breakdown of

adenine nucleotides will result in the production of O2- (Lipton, 1999). Second, O2- and

the hydroxyl radical (OH-) are generated by the increased oxidative nletabolism of

arachidonic acid which accumulates during the activation of the cycloooxygenase and

lipoxygenase pathways (Iadecola et aI., 1996); (Nogawa et aI., 1997); (Lipton, 1999).

Third, alterations in mitochondrial function will result in the excessive generation of free

radicals if insufficient oxygen is available to accept electrons passed along the

mitochondrial electron transport chain (Tymianski, Tator, 1996); (Lipton, 1999). Fourth,

the accumulation and activation of neutrophils within the blood vessels and parenchyma

can generate O2- during the respiratory burst and subsequent oxidation of the reduced

form of nicotinamide adenine dinucleotide phosphate (NADPH; (Lipton, 1999). These

reactive oxygen species target multiple components of the cell including lipids, DNA

and proteins with a net result of a loss in cell integrity, enzyme function and genomic

stability (Hensley et aI., 2000).

In addition to increased reactive oxygen species production, neutrophils

synthesize inducible nitric oxide synthase (iNOS) within the first 48 hours of ischemia,

increasing the amount of nitric oxide (NO) present (Iadecola et aI., 1995). NO can also

be generated by neuronal or endothelial NOS via the activation of Ca2
+/calmodulin

(Tymianski, Tator, 1996); (Iadecola et aI., 1996); (ladecola, 1997). The cytotoxic



actions of NO include the direct damage of chromatin by cross liking DNA, the

inactivation of antioxidant enzymes and the generation of ONOO· by combining with

O2- (Chandra et aI., 2000).

There is also accumulating evidence that much of the free radical induced

damage that is observed in ischemia is mediated by the nuclear factor kappa B (NF-KB)

transcription factor (Clemens et aI., 1997); (Carroll et aI., 2000); (Clemens, 2000);

(Seegers et aI., 2000). Numerous studies have shown an increase in NF-KB activation in

neurons after both transient (Gabriel et aI., 1999); (Stephenson et aI., 2000) and

permanent (Seegers et aI., 2000) MCA occlusion. NF-KB is a heterodimer of

transcription factors belonging to the ReI family ofproteins, which typically exists as a

dimer containing a p65 and a p50 subunit anchored in the cytoplasm by a member of the

11d3 family ofproteins (Baeuerle, Henkel, 1994); (Clemens, 2000). Following the

activation of certain signal transduction pathways, IKB is phosphorylated, rendering this

molecule susceptible to ubiquitination and subsequent degradation freeing NF-KB up to

translocate to the nucleus (Flohe et aI., 1997); (Trushin et aI., 1999). Once inside the

nucleus, this molecule can then bind to specific KB DNA sequences resulting in the

transcription of a variety of genes including cytokines, adhesion molecules and enzymes

such as iNOS and cyclooxygenase-2 (Clemens et aI., 1997); (Gabriel et aI.,

1999);(Carroll et aI., 2000); (Clemens, 2000); (Christman et aI., 2000). In turn, these

molecules then act to enhance the immune response. Moreover, a number of these

activated molecules (specifically the cytokines) can activate NF-KB themselves,

initiating an autoregulatory feedback loop (Ghosh et aI., 1998)



2.1.2.3 Glial Activation

The involvement of glial cells is a consistent feature in almost all forms of brain

injury. Both microglia and astrocytes display a graded response to ischemia and it

appears that both the strength and time course of the response is dependent on the

severity of the injury. The following outlines some of what is currently known about

microglial and astrocyte activation after an ischemic insult.

2.1.2.3.1 Microglia

Microglial make up approximately 10 - 12% of the total glial cell population in

the CNS (Gonzalez-Scaano, Baltuch, 1999); (Stoll, Jander, 1999). Microglia are located

in the vicinity ofneurons within the gray matter, between the fiber tracts in the white

matter (Lawson et aI., 1990), and in close contact with blood vessels (Graeber, Streit,

1990). Resting microglia have a unique ramified morphology and can be identified

immunohistochemically by staining for isolectin B4 and the complement type-3 receptor

(CD11b/CD18 complex). Microglia are considered the primary immune effector of the

CNS and as such, they respond by migrating to the site of injury where they proliferate,

become activated and transform into phagocytes (Stoll et aI., 1998); (Gonzalez-Scaano,

Baltuch, 1999); (Kato, Walz, 2000). During the activation process, cells begin to retract

their processes and develop an enlarged/rounded cell body (Stoll et aI., 1998).

Eventually, these cells assume a phagocytic morphology and can be identified using the

ED-1 monoclonal antibody or antibodies against the major histocompatability class II

(MHC-II) antigen (Banati et aI., 1993); (Schroeter et aI., 1999; Stoll, Jander, 1999);



(Kato, Walz, 2000). At this stage, the phagocytic microglia become indistinguishable

from hematogenous macrophages (Schroeter et aI., 1999).

The microglial response is dependent upon the severity of the injury. For

example with sub-lethal injuries or when only the selectively vulnerable cell populations

are affected there is an early, transient activation. However, when a pan-necrotic infarct

forms, there is an immediate loss ofmicroglia in the core, with activation of the

remaining microglia in the peri-infarct and border zones (Kato, Walz, 2000). Typically,

ramified microglia are found within the ischemic areas starting 4 - 6 hours after

permanent focal ischemia with phagocytic microglia first appearing in peri-infarct areas

approximately 24 hours after injury (Davies et aI., 1998); (Schroeter et aI., 1999). In

most cases, activated microglia remain visible in the peri-infarct and border zones up to

7 days after injury after which time the number of these cells begins to decline (Kato et

aI., 1996); (Mabuchi et aI., 2000).

Activated microglia synthesize numerous potentially harmful factors including

NO, 02- and H20 2, proteolytic enzymes, and the pro-inflammatory cytokines,

macrophage inflammatory protein-l (MIP-l) (Gourmala et aI., 1999)), tumor necrosis

factor-a (TNF-a) and interleukin 1~ (IL-l~) (Banati et aI., 1993); (Gonzalez-Scaano,

Baltuch, 1999); (Stoll, lander, 1999).

2.1.2.3.2 Astrocytes

Two types of astrocytes have been recognized, protoplasmic astrocytes, which

exist in key positions adjacent to neurons and synaptic clefts within the gray matter and



fibrous astrocytes, which occupy positions adjacent to axons within the white matter

(Peters et aI., 1991). Numerous functions have been attributed to this cell population and

in general, it can be said that astrocytes function to maintain the appropriate extracellular

environment for proper neuronal function. Specifically, astrocytes contain high levels of

glutamine sYnthetase, which in conjunction with glutamate transporters, remove and

detoxify extracellular glutamate and provide the neuronal substrate glutamine

(Eddleston, Mucke, 1993); (Amedee et aI., 1997). Astrocytes also store glycogen and

have the potential to provide lactate as an alternative aerobic energy substrate for

neurons (Tansey et aI., 1991); (Sonnewald et aI., 1997). These cells also provide

neurotrophic support for neurons by releasing nerve growth factor (NGF), basic

fibroblast growth factor (bFGF), and insulin like growth factor 1 (IGF-l), (Gluckman et

aI., 1992); (Eddleston, Mucke, 1993); (Liu et aI., 1999). In addition, astrocytes playa

role in controlling the blood-CNS interface as they are in direct contact with endothelial

cells via their end feet processes and can influence the trafficking of hematogenous cells

across the blood-brain-barrier via the release of cytokines and adhesion molecules

(Eddleston, Mucke, 1993).

In response to injury, the CNS increases the size and number of astrocytes, with a

concomitant increase in glial fibrillary acidic protein (GFAP) expression and shape

change from a protoplasmic to a stellate morphology (Eddleston, Mucke, 1993); (Stoll et

aI., 1998); (Raivich et aI., 1999). The transition from a resting to activated state is

associated with the expression of adhesion molecules, MHC I and II antigen presentation

molecules, pro- and anti-inflammatory cytokines (e.g. IL-l P, TNF-a, interferon-y (IFN­

y), transfonning growth factor-p (TGF-P), interleukin-6 (IL-6), growth factors (e.g.



platlet-derived growth factor (PDGF), IGF-l, bFGF, cytoskeletal elements (e.g. MAP 2,

vimentin), early response elements (e.g. AP-l, c-fos), and eicosanoids (e.g.

prostaglandin E) (Eddleston, Mucke, 1993); (Raivich et aI., 1999).

Depending on the severity of the ischemic injury, there is a rapid induction of

dispersed astrogliosis within 12-24 hours after injury, which then becomes much more

focused within the infarct region and eventually develops into a glial scar between 15-30

days of injury (Clark et aI., 1993); (Raivich et aI., 1999). In models ofpermanent focal

ischemia, the astrocytes within the infarct appear with enlarged, pale nuclei, swollen

processes and decreased GFAP immunoreactivity early after the ischemic event (Davies

et aI., 1998); (Liu et aI., 1999). These swollen cells are most often observed in the

expanding infarct zone and will eventually die as a result of the infarct spreading.

However, surrounding the infarct within the border zone are the numerous reactive

astrocytes with increased GFAP immunoreactivity that make up the glial scar (Liu et aI.,

1999). Whether this glial scar is beneficial or harmful still remains unclear. A glial scar

may help to wall off areas of tissue necrosis in an attempt to exclude non-resident cells

from invading the CNS as well as filling in the space left after neuronal loss. On the

other hand, the barrier formed by the glial scar may hinder regenerative processes

(Eddleston, Mucke, 1993)

2.1.2.4 Post-Injury Inflammation

After an ischemic event, the brain is capable of mounting an inflammatory

response, which includes the activation and accumulation of the resident microglia and

astrocytes as well as blood-derived leukocytes (Iadecola, Alexander, 2001). It is



generally accepted that this inflammatory reaction is involved in the amplification of

injury in both the acute and sub-acute phases of ischemia.

The exact nature of the response is still unknown, however most reports

acknowledge a role for pro-inflammatory cytokines, chemotactic cytokines, adhesion

molecules, enhanced permeability of the blood-brain barrier and the resultant

accumulation of leukocytes as key components in this response. The following sections

focus on blood-derived leukocytes and cytokines, which act as effectors and mediators

of the post-injury inflammatory response.

2.1.2.4.1 Leukocytes

Significant amounts of histological evidence have shown that leukocyte

accumulation is an early event which coincides with the period of infarct progression,

suggesting these cells contribute to ischemic damage (Hallenbeck, 1996); (Pantoni et aI.,

1998); (Iadecola, Alexander, 2001). Leukocyte accumulation after stroke represents the

accumulation ofmixed subpopulations, including neutrophils, monocytes and

lymphocytes. The relative contribution of these subpopulations differ with neutrophils

being the primary population in the early stages of the inflammatory reaction whereas

the monocytes arrive within 3-7 days and then persist for multiple weeks (Akopov et aI.,

1996).

Some debate exists regarding the contribution of inflammation in permanent

focal ischemia or if this process is limited to transient ischemic events that feature a

reperfusion phase. Zhang et aI. (1994), Braun et aI. (1996), and Kato et aI. (1996) all

report leukocyte accumulation in infarcted tissues within 24 hours after both permanent



and transient ischemia. While the temporal studies differ slightly, generally neutrophils

begin to infiltrate into ischemic areas within 30 minutes to 12 hours, peak between 24­

72 hours and then disappear by 7 days (Garcia et aI., 1994); (Zhang et aI., 1994); (Kato,

Walz, 2000). Monocytes invade in a second wave 2 - 3 days after ischemia (Akopov et

aI., 1996); (Kato, Walz, 2000). In general, permanent focal ischemia leads to a smaller,

more delayed inflammatory reaction than observed in transient ischemia (Zhang et aI.,

1994); (Jiang et aI., 1998).

Both neutrophils and monocytes express complement receptor 3, MHC class I

and II antigens, and ED-l (Kato, Walz, 2000). The migration of these cells into the

parenchyma occurs via a highly specific receptor-ligand interaction between intercellular

adhesion molecule 1 (ICAM-l) on endothelial cells and a group ofCDI1/CD18

glycoproteins on the leukocytes (Kochanek, Hallenbeck, 1992); (Arvin et aI., 1996);

(Becker, 1998); (Lipton, 1999); (Kato, Walz, 2000); (Kubes, Ward, 2000). An increased

expression of these molecules is observed after focal ischemia and appears to be under

the control ofpro-inflammatory cytokines, including TNFa and IL-l ~ which are

released by activated microglia and astrocytes (Matsuo et aI., 1994); (Zhang et aI.,

1994); (Jander et aI., 1996); (Kubes, Ward, 2000).

The postulated effects of neutrophils and monocytes to the pathogenesis of stroke

include: 1) reduced cerebral blood t10w by vessel plugging resulting in the "no-reflow"

phenomenon, 2) exacerbation of blood-brain-barrier and parenchymal injury via

hydrolytic enzyme release, lipid mediator production or reactive oxygen species

production and 3) the initiation of thrombosis (Kochanek, Hallenbeck, 1992); (Akopov



et aI., 1996); (Hallenbeck, 1996); (Becker, 1998); (Jiang et aI., 1998); (Pantoni et aI.,

1998).

2.1.2.4.2 Cytokines

Cytokines are soluble polypeptide mediators that act as intercellular messengers

that control the growth, differentiation, and function ofnumerous cell types, most

notably those of the immune system (Woodroofe, 1995).

Inrecent years a substantial amount of experimental evidence has accumulated to

identify a role for the pro-inflammatory cytokines IL-l~ and TNF-a. in the recruitment

and trafficking ofneutrophils and monocytes into ischemic areas (Feuerstein et aI.,

1997); (Rothlein et aI., 1988); (Lipton, 1999). Specifically, these molecules cause an up

regulation of endothelial adhesion molecules (Liu et aI., 1994); (Arvin et aI., 1996);

(Pantoni et aI., 1998) as well as the activation of glial cells (Feuerstein et aI., 1998);

(Gregersen et aI., 2000). A number of studies have shown that both IL-l ~ and TNF-a.

mRNA are elevated in the ischemic cortex as early as 1 hour after occlusion and up to 4

days following permanent MCA occlusion (Liu et aI., 1994); (Arvin et aI., 1996);

(Feuerstein et aI., 1997); (Pantoni et aI., 1998); (Touzani et aI., 1999). In many cases,

cytokine gene expression within cerebral infarcts precedes the macrophage response

(Liu et aI., 1994); which suggests a CNS derived source of pro-inflammatory cytokine

production. Astrocytes, microglia and neurons have all been identified as sources of

TNF-a (Liu et aI., 1994); (Arvin et aI., 1996); (Botchkina et aI., 1999) and IL-

1~ (Woodroofe, 1995); (Feuerstein et aI., 1997); (Clark et aI., 1999); (del Zoppo et aI.,

2000).



acetoxymethyl ester (EGTA-AM), 1,2 bis- (2-aminophenoxy) ethane-N, N, N', N'­

tetraacetic acid acetoxymethyl ester (BAPTA-AM), or APTRA-AM.

Originally, these buffers were used to control or estimate the free cytoplasmic

concentration ofCa2
+, however, more recently they have been shown to be

neuroprotective. Specifically, both EGTA-AM and BAPTA-AM have been shown to

protect against early glutamate-induced excitotoxicity in vitro and against focal cerebral

ischemia in vivo (Tymianski et aI., 1994); (Tymianski, 1995). In addition, APTRA-AM

was shown to be an effective neuroprotectant against anoxic/aglycemic damage in vitro

(Abdel-Hamid, Tymianski, 1997). It should be noted that in these experiments, the

buffers were applied prior to the insult, so what remains unanswered is whether these

n10lecules will be neuroprotective if given after the onset on injury.

Initially, it was thought that neuroprotection by these Ca2
+ buffers stemmed from

their ability to globally buffer excessive intracellular Ca2
+ loads. However, additional

studies suggested that the rate of calcium binding directly affected the buffer's

neuroprotective effect. For example, those Ca2
+ buffers which possess fast forward rates

of calcium binding, such as BAPTA-AM or APTRA-AM, protect neurons more

effectively than EGTA, a slow-binding Ca2
+ buffer (Spigelman et aI., 1996). This

suggests that these molecules may be protective via other mechanisms, including the

attenuation ofpresynaptic transmitter release (Tymianski et aI., 1994); (Spigelman et aI.,

1996) which was demonstrated by its ability to reduce evoked potentials in the rat

hippocampus in vivo (Spigelman et aI., 1998).



2.2 Magnetic Resonance Imaging

2.2.1 Overview ofMRI Principles

The following sections contain a brief outline of the basic physical principles

associated with magnetic resonance imaging. For a more detailed review, see texts by

(Hashemi, Bradley, 1997), (Mitchell, 1999) or (Woodward, 2002).

2.2.1.1 Proton Precession and Resonance

MRI takes advantage of the fact that the nucleus of a hydrogen atom has a

magnetic moment, meaning that it has both charge and spin. Magnetic moment is

defined as:

Magnetic moment = Jl = )'hI (2.1)

where y= gyromagnetic ratio, h is Plank's constant (6.6252 x 10-27 ergs) and I is the spin

angular momentum. Nuclei of certain elements have a magnetic moment; as such, when

they are placed in a magnetic field their protons will line up in the direction of the field.

Each proton that is aligned to the direction of the external magnetic field will then

precess around the angle of the external field as well as around their own axis (Figure 2).

The frequency at which a nucleus precesses is a function ofboth the strength of

the magnetic field and its unique gyromagnetic ratio. This frequency is referred to as the

Larmor frequency and is given by the equation
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Figure 2: Diagrammatic representation ofa proton spinning around the external
magnetic field (Bo) and it's own axis (b).



The effects of TNF -(X. are mediated by both the p75 and p55 TNF -(X. receptors,

which are expressed at different levels on glia, neurons and infiltrating leukocytes.

Binding of TNF-(X. to its receptors leads to the activation of various signal transduction

molecules including, protein kinase C, tYrosine kinase, and phospholipases A2 (Pantoni

et aI., 1998). The activation of the TNF-a signal transduction pathway results in the

activation of the NF-1d3 transcription factor which then translocates into the nucleus

where it activates the promoters for numerous adhesion molecule, cytokines and

antioxidant enzymes (Guerrini et aI., 1995); (Pantoni et aI., 1998); (Gregersen et aI.,

2000). Similarly, IL-1 ~ binds to it's cell surface receptor, IL-1 RI to produce an

intracellular signal that is mediated by the NF-1d3 transcription factor (Guerrini et aI.,

1995); (Pantoni et aI., 1998); (Touzani et aI., 1999); (Rothwell, Luheshi, 2000). Again,

there is also an important positive feedback loop between cytokines, NF-1d3, and free

radicals as they all activate one another (Wallach, 1997).

2.1.3 Cell Permeant Calcium Buffers

As previously discussed, it is generally well accepted that ischemic cell death is

the result of excessive activation of glutamate receptors. This process triggers and

sustains an increase in intracellular Ca2
+ that results in the activation of numerous

intracellular processes that can cause cell damage (see Figure 1). With this in mind, one

possible method ofprotecting neurons from ischemic injury may be through the use of

molecules that prevent Ca2
+ from entering the cell, or interfere with its ability to trigger

secondary neurotoxic cascades. This can be achieved by using cell-permeant calcium

buffers such as ethyleneglycolbis (~-aminoethyl ether)-N, N, N', N' -tetra-acetate



ro = yBo (2.2)

where ro is the angular precessional frequency of the proton (in Hz), y is the

gYromagnetic ratio and Bo the strength of the external magnetic field. For hydrogen, the

r is 42.6 MHzlTesla. The Larmor frequency is also important, as it is the frequency at

which the proton will absorb energy, which will cause it to change its alignment. The

process by which it absorbs energy at the Larmor frequency is called resonance.

Atomic nuclei have specific energy levels that are related to a property called

spin quantum number (S). The nUInber of energy states (E) of a nucleus is determined

by the formula:

E = 2S +1 (2.3)

Hydrogen has a single proton, a spin quantum number of Y2 and two energy

states, denoted as + Y2 and -Y2. Thus hydrogen protons spin about their axis creating a

magnetic field with some protons spinning in the opposite way and creating a magnetic

field in the opposite direction. However, because hydrogen has a single proton, there is a

net magnetic field in one direction creating the magnetic moment that is used in MR

ImagIng.

2.2.1.2 Longitudinal and Transverse Magnetization

Protons within the object to be imaged, line up with the external magnetic field in

either the same direction as the field (parallel) or in the opposite (anti-parallel) direction.

The protons also exist in two energy states, with those protons with a lower energy state



(EI) lining up parallel to the magnetic field and those with a higher energy state (E2)

lining up anti-parallel to the magnetic field (Figure 3). Over time, more spins line up in

the direction of the magnetic field creating a net magnetization vector, which is the sum

of the contributions of all magnetic moments of the individual protons. This increase

follows an exponential growth curve that is dependant on the density of the protons (or

spins) in the tissue and the strength of the magnet.

The net magnetization vector (Mo) can be aligned in two directions, longitudinal

(Mz) which is aligned along the direction of the external magnetic field (Bo) and

transverse (Mxy) which is aligned along the direction of the x-y plane (Figure 4).

2.2.1.3 Radio Frequency (RF) Pulse

The goal of MR imaging is to move protons out of their alignment with the

external magnetic field and then measure the signal generated as they relax. In the three

dimensional laboratory coordinate system, the net magnetization vector Mo points in the

z direction (Mo = Mz; Figure 5 A). Mo does not precess, as it is made up of the sum of

all the individual magnetic moments of the individual protons, which are out of phase

with one another. To change the orientation ofMo, protons are set to precess around a

different magnetic field that is introduced by applying an RF pulse at the Larmor

frequency. This flips the protons into the x-y plane and they begin to precess in phase

around the x-axis creating a weaker magnetic field associated with the RF pulse, B I

(Figure 5 B). The application of the RF pulse also boosts some of the protons from the

lower energy state to the higher energy state contributing to the gain of transverse



Figure 3: Diagram showing the two energy states ofprotons and the direction they align
themselves in a magnetic field.
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Figure 4: The net magnetization vector showing the longitudinal component
(MJ aligned in the direction ofBo and the transverse component <Mxr) aligned
in the x-y plane.



A

B

y

y

z

J---------.x

z

~----..---..x

+
I

~

'"'"---

Figure 5: A net magnetization vector (Mo) before an RF pulse is applied (A) and
after an RF pulse is applied (B). Prior to the RF pulse, the net magnetization is
aligned with Bo (Mo = MJ. After an RF pulse, the magnetization flips to the
transverse plane(~ and begins to rotate around the magnetic field generated by
the RF pulse, B1 (B).



magnetization. When the RF is turned off, the protons stop precessing around the x-axis

and begin to decay towards the z-axis.

The precession ofprotons around the x-axis induces a current in an RF receiver

coil and a signal is generated. However, the signal continuously decays in magnitude as

it precesses around this x-y plane. The signal received by the receiver coil is called

frequency induction decay (FID) due to signal decay. The received FID is collected

from all the different protons in the sample with no spatial discrimination.

2.2.1.4 Longitudinal and Transverse Relaxation

Relaxation refers to the return ofprotons back to their lowest energy states and the return

of magnetization along the Bo axis to Mz• The relaxation of the net magnetization is

composed ofboth a longitudinal (TI) and transverse (T2) component. TI and T2

relaxation are inherent properties of tissue that occur independently and account for

tissue contrast.

TI relaxation is the time it takes for the spins to realign themselves along the z

(longitudinal) axis after being flipped 90° to the x-axis by an RF pulse. The longitudinal

component grows as the net magnetization returns to its original state ofBo. More

specifically, TI refers to the time (in ms) in which the longitudinal magnetization grows

to 63% of its original state (Figure 6A). TI relaxation is also referred to as spin-lattice

relaxation, meaning that as protons re-align with Mz they give up energy to the lattice or

environment surrounding them. This occurs after the RF pulse is turned off and the

spins return to their lowest energy states becoming out of phase with one another. The

equation governing this behavior is:



A
100

a
.~

N
".:

Q)

~
~
'#.

Tl
Time (ms)

B

100
c
o
.~

N
"~
C

~
~
~

oL-l.__---===========
T2

llDle (ms)

Figure 6: Tl and T2 relaxation curves. At time Tl, the longitudinal magnetization has
relaxed to 63% ofits initial value (A). At time T2, the transverse magnetization has
decayed to 37% ofits initial value (B).



(2.4)

T2 relaxation occurs as the transverse magnetization decays back to its original

state of zero. More specifically, T2 is the time (in ms) in which the transverse

magnetization decays to 37% of the original (Figure 6B), which can be expressed as:

M M -tff2
xy = 0 e (2.5)

Transverse relaxation is known as spin-spin relaxation because of the dephasing of spins

over time. Dephasing occurs because the interactions between the individual spins affect

each other by altering their precessional frequencies. Any in-homogeneities in the

external magnetic field will also result in protons precessing at different rates throughout

the tissue due to the slight variations in field strength. As dephasing continues, the

individual magnetic moments making up the net magnetization begin to cancel one

another out and the net magnetization becomes smaller.

A second type of T2 relaxation occurs, T2*, which is not a tissue specific

property but occurs due to inherent properties of the external magnetic field. After a 90°

RF pulse, all protons begin to precess in phase at a rate proportional to the magnetic

field. If the magnetic field is not homogenous, some protons will precess faster or

slower than others, causing them to spin at slightly different frequencies. These

differences in frequency place the protons out of phase with one another, thereby

contributing to the transverse relaxation.



2.2.1.5 Tissue Contrast Characteristics

The concentration of hydrogen protons, or proton density, differs between tissue

types to give tissue contrast when the imaging parameters are carefully adjusted. Each

tissue acquires a high, intermediate, or low level of longitudinal magnetization based on

its proton density, which is converted to various levels ofmeasured signal and ultimately

signal intensity on the final image. Tissues with a high proton density produce high

areas of signal and appear bright on the final image whereas tissues with a low spin

density convert to low areas ofmeasured signal and dark areas on the final image.

Tl and T2 relaxation values also differ between various types of tissue and as

such the imaging parameters can also be adjusted to produce the greatest separation in

the areas of tissue contrast. In spin echo imaging, the two parameters that determine

tissue contrast are TR (repetition time) and TE (echo time). These parameters are

intimately associated with Tl and T2, respectively. TR (in ms) is the amount of time

that elapses between successive RF pulses and is the amount of time the individual

proton vectors are allowed to realign with the main external magnetic field prior to the

next RF pulse. Generally, the TR is not long enough to allow full Tl recovery. TR

effects tissue contrast by defining how much magnetization each tissue recovers in the

longitudinal plane, which in tum converts to the same level of measurable signal (bright

or dark) in the final image.

TE (in ms) is the amount of time between a 900 pulse and when the signal echo is

measured. TE effects contrast by determining how much of the measurable signal is

maintained or lost by allowing variable amounts of dephasing to occur. For example,



with a long TE, the signal has more time to decay (both T2 and T2*) resulting in a

greater tissue contrast between tissues.

The process by which the TR and TE of an imaging sequence are adjusted to

produce the tissue contrast of choice is called weighting. The T2 characteristics of a

particular tissue are determined by how fast the protons in that tissue dephase. If the

protons dephase rapidly then the tissue is said to have a short T2 and if they dephase

slowly then it has a long T2. Generally, water has a long T2, fat and proteinaceous

substances have an intermediate T2 and solids have short T2 characteristics. The T1

characteristics of tissue depend on the ability of their protons to give off energy to their

surroundings. Typically, fat and proteinaceous substances have a short Tl, solids have

an intermediate Tl and water has the longest Tl. In the brain, white matter has a short

Tl and T2, gray matter has both an intermediate Tl and T2 and cerebrospinal fluid

(CSF) has a long Tl and T2 (Figure 7).

In proton density imaging, contrast is achieved by using a long TR and a short

TE. The long TR ensures that tissues can reach full longitudinal magnetization

(removing the Tl component) while the short TE ensures a minimal loss of signal due to

T2 relaxation. In T1 weighted imaging the desired tissue contrast is produced using a

short TR and a short TE. The short TR allows tissues with short T1 values to fully

recover and those with a long Tl to only partially recover. The short TE minimizes the

signal loss due to transverse magnetization. With T2 weighted imaging, contrast is

produced using a long TR and a long TE. The long TR allows tissues to reach full

longitudinal magnetization and the long TE allows a controlled loss of transverse

magnetization.
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Figure 7: Tl recovery (A) and T2 decay (B) curves ofwhite matter
(WM), gray matter (OM), and CSF.



2.2.1.6 Image Construction

The signals received after RF pulses contain information about the entire object

being imaged without any spatial information. To collect information about a specific

area in the object, 3 gradients, one placed in each direction (Gx , Gy, Gz) are used.

Depending on the slice orientation (axial, sagital, transverse), these gradients can be used

for slice-select, read-out or phase encoding. Gradients function by creating a tenlporary

magnetic field that changes from point to point in a linear fashion along all 3 axes in

order to provide spatial information.

As previously mentioned, when an object is placed in the magnetic field and an

RF pulse applied, the resultant FID contains information from the entire object. To

collect information from a specific slice or area through that object, the slice select

gradient (Gz) is used to alter the magnetic field along the z-axis. This creates a situation

where each area of the object will have a slightly different magnetic field strength. Then

when an RF pulse with a bandwidth of frequencies which match the Larmor frequencies

of that slice are applied, only the protons within that slice will be excited. This process

"selects" a slice through the object being imaged without distinguishing points within

that slice.

Spatial encoding is the process used to discriminate points within a slice. Spatial

encoding is a two-step process involving a frequency encoding step and phase encoding

step. Frequency encoding collects spatial information in the x-direction by applying the

read-out gradient (Gx) in the x direction when the echo is being received. This alters the

field strength in the x direction such that the center of the slice does not experience the



gradient while the columns ofpixels to the left will have a lower magnetic field and

columns ofpixels to the right will have a higher magnetic field. Because the frequency

ofproton precession is dependant in part on magnetic field strength, protons in the center

will precess at the Larmor frequency while protons to the right precess at a slightly

higher frequency and protons to the left will precess at a slightly lower frequency. As a

result, each column ofpixels will have a different frequency making the individual

columns within the slice identifiable after the Fourier Transform (FT).

In order to discern spatial information in the y direction a two-dimensional FT is

used. This involves the addition of the phase encoding gradient (Gy) in the y direction.

The Gy gradient is applied prior to the Ox gradient so that before the frequency encoding

step, the pixels in the upper rows experience a higher magnetic field, the pixels in the

lower rows experience a lower magnetic field and the center pixels remain unchanged.

The Oy gradient causes the protons in the upper rows to precess faster and the protons in

the lower rows to precess slower; creating a situation where each row will be out of

phase with the others. The application of Gy and Ox result in each pixel have both a

distinct frequency and phase, which will encode for the x and y coordinates of that pixel.

Phase encoding takes a significant amount of time because there is a separate phase

encode step, taking time TR for each row of pixels in the slice.

For every frequency and phase encoding step a signal is generated. Each

digitized signal fills one line in a set of rows referred to as k-space. With the first TR,

there is no phase shift and the resultant signal is placed in a row in k-space. After the

second TR, containing a phase shift and frequency encoding step, the resultant signal is

placed in a different row ofk-space. This continues until all of the rows of the slice have



been phase shifted and frequency encoded. The number of frequency encoding steps

required is specified by the matrix size of the slice selected.

The final step in image creation is the FT, which produces pixel data with

different gray scale values. In order to generate an image, the signals, which occur in the

time domain, are converted to the frequency domain using the FT. The FT then gives

the amplitude and phase of each frequency within each signal, yielding pixel data that

has a value representing the MR signal amplitude from that spatial location, allowing a 2

or 3 dimensional image to be created.

2.2.1.7 MRI Hardware

A diagrammatic representation of the hardware components of an MR imaging

system is shown in Figure 8. The magnet produces the Bo field for the imaging

procedure. Within the magnet are the gradient coils, Gx , Gy and Gz for producing a

gradient in the x, y, and z directions. Adjacent to the gradient coils is the RF coil, which

produces the B1 magnetic field necessary to flip the spins 90° or 180°. The RF coil is

also the RF receiver and can detect the signal from the spins within the body. The object

to be imaged is placed within the magnet and the entire set up is contained within an RF

shield, which prevents the RF signal generated by the imaging system from radiating out

of the area while also preventing various RF signals from other sources being detected

by the scanner. The computer controls all the components on the scanner including the

RF source, pulse programmer, the RF amplifier, the gradient pulse programmer and the

gradient amplifier. The RF source produces a sine wave of the desired frequency and
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Figure 8: Diagrammatic representation of the typical components found in an MR
imaging system (from Hornak, 1996).



the pulse programmer shapes the RF pulse. The RF amplifier increases the pulse's

power. The gradient pulse programmer sets the shape and amplitude of each of the three

gradient fields while the gradient amplifier increases their power to a level high enough

to drive the gradient coil.

The following sections provide more detail on magnets and RF coils.

2.2.1.8 Magnets and Static Fields

There are different types ofmagnets used in imaging experiments:

permanent, resistive, and superconducting. Permeant magnets contain material that

directly creates a magnetic field. The axis of these magnets runs perpendicular to the

bore of the magnet. The strength of the magnet is typically O.5T but new technology is

increasing this field strength. Resistive magnets generate magnetic fields perpendicular

to an electrical current, which flows along a cylindrical coil parallel to the bore of the

magnet. The field strength generated by magnets of this type is also in the range of

O.5T. Superconducting magnets also generate magnetic fields perpendicular to the

current, however the field strength is much stronger due to the elimination of resistance

by lowering the temperature.

It is absolutely critical for a magnetic field to be uniform, so that the strength will

be the same at all points within the sample and all points will resonate at the same

frequency. Thus field homogeneity is critical for high quality images. Shimming is the

process where by the magnetic field is shaped into a homogenous or less inhonl0geneous

field. This process involves the application of a shim gradient, which can be adjusted to

correct the minor heterogeneities in the main magnetic field.



2.2.1.9 RF Coils

RF coils create the B I field, which rotates the net magnetization in a pulse

sequence; they also detect the transverse magnetization as it precesses in the x-y plane.

RF coils transmit energy with which the spins are manipulated and receive the generated

signals. The coils may be either transmit only, receive only, or transmit and receive.

Numerous types of coils exist, and in the experiments described in sections 3.5,

both surface and quadrature coils were used. The advantage to using a surface coil is

that it detects signal from a smaller area excluding the unwanted or un-needed signals

and increasing the overall signal to noise ratio (SNR). In contrast, a quadrature coil both

transmits and receives signals. Moreover, signals from both the x and y axes are

received and then added together. Coils of this type have been shown to increase the

SNR by41%.

2.3.1 T1-Weighted Imaging

2.3.1.1 TI-Weighted Imaging of Cerebral Ischemia

T1WI has been reported to be sensitive to ischemia as T1 relaxation increases

shortly after the onset of the ischemic event (Germano et aI., 1989); (Calamante et aI.,

1999). More recently, (Kettunen et aI., 2000) have shown that the early increase in T1

relaxation may be related to the cessation of cerebral blood flow and that increases

observed at later time points may be due to edema. Typically, T1WI does not show

large changes as a result of ischemia and therefore it is not frequently used.



2.3.1.2 Contrast-Enhanced TI-Weighted Imaging ofCerebral Ischemia

Gadolinium (Gd) enhanced Tl weighted imaging (Gd-Tl WI) can be used to

study changes in the integrity of the blood-brain-barrier (BBB) as well as cerebral

perfusion. Gadolinium is a paramagnetic metal complex that does not normally cross

the blood-brain-barrier and shortens the Tl relaxation time via dipole-dipole interactions

with neighboring water molecules (van Bruggen et aI., 1994); (Kastrup et aI., 1999). If

there is an increase in blood-brain-barrier permeability, as seen with the reperfusion of

ischemic areas, gadolinium can move from the blood vessels into the tissue (Kastrup et

aI., 1999); (Reith et aI., 1995); (Merten et aI., 1999). Thus, enhancement within the

parenchyma after an ischemic injury suggests that the integrity of the blood-brain-barrier

is compromised (Kastrup et aI., 1999).

2.3.2 T2-Weighted Imaging

2.3.2.1 T2-Weighted Imaging of Cerebral Ischemia

T2WI reflects the relaxation time of protons within the tissue and is highly

sensitive to the state of both free and bound water (Lin et aI., 1997). During ischemia,

the T2 relaxation time is prolonged in areas with an increase in water content (Pierpaoli

et aI., 1993); (Lin et aI., 1997) perhaps due to vasogenic edema (Gill et aI., 1995); (Veda

et aI., 1999). In both hun1ans and animal models of ischemia, T2WI can detect

vasogenic edema between 6 and 8 hours, which is well in advance of its peak at 24 - 48

hours after onset (Moseley et aI., 1990); (Veda et aI., 1999). However, in one study of



focal ischemia, both T2 and Tl relaxation times were found to increase as early as one

hour after the ischemic event (Germano et al., 1989).

While the use of T2WI in the detection of cerebral ischemia is often limited to the

visualization of vasogenic edema (Moseley et aI., 1990), this imaging modality has been

reported to detect hemorrhage associated with infarction (Magiera Dunithan et aI.,

1998); (van Everdingen et aI., 1998); (Ebisu et aI., 1997). In addition, T2WI is used to

determine the size and site of the infarct (van Bruggen et aI., 1994); (Biemaskie et aI.,

2001).

2.3.3 Diffusion-Weighted Imaging

2.3.3.1 Proton Diffusion

Proton diffusion can be defined as the random translational motion of an

ensernble ofparticles (Le Bihan et aI., 1986); (Le Bihan, Basser, 1995). The mobility of

water molecules is described by a physical constant called the diffusion coefficient, D,

which is a function of the diffusing molecules as well as the solvent's viscosity and

temperature (Le Bihan et aI., 1986). This constant is a bulk property dominated by the

"free" fraction of water (Hazlewood, 1995). The mean square of the distance covered

during diffusion is proportional to time and D. For example, the diffusion coefficient

for the self-diffusion of water (i.e. water diffusing through water) at 25°C is 2.3 x 10-3

mm2/sec and the root mean square distance covered in 100 msec in a given direction is

20 ~m (Le Bihan et aI., 1986).



Diffusion is restricted when either permeable or impenneable boundaries in the

medium prevent molecules from moving freely, limiting water to a certain volume.

Biological tissues are heterogeneous and contain numerous sub-compartments (e.g.

cellular organelles, membranes and myelin sheaths), which impede the movement of

water in tissue. Moreover, diffusion may be restricted by the hydration effects where

water is bound to macromolecules and is not freely diffusible or bulk phase effects

where the physical properties of water are affected by the presence and nature of

subcellular surfaces (Hazlewood, 1995). Thus, D will depend on the penneability of the

barriers that divide these sub-compartments, the diffusion time and the geometry of the

limiting volume (Le Bihan et aI., 1986). Molecules within the various sub­

compartments of the tissue (i.e. intracellular, extracellular, cell bodies, axons) also have

different intrinsic diffusion properties.

Diffusion in the brain is also affected by the tortuosity of the extracellular space.

Tortuosity is a dimensionless factor, A, which accounts for the geometrical constraints

imposed by local barriers to diffusion and relates to the both D and ADC via the

equation (Helperen et aI., 1995):

ADC =D/A2 (2.6)

Tortuosity affects both the time course and magnitude of changes in the extracellular

space (Nicholson, 1995). This is particularly important in pathological situations were

the swelling of cells reduces the volume of the extracellular space while increasing



tortuosity as the extracellular pathways disappear, ultimately decreasing the diffusion of

water through the extracellular space.

2.3.3.2 MR Measurements ofWater Diffusion

DWI provides a contrast mechanism for MRI as well as a non-invasive method

for measuring the water mobility of tissues in vivo. DWI is accomplished by the

addition of two gradient pulses to any spin echo sequence (Figure 9; (Le Bihan, Basser,

1995); (Mitchell, 1999). Using the Stejskal-Tanner paradigm, the diffusion gradient is

applied in the form ofpulses during the dephasing and rephasing parts of the echo

sequence (Stejskal, Tanner, 1965).

The first gradient pulse labels the initial position of the water molecules and the

second reads the final position of these molecules after they've had time to diffuse. If

the water molecules have diffused, the second gradient will be unable to focus the MR

signal properly and the image intensity will be reduced. The degree of sensitivity of the

water molecules to diffusion is given by the b-value or diffusion gradient strength (Le

Bihan et aI., 1986) and the larger the b-value, the greater the sensitivity to diffusion

(Magiera Dunithan et aI., 1998). Since diffusion is not isotropic, the direction of the

diffusion gradients can be varied along the x, y, or z directions allowing for the detection

of diffusion along the different axes.

The TE and TR are generally long in DWI to accommodate the diffusion

gradients, which gives some inherent T2 weighting to the images. As a result, this T2

weighting will change the appearance of the DWI due to T2 shine through (Burdette et

aI., 1999). To obtain an image that is sensitive to only the changes in diffusion, 2 sets of
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Figure 9: A typical DWI sequence. G is the gradient pulse, 0 is the pulse
duration and A is the pulse separation.



images have to be acquired, one with a b = 0 weighting and the second with a specific b­

value. These images are then post-processed into diffusion maps using the Stejskal

Tanner equation:

ADC = log (So/Sn)/b (2.7)

where ADC is the apparent diffusion coefficient, So is the signal intensity of the un­

weighted image, Sn is the signal intensity of the weighted image, and b is the diffusion

gradient strength (Le Bihan et aI., 1986). DWI is sensitive to all intravoxel incoherent

motions, including diffusion, thus instead ofD, the term ADC is applied (Le Bihan et aI.,

1986). Typically DWI measurements use a diffusion time of approximately 40 ms,

which allows the molecules to displace approximately 10 J.1m (Beaulieu et aI., 1999).

Diffusion maps are used to quantify changes in ADC as areas with a decreased

ADC indicate regions of decreased water diffusion (Magiera Dunithan et aI., 1998).

ADC determinations are most accurate when more than two images, obtained with

multiple b-values are used (Le Bihan, 1995), however two point fits have become

standard in the field as they provide reasonably accurate ADC values within a minimum

imaging time (Xing et aI., 1997).

2.3.3.3 Diffusion-Weighted Imaging of Cerebral Ischemia

The biophysical environment of water and its relationship to cell function is of

great interest in the study of ischemia. Alterations in cell function; specifically the

regulation of cell volume may be reflected in changes to the environment of water and



these changes can then be used to better understand the pathophysiological evolution of

ischemia (Helperen et aI., 1995).

During ischemia, DWI has been reported to detect the affected areas prior to the

onset of vasogenic edema, suggesting that this imaging modality is sensitive to cytotoxic

edema with the resultant decrease in ADC the result of alterations in intra- and

extracellular fluid volumes (Moseley et aI., 1990); (Benveniste et al., 1992); (Busza et

aI., 1992); (Pierpaoli et aI., 1993); (van Gelderen et aI., 1994); (Armitage et aI., 1998).

DWI has demonstrated decreased ADC in the ischemic areas within minutes of an

interrupted blood supply (Pierpaoli et aI., 1993). As such, DWI is used clinically to

detect early ischemic changes when T2 weighted images appear normal (Veda et aI.,

1999). Typically, the ADC in sub-acute and acute ischemic brains decreases between 33

- 60% in the first few hours following ischemia, regardless of species (Moseley,

Kucharczyk, 1995). This decline is rapid and precedes changes in any other proton MR

parameter studied (Helperen et aI., 1995); (van Everdingen et aI., 1998).

It is generally accepted that the early drop in ADC reflects the bulk slowing of

water caused by an accumulation of a more slowly-diffusing intracellular population of

water caused by the disruption of the sodium/potassium transmembrane pump or an

increase in the nurnber of diffusion barriers such as denaturization of intracellular

molecules (Moseley, Kucharczyk, 1995) or changes in the tortuosity of the extracellular

environment (i.e. swelling) (Armitage et aI., 1998). However, the time course of

diffusional changes in acute stroke is also consistent with the complete loss of high

energy metabolites (glucose and oxygen) and an increase in extracellular potassium

(Busza et aI., 1992), suggesting that ADC changes may also reflect tissue metabolism.



Moreover, regions of reduced diffusion have also been matched to areas of acidosis and

lactate accumulation (Kohno et aI., 1995); (Harris et aI., 2000).

While DWI is no doubt useful in the identification of ischemic areas early in the

acute periods, diffusion studies are often combined with more conventional T2 weighted

or perfusion imaging studies to provide a clearer picture of outcome by examining the

tissue for edema and perfusion deficits.

2.3.1.4 Q-Space Imaging (Multiple b-value Diffusion-Weighted Imaging)

Diffusion in the brain is complicated by the fact that there are different diffusing

populations contained within an environment of restricted geometries. As a result, the

measured ADC becomes a function of a summation of individual diffusion coefficients

belonging to different diffusing populations as well as the diffusion time and b-value

chosen for the experiment (Assaf, Cohen, 1998). In the low b-value range (0 - 1 x 106

s/cm2
), the decay of water signal is mono-exponential and independent of the diffusion

time while analysis over an entire range ofb-values showed non-bi-exponential signal

attenuation of brain water, which was dependent on the diffusion time (Niendorf et aI.,

1996); (Assaf, Cohen, 1998). At the lower b-values, the mono-exponential diffusion is a

weighted average ofboth the intracellular and extracellular diffusion coefficients

(Niendorf et aI., 1996), while the hi-exponential diffusion observed at higher h-values

(3.2 - 35.8 x 106 s/cm2
) reflects the individual contributions of the different diffusing

populations (Assaf, Cohen, 1998); (Assaf, Cohen, 2000). It has heen suggested that

these two populations are in fact a slow and a rapidly diffusing population. Some



investigators suggest that these populations actually represent the intracellular and

extracellular components of water (Assaf, Cohen, 2000).

Q-space imaging involves the spatial mapping of diffusion coefficients using a

narrow pulsed-gradient spin-echo (PGSE) sequence. In PGSE imaging, the sequence

begins with a 900 RF pulse followed by a magnetic field pulse in the x, y, or z direction

of duration 0 and amplitude G, an 1800 pulse, followed by a second identical gradient

pulse. The time between the two pulses is the diffusion time, 6 (Szafer et aI., 1995).

Moreover, narrow diffusion gradient pulses are used in order to neglect motion over the

duration of the gradient pulse. Like traditional diffusion experiments, the first gradient

pulse imparts a phase shift to the spins, after the 1800 refocusing pulse, the shift is

inverted and by the second gradient pulse, the spins have moved to their next location.

If the spins are stationary, a perfectly refocused echo will occur, but any motion would

cause a phase shift in their contribution to the echo, resulting in reduced signal intensity

(Callaghan, 1995).

The q-space theory describes diffusion measurements in terms of displacement

probabilities, using the reciprocal spatial vector, q, which is defined as:

q = (yog)/21t (2.8)

where y is the gyromagnetic ratio, 0 is the duration of the gradient pulse and g is the

magnitude of the gradient (Kuchel et aI., 1997); (Assaf, Cohen, 2000). The magnitude

of this vector, q, controls the echo intensity decay for displacements.



Q-space is important as it provides important physiological information on water

mobility, compartmentation and structural anisotropy (Neeman et aI., 1995).

Specifically, changes in the mean square displacement and loss of signal intensity with

increased diffusion time can be used to determine restricted diffusion, fractal diffusion

and random Brownian diffusion in normal and diseased or injured tissue (Neeman et aI.,

1995).



3.0 Specific Aims and Hypothesis

Imaging modalities can clearly identify the areas affected by ischemic insults,

however, the underlying tissue alterations remain unknown. The ability to non­

invasively characterize and quantify changes in brain edema and pathology with

morphology is critical in understanding ischemic pathophysiological processes. The

goals of this research were:

1) To determine the temporal and spatial evolution of a permanent focal

ischemic lesion induced by cortical devascularization. The subsequent

pathophysiological changes were observed using DWI, T2WI, and Gd­

Tl WI as well as correlative cresyl violet histochemistry.

2) To determine the glial activation pattern and extent of an inflammatory

response after cortical devascularization. These changes were

observed using immunocytochemical and ELISA methods.

3) To determine if delayed neuronal death and post-injury inflammation

could be prevented by treatment with APTRA-AM. These changes

were observed by histochemical and immunocytochemical methods.

4) To determine if the ADC changes typically associated with a cortical

devascularization injury could be inhibited by treatment with APTRA­

AM. This was assessed using multiple b-value DWI.



We hypothesized that diffusion weighted imaging would be able to accurately

detect the temporal and spatial evolution ofpathological changes after cortical

devascularization. Moreover, we predicted that the changes observed by DWI, T2WI

and Gd-T1 WI would accurately reflect the morphological changes observed by histology

and immunocytochemistry, allowing us to correlate specific physiological events to

changes in diffusion.

Once the model was characterized, we studied the neuroprotective effect of the

cell permeant calcium buffer, APTRA-AM. While the neuroprotective properties of

APTRA-AM have been demonstrated against early in vitro glutamate-induced

excitotoxicity and against in vivo focal cerebral ischemia (Tymianski et aI., 1994) we

hypothesized that this molecule would also be neuroprotective if given after a permanent

ischemic insult. Moreover, we felt that if APTRA-AM prevented neuronal cell death, it

may also block the glial activation and inflammation typically associated with this type

of injury. Finally, if APTRA-AM proved to prevent the cell death, glial and

inflammatory responses, it should also suppress any MRI sensitive (i.e. diffusion)

changes to the tissue.



4.0 Materials and Methods

4.1 Animal Model

A small focal permanent ischemic lesion was created in the right frontal cortex of

male Wistar rats (250-300g; from a colony maintained by the Department of Anatomy

and Cell Biology, University of Saskatchewan, Saskatoon, Canada or Charles River,

Hollister, CA) using a modification of a cortical devascularization technique

(Berezovskaya et aI., 1996). To create the lesion, a midline incision was made over the

skull and a 2.3 mm hole was drilled through the skull 2 mm anterior and 1 mm lateral to

Bregma (Figure 10). The dura was removed, exposing the pial vasculature and a single

descending pial vessel was transected. Once bleeding stopped, residual blood was

washed from the area using phosphate buffered saline and the wound was then closed in

discontinuous silk suturing. In the initial experiments, anesthesia was induced using a

mixture ofketamine (125 mglkg, i.p., l.A. Webster, Sterling, MA; K836) and xylazine

(10 mglkg, i.p., l.A. Webster, Sterling, MA; 560680) while later experiments used

isofluorane (l.A. Webster, Sterling, MA; 634705) inhalation (3% for induction, 1.5% for

maintenance).

Sham-operated control animals underwent a similar surgical procedure that

involved a craniotomy followed by the removal of the dura, exposure of the pial vessels

but without the vessel transection. All procedures conformed to animal care regulations



Figure 10: Photograph of a rat's skull showing the placement of the craniotomy relative
to Bregma (asterisk). A large pial vessel can be seen traversing the hole (arrow). Scale
bar=2mm.



and were approved by both the University of Saskatchewan and Loma Linda

University Animal Care Review Committees.

4.2 Magnetic Resonance Imaging

4.2.1 MRI Acquisition at 1.5T

The initial DW and T2W MRI experiments were perfonned at the University of

Saskatchewan using a Siemens 1.5T SP Magnetom with a 150 mm-diameter Helmholtz

surface coil (Figure IIA). Animals underwent light anesthesia with ketamine (90

mg/kg, i.p.) and xylazine (10 mg/kg, i.p.). After slice positioning, a spin echo diffusion

imaging sequence (TR = 2200 ms, TE = III ms, b = 0, b = 12819 s/cm2
, 0= 32 msec)

and a 16 echo T2 sequence (TR = 2000 ms, TE = 20 - 245 ms) were run. Seven coronal

slices, each 2 mm thick and interleaved by a 2 mm separation, with a 50 mm field of

view and a matrix size of 128 x 128 were collected for each sequence. Two averages

were used to increase the signal to noise ratio of the images.

A total of thirty-seven animals were used in this study (see section 8.1 for

details). The animals were scanned before surgery ('prescan') and then at 12,24,48

hours, 3, 5, 7 and 14 days after surgery. These time points were chosen after preliminary

experiments that showed no significant change in signal intensity prior to 12 hours. In

order to correlate histological changes with the individual time points, three animals

were culled from the temporal imaging study at each of the eight time points.



Figure 11: The placement of a rat in the Helmholtz surface coil used at 1.5T (A), the
quadrature coil used at 3.0T (B) and the quadrature coil at 4.7T (C).



4.2.2 MRI Acquisition at 3.0T

To detennine if the cortical devascularization resulted in an increase in blood

brain barrier penneability, 7 animals underwent a gadolinium (Gd; ProHance™

gadoteridol; Bracco Diagnostics, Mississauga, ON; J4-639) enhanced T1 weighted (Gd­

T1 WI) study (see section 8.1 for details). All animals had tail vein catheters in place

prior to imaging. This data set was collected at the University of Saskatchewan on a

SMIS (Surry Medical Imaging Systems, England) 3.0T magnet with a 50 mm quadrature

RF coil (Morris Instruments, Ontario; Figure 11 B). Animals were anesthetized using

isofluorane inhalation (3% for induction, 1.5% for maintenance). After slice positioning,

a pre-contrast T1 weighted sequence was perfonned (TR = 650 ms, TE = 20 ms). Ten

coronal slices, each 1.5 mm thick and interleaved by a 1.5 mm separation, with a 40 mm

field of view and a matrix size of 128 x 128 were collected. Two averages were used to

increase the signal to noise ratio of the images. Following this acquisition, the contrast

agent was injected via a tail vein catheter (0.3 mmol/kg); followed by a series ofTl

weighted sequences (using the same parameters) perfonned continuously over the next

30 minutes. Each animal was imaged prior to and then again at 1, 2, 3, and 7 days after

surgery. Both pre- and post-contrast images were collected at each time point.

4.2.3 MRI Acquisition at 4.7T

Q-space (multiple b value) diffusion weighted imaging was used to study

diffusional related changes in injured animals after receiving saline, dimethyl sulfoxide

(DMSO) or APTRA-AM injections. This data was collected at Lorna Linda University



on a BnLker (Billerica, MA) 4.7T magnet with a 50 mm quadrature RF coil (Figure

11 C). Animals were anesthetized using isot1uorane inhalation (3% for induction, 1.5%

for maintenance) and after slice positioning, a T1 weighted sequence was performed (TR

= 750 ms, TE = 20 ms) followed by a DWI sequence (TR = 3000 ms, TE = 20 ms, b =

19, 100, 350, 738 s/mm2
, 0 = 32 ms). Twelve coronal slices, each 1.5 mm thick and

interleaved by a 1.5 mm separation, with a 45 mm field ofview and a matrix size of 256

x 256 were collected. Two averages were used to increase the signal to noise ratio of the

images.

A total of 23 animals were used in this study (see section 8.1 for details) and the

animals were inlaged before surgery ('prescan ') and then at 12, 24, 48 hours, and 7 days

after surgery.

4.2.4 MRI Analysis

To quantify changes in the diffusional motion of water due to the

devascularization injury, diffusion weighted maps were generated from the 1.5T images

using an in-house program and the apparent diffusion coefficient (ADC, cm2/s)

calculated for each pixel using the Stejskal Tanner equation (see equation 2.7). It should

be noted, that the un-weighted (b = 0) image is essentially a T2 weighted image owing to

its long TR and short TE.

To quantify the changes in the overall water content after the surgery, T2 maps

were generated from the 16 echo sequences obtained at 1.5T and the relaxation constants

were calculated for each pixel using nonlinear least squares curve fit to the data using the

equation,



M (t) = Mo (e tlf2) (3.2)

where Mo is the initial magnetization before decay, t is the echo time (ms) and T2 is the

spin-spin relaxation time (ms).

Region of interest (ROI) analysis of the 1.5T diffusion and T2 maps were done

using Cheshire™ image processing software (Hayden Image Processing Group,

Waltham, MA). Two ROJs were manually drawn on the DW and T2 maps; region one

was located in the cortex immediately inferior to the surgery site (the "lesion") and

region two was located in the homologous cortical area on the contralateral side (Figure

12). Each RaJ contained an area of 3 pixels by 3 pixels, with a pixel size of 352 Jlm.

Both regions were located in the primary motor cortex (frontal area I, Frl). On the DW

maps, a mean ADC (± standard error of the mean (SEM» was calculated for each region

of interest and a mean T2 relaxation time (± SEM) was generated using the T2 maps.

Differences in the means of both these tissue properties were compared across time

points using a repeated measures one way ANaYA followed by individual Student­

Newman-Keuls conlparisons (Sigma Stat™, SPSS Inc., New York, NY) for statistical

significance (p<O.05; highly significant at p<O.OI). The difference in ADC or T2

relaxation between both hemispheres was analyzed for statistical significance (p<O.05;

highly significant at p<O.O 1) using a Student's t-test.



Figure 12: Regions of interest selected for the quantification ofADC. The un-weighted
(b = 0) image (A) shows the location of the ROIs and the atlas (Paxinos and Watson,
1998) image (B) shows the location of the ROIs in the primary and association motor
cortices of both hemispheres.



ROJ analysis in the q-space DWJ experiments was done using the Image

Sequence Analysis tool, which is part of the ParaVision 2.1.1 software package (Broker;

Billerica, MA). The ROI were located in the same areas as the original diffusion maps

(see Figure 12), however the size of the ROI differed slightly owing to the difference in

pixel size (176 Jlffi). In this data set, ADC maps were not generated for the ROI analysis

instead; the ADCs of the ROI were calculated manually from the mean signal intensities

using equation 2.7. Three ADCs were calculated for each animal at each time point, the

first using b = 19 s/mm2 and b = 110 s/mm2
, the second using b = 19 s/mm2 and b = 350

s/mm2 and the third using b = 19 s/mm2 and b = 738 s/mm2
•

The differences in the mean ADC at each b-value were compared across time

points using a repeated measures one way ANOVA followed by individual Student­

Newman-Keuls comparisons (Sigma Stat™, SPSS Inc., New York, NY) for statistical

significance (p<0.05; highly significant at p<O.OI). Differences in the mean ADC of the

lesion ROJ were also compared across the different treatment groups using the same

statistical analysis. A Student's t-test was used to determine if the ADC of the lesion and

contralateral ROI were significantly different (p<0.05; highly significant at p<O.Ol).

In the Gd-TI WI study, analysis was done by visually inspecting the post-contrast

images for the presence of contrast within the tissue parenchyma.



4.3 Tissue Analysis

4.3.1 Fixation and Tissue Processing

Rats were anesthetized using a mixture ofketamine (125 mg/kg, i.p.) and

xylazine (10 mg/kg, i.p.) and perfused transcardially with 4% paraformaldehyde in

0.12mM Millonig's buffer (see section 8.2.2.1) at selected time points after injury or

treatment. The brain was left in situ and refrigerated for one hour, after which time it

was removed and placed in 4% paraformaldehyde for 1 hour. Following this, 3,30

minute rinses in 0.12 mM Millonig's buffer (see section 8.2.1.2) were done and the

rinsed brains then placed in a 30% sucrose solution (see 8.2.2.2) until they sank. The

brain was blocked into 3 sections (cerebellum, frontal cerebrum, and rostral cerebrum),

coated in OCT Compound (Tissue Tek™, Fisher Scientific, Tustin, CA; 1-437-365) and

quick-frozen over dry ice. Frozen tissue was stored at -80°C until processed. Sections

(30 J.lll1) were cut using a cryostat set at - 20°C and every 10th section was mounted on

gel-chrome-alum coated slides. Tissue not mounted was placed in a 1.5 ml

microcentrifuge tube containing a cryoprotectant solution (see section 8.2.2.3). This

archived tissue was stored at 4°C until processed.

4.3.2 Light Microscopy

4.3.2.1 Cresyl Violet Histochemistry

To ascertain the amount of damage caused by the cortical devascularization,

mounted slides were then stained with cresyl violet acetate. Briefly, sections were



dehydrated in two 5-minute changes of 95% alcohol, followed by the removal of lipids

in chloroform - ether solution (see section 8.2.3.1.2) for 15 minutes. The sections were

then rehydrated through descending concentrations of alcohol with a final rinse in

distilled water. Slides were then placed in 0.1 % cresyl violet acetate (see section

8.2.3.1) for 10 minutes followed by 2 rinses in distilled water and a brief clearing in

acetic formalin (see section 8.2.3.1.3). The slides were then rinsed in 2 changes of

distilled water and dehydrated through ascending concentrations of alcohol, followed by

a final clearing in 3 changes of Histoclear™ (National Diagnostics, Atlanta, GA;

H5200).

4.3.2.2 Measurement of Lesion Area

The area (mm2
) of the infarct was determined by computerized planimetery of

the maximal area of damage (defined as tissue rarefaction, vacuolation, necrosis and

edema) observed on cresyl violet stained sections at a magnification of 200X.

Measurements were made using the Computer Assisted Stereological Toolbox - Grid

system (C.A.S.T.- Grid; Albertslund, Denmark) and the data expressed as mm2
• The

resultant traces of the infarct area were constructed of a series of straight lines drawn at

the edge of the infarct. The start and end points were connected by a straight line to

approximate the surface of the brain (Figure 13).

Three sections from each time point were analyzed, as were sections from each

animal included in the neuroprotection study (see section 8.1 for details). The individual

area measurements from each animal were pooled and expressed as mean lesion area

(mm2
). Differences in mean lesion area (± SEM) were compared across the different



Figure 13: Two representative photomicrographs of a lesion following cortical
devascularization (A) and after APTRA-AM treatment (B). Images show the
delineation of the two dimensional area used to calculate lesion area. Scale bar = 100
f..lm.



time points using a repeated measures one way ANOVA followed by individual Student­

Newman-Keuls comparisons for statistical significance (p<O.Ol). For the data collected

from the neuroprotection study, differences in the lesion area (± SEM) at 7 days after the

different treatments were compared using a ranked sum ANOVA followed by Dunn's

method ofpairwise multiple conlparisons (significance p<O.Ol; Sigma Stat™, SPSS Inc.,

New York, NY).

4.3.2.3 Immunocytochemistry

Sections through the lesion were selected for immunocytochemical analysis (see

section 8.1 for details). Neurons were identified using a mouse anti-neuronal nuclei

(NeuN, 1:1000; Chemicon International, Temecula, CA; MAB377) monoclonal

antibody. Glial subpopulations, astrocytes and microglia, were identified using a rabbit

anti-glial fibrillary acidic protein (GFAP, 1:500; DAKO, Carpinteria, CA; Z0334) and a

mouse anti-CD1lb (OX-42, 1:250; Serotec, Raleigh, NC; MCA275R) primary

monoclonal antibody, respectively. Phagocytic cells were identified with a mouse anti­

EDl primary monoclonal antibody (1:400; Serotec, Raleigh, NC; MCA341R). NF-KB

activation was identified using a mouse anti-NF-lCB p65 subunit primary monoclonal

antibody (1 :500; Roche Molecular Biochemicals, Indianapolis, IN; 1-697-838). This

NF-KB antibody was chosen as it recognizes an epitope within the nuclear translocation

signal of the p65 subunit, thus it selectively stains a released and activated form ofNF­

KB (Zabel.U. et aI., 1993).

Sections were washed twice in phosphate buffered saline (PBS) and placed in a

12 well culture plate with one section per well. The sections were blocked in 50/0 horse



serum (Vector Laboratories, Burlingame CA; S2000), 1% bovine serum albumin (BSA,

Sigma-Aldrich, St. Louis, MO; A9647), and 1% Triton-X-IOO (Sigma-Aldrich, St.

Louis, MO; T9284) and incubated in one of the primary antibodies diluted in PBS

containing 5% horse serum, 0.1 % BSA and 0.1 % Triton-X-l 00 overnight at 4°C. The

next day, sections were washed, incubated with a biotinylated universal antibody

(Vectastain Universal Elite ABC kit, Vector Laboratories, Burlingame CA; PK6200) for

1 hour at room temperature, quenched with 3% H202, washed again, incubated with

avidin-peroxidase (Vectastain Universal Elite ABC kit, Vector Laboratories, Burlingame

CA; PK6200) for 1 hour, and colored by diaminobenzidine (DAB, Sigma-Aldrich, St.

Louis, MO; D8001). Finally, sections were rinsed in distilled water, mounted on gel­

chrome-alum coated slides and dried on a slide warmer set at 37°C. Control sections for

non-specific staining were prepared by the omission of the primary antibody.

4.3.3 Fluorescent Microscopy

4.3.3.1 Immunocytochemistry

A number of sections were selected for fluorescent double-labeled

immunocytochemistry to determine where the pro-inflammatory cytokines, TNF-a and

INF-y co-localized (see section 8.1 for details).

Briefly, sections were washed twice in PBS and placed in a 12 well culture plate

with one section per well. The sections were blocked in 5% horse serum, 1% bovine

serum albumin, and 1% Triton-X-100 for 15 minutes and then incubated in two of the

primary antibodies diluted in PBS containing 5% horse serum, 0.1% BSA and 0.10/0



Triton-X-I00 overnight at 4°C. Primary antibodies used included GFAP (1 :500), OX-42

(1 :250), EDI (1 :400), a rat anti-TNF~ (1 :500; R&D Systems, Minneapolis, MN; AF­

510-NA) and a rat anti-IFN-y (1:500; R&D Systems, Minneapolis, MN; AF-585-NA)

monoclonal antibody. The next day, sections were washed 4 times in PBS and incubated

with two of either Texas Red® anti-rabbit IgG, fluorescein anti-rabbit IgG, Texas Red®

anti-rat IgG, fluorescein anti-mouse IgG, or Texas Red® anti-goat IgG (diluted at 1:200;

Vector Laboratories, Burlingame CA; TI-1000, FI-1000, TI-9400, FI-2000, TI-5000), for

1 hour at room temperature. Sections were then washed 4 times in PBS, mounted on

gel-chrome-alum coated slides, dried on a slide warmer set at 37°C and mounted with

Vectashield™ mounting media containing 4', 6-diamidino-2-phenylindole,

dihydrochloride (DAPI) (Vector Laboratories, Burlingame CA; H-1200). Control

sections were prepared by the omission of the primary antibodies.

4.3.3.2 Fluoro-Jade™ Staining

Sections both preceding and adjacent to the cresyl violet and immunocytochemically

stained slides were stained with Fluoro-Jade™ (Histo-Chem Inc., Jefferson AZ) to

identify the presence and location of degenerating neurons (see section 8.1). Briefly,

sections were rinsed in distilled water, mounted on gel-chrome-alum coated slides, and

dried on a slide warmer set at 60°C. After drying, the slides were rehydrated in 800/0

alcohol containing 1% NaOH, 70% alcohol and distilled water. The slides were then

incubated in 0.06% potassium permanganate followed by a distilled water rinse and

subsequent incubation in Fluoro-Jade diluted in 0.1 % acetic acid. Finally, the slides

were washed 3 times in distilled water, dehydrated in xylene, and mounted with DPX



(Fluka, St. Louis, MO; 44581). The sections were observed using a

fluorescein/fluorescein-5-isothiocyanate (FITC) filter system.

4.4 Neuroprotection Study

A histological study was undertaken to assess the neuroprotective effects of

APTRA-AM. Rats were randomly assigned to five treatment groups (see section 8.1 for

details): 1) ischemia with no treatment, 2) ischemia with saline (0.9% NaCI), 3) ischemia

with vehicle (1 % DMSO (Sigma-Aldrich, St. Louis, MO; D2650) in 0.9% NaCI), 4)

ischemia with APTRA-AM (40 mg/kg in 1% DMSO; Molecular Probes, Eugene OR;

A6896), and 5) sham-surgery with no drug treatment. All treatments were administered

intravenously via tail vein injection. For each injection, a total volume of 3 mL was

administered over 15 minutes using an infusion pump set at a flow rate of 0.2 ml/min

(Harvard Apparatus, Holliston, MA). Each aninlal received two injections, the first at 1

hour after injury and the second 12 hours after injury. This regimen was chosen based

on previous findings that intravenous APTRA-AM reduced evoked potentials in the rat

hippocampus in vivo, an effect that was maximal 6 hours after infusion with return to

baseline by 24 hours (Spigelman et aI., 1998). Moreover, since neuronal death appears

to occur with a delay of about 48 hours after cortical devascularization (Bartnik et aI.,

2001) we reasoned that optimal neuroprotection might be achieved with a double dose

regimen. Seven days after injury and treatment, the animals were sacrificed for

subsequent histological and stereological analysis.



4.5 Enzyme Linked Immunosorbent Assay (ELISA)

Three, 6, 12, 24, 48 hours and 3 days following cortical devascularization or

sham operation, rats (see section 8.1 for details) were euthanised using 100% CO2

asphyxiation and the ischemic infarct and contralateral homologous cortical areas were

rapidly removed and snap frozen in liquid nitrogen. The tissue was homogenized in 50

JlI of PBS/Protease Inhibitor Cocktail (Calbiochem-Novabiochem, San Diego, CA;

539134) for every 10 mg wet weight. The samples were then centrifuged at 10,500 g at

4°C for 15 minutes and the supernatant aliquoted. A quantitative sandwich ELISA

technique was used to quantitatively ascertain the amount of these inflammatory

cytokines produced as a result of the cortical devascularization.

Briefly, a 96-well Microwell plate (NUNC Maxisorb™, Fisher Scientific, Tustin,

CA; 12-565-210) was coated with a 100 JlI of the capture antibody (either anti-rat TNF-a

or anti-rat INF-y) diluted in coating buffer, the plate sealed and incubated overnight at

4°C. After incubation, the plate was washed five times in wash buffer, followed by

blocking with assay diluent at room temperature for one hour. The plates were then

washed five times with the wash buffer and 100 JlI of sample or standard (recombinant

rat TNF-a or IFN-y) was loaded into each well and incubated for 2 hours at room

temperature. Following this incubation, the plates were again washed 5 times with wash

buffer, incubated with detection antibody (biotinylated anti-rat TNF-a or anti-rat IFN-

y, 1: 25Q) for one hour at room temperature. The wells were washed again and 100 JlI of

avidin-horseradish peroxidase conjugate (diluted 1:250) added to each well and

incubated for 30 minutes at room temperature. After incubation, the plates were washed

five times and incubated in 3, 3-, 5, 5-tetramethylbenzidine (TMB) substrate in the dark



for 30 minutes. To stop the reaction, 50 mL of2N H2S04 was added to each well and

the absorbance read at 450 nm. The amount of cytokine present was normalized to the

amount of tissue analyzed and expressed as pg/mL. All the reagents and antibodies used

in these experiments were supplied with the OptEIATM rat TNF-a (558870),OptEIATM

rat IFN-y (558861), and reagent set B (550534) kits (Pharmingen, San Diego, CA).

The mean concentration of each cytokine (in pglmL ± SEM) was calculated for

each of the ROIs and differences in the cytokine concentration of each region were

compared across time points using a repeated measures one way ANOVA followed by

individual Student-Newman-Keuls comparisons (Sigma Stat™, SPSS Inc., New York,

NY) for statistical significance (p<0.05; highly significant at p<O.Ol).



5.0 Results

5.1 Cortical Devascularization: A Model of Permanent Focal Ischemia

The cortical devascularization model used in the following studies produces a

well-circumscribed, small, permanent cortical ischemic lesion that develops slowly. All

animals undergoing this procedure developed a lesion of similar size and severity.

Specifically, the lesion in each animal was well circumscribed; never extending

inferiorly beyond the corpus callosum and contained within 600-1500 J.lm of tissue. Only

occasionally was blood found within the infracted region.

Previously, this model has been used to study choline acetyltransferase activity in

the nucleus basalis (Stephens et aI., 1985), the effect of injury on glial cells (Herrera,

Cuello, 1992), the effect of colony stimulating factor-Ion neuronal survival

(Berezovskaya et aI., 1996) as well as lesion-induced changes in nerve growth factor

levels (Conner et aI., 1998). Despite its previous use, we are the first to characterize the

temporal evolution of neuronal damage, glial changes, and post-injury int1ammation.

Moreover, we are the first to publish the MR changes associated with an injury of this

type (Bartnik et aI., 2001).



5.1.1 Temporal Evolution of Infarct Development: MR Changes

5.1.1.1 Diffusional Changes at 1.5T

Hyper-intense regions in DW images define areas where water mobility is

relatively restricted resulting in decreased ADC values (Moseley et aI., 1990). The

converse is also true, where hypo-intense regions correspond to areas of increased ADC.

Control (un-injured) animals and all prescan images showed consistent patterns of water

mobility, with the ventricles and interstitial regions exhibiting the highest mobility.

However, intensity changes in diffusion were observed after the cortical

devascularization on the ipsilateral side of the brain (Figure 14), which were quantified

by calculating the ADC for each region of interest.

The ADC isolates the diffusional effects from the influence ofT2 changes

specifically the quantity of water and its intrinsic relaxation rate properties (Moseley et

aI., 1990). Comparison of the mean ADC of the lesion area before and after treatment

revealed significant (p<0.05) ADC reductions at 12,24,48 hours as well as 3 and 5 days

(Figure 15). The most significant decrease in ADC occurred at 12 hours after injury,

when the ADC of the lesion area had decreased to 67.5% of the prescan value (Table 1).

The ADC of the lesion area remained below 80% of the prescan value until 7 days after

injury (Table 1). By 7 days the ADC had recovered to 800/0 of the prescan value (not

significant) and at 14 days the ADC had returned to prescan values (Table 1). In

addition, a significant (p<0.05) difference in ADC within the corresponding



Figure 14: Representative diffusion un-weighted (b = 0; first column) and weighted (b =

12819 s/cm2
; second column) MR images at 1.5T of animals sampled from control (A,

B) and 12 hours (C, D), 24 hours (E, F), 48 hours (G, H), 7 days (I, J), 14 days (K, L)

after cortical devascularization. Both the un-weighted and weighted diffusion images

are typical for the control (A, B) group. The weighted image (B) has the brain outlined

in black. A region of increased signal intensity corresponding to the lesion area (arrow)

is observed at both 12 (D) and 24 hours (F). After 48 hours, the un-weighted image

shows a decrease in signal intensity in the area corresponding to the lesion (G, arrow)

which continues into the 7 day time point (I, arrow) while the corresponding diffusion

weighted images show increased signal intensity in the lesion area (H, j). By 14 days,

both the un-weighted (K) and weighted images (L) are similar to the control group. Scale

bar = 1 em.
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Figure 15: MeanADC (cm2/s, ± SEM) versus observation time ofthe contralateml and
lesion (ipsilateral) regions of interest (ROI). An asterisk denotes a significant (p<O.05)
difference in the ADC of the lesion ROI at 12, 24, and 48 hours, 3 and 5 days after
injury when compared to the same area ofthe animals images prior to surgery (prescan).
A significant decrease inADC was also observed in the contralateral ROI at 12,24
hours and 5 days after injury when compared to the identical ROI in the prescan images.



Table 1: Quantitative evaluation of the mean ADC (± SEM) and T2 relaxation time (±

SEM) in the lesion and homologous contralateral region of interest in devascularized

animals. I

Mean ADC (± SEM) T2 relaxation time (± SEM)

(x 10-8 cm2/s) (ms)

Observation Histology Lesion side Contralateral n Lesion side Contralateral n

Time (n) side side

Prescan 3 105.21 ± 11.64 104.03 ± 9.64 23 105.20 ± 6.17 108.84 ± 11.36 23

12 hours 4 71.05 ± 7.84* 78.08 ± 8.52* 5 99.15 ± 2.28 96.50± 5.79 5

24 hours 4 74.69 ± 6.42* 87.00 ± 7.23* 8 92.01 ± 5.73 92.42 ± 4.73 8

48 hours 4 78.44 ± 5.48* 101.05 ± 10.55 8 95.31 ± 7.45 102.13 ± 9.02 5

3 days 4 83.80 ± 8.0] * 99.25 ± 8.88 6 85.54 ± 2.23 88.83 ± 7.10 6

5 days 4 72.95 ± 6.47* 84.80 ± 7.54* 7 85.96 ± 3.38 106.84 ± 8.88 8

7 days 4 84.52 ± 7.68 94.8] ± 10.39 6 95.73 ± 8.59 100.78 ± 15.39 5

]4 days 5 104. J1 ± 9.90 ]06.43 ± 9.34 5 87.38 ± 8.00 91.45 ± 10.15 5

IYalues in a column followed by asterisk are significantly different from the prescan

value at the 5% level according to a repeated measure one-way ANOYA followed by

individual Student-Newman-Keuls comparisons.



contralateral region at 12, 24 hours and 5 days (Figure 14) were also observed, with the

largest reduction (75%) observed at 12 hours after injury (Table 1).

A representative DWI from the sham data set at 3 days post surgery is illustrated

in Figure 16. Quantitative analysis did not detect a significant difference in ADC

compared to the pre-scan values (Table 2).

5.1.1.2 T2 Changes at 1.5T

Signal intensity in T2W images (T2WI) is indicative of proton relaxation time

and is considered a putative marker for vasogenic edema. An increase in signal intensity

corresponds to areas with an increased relaxation time. As the un-weighted (b = 0)

image is essentially a T2 weighted image owing to its long TR and short TE, the first

column of Figure 14 is used to illustrate the T2 changes. Prior to surgery (prescan), no

regions of altered signal intensity existed indicating that the anesthesia also had no effect

on T2 relaxation time (Figure 14 A). After injury, slight changes in signal intensity were

observed on the MR images at 24, 48 hours and 7 days (Figure 14 E - I). Statistical

analysis indicated that these changes were not significant (Table 1). Animals in the

sham group also showed a slight decrease in the signal intensity in the area inferior to

the surgery site (Figure 16 A) however; statistical analysis indicated that the change in

T2 relaxation time was not significant.

5.1.1.3 Contrast-Enhanced Tl Changes at 3.0T

The use of paramagnetic contrast agents to study blood-brain-barrier

permeability has been well documented. It is generally accepted that an accunlulation of



Figure 16: Representative diffusion un-weighted (A) and weighted MR (B)
images of a sham animal 3 days after surgery. The un-weighted diffusion image
shows a slight decrease in signal intensity in the area corresponding to the
surgery site (A, arrow). The diffusion-weighted image shows no change in signal
intensity between the area inferior to the surgery site and the matching
contralateral region (B). Scale bar = 1 em.



Table 2: Mean ADC (± SEM) of the ipsilateral and contralateral region of interest in the

sham animals.

Mean ADC (± SEM) T2 relaxation time (± SEM)

(x 10-8 cm2/s) (ms)

Observation Lesion side Contralateral n Lesion side Contralateral n

Time side side

Prescan 109.50±4.17 104.04 ± 5.96 9 107.21 ± 17.30 98.27 ± 7.50 8

12 hours 108.82 ± 3.60 95.70 ± 7.68 4 104.65 ± 11.58 115.70 ± 13.92 4

24 hours 98.70± 7.]0 87.21 ± 8.]0 6 94.35 ± 5.47 120.34 ± 20.24 6

48 hours 107.99 ± 7.27 88.06 ± 10.37 6 102.48 ± 14.65 121.82 ± 21.36 5

3 days 105.48 ± 9.20 98.67 ± 7.59 4 90.35 ± 5.86 82.7] ± 2.53 4

5 days 111.69 ± 8.92 92.38 ± 3.08 5 ]03.42 ± 8.69 ]]6.15±]0.92 5

7 days 100.05 ± 6.36 88.37 ± 17.89 5 96.75 ± 5.52 95.42 ± 6.93 5

]4 days 103.44 ± 9.90 81.33 ± 7.15 5 95.46 ± 6.68 ]20.97 ± 18.11 4



gadolinium within the parenchyma is likely the result of disturbances in the blood-brain­

barrier (Reith et aI., 1995); (Kastrup et aI., 1999), (Park et aI., 1999). In our study, there

was no consistent parenchymal enhancement at any time point studied after cortical

devascularization (Figure 17), despite the evidence of a lesion (Figure 17 A, B, D, E, G,

H, arrows). As expected, parenchymal enhancement was not observed in any of the

sham animals (Figure 17 C, F, I).

5.1.2 Temporal Evolution of Infarct Development: Morphological Changes

5.1.2.1 Neuronal Cell Death and Infarct Formation

Using cresyl violet histochemistry, control (un-operated) brains featured compact

parenchyma with little extracellular space; neurons were round, with well-stained Nissl

substance and prominent nuclei throughout the frontal areas (Figure 18 A, B). However,

transection of a descending pial vessel produced a progressive pan-necrotic infarct in the

cortical area supplied by that vessel.

Injury evolved systematically: 12 hours after surgery the tissue below the surgery

site looked similar to control tissue (Figure 18 D) with occasional minor disruption in

the outer molecular layer; at 24 hours the tissue remained intact with some vacuolated

neurons (Figure 18 F). No morphological changes were observed in the contralateral

(non-lesion) side at either of these early time points (Figure 18 C, E).
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Figure 17: Representative Tl weighted (pre-contrast) and Gd-enhanced Tl weighted
(post-contrast) images of ischemic animals 24, 48 hours and 3 days after surgery.
After cortical devascularization, both the pre- and post-contrast images clearly show
evidence of tissue injury (A, B, D, E, G, H arrows). After Gd injection, there was
increased signal intensity in the meninges and skin overlying the injury site (E, H
asterisk) but no enhancement within the parenchyma. Sham animals injected with Gd
also showed no change in signal intensity within the parenchyma (C, F, I). Scale bar =
1 em.



Figure 18: Photomicrographs of cresyl violet stained tissue sections from control (A, B),

12 hours (C, D) and 24 hours after cortical devascularization groups. Cresyl violet

histochemistry of the control (A, B) animals shows the typical compact neuropil and

rounded neuronal nuclei in both hemispheres which is characteristic ofhealthy tissue.

Twelve hours (C, D) after cortical devascularization, both the contralateral and

ipsilateral cortices continue to have the typical healthy appearance. In the 24-hour

animals, some neuronal vacuolation begins to appear in the lesion cortex (F, arrows).

Scale bar = 100 J.lm.
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Forty-eight hours after surgery, the area below the surgery site showed signs of

infarct development. The parenchyma was vacuolated (Figure 19 B, asterisks) with

increased extracellular space. Numerous shrunken, necrotic nuclei were present (Figure

19 B, arrows). Inflammatory cells (most likely polymorphonuclear cells) were observed

in the overlying meninges. At 7 days, no recognizable neurons were found as the entire

lesion area was filled with shrunken necrotic nuclei and what appeared to be

inflammatory cells (Figure 19 D). Finally, at 14 days, the lesion area contained less

cellular debris and appeared cystic (Figure 19 F). No overt histological changes were

seen in the contralateral side (Figure 19 A, C, E). All the animals included in the

histological analysis showed similar patterns of temporal development and infarct size.

In the sham-operated animals, histological analysis revealed healthy tissue in the

cortical layers ofboth hemispheres with no evidence of swelling, vacuolation or cell

necrosis in the area below the surgery site up to and including 3 days post-surgery

(Figure 20). However, at 14 days, the cortex inferior to the surgery site had often

herniated up into the surgery site. Cresyl violet staining showed that the herniated area

was filled with compact neuropil and typically stained nuclei; however, the neuronal cell

bodies had an elongated morphology.

While cresyl violet histochemistry clearly delineated the loss of neurons

associated with infarct formation, Fluoro-Jade fluorescent immunohistochemistry was

used to ascertain the extent of ongoing neuronal degeneration throughout the course of

infarct formation. At all time points following cortical devascularization, there was no

evidence of neuronal degeneration associated with the progressive development of the
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Figure 20: Photomicrographs of the contralateral (A) and lesion (B) cortices ofa sham­
operated animal 3 days after surgery. The sham-operated animals had the skull and dura
removed from the same area as the cortical devascularization animals however, the pial
vessel was not disrupted. Cresyl violet histochemistry shows healthy tissue in both
motor cortices (A, B). The arrow indicates a descending vessel similar to those that
would be disrupted during the devascularization surgery. Scale bar = 100 Jlm.



lesion, as indicated by the absence of Fluoro-jade positive neurons (Figure 21 B).

Sections extending throughout the 500 11m rostral and caudal to the infarct were also

stained with Fluoro-Jade and no evidence of neuron degeneration was present.

Interestingly, many of the invading inflammatory cells stained with Fluoro-Jade (Figure

21 B), as did much of the infarct debris.

5.1.2.2 Lesion Area

Cresyl violet histochemistry was used to quantitatively measure the maximum

area (mm2
) of tissue involved in the infarct. Within the first 24 hours after the

devascularization surgery the injured area was restricted to a small «0.50 mm2
; Figure

22) area of edema and scattered vacuolation within the first two cortical layers. After 48

hours, the infarct area had increased significantly (p<0.00 1) from 24 hours to reach its

maximum of 2.20 ± 0.59 mm2 (Figure 22). The infarct contained rarefied, vacuolated

tissue with widespread necrosis and edema involving all cortical layers (see Figure 19

B). Three days after the injury the area of the infarct had decreased to 1.53 ± 0.32 mm2

and contained mainly cellular debris and scattered inflammatory cells. Seven days after

injury, the lesion area remained at 1.59 ± 0.27 mm2 (Figure 22).

5.1.2.3 Glial Reactivity

After cortical devascularization, astrocytes within both hemispheres responded to

the unilateral injury (Figure 23). Within, 24 hours of the injury, the ipsilateral cortex

showed increased GFAP immunoreactivity in many ofthe perivascular astrocytes as



Figure 21: Fluorescent photomicrographs of cortical tissue from the ipsilateral
hemisphere of a control (A) and a devascularized animal (B) stained with Fluoro-Jade 7
days after injury. The control tissue shows staining of numerous glial cells (A, arrows)
and the meninges. In the injured animal, numerous cells within the infarct stained with
Fluoro-Jade (B, arrows). Inset images provide enhanced view ofthe morphology of the
stained cells.
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Figure 22: Graph of the mean lesion area (mm2 ± SEM) at 12, 24, and 48 hours, 3 and 7
days after injury. The lesion was located 2 mm from Bregma and reached its
maximtun size at 48 hours. The asterisk denotes statistical difference (ANOVA,
p<O.OOI).



Figure 23: Photomicrographs of the ipsilateral cortex immunostained with a
rabbit anti-GFAP monoclonal antibody from control animals (A), and at 24
hours (B), 48 hours (C) and 7 (D) days after cortical devascularization. Faint
GFAP immunoreactivity highlighting the typical stellate morphology of
astrocytes can be observed in the control tissue (A, arrows and inset). After
devascularization, GFAP immunoreactivity increased over time; first in the
perivascular astrocytes (B, arrows) then in the numerous reactive astrocytes
surrounding the infarct (C, arrows). By 7 days a glial scar has formed around
the edge of the lesion (D, arrows). Inset images are at a higher magnification
(100 X) to display better cellular detail. Scale bar = 100 f.1m.



well as a number of other scattered astrocytes. While these cells had increased

immunoreactivity, they did not display a reactive morphology (Figure 23 B). Astrocytes

within the contralateral thalamus, corpus callosum and cingu1ate areas also had increased

GFAP reactivity, with a few scattered reactive astrocytes in the corpus callosum and

medial cingu1ate area. After 48 hours, a band of reactive astrocytes were found

surrounding the infarct (Figure 23 C), which were still present 7 days after the injury

(Figure 23 D). Numerous reactive astrocytes were also present throughout the entire

ipsilateral hemisphere.

Similar to tissue taken from the control group, astrocytes in the subpial layer

(gliallimitans), the outer molecular layer, and surrounding the blood vessels of the

sham-operated animals had faint GFAP immunoreactivity (Figure 24 A).

Twenty-four hours after injury, a dramatic increase in OX-42 immunoreactivity

was observed in the microglia of both hemispheres in comparison to control animals

(Figure 25 A, B). Despite the increase in immunoreactivity, these cells retained the

typical stellate shape and highly branched processes of resting microglia. After 48

hours, OX-42 immunoreactivity in both the ipsilateral and contralateral cortex declined

from its 24-hour peak, however the immunoreactive cells began to feature the

characteristic reactive morphology including the shortened cellular processes and the

loss of secondary arborizations (Figure 25 C). These cells were located in the peri­

infarct areas and appeared as a band around the developing infarct. After 7 days,

numerous immunoreactive cells with an amoeboid morphology were observed

surrounding the infarct (Figure 25 C, arrows). Further, immunoreactive cells with a



Figure 24. Ipsilateral cortical tissue 3 days after sham surgery irnmunostained for
GFAP (A), OX-42 (B) ED-l (C) and NFKB (p65 sub-unit) (D) . GFAP immunostaining
shows little GFAP immunoreactivity with some reactivity in the perivascular astrocytes
(A, arrows and inset). Faint OX-42 immunoreactivity could be found in both
hemispheres (B) and there was no ED-l immunoreactivity detected in either
hemisphere (C). NF-KB immunoreactivity was detected throughout both hemispheres
but was restricted to the cytoplasm ofneurons (D, arrows and inset). Inset images are at
a higher magnification (100 X) to show greater cellular detail. Scale bar = 100 ~m
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Figure 25. Representative photomicrographs of the ipsilateral cortex
immunostained for OX-42 from control animals (A), and 24 hours (B), 48
hours (C) and 7 (D) days after cortical devascularization. Control tissue had
no discemable OX-42 immunoreactivity (A). However, 24 hours after
cortical devascularization a substantial increase in OX-42 immunoreactivity
was observed throughout the ipsilateral hemisphere (B, arrows). After 48
hours, the immunoreactivity decreased with the OX-42 positive cells
featuring a more reactive morphology (C, arrows). After 7 days OX-42
immunoreactivity could be found in the ramified, amoeboid microglia (D,
closed arrows) of the surrounding glial scar as well as in any remaining
macrophages within the infarct (D, open arrows and inset). Inset images are
at a higher magnification (100 X ) for greater cellular detail. Scale bar =

100 Jlm.



rounded nuclear morphology were observed surrounding and within the infarct as well

as on the surface of the brain in the region of the infarct (Figure 25 D, arrows). The

morphology and location of these cells made it difficult to determine if these were

invading hematogenous macrophages or phagocytic microglia.

The sham animals had only faint OX-42 immunoreactivity throughout both

hemispheres with the most intense staining observed in the corpus callosum (Figure 24

B).

5.1.2.4 Inflammatory Response

ED-1 reactivity is specific for a subset of glycoproteins on the surface of

1ysozomal membranes and is used to identify phagocytic cells, specifically, reactive and

phagocytic macrophages and microglia (Dijkstra et al., 1985); (Bauer et al., 1994);

(Damoiseaux et al., 1994). The ipsilateral cortex of both control and devascularized

animals examined 12 and 24 hours after injury had no ED-I positive cells within the

parenchyma (Figure 26 A, B). However, a small number of ED-I positive cells could be

seen in the overlying meninges, most likely the result of bleeding into the subarachnoid

space during the surgical procedure. After 48 hours, the enlarged subarachnoid space

adjacent to the infarct was filled with ED-l positive cells. Numerous ED-1 positive cells

were observed within and adjacent to vacuoles in the infarct (Figure 26 C). By 7 days,

the number of ED-1 positive macrophages within the infarct had decreased and these

were restricted to areas of the infarct that still contained cellular debris (Figure 26 D,

open arrows). Numerous ED-I positive ramified microglia were observed surrounding

the infarct (Figure 26 D, closed arrows).
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Figure 26. Ipsilateral cortical tissue immunostained with a mouse anti-ED-l monoclonal
antibody from control rats (A), 24 (B) and 48 hours (C), and 7 days (D) after cortical
devascularization. There was no ED-l immunoreactivity until 48 hours at which point
ED-l positive cells were found within and adjacent to vacuoles in the lesion area (C,
arrows and inset). After 7 days the ED-l positive cells have both a rounded morphology
characteristic ofhematogenous macrophages (D, open arrows and inset) as well as the
ramified, amoeboid shape characteristic of activated microglia (D, closed arrows). Inset
images are at a higher magnification (100 X) for better cellular detail. Scale bar = 100
Jlm.



In the sham-operated animals there was no ED-I immunoreactivity within the

parenchyma but an occasional ED-1 positive cell in the surrounding subarachnoid space

were observed (Figure 24 C).

5.1.2.5 Nuclear Factor kappa B (NF-KB) Activation

NF-KB is a transcription factor that is upregulated by a number of stimuli (free

radicals, cytokines, physical stress) and plays a role in potentiating the inflammatory

response via regulation of gene transcription (Flohe et al., 1997); (Ghosh et al., 1998);

(Christman et al., 2000). Faint immunoreactivity was observed in both the cytoplasm

and nuclei of all neurons in both the ipsilateral and contralateral hemispheres of control

(Figure 27 A) and 24 hours post-injury (Figure 27 B) groups. After 48 hours,

degenerating cells within the infarct were strongly immunoreactive as were neurons in

the surrounding peri-infarct region (Figure 27 C, arrows). This immunoreactivity

localized principally to the nucleus. Neurons in the contralateral hemisphere were only

weakly immunoreactive. After 7 days, neurons in the surrounding peri-infarct region

remained moderately immunoreactive, however macrophages surrounding the infarct

had very intense, punctate immunoreactivity (Figure 27 D, arrows). Neurons in the

contralateral hemisphere were only faintly immunoreactive.

The sham-operated animals also showed faint neuronal immunoreactivity, similar

to that observed in both control and contralateral cortical tissue (Figure 24 D).
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Figure 27. Photomicrographs of ipsilateral cortical tissue immunostained for
NF-KB p65 sub-unit activation in control rats (A), and 24 hours (B) 48 hours
(C), and 7 days (D) after cortical devascularization. There was faint NF-KB
immunoreactivity co-localized to neurons in both the control (A) and 24 hour
(B, inset) tissue. At 48 hours, the nuclei of degenerating neurons (C, arrows and
inset) were strongly immunoreactive. After 7 days, neurons surrounding the
infarct were faintly NF-KB immunoreactive while macrophages within the
infarct were strongly immunoreactive (D, arrows and inset). Inset images are
taken at a magnification of 100 X for improved cellular detail. Scale bar = 100
JlID.



5.1.3 Cytokine Expression

Pro-inflammatory cytokines have been reported to playa role in the pathogenesis

of cerebral ischemia (Yamasaki et aI., 1996); (Pantoni et aI., 1998); (Feuerstein et aI.,

1998);(Martiney et aI., 1998) and traumatic brain injury (Arvin et aI., 1996); (Ghimikar

et aI., 1998). As part of characterizing the pathological events associated with a cortical

devascularization injury, the pro-inflammatory cytokines TNF-a and IFN-y were studied

with the evolution of this slowly developing infarct. These two cytokines are released

by inflammatory cells after immune stimulation, are highly cytotoxic, and are potent

activators of inflammatory cells and resident glia (Roitt et aI., 1998).

5.1.3.1 TNF-a and IFN-y Fluorescent Immunocytochemistry

TNF-a and IFN-y fluorescent immunocytochemistry was used to determine the

presence and cellular source of these cytokines after the cortical devascularization

injury. Double labeling experiments revealed that both these cytokines were present in

moderate amounts within the parenchyma and subarachnoid space during the active

formation of the infarct. This immunoreactivity co-localized to ED-l positive

phagocytes. Prior to infarct fonnation, TNF-a and IFN-y immunoreactivity was

restricted to ED-l positive circulating monocytes residing in the tissue capillaries.

Twenty-four hours after the surgery there was an accumulation of ED-I positive

microglia and monocytes in the superficial cortical layers inferior to the surgery site

(Figure 28 A, C). However, only those cells with a round cell body were TNF-a (Figure

28 B) or IFN-y (Figure 28 D) positive. After 48 hours, numerous ED-l /TNF-a (Figure



Figure 28: Fluorescent photomicrographs of the ipsilateral cortex of animals 24 hours
after cortical devascularization labeled with an ED-l antibody (A, C), TNF-a (B) and
IFN-y (D). ED-l immunoreactivity indicates that both phagocytic macrophages (A, B;
open arrows) and microglia (A, B; closed arrows) are present during infarct formation.
The pro-inflammatory cytokines TNF-a (B; open arrows) and IFN-y (D; open arrows)
were also present during infarct formation and co-localize with ED-l positive
macrophages. Scale bar = 100 J.lm.



29 A, B) and ED-II INF-y(Figure 29 C, D) immunoreactive cells were found throughout

the infarct and into the surrounding parenchyma and subaraclmoid space. Again these

cells featured the rounded morphology of phagocytic macrophages. Seven days after

injury, numerous ED-I immunoreactive macrophages and microglia were present in the

infarct and peri-infarct regions (Figure 30 A, C) however; the amount ofTNF-a

immunoreactivity appeared to be decreasing (Figure 30 B). In addition, IFN-y

immunoreactivity was absent by this time (Figure 30 D).

In the sham-operated animals, TNF-a and IFN-y immunoreactivity was restricted

to cells located within the parenchymal capillaries and co-localized to ED-l

immunoreactive circulating monocytes.

5.1.3.2 TNF-a and IFN-y Enzyme Linked Immunosorbent Assay

After finding both TNF-a and IFN-y immunoreactive cells during infarct

formation, a sandwich ELISA teclmique was used to quantify the level of these

cytokines 6, 12,24,48 hours and 3 days after surgery. Despite TNF-a

immunoreactivity, there were no significant changes in TNF-a cytokine levels at any

time point in either the ipsilateral or contralateral hemispheres (Table 3). Moreover, the

only significant change in IFN-y activity was in the contralateral cortex, which showed a

decrease in concentration 6 hours and 3 days after injury (Table 3).



Figure 29: Fluorescent photomicrographs of animals 48 hours after cortical
devascularization labeled with an ED-l(A, C), TNF-u (B) and IFN-y (D) antibody. ED­
1 immunoreactivity shows an increase in both phagocytic macrophages (A, B; open
arrows) and microglia (A, B; closed arrows) in the developing infarct of the ipsilateral
cortex. TNF-u (B; open arrows) and IFN-y (D; open arrows) co-localized to ED-l
positive macrophages at the edge of the infarct. Scale bar = 100 !lm.



Figure 30: Fluorescent photomicrographs of the infarct in animals 7 days after cortical
devascularization. ED-l immunoreactivity indicates that both phagocytic macrophages
(A, C open arrows) and microglia were still present 7 days after injury (A, C closed
arrows). A small amount ofTNF-a. immunoreactivity (B; open arrows) was present
within the infarct and co-localized to ED-l positive macrophages. IFN-y
immunoreactivity was absent at this time point (D). Scale bar = 100 J..lm.



Table 3: Mean concentration (pg/ml ± SD) ofTNF-a and IFN-y in the ipsilateral and

contralateral cortex of ischemic animals1
•

TNF-a activity IFN-yactivity

(pg/ml ± SD) (pg/ml ± SD)

Observation Lesion side Contralateral n Lesion side Contralateral n

Time side side

Control 2.10 ±2.25 2.26 ±0.45 8 5.49 ±4.59 5.09 ±0.73 5

6 hours 2.72 ± 3.98 1.79 ± 3.25 4 5.68 ±0.37 2.05 ±0.29* 3

12 hours 1.49 ±2.78 3.86 ±4.56 6 6.49 ±4.70 6.38 ± 5.15 3

24 hours 0.48 ±2.83 1.67 ±4.28 7 4.66 ± 5.94 3.07 ± 3.33 3

48 hours 2.57 ± 3.87 2.07 ±2.29 9 4.76 ±3.33 3.85 ± 3.75 5

3 days 1.76 ± 3.79 2.04 ± 3.74 6 2.07 ±0.72 1.45 ± 0.51 * 3

lYalues in a column followed by asterisk are significantly different from the control

value at the 5% level according to a repeated measure one-way ANOYA followed by

individual Student-Newman-Keuls comparisons.



5.2 Neuroprotection After Cortical Devascularization

5.2.1 MR Changes

The effectiveness of saline, DMSO and APTRA-AM in preventing the diffusion

changes associated with cortical devascularization was assessed at 12, 24, 48 hours and

3, 7 days after injury. A multiple b-value DWI sequence using b-values of 110, 350 and

738 s/mm2 was used.

5.2.1.1 Saline Treatment

Eight animals underwent cortical devascularization followed by two injections of

saline one and 12 hours after injury. Two of these animals were removed from the

study, as the ADC values obtained at the prescan time point were two standard

deviations above the mean. The following results describe observations made from the

remaining six animals.

The b = 19 s/nun2 (nominal b-value) images show the first appearance of a

hyper-intense lesion at 12 hours (Figure 31 D) which continued until 3 days after injury

(Figure 31 G, J, M). With the addition of the diffusion gradients (i.e. 350 s/mm2
), the

lesion area remained hyper-intense in the first 3 days suggesting a decrease in the

diffusion of water within the lesion area (Figure 31 E, H, K, N). The corresponding

ADC maps confirmed the decrease in diffusion at 12, 24 and 48 hours (Figure 31 F, I,

L). After 7 days, a noticeable morphological change was apparent in the lesion area.

This was associated with an increase in signal intensity in the b = 350 s/mm2 image and

a decrease in signal intensity in the ADC map (Figure 31 Q, R).



Figure 31: Diffusion un-weighted (b = 19 s/mm2
), weighted (b = 350 s/mm2

), and ADC

map images of animals injected with saline at 1 and 12 hours after cortical

devascularization. The un-weighted, weighted and ADC map images are typical for the

prescan (A - C) group. A region of increased signal intensity corresponding to the lesion

area (arrows) is observed in both the un-weighted and weighted images at 12 (D, E), 24

(G, H), 48 hours (J, K) and 3 days (M, N). The ADC maps show the lesion as an area of

decreased signal intensity (arrows) at 12 (F) and 24 (I) and 48 hours (L). After 7 days

there was no longer an increase in signal intensity in the un-weighted image (P)

however, the weighted image (Q) and ADC map (R) show an area of diffuse restricted

diffusion in the cortex of the ipsilateral hemisphere. Scale bar = 1 em.
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The mean ADC values of each ROI were calculated for each b-value and then

plotted over time. Using a b-value of 110 s/mm2
, a significant (p<0.05) decrease in the

ADC of the ipsilateral/lesion ROI was first observed at 24 hours and remained below

prescan values throughout the first 3 days (Figure 32 A; Table 4). However, by 7 days,

the ADC returned to prescan values (Figure 32 A). The most significant (p<O.Ol)

decrease in ADC was observed in the lesion ROI at 3 days after injury and treatment. In

the contralateral ROI, a highly significant (p<O.OO1) decrease in ADC was observed 12

hours after injury (Figure 32 A). This was followed by a dramatic increase in the ADC

at 24 hours, which then began to slowly decrease towards the prescan value over the

following 6 days (Figure 32 A). When the contralateral and lesion ADC values were

compared, there was a significant (p<0.05) difference at 24 hours and a highly

significant (p<O.OOl) difference at 3 days (Table 4).

With a b-value of350 s/mm2
, a decrease in the ADC of the lesion ROI could not

be observed until 24 hours after injury after which time it began to slowly increase back

towards the prescan value (Figure 32 B). While the decrease in ADC at 24, 48 hours and

3 days was not significant when compared to the prescan value, these changes were

significant (p<O.05) when compared to the 7 day ADC value (Figure 32 B). In the

contralateral ROJ, there were no significant changes in ADC (Figure 32 B). When the

contralateral and lesion ADC values at each time point were compared, we found no

significant differences at any time point (Table 4).

Using a b-value of738 s/mm2
, we were unable to detect a significant decrease in

the ADC of the lesion at any of the time points studied, when compared to the prescan

ADC value (Figure 32 C). However, the 7 day lesion ADC values



Figure 32: Mean ADC (mm2/s ±SEM) versus observation time of the contralateral and

lesion ROI of saline treated animals collected at b = 110 s/mm2 (A), b = 350 s/mm2 (B),

or b = 738 s/mm2 (C). At b = 110 s/mm2 a significant (p<O.05) difference in the ADC of

the lesion ROJ at 24, 48 hours, and 7 days was observed when compared to the prescan

ROJ (A, asterisks). A highly significant (p<O.OOI) decrease in ADC was observed at 3

days after injury (A, double asterisk). A significant decrease was also observed in the

contralateral ROJ at 12 hours (A, asterisk). At b = 350 s/mm2
, there was a significant

(p<O.05) decrease in ADC at 24, 48 hours and 3 days when compared to 7 days (B,

asterisk). At b = 738 s/mm2
, there was a significant (p<0.05) decrease in ADC at 24, 48

hours and 3 days when compared to 7 days (C, asterisk).
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Table 4: Quantitative evaluation of the mean ADC (± SEM) in the lesion and homologous contralateral region of interest in

devascularized animals treated with saline at different b-values. 1

Mean ADC (± SEM)

SALINE (x 10-3 mm2/s)
b =110 s/mm2 b =350 s/mmz b =738 s/mmz

(n= 6)
Observation Lesion side Contralateral Lesion side Contralateral Lesion side Contralateral

Time side side side

Prescan 1.12 ± 0.09 1.12 ± 0.01 1.03 ± 0.09 0.77 ± 0.07 0.93 ± 0.06 0.88 ± 0.03

12 hours 0.86 ± 0.10 .. 0.62 ± 0.01'" 1.02 ± 0.12 0.82 ± 0.11 0.83 ± 0.11 0.66 ± 0.10

24 hours 0.76±0.01 "'t 1.33 ± 0.2Q 0.70 ± 0.16 1.13 ± 0.26 0.71 ± 0.12 0.91 ± 0.21

48 hours 0.76 ± 0.09" 1.07 ± 0.33 0.66±0.10 1.00 ± 0.14 0.66 ± 0.04t 0.81 ± 0.06t

3 days 0.46 ± 0.01 '" t 0.87 ± 0.07i 0.70 ± 0.02 0.76 ± 0.02 0.69 ± 0.04 0.76 ± 0.05

7 days 1.00 ± 0.10 0.91 ± 0.18 1.25 ± 0.18 1.16±0.31 1.12 ± 0.12 0.90 ± 0.17

1Values in a column followed by an * are significantly different from the prescan value at the 50/0 level according to a repeated
measure one-way ANOVA followed by individual Student-Newman-Keuls comparisons. Values followed by a tare
significantly different than the ROJ in the opposite hemisphere at a 5% level according to a paired t-test.



were a significantly (p<0.05) different from the lesion ADC value at 24, 48 hours and 3

days (Figure 32 C). In the contralateral ROI, no significant changes in ADC were found

(Figure 32 C). When the ADC of both the contralateral and lesion ROIs were

compared, there was a significant (p<O.05) difference in these ADC values at 48 hours

(Table 4).

5.2.1.2 DMSO Treatment

A.second group of7 animals underwent cortical devascularization followed by

two injections of 1% DMSO vehicle at 1 and 12 hours after surgery. Again,2 animals

were removed from the study, as their prescan values were 2 standard deviations above

the mean.

The b = 19 s/mm2 images show a small, superficial area of hyper-intensity within

the lesion area at 24 (Figure 33 G) and 48 hours (Figure 33 J). By 3 days, this hyper­

intense region is very superficial (Figure 33 M) and by 7 days, there are no longer any

signal intensity changes in the b = 19 s/rnm2 images (Figure 33 P). With the addition of

the diffusion gradients (i.e. 350 s/mm2
), the lesion area was also hyper-intense at 24

(Figure 33 H) and 48 hours (Figure 33 K) but by 3 days there was no longer any hyper­

intensity within the lesion area (Figure 33 N). After 7 days, the lesion was no longer

hyper-intense, however, a diffuse increase in signal intensity could be found throughout

the entire ipsilateral and much of the contralateral hemisphere (Figure 33 Q). The

corresponding ADC maps confirmed that the increase in signal intensity observed at 24

and 48 hours were the result of a decrease in diffusion (Figure 33 I, L). After 7 days,

tissue within the lesion area had herniated (Figure 33 P - R); however this was not



Figure 33: Diffusion un-weighted (b = 19 s/mm2
), weighted (b = 350 s/mm2

), and ADC

map images of animals injected with DMSO at 1 and 12 hours after cortical

devascularization. The un-weighted, weighted and ADC map images are typical for the

prescan (A - C) group. A region of increased signal intensity corresponding to the lesion

area (arrows) is observed in both the un-weighted and weighted images at 24 (G, H) and

48 hours (1, K). In contrast, the ADC maps show the lesion as an area of decreased

signal intensity (arrows) at 24 (I) and 48 (L) hours. After 7 days there was no longer an

increase in signal intensity in the un-weighted image (P) however, the weighted image

(Q) and ADC map (R) show an area of diffuse diffusion restriction in the cortex of the

ipsilateral hemisphere. Scale bar = 1 em.
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accompanied by an increase in signal intensity at either b = 19 s/mm2 or 350 s/mm2
•

The mean ADC ofboth the lesion and contralateral ROI were calculated using

each b-value and then plotted over time. With a b-value of 110 s/mm2
, there were no

significant (p<0.05) changes in the ADC of the lesion ROI detected at any time point

after the injury and subsequent DMSO injections (Figure 34 A). In addition, there was

no significant change in ADC in the contralateral area at any of the time points studied

(Figure 34 A). When the ADC of the contralateral and lesion areas was compared, a

significant (p<O.05) difference was found at 7 days (Table 5).

At a b-value of350 s/mm2
, there was also no significant decrease in the ADC of

the lesion or contralateral area at any time point during the study (Figure 34 B). When

the contralateral and lesion ROls were compared, there was a significant (p<O.05)

difference in ADC at 3 days after injury and DMSO injection (Table 5).

Using a b-value of738 s/mm2
, there was no significant decrease in the ADC of

the lesion or contralateral ROI at any time after injury, when compared the prescan ADC

value (Figure 34 C). However, when the contralateral and lesion areas were compared,

there was a significant (p<O.05) difference in the ADC after 3 days (Table 5).

5.2.1.3. APTRA-AM Treatment

A third group of animals (n = 8) was injected with APTRA-AM (40 mg/ml) at 1

and 12 hours after cortical devascularization. Two animals were also removed from this

study as they both contained incomplete temporal data sets.

The b = 19 s/mm2 images show a small area of hyper-intensity in the lesion area

at 12 hours (Figure 35 D) after injury. With the addition of the diffusion gradients, a



Figure 34: Mean ADC (mm2/s ±SEM) versus observation time of the contralateral and

lesion ROJ of DMSO treated animals collected at b = 110 s/mm2 (A), b = 350 s/mm2

(B), or b = 738 s/mm2 (C). At no time was there a statistically significant change in the

ADC of the lesion or contralateral ROJ, compared to the prescan ADC values.

Moreover, increasing the b-value did not uncover any statistically significant changes in

ADC.
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Table 5: Quantitative evaluation of the mean ADC (± SEM) in the lesion and homologous contralateral region of interest in

devascularized animals treated with DMSO at different b-values. 1

Mean ADC (± SEM)

DMSO (x 10-3 mm2/s)
b = 110 s/mmz b =350 s/mm2 b = 738 s/mmz

(n= 5)

Observation Lesion side Contralateral Lesion side Contralateral Lesion side Contralateral
Time side side side

Prescan 0.75 ± 0.08 0.55 ± 0.14 0.78 ± 0.07 0.76 ± 0.07 0.74 ± 0.07 0.77 ± 0.05

12 hours 1.10±0.12 1.06 ± 0.20 1.09 ± 0.26 1.19 ± 0.29 0.89 ± 0.09 0.91 ± 0.10

24 hours 0.58 ± 0.45 0.70 ± 0.15 0.74 ± 0.06 0.84 ± 0.09 0.75 ± 0.02 0.84 ± 0.10

48 hours 0.72 ± 0.16 0.85 ± 0.22 0.83 ± 0.09 0.70 ± 0.15 0.77 ± 0.08 0.73 ± 0.06

3 days 0.75 ± 0.11 0.98 ± 0.24 0.77 ± 0.06t 1.18 ± 0.15t 0.71 ± 0.03t 1.03 ± 0.14t

7 days 0.63 ± 0.10t 1.32 ± 0.28t 0.72 ± 0.05 0.90 ± 0.11 0.74 ± 0.03 0.91 ± 0.09

1Values in a column followed by an * are significantly different from the prescan value at the 50/0 level according to a repeated
measure one-way ANOVA followed by individual Student-Newman-Keuls comparisons. Values followed by a tare
significantly different than the ROJ in the opposite hemisphere at a 5% level according to a paired t-test.



Figure 35: Diffusion un-weighted (b = 19 s/mm2
), weighted (b = 350 s/mm2

), and ADC

map images of animals injected with APTRA-AM at 1 and 12 hours after cortical

devascularization. The un-weighted, weighted and ADC map images are typical for the

prescan (A - C) group. A region of increased signal intensity corresponding to the lesion

area (arrows) is observed in both the un-weighted and weighted images at 12 hours (D,

E). In contrast, the ADC maps show the lesion as an area of decreased signal intensity

(arrows) at 12 hours (F). After 12 hours there was no longer an increase in signal

intensity in the un-weighted, weighted or ADC map images despite the presence of a

small tissue herniation on the surface of the lesion cortex (G- I, J - L). By 3 days the

herniation had disappeared and was replaced by a small depression in the cortical surface

(P, Q). Scale bar = 1 em.
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very small, superficial area of hyper-intensity was also observed in the lesion area at 12

hours (Figure 35 E). The corresponding ADC maps confirmed that this increase in

signal intensity was the result of a decrease in diffusion (Figure 35 F). Interestingly, the

b = 19 s/mm2 images clearly show the beginnings of a tissue herniation within the lesion

area beginning at 12 hours and resolving by 3 days (Figure 35 D, G, J, M). After 7 days,

the cortical surface appeared to contain a small depression (Figure 35 P, Q). These

morphological changes occurred in the absence of any MR detectable diffusion changes.

The nlean ADC values of each ROI were calculated for each b-value and then plotted

over time.

Using a b-value of 110 s/mm2
, there were no significant (p<0.05) changes in the

ADC of the lesion ROI at any time point after the injury (Figure 36 A). In addition,

there was no significant change in ADC of the contralateral ROI at any time point

(Figure 36 A).

When the contralateral and lesion ROI were compared, there was a significant

(p<0.05) difference at 48 hours and a highly significant (p<O.OOI) difference at 3 days

after injury and APTRA-AM injections (Table 6).

Using a b-value of350 s/mm2
, there was also no significant decrease in the ADC

of the lesion or contralateral area at any time point after injury and APTRA-AM

injection (Figure 36 B). However, when the contralateral and lesion ROIs were

compared, there was a significant (p<0.05) difference at 3 days (Table 6).

In addition, at the highest b-value (738 s/mm2
), there was no significant decrease

in the ADC of the lesion or contralateral ROI at any time after injury, when compared



Figure 36: Mean ADC (mm2/s ±SEM) versus observation time of the contralateral

lesion ROI of APTRA-AM treated animals collected at b = 110 s/mm2 (A), b = 35 1

s/mm2 (B), or b = 738 s/mm2 (C). At no time was there a statistically significant c:

in the ADC of the lesion or contralateral ROI, compared to the prescan ADC value

Moreover, increasing the b-value did not uncover any statistically significant chan

ADC.
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Table 6: Quantitative evaluation of the mean ADC (± SEM) in the lesion and homologous contralateral region of interest in

devascularized animals treated with APTRA-AM at different b-values. I

Mean ADC (± SEM)

APTRA-AM (x 10-3 mm2/s)
b = 110 s/mm2 b = 350 s/mmz b = 738 s/mm2

(n =6)
Observation Lesion side Contralateral Lesion side Contralateral Lesion side Contralateral

Time side side side

Prescan 0.88 ± 0.36 0.89 ± 0.16 0.82 ± 0.09 0.78 ± 0.05 0.96 ± 0.001 0.73 ± 0.06

12 hours 0.67 ± 0.22 0.98 ± 0.31 0.83 ± 0.05 1.15 ± 0.20 1.09 ± 0.18 0.85 ± 0.10

24 hours 0.87 ± 0.18 0.95 ± 0.01 0.95 ± 0.08 1.15 ±0.08 1.17±0.12 0.88 ± 0.16

48 hours 0.50 ± 0.05t 0.78 ± 0.10t 0.80 ± 0.08 0.97 ± 0.07 0.86 ± 0.09 0.70 ± 0.02

3 days 0.73 ± 0.06t 1.04 ± O.Olt 0.74 ± 0.06t 1.2 ± O.14t 1.08 ± 0.15t 0.71 ± 0.03t

7 days 0.93 ± 0.10 0.88 ± 0.04 0.87 ± 0.04 0.80 ± 0.01 0.81 ± 0.04 0.86 ± 0.03

1Values in a column followed by an * are significantly different from the prescan value at the 5% level according to a repeated
measure one-way ANOVA followed by individual Student-Newman-Keuls comparisons. Values followed by a tare
significantly different than the ROJ in the opposite hemisphere at a 5% level according to a paired t-test.



the prescan ADC value (Figure 36 C). However, when the contralateral and lesion ROIs

were compared, there was a significant (p<0.05) difference in the ADC at the 3 day time

point (Table 6).

5.2.1.4 Comparison Between Treatment Groups

The ADC values obtained at each b-value and in each treatment group were compared to

determine if these values were significantly (p<0.05) different from one another. In the

data set collected at b = 110 s/mm2
, the lesion ADC of the saline group was significantly

lower than the lesion ADC of the DMSO treatment groups 3 days after injury (Table 7).

In addition, the lesion ADC of the saline group was significantly lower than the lesion

ADC of the APTRA-AM treatment group at this time point (Table 7). In the data

collected at b = 350 s/mm2
, the lesion ADC of the saline group was significantly lower

than both the DMSO and APTRA-AM treatment groups 7 days after injury (Table 7).

However, in the data collected at 738 s/mm2
, there were no significant differences in the

lesion ADC of any treatment groups, at any of the time points studied.

In the contralateral ROI, there was a significant difference between the saline and

DMSO groups at the 24 hour time point of the b = 110 s/mm2 data set (Table 7). At b =

350 s/mm2
, there was also a significant difference between these two treatment groups

but at the 3 day time point (Table 7).

5.2.2 Morphological Changes

All morphological assessments examining the efficacy of APTRA-AM treatment

were done at 7 days after injury.



Table 7: List of the significantly different comparisons between the individual treatment

groups.

b-value Treatment groups Time point Student's
t-test (P)

b= 110 s/mm2 Saline vs. DMSO (contralateral ROI) 24 hour 0.028

Saline ADC lower than DMSO

Saline vs. DMSO (lesion ROI) 3 day 0.024

Saline ADC lower than DMSO

Saline vs. APTRA-AM (lesion ROI) 3 day 0.012

Saline ADC lower than DMSO

b = 350 s/mm1 Saline vs. DMSO (contralateral ROI) 3 day 0.035

Saline ADC lower than DMSO

Saline vs. DMSO (lesion ROI) 7 day 0.019

Saline ADC lower than DMSO

Saline vs. APTRA-AM (lesion ROI) 7 day 0.034

Saline ADC lower than APTRA-AM

b = 738 s/mm2 none



5.2.2.1 Saline Treatment

Cortical devascularization followed by two injections of saline (1 and 12 hours

after injury) resulted in the formation of a pan-necrotic infarct that appeared as a large

cyst surrounded by tissue containing numerous necrotic cells, vacuolations and

inflammatory cells 7 days after injury (Figure 37). The mean area (± SEM) of these

lesions was 0.53 ± 0.06 mm2 (Figure 38).

This observation was consistent with all animals that were untreated after the

injury (see Figure 19 D). However, the mean area (± SEM) of these lesions was 1.09 ±

0.16 mm2 (Figure 38).

Similar to the untreated animals (see section 5.1.2.1), saline injection did not

result in ongoing neurodegeneration that could be observed by Fluoro-Jade staining of

neurons within, rostral or caudal to the infarct 7 days after injury. However, numerous

inflammatory cells and the surrounding infarct debris did stain with the Fluoro-Jade.

The saline treated animals also showed a similar astrocyte and microglial

activation profile at 7 days as the untreated ischemic animals (Figure 39 A, B).

Specifically, there was extensive GFAP immunoreactivity surrounding the infarct and in

the contralateral hemisphere. This included a band of reactive astrocytes immediately

adjacent to the infarct. OX-42 immunoreactivity was restricted to the amoeboid

microglia and activated macrophages within and surrounding the infarct (Figure 39 B).

As expected, the neuroinflammatory response included numerous ED-l positive

phagocytic cells throughout the infarct debris and peri-infarct areas (Figure 39 C).

Neurons of both the ipsilateral and contralateral hemisphere had faint cytoplasmic NF­

KB immunoreactivity with an increase in staining intensity and the appearance of nuclear



NF-KB immunoreactivity in cells within and immediately adjacent to the infarct (Figure

39 D).
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Figure 38: Graph comparing the mean lesion area (mm2 ± SEM) in un-treated and sham
animals versus those treated with saline, 1% DMSO or APTRA-AM (40 mg/kg). The
area was measured on histological sections taken 7 days after the induction of ischemia.
The asterisk denotes statistical significance (one way ANOVA, p<0.001).



5.2.2.2 DMSO Treatment

Two injections of 1% DMSO at 1 and 12 hours after injury resulted in a 56%

reduction in mean lesion volume (0.43 ± 0.07 mm2
) when compared to the un-treated

animals (see Figure 38). Despite the reduction in lesion volume, the tissue was also pan­

necrotic and contained necrotic nuclei, inflammatory cell infiltrate and vacuolations.

However, the lesion involved fewer cortical layers than either the saline injected or un­

treated animals (Figure 40). As with the saline treatment group, there was no evidence of

ongoing neurodegeneration at 7 days after injury as determined by the absence of

Fluoro-Jade stained neurons.

Animals injected with DMSO also displayed significant GFAP immunoreactivity

throughout both hemispheres (Figure 41 A) while the OX-42 immunoreactivity was

restricted to activated microglia and macrophages within and the area adjacent to the

infarct (Figure 41 B). Extensive ED-l immunoreactivity localized to both macrophages

and activated microglia was also observed in the infarct and peri-infarct regions (Figure

41 C). NF-1d3 immunoreactivity was also found throughout both hemispheres and

localized to both the cytoplasm and nuclei of immunoreactive cells (Figure 41 D).

5.2.2.3 APTRA-AM Treatment

Injections of APTRA-AM (40mg/kg) at 1 and 12 hours after injury, significantly

(p<0.001) reduced the area of the lesion by 850/0 (0.15 ± 0.05 mm2
) when compared to

the un-treated animals (Figure 38). Lesions in the APTRA-AM treated animals

contained little or no cell death or inflammatory cell infiltrate (Figure 42, 43). The most



Figure 40: Representative photomicrographs of cresyl violet stained sections from
animals injected with 1% DMSO (A, B). Animals were injected at 1 and 12 hours after
surgery and show similar morphological changes as the un-treated and saline injected
animals. The image on the left (4X) shows a large infarct that involves multiple
cortical layers (A) and the image on the right (20X) shows more clearly that the infarct
is filled with numerous necrotic nuclei and inflammatory cells (B). The asterisk
denotes the area where the higher power image is taken from. Scale bar = 100 Jlm.



Figure 41: Tissue from the ipsilateral cortex ofDMSO treated devascularized animals
immunostained for GFAP (A), OX-42 (B) ED-l (C) and NFKB (p65 sub-unit) (D) 7 days
after injury. GFAP immunostaining shows substantial reactive astrogliosis in the area
adjacent to the infarct (A, arrows). OX-42 immunoreactivity could be found in both
microglial cells (B, closed arrows) and invading macrophages (B, open arrows) within
and adjacent to the infarct. Numerous ED-l positive phagocytic activated microglia (C,
open arrows) and macrophages (C, closed arrows) were found within and surrounding
the infarct. NFKB immunoreactivity was found in the cytoplasm and nucleus of neurons
surrounding the infarct (D, arrows). Scale bar = 100 flm.



Figure 42. Representative photomicrographs of cresyl violet stained ipsilateral cortex of
animals injected with APTRA-AM (40 mglkg) 7 days after injury. These animals rarely
exhibited morphological and pathological changes in the ipsilateral cortex. The image
on the left is at a low magnification (4X) to show how the cortex herniated (A) while
the higher magnification (20X) image on the right shows the disruption ofthe outer
molecular layer and some minor cell death within the herniated region (B). The amount
of damage in these animals is minimal compared to the extensive damage observed in
the saline or DMSO treated animals. Scale bar = 100 Jlm.
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Figure 43. Tissue from the ipsilateral cortex ofAPTRA-AM treated animals 7 days
after injury and immunostained for GFAP (A), OX-42 (B) ED-l (C) and NF-KB (p65
sub-unit) (D). GFAP immunostaining shows substantial reactive astrogliosis in the area
inferior to the injury site (A, arrows). Faint OX-42 immunoreactivity could be found in
the microglial cells (B). ED-l positive activated microglia are found only inferior to the
surgery site(C). Note that there are no phagocytes present (C). Both cytoplasmic (D,
closed arrows) and nuclear (0, double headed arrows) NF-KB immunoreactivity was
observed in the neurons. Scale bar = 100 flm.



significant morphological change consisted of a herniation of the tissue into the surgical

opening in the skull (5 out of 10) or sonle minor disruption of the outer molecular layer

(3 out of 10). Again, there was no evidence ofneurodegeneration using Fluoro-Jade

histochemistry.

Seven days after injury and treatment with APTRA-AM, there was extensive

GFAP immunoreactivity observed in both hemispheres. The entire ipsilateral

hemisphere including the herniated tissue exhibited reactive astrocytes (Figure 43 A).

However, there was only very faint OX-42 immunoreactivity (Figure 43 B). ED-l

immunoreactivity in APTRA-AM rats was also reduced compared to untreated, saline,

or DMSO animals and limited to microglial cells within the outer molecular layer of the

herniated tissue (Figure 43 C, arrows). In some cases, ED-l positive macrophages could

be found on the surface of the brain. NF-KB immunoreactivity was found in neurons

throughout both hemispheres, although it was localized primarily to the cytoplasm of

these cells (Figure 43 D).



6.0 Discussion

In the studies reported here, we have characterized the temporal and spatial

evolution of a cortical devascularization injury. Notable observations from our studies

include 1) that DWI is the preferred method for detecting pathological changes

associated with a cortical devascularization injury, 2) changes in tissue diffusion are not

restricted to the area affected by the interruption in blood flow but can also be found in

remote areas, 3) cortical devascularization results in early glial activation and delayed

neuronal cell death, 4) the onset of cell death is accompanied by an inflammatory

response that features phagocytes and pro-inflammatory cytokine secretion. In addition,

we have used this model to show that the cell permeant calcium buffer APTRA-AM is

highly effective in preventing the neuronal cell death and acconlpanying inflammatory

response associated with this injury, even when given after injury. Finally, APTRA-AM

treatment also prevented those pathophysiological changes that can be observed by

DWI. The following sections discuss these major findings.

6.1 Cortical Devascularization as a Model for Permanent Focal Ischemia

Various models are available to investigate the pathological processes that occur

as the result of focal cerebral ischemia. Here we describe a brain injury model that

exhibits a progression of events consistent with the development of a permanent focal



ischemic lesion, including cell death and infarct fonnation, the induction of an

inflammatory response, and a decrease in AOC that returns to pre-injury levels.

Cortical devascularization involves the disruption of the microcirculation

resulting in a small, cortical infarct. This model has several advantages over other

models in that it involves simpler surgical techniques, it is not associated with any post­

surgical complications, it produces a small cortical infarct whose size can be detennined

by the size of the vessel transected, and most importantly, it is highly reproducible.

Finally, by completely transecting the vessel we are able to observe the progressive

evolution of ischemic injury outside of the complicating effects of reperfusion. While

this model is associated with a physical damage to a blood vessel, it should not be

characterized as hemorrhagic as only rarely does it result in the accumulation of

intracerebral blood.

6.2 MRI Changes Associated with Cortical Devascularization Induced Ischemia

The usefulness of OWl in identifying and localizing damage in animal models of

cerebral ischemia is well documented (Moseley et aI., 1990); (Benveniste et aI., 1992);

(Busza et aI., 1992); (Minematsu et aI., 1992); (van Bruggen et aI., 1994); (Hoehn et aI.,

2001). Early changes in signal intensity on DW images have become the hallmark for

the clinical identification of acute ischemia. In characterizing the cortical

devascularization model as one of ischemic injury, we used OWl to non-invasively

monitor the temporal and spatial evolution of the resultant injury. We also wanted to

detennine if OWl was sensitive to small ischemic injuries. Our results demonstrate that

DWI is very effective and highly sensitive to early diffusional changes caused by this



type of injury. However the evolution of the diffusion changes is different than

previously characterized models of ischemia, perhaps reflecting the difference in the

amount of territory involved or perhaps the differences in the temporal profile of cellular

changes (see section 5.1.2).

Cortical devascularization resulted in a decrease in the ADC of the affected area

over the course of several weeks while the sham operated animals showed no significant

change in ADC over the same observation period. A decrease in ADC occurs when

tissue water experiences decreased mobility/movement. Several possible mechanisms

have been proposed including a reduction in extracellular space and/or an increase in

tortuosity (size and geometry of the extracellular space). These conditions occur when

transmembrane ion shifts and astrocyte hypertrophy (Sykova, Chvatal, 1993); (Sykova,

1997) result in cellular swelling. However, in our model, the largest decrease in ADC

was seen at 12 hours after injury prior to any histological evidence of cellular swelling or

significant increases in astrocyte hypertrophy within the lesion area.

In addition to changes in tortuosity, ADC changes may reflect more discrete

changes in the metabolic state of the tissue underlying the surgical site. Busza et al

(1992) found that when using proton spectroscopy imaging, areas with an increased

lactate signal, (which is indicative ofneuronal death) corresponded to regions with

decreased diffusion. Moreover areas of tissue acidosis have also been shown to

correspond to areas of decreased ADC, suggesting that these changes may be indicative

of tissue metabolic state (Sykova, Chvatal, 1993); (Kohno et aI., 1995).

While the devascularization created a pemlanent lesion, tissue diffusional

characteristics returned to pre-surgery levels after two weeks. This observation has been



made in previous DWI studies of ischemia; however, these models of ischemia report a

rise in ADC that eventually surpasses that of the tissue ADC prior to injury. These

studies suggest that the increase in ADC may be due to a loss of cell membrane integrity

allowing for un-restrictive water movement within necrotic and/or fluid filled cystic

regions (Gill et aI., 1995); (Knight et aI., 1994); (Matsumoto et aI., 1995); (Rumpel et aI.,

1997). While the ADC values obtained in our experiments did not surpass the prescan

ADC, it is likely that increased ADCs would be due to the formation of a pan-necrotic

infarct.

In our study we observed a significant decrease in the ADC of the contralateral

ROJ, which we speculate is the result of transcallosal diaschisis. Diaschisis is defined as

a temporary deactivation of an intact remote brain region connected to an area of

damage (Andrews, 1991); (Feeney, Baron, 1986). In order to be considered diaschisis,

the criteria set out by Kempinsky (1958) and Andrews (1991) must be met. First, there

must be a well-circumscribed injury. Both the MR and histological studies identify a

well-defined region of injury resulting from cortical devascularization. Second,

diaschisis must occur at a distance from the injury. In this case, the remote area of injury

occurs within the contralateral hemisphere in the homologous primary motor cortex.

Third, there must be a neuronal basis for the depressive effects and the areas must have

an anatomical connection. Both the lesion and the contralateral ROJ were located in the

frontal area 1 which receives afferents from both the ipsilateral and contralateral

secondary motor cortices as well as the opposite primary motor cortex (M 1) (Zilles,

Wree, 1995). Finally the process must be reversible. This criterion was also met, as the

decrease in ADC within the contralateral area was observed at 12 and 24 hours, which



then returned to prescan levels by 48 hours. While the significance of transcallosal

diaschisis is unknown, it has been suggested that this phenomenon could be the

underlying cause ofpost-ischemic epilepsy that develops in 14 - 28% of clinical cases

(Kotila, Waltimo, 1992). Our animals did not develop focal epileptic seizures during the

time they were studied (14 - 21 days). However, we conducted a small in vivo

electrophysiological study of spontaneous activity in the Fr1 region, which did show

some increase in electrical activity within the contralateral ROI after cortical

devascularization (data not shown). Thus, transcallosal diaschisis provides an intriguing

possible mechanism for the ADC alterations seen in the contralateral cortex. In addition,

contralateral changes in ADC have also been reported in rat after a pennanent MCA

occlusion (Abe et aI., 2000) as well as in a rat model ofhypoxia-ischemia (D'Arceuil et

aI., 1999) and in both cases, these changes were similarly attributed to transcallosal

diaschisis.

T2WI was used to identify regions affected by ischemic injury, although with

much less reliability. Typically, T2WI highlights areas of edema that are thought to be

associated with vasogenic edema and the onset of inflammation. However, unlike all

other reports of imaging in ischemia (Minematsu et aI., 1992); (Pierpaoli et aI., 1993);

(van Everdingen et aI., 1998); (Li et aI., 2000), we found no significant change in T2

relaxation at any time after injury, when compared to the images taken before the injury

or when compared to the contralateral hemisphere. This suggests that vasogenic edema

is likely not a significant part of the evolving pathophysiology of a cortical

devascularization injury. While increasing the number ofanimals examined may have

brought the T2 changes to significant levels, it is important to note that we observed a



decrease in T2 relaxation time. This means that within the lesion ROI, there was no

significant accumulation of water; in fact the amount of water was reduced compared to

both the contralateral hemisphere and the same ROI when examined prior to injury.

While the mechanism behind this observation is unknown, we speculate that the

decreased water accumulation in the infarct region may be a function of increased tissue

viscosity due to a decrease in CSF flow and subsequent tissue alterations as a

consequence of removing the meninges to access the pial vasculature. Alternatively, this

decrease may be the result of a local accumulation in deoxyhemoglobin, as was

proposed by Calamante et aI. (1999) and Lythgoe et aI. (2000) to explain the early

decrease in T2 they observed after both permanent and partial MCA occlusion. This

accumulation would create a susceptibility effect which would cause the dephasing of

water spins as they diffused through the local field gradient created by the accumulation

of deoxyhemoglobin (Calamante et aI., 1999). Most importantly, the inability ofT2WI

to reliably detect changes associated with the formation of an infarct after cortical

devascularization suggests that T2WI is severely limited in its ability to identify small,

slowly developing permanent ischemic lesions.

A Gd-TI WI study at 24, 48 hours, 3 and 7 days was done to determine if changes

in blood-brain barrier permeability contributed to the pathophysiological mechanisms

behind a cortical devascularization injury. Our experiment did not reveal the presence of

contrast agent within the parenchyma indicating that the parenchymal blood-brain

barrier remained intact after a cortical devascularization injury. Interestingly, there was

an accumulation of contrast within the meningeal space and cranial vault associated with

the surgical site. The accumulation of contrast within these areas is most likely due to



leaky blood vessels associated with the surgical site. Taken together, the lack ofT2

relaxation changes and the absence ofparenchymal contrast accumulation strongly

suggest that vasogenic edema does not contribute to the injury at any point during its

temporal and spatial evolution.

MRI has proven useful in the detection of ischemic injury. However, our studies

using DWI, T2WI, and Gd-TlWI to study small ischemic injuries suggests that only

DWI reliably detects ischemic injury and only within the first 7 days before the ADC

begins to normalize. However, the use ofmultiple imaging sequences provides a much

clearer view of the potential physiological changes associated with the injury. For

example, after a cortical devascularization injury, DWI identifies areas of decreased

mobility that is not accompanied by large-scale changes in water accumulation or blood­

brain-barrier permeability changes as assessed by both T2WI and Gd-Tl WI. Therefore

we are able to more closely focus our attention on processes that affect water mobility as

possible causes of injury in this model. Most importantly, despite the fact that MRI,

specifically DWI, clearly identifies areas compromised by the injury, what remains

incomplete is an understanding of the interplay between evolving cellular pathology and

changes in the mobility of water after the injury.

6.3 Histopathological Changes Associate with Cortical Devascularization Induced

Ischemia

Cortical devascularization produced a circumscribed, permanent cortical lesion

following disruption of a single descending pial vessel. Cresyl violet histochemistry was

used to follow the evolution of this type of injury and clearly showed that the formation



of a pan-necrotic infarct was delayed until 48 hours after injury. Prior to this, the area

affected by the surgery had only minor disruption of the outer molecular layer and some

scattered necrosis. The delay between the time of injury and the onset of cell death is

similar to what is observed in the 2-vessel occlusion models of forebrain ischemia where

delayed cell death is observed in the selectively vulnerable CAl region of the

hippocampus (Lipton, 1999). However, the permanent interruption in blood flow more

closely resembles the photothrombic and permanent MCA occlusion models of

ischemia. This suggests that a cortical devascularization injury does not produce

significantly large enough local changes in cerebral blood flow to cause immediate cell

death. This is most likely the case as the pial network contains numerous anastamoses,

which could maintain optimal collateral circulation, thus reducing the severity of the

insult and ultimately the size of the infarct.

In an attempt to more carefully examine the time course ofneuronal degeneration

in this model, tissue from within the infarct as well as the 500 J-lm both rostral and caudal

to the injury from each time point were stained with Fluoro-Jade. This stain has been

reported to identify degenerating neurons by staining an as of yet uncharacterized,

strongly basic "degeneration molecule" (Schmued et aI., 1997). This protocol has been

used in numerous animal models of neurotoxic injury (Schmued et aI., 1997); (Bishop,

Robinson, 2001), global ischemia (Larsson et aI., 2001), transient ischemia (Butler et aI.,

2002), traumatic brain injury (Sato et aI., 2001) and epilepsy (Poirier et aI., 2000).

However, we were unable to identify degenerating neurons within or surrounding the

lesion at any time point after a cortical devascularization injury. A possible explanation

is that cortical devascularization does not cause neurons to produce the "degeneration



molecule" that this stain binds to. Interestingly, we did observe Fluoro-Jade positive

cells scattered throughout the infarct debris and in the surrounding peri-infarct areas that

in subsequent immunohistochemistry experiments were determined to be ED-l positive

phagocytes and GFAP positive reactive astrocytes, respectively (Figure 21). Butler et al.

(2002) also observed Fluoro-Jade positive astrocytes within the peri-infarct regions 14

and 21 days after transient MCA occlusion and concluded that perhaps the staining of

these cells reflected some biochemical alteration as a result of activation or cellular

damage.

In addition to characterizing both the morphological changes and pattern of

neuronal cell death after a cortical devascularization injury, changes to the glial cell

populations were also examined. It is well known that after injury, the CNS responds by

activating both astrocytes and microglia. This results in changes to both the morphology

and functional abilities of these cells that can be both beneficial and detrimental to

recovery. For example, both cells release adhesion molecules and pro-inflammatory

cytokines that may initiate an immune response, as well as secreting numerous cytotoxic

agents (e.g. reactive oxygen species and proteases) that can mediate neuronal injury

(Banati et aI., 1993); (Eddleston, Mucke, 1993).

After cortical devascularization both the astrocytes and microglia responded to

injury by proliferating and becoming activated. The timing, duration and general

location of their activation differed slightly between the two cell types. Specifically, the

microglial cells throughout the entire ipsilateral hemisphere and the contralateral medial

cingulate gyrus and corpus callosum become activated within the first 12 - 24 hours.

After 48 hours, these cells had lost their secondary arborizations and were located within



the edges of the developing infarct and surrounding peri-infarct areas. This was the

typical microglia staining pattern in the tissue 3 and 7 days after injury. In contrast, a

small amount of astrocyte activation was observed within the first 24 hours. These cells

were mostly perivascular and were found scattered throughout both hemispheres. By 48

hours, the entire ipsilateral hemisphere and parts of the contralateral hemisphere

contained reactive astrocytes. At later time points, astrocyte reactivity was localized

primarily to the peri-infarct region forming a glial scar.

Activation of glial cells prior to infarct development has been previously

observed after both permanent and transient MCAO (Clark et aI., 1993); (Kato et aI.,

1996); (Davies et aI., 1998); (Abraham, Lazar, 2000). The activation of microglia and

perivascular astrocytes prior to significant amounts of neuronal death and inflammation

suggest a key role for these cells in initiating the ensuing tissue damage, specifically the

onset of an inflammatory response. It is interesting to point out that in many of the these

studies the reactive cells were localized to areas that would eventually be incorporated

into the infarct or in the area immediately adjacent to the infarct. While similar patterns

were observed in our model, we noted glial cell activation throughout the entire

ipsilateral hemisphere. We can only speculate why the entire ipsilateral hemisphere

responded, but it may reflect the proliferation or signaling of glial cell populations after

injury.

We also observed activation ofboth glial cell types in the contralateral

hemisphere. Contralateral increases in both GFAP (Herrera, Cuello, 1992); (Clark et aI.,

1993) and OX-42 (Kato et aI., 1996); (Davies et aI., 1998); (Schroeter et aI., 1999)

immunoreactivity have been previously observed in other models of cerebral ischemia.



In our study, an increase in GFAP and OX-42 immunoreactivity was concentrated in the

contralateral medial cingulate area, thalamus and corpus callosum. Thus both astrocytes

and microglial activation occurred in areas that are anatomically connected to the injured

area suggesting that the glia are responding to a change in activity between these two

functionally connected areas (transcallosal diaschisis). Schroeter et al. (1999) suggested

that the contralateral activation might be the result of fiber tract degeneration and

retrograde cell death.

The purpose of characterizing the histopathological changes associated with a

cortical devascularization injury was to correlate these cell structural and functional

changes with the observed changes in water mobility (Figure 44). Significant diffusion

changes were observed in the lesion ROI within the first 48 hours after which point the

ADC began to recover. Histologically, both the microglial and astrocyte cell

populations showed increased OX-42 and GFAP immunoreactivity with concomitant

morphological changes within the first 48 hours. Taken together this suggests that the

early hypertrophy and hyperplasia of both cell types may contribute to the decrease in

water mobility observed by DWI. Between 48 hours and 7 days, the ADC began to

recover towards pre-injury levels indicating increased water mobility within the lesion

area. This increase corresponded to the significant loss of cells and an increase in the

extracellular space within the lesion that was observed 48 hours, 3, and 7 days after

injury. This suggests that the increase in ADC nlay be due to a reduction in the number

of diffusion barriers (i.e. cell membranes) that occurs during the formation of a pan­

necrotic infarct.
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Figure 44: Comparison of the temporal profile ofADC change, lesion area and the onset
of glial activation and post-injury inflammation after a cortical devascularization injury.
The lower halfof the diagram demonstrates the decrease in ADC which is followed by a
slow progressive recovery towards control levels. The upper half illustrates the time
course of early microglial activation (OX-42) within the entire ipsilateral hemisphere at
24 hours which then decreases and is limited to the peri-infarct region. Astrocyte
activation (GFAP) is slower and reaches its maximum at 48 hours. This remained high
throughout the length of the experiment. NF-KB immunoreactivity was low until 48
hours, after which time it rapidly increased in phagocytic cells within and surrounding
the infarct. ED-l immunoreactivity was not detected until 48 hours, at which time it
was elevated in both phagocytic cells and activated microglia within the infarct and
peri-infarct regions. The lesion area is at its maximum at 48 hours which corresponded
to time points with increased ED-l and NF-KB immunoreactivity.



6.4 Role of Inflammation in Cortical Devascularization Induced Ischemia

Some debate exists in assigning the relative contribution of an inflammatory

response to permanent ischemic injury. Most would agree that a post-injury

inflammatory response contributes to the ischemic injury, as leukocytes and monocytes

have been observed during periods of active cell death (Stevens et aI., 2002). Moreover,

the inflammatory response should include both the activation of resident microglia and

the recruitment and trafficking ofblood derived leukocytes as both phagocytic microglia

and blood derived macrophages respond to injury by the phagocytosis of damaged tissue

and the secretion of cytotoxic agents (Kato et aI., 1996); (Stoll, lander, 1999); (Kato,

Walz, 2000).

ED-I immunoreactivity of cells with both a round and an amoeboid cell body

indicate that both phagocytic macrophages and microglia are associated with the active

formation of a pan-necrotic infarct after cortical devascularization. This confirmed the

involvement of an inflammatory response and demonstrated that both the CNS and the

immune system are involved.

The first appearance ofblood-derived macrophages coincided with the onset of

extensive necrosis, vacuolation and edema. Thus, in the 48 hours preceding this

observation, there should be an increase in pro-inflammatory cytokine secretion that

would allow the movement of these cells into the CNS. Both immunocytochemical and

ELISA studies were performed to confirm and quantify pro-inflammatory cytokine

secretion as well as uncovering the cellular source of their release. TNF-a was studied

as its role as a mediator of inflamnlation after a permanent focal ischemic injury has



been well characterized (Becker, 1998); (Feuerstein et aI., 1998); (del Zoppo et aI.,

2000). IFN-y was studied as a small number of reports demonstrate its involvement in

permanent focal ischemia (Pantoni et aI., 1998); (Li et aI., 2001) and in vivo hypoxia­

ischemia (Lau, Yu, 2001). This molecule is generally associated with the activation of

macrophages as well as regulating the antigen presenting cell function of macrophages,

microglia and astrocytes (Roitt, 1998). In addition IFN-yhas been shown to induce the

expression of other cytokines as well as stimulating the production of interferon

regulatory factor-I, a molecule that induces NO synthase mRNA expression (Pantoni et

aI., 1998). The results of our immunocytochemistry experiments revealed small areas of

TNF-a and IFN-y immunoreactivity that co-localized to ED-1 immunoreactive cells

within the developing infarct at 24 and 48 hours. However, only a small portion of the

ED-l positive cells that featured a rounded cell body were TNF-a or IFN-ypositive

(Figure 28, 29). At 3 and 7 days the number ofTNF-a positive cells had decreased and

there were no IFN-ypositive cells (Figure 30). The lack of staining prior to infarct

formation suggests that these two cytokines are not involved in the trafficking of

inflammatory cells to the area of damage but instead may be involved in the cytotoxic

activity of the phagocytes. In addition, the absence ofTNF-a and IFN-y

immunoreactivity in activated astrocytes and microglia suggest that these cell types do

not participate in the post-injury inflammatory response.

Quantification ofTNF-a and IFN-y levels associated with the development of the

infarct was performed using a sandwich ELISA technique. This technique has been used

previously to quantitate changes in interleukin levels in the rat brain following both focal

ischemia (Legos et aI., 2000) and neurotrauma (Fassbender et aI., 2000). However, in



our studies we found large variations in the levels of both these cytokines perhaps due to

the small lesion and sample size. As a result, we were unable to clearly identify a

pattern of activity that corresponded to the histological evidence of inflammation during

infarct formation. The small number of TNF-(l and IFN-y immunoreactive cells

identified in our immunocytochemistry studies and the difficulty in obtaining a sample

that contained only tissue associated with the lesion contributed to the loss of sensitivity

in detecting either molecule using this technique.

6.5 DWI Changes after Neuroprotective Treatment

As previously discussed, DWI is a very useful tool to identify pathophysiological

changes associated with a cortical devascularization injury. Moreover, DWI has been

used to monitor the efficacy of numerous neuroprotective treatments for ischemia

(Minematsu et aI., 1993); (Lo et aI., 1994); (Yenari et aI., 1996); (Tatlisumak et aI.,

1998); (Chandra et aI., 1999); (De Ryck et aI., 2000); (Tatlisumak et aI., 2000). To our

knowledge, we are the first to examine the neuroprotective ability of the calcium buffer

APTRA-AM, using DWI.

In our studies, treating injured animals with APTRA-AM resulted in a decrease

in the area ofhyper-intensity within the lesion area. A decrease in ADC was observed

only within the first 12 hours after injury, unlike the saline injected animals, where there

was a reduction in ADC throughout the first 3 days. While the mechanism responsible

for blocking these ADC changes is unknown, it is likely that this observation could

reflect the inhibition of cell death and post-injury inflammation associated with the

calcium buffering capabilities of APTRA-AM treatment. Another possibility is that the



inhibition of synaptic transmission by APTRA-AM (Spigelman et aI., 1998) reduced the

occurrence of ischemia-induced depolarizations. In tum, this would result in a decrease

in ADC as a result of inhibiting the depolarization-associated ion shifts that accompany

intracellular water accumulation.

Injecting injured animals with DMSO also resulted in alterations to the temporal

profile of ADC changes in these animals, compared to the saline injected animals.

Specifically, DMSO reduced the degree ofADC change; such that the ADC changes

observed over time were not significantly different than the ADC values obtained before

injury. This is observation is very interesting as DMSO is widely used in research as a

solvent for pharmacological agents. A review of the literature uncovered a number of

studies that demonstrate that DMSO is neuroprotective (Shimizu et aI., 1997); (Phillis et

aI., 1998); (Greiner et aI., 200); (Lu, Mattson, 2001). These studies suggest that this

molecule is neuroprotective based on it's numerous biological effects including anti­

inflammatory and antioxidant properties. However, a more recent study by Lu and

Mattson (2001) has shown that DMSO can prevent excitotoxic death by reducing the

calcium influx induced by glutamate or NMDA and AMPA receptor activation. Perhaps

in our experiments, DMSO was also able to inhibit the ADC changes in a manner similar

to APTRA-AM, specifically the inhibition of the excitotoxic cascade thereby removing

one of the factors causing cytotoxic edema.

We employed a multiple b-value DWI sequence to nlonitor the neuroprotective

effect of APTRA-AM. A sequence of this type was used to determine if the b-value

used affected our ability to detect diffusion changes after an injury of this type. It is well

known that the b-value used determines the sensitivity of the sequence to diffusional



motions. For example, at low b-values there is minimal sensitivity to diffusional motion

and T2-weighted contrast will predominate, however at high b-values, the contrast is

largely produced by the diffusional properties of the tissue (Beauchamp et aI., 1998).

Many investigators suggest that the bi-exponential pattern of diffusion observed at

higher b-values reflects the individual contributions of the different diffusing populations

(Assaf, Cohen, 1998); (Assaf, Cohen, 2000) and it has been suggested that there are two

populations representing fast and slow diffusing populations. Some investigators

suggest that these populations actually represent the intracellular and extracellular

components of water (Assaf, Cohen, 2000). In our study, we employed three different b

values (110, 350 and 738 s/mm2
) and subsequent comparisons between these b-values in

each treatment group found no difference in the ADC values obtained. It is possible that

we were unable to achieve a significant difference between the b-values due to the range

ofb-values we chose. Alternatively, the small size of the lesion, its global effects

(contralateral and ipsilateral) and the slow temporal evolution of changes could have

influenced the ability of our experiments to resolve these two populations independently

using multiple b-values.

6.6 Reduced Infarct Volume after Treatment with APTRA-AM

It is well accepted that an excitotoxic cascade including an increase in

intracellular calcium, plays an important role in mediating cell death after an ischemic

event. We hypothesized that treating animals with the cell-permeant calcium buffer

APTRA-AM would result in a reduction in the size of the infarct. In a study comparing

the maximal area of the infarct in untreated, sham, saline, DMSO and APTRA-AM



treated animals, those animals given the intravenous injections of the calcium buffer

APTRA-AM showed an 85% decrease in infarct volume. APTRA-AM has been

previously shown to be neuroprotective but only when administered prior to exposing

cultured neurons to anoxic/aglycemic conditions (Abdel-Hamid, Tymianski, 1997).

Other cell-permeant calcium buffers (e.g. EGTA-AM; BAPTA-AM) have also been

shown to be neuroprotective against in vivo ischemic injury; however, they were also

given prior to the induction ofpermanent MeA occlusion (Tymianski et aI., 1994). This

is the first demonstration that cell-permeant calcium buffers, specifically APTRA-AM,

offers significant neuroprotection against neuronal death when administered after the

onset of ischemia.

The mechanisms associated with the neuroprotective ability of cell-permeant

calcium buffers have been suggested to involve an overall increase in a cell's calcium

buffering capacity (TYmianski et aI., 1993), as well as their ability to pre-synaptically

inhibit the release of neurotransmitters (Tymianski et aI., 1994); (TYmianski, 1995);

(Spigelman et aI., 1996). While our experiments did not address the mechanism by

which APTRA-AM protects neurons after cortical devascularization, it seems likely that

either one or both of the aforementioned mechanisms played a significant role. In our

experiments, choosing a double dose strategy extended the calcium buffering capabilities

and inhibition of synaptic transmission, effectively increasing the neuroprotective

capabilities of this buffer.

More recently, BAPTA-AM was shown to protect cells fronl apoptotic cell death

resulting from peroxynitrite exposure via the inhibition of caspase 3 (Virag et aI., 1999).

This result is very intriguing in light of the fact that our model features delayed cell



death, which may be indicative of apoptotic cell death. If apoptosis does playa role in

infarct development, then perhaps APTRA-AM acts in a similar way to prevent the

induction of the apoptotic program and ultimately protects the ischemic tissue from cell

death.

Interestingly, when DMSO was given as the vehicle control in these

neuroprotection experiments, a 52% decrease in infarct volume was observed when

compared to the untreated animals. While this decrease was not statistically

significantly, our data adds to the collection ofprevious studies which have reported that

intravenous administration of DMSO can reduce the amount of cell death observed in

both transient (Phillis et aI., 1998) and permanent MCAO (Shimizu et aI., 1997). While

the exact mechanism ofneuroprotection is unclear, one possibility is that DMSO, a

known hydroxyl radical scavenger (Coles et aI., 1986), reduces the amount of oxidative

stress on neurons within the infarct and adjacent regions. DMSO has also been shown to

suppress the Ca2
+ influx associated with glutamate and NMDA receptor activation,

thereby preventing excitotoxic cell death in hippocampal neurons (Lu, Mattson, 2001).

Thus, any of these mechanisms likely plays a role in the neuroprotection seen after

cortical devascularization. It is important to note that there was a significant reduction in

infarct volume when the APTRA-AM group was compared to the DMSO treatment

group. This confirms that the neuroprotective ability of APTRA-AM is due to its ability

to reduce the intracellular calcium load independent ofDMSO.



6.7 Changes in Glial Cell Activation and the Post-Injury Inflammatory Response

after Treatment with APTRA-AM

The role of glial cell activation and post-injury inflammation in ischemic injury

has previously been discussed (see section 6.3). In this model, both the microglia and

astrocytes are activated prior to infarct formation. After 48 hours, the microglia became

phagocytic and were found associated within and surrounding the infarct, as were

numerous macrophages. Similarly, reactive astrocytes were observed in the peri-infarct

areas forming a glial scar. By 7 days, both cell types remained in association with the

infarct and had retained their reactive morphologies.

Administering APTRA-AM after cortical devascularization reduced the

microglial response to the outer molecular layer immediately inferior to the surgery site

while completely inhibiting the phagocytic response when compared to un-treated

animals 7 days after injury. One possible explanation is that the buffering of

intracellular calcium by APTRA-AM reduced the expression of ionized calcium-binding

adapter molecule 1 (Iba1), a molecule involved in calcium signaling pathways

responsible for cell mobility and phagocytosis (Ito et aI., 2001). In our experiments, NF­

lCB immunoreactivity remained predominately cytoplasmic, suggesting that the

translocation of this transcription factor is blocked by APTRA-AM. This observation

supports previous observations where it was noted that both EGTA-AM and BAPTA­

AM suppress the activation ofNF-lCB in cultured Wurzburg and fibroblast cell cultures

(Sen et aI., 1996) (Shahrestanifar et aI., 1999).

APTRA-AM did not inhibit the activation of astrocytes, as highly reactive cells

could be found throughout both hemispheres. This observation was in contrast to an



earlier report which demonstrated that the calcium buffer BAPTA-AM reduced GFAP

immunoreactivity in astrocyte cultures (Lee et aI., 2000).

Despite its reported role as a free radical scavenger, DMSO treatment did not

reduce or eliminate NF-KB activation, which is thought to occur in the presence of

reactive oxygen species (Flohe et aI., 1997). This may be due to the fact that NF-KB

activation is most often associated with an increase in H20 2, rather than hydroxyl

radicals (Christman et aI., 2000).

6.8 Concluding Comments

The experiments reported here include a MRI and histological characterization of

a novel model ofpermanent focal cerebral ischemia. In addition, we have used this

model to study the effectiveness of the cell permeant calcium buffer, APTRA-AM, as a

neuroprotective agent when administered after injury.

In these experiments, it was clearly established that DWI is a sensitive measure

of the evolving injury that results from a cortical devascularization injury. When we

compare the results of our histology and immunocytochemistry studies to the DWI

study, we are confident that the early changes in DWI are the result of changes in the

astrocyte and microglial cell populations. After 48 hours, the onset of inflammation and

concomitant formation of a pan-necrotic infarct are responsible for the slow return of the

ADC values to normal. While the time course differs slightly, these observations are

similar to what has been previously observed in other models of ischemia (Pierpaoli et

aI., 1993); (Gill et aI., 1995); {Schroeter, Franke, et aI. 2001 ID: 470}. Thus confirming

that cortical devascularization is a viable, yet under utilized model of permanent focal



ischemia. Moreover, this work contributes to the body of evidence which points to the

reliability ofDWI as an early indicator of ischemic pathology.

Once we had completely charactelized the model and clearly established the

ability ofDWI to detect the pathophysiological changes associated with the injury, a

second set of experimental objectives were designed to examine the effectiveness of

APTRA-AM in preventing ischemic cell death. The histological studies clearly show

that APTRA-AM is highly effective when given after an injury, as we observed a

significant reduction in infarct area and the accompanying inflammatory response. In

addition, we were unable to detect any significant changes in tissue diffusion after

APTRA-AM treatment, which validates our approach ofusing DWI as a method of

testing the efficacy of neuroprotective compounds.

Much to our surprise, we also found that DMSO (l %) reduces the infarct volume

as well as inhibiting the changes in tissue diffusion that typically accompany a cortical

devascularization injury. This finding is significant as DMSO is commonly used as a

solvent in pharmacology studies, and our results indicate that its use could potentially

complicate the final outcome due to its neuroprotective abilities. However, the lesion

area of the APTRA-AM treated animals was significantly different than the DMSO

treatment group. Thus we were confident that the neuroprotective effect of APTRA-AM

was a result of its pharmacological effects and not compounded by the effect ofDMSO.

To our knowledge, this is the first study to provide evidence that cell permeant calcium

buffers are capable of neuroprotection when given after ischemic injury.

While further research is necessary to clearly define the mechanism by which

APTRA-AM acts as a neuroprotectant, this study contributes significantly to the body of



evidence that supports the use of cell-penneant calcium buffers as a neuroprotective

therapy in cerebral ischemia.



7.0 Appendices

7.1 Animal Groups

The following tables contain a list of the animals used in each experiment. See

Tables 1,2,3,4,5, and 6 for the number of animals used in each time point.

Table 8: The number of animals used in the experiments to characterize the cortical

devascularization model.

Aim Experiment Total Animal Groupings

Characterization of the cortical
devascularization model of ischemia

Control Sham Ischemia
DW and T2W imaging 37 3 10 24
study
GdT1W imaging study 7 0 3 4
Cresyl violet 65 32 27 32
histochemistry
Lesion volume 22a 0 0 22
measurements
Immunohistochemistry 32b 3 11 18
Fluoro-Jade staining 32b 3 11 18

Determination of the extent of the
inflammatory response

Fluorescent 32b 3 11 18
immunohistochemistry
Fluoro-Jade staining 32 b 3 11 18
ELISA 42 6 18 18

a these animals are in addition to the 32 ischemic animals used from the cresyl violet
study.
b denotes animals that were culled from the same population of animals used in the
cresyl violet histology experiment in the characterization study.



Table 9: The number of animals used in the neuroprotection experiments.

Aim Experiment Total Animal Groupings

t f St d- europro ec Ion UlY

Un- Sham Saline DMSO APTRA-
treated AM

DW imaging study 23 0 0 8 7 8
Cresyl violet 37 0 0 8 11 9
histology
Lesion volume 37 3 4 5 8 11 9
measurements
Immuno- 11 b 0 0 4 3 4
histochemistry
Fluoro-Jade 11b 0 0 4 3 4
staining

APTRAAMN

3 an additional 11 animals from the original cresyl violet histology study and sham cresyl
violet histology were added to the untreated and sham groups to increase their sample
size.
b denotes animals that were culled from the same population of animals used in the
cresyl violet histology experiment in the neuroprotection study.

7.2 Histochemistry: Buffers, Fixatives, and Stains

7.2.1 Buffers

7.2.1.1 Phosphate Buffered Saline

Phosphate buffered saline (PBS) was routinely used as the buffer in all the

histochemistry and immunocytochemical procedures. A stock (1 OX) solution was

prepared by dissolving 76.5 g NaCI (Fisher Scientific, Tustin, CA; S271-3), 7.25 g

Na2HP04 (Sigma-Aldrich, S1. Louis, MO; S2713) and 1.72 g KH2P04 (Fisher Scientific,

Tustin, CA; BP362-1) in 700 ml triple distilled water. The volume was brought to 1 L



by adding additional triple distilled water. The PBS was stored at room temperature and

diluted as needed.

7.2.1.2 Millonig's Buffer (0.12 mM)

Millonig's buffer was used as the primary buffer for the fixation and preparation

of the brains for sectioning. This buffer was prepared by adding 16.88 g NaH2P04and

3.86 g NaOH (Sigma-Aldrich, St. Louis, MO; S8045) to 1 L of triple distilled water.

The solution was adjusted to pH to 7.3, filtered and stored at 4°C.

7.2.1.3 Phosphate Buffer (0.5 M)

This solution was used in the preparation of the cryoprotectant solution used in

the storage of cryostat sections. A 100 ml volume was prepared by adding 28 ml of 1 M

NaH2P04 (Fisher Scientific, Tustin, CA; S397500) to 72 ml Na2HP04.7H20 (Fisher

Scientific, Tustin, CA; S471-3).

7.2.2 Fixatives and Storage Solutions

7.2.2.1 Fornlaldehyde (4%)

Formaldehyde was used in the perfusion fixation of animals selected for

histological analysis and was prepared by adding 40 g paraformaldehyde (Fisher

Scientific, Tustin, CA; 04042-500) to 400 ml of60°C triple distilled water. The solution

was cleared by the addition of2-5 drops of 10 N NaOH. The solution was brought up to

I L by adding 500 ml of 0.12 mM Millonig's buffer, adjusted to pH 7.3 and filtered



through Whatman #1 filter paper. This solution was stored at 4°C and used within I

week of preparation.

7.2.2.2 Sucrose (30%)

After the transcardially perfusion with 4% formaldehyde, the brains were

removed and placed in a 30% sucrose solution until they sank. This solution was

prepared by adding 30 g sucrose (Fisher Scientific, Tustin, CA; S5-500) to 100 ml of

PBS.

7.2.2.3 Cryoprotectant Solution

Cryostat sections that were not immediately stained with cresyl violet, including

those used for immunocytochemistry and Fluoro-Jade staining were stored in a

cryoprotectant solution. This solution was prepared by adding 100 ml glycerol (Fisher

Scientific, Tustin, CA; AC41 0985006) and 120 ml ethylene glycol (Fisher Scientific,

Tustin, CA; AC146750010) to 0.5 M phosphate buffer.

7.2.3 Stains

7.2.3.1 Cresyl Violet Acetate (l %)

Cresyl violet is a stain used to visualize Nissl substance in neurons and can be

used to differentiate healthy from un-healthy cells. Five hundred milligrams of cresyl

violet acetate (Sigma-Aldrich, St. Louis, MO; C5042) was added to 500 ml of distilled

water. While stirring, 0.125 g of sodium acetate (Fisher Scientific, Tustin, CA;



BP333500) and 1.5 ml of glacial acetic acid (Fisher Scientific, Tustin, CA; A38212)

were added followed by filtration. The stain was stored at room temperature in a glass

bottle and re-filtered before use.

7.2.3.1.1 Chlorofonn - Ether Solution

This solution was used in the cresyl violet staining procedure to remove the lipids

prior to re-hydration and emersion in the cresyl violet acetate. The solution was

prepared by adding 800 ml of chlorofonn (Fisher Scientific, Tustin, CA; AC423550040)

to 100 n11 of ether (Fisher Scientific, Tustin, CA; AC615080010) and 100 ml of 95%

alcohol (Fisher Scientific, Tustin, CA; HC-600-1 GAL). This solution was stored at

room temperature and used until it became cloudy.

7.2.3.1.2 Acetic - Fonnalin Solution

Emersion in an acetic - fonnalin solution for 1 -10 minutes was used to remove

excess cresyl violet stain. This solution was prepared by adding 40 ml of 37 - 40%

fonnaldehyde solution (Fisher Scientific, Tustin, CA; F75P-4) to 2 ITtl of glacial acetic

acid and 960 ml of distilled water. The solution could be re-used until it was no longer

clear.

7.2.3.2 Fluoro-Jade

Fluoro-Jade is an anionic fluorochrome used to selectively stain degenerating

neurons in brain sections. A 0.01 % stock solution is prepared by dissolving 10 mg

Fluoro-Jade in 100 ml of distilled water and stored at room temperature in a dark bottle



for up to 3 months. The 0.001% working solution was prepared immediately before use

by adding 10 ml of the stock solution to 90 ml of 0.1% acetic acid in triple distilled

water.
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