
PURIC: A Multimedia Uniform Resource

Identifier Management System

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Flavio Okuhara Ishii

c©Flavio Okuhara Ishii, October 2013. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgrad-

uate degree from the University of Saskatchewan, I agree that the Libraries of this

University may make it freely available for inspection. I further agree that permission

for copying of this thesis in any manner, in whole or in part, for scholarly purposes

may be granted by the professor or professors who supervised my thesis work or, in

their absence, by the Head of the Department or the Dean of the College in which

my thesis work was done. It is understood that any copying or publication or use of

this thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the

University of Saskatchewan in any scholarly use which may be made of any material

in my thesis.

Requests for permission to copy or to make other use of material in this thesis in

whole or part should be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

The types of content being transferred over the Internet are getting richer and

larger; the number of social media channels users have to sift through to publish

and find content is also increasing. Average users are uploading and downloading

richer and larger media files as they feel the urge to share their content with oth-

ers. This work explores a novel process for publishing personal media files on social

applications, where the publisher retains control over the media, while the imple-

mentation follows the principles of the WWW. The Personal URI Channel (PURIC)

system is introduced as a process that can take place along side social applications

like email clients, social networking sites (i.e. Twitter and Facebook), and emerg-

ing decentralized social networking sites. The PURIC system is a media resource

link management tool used for publishing and maintaining the links published on

social applications. This work explores the feasibility, benefits, and drawbacks of the

PURIC system. It reveals the modularity and scalability of the system, and how

it compliments social applications without placing too much load on network traffic

and server-side cpu processing.

ii

Contents

Permission to Use i

Abstract ii

Contents iv

List of Tables vi

List of Figures vii

List of Abbreviations viii

1 Introduction 1

2 Problem Definition 4
2.1 Thesis Motivation . 4
2.2 Media Publishing Limitations in Social Apps . 6
2.3 Publishing Decentralized Social Networking (DSN) Resources 8
2.4 Retaining Low Traffic and CPU Loads . 10
2.5 Thesis Goals . 11

3 Literature Review 13
3.1 Background - Social Applications . 13

3.1.1 Social Networking Status Quo . 14
3.1.2 Previous Works . 16

3.2 System Design & Infrastructure Improvements . 19
3.2.1 Modularity . 19
3.2.2 Scalability . 24
3.2.3 Load Testing a PaaS . 25

3.3 Literature Summary . 26

4 Thesis Solution - PURIC System Design 30
4.1 The PURIC System . 30

4.1.1 System Design . 34
4.1.2 User Experience . 36

4.2 PURIC and REST . 38
4.3 The Value of PURIC . 40
4.4 Goals - Overcoming the Challenges . 41

5 PURIC System Implementation 44
5.1 Implementation Choices . 44
5.2 PURIC Administration UI . 45
5.3 Client Side . 50
5.4 Server Side Implementation . 53

5.4.1 Cloud Computing Services (CCS) . 53
5.4.2 Communication Layer . 54

6 Tests, Evaluation, and Future Work 57
6.1 Experiments . 57

6.1.1 Test 1: Responsive Web Test . 58

iii

6.1.2 Test 2: Client-side Perceived Latency . 59
6.1.3 Test 3: Local GAE Development Server Tests 62
6.1.4 Test 4: Cloud-based GAE Production Server Tests 67

6.2 PURIC Drawbacks and Limitations . 70
6.3 Future Work . 71

7 Conclusion 74

References 76

A Implementation Source Code 80
A.1 Server-side . 80
A.2 Administration Templates . 90
A.3 Client Templates . 93

B Data Results 96
B.1 Local GAE Development Server Test Results . 96

B.1.1 Load Test Data for 5 qps over 5 minutes . 96
B.1.2 Load Test Data for 50 qps over 5 minutes . 96

B.2 Cloud GAE Production Server Test Results . 98
B.2.1 Load Test Data for 5 qps over 5 minutes . 98
B.2.2 Load Test Data for 50 qps over 5 minutes . 99
B.2.3 Load Test Data for 100 qps over 5 minutes 100

iv

List of Tables

3.1 Social Application Hosts . 27
3.2 HTTP methods. 28
3.3 Key Studies . 28
3.4 Literature Review Papers. 29

4.1 Achieved system design goals. 43

6.1 Responsive Tests: Client Devices Used . 59
6.2 Desktop Client Request Measurements . 59
6.3 Client Mean Times for Resource Requests . 62
6.4 Main Stats. 65
6.5 Network Throughput Stats . 65
6.6 Errors . 65
6.7 Main Stats . 68
6.8 Network Throughput Stats . 68

B.1 Main Stats . 96
B.2 Network Throughput Stats . 96
B.3 Errors . 96
B.4 Main Stats . 96
B.5 Network Throughput Stats . 96
B.6 Errors . 98
B.7 Main Stats . 98
B.8 Network Throughput Stats . 99
B.9 Main Stats . 99
B.10 Network Throughput Stats . 100
B.11 Main Stats . 100
B.12 Network Throughput Stats . 101

v

List of Figures

4.1 A comparison of the social resource publishing architectures. 32
4.2 PURIC Publish Process. 33
4.3 PURIC Consumption Process. 34
4.4 Proxy Flow Chart. 35
4.5 URI alias to Origin URI Flow. 39
4.6 GET request for Web resource data. 39

5.1 Publisher UI showing all of the URI alias the user has created that are ready for
publishing. 46

5.2 Publisher UI showing URI alias details and origin URI list (URI alias versions). . . . 47
5.3 Desktop browser at 800p resolution displaying 800p image. 47
5.4 Desktop browser at 1440p resolution displaying 1080p image. 48
5.5 Mobile devices in landscape orientation mode displaying larger 800p resolution than

in portrait. 48
5.6 Mobile devices in portrait orientation mode displaying smaller 480p resolution than

in landscape. 49

6.1 Measurement of one page load in the Chrome browser. 60
6.2 Shaw (cable ISP) speed tests results. 61
6.3 Tsung Experiment: Run 3 - 100qps for 5 minutes. 66
6.4 Instances spawned in the production server for all tests ran. 68
6.5 Tsung Experiment 4: 25qps for 5 minutes, 50qps for 5 minutes, 100qps for 5 minutes,

50qps for 5 minutes, 25qps for 5 minutes. 69

B.1 Tsung Experiment 1: 5qps for 5 minutes. 97
B.2 Tsung Experiment 2: 50qps for 5 minutes. 98
B.3 Tsung Experiment 1: 5qps for 5 minutes. 99
B.4 Tsung Experiment 2: 50qps for 5 minutes. 100
B.5 Tsung Experiment 3: 100qps for 5 minutes. 101

vi

List of Abbreviations

ACL Access Control List
API Application Programming Interface
AWS Amazon Web Services
CCS Cloud Computing Service
DSN Decentralized Social Networking
GAE Google App Engine
FOAF Friend of a Friend
HTTP HyperText Transfer Protocol
HTML HyperText Markup Language
IaaS Infrastructure as a Service
ISP Internet Service Provider
JSON Javascript Object Notation
P2P Peer To Peer
PaaS Platform as a Service
PURIC Personal Universal Resource Identifier Channel
REST REpresentational State Transfer
RPC Remote Procedure Call
RSS Rich Site Summary
SaaS Software as a Service
SN Social Networking
SNS Social Networking Site
SOAP Simple Object Access Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator or Universal Resource Locator
W3C World Wide Web Consortium
WWW World Wide Web
XML eXtensible Markup Language

vii

Chapter 1

Introduction

Tim Berners-Lee created the internet in 1990 as a place where researchers could

exchange structured data in a universal fashion. It has since been able to scale

significantly due to improvements in the HyperText Transfer Protocol (HTTP) along

with the guidance of the REpresentational State Transfer (REST) architectural style

[44]. The World Wide Web (WWW) has become the largest and successful software

system as a result of these technologies. The RESTful design principles support the

changing nature and massive scalability potential of an online system.

Web 2.0 emerged as a way for people to easily contribute content to different Social

Networking sites like Twitter [54] and Facebook [55], or other social applications such

as YouTube [23] and WordPress1 blogs. Web users now rely on social applications

to stay current, viewing updates and trends from family, friends, businesses, and

other groups that may interest them. The data published by a social application

user and his online activities can become enclosed in the social application silo, as

property of the social application or service provider. Some Social Networking (SN)

sites provide access to the published data via an Application Programming Interface

(API), but they are still behind walled gardens since the services have policies in

place to regulate the data accessibility and it is difficult for the general public to

make use of such technical services. It is difficult to export published content from

one social app to another, and things could get complicated if the link has been

already published in different media channels. A number of factors are calling for a

new method of publishing and consuming rich media in the Web:

• The World Wide Web Consortium (W3C) and Berners-Lee have recognized that

the closed concept of popular SN sites do not follow the open and scalable nature

1http://wordpress.com

1

of the WWW design. The stewardship of this idea has gone public with the

W3C Workshop on the Future of Social Networking [72] and with Tim Berners-

Lee speaking out on Linked Data and against the walled gardens of SN sites

[29, 30]. Such movements play key roles in addressing the issues of SN silos and

opening the discussion over who owns and controls the user data.

• Decentralized Social Networking (DSN) sites have emerged as an alternative

to SN sites for many users. DSN sites may offer the same functionalities of

existing SN sites but also support more freedom for the user to take his/her

account credentials and published content from one DSN host to another. DSN

sites have not been very successful as they are competing against very well

established SN sites and there remains many technical design challenges to be

solved in the decentralized arena.

• Internet traffic is increasing significantly as more and more people become con-

nected and contribute to the social Web. This also means that there is an

increase in HTTP requests that need to be handled by a Web server. There

is also an abundance of client platforms making HTTP requests, with different

cpu power, memory, screen size, and capabilities. As this internet usage across

client platforms rises including in the mobile arena, the need for client platform

specific content and experience (responsive content) will also rise.

• Personal Web content ownership and control will become more relevant and

desired as more and more people use the internet to publish, share, store, and

control their data that exist in various social networks. A different way of

sharing social content is needed and it must be designed to integrate well with

the different types of social applications. The sharing process should support

the publishing of Web resources in a more user-controlled, robust, flexible, and

responsive manner.

The next chapter discusses the problem definitions that takes in the four factors

above. Chapter 3 breaks down the history of HTTP, REST, the emergence of respon-

sive content, Web resource versions, and previous works. Chapter 4 identifies a set

of guidelines and details the design approach to attain the goals outlined in chapter

2

2. Chapter 5 discusses the implementation of the approach and chosen technologies.

Chapter 6 evaluates the system implemented and mentions some of the future work.

Lastly Chapter 7 provides conclusions of this research.

3

Chapter 2

Problem Definition

This thesis focuses on a media resource publishing scheme that supports the

sustainable growth for the WWW along side social applications. Sustainable growth

in the sense that content can be added and controlled by the publisher in a way

that does not go against the open design principles of the WWW, and that does not

degrade the internet with extra CPU processing, memory usage, or network traffic

congestion.

This Chapter describes in more detail all the issues associated with the topic

of social media publishing. Social applications need a new publishing model that

provide ownership and flexibility of published content, as well as: (1) maintaining

low CPU, (2) memory, and (3) network traffic loads. The following sections will go

over the feasibility of implementing the solution.

2.1 Thesis Motivation

Print publishing and Web publishing need to be looked at differently, as there are

more options in the Web publishing medium. The option of granting the ability for

changing a published content can be extremely valuable in some cases. In print,

once an author publishes his/her content, it cannot be modified or retrieved, only

referenced to from a later publication. This can serve a good purpose for formal

documents and news articles, but in the Web 2.0 arena there is the option to change

what has been published and people know that it can be done, so it may as well be

made accessible for social media users.

Social media applications, or SN sites, have the problem of being or becoming

silos, or walled gardens as termed in [68]. The papers and summary report of the

W3C Workshop of 2009 [72] served as the basis for the motivation behind this thesis.

4

Section 3.1 goes into detail as to its position on the state of SN and where it should

go. This thesis takes some of the challenges discussed in [72] and handles them in

the media publishing use case. SN sites lack the scalability found in the Web, as the

data becomes enclosed in a place where only members can view them and where in

some cases the published media becomes property of the SN site.

The current process for publishing video and image media files to social applica-

tions can negatively impact how the Web grows as a shared public space. A media

file that is uploaded on Facebook becomes the property of Facebook and is accessi-

ble only within its silos, or network of users. Another negative impact arises when a

published media file is updated; it will require a separate Facebook posting with the

updated version re-uploaded, resulting in additional server processing and network

loads.

When a YouTube link is published in a social application like Twitter, the pub-

lished link remains public even if the video resource is updated as a new YouTube

video 1, or if it is removed from YouTube and hosted in a different service. This re-

sults in the consumer user being redirected to an error page. If the Twitter posting

is deleted it can still live in other users’ Twitter public timelines, if that same link

had been retweeted (reposted on Twitter) by someone else. Similar occurrences of

incorrect or bad links can happen with other social applications like email clients,

where messages that include media links can be forwarded to multiple recipients

infinitely. The publisher has no control over the links published.

Three problems motivated the work for this thesis:

• Control and Robustness of Public Media Content - the control of shared data

in social applications.

• Ownership and Hosting Flexibility - the challenges exposed for supporting own-

ership and hosting flexibility of the media file content.

• Processing Resources and Network Loads - The unnecessary CPU and mem-

ory usage, and network traffic for publishing and consuming content on social

applications.

1YouTube videos may not be edited once published.

5

A social application problem needs to be quickly explored and solved before it esca-

lates to a more severe problem, because of the masses of users in the system. The

following sub sections describe each of these problems or motivations in detail.

2.2 Media Publishing Limitations in Social Apps

Most applications are now social applications, either by nature or by having a social

component add-on. A social app should make it more effective to share and manage

information among its readership, but that is not always the case. It is in the best

interest of social applications to not only engage members to be active but also to

grant them with more ownership and control over their own published content. This

will aid in keeping the membership content (happy).

Email, forums, blogs, YouTube, Facebook, Twitter, and other social applications

are all channels that people use to publish and share the links of their own media

resource like documents, photographs, videos, and audio files. Once the content

is published to a particular network (or email recipients) the target audience can

follow the link, view the resource, and share it with others by re-publishing the link.

Published resources are conveniently shared and re-published by others via a unique

identification string, in Web terms it’s called the Uniform Resource Identifier (URI).

Users have minimal control over what has been published, the user is dependent

on the functionality exposed by the publication service. For example, YouTube

currently does not allow publishers to edit their existing videos; if an update is

needed. YouTube forces publishers to either remove the video or leave the video as

is, and upload the updated video as a new video with a new URI.

Status updates are re-posted (or retweeted) on an SN site like Twitter depending

on many factors. A retweet is the power given to people to selectively keep spreading

an existing tweet (posting) on Twitter. There is no relationship between the number

of followers (subscribers) and retweets a user gets, based on [54]. However, the

act of re-posting information, which often contains links, occurs often in all social

applications. Considering this, it is important to realize that when information and

links are shared, they are likely to be re-published by others.

Similar patterns are followed by similar applications and services limiting the

6

control over the resources. The following is a scenario depicting the problems raised

due to such constraints:

A videographer publishes a video on YouTube and shares the link on Twitter and

Facebook. Later he realizes an important footage is missing from the video. While he

edits the video on his computer his colleagues have re-tweeted and shared the original

video link respectively on their Twitter status timeline and Facebook walls. Once the

video is updated the videographer has to now remove the video from YouTube, upload

the new one to YouTube, and once more share the new link on Twitter and Facebook.

The above situation causes the following problems:

• orphan links - the original URL is broken if the resource is removed from the

host;

• clarification needed - an explanation and instruction must be posted by the

publisher to guide users to the new Web resource;

• false/unintentional publication - the original URI was shared among many

friends that may have also shared with their friends/followers, inheriting the

previous problems;

• tedious management - with different versions of a resource circulating on the

internet there is no simple way to control who sees which version.

• temporary incorrect search engine caching - search results will show the original

URI until it is no longer being cached;

The media resource hosting application needs to provide a way to modify the

published content 2, in such a way that an update or replacement the media will not

require a new Uniform Resource Link (URL) to be published.

The problem becomes even more complex when the URLs get shared by other

users, after the root URI of the main content has changed. Depending on the social

application, published posts may not always be removed or replaced easily, cleanly,

promptly, or at all; the post can still live on and can be found without the change

2Blogs and forum apps allow users to edit their posts. Facebook and Twitter allow the user to remove a post or
tweet but not to edit it. Typical email clients are less forgiving, functioning more like the traditional print media,
where it is nearly impossible to retract something published once it is released to the masses.

7

explanation trail of posts. In the case of an email message with a link, the problem

is more severe and requires a follow up email explaining the changes, which would

have to be sent to all these who received the link originally.

Removing any published media resource results in a 404 HTTP status error code

if not handled properly. Seeing this on a Web browser is a bad example of user

experience. The author of the published content is dependent on the data host

serving up the data to handle these errors adequately. And although it is possible,

there are no services in social applications that allow the publisher to redirect old

links to a new link. Services can attempt to handle these cases appropriately, but

as mentioned, if the linked data has been published and re-published by others the

complexity of the case rises and it is not handled.

The other limitation only happens with Peer to Peer (P2P) based social applica-

tions. P2P applications require the users to be network connected in order for them

to find each other and share their content. Applications like the Locker Project [17]

and P2Pme [75] are examples of recent P2P social applications, which foster data

ownership and control but tend to target the more tech-savvy users as oppose to the

general public.

Data storage cloud services like DropBox may not have the problems mentioned

above as files may be renamed while its published URL may remain the same. But

the ideal social app must support resources that are published in all types of services

in order to provide the user with the desired flexibility of moving resources from one

host to another.

2.3 Publishing Decentralized Social Networking (DSN) Re-

sources

DSN implementations [7, 75, 22] have emerged as an alternative to SN sites. But

they have not been successfully embraced by the general public mostly due to its

infancy stage and niche target audience. The general characteristics of a DSN site

help sum up the need for a new publishing process:

• User can be a member of multiple DSN sites, and DSN sites can share users and

8

their content. There is cross site user authenticity (sign in) and authorization

(access permission).

• User credentials and resources are not required to be centrally stored.

• User can migrate from one DSN site to another, taking all his/her social cap-

ital; also meaning that if postings used public URLs and URIs as opposed to

uploading the file to the Site (like Facebook supports) for media files it would

facilitate the migration.

• Open standards like HTTP, OAuth, and OpenID are followed to help with the

connectivity across sites.

• Niche, non-mainstream, or a special interest groups are targeted as potential

user groups.

Having to compete against well established technologies bring forth many chal-

lenges besides the marketing aspect of converting users to switch over. Popular SN

sites have a large following, making it challenging for DSN Sites to compete. They

also have the resources to make changes or integrate new features or revert old ones

based on user demand, as seen with Facebook [42].

There are many challenges brought up in [72] that remain to be solved in order

for DSN applications to survive as an integrated component of SN sites. It still

inherits the limitation and SN site problems introduced in the previous section.

Another design challenge of DSN sites is on how to share Web resources such as

image and video files. DSN sites need a content publishing process that supports

control, ownership, robustness, and flexibility to switch between DSN sites or share

across DSN sites.

Controlling a resource shared across DSN sites is a challenge. The publisher may

want to share a resource across two DSN sites, and not share or publish it at all with

other DSN sites. Even more of a challenge is the access control for privately shared

resources. A publicly shared resource has a URI that can be accessed by any user

without the need for authentication and authorization. A privately shared resource

is a URI that is only accessed by those that have been granted authorization to

view its content by the publisher and have been authenticated by the host or third

9

party service to access it. Sharing a private URI across multiple social applications

require an authentication and authorization module to be in place for each social

application. This is not an ideal situation for developers as it would require much

effort to implement and maintain all of the modules for each of the many social

applications in existence.

2.4 Retaining Low Traffic and CPU Loads

A lot of content is publicly and privately published online. Facebook has 800 million

active users with over 250 million photos uploaded per day [2, 41]. In 2011, Twitter

had 490 million unique users worldwide per month, out of those there was an average

of 400 tweets per minute containing a YouTube link [37]. Facebook has over 150 years

of YouTube videos watched per day [37] and out of those there are no available stats

for how many are retracted, replaced, removed, or simply left up there as invalid

resources. Such scenarios can be accumulated causing an abundance of unnecessary

network traffic and CPU processing. Furthermore, mobile users expect faster website

loads [34] or nearly match the speed on their desktop computers in the near future.

Low traffic loads and CPU loads must decrease and be kept low. This assumption is

the basis for the thesis sub-problems for when resource links are published on social

apps.

Sharing documents on social applications play a big role in the day to day commu-

nication between parties. People share links in emails, post links on Facebook and

Twitter, publish and share YouTube videos, share files from DropBox, and re-post

other people’s posts. Cloud storage services are becoming a popular way to backup

and share files online privately or publicly. The pattern of uploading data to one of

these services and then sharing the link via email, Twitter, or another social app is

also becoming a common publishing practice. An afterthought for these actions is

that once a link to a content or file is published it can not, or at least should not, be

changed to a different link without the cascading negative consequences.

The scenario described in 2.1.1 in addition to the growth in requests for Web

resources from clients also implies a growth in failed and unnecessary resource traffic

and computations. Unnecessary traffic can happen based on the following scenarios:

10

• A bad or dead link, where the content has been moved and it is not found - 404

HTTP Status Code.

• Incorrect or outdated resource returned and displayed.

• Small devices with low resolution screens downloading large resolution content.

• Lack of client-side caching where the e-tag is not utilized.

2.5 Thesis Goals

A system must be created to solve the problems mentioned in Section 2.1 or at least

find compromises to diminish the problems, while still being able to integrate with

existing and future social applications. More specifically the system needs to support

the following scenarios for its users:

• Provide the ability to change resource hosts, and ultimately the root URI, with-

out affecting the published URL due to a change in host, update in media file,

or provide different versions for different groups.

• Retain the control for the accessibility of a resource published and hosted on

a general purpose SN site (Twitter, Facebook, LinkedIn) or social application

(email, blog, project management system).

• Provide a visual display of the resource based on the client application or plat-

form requesting it.

The last scenario should be noted as a problem that occurs when a URL can

be used for pointing to different formats of the same resource. What is presented

depends on whether the user is using a mobile device with a small screen or a desktop

browser on a larger screen. If the resource was to be an image, it would be sized

according to the client application displaying it so that it fits appropriately on a

small or large screen resolution.

Two thesis goals are formulated based on the motivations, problems, and scenar-

ios mentioned earlier in this chapter. This thesis ultimately focuses on designing,

implementing, and evaluating a system that resolves the following goals and subgoals:

11

• Evaluate the challenges of implementing a novel way to publish media in social

applications, such that the link is robust and flexible, allowing the host or root

URI to change while the published link stays the same.

Modularity - integrate with existing social apps.

Data control and ownership - publisher owns and controls the root URI of

each URL published and re-published by others in any social application. Full

control is retained by the publisher over the root resource to be consumed.

Cross platform support - support a myriad of client platforms.

• Evaluate the implementation and find its drawbacks and limitations.

Low Resource Usage - the system serves up Web content that is generic and

does not result in extra CPU, memory, and traffic loads.

Scalability - perform server-side load tests by measuring how well the system

under high requests and traffic.

This thesis presents the design, implementation, and analyzes of a URI manage-

ment tool called PURIC to uncover its benefits and drawbacks. PURIC adds an

ownership and control layer to published media content on social applications, while

providing the necessary flexibility to switch the whereabouts the content is hosted

without breaking existing published links, or URLs - essentially creating a Personal

URI Channel (PURIC) that is a suitable method for publishing media content to

existing and future social applications. PURIC supports changes made to the origin

of a published media content without the typical side effects of changing published

links.

12

Chapter 3

Literature Review

The aforementioned PURIC system needs to provide users with a way to control

their social Web resources, which integrates well with and not necessarily compete

with existing social applications. This chapter points out existing studies building

up to and supporting the need for a system like PURIC.

PURIC is a unique solution for a specific set of use cases in social media con-

tent publishing that overcomes the limitations of existing works. Its approach uses

standards and popular technologies. This chapter introduces the concept of social

applications, presents the current issues with SN and the recent attempts at decen-

tralized solutions, and discusses the technological options chosen for the foundation

of the PURIC system. Potential improvements in the end-user’s experience is also

discussed. A literature review table is provided in Section 3.3, listing all the refer-

ences related to this chapter’s topics and sections.

3.1 Background - Social Applications

Social applications are browser based tools with a communication and relationship

management component. Social applications have become more and more utilized

for personal, entertainment, and professional use cases. Examples of social Web apps

are sites like Facebook, YouTube [23], Flickr 1, blogs, and even email clients, all of

which allow the user to publish content or links to content for their subscribers or the

public to see. Utility applications like DropBox 2, Zoho Docs 3, and Google Drive 4

are used to store, share, and collaborate on documents and media files for SN sites.

1http://flickr.com
2http://dropbox.com
3http://zoho.com
4http://drive.google.com

13

More recent social apps like the video collaboration site HitRecord 5 or the unique

bookmark management and sharing app PearlTrees 6 have emerged providing unique

experiences for people to manage their Web resources, share them, and collaborate.

Social applications fall under the Web 2.0 branded websites. [58] highlights the

importance and requirements of Web 2.0 apps: use it as a platform for developing

software in; support lightweight and loose coupling in the programming models (i.e.,

REST); outsource and mash up content via contribution and collaboration; provide

ownership and control for published content. These points fall very much in line

with the thesis motivations in Section 2.1.

Table 3.1 shows what each social application can host, and what type of media

access and authentication schema each supports. For the most part privately shared

media files requires a membership with the host, the exception being for Email which

requires a service account. Diaspora [8] promises to support content import export

across other Diaspora pods (hosts).

Data aggregation applications have emerged on the market to narrow the gap

between different SN sites. Aggregation solves some of the user’s burden of publishing

content in multiple SN sites by having one central management location; however,

it does not provide the user with complete control and ownership of the resources

published. Facebook [43] has the right of data ownership until the account is deleted,

but if content was shared by others, the content still exists even after the account is

deleted. Social sites like YouTube grant the publisher with more options to control

their content; for instance, if the content (video) is deleted, everything associated

with it and linked to it is removed and the video becomes inaccessible [24].

3.1.1 Social Networking Status Quo

This section focusses on the background of how Web resources (or files) are stored

and published and the issues with the status quo. Social applications have certain

limitations like how content is published and shared, specifically on SN sites. SN

sites have a tendency of becoming silos of published data, which degrades the value

of the WWW by segregating data. Only members of a SN site have access to the

5http://hitrecord.org
6http://pearltrees.com

14

data published within it, forcing people to join that SN site. The W3C Workshop

Report [72] discusses the issues and the future of SN, it generalizes all of the position

papers submitted for the workshop into the following topics:

• Decentralized Architecture for Social Networks and Data Portability

• Business Considerations

• Privacy and Trust

• Context Sensitivity

• Adapted User Experiences

The W3C Workshop provided the basis of what needs to be done. This thesis

covers a little on each topic, except for Context Sensitivity. DSN sites have yet to

gain momentum partly because there needs to be a migration path for it to first

work along side the popular SN sites. A user that is a member of multiple SN sites

is asked to perform a lot of redundant and tedious activities, such as maintaining

their profile and published content in multiple locations. A DSN architecture can

dissolve this issue, aggregating all the SN sites into one location and interoperating

with others regardless of the SN they belong to.

SN sites could ”open” themselves by implementing open protocols. This may

make the case for achieving greater usage numbers as more potential users would

gain trust, sign up and be retained if SN sites were to do that. This would transform

existing SN sites into an open Social Web, which is more in line with the principles

of DSN sites and of the WWW. OpenSocial [56] a standard that allowed SN sites

to take the initiative to interoperate amongst each other did attempt just that, but

without the key players taking part in it, it was not possible to make the ecosystem

work.

The privacy risks and lack of ownership are overlooked or do not yet make it worth

the effort to join yet another social application. Decentralization is something very

foreign to general users, and only attracts a very minute number of them compara-

tively speaking. A privacy scenario that has not been studied much is when a user

knowingly or unknowingly publishes sensitive or damaging content about another

15

user. Published content can easily be re-published by others, or even ”go viral”,

making it difficult to control. The valuable data that the popular SN sites have

will continue to be locked down within themselves, it is up to the users to initiate

and start publishing their content in a more open schema. Privacy risks such as a

damaging media file going viral or showing up in the wrong stream of data needs to

be addressed so that it can be avoided or quickly reacted upon.

The last W3C Workshop topic is the cross platform (mobile, desktop, tv, large

billboards) support. The Workshop includes papers on better accessibility to include

all types of users, which could be covered in a future case. It is important that the

concrete solutions of the topics brought up in the workshop can be used across

platforms.

3.1.2 Previous Works

There has been many previous studies that have attempted to resolve some of the

issues highlighted by the W3C Workshop. Studies such as [77, 17, 56] look at interop-

erability of the SNS communication strategies via different protocols and frameworks,

while PURIC looks after the interoperability for the media file sharing using existing

means. The other studies focus on sharing private data, while avoiding redundancy.

PURIC does the same except the data is not relationship data but PURIC looks at

public media files for massive teach, and control over their many versions.

[59] offers a survey on different approaches for decentralizing SN sites. It discusses

the general SN site functionalities that can be broken down into social relationships

(networking) and user content (data) functions. PURIC focusses on components for

the data functions. According to [59] DSN sites can be developed as a Web-based or

Peer-to-peer system. It also points out that cloud storage integration (i.e., DropBox,

Box.com) for DSN sites may not be ideal since they are paid services after a certain

amount of data is stored in them; however the cloud storage service provides access

to the content whether the publisher is online or not and the publisher has control

over the files.

The [36] work mentions the synchronization of messages (cached in the proxies)

but it does not consider larger data types like media files. They have a strong case

16

for extending the browser and creating a Browser-Server, or Browserver solution,

that can act as a Proxy server offering services accessed by a Gateway and other

Browservers. The Browserver advocates the usage of public FOAF and micro formats

for data to be publicly accessible and search engine friendly. This can be used to

find new users and their published data. The Gateway server can be accessed when

the user is offline. Other Browservers can be accessed directly from a search engine

search result or through a local directory which adds the perception of a P2P system.

This study offers an off the shelf solution that could require the addition of a plugin

or way to extend a browser to offer services, this may complicate things as we move

from a desktop browser to a mobile device browser or smartTV browser in which

a user could be publishing their content from. This solution also does not discuss

media files sharing in which case it could take some points from PURIC or even

integrate a similar solution for sharing media links via the brow server or gateway.

Similar to the [36] study, PURIC is more about a shift towards a new way of

controlling published media on social applications as oppose to implementing a new

technology. It does not require a costly and complicated infrastructure as it is a

simple gateway. It is easy to integrate as all that is needed is the URL generated.

Some social activities should be public as it can be of benefit to the general public

but they should also remain controlled.

A much discussed issue with SN and DSN sites is privacy which can be sectioned

off to controlled and uncontrolled data. Controlled data is defined as all data that

is published by the user, which the user may edit or remove. Uncontrolled data is

defined as all data that is republished by friends of the publisher, which the publisher

has no control over. While most studies like [26] focus on privacy in general, which

is authentication and authorization to content, PURIC focusses on acquiring control

over both published (controlled) and re-published (uncontrolled) data so that privacy

issues can be effectively dealt with. If something was published that should not have

been published because it could cause some privacy issues PURIC can effectively

deal with it. P2P works like LotusNet [26] may be more ideal for private DSN sites.

PURIC allows users to publish public media with complete control over wherever

service is used and taking advantage of the different network of friends for greater

17

exposure and feedback. This allows the Web to grow. P2P solutions are still walled

gardens in a sense, just smaller gardens more spread apart.

The Locker Project, previously known as Lockr [69, 64], is an open source sys-

tem that provides social privacy and SN Application Programming Interface (API)

aggregation layers for centralized and decentralized SN services. It focusses on the

privacy of user content across different SN sites. Similar to PURIC it allows the user

to use any SN, it adds on content authorization support but it does not support other

features. Locker Project has a different use case and targets those that are interested

in managing private content through a hosted proxy or a P2Pmeans. Nevertheless, it

is an intriguing take on adding a content management layer to existing SN services.

Its design approaches based on [69] require some workarounds and custom schemes

to interoperate with different SN services like Facebook, Flickr, and BitTorrent. The

Locker Project has similar principles as PURIC; it allows users to choose content

storage locations, but it still encourages a walled garden approach. Something that

makes it difficult for growing the public internet, data discovery, and relationship

discovery. The Locker Project could easily integrate PURIC features into its own

set of features as PURIC’s design is very pluggable. On the other hand, PURIC

could add an ACL layer to the Proxy similar to how it’s implemented in The Locker

Project.

A recent number of works have been published on DSN but most have been a P2P

infrastructure [17, 32, 74, 63, 31, 67, 27]. P2P seems like a logical solution but the

main issue with them is content accessibility due to the unreliability of the network

connected user-based hosts. Unless a caching server is used which makes the system

more of a hybrid of P2P and server-client infrastructure, like the Browserver system.

Also P2P systems are typically not as user friendly as centralized or hosted solutions,

which is a big part in how Web 2.0 apps attract and retain all types of users and not

just technically inclined users. P2P system may require a software to be installed

by the user or the management of paired keys for security purposes, which degrades

the user experience. The replication of media files that occurs in P2P systems is

redundant and not as efficient and effective.

Existing solutions have their own set of use cases:

18

• Professional media publishers wanting control over their own commercial or

entertainment content.

• Advanced, experts, managers of social media users that want more control.

• Advocates for the sustainable growth of the WWW.

What all the proposed solutions are missing out on except for Diaspora, is the

ease of use by the developer, which is just as important as it is what will allow more

startup companies to get their product and services out there. The easier and more

abundant the technologies used in the solution, the faster and more implementations

there will be. Whatever the set of technologies used to develop the idealistic SN

system is, it must be chosen so that there is a low entry process by the developers.

There is no killer social app of the future, whatever the new phase of SNS is it will

be a slow transition to get there, as there are masses of users that would need to be

”converted”. Integration or interoperability of current SNS is what needs to happen

as the first stepping stone.

3.2 System Design & Infrastructure Improvements

3.2.1 Modularity

The communication between documents occurs via a client and server architecture

and the Hypertext Transfer Protocol (HTTP). It is via HTTP request methods

and responses that a client like a Web browser can request resources from a server

and the server provides the proper response back to the client. A Web content,

or resource, is mapped to a unique URI or URL, which locates the resource on

the network and returns it in an HTTP response. A Web resource has its own URI

used to be located in the WWW. HTTP is the underlying communication technology

supporting a client-server interaction where the client sends a request to be processed

by the server who then returns the response to the client. HTTP will be used as the

protocol for the system at hand as it will be a Web-based system. HTTP responses

can be in different formats: HTML, JSON, XML, and streamed bytes. The server’s

response includes a header with all the meta-data necessary for the client to properly

19

parse or process the response type.

A communication layer is required between the client and server system compo-

nents. There are namely two potential standards or design patterns that could be

used for this communication layer, one being Simple Object Access Protocol (SOAP)

and the other being REpresentational State Transfer (REST). Both of these methods

could be used for setting the system protocol guidelines. These are two different but

popular styles of providing Web services and exchanging structured data [61, 60].

SOAP

If a client and server are communicating with each other via SOAP [58], there exists

a tighter coupling where the interaction and components are more dependent on each

other and information shared between each application is on a need to know basis.

SOAP is ideal for corporate Web services as it needs to be more secure and specific

to the job, a SOAP Web service maps to custom use cases, or procedures, where

the request may perform multiple actions on multiple resources in the backend that

is blackboxed from the service consumer. Much of the SOAP process is abstracted

in the Web service URL, which is ideal for enterprise and proprietary solutions, but

not so much an ideal solution for interactions among social Web applications.

SOAP entails the invocation of Remote Procedure Calls (RPC’s) that provide

well formulated and specific responses. There is typically a specific procedure call

for every business logic action the client requires from the server, if an action does

not exist it must either be created or aggregated from multiple RPC’s in the server,

making it complex to change or extend services since the response is formed on the

server side.

The realm of social application requires Web services that will suit a variety of

needs, in order to do so it is best to provide basic actions to the rudimentary blocks

of data, or Web resources, as oppose to supplying SOAP Web services for each action

that the application wants to support. It also requires a more lightweight mean of

interaction between components. At this point it is clear that although it is possible

to use SOAP Web services for social applications, a different protocol may be better

suited.

20

REST

REST is an architectural style used as a means to integrate software by abstracting

away concerns and following certain constraints and standards. The REST architec-

tural style and HTTP guidelines [40, 65] may be used to build a Web system much

like it has helped build and shape the WWW. It provides the service granularity

for accessing a Web resource of an application and manipulating it based on the re-

quirements. The RESTful way of communicating between client and server is more

transparent and fine grained. The client is aware of the exact resource or group of

resources that is being manipulated and what action will be performed on it or the

group. The intentions are clear and fine grained which makes the system as a whole

more robust and modular.

The convention used in a RESTful interaction between client and server follows

the standards posed by the HTTP request methods and status response structure.

REST has become a defacto for designing an independent communication component

between Web systems. REST is an ideal design pattern for providing a scalable,

modular, and flexible platform to develop with for the social media domain, where

a lot of times use cases emerge that had not been thought of yet. Public and social

applications created with Web frameworks like [20, 9, 18, 6] have embraced REST.

Social applications and services like Facebook, Twitter[70], OAuth, and others also

make use of a RESTful API for interoperability.

Fielding’s PhD dissertation [44] in 2000 brought about a change, in how dis-

tributed Web systems should be designed based with proper use of HTTP and REST

to simplify the machine-to-machine and machine-to-human communication. REST

allows system components such as server applications to scale naturally within and

beyond itself. The RESTful approach simplifies the machine-to-machine interface

from the ground up making it ideal for scalable and distributed (or decentralized)

systems; whereas a traditional approach prioritizes the machine-to-human interface

which later suffers from scalability issues.

RESTful services are used to design systems with accessible resources that can

be created, read, updated, and deleted (CRUD). The WWW [28, 61, 45, 44] itself

has proven to be the most successful and largest RESTful software due to its ability

21

to scale, discover linked data, and robustness and efficiency via caching mechanisms.

RESTful APIs support UIs that are separated from the service provider, where devel-

opers can create custom data or resource displays while using the core functionalities

and data of a system.

The benefit of using an API is that clients are developed as thin cross-platform

applications. This lowers the barrier for many client application developers to get

involved. Supporting the standard Web standard technologies (HTML, Javascript,

and CSS) increases the chance of attracting more developers to create client appli-

cations. SN APIs provide the opportunity for innovative third party applications,

which in return extend the services and value of the API provider.

A RESTful approach can help simplify the inter-connectivity between proprietary

SN APIs, while also supporting the integration of new functionalities and heteroge-

neous client platforms (i.e., smartphones, PC’s, TV’s). A RESTful API can success-

fully scale an online system and succeed in promoting the fundamental principles of

the open Web standards for social networks.

Providing an API for the internal and external consumption of services can im-

prove the scalability and modularity of the system. The functionalities and compo-

nents may be changed or added at a granular level without affecting other compo-

nents or Web resources of the system.

Web Applications contain many Web resources like a photo, document, or other

files. Web resources can be stored and served by a variety of hosts. Most content

published on SN sites and other social applications are meant to be public but once

published inside a SN site or targeted directly to certain recipients it causes a silos

for data. Making it impossible for that content to be accessed by the general public.

Although there are use cases where data needs to be kept private, the World Wide

Web (WWW) was created to share documents and keep the World informed and

connected regardless of who, where, and when. Hence, there is a need to make

data more accessible and completely controlled by the publisher, similar to storing

revisions of documents and sharing certain revisions with others as they get updated.

There should be a more efficient way of doing this with Web resources but there are

no existing solutions.

22

Systems built with HTTP and REST support the requirements for implementing

current trends and technologies such as cloud computing, horizontal scalability, and

popular social application APIs. The technologies used by the client and server has

many different capabilities and it will continue to add more capabilities in the future;

thus it is important that the communication approach is scalable and flexible.

A social application built on HTTP and a RESTful foundation can support the

ability for content publishers to control the data they published with resource-based

proxy capabilities. It is a suitable Web-based architectural style for a social appli-

cation to scale well and succeed in promoting the fundamental principles of an open

Web.

HTTP has a large specification that has been kept general to serve many purposes.

This has not stopped the need by some systems to extend HTTP for their own

practical purposes. Several works have looked at extending HTTP, adding Header

fields, and extending REST, or even making REST more like SOAP Web services by

using URIs as verbs rather than identifiers [62, 50, 57]. These works have proven to

over-complicate the standards for implementation, let alone the re-implementation

of so many existing applications.

HTTP extensions is one route that may be ideal within a private system scenario

to make it run more efficiently, but they may be challenging for a public system

as extensions are not well known even if added to the standards. It can be argued

that an HTTP standard becomes usable only when it gains in popularity, as specific

purpose standards can be deprecated, misused, or not used.

A more general route is to make use of popular HTTP and REST standards and

adding an application layer over the system in place. This may not be as efficient

but may prove to be more practical in order for existing RESTful applications to

start adjusting to the needs of the internet usage, while not complicating HTTP

implementation and forcing other application integrations to comply. The general

REST communication process involves: HTTP method requests sent from the client

application, processed by the server application (or resource owner) that returns an

HTTP response to the client. Web systems like PURIC require the scalability and

agility that REST can provide.

23

The REST architectural style has a more suitable and flexible approach for imple-

menting Web services, which utilizes the set of standard HTTP methods [71] to be

invoked by a server as an action to perform on an existing resource or to create a new

resource. Table 3.2 outlines the different HTTP methods. These HTTP methods

map to CRUD operations for different Web resources. The protocol makes use of the

URI of the Web resource(s) being manipulated; HTTP request headers for passing

various meta-data including the resource’s caching information; and optionally the

body content for creating or updating resources on the server.

3.2.2 Scalability

Social applications, specifically SN sites, are very unpredictable as topics can become

popular at a minutes notice and content grows exponentially as more users join

the network. In order to support such varying loads the social applications and

their supporting applications need to scale horizontally. The scalability of social

application can be easily outsourced to a Cloud Computing Service (CCS). CCS can

be broken down into different layers of abstraction based on the services provided.

Three layers are listed below:

• Infrastructure as a Service (IaaS) - The hardware is management is offered as

a service [3, 19, 16]

• Platform as a Service (PaaS) - The OS and development platform is offered as

a service [47, 14, 4]

• Software as a Service (SaaS) - The software and everything underneath it is

offered as a service [21, 13, 25]. This can also entail the Data as a Service

[10, 5].

Data Cloud Storage Services have made their way into mainstream usage. Drop-

Box and Box.net became popular as a tool to backup and share data in 2010. Zip-

pyShare and MediaFire are two more recent cloud storage websites that allow users

to sign up for free and share their files with their friends by sending them a webpage

link. It is becoming evident that such a need is unavoidable.

24

Storing sensitive data and applying a secure model for fine grained access control

is a complex challenge as it involves encryption techniques that need to be efficient

enough to support high loads. This topic, as discussed in [52, 73, 76], is left outside

the scope of this thesis.

Data storage cloud services have their own proprietary method of granting data

access, where the publisher shares a private link with any user or shares the resource

with other users with accounts in the same system. This method is simpler and well

established in Web applications, but the downside is that the link is still publicly

accessed if published by others, or in the later case, users need to have accounts

with the system. This thesis work assumes that the user will use whichever CCS for

storing and sharing their resources and that the CCS is ”good enough” for social

apps, and that the content is not critical data or sensitive information as the main

target application here is for general use social networking sites.

3.2.3 Load Testing a PaaS

PaaS has low maintenance from an IT’s perspective and it is well suited for social ap-

plications since it has load balancers that automatically deploy new server instances

as needed. Load testing PaaS systems can be tricky as it will adapt to the request

handling and processing loads to keep the system balanced. This makes it difficult

to measure the point at which it crashes but the tests can give back some projected

costs for hosting the app and possibly see some other interesting patterns.

Several solutions were looked at for running the load test operations, as the load

test server. There are commercial and Web-based load testing services, where the

user creates an account and interacts with the tool in a Web interface. Alternative

services were looked at since they had fees for different usage and needs. A GAE

python app [48] as the load tester, but it was limiting in terms of the results produced.

Stand-alone test applications are a great cost-effective method of performing load

tests but not all of them do what they are set out to do, such as true concurrency.

The Tsung load tester stands out from the rest as it is free to install and run on most

platforms. Tsung can capture the data needed to create a number of charts. Tsung

is discussed in more detail in Chapter 5, where it is used for testing the PURIC

25

System.

3.3 Literature Summary

This chapter looked at the issues with SN, the technologies and applications that

have attempted to solve some of the issues, and the supporting technologies used for

the PURIC system. The previous works mentioned have a lack of public control of

published social content. The technologies highlighted in this chapter supports the

goal requirements discussed in Chapter 2. HTTP and REST principles can help with

its design constraints for implementing a solution that is compatible with existing

social applications and scales as well as the internet has.

Many open source projects have sprouted like Diaspora and Status.net, which

use existing protocols and technologies in order to fast track the movement of data

control and ownership. But the continuous popularity growth of existing SN sites

has proven to be very challenging for new competing DSN sites that solve some of

the issues discussed. This calls for a new approach that is less forceful on users and

SN sites, one that can benefit both and set a path toward solving the existing issues.

The next two chapters will focus on the design details and implementation of the

PURIC.

Table 3.3 lists the literature used in this thesis and what concepts each paper

supports. This literature review provides the foundation and guidelines for designing

and implementing a basic proxy. Its design considers user data ownership, privacy

control, and scalability in the foundation.

26

App Description Media Access Sup-

ported

Auth Schema

DropBox Hosts small and large

files.

Private to members Proprietary

Facebook Hosts images and

videos.

Private to members Proprietary

(Facebook Con-

nect)

Twitter Uses 3rd party hosting

services and shares the

link.

Public OAuth

Diaspora Hosts image files,

open source.

Private to members None

YouTube Hosts the published

videos.

Public, or private to

members

GoogleID (pro-

prietary)

Email System Sends files to service

provider.

Private to other email

addresses.

Proprietary

Blog Site Hosts any media file. Meant to be publicly

accessed.

Proprietary

Google App En-

gine Apps

Hosts any media file,

size dependant on

cost.

Supports public, pri-

vate.

GoogleID and

OAuth

Table 3.1: Social Application Hosts

27

HTTP Method Mapped Action

GET Retrieve a set of resources or a single resource

by specifying its ID

HEAD Request resource’s meta data without receiv-

ing the content of the resource.

POST Create a single record or all records defined

in the body, or/and replace single specified

record or a set of matching records

PUT Update a single specified record or all match-

ing records

DELETE Remove a resource or all resources.

Table 3.2: HTTP methods.

Section Work Support

3.1.1 [72] SN status quo and paves the roadmap, challenges, and approaches for the future

of SN sites.

3.1 [36] SN, DSN - PURIC can potentially integrate to the solution of the [36] study for

the storage and publication of larger media files.

3.1 [26] A more ideal P2P DSN solution for sharing sensitive content within a private

systems supporting social ACL and privacy.

3.1 [69] DSN, P2P, privacy - Provides a solution for managing private content stored

locally for a P2P-like case or hosted for a centralized case.

Table 3.3: Key Studies

28

Section Paper Support

3.1 [58] Web 2.0 content participation

3.1 [23, 12] Social apps, part of the Web 2.0 movement.

3.1.1 [54] Study on the topology of SN site (Twitter), importance of Retweets, and usage

statistics.

3.1.1 [72, 56, 77] SN status quo and paves the roadmap, challenges, and approaches for the future

of SN sites.

3.1.1 [43, 24] Different terms of service for publishing media content.

3.1.1 [59] walled garden, where user’s activities and data are trapped, and how DSN fits in.

3.1.2 [8] Most popular DSN project.

3.1.2 [74, 17, 69, 26, 32,

63, 31, 67]

P2P DSN projects and privacy.

3.2.1 [65, 40, 44] HTTP Status Quo.

3.2.1 [61, 60] REST and SOAP.

3.2.1 [45, 28] RESTful Design patterns.

3.2.1 [49] RESTful application.

3.2.1 [65, 71] HTTP Reference.

3.2.1 [11, 70] References for HTTP-based and RESTful APIs from SNS.

3.2.1 [35, 1] Discussed data knowledge, manipulation, control, and aggregation. P2P. But none

of these works were related to extending social URI.

3.2.1 [45, 44, 28, 62] Definition and properties to be made use of.

3.2.1 [50, 57] HTTP Extension.

3.2.1 [20, 9, 18, 6] Web RESTful Frameworks.

3.2.2 [3, 19, 16] IaaS providers.

3.2.2 [47, 14, 4] PaaS providers.

3.2.2 [21, 13, 25, 10, 5] SaaS providers.

3.2.2 [52, 76, 73] Study for storing sensitive data in the cloud using efficient cryptography methods.

Out of scope.

3.2.3 [48] Load testing tips.

Table 3.4: Literature Review Papers.

29

Chapter 4

Thesis Solution - PURIC System Design

Social application users need to have more control over what they publish and

share with others whether it is public or private content. This thesis explores the

feasibility of implementing a management system for published resource links in SN

sites like Facebook and Twitter, and social applications like email clients and Project

Management Systems. The complete control over the origin of a resource and its

aliases can provide valued features that would not have been possible otherwise, such

as a higher level of version control and responsive Web.

A typical published URL is fragile, PURIC can add resilience and longevity to

it, allowing the content’s origin (Web resource) to change while not breaking the

published link. PURIC provides control over which version of the content to return,

based on the requesting client’s platform. The most recent and proper content version

can be returned to the user, as oppose to returning 404 pages, large and improper

media files, or old content only for the user to have to re-fetch the latest content

after the fact. PURIC adds a presentation layer, grants more ownership and control

over a media file shared while also making the content more responsive. This chapter

describes the details of the PURIC system design and the value it brings.

4.1 The PURIC System

PURIC takes a different approach where it is up to the users to add additional layer

to publish and share media content among social applications. It is a difficult task

for existing SN sites to come up with a solution where the public content that is

shared within the network is accessible outside of its walled garden [68, 55], while

there is also the private content that needs to be kept inside the walled garden. There

is a tradeoff between data discovery and SNS interoperability versus privacy. For

30

instance, a user profile needs to be public for the systems that may come into play

(i.e., search engines) in order to lure more people in. The more private its content

is the more redundancy and inefficiency there will be. PURIC follows the approach

and use cases that have resulted in the growth of the WWW, keeping its resources

public and using URI aliases to redirect requests for content.

PURIC is not intended to solve privacy issues or the notion of ”Big Brother”

watching over all the social content, but rather allow more flexibility for the user to

store their data anywhere they wish as a Web resource and have complete control over

it after publishing it. It focuses on expanding an open public internet infrastructure,

similar to PearlTrees or Instagram [15] where the links and media posted on these

social applications are open to the public by default, but could also be private.

PURIC encourages a sustainable growth of the WWW by keeping most content

accessible to the public, while avoiding data replication as in P2P systems, and

supporting an array of media storage and publication services such as YouTube,

DropBox, and Flickr. The discoverability of PURIC content is an important design

element, supporting a sustainable growth of the Web because the content is public

and are linked to from a public source. Data storage services can be used in a private

manner by using their own authentication and authorization mechanisms already in

place, so the PURIC system does not need to handle this separately.

The PURIC system allows a user to own and control the content published on

social applications overcoming two of the thesis goals described in Section 2.5. It

also allows a Web resource publisher to create a URI alias or public channel, in which

the publisher can show any content intended at any given time. The URI channel is

flexible in terms of allowing changes to be made on the Web resource being served,

or on the Web resource’s origin URI. The system is also designed to manage different

versions of the media file for different display sizes. As an example, multiple versions

of a media file (Web resources) can be uploaded to a third party host service, such

as DropBox, for the public to access in a manner that is completely controlled by

the publisher.

A traditional method of publishing and consuming a media file (Web resource)

in social apps is to upload it into a third party data storage service, post the link

31

in a social application, consume the media file by requesting (clicking on) that link,

which displays the media. It is more effective and efficient to have the URL of a

media resource (or file), and publish the link with a text summary than to upload

and attach the media resource to every post or message in every social application.

This process also allows for others to easily re-publish or share the same content link

on their own networks and mediums.

PURIC is designed in such a way that avoids the unnecessary computing and

network traffic loads that occurs in the traditional method, while granting more

control over the media resources published on social applications. Figure 4.1 shows

a comparison of the layers involved in publishing a Web resource in the traditional

method versus the PURIC method. Note that the PURIC Architecture has an

additional layer, necessary for the added control and ownership features offered to

the publisher.

Figure 4.1: A comparison of the social resource publishing architectures.

Figure 4.2 shows the process of publishing with the PURIC system, and how each

component is connected to each other. The PURIC Publisher Client is the interface

for the user to create a URI alias and map a URI to an endpoint URI. The 3rd

Party Storage Service (i.e., DropBox) is the place where the publisher uploaded the

Web resource to. The PURIC Server handles all of the publisher client requests.

The Social App is where the published content ends up, it represents email client,

Twitter or other SN sites where links to media content can be included in messages

or postings. The first step of the publish process is to upload the content to a 3rd

Party Storage Service and retrieving its public URI. The second step in the process

32

is to map and store the public URI with a URI alias. The third step is to publish the

URI alias to a social application. Note that uploading to a 3rd Party Storage Service

and publishing to a Social App can be done via their respective client interfaces, or

if they have an API via the PURIC Publisher Client and Server.

The following list walks through the scenario of publishing media content for a

PURIC (see also Figure 4.2):

1. Upload media file to a third party data storage app.

2. Using the PURIC system, create a URL which points to the root URI of where

the media was uploaded.

3. Repeat above two steps if there are different versions of the Web resource that

will be shared to different social networks or for different screen size resolutions

(i.e., mobile phone, desktop screen, TV, large screens).

4. Publish the appropriate URL (root URI alias) to the social application(s). Sub-

scribed users or recipients of the published media URL will follow the link and

the most appropriate (for screen resolution, or if a version was specified in the

URL) will be shown.

Figure 4.2: PURIC Publish Process.

Figure 4.3 shows the Web resource consumption process and its components.

33

The first step of the consumer process starts with (1) the consumer requesting and

displaying published content in the Social Application; (2) when the user clicks on a

post’s link, or a PURIC link, the PURIC Media Viewer (HTML content) is returned

along with a JSON containing a list of the actual URI’s representing the location

for each version of the content); (3) the remaining step involves processing the logic

in the client to select and request the proper content version (i.e. small resolution

image) from the 3rd Party Storage Service, and displaying it in the Media Viewer.

Figure 4.3: PURIC Consumption Process.

4.1.1 System Design

The general architecture of PURIC is illustrated by the components and process of

Figures 4.2 and 4.3. The decrease in unnecessary computing and network loads can

be resolved by providing extra data and doing the processing logic in the client as

oppose to the server. Publishers can manage the version and origin of the published

content by utilizing a Uniform Resource Locator (URL) pointing to the PURIC

server which maps to one or many Uniform Resource Indentifier(s) (URI) where the

actual media file is hosted. A PURIC URL is manually shared on social application

streams and threads, while its mapping to the media content URI(s) is controlled by

the publisher.

34

The PURIC system is created to give the publisher control over which URI the

client will fetch from a third party storage service. Actions like posting, reposting, or

forwarding a PURIC URL are not affected when the URI alias mapping is changed,

it is resolved in the backend by the PURIC server. The server determines which

URI(s) to send back to the client based on the most recent and active URI(s) and

the client’s platform display size value. This process avoids fetching dead links or

over-sized content, especially significant for mobile client platforms. Web savvy end-

users can reverse engineer the origin URI of the media file, but this is not a major

concern as the aim of this work is to add resilience and longevity to published URLs.

It is important to consider what each system component supports to find the com-

mon ground for a reliable, scalable, and secure method of communication between

all entities and future entities. Figure 4.4 illustrates the PURIC process flow chart.

Figure 4.4: Proxy Flow Chart.

There is no authorization aggregator service solution in existence that is simple

and popular enough for the content publisher to select a private group of users

that would work across client applications. For instance, a link to a video can be

separately published to a Facebook group and private Twitter feed, and authorization

can be applied to open the link based on where it’s published, a third component is

required to manage and authenticate the users that have the authorization. Table 3.1

35

shows the lack of standards across the SN sites, DSN sites, and other social apps.

This component would have to be implemented by the PURIC system but it is

outside the scope for this thesis. It would require a lot of effort to develop and

maintain such a component that supports the creation of groups with users from

different social applications. Particularly, since each social application could follow

a different type of open or proprietary authentication method.

To make matters more complicated for the above scenario, if the publisher wanted

to export the media file to a non-PURIC server then both system would need to

support the same data format standard for export and import. This component

is not implemented due to the limited scope of this thesis and because SN service

providers have not yet agreed upon a unified and ubiquitous solution to manage,

control, and import content access across social applications. Thus, the private

method of sharing media in a social application is used, and it requires the media

consumer to have an account. However, the PURIC system is modular by nature

and supports either method, since its design advocates the accessible data principles

of the WWW.

4.1.2 User Experience

PURIC considers three topics in regards to user experience, which have become

standard for social applications:

• Cross-platform support - the features run in multiple client operating systems

and device types (i.e., desktop, mobile, tv, billboards) via standard Web tech-

nologies - HTML, Javascript, and CSS.

• Responsive experience - provide the best suited media files and visual layouts

based on client side properties.

• Data availability and speed - always available data with low network latency.

Different paths can be taken when making a software that works in all major

platforms and devices. The most time consuming option would be to build a version

of the application for each platform. Another option would be to use cross-platform

development tools such as Titanium, PhoneGap, and standard Web technologies

(HTML, Javascript, and CSS). Since PURIC is targeting all platforms the simplest

36

solution is to choose the browser as the client and the Web as the platform. In order

to create the best user experience in the Web, PURIC needs to have some responsive

Web components.

Responsive Web is about enriching the user’s experience [46], it is a Web design

decision that can have some positive implications in terms of proper visual layout

and using the proper amount of network bandwidth for a given client platform and

specifications. It can also affect the features the user sees based on what the device

can handle. Typically the topic of responsive Web focuses on layouts that can dy-

namically adjust to the client’s display properties but in this thesis we take it one

step up and include the need for the proper version of the content based on the

client’s display properties. This also results in more efficient use of CPU, Memory,

and network traffic in the server and client.

Metadata supplied by the client request can be used as parameters for querying

a client platform registry (either local or external) [66]. Javascript and Web browser

technologies are constantly transforming, becoming more efficient, and adding new

features as client computer capabilities change over time. One Javascript library

called ıscreen contains the properties width and height for the screen’s resolution

and can be used as a responsive content means.

Existing public and commercial services offer basic device detection and content

adaptation solutions. These solutions require a private server installation or are

provided as paid cloud services, offering a lot of information about the mobile client

mostly used for analytical purposes, and more practical purposes like dynamically

adjusting the app’s layout or functionality.

Authors in [38, 39, 33] looked at the topic of resource versioning. PURIC sup-

ports resource versioning as a solution to improve responsiveness. A published Web

resource may change overtime or the resource publisher may want to show a different

version based on who or what is accessing it. This requires that the URI of each

version of the resource still remains accessible. The version control for such a system

does not require version control on the origin resource, but on the origin link to the

resource.

37

Transcoding [51], or converting content formats, to suit the need of a client re-

questing a resource is not an optimal solution for SN services due to the sheer amount

of data exchanged between server and client. A proxy gateway solution is more

optimal, where content version or type is selected and served based on the client

attributes.

4.2 PURIC and REST

The constraints imposed by the REST architectural style helps create a scalable

WWW. Resources are all linked to each other and they have standard HTTP meth-

ods (i.e., GET, PUT, POST...) that can be applied to them. The same approach

taken by the WWW can be used to reach the scalability goals of a RESTful Proxy.

This work does not impose on creating extensions to HTTP or adding custom Header

fields since these approaches lead to a solution that does not follow the current stan-

dards, which would make clients and third party applications add or handle cus-

tomized Header fields. Instead it focuses on using the existing infrastructure URL

parameters and existing Header fields for solving the problems outlined.

Figure 4.5 shows a more detail view of the consumer process of Figure 4.3; the flow

from clicking on a URI alias in a social app posting to displaying the Web resource

associated with that URI alias.

HTTP and REST can provide the guidelines for modelling the PURIC system.

The server side makes use of the REST architectural constraints and two HTTP

methods from Table 3.2. They provide the design pattern for developers to benefit

from the horizontal scalability and modular design attributes for changes that the

system may require in the future.

Figure 4.6 shows a sequence diagram for the URI alias request from the client

for the media file (origin URI), the server analyses and chooses the proper single or

set of origin URIs and dynamically generates the HTML wrapper, the client then

does any necessary logic to select, request, and show the origin URI media. The

processing work is split between the client and server.

38

Figure 4.5: URI alias to Origin URI Flow.

Figure 4.6: GET request for Web resource data.

39

4.3 The Value of PURIC

The PURIC system can improve the internet traffic by sending properly sized media

files to clients. Although the PURIC system is built as a separate standalone system

for the purposes of this thesis, it could prove to be of value to existing social applica-

tions as an added feature for their users to help them manage their published links.

Facebook and Google+ have features for the publisher to specify groups that will see

the content published. This type of publishing control feature can be complimented

by PURIC, as different versions of the same public media file can be seen by specific

groups of subscribers.

Another valuable aspect of PURIC is the ability for content publishers to change

the actual URI the PURIC URL is mapped transparently for their audiences. A

PURIC is responsive enough to show content based on which medium or platform

the end-user is requesting the resource from. It can link to the same media content

over time or to a media content that changes over time, in which case the publisher

has a new origin URI and a new version of the aliased URI channel link. This case

demonstrates how the PURIC system can support ownership and control; allowing

the user to store the content wherever they wish. A new version of the origin URI

does not have to result in republishing the new link as long as the PURIC is made

aware of it, the change is invisible from the end-user’s perspective.

Having a single URL for media content published that can map to different ver-

sions of itself allows a more effective way to manage and control it. The publisher

can remove or replace the actual URI of the published URL, even if it is re-published

by others. When necessary the publisher can still state the change in the case of a

URL published inside an ebook. Scenario:

User A publishes an inappropriate video of user B. User B contacts publisher, so

that appropriate measures may be taken to remove or replace the published content

swiftly. If the content was republished by others prior to the removal of it, it can still

be acted upon since the URL now offers a different content. User B could also flag

the URL as inappropriate, which would trigger a notification to be sent out to the

content’s publisher and system administrator. By replacing the root URI, which was

40

wrapped in the page of the URL, all the re-published URLs will now show the new

resource, thus granting more control for the users.

As a side effect, a different use case arises with the ability to reuse a long living

URI for content that changes regularly such as a daily image or video webpage. You

can essentially publish a link that will live for as long as the PURIC Server lives

with an ever changing resource origin. Instead of sharing a webpage with changing

content, a PURIC can be shared as a single link to a specific media content that

changes over time. The long lived URI acts like a channel displaying scheduled media

content. The URI can be included in an HTML tag as part of a webpage. In some

level we are already doing this through blogs, timelines, streams, RSS, but this is

taking it to a lower level where the resource origin itself is shared.

The need for social features in any application accessed by a group of people is

on the rise; resulting in more use cases for PURIC to emerge as this happens. The

popular ePub1 and Kindle2 eBook formats are becoming more and more like apps as

eBook readers adopt HTML5 features. There is great value to the eBook product as

an author, reader or publisher company to add dynamic content from its readership

and it is only a matter of time before something like PURIC is adopted in the digital

publishing industry [53]. When a PURIC link is published in an eBook, referencing

a Web resource, the root Web resource may still change after the eBook is published

without any negative effect, or calls for user action, the change occurs transparently.

4.4 Goals - Overcoming the Challenges

The approaches discussed in this chapter help overcome the challenges associated

with the goals discussed in Section 2.5. Table 4.1 summarizes the goals and their

respective approaches.

The system design has good scalability with the RESTful pattern focussing on

resources as oppose to customized Web services. A PURIC system also has several

features and requirements that need to be implemented in order to reach the goals

listed in Section 2.5. The next chapter goes over the details for the implementation

1http://idpf.org/epub
2http://www.amazon.com/gp/feature.html/189-1124120-3806941?ie=UTF8&docId=1000234621

41

of the PURIC system.

42

Goal Solution

Modularity A REST API foundation.

Data control and

ownership

Choice of a resource storage service for the media files and a

way to control its publication even after it has been repub-

lished by others.

Cross platform

support

The use of standard Web technologies for a responsive sys-

tem that selects the resource requested based on certain client

properties exposed on the request parameters and later com-

puted on the client side. In PURIC the client and server

split this task. The publisher is given a management inter-

face to edit and publish different versions for the URL of the

PURIC. The server returns the latest or specified version of

the resource requested.

Scalability Load balance work is outsourced to Cloud Computing Services

for horizontal scalability.

Low Resource

Usage

Server side CPU and memory usage for the SN server is low-

ered since the resource is hosted elsewhere. Client side CPU

and memory usage is lowered since the media is not re-scaled

in the client. Memory used can be lowered since content is

uniquely hosted in one place as oppose to being hosted in

many social applications.Network traffic can be lowered when

the content pulled by the client has the appropriate small size

which is more adequate for small devices.

Table 4.1: Achieved system design goals.

43

Chapter 5

PURIC System Implementation

One of the challenges from the previous studies mentioned in Chapter 3 was

attracting users to either switch over to a an app like a DSN site and stick with it.

Such users typically need to be developers or have a keen understanding of social

media and software deployment to take part in. Some solutions mentioned also

require the installation of standalone applications others require the management of

login and profile credentials for all SN services. PURIC takes a simpler approach

that is not so much about the lack of technology that impedes its usage, SN users

can start using it now and it’s a process SN service providers can easily integrate

into their systems as a feature. This makes PURIC appealing and differentiates from

the previous attempts to solve some of the challenges pointed out in Section 2.5.

The PURIC system implementation includes: a Web browser (client) for dis-

playing the HTML wrapper code with the proper media resource showing; a third

party storage service for hosting the media resource; and an administration inter-

face for managing URI aliases and origin URIs. Processing is shared between the

Google App Engine (GAE) server and the end-user’s Web browser, the clients and

servers communicate via RESTful patterns supported by the GAE platform, sending

HTML and JSON data back and forth. This chapter will go over the PURIC system

implementation on the client and server sides.

5.1 Implementation Choices

There is a myriad of technology options for implementing Web-based systems. The

options have benefits and drawbacks, there is no correct design pattern or devel-

opment platform to choose. Choices must be looked at pragmatically, from the

perspective of the system requirements. Sometimes compromises must be made in

44

order to fulfil the job. The design patterns and development platforms chosen to

fulfil the requirements of PURIC without too many compromises for the purpose of

this thesis. A production version of this implementation may use different technolo-

gies based on the requirements of the development team and the system’s usage, but

its system design remains as its core.

The system is designed to support a number of technologies for the communication

between the system components and the user experience. The technologies explored

here are based on the industry’s status quo and the low cost and access barriers for

a development team; they include: GAE’s Python Platform as a Service, HTML5,

and Javascript. HTML5 features were chosen as there is an emerging movement to

make it a viable option for the development on different browsers and platforms,

specifically for supporting multiple mobile platforms.

Two options were explored for implementing the PURIC Server but only one

was chosen. Option A, parses and transforms the resource content on the server

and returns the HTML, so its origin is completely masked as if it is entirely served

by the PURIC server. Option B includes an HTML code wrapper with the origin

URI and some logic in Javascript to request the appropriate image, video (for video

or audio resources), or iframe tag (for HTML, pdf, and other documents). Option

B was chosen because it is a simpler solution, and results in lower network traffic

and server side processing loads. The core code written for this implementation,

excluding third party libraries, sum up to 988 lines of code.

5.2 PURIC Administration UI

There are three requirements that the PURIC user interface should follow in order

to be satisfactory:

• Intuitive and simple interface and vocabulary.

• Low effort to join and leave.

• Easy to integrate with existing social apps.

The publisher’s PURIC administration UI requires the user to login, lists all the

URI aliases that has been created (Figure 5.1), and for each URI alias there may

45

be a set of origin URIs or versions of the resource (Figure 5.2). Origin URIs can be

added or removed as a different link to a version of the resource.

Figure 5.1: Publisher UI showing all of the URI alias the user has created that are ready
for publishing.

The social resource consumption UI is simply a webpage with HTML and Javascript

that shows the media appropriately chosen. Media file show depends on attributes

from the client platform displaying it. Figures 5.3 and 5.4 show how an image

retrieved from a PURIC is displayed differently depending on the resolution of a

desktop browser’s window. Figures 5.5 and 5.6 show how an image retrieved from a

PURIC is displayed differently depending on the orientation of the mobile devices.

Note that the resolution size is displayed below the image on each screen for test

purposes. The image file pulled is the best sized image for the display without having

to resize it. In other words, if the screen resolution is 800x600, the 800p sized image

is displayed if there is one; if the screen resolution is 1024x768, the 1024p sized image

is displayed.

46

Figure 5.2: Publisher UI showing URI alias details and origin URI list (URI alias versions).

Figure 5.3: Desktop browser at 800p resolution displaying 800p image.

47

Figure 5.4: Desktop browser at 1440p resolution displaying 1080p image.

Figure 5.5: Mobile devices in landscape orientation mode displaying larger 800p resolution
than in portrait.

48

Figure 5.6: Mobile devices in portrait orientation mode displaying smaller 480p resolution
than in landscape.

49

5.3 Client Side

The Web browser (user-agent client) was chosen to run the end-user interface for

three system components: the PURIC Admin, Social App, and Media Viewer. Other

than a modern Web browser there is no need to install another client software as

part of the PURIC system. The client technologies are readily available for all users.

The PURIC system needs to work with different types of hosts services that can

serve Web resources such as an image file or dynamic content such as a YouTube

video page. This leads to a landing webpage design that is flexible enough to display

an array of resources, or media types. The HTML document can be linked to from

any social application as a URL. The publisher copies the link provided in PURIC’s

Administration Interface and pastes it on an email, Twitter posting, Facebook post-

ing and so forth. When a PURIC (URI alias or URL) is published on Twitter and

a user clicks on it, the client receives an HTML document that includes a JSON

list of the possible origin URIs to show, plus javascript statements that selects the

appropriate URI to request and then display it.

For the purposes of this thesis the PURIC Server accepts jpg/png, webm, mp3,

html, pdf, and xml content types for the actual URI. The HTML5 Video tag may

only support certain encodings and will play .webm videos and .mp3 or .mp4 audio

resource. The image tag is used for any image resource. The iframe tag is used

for external or 3rd Party dynamic resources like YouTube, Flickr, and Wordpress

webpages.

The responsive Web component of the PURIC system relies on the ability to

detect the client’s screen width (resolution) and request the most appropriately

sized resource if it is an image, video, or a dynamically sized document. As men-

tioned in Chapter 3, there are two possible methods to detect the client’s screen size,

via a cloud service such as WURFL or via Javascript properties screen.width and

screen.height.

The WURFL Cloud service currently supports three client platforms (Java, ASP

.NET, and PHP) with plans to support Python and Ruby. However it’s no longer

a freely available service as of recent times, and since this work does not require all

50

the features offered by the service the Javascript method is more suitable. In order

to keep the implementation simple the screen size detection is accomplished with

Javascript. The public interface does allow the overriding of the origin URI if the

client supplies a version and screen size on the HTTP GET request. This is useful

for testing purposes or in the case where the publisher has a reason to specify the

one version of the Web resource to publish.

The client side Javascript can detect the screen width and height resolutions

in pixels for the current device. Five different client devices (BlackBerry Curve

with OS5, BlackBerry Playbook with OS7, iPhone 4G, iPad, Samsung Nexus S

with Android) were used to test the support for the Javascript for detecting the

screen width and height resolutions in pixels. The devices with accelerometers have

two different resolutions, depending on its orientation (portrait or landscape) as

discussed in the previous section. All devices tested but the BlackBerry Curve use an

accelerometer to change the orientation. Screen orientation is taken under account

for selecting a visual resource with the lowest supported width and height. The

system will select the smallest dimension of the screen resolution to match the largest

dimension in the visual media file, and serve the matching file.

Listing 5.1 shows the dynamic HTML code used to generate the media consump-

tion webpage. It includes the JSON with a list of possible root URIs for the media

and the Javascript logic to determine which root URI to fetch based on the screen

resolution, and the dynamically loaded img tag requesting the image source (URI).

The client side executes the consumption webpage code synchronously, but if the

webpage contained many elements an asynchronous solution could be implemented.

The webpage source code is generated by the server and changes based on the media

type requested. In this case it loads the HTML for displaying an image file but, as

mentioned, the server also handles the case for audio or video files. Some of the code

has been left out and replaced with ”...” to focus on the points discussed here.

<s c r i p t language=”JavaScr ipt”>

var l i n k e d d a t a l i s t = [

{ ” s i z e ” : 1080 , ” u r l ” : ” http :// d l . dropbox . com/u/7561586/ l i nked da ta

/ sample images /CrabAppleFlowers −1080. jpg ” , } ,

{ ” s i z e ” : 800 , ” u r l ” : ” http :// d l . dropbox . com/u/7561586/ l i nked da ta /

sample images /CrabAppleFlowers −800. jpg ” ,} ,

51

{ ” s i z e ” : 480 , ” u r l ” : ” http :// d l . dropbox . com/u/7561586/ l i nked da ta /

sample images /CrabAppleFlowers −480. jpg ” ,} ,

] ;

f unc t i on getBestFitURI () {

var largestWidthResource ;

var s c reen width = sc re en . width ;

var s c r e e n h e i g h t = sc r e en . he ight ;

i f (nav igator . userAgent . match (/ (iPhone | iPod | iPad) / i)) {

i f (o r i e n t a t i o n == 90 | | o r i e n t a t i o n == −90) {

s c r een width = sc re en . he ight ;

s c r e e n h e i g h t = sc r e en . width ;

}

}

f o r (var i = 0 ; i < l i n k e d d a t a l i s t . l ength ; i++) {

i f (s c r een width >= l i n k e d d a t a l i s t [i] . s i z e) {

i f ((largestWidthResource == n u l l) | | (

largestWidthResource != n u l l && l i n k e d d a t a l i s t

[i] . s i z e > largestWidthResource . s i z e))

{

largestWidthResource = l i n k e d d a t a l i s t [i] ;

}

}

}

document . getElementById (’ media s i ze ’) . innerHTML=’ Reso lut ion (width) :

’+ largestWidthResource . s i z e +’p ’ ;

r e turn largestWidthResource ;

}

</s c r i p t >

. . .

<div id=”re sou r c e”></div>

. . .

<s c r i p t language=”JavaScr ipt”>

var ld = getBestFitURI () ;

document . getElementById (’ r e source ’) . innerHTML = ’<img s r c =”’+ ld . u r l +’” a l t=”

Resource ” / > ’;

</s c r i p t >

Listing 5.1: Client side Javascript source wrapper for fetching and displaying the media

content.

52

5.4 Server Side Implementation

The PURIC server is in charge of storing and handling the different types of requests

for all the URI alias links. The server groups a set of Web resources which in some

sense is virtually the same resource. The latest version of the virtual resource is

selected and sent to the client based on the client’s screen resolutions. The difference

being slight modifications made to them (versions) for possibly different display

resolutions or content personalization.

Cloud computing services and adoption in standard Web technologies, specifically

in the mobile devices sector, have grown significantly as more people are using them.

Novel systems can now be built where it would have been much more complex and

limited for a software developer to build in previous times. The system processes pro-

posed in the previous chapter allows computations to be transmitted and performed

on the thin client as well as on a cloud server.

5.4.1 Cloud Computing Services (CCS)

Social applications can quickly grow in terms of stored data related to a person; by

keeping the published content where they already publicly exist – in cloud hosted ser-

vices, there is no need to duplicate and complicate the entire system. A cloud-based

server is well suited for social applications since they do not have mission critical

transactions. The general requirements for choosing a cloud-based implementation

are security, high accessibility, transaction management, and load balancing. CCS

can handle all of these concerns behind the scenes, they are outsourced to the host

service provider.

The nature of the PURIC system does not require long running large tasks, this

is economical in terms of the cost for scalability and concurrently running instances,

or resident instances in GAE terms. The entire PURIC URL request processing is

not very intensive, the server is only querying for the mapped root URIs of the URL

requested. Making GAE an ideal candidate for hosting the PURIC server for the

purpose of this research. GAE has built in authentication, and it uses Python a

dynamic scripting language ideal for developing Web 2.0 applications [58]. It also

53

has good support for RESTful Web application. Local caching of the resource has

to be implemented on the third party storage server that hosts the resource origin.

It cannot be done on the PURIC server since the origin URI is requested by and

sent to the client and the client sends the request from the browser to the origin

server. If the resource origin server supports caching then the resource will only be

transferred to the client after the first time if it has expired on the client, or if it has

changed on the server.

Software as a Service (SaaS) technologies like DropBox may be used to store public

and private media files, people’s Web resources. Social media sites like YouTube may

be used to host different versions of the same video, say with different endings, with

one URI alias and the PURIC server determining the origin URIs to send. The client

determines the origin URI, calls it, and displays it.

Availability and accessibility are very important when it comes to social networks

since the user needs to build a trust with the system. However, warnings and default

webpages are shown when issues arise. The PURIC server hosts default webpages

that are shown in case there are any issues with the origin URI connection, whether

it’s an image, video, document, or dynamic content.

5.4.2 Communication Layer

REST patterns are used in the communication layer components to pass informa-

tion. It is the most standard method of communicating between the HTTP clients

and server. The information is modelled in such a way that it is flexible and does

not require a stateful communication. Meaning any event message contains all the

information required in order for it to be executed.

GAE has been known to scale well under many requests, thus the PURIC request

handlers will trigger new server instances to run on when overwhelmed. It is an

elastic system that scales up and down depending on demand. It is also known

to measure well under very high loads of reads, or GET requests, as the datastore

works on a hash principle, it is optimized for reads, which is the bulk of the requests

handled by the PURIC server.

The GAE’s webapp2 framework used to develop the PURIC server supports han-

54

dlers for the popular HTTP methods for building a RESTful app. REST is used in

the admin side in order to facilitate the creation of a PURIC API and integration

of its CRUD with existing social applications. The public or client component of

the PURIC system displays the origin resource and makes use of the GET method

to retrieve the HTML with the Javascript logic and JSON. Figure 4.6 showed the

communication between the client, server, and third party storage service.

The social resource publisher component makes use of the GET method for re-

trieving the list of origin URIs and retrieving the list of URI aliases a publisher

user has, and the POST method for submitting the forms to create and update URI

aliases and origin URI pointers. The RESTful design will give the PURIC system

the potential to add a full API if necessary that makes use of the PUT and DELETE

methods.

Listing 5.2 shows the PURIC server-side source for generating the wrapper code

from an HTML template, and injecting the JSON of the potential root URI of the

media content. Note that if there is only one version then the resource’s html tag is

included in the initial response as oppose to a list of URIs.

. . .

c l a s s LinkedDataUIHandler (BaseUIHandler) :

de f get (s e l f , ∗∗kwargs) :

a l i a s = ” http :// s o c i a l r ms . appspot . com/ ld/”+kwargs [’ a l i a s ’]

u r i a l i a s = db . GqlQuery (’SELECT ∗ FROM URIAlias WHERE a l i a s = : 1 ’ ,

a l i a s) . get ()

l d q ry = db . GqlQuery (’SELECT ∗ FROM LinkedData WHERE ANCESTOR IS : 1

ORDER BY v er s i on DESC’ , u r i a l i a s)

l inkeddata = None

l d l i s t = []

s i n g l e u r l = None

l d l i s t j s o n = None

I f v e r s i on i s s p e c i f i e d get the c o r r e c t v e r s i on .

i f s e l f . r eque s t .GET. has key (’ v ’) :

f o r ld in ld q ry :

i f ld . v e r s i o n == i n t (s e l f . r eque s t .GET[’ v ’]) :

l d l i s t . append ({ ’ s i z e ’ : ld . c l i e n t s c r e e n , ’

ur l ’ : ld . o r i g i n u r i })

break

55

e l s e : # Create a l i s t with the l a t e s t ld ve r s i on o f each s i z e .

f o r ld in ld q ry :

l d l i s t . append ({ ’ s i z e ’ : ld . c l i e n t s c r e e n , ’ ur l ’ : ld .

o r i g i n u r i })

i f l en (l d l i s t) == 1 :

t emp la t e va lue s = {

’ f i l e t y p e ’ : u r i a l i a s . type ,

’ s i n g l e l d ’ : l d l i s t [0] ,

’ pub l i she r ’ : u r i a l i a s . pub l i she r ,

}

e l s e :

t emp la t e va lue s = {

’ f i l e t y p e ’ : u r i a l i a s . type ,

’ l d l i s t ’ : l d l i s t ,

’ pub l i she r ’ : u r i a l i a s . pub l i she r ,

}

i f u r i a l i a s . type == ’ Video ’ :

t emp la t e va lue s [’ f i l e t y p e ’] = u r i a l i a s . type

f i l e e x t = os . path . s p l i t e x t (l d q ry [0] . o r i g i n u r i) [1] [1 :] .

s t r i p ()

t emp la t e va lue s [’ source type ’] = ’ v ideo /’+ f i l e e x t

e l i f u r i a l i a s . type == ’ Audio ’ :

t emp la t e va lue s [’ source type ’] = ’ audio /mpeg ’

re turn s e l f . r ender template (’ pub l i c / ld . html ’ , ∗∗ t emp la t e va lue s)

. . .

Listing 5.2: Server side handler for returning the wrapper for the media content.

56

Chapter 6

Tests, Evaluation, and Future Work

This chapter discusses the tests and evaluation of the PURIC system, starting

with the upper public client layer of the system down to the lower server layer.

Four tests examined the feasibility of the PURIC system, and how well it reacts

and performs under different circumstances. The tests proved that the system is

feasible and that in a production environment such as GAE CCS it can withstand

large loads with its fluctuating resource request load balancing. The client side

tests examine the responsive Web design elements, as well as the perceived network

latencies. Some usability testing may have to be done in a future work to make sure

that the perceived latency values are acceptable.

The system drawbacks and limitations found from the tests and discussed in the

evaluation, come of which are compromises for the system to function based on the

requirements or use cases it needs to fulfil. The future work section shows how the

modularity of the PURIC system can support a handful of interesting use cases.

6.1 Experiments

The tests performed on the system are listed below and the subsections that follow

will go over each of them:

1. Responsive Web content test - tested the feasibility of how PURIC can sup-

ply responsive media content formats, that can decrease network traffic, CPU

processing, and memory usage.

2. Client-side perceived network latency - tested if the response time for showing

the content requested is acceptable.

3. GAE local server load test over varying request loads - tested the app perfor-

57

mance in a non-scalable (no load balancing) environment to find the point at

which the app halts to a complete failure or an unacceptable performance level.

4. GAE cloud server load test over varying request loads - tested the load balancing

in GAE’s Cloud Computing Python platform, given the same code as in the

previous test.

6.1.1 Test 1: Responsive Web Test

Description

This simple feasibility test looked into how the PURIC client reacted based on the

screen resolution properties of a particular device. The PURIC URL of the image

used for this test is mapped to three different image files, each being an image

resource of different resolutions (width and height): 480p, 800p, and 1024p. The

mobile device requesting the PURIC URL should request the best fit image based

on its screen resolution and possibly active orientation (portrait or landscape). The

Javascript that identifies the current screen size (and orientation) and selects the

appropriate image URI is put to test here.

Results

Table 6.1 shows what is supported for each client platform. Testing for the support of

different resolutions on the same device required that the device be in one orientation

before loading the PURIC URL, then physically turning it to the other orientation

and reloading the PURIC URL. The images (root URI) fetched should be different,

being the best fit image for the particular resolution. As an example, when loading

the PURIC URL of an image resource in the Samsung Nexus S in portrait mode

(480 x 800) it fetches the 480p image; rotating it to landscape mode (800 x 480)

fetches the 800p image.

Evaluation

Android Nexus S and BlackBerry Playbook browsers support the correct width res-

olution depending on the current orientation of the device. Whereas the iPhone

and iPad browsers require some orientation detection and logic code to get the

58

Client Platform Screen Resolution(s) Sup-

ported

BlackBerry Curve OS5 320 x 240

BlackBerry Playbook OS7 1024 x 600 (landscape) and

600 x 1024 (portrait)

iPhone 4G iOS 5.1 320 x 480

iPad iOS 5.1 768 x 1024

Samsung Nexus S w/ An-

droid 4.0

480 x 800 (portrait) and 800

x 480 (landscape)

MacBook Air with Chrome 1440 x 900 and 1152 x 720

Table 6.1: Responsive Tests: Client Devices Used

correct screen width resolution. The BlackBerry Curve OS5 supports the screen

width/height property as expected and since there is no accelerometer it does not

require to have any logic for a change in orientation. Based on the results this feature

is quite feasible , well supported, and simple to implement.

6.1.2 Test 2: Client-side Perceived Latency

Description

Web

Browser

Timestamp Page Transaction Times Total PURIC Page

Transaction

Chrome 2012/10/11 9:07am 4.74s + 0.216s + 1.53s 6.76s

Chrome 2012/10/11 9:08am 0.156s + 0.136s + 1.43s 1.84s

Chrome 2012/10/11 9:08am 0.173s + 0.190s + 1.65s 2.12s

Chrome 2012/10/11 9:09am 0.206s + 0.134s + 1.13s 1.58s

Chrome 2012/10/11 9:10am 0.521s + 0.125s + 1.21s 1.97s

Firefox 2012/10/12 8:15am 4.56s + 0.211s + 1.76s 6:59s

Firefox 2012/10/12 8:16am 0.399s + 0.146s + 1.32s 1.93s

Firefox 2012/10/12 8:17am 0.385s + 0.181s + 1.31s 1.98s

Firefox 2012/10/12 8:18am 0.386s + 0.146s + 1.49s 2.1s

Firefox 2012/10/12 8:19am 0.158s + 0.246s + 1.3s 1.78s

Table 6.2: Desktop Client Request Measurements

59

Figure 6.1: Measurement of one page load in the Chrome browser.

Three resource GET requests are sent from client: the PURIC URL followed by the

json2.js file and the image link from DropBox. The latency time for each resource

request has a waiting time and a receiving time, Table 6.2 shows the time for each

request-response and the total time to request, parse, and render the PURIC page

contents. Figure 6.1 shows the Chrome browser’s Developer Tool, with the Network

tab open to view the requests and response information captured. In all five test

cases the same media URL was used which contained the same root URI of the media

resource, so the download size for each of the three resource requests were kept the

same. Five test runs were executed for each browser in each day, the exact time they

were ran were off by one hour which could have caused a minor discrepancy depending

on the network traffic at the time. Different days were used in order to show that

the discrepancy among the first measurement and the consecutive measurements of

the day were not affected by the Internet Service Providers’ (ISPs) data caching or

any internal cloud server caching. The Chrome browser was used on the first day

and the Firefox browser on the second to make sure that the times for rendering the

webpages in each browser was not significantly different.

The test procedure is as follows:

1. Process load for the media URL at 5 separate times for each Web browser

(Chrome and Firefox)

60

2. Clear browser cache so the response always contains the resource.

3. Record the time it takes for each HTTP request to get a response

The client machine specifications: Mac OS 10.7.5, 1.8 GHz Intel Core i7 processor,

4 GB RAM, download speed caps at 20 Mbps based on optimal conditions offered by

the ISP, connection speed at the resource host will differ depending on active loads,

a wired connection is used by the client.

Client browsers have plugins that help developers to debug scripts and also mea-

sure all data transfer times. The Chrome browser has the Developer Tools and

Firefox browser has Firebug. The client-side tests both browsers to make sure that

the browser performance between the two popular browsers are not significantly

different. Browsers have different parsing, rendering, and painting techniques.

Results

Figure 6.2: Shaw (cable ISP) speed tests results.

Shaw (cable ISP) Speed Tests were conducted prior to loading the first PURIC

URL on each browser. Figure 6.2 shows a sample screen shot of the speed test for

the Chrome browser.

61

Table 6.2 provides the timestamp of each request in Chrome and Firefox, the

response times for each resource for each PURIC URL request, and the Page load

time. The PURIC URL request pulls a dynamic HTML file from the GAE Produc-

tion Cloud, which pulls two additional files – json2.js and the media content (given

by the root URI).

Resource Lowest Highest Mean

1. PURIC URL: dynamic HTML 0.156 sec 4.74 sec 1.168 sec

2. json2.js: static javascript li-

brary

0.125 sec 0.246 sec 0.173 sec

3. root media resource: image

file

1.13 sec 1.76 sec 1.413 sec

Table 6.3: Client Mean Times for Resource Requests

Evaluation

Note the response time outliers in the first requests for each of the browsers each

day. The discrepancy is mostly due to a new GAE instance having to be spawned to

process the first request of the day. Part of the reason why json2.js and the media

resources were mostly lower after each days’ first request was due to the ISP caching

that can occur between the host server and client. The mean for the entire page load

was 2.865 seconds, which is an acceptable time for loading 1080pixel image.

6.1.3 Test 3: Local GAE Development Server Tests

Description

The tests conducted in this section show how the code reacts on the local GAE

development server, a non-scalable and limited resource machine. It shows how many

request/response transactions it can handle before slowing down to an unacceptable

response rate. And ultimately shows the feasibility of running the system this type

of environment.

The local GAE development server runs in a controlled environment setting, which

is useful for finding out some limitations. The infrastructure in this environment does

not scale up or down based on the changing needs, only one instance of the server will

62

run locally as oppose multiple instances in the actual GAE cloud server. The server

machine specifications are as follows: Mac OS 10.7.5, 1.8 GHz Intel Core i7 Processor,

4 GB RAM, 25 Mbps download speed (measured at 14.12 Mbps before tests), max

upload speed of 2.5 Mbps (measured at 0.34 Mbps before tests). The ISP provided

a network connection speed test Web application (http://speedtest.shaw.ca/results)

to extract these values.

A separate server was setup on the Rackspace IaaS to send the requests to the

GAE application. The Rackspace server was on a Ubuntu 10.04 LTS (Lucid) machine

with 1 vCPU, 256 MB of memory, 10GB of storage, 20 Mbps of public network

bandwidth. The Tsung load testing tool and its dependancies were installed and

used to run the load tests, capture the data, and graph it. The requests generated

from Tsung simulate many concurrent users hitting the PURIC system, requesting

a PURIC URL, which are logged by GAE and shown graphically and statistically in

the application’s Dashboard.

The Tsung open-source multi-protocol was used as the distributed load testing

tool for the PURIC server. It is written in Erlang, which allows it to create hundreds

and thousands of concurrent requests per second, while not consuming too much of

its host’s resources. Tsung outputs stats and graphical reports based on recorded

samples of data taken as well as high and low values. 10 second samples are used

and recorded to avoid affecting the load test and take up extra processing, slowing

down the test machine. The following test runs were performed by the Tsung server

to hit the Local GAE Development Server:

1. 5 requests per seconds (qps) over 5 minutes;

2. 50 qps over 5 minutes;

3. 100 qps over 5 minutes.

A test session consists of two requests (PURIC URL and json2.js), plus a simulated

request to the root URI by adding its mean time to the session from Table 6.3. The

code listing 6.1 shows a sample xml that was used to configure the Tsung load test

for the 100qps over 5 minutes.

<tsung l o g l e v e l =”n o t i c e ” ve r s i o n =”1.0”>

<c l i e n t s >

63

<c l i e n t host=” l o c a l h o s t ” u s e c o n t r o l l e r v m=”true ” maxusers=”10000”/>

</c l i e n t s >

<s e rve r s >

<s e r v e r host =”174 .2 .4 .124” port =”80” type=”tcp”/>

</s e rve r s >

<load>

<a r r i v a l p h a s e phase=”1” durat ion =”5” un i t=”minute”>

<use r s a r r i v a l r a t e =”100” un i t=”second”/>

</a r r i va lpha s e >

</load>

<opt ions>

<opt ion type=”t s h t t p ” name=”use r agent”>

<use r agent p r o b a b i l i t y =”100”>

Mozi l l a /5 .0 (X11 ; U; Linux i686 ; en−US; rv : 1 . 7 . 8) Gecko /20050513 Galeon / 1 . 3 . 2 1

</user agent >

</option>

</opt ions>

<s e s s i o n s >

<s e s s i o n name=”http−example” p r o b a b i l i t y =”100” type=”t s h t t p”>

<request>

<http u r l =”/ ld / f l a v i o . i s h i i −crabapple ” method=”GET” v e r s i o n =”1.1”/>

</request>

<request>

<http u r l =”/ s t a t i c / j son2 . j s ” method=”GET” ve r s i o n =”1.1”/>

</request>

<th inkt ime value =”1.413” random=”true”/>

</s e s s i on >

</s e s s i o n s >

</tsung>

Listing 6.1: Tsung configuration XML.

Results

The results for the experiment’s phase 3 (100 qps over a five minute duration) are

shown below in Tables 6.4, 6.5, and 6.6; as it represents the case with the largest

load tested on the local GAE development environment. The data collected for run

1 (5qps over 5 minutes) and run 2 (50 qps over 5 minutes) are found in the tables

and graphs of Appendix B.1.1 and B.1.2 respectively.

64

Name Highest

10sec mean

Lowest 10sec

mean

Highest rate Mean Total

Connect 2.59 sec 39.51 msec 119.8 / sec 1.44 sec 21,291

Page 8mins 44sec 3.33 sec 42.3 / sec 37.85 sec 10,276

Request 7mn 32sec 1.70 sec 86.1 / sec 18.25 sec 21,290

Session 6mn 42sec 4.41 sec 83.4 / sec 59.60 sec 23,041

Table 6.4: Main Stats.

Name Highest rate Total

size rcv 588.56 Kbits / sec 19.91 MB

size sent 140.45 Kbits / sec 3.03 MB

Table 6.5: Network Throughput Stats

Name Highest rate Total

error abort max conn retries 64.2 / sec 12,765

error connect etimedout 5.2 / sec 677

error connect system limit 271.1 / sec 61,860

Table 6.6: Errors

Evaluation

Tsung did not crash the PURIC server running on the local development environ-

ment, instead it times out after long requests and re-sends them. This accumulates

the requests being handled and processed. Figure 6.3 shows how the transactions

are still being completed after the 300 seconds (five minute) mark. The peaks in

Figure 6.3 represent the times when the transaction rate is high, meaning the re-

quests have accumulated and it starts to process and finishes them in the troughts.

The cycles begin again as it starts to accumulate and queue up more requests. The

graph starts to flatten out as the queue shortens; especially after the 300 seconds (5

minute) mark. When comparing the graphs from all three runs, the first run does

not go much over the five minute mark, the second and third runs almost reach the

600 seconds (10 minute) mark in order to keep up with accumulated requests.

65

Figure 6.3: Tsung Experiment: Run 3 - 100qps for 5 minutes.

It also appears that the error rate is doubled from the 50 to 100 requests/second

runs, implying that the error rate and the latency will keep increasing as the requests

per second increase. The 9.12 seconds mean page load value shown in the main stats

(Appendix B.1.1) for the 5 qps over 5 minutes test run is unacceptable, and it jumps

to 32.87 seconds and 37.85 seconds (50 qps over 5 mins in Appendix B.1.2 and 100

qps over 5 mins in Table 6.7). The unacceptable 9.12 seconds mean may be due to a

slow processor in the local host, the geographical distances between the Tsung server

and the local PURIC server that causes long latency, but the likely culprit for the

slow page load mean may simply be due to how the Local GAE Development Server

is implemented and handles the requests in a not so timely manner, unlike GAE’s

production server seen in the next experiment. These tests concluded that the local

GAE development server is not an ideal testing ground for handling massive requests

above 5 qps. It is however great for initial tests to give an approximation of how the

system is handling the requests and make sure there is an expectation of what the

results will be in the production server.

66

6.1.4 Test 4: Cloud-based GAE Production Server Tests

Description

Cloud-based GAE Production Server tests demonstrate how well the PURIC system

scales and performs in a production environment at a low cost. It is set out to

prove the feasibility of the code implemented for handling massive requests. The

following two test runs and their phases were performed by the Tsung server to hit

the Cloud-based GAE Production Server:

1. 5 requests per seconds (qps) over 5 minutes;

2. 50 qps over 5 minutes;

3. 100 qps over 5 minutes;

4. A combination of five different phases all at once (25qps, 50qps, 100qps, 50qps,

25qps each ran over 5 minutes) lasting 25 minutes.

The last test run performs a load test by ramping up the load sent then decreasing

it, in the attempts to show the elastic scalability of a PaaS like GAE.

Results

The same tests that were ran on the Local GAE server were conducted for the Cloud-

based GAE environment with the results of the first three runs in this experiment

found in tables and graphs of Appendix B.2. The last run is shown in Tables 6.7

and 6.8. GAE’s cloud environment could have had more performance enhancement

features enabled but it was kept to its basic/default configuration.

No errors were reported in the stats of any of this section’s experiments, unlike

with the local GAE development server. This is due to its scalability and lower

latency that the Cloud GAE Production Server has; which allows plenty of time to

recover and handle the requests accordingly.

The request rates and duration do not crash the cloud server as new instances

are activated based on the increase in demand, and all requests started within the

duration specified were completed no matter how long it takes. Instances are acti-

vated and de-activated as the demand increases and decreases respectfully. GAE’s

administration console for the PURIC app provided the server-side test result data

67

Figure 6.4: Instances spawned in the production server for all tests ran.

and graphs showing when new instances were activated (see Figure 6.4) for all four

test runs, depending on how many requests were pending.

The requests per second values in the experiments were chosen so that the Tsung

machine network bandwidth of 20MB/s was not surpassed, which is the limit set for

the Rackspace Tsung VM. If a higher bandwidth was used by all system components

the qps values could have been increased.

Name Highest

10sec mean

Lowest 10sec

mean

Highest rate Mean Count

Connect 1.17 sec 14.02 msec 91.5 / sec 40.75 msec 66,126

Page 2.45 sec 0.25 sec 113.4 / sec 0.46 msec 66,126

Request 1.22 sec 0.13 sec 227/ sec 0.23 msec 132,252

Session 3.74 sec 1.56 sec 117.7 / sec 1.88 msec 66,126

Table 6.7: Main Stats

Name Highest rate Total

size rcv 17.39 Mbits/sec 1.24 GB

size sent 253.91 Kbits/sec 20.05 MB

Table 6.8: Network Throughput Stats

The test phases happen in iterations, one after the other. Figure 6.5 shows the

fluctuation happening at 300 seconds, 600 seconds, 900 seconds, 1200 seconds, and

1500 seconds; directly mapping to the start/end of each of the test run phases – the

300 seconds intervals.

68

Figure 6.5: Tsung Experiment 4: 25qps for 5 minutes, 50qps for 5 minutes, 100qps for 5
minutes, 50qps for 5 minutes, 25qps for 5 minutes.

69

Evaluation

Unlike the Local GAE Development server, the Cloud GAE Production Server does

handle the requests and has acceptable mean page load times: 0.23 seconds (5 qps

over 5 minutes), 0.31 seconds (50 qps over 5 minutes), and 0.4 seconds (100 qps over

5 minutes).

Figure 6.5 shows that even though each phase should exponentially increase the

number of requests queued the curve remained flat, and act like the 50qps or 100qps

per 5 minute runs in the previous test runs, each 5 minute phase ran their respective

5 minute run. This occurred because GAE’s production server scales according

to demand by either spawning new instances or removing spawned instances. The

transactions per second stays relatively constant for each of the five phases, increasing

to a higher transactions/second rate only at the 5 and 10 minute marks, decreasing

at the 15 and 20 minute mark, as the request demands increase and decrease. This

concludes that it is feasible to implement the PURIC System in a PaaS like GAE

and it would be able to handle the massive request loads tested.

6.2 PURIC Drawbacks and Limitations

There are several drawbacks and limitations that can be pointed out based on the

design, technologies chosen, and system evaluations:

• Although PURIC provides a media URI sharing mechanism, it adds an extra

step for publishing a media resource – the step to map the root URI with a

PURIC URL.

• When posting a PURIC URL on social applications it will only show the URL

and not a thumbnail on the post, specifically on Facebook. But if Facebook

were to integrate a PURIC like module as a feature they could customize it to

show a visual preview of the resource.

• The root URI for a media resource pointed by a PURIC page must be public.

Using the media storing service’s authorization mechanisms to grant access to

the private resource is a remaining challenge. Such authorization mechanisms

do lock the content to the particular storage service, because the user access

70

information cannot be easily transferred from one host to another as there is no

industry standard for this in place. This is only of concern when the resource is

not public and such use case does not comply with the needs of the sustainable

Web growth this thesis focusses on.

• PURIC URLs will live for as long as the PURIC Server lives, meaning that

if the server goes down or seizes to exist all the PURIC URLs published will

return 404 HTTP status codes, as they will no longer be found. The PURIC

server can however be moved to a different host without service interruption.

• Because not all browsers support the Javascript and phone capabilities the

same, the screen width that is initially detected may not be correct, depending

on the initial orientation (landscape or portrait) of the device. The screen width

property and orientation detection code have not been tested on other platforms

and thus there is no guarantee that it will work in a different way if supported

at all. This is a matter of time before these properties are fully supported.

The adaptation of PURIC as part of existing popular SN sites can improve the

user experience by tightly integrating the two systems. Facebook could support

PURIC-like features and it could solve the first three points listed above, and as

long as Facebook lived on the PURIC features would as well, handling the last point

above.

6.3 Future Work

Additional functionalities, use cases, and challenges could be looked at, building on

the core design and work presented in this thesis:

• Authentication and authorization layers could be added to the PURIC system

as it is quite modular, via RESTful means. This would support data privacy

control via authenticated linked data routing if the use case calls for a secure

method of sharing resources. It can also add the possibility to personalization,

where content can not only be specifically selected but also customized for

specific users accessing it.

• An analytics module could be integrated that also uses REST via AJAX, send-

71

ing POST requests from the client to the user analytics module. The analytics

can be used by the publisher to see which root URIs are being requested the

most, and if some versions are not even being requested. Publishers can then

determine things such as what screen sizes to support for future resources they

publish.

• A client’s contextual awareness module based on the surrounding environment

conditions could be added as another level of responsiveness. Context based

responsive Web does not only look at the client platform’s properties but also

the client’s user’s context. As an example that would entail this is when showing

an image resource the PURIC client can choose the language of the text over

it based on the city that the user is at. This would make use of existing client

side features such as the geolocation javascript functions.

• Scheduled updates, where the root URI version being pointed to by a PURIC

URL can change at a scheduled time. This could be useful for the true sense of a

PURIC, which is a channel of changing media files for users to view periodically.

• Adding a Web crawl-friendly page based on tag words can make the published

media SEO-friendly. A study can be conducted on how this publishing model

impacts SEO. As the root URI changes, SEO effectiveness will depend on the

content found in the webpage of the URL, and by also using friendly URLs.

Pingback’s, RDFs, and tagging could be used to improve SEO.

• PURIC could also have a notification mechanism such as RSS or even a realtime

component to it, where if the root URI changes it notifies the subscriber.

• Accessibility versioning may be supported by the PURIC system, a responsive

page based on accessibility settings.

• User experience is still a challenge for the PURIC system as it requires the user

to manage URLs and their content in a cloud storage provider (i.e., DropBox).

PURIC could be wrapped as a layer over DropBoxes functionalities, by using

DropBox’s API to simplify the publishing process.

• A PURIC feature providing the option for the publisher to show the Web re-

source embedded on a webpage or forward it to the root URL.

72

• Broken link detection and automatic re-routing of Web resource. If redirected

publisher is notified by the PURIC system, for the publisher to react accordingly.

73

Chapter 7

Conclusion

The PURIC system has a simple design and implementation. It provides an

innovative method of publishing and controlling the links to media files in such a

way that does not require extra CPU processing, memory usage, and network traffic

on the server and client. It ultimately allows the Web content publishers to:

• Host his/her public media resources in any data storage service.

• Control over the different versions of the media resources that are aliased by

the PURIC URLs published.

• Control over what the published PURIC link displays, whether the link has

been republished by others or not.

• Move the root media resources around without having to re-publish new URLs.

• Not have to store files in their own computer nor require them to keep their

computer on with the server running as P2P solutions require.

• Not have to install any program on their computer, since PURIC runs on the

browser.

The RESTful design of the PURIC system allows it to be easily integrated into

existing systems. Its modularity also supports additional functionalities and tech-

nologies to be implemented in order to improve the system and support future use

cases. The most complex challenge for this system is for users to adopt it as a de-facto

since it requires an additional step to publish content along with other drawbacks

and limitations. This could be easily overturned if the popular social applications

like Facebook and Twitter integrate PURIC as a module.

PURIC may not be and does not have to be used in all situations of publishing

media, there are certain use cases where it thrives such as updating a corporate

74

video or event video where its URL has already been published, or in the case of a

URL inside an ebook where its source has changed location. Most SN site users may

publish a URL and not worry about it once it has been published.

PURIC introduces a publishing schema that is different from others but yet it

can be integrated into any existing social application because of its simple and light

implementation. It utilizes standard Web technologies in order to target all platforms

and devices in the market with a Web browser. And most importantly PURIC follows

the same principles of the WWW, in terms of accessible data and sustainable growth.

The implementation and tests conducted demonstrate the feasibility of PURIC in

a cloud-based platform. The implementation is simple and is able to handle massive

amounts of resource requests originating from many types of client platforms. Many

future use cases and work have been mentioned to demonstrate PURIC’s usefulness

and where its path is leading towards.

75

References

[1] Social networks and the semantic web. In IEEE/WIC/ACM International Conference on Web
Intelligence, 2004. WI 2004. Proceedings, pages 285–291, September 2004.

[2] Facebook. ”http://mildgreenhelpliquid.com/?p=393”, April 2011.

[3] Amazon web services. ”http://aws.amazon.com/”, November 2012.

[4] Appfog. ”https://www.appfog.com/”, November 2012.

[5] Box.com. ”http://box.com”, November 2012.

[6] Cakephp. ”http://cakephp.org/”, November 2012.

[7] Diaspora. ”http://en.wikipedia.org/wiki/Diaspora (software)”, October 2012.

[8] Diaspora. ”http://diasporaproject.org/”, November 2012.

[9] Django. ”https://www.djangoproject.com/”, November 2012.

[10] Dropbox. ”http://dropbox.com/”, November 2012.

[11] Facebook graph api. ”https://developers.facebook.com/docs/reference/api/”, November 2012.

[12] Flickr. ”http://flickr.com”, November 2012.

[13] Google drive. ”http://drive.google.com/”, December 2012.

[14] Heroku. ”http://www.heroku.com/”, November 2012.

[15] Instagram. ”http://instagram.com/”, December 2012.

[16] Joyent cloud. ”http://joyent.com/products/joyent-cloud”, November 2012.

[17] The locker project. ”http://lockerproject.org”, October 2012.

[18] Nitrogen web framework. ”http://nitrogenproject.com/”, November 2012.

[19] Rackspace cloud. ”http://www.rackspace.com/cloud/”, November 2012.

[20] Ruby on rails. ”http://rubyonrails.org/”, November 2012.

[21] Salesforce. ”http://www.salesforce.com/”, November 2012.

[22] Socialriver. ”http://socialriver.org”, November 2012.

[23] Youtube. ”http://www.youtube.com””, November 2012.

[24] YouTube - Terms of Service. ”https://www.youtube.com/static?gl=US&template=term”,
November 2012.

[25] Zoho. ”http://www.zoho.com/”, November 2012.

[26] L.M. Aiello and G. Ruffo. Lotusnet: tunable privacy for distributed online social network
services. Computer Communications, 35(1):75–88, 2012.

76

[27] Luca Maria Aiello and Giancarlo Ruffo. Secure and flexible framework for decentralized social
network services. In 2010 8th IEEE International Conference on Pervasive Computing and
Communications Workshops (PERCOM Workshops), 2010.

[28] Subbu Allamaraju. RESTful Web Services Cookbook. O’Reilly Media, 2010.

[29] Tim Berners-Lee. Long live the web: A call for continued open standards and neu-
trality. ”http://www.scientificamerican.com/article.cfm?id=long-live-the-web&print=true”,
November 2010.

[30] Tim Berners-Lee, Robert Cailliau, Jean-François Groff, and Bernd Pollermann. World-wide
web: the information universe. Internet Research, 20, Issue 4:461–471, 2010.

[31] S. Buchegger and A. Datta. A case for p2p infrastructure for social networks-opportunities &
challenges. In Wireless On-Demand Network Systems and Services, 2009. WONS 2009. Sixth
International Conference on, pages 161–168. IEEE, 2009.

[32] S. Buchegger, D. Schiöberg, L.H. Vu, and A. Datta. Peerson: P2p social networking: early
experiences and insights. In Proceedings of the Second ACM EuroSys Workshop on Social
Network Systems, pages 46–52. ACM, 2009.

[33] Claudia Canali, Valeria Cardellini, Michele Colajanni, Riccardo Lancellotti, and Philip S. Yu.
Web content caching and distribution. chapter Cooperative architectures and algorithms for
discovery and transcoding of multi-version content, pages 205–221. Kluwer Academic Publish-
ers, Norwell, MA, USA, 2004.

[34] Martin Clancy, Ronan Cremin, and John Leonard. Implementing your mobile strategy.
Whitepaper, dotMobi, February 2012.

[35] Stefan Decker and Martin Frank. The social semantic desktop. Technical report, DERI -
Digital Enterprise Research Institute, 2004.

[36] J. Delgado. Bridging provider-centric and user-centric social networks. Handbook of Research
on Business Social Networking: Organizational, Managerial, and Technological Dimensions,
pages 63–83, November 2012.

[37] Amy-Mae Elliot. Youtube facts. ”http://mashable.com/2011/02/19/youtube-facts/”, Febru-
ary 2011.

[38] G. Clemm et al. Versioning extensions to webdav (web distributed authoring and versioning).
HTTP RFC, March 2002.

[39] G. Clemm et al. Web distributed authoring and versioning (webdav) access control protocol.
HTTP RFC, May 2004.

[40] Roy T. Fielding et al. Hypertext transfer protocol – http/1.1. HTTP RFC, June 1997.

[41] Less Faber. Canadian social media statistics 2011. ”http://www.webfuel.ca/canada-social-
media-statistics-2011/”, July 2011.

[42] Facebook. Facebook blog. ”https://blog.facebook.com”, November 2012.

[43] Facebook, ”https://www.facebook.com/legal/terms”. Statement of Rights and Responsibility,
November 2012.

[44] Roy T. Fielding. Architectural Styles and the Design of Network-based Software Architectures.
PhD thesis, University of California, Irvine, 2000.

[45] Roy T. Fielding and Richard N. Taylor. Principled design of the modern web architecture. In
ACM Transactions on Internet Technology, volume 2, pages 115–150, May 2002.

77

[46] B. Gardner. Responsive web design: Enriching the user experience, 2011.

[47] Google. Google app engine, November 2012.

[48] Joe Gregorio. Getting started load testing your app engine application. Website, August 2009.

[49] Dominique Guinard. Towards the web of things: Web mashups for embedded devices. In MEM
2009, 2009.

[50] S. Lawrence H. Nielsen, P. Leach. An http extension framework. HTTP RFC, February 2000.

[51] R. Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Perret, and J. Rubas. Dynamic adaptation
in an image transcoding proxy for mobile web browsing. Personal Communications, IEEE,
5(6):8–17, 1998.

[52] W. Itani, A. Kayssi, and A. Chehab. Privacy as a service: Privacy-aware data storage and
processing in cloud computing architectures. In Dependable, Autonomic and Secure Computing,
2009. DASC’09. Eighth IEEE International Conference on, pages 711–716. IEEE, 2009.

[53] Terry Jones. Book: A Futurist’s Manifesto, chapter Why Digital Books Will Become Writable.
O’Reily Media, 2012.

[54] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter, a social
network or a news media? In WWW 2010 Proceedings of the 19th international conference on
World wide web, 2010.

[55] Frank McCown and Michael L. Nelson. What happens when facebook is gone? In JCDL 2009
Proceedings of the 9th ACM/IEEE-CS joint conference on Digital libraries, 2009.

[56] J. Mitchell-Wong, R. Kowalczyk, A. Roshelova, B. Joy, and H. Tsai. Opensocial: From so-
cial networks to social ecosystem. In Digital EcoSystems and Technologies Conference, 2007.
DEST’07. Inaugural IEEE-IES, pages 361–366. IEEE, 2007.

[57] Jeffrey C. Mogul. Clarifying the fundamentals of http, 2004.

[58] T. OReilly. What is web 2.0: Design patterns and business models for the next generation of
software. Communications & strategies, (1):17, 2007.

[59] T. Paul, S. Buchegger, and T. Strufe. Decentralized social networking services. Trustworthy
Internet, pages 187–199, 2011.

[60] Cesare Pautasso and Erik Wilde. Restful web services: principles, patterns, emerging tech-
nologies. In WWW 2010 Proceedings of the 19th international conference on World wide web,
2010.

[61] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services vs. ”big”
web services: Making the right architectural decision. In WWW ’08: Proceeding of the 17th
international conference on World Wide Web. ACM, 2008.

[62] Lucian Popa, Ali Ghodsi, and Ion Stoica. Http as the narrow waist of the future internet. In
Proceedings of the Ninth ACM SIGCOMM Workshop on Hot Topics in Networks, Hotnets ’10,
pages 6:1–6:6, New York, NY, USA, 2010. ACM.

[63] J.A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D.H.J. Epema, M. Rein-
ders, M.R. Van Steen, and H.J. Sips. Tribler: a social-based peer-to-peer system. Concurrency
and Computation: Practice and Experience, 20(2):127–138, 2008.

[64] quartzjer. Next steps for the locker project. ”http://blog.lockerproject.org/2012/05/01/next-
steps-for-the-locker-project/”, December 2012.

78

[65] et al. Roy T. Fielding. Http 1.1: Method definitions.
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html, March 2010.

[66] ScientialMobile. Wurfl website, April 2012.

[67] Seok-Won Seong, Jiwon Seo, Matthew Nasielski, Debangsu Sengupta, Sudheendra Hangal,
Seng Keat Teh, Ruven Chu, Ben Dodson, and Monica S. Lam. Prpl: a decentralized social
networking infrastructure. In MCS 2010 Proceedings of the 1st ACM Workshop on Mobile
Cloud Computing and Services: Social Networks and Beyond, 2010.

[68] San-Tsai Sun, Kirstie Hawkey, and Konstantin Beznosov. Secure web 2.0 content sharing
beyond walled gardens. In Computer Security Applications Conference, ACSAC 2009., 2009.

[69] A. Tootoonchian, S. Saroiu, Y. Ganjali, and A. Wolman. Lockr: better privacy for social net-
works. In Proceedings of the 5th international conference on Emerging networking experiments
and technologies, pages 169–180. ACM, 2009.

[70] Twitter. Rest api. http://apiwiki.twitter.com.

[71] W3C. Http hypertext transfer protocol. http://www.w3.org/Protocols/.

[72] W3C. W3c workshop on the future of social networking.
”http://www.w3.org/2008/09/msnws/report.html”, January 2009.

[73] C. Wang, Q. Wang, K. Ren, and W. Lou. Privacy-preserving public auditing for data storage
security in cloud computing. In INFOCOM, 2010 Proceedings IEEE, pages 1–9. IEEE, 2010.

[74] C.A. Yeung, I. Liccardi, K. Lu, O. Seneviratne, and T. Berners-Lee. Decentralization: The
future of online social networking. In W3C Workshop on the Future of Social Networking
Position Papers, volume 2, 2009.

[75] Polychronis Ypodimatopoulos. Ego - decentralized social networking.
”http://polychronis.gr/projects/ego-decentralized-social-networking/comment-page-1/”,
December 2009.

[76] S. Yu, C. Wang, K. Ren, and W. Lou. Achieving secure, scalable, and fine-grained data access
control in cloud computing. In INFOCOM, 2010 Proceedings IEEE, pages 1–9. IEEE, 2010.

[77] B. Zhou and C. Wu. Social networking interoperability through extended foaf vocabulary
and service. In Information Sciences and Interaction Sciences (ICIS), 2010 3rd International
Conference on, pages 50–55. IEEE, 2010.

79

Appendix A

Implementation Source Code

A.1 Server-side

The files listed in this section consist of the code for the server app configuration, and client- and
admin-side request handlers.
a p p l i c a t i o n : s o c i a l r ms
ve r s i o n : 1
runtime : python27
a p i v e r s i o n : 1
th r ead sa f e : yes

i n b o u n d s e r v i c e s :
− warmup

s k i p f i l e s :
− ˆ (.∗/) ?app \ . yaml
− ˆ (.∗/) ?app \ . yml
− ˆ (.∗/) ? index \ . yaml
− ˆ (.∗/) ? index \ . yml
− ˆ (.∗/) ?#.∗#
− ˆ (.∗/) ? .∗˜
− ˆ (.∗/) ? . ∗ \ . py [co]
− ˆ (.∗/) ? .∗/RCS/ .∗
− ˆ (.∗/) ? \ . . ∗

hand le r s :
− u r l : / robots \ . tx t

s t a t i c f i l e s : s t a t i c / robots . txt
upload : s t a t i c / robots \ . tx t

− u r l : / s t a t i c
s t a t i c d i r : s t a t i c

− u r l : / f av i con \ . i c o
s t a t i c f i l e s : f av i c on . i c o
upload : f av i con \ . i c o

− u r l : .∗
s c r i p t : main . app

l i b r a r i e s :
− name : j i n j a 2

ve r s i o n : ” l a t e s t ”

Listing A.1: Webapp2 application specific settings - app.yaml

”””
Flav io I s h i i − f l a v i o . i s h i i @ us a s k . ca
November 01 , 2012
Desc r ip t i on : Webapp2 framework c o n f i g u r a t i o n f i l e
”””

webapp2 conf ig = {}
webapp2 conf ig [’ webapp2 extras . s e s s i o n s ’] = {

’ s e c r e t key ’ : ’my s e c r e t key ’ ,
}

Reference : http :// webapp−improved . appspot . com/ modules / webapp2 extras /auth . html
86400 = seconds in a day
webapp2 conf ig [’ webapp2 extras . auth ’] = {

80

’ user model ’ : ’ models . User ’ ,
’ cookie name ’ : ’my−s e s s i on ’ ,
’ token max age ’ : 86400 ∗ 7 ∗ 3 ,
’ token new age ’ : 86400 ,
’ token cache age ’ : 3600 ,

}

Listing A.2: Webapp2 framework configuration file - config.py

”””
Flav io I s h i i − f l a v i o . i s h i i @ us a s k . ca
November 01 , 2012
Desc r ip t i on : Dr iver c l a s s f o r webapp2 app . Based on the b o i l e r p l a t e code from https

: // github . com/ coto /gae−b o i l e r p l a t e
”””

import webapp2
import route s
import c o n f i g

app = webapp2 . WSGIApplication (debug=True , c o n f i g=c o n f i g . webapp2 conf ig)
route s . add routes (app)

Listing A.3: Driver class for webapp2 app - main.py

’ ’ ’
F lav io I s h i i − f l a v i o . i s h i i @ us a s k . ca
November 01 , 2012
Desc r ip t i on : Model c l a s s e s f o r URIAlias and LinkedData r e co rd s .
Note : A re sou r c e has one a l i a s but may have mul t ip l e o r i g i n s . I t s o r i g i n s w i l l

depend on the plat form chosen and/ or v e r s i o n s f o r that p lat form .
’ ’ ’

from datet ime import datet ime

from goog le . appengine . ext import db

c l a s s URIAlias (db . Model) :

TYPE CHOICES = [
(u ’ Image ’) ,
(u ’ Audio ’) ,
(u ’ Video ’) ,
(u ’ Html ’) , #URL (conta in ing any o f the above f i l e URIs)
(u ’ Flash ’) ,
(u ’ Other ’) ,

]
a l i a s = db . Str ingProperty ()
p u b l i s h e r = db . UserProperty (r equ i r ed=True) #db . Str ingProper ty (r equ i r ed=True)
i s a r c h i v e d = db . BooleanProperty (d e f a u l t=Fal se)
l a t e s t v e r s i o n = db . Intege rProper ty (d e f a u l t =1)
d e s c r i p t i o n = db . Str ingProper ty (m u l t i l i n e=True)
tags = db . L i s tProper ty (unicode , d e f a u l t=None)
type = db . Str ingProperty (c h o i c e s=TYPE CHOICES) # once c rea ted i t may not

d i f f e r from the LinkedData

Uses URIAlias as i t s parent / ance s to r
c l a s s LinkedData (db . Model) :

SCREEN CHOICES = [
(’ 480 ’) ,
(’ 8 00 ’) ,
(’ 1080 ’)

]

o r i g i n u r i = db . St r ingProper ty (r equ i r ed=True)
ve r s i o n = db . Intege rProper ty (d e f a u l t =1)

81

c l i e n t s c r e e n = db . Str ingProperty (c h o i c e s=SCREEN CHOICES)
#author ized usernames = db . S t r i ngL i s tPrope r ty (d e f a u l t = [])
d e s c r i p t i o n = db . Str ingProper ty (m u l t i l i n e=True)

i s a r c h i v e d = db . BooleanProperty (d e f a u l t=Fal se)
updated = db . DateProperty (auto now=True)
c rea ted = db . DateProperty (auto now add=True)

Listing A.4: Model classes for URIAlias and LinkedData records - models.py

’ ’ ’
F lav io I s h i i − f l a v i o . i s h i i @ us a s k . ca
November 01 , 2012
Desc r ip t i on : Route c o n f i g u r a t i o n code f o r webapp2 app .
’ ’ ’

import l ogg ing
from webapp2 extras import route s
from webapp2 extras . r ou te s import RedirectRoute

from r e q u e s t h a n d l e r s . p u b l i c u i h a n d l e r s import HomeUIHandler , LinkedDataUIHandler
from r e q u e s t h a n d l e r s . ap ihand l e r s import URIAliasAPIHandler
from r e q u e s t h a n d l e r s . adminuihandlers import URIAliasListUIHandler ,

URIAliasAddFormHandler , URIAliasUIHandler , LinkedDataAddFormHandler ,
LinkedDataEditFormHandler

Everything i s t r ea t ed as a r e sou r c e : a l i a s , u i content , o r i g i n a l r e s ou r c e content
Using RedirectRoute in s t ead o f webapp2 . Route s i n c e i t supports s t r i c t s l a s h

r o u t e s = [

These API handles re turn JSON
RedirectRoute (’/ api / a l i a s /<a l i a s > ’ , handler=URIAliasAPIHandler , name=’

vers ioned−a l i a s−api ’ , s t r i c t s l a s h=True) ,
RedirectRoute (’/ api / a l i a s /<a l i a s > ’ , handler=URIAliasAPIHandler , name=’ a l i a s−

api ’ , s t r i c t s l a s h=True) ,

These admin handles re turn u i r e s o u r c e s
RedirectRoute (’/ puric admin / u i / u r i a l i a s /add ’ , handler=URIAliasAddFormHandler

, name=’ a l i a s−addform ’ , s t r i c t s l a s h=True) ,

RedirectRoute (’/ puric admin / u i / u r i a l i a s /<ua key>/l inkeddata /add ’ , handler=
LinkedDataAddFormHandler , name=’ ld−addform ’ , s t r i c t s l a s h=True) ,

RedirectRoute (’/ puric admin / u i / l inkeddata/< ld key > ’ , handler=
LinkedDataEditFormHandler , name=’ ld−edit form ’ , s t r i c t s l a s h=True) ,

RedirectRoute (’/ puric admin / u i / u r i a l i a s /<ua key > ’ , handler=URIAliasUIHandler
, name=’ a l i a s−edit form ’ , s t r i c t s l a s h=True) ,

RedirectRoute (’/ puric admin / u i / u r i a l i a s ’ , handler=URIAliasListUIHandler ,
name=’ a l i a s l i s t −ui ’ , s t r i c t s l a s h=True) ,

RedirectRoute (’/ puric admin / ’ , handler=URIAliasListUIHandler , name=’ pur ic−ui
’ , s t r i c t s l a s h=True) ,

RedirectRoute (’/ ld/<a l i a s > ’ , handler=LinkedDataUIHandler , name=’ ve r s i ons−ui
’ , s t r i c t s l a s h=True) ,

RedirectRoute (’/ ld / ’ , handler=LinkedDataUIHandler , name=’ ve r s i ons−ui ’ ,
s t r i c t s l a s h=True) ,

RedirectRoute (’ / ’ , handler=HomeUIHandler , name=’homepage ’ , s t r i c t s l a s h=True
) ,

]

de f g e t r o u t e s () :
r e turn r o u t e s

de f add routes (app) :
f o r r in r o u t e s :

app . rou te r . add (r)

Listing A.5: Route configuration code for webapp2 app. - routes.py

82

’ ’ ’
F lav io I s h i i − f l a v i o . i s h i i @ us a s k . ca
November 01 , 2012
Desc r ip t i on : Form d e f i n i t i o n s f o r c r e a t i n g and e d i t i n g an ad campaign .
’ ’ ’

from wtforms import v a l i d a t o r s , Form , TextField , TextAreaField , BooleanFie ld ,
S e l e c t F i e l d , HiddenField , RadioFie ld

’ ’ ’SCREEN CHOICES = [
(u ’ Any ’ , ’ Any ’) ,
(u ’ Small Mobile ’ , ’ Small Mobile Device (480 px phones) ’) ,
(u ’ Large Mobile ’ , ’ Large Mobile Device (800 px t a b l e t s) ’) ,
(u ’ Desktop ’ , ’ Desktop/Laptop (1280) ’) ,

] ’ ’ ’

SCREEN CHOICES = [
(’ 480 ’ , ’ Small Mobile Devices − 480p ’) ,
(’ 800 ’ , ’Medium to Large Mobile Devices − 800p ’) ,
(’ 1080 ’ , ’ Laptop or Desktop − 1080p ’)

]

TYPE CHOICES = [
(u ’ Video ’ , ’ Video ’) ,
(u ’ Audio ’ , ’ Audio ’) ,
(u ’ Image ’ , ’ Image ’) ,
(u ’ Other ’ , ’ Other (HTML, Flash , Documents . . .) ’) ,

]

c l a s s LinkedDataDetailForm (Form) :
o r i g i n u r i = TextFie ld (’ Root URI ’ , [v a l i d a t o r s . Required ()])
c l i e n t s c r e e n = S e l e c t F i e l d (’ Screen Size ’ , c h o i c e s=SCREEN CHOICES)
i s a r c h i v e d = BooleanFie ld (’ Archived ’ , d e f a u l t=False)
d e s c r i p t i o n = TextAreaField (’ Descr ipt ion ’)

c l a s s URIAliasDetailForm (Form) :
a l i a s u r i = TextFie ld (’ Link to share (URI Al i a s) : ’ , [v a l i d a t o r s . Required ()

])
d e s c r i p t i o n = TextAreaField (’ De sc r ip t i on : ’)
i s a r c h i v e d = BooleanFie ld (’ Archived ’ , d e f a u l t=False)

This form ob j e c t i s used to c r e a t e both the URIAlias and LinkedData e n t i t i e s as
the f i r s t s tep .

c l a s s NewURIAliasLinkedDataDetailForm (URIAliasDetailForm) :
o r i g i n u r i = TextFie ld (’ Root URI ’ , [v a l i d a t o r s . Required ()])
c l i e n t s c r e e n = S e l e c t F i e l d (’ Screen Size ’ , c h o i c e s=SCREEN CHOICES)
f i l e t y p e = S e l e c t F i e l d (’ F i l e Type ’ , c h o i c e s=TYPE CHOICES, d e f a u l t =’Any ’)

Listing A.6: Form definitions for creating and editing an ad campaign -
ldmsforms/linkeddata.py

”””
Flav io I s h i i − f l a v i o . i s h i i @ us a s k . ca
November 01 , 2012
Desc r ip t i on : Base r eque s t handl ing code , parent f o r other r eque s t handler codes /

f i l e s .
”””

import os
import webapp2
import l ogg ing
from webapp2 extras import auth

from webapp2 extras import s e s s i o n s
from webapp2 extras import j i n j a 2

c l a s s BaseHandler (webapp2 . RequestHandler) :
”””

83

BaseHandler f o r a l l r e q u e s t s
Holds the auth and s e s s i o n p r o p e r t i e s so they are reachab l e f o r a l l r e q u e s t s
”””
de f d i spatch (s e l f) :

”””
Save the s e s s i o n s f o r p r e s e r v a t i o n a c r o s s r e q u e s t s

”””
try :

r e sponse = super (BaseHandler , s e l f) . d i spatch ()
#s e l f . r e sponse . wr i t e (re sponse)

f i n a l l y :
s e l f . s e s s i o n s t o r e . s a v e s e s s i o n s (s e l f . r e sponse)

@webapp2 . cached property
de f auth (s e l f) :

r e turn auth . get auth ()

@webapp2 . cached property
de f s e s s i o n s t o r e (s e l f) :

r e turn s e s s i o n s . g e t s t o r e (r eque s t=s e l f . r eque s t)

@webapp2 . cached property
de f au th con f i g (s e l f) :

”””
Dict to hold u r l s f o r l o g i n / logout
”””
re turn {

’ l o g i n u r l ’ : s e l f . u r i f o r (’ l og in ’) ,
’ l o g o u t u r l ’ : s e l f . u r i f o r (’ logout ’)

}

c l a s s BaseUIHandler (BaseHandler) :
@webapp2 . cached property
de f j i n j a 2 (s e l f) :

r e turn j i n j a 2 . g e t j i n j a 2 (app=s e l f . app)

de f r ender template (s e l f , f i l ename , ∗∗ t empla te a rg s) :
s e l f . r e sponse . wr i t e (s e l f . j i n j a 2 . r ender template (f i l ename , ∗∗

t empla te a rg s))

Listing A.7: Base request handling code, parent for other request handler codes/files -
request handlers/basehandlers.py

”””
Flav io I s h i i − f l a v i o . i s h i i @ us a s k . ca
November 01 , 2012
Desc r ip t i on : Request hand le r s f o r UI s c r e e n s o f the admin i s t ra t i on s i d e o f app .
Notes : A URI Al i a s can have many d i f f e r e n t v e r s i o n s . Each v e r s i on can be any l i nked

data URI as the o r i g i n URI .
”””

from goog le . appengine . ext import db
from goog le . appengine . ap i import u s e r s

from r e q u e s t h a n d l e r s . basehand le r s import BaseUIHandler
from ldmsforms . l inkeddata import LinkedDataDetailForm , URIAliasDetailForm ,

NewURIAliasLinkedDataDetailForm

from models import LinkedData , URIAlias

import webapp2
import l ogg ing

de f r e q u i r e a u t h (handler method) :
de f c h e c k l o g i n (s e l f , ∗ args , ∗∗kwargs) :

i f u s e r s . g e t c u r r e n t u s e r () :
r e turn handler method (s e l f , ∗ args , ∗∗kwargs)

84

User i s not s igned in .
t ry :

s e l f . r e d i r e c t (u s e r s . c r e a t e l o g i n u r l (”/ puric admin /”) , abort
=True)

except (Attr ibuteError , KeyError) , e :
s e l f . abort (403) # Forbidden i f handler has no l o g i n u r l

s p e c i f i e d

re turn c h e c k l o g i n

’ ’ ’
GET / puric admin / u i / u r i a l i a s shows the l i s t o f URIAlias

’ ’ ’
c l a s s URIAliasListUIHandler (BaseUIHandler) :

Al i a s L i s t i n g s c r e en
@require auth
de f get (s e l f) :

use r = use r s . g e t c u r r e n t u s e r ()
a l i a s q r y = db . GqlQuery (’SELECT ∗ FROM URIAlias WHERE p u b l i s h e r =

: 1 ’ , use r)
t emp la t e va lue s = {

’ t e s t ’ : ’ Linked data a l i a s l i s t i n g page : ’ ,
’ a l i a s q r y ’ : a l i a s q r y ,
’ l o g o u t u r l ’ : u s e r s . c r e a t e l o g o u t u r l (”/ puric admin /”) ,

}
r e turn s e l f . r ender template (’ admin/ u r i a l i a s / l i s t . html ’ , ∗∗

t emp la t e va lue s)

’ ’ ’
GET|POST / puric admin / u i / u r i a l i a s /add handles the form d i s p l ay / submiss ion to

add the URIAlias and the f i r s t LinkedData e n t i t i e s
’ ’ ’
c l a s s URIAliasAddFormHandler (BaseUIHandler) :

@require auth
de f get (s e l f) :

use r = use r s . g e t c u r r e n t u s e r ()
t emp la t e va lue s = {

’ u r i a l i a s p r e f i x ’ : ’ http :// so c i a l rm s . appspot . com/ ld /’+ s t r (
user) +’− ’ ,

’ f o rm act ion ’ : s e l f . r eque s t . ur l ,
’ form method ’ : ’POST’ ,
’ form ’ : NewURIAliasLinkedDataDetailForm (s e l f . r eque s t .POST) ,
’ l o g o u t u r l ’ : u s e r s . c r e a t e l o g o u t u r l (”/ puric admin /”)

}
r e turn s e l f . r ender template (’ admin/ u r i a l i a s /add . html ’ , ∗∗

t emp la t e va lue s)

@require auth
de f post (s e l f) :

use r = use r s . g e t c u r r e n t u s e r ()

form = NewURIAliasLinkedDataDetailForm (s e l f . r eque s t .POST)
de l form . i s a r c h i v e d

i f form . v a l i d a t e () :
a l i a s k e y = ” http :// so c i a l r ms . appspot . com/ ld/”+ s t r (user)

+”−”+form . a l i a s u r i . data

a l i a s = URIAlias (a l i a s=a l i a s k e y , p u b l i s h e r=user ,
d e s c r i p t i o n=form . d e s c r i p t i o n . data , type = form . f i l e t y p e
. data)

a l i a s . put ()

Very f i r s t ld f o r t h i s u r i a l i a s

85

ld = LinkedData (parent=a l i a s . key () , v e r s i o n =1, o r i g i n u r i=
form . o r i g i n u r i . data , c l i e n t s c r e e n=form . c l i e n t s c r e e n .
data , d e s c r i p t i o n=form . d e s c r i p t i o n . data)

ld . put ()

s e l f . r e d i r e c t (’ / puric admin / u i / u r i a l i a s ’)
e l s e :

r e turn ’ e r ro r ’

’ ’ ’
GET / puric admin / u i / u r i a l i a s /<ua key> f o r showing the URIAlias record form

and i t s l i nked data r e co rd s
POST / puric admin / u i / u r i a l i a s /<ua key> f o r handl ing the URIAlias update form

submiss ion
’ ’ ’
c l a s s URIAliasUIHandler (BaseUIHandler) :

@require auth
de f get (s e l f , ∗∗kwargs) :

u r i a l i a s = db . get (kwargs [’ ua key ’])
i f u r i a l i a s :

form = URIAliasDetailForm (s e l f . r eque s t .POST, obj=u r i a l i a s)
l d q ry = db . GqlQuery (’SELECT ∗ FROM LinkedData WHERE

ances to r i s : 1 and i s a r c h i v e d = False ’ , u r i a l i a s)

e l s e :
u r i a l i a s = None
ld q ry = None

temp la t e va lue s = {
’ u r i a l i a s ’ : u r i a l i a s ,
’ a l i a s f o r m a c t i o n ’ : ’/ puric admin / u i / u r i a l i a s /’+ s t r (

u r i a l i a s . key ()) ,
’ a l ias form method ’ : ’POST’ ,
’ form ’ : form ,
’ ld qry ’ : ld qry ,
’ l o g o u t u r l ’ : u s e r s . c r e a t e l o g o u t u r l (”/ puric admin /”)

}
r e turn s e l f . r ender template (’ admin/ u r i a l i a s / e d i t . html ’ , ∗∗

t emp la t e va lue s)

@require auth
de f post (s e l f , ∗∗kwargs) :

user = use r s . g e t c u r r e n t u s e r ()
i f use r :

u r i a l i a s = db . get (kwargs [’ ua key ’])
u r i a l i a s . d e s c r i p t i o n = s e l f . r eque s t .POST[’ d e s c r i p t i o n ’]
u r i a l i a s . put ()

s e l f . r e d i r e c t (s e l f . r eque s t . u r l)
e l s e :

r e turn ’ e r ro r ’

LinkedData Request Handlers ∗∗

’ ’ ’
GET|POST / puric admin / u i / u r i a l i a s /<ua key>/l inkeddata /add

’ ’ ’
c l a s s LinkedDataAddFormHandler (BaseUIHandler) :

@require auth
de f get (s e l f , ∗∗kwargs) :

t emp la t e va lue s = {
’ t e s t ’ : ’ a l i a s d e t a i l u i f o r a l i a s id : ’ ,
’ fo rm act ion ’ : s e l f . r eque s t . ur l ,
’ form method ’ : ’POST’ ,
’ form ’ : LinkedDataDetailForm (s e l f . r eque s t .POST) ,
’ l o g o u t u r l ’ : u s e r s . c r e a t e l o g o u t u r l (”/ puric admin /”)

86

}
r e turn s e l f . r ender template (’ admin/ l inkeddata /add . html ’ , ∗∗

t emp la t e va lue s)

@require auth
de f post (s e l f , ∗∗kwargs) :

form = LinkedDataDetailForm (s e l f . r eque s t .POST)
de l form . i s a r c h i v e d
i f form . v a l i d a t e () :

a l i a s = db . get (kwargs [’ ua key ’])
ld = LinkedData (parent=a l i a s , v e r s i o n=a l i a s . l a t e s t v e r s i o n +

1 , o r i g i n u r i=form . o r i g i n u r i . data , c l i e n t s c r e e n=form .
c l i e n t s c r e e n . data , d e s c r i p t i o n=form . d e s c r i p t i o n . data)

ld . put ()
#i f s u c c e s s :
a l i a s . l a t e s t v e r s i o n = a l i a s . l a t e s t v e r s i o n +1
a l i a s . put ()

s e l f . r e d i r e c t (’ / puric admin / u i / u r i a l i a s /’+kwargs [’ ua key ’])
e l s e :

r e turn ’ e r ro r ’

’ ’ ’
Handles : GET|POST/ puric admin / u i / l inkeddata/< id :\w+>
’ ’ ’
c l a s s LinkedDataEditFormHandler (BaseUIHandler) :

@require auth
de f get (s e l f , ∗∗kwargs) :

l i nk ed da ta = db . GqlQuery (’SELECT ∗ FROM LinkedData WHERE k e y =
: 1 ’ , db . Key(kwargs [’ ld key ’])) . get ()

i f l i nk ed da ta :
form = LinkedDataDetailForm (s e l f . r eque s t .POST, obj=

l i nked da ta)
u r i a l i a s = l i nked da ta . parent ()
l d v e r s i o n = l i nked da ta . v e r s i on

e l s e :
u r i a l i a s = None
form = None
l d v e r s i o n = None

temp la t e va lue s = {
’ u r i a l i a s ’ : u r i a l i a s ,
’ ve r s ion ’ : l d v e r s i o n ,
’ form act ion ’ : s e l f . r eque s t . ur l ,
’ form method ’ : ’POST’ ,
’ form ’ : form ,
’ l o g o u t u r l ’ : u s e r s . c r e a t e l o g o u t u r l (”/ puric admin /”)

}
r e turn s e l f . r ender template (’ admin/ l inkeddata / e d i t . html ’ , ∗∗

t emp la t e va lue s)

@require auth
de f post (s e l f , ∗∗kwargs) :

l i nk ed da ta = db . GqlQuery (’SELECT ∗ FROM LinkedData WHERE k e y =
: 1 ’ , db . Key(kwargs [’ ld key ’])) . get ()

u r i a l i a s = l i nked da ta . parent ()
i f l i nk ed da ta and u r i a l i a s . p u b l i s h e r == use r s . g e t c u r r e n t u s e r () :

form = LinkedDataDetailForm (s e l f . r eque s t .POST, obj=
l i nked da ta)

l i nked da ta . c l i e n t s c r e e n = l inked da ta . c l i e n t s c r e e n
form . popu la t e ob j (l i nked da ta)
l i nked da ta . put ()
u r i a l i a s = l i nked da ta . parent ()
l d v e r s i o n = l i nked da ta . v e r s i on
updated = ”Updated Linked Data s u c c e s s f u l l y . ”
e r r o r = None

e l s e :

87

u r i a l i a s = None
l d v e r s i o n = None
updated = None
e r r o r = ”Did not update Linked Data . ”

t emp la t e va lue s = {
’ e r ro r ’ : e r ro r ,
’ u r i a l i a s ’ : u r i a l i a s ,
’ ve r s ion ’ : l d v e r s i o n ,
’ updated ’ : updated ,
’ form act ion ’ : s e l f . r eque s t . ur l ,
’ form method ’ : ’POST’ ,
’ form ’ : form ,
’ l o g o u t u r l ’ : u s e r s . c r e a t e l o g o u t u r l (”/ puric admin /”)

}
r e turn s e l f . r ender template (’ admin/ l inkeddata / e d i t . html ’ , ∗∗

t emp la t e va lue s)

Listing A.8: Request handlers for UI screens of the administration side of app. -
request handlers/adminuihandlers.py

”””
Flav io I s h i i − f l a v i o . i s h i i @ us a s k . ca
November 01 , 2012
Desc r ip t i on : Request hand le r s f o r UI s c r e e n s o f c l i e n t s i d e o f app , showing the

s c r e e n s f o r consuming the root r e s ou r c e (i e . video , image , html . . .)
”””

from goog le . appengine . ext import db
from models import LinkedData , URIAlias
from r e q u e s t h a n d l e r s . basehand le r s import BaseHandler , BaseUIHandler
import webapp2
import l ogg ing
import os
from webapp2 extras import j son
from u r l l i b import unquote

Request Handlers ∗∗

c l a s s HomeUIHandler (BaseUIHandler) :
de f get (s e l f) :

t emp la t e va lue s = { ’ t e s t ’ : ’ homepage ’}
r e turn s e l f . r ender template (’ pub l i c /home . html ’ , ∗∗ t emp la t e va lue s)

c l a s s LinkedDataUIHandler (BaseUIHandler) :
”””

Return html template f o r d i s p l a y i n g the r e s ou r c e along with a j son
o f the p o t e n t i a l r e s ou r c e ve r s i o n depending on the s c r e en
r e s o l u t i o n .

I f the r e i s only one v e r s i on then the resource ’ s html tag i s
inc luded in the i n i t i a l r e sponse .

”””
de f get (s e l f , ∗∗kwargs) :

a l i a s = ” http :// s o c i a l r ms . appspot . com/ ld/”+kwargs [’ a l i a s ’]
u r i a l i a s = db . GqlQuery (’SELECT ∗ FROM URIAlias WHERE a l i a s = : 1 ’ ,

a l i a s) . get ()

l d q ry = db . GqlQuery (’SELECT ∗ FROM LinkedData WHERE ANCESTOR IS : 1
ORDER BY v er s i on DESC’ , u r i a l i a s)

l inkeddata = None
l d l i s t = []
s i n g l e u r l = None
l d l i s t j s o n = None

i f v e r s i o n i s s p e c i f i e d get the c o r r e c t v e r s i o n otherwi se get the
l a t e s t v e r s i o n

i f s e l f . r eque s t .GET. has key (’ v ’) :

88

f o r ld in ld q ry :
i f ld . v e r s i o n == i n t (s e l f . r eque s t .GET[’ v ’]) :

l d l i s t . append ({ ’ s i z e ’ : ld . c l i e n t s c r e e n , ’
ur l ’ : ld . o r i g i n u r i })

break
e l s e : # e l s e c r e a t e a l i s t with the l a t e s t ld ve r s i o n o f each s i z e

f o r ld in ld q ry :
l d l i s t . append ({ ’ s i z e ’ : ld . c l i e n t s c r e e n , ’ ur l ’ : ld .

o r i g i n u r i })

i f l en (l d l i s t) == 1 :
t emp la t e va lue s = {

’ f i l e t y p e ’ : u r i a l i a s . type ,
’ s i n g l e l d ’ : l d l i s t [0] ,
’ pub l i she r ’ : u r i a l i a s . pub l i she r ,

}
e l s e :

t emp la t e va lue s = {
’ f i l e t y p e ’ : u r i a l i a s . type ,
’ l d l i s t ’ : l d l i s t ,
’ pub l i she r ’ : u r i a l i a s . pub l i she r ,

}

i f u r i a l i a s . type == ’ Video ’ :
t emp la t e va lue s [’ f i l e t y p e ’] = u r i a l i a s . type
f i l e e x t = os . path . s p l i t e x t (l d q ry [0] . o r i g i n u r i) [1] [1 :] .

s t r i p ()
t emp la t e va lue s [’ source type ’] = ’ v ideo /’+ f i l e e x t

e l i f u r i a l i a s . type == ’ Audio ’ :
t emp la t e va lue s [’ source type ’] = ’ audio /mpeg ’

re turn s e l f . r ender template (’ pub l i c / ld . html ’ , ∗∗ t emp la t e va lue s)

de f proxy (s e l f , l i nkeddata) :
do proxy code here . . .
r e turn s t r (l inkeddata . d i c t)

Listing A.9: Request handlers for UI screens of client side of app, showing the screens for
consuming the root resource - request handlers/publicuihandlers.py

”””
Flav io I s h i i − f l a v i o . i s h i i @ us a s k . ca
November 01 , 2012
Desc r ip t i on : API reque s t handl ing code .
”””

from goog le . appengine . ext import db
from r e q u e s t h a n d l e r s . basehand le r s import BaseHandler
from models import LinkedData , URIAlias

import l ogg ing

’ ’ ’
Handles : GET / api / a l i a s /<a l i a s >
’ ’ ’
c l a s s URIAliasAPIHandler (BaseHandler) :

Al i a s L i s t i n g and Deta i l s c r e e n s
de f get (s e l f , ∗∗kwargs) :

a l i a s = ” http :// s o c i a l r ms . appspot . com/ a l i a s /”+kwargs [’ a l i a s ’]
u r i a l i a s = db . GqlQuery (’SELECT ∗ FROM URIAlias WHERE a l i a s = : 1 ’ ,

a l i a s) . get ()
l d q ry = db . GqlQuery (’SELECT ∗ FROM LinkedData WHERE ANCESTOR IS : 1

ORDER BY v er s i on DESC’ , u r i a l i a s)

i f s e l f . r eque s t .GET. has key (’ s s i z e ’) :
new ld qry = []
f o r ld in ld q ry :

89

i f ld . c l i e n t s c r e e n == ’Any ’ or s e l f . r eque s t .GET[’
s s i z e ’] == ’Any ’ or ld . c l i e n t s c r e e n == s e l f .
r eque s t .GET[’ s s i z e ’] :

new ld qry . append (ld)
l d q ry = new ld qry

i f v e r s i o n i s s p e c i f i e d get the c o r r e c t v e r s i o n otherwi se get the
l a t e s t v e r s i o n

i f s e l f . r eque s t .GET. has key (’ v ’) :
f o r ld in ld q ry :

i f ld . v e r s i o n == i n t (s e l f . r eque s t .GET[’ v ’]) :
l i nkeddata = ld
break

e l s e :
l i nkeddata = ld

e l s e :
f o r ld in ld q ry :

i f u r i a l i a s . l a t e s t v e r s i o n == ld . v e r s i o n :
l inkeddata = ld
break

e l s e :
l i nkeddata = ld

response = s e l f . proxy (l inkeddata)
re turn s e l f . r e sponse . out . wr i t e (re sponse)

de f proxy (s e l f , l i nkeddata) :

do proxy code here . . .

r e turn s t r (l inkeddata . d i c t)

Listing A.10: API request handling code - request handlers/apihandlers.py

A.2 Administration Templates

The files listed in this section consist of the code for the administration side templates.

<!DOCTYPE HTML PUBLIC ”−//W3C//DTD HTML 4.01//EN”>
<html lang=”en”>
<html xmlns=”http ://www. w3 . org /1999/ xhtml”>
<head>

{% block head %}
<!−− l i n k r e l =”s t y l e s h e e t ” h r e f=”admin . c s s ” /−−>
<t i t l e >{% block t i t l e %}{% endblock %}</ t i t l e >

{% endblock %}
{% block h e a d s c r i p t s %}
{% endblock %}

<s t y l e type=”text / c s s”>
. menu l i
{
d i s p l a y : i n l i n e ;
l i s t −s ty l e−type : none ;
padding−r i g h t : 20px ;
}
</s ty l e >

</head>
<body>

<div id=”menu”>
<ul c l a s s=”menu” >

{% block menuitems %}
< l i ><a h r e f =”/puric admin / u i / u r i a l i a s ”>URI Al i a s

L i s t ing </l i >
< l i ><a h r e f =”/puric admin / u i / u r i a l i a s /add”>Add URI

Al ias </l i >

90

< l i ><a h r e f =”{{ l o g o u t u r l }}”>Logout</l i >
{% endblock %}

</div>
<div id=”header”>{% block header %}{% endblock %}</div>
<div id=”content”>{% block content %}{% endblock %}</div>

<div id=”f o o t e r”>
{% block f o o t e r %}
{% endblock %}

</div>
</body>
</html>

Listing A.11: Base HTML template used by the admin UI screens -
templates/admin/base.html

{% extends ”admin/ base . html” %}
{% block t i t l e %}Root URI L i s t i n g{% endblock %}
{% block h e a d s c r i p t s %}
{% endblock %}
{% block content %}

<h3>Root URI L i s t i n g f o r {{ u r i a l i a s . a l i a s }}</h3>
<div id=” l i n k e d d a t a l i s t ”>
{% f o r ld in ld q ry %}

<div c l a s s =”{{ loop . c y c l e (’ odd ’ , ’ even ’) }}”>
/ a l i a s / f l a v i o −{{ ld . a l i a s u r i }} <a h r e f =”/puric admin / u i /

l inkeddata /{{ ld . key () }}”>Edit
</div>

{% endfor %}
</div>

{% endblock %}

Listing A.12: Admin UI for listing the URI Alias records-
templates/admin/urialias/list.html

{% extends ”admin/ base . html” %}
{% block t i t l e %}New Root URI{% endblock %}
{% block h e a d s c r i p t s %}
{% endblock %}
{% block content %}

{% i f form %}
<form act i on =”{{ f o rm act ion }}” method=”{{ form method}}”>

<div >{{form . o r i g i n u r i . l a b e l }} {{ form . o r i g i n u r i (c l a s s =” c s s c l a s s ”)
}}</div>

<div >{{form . d e s c r i p t i o n . l a b e l }} {{ form . d e s c r i p t i o n (c l a s s =” c s s c l a s s
”) }}</div>

<div >{{form . c l i e n t s c r e e n . l a b e l }} {{ form . c l i e n t s c r e e n (c l a s s=”
c s s c l a s s ”) }}</div>

<button>Add</button>
</form>
{% e n d i f %}

{% endblock %}

Listing A.13: Admin UI for creating a URI Alias record -
templates/admin/urialias/add.html

{% extends ”admin/ base . html” %}
{% block t i t l e %}Update root URI f o r {{ u r i a l i a s . a l i a s }}{% endblock %}
{% block content %}

<h3>Update Root URI (URI a l i a s v{{ ve r s i o n }}) f o r {{ u r i a l i a s . a l i a s }}</h3>
{% i f e r r o r %}

<div c l a s s=”e r r o r ”>{{ e r r o r }}</div>
{% e n d i f %}
{% i f updated %}

<div c l a s s=”updated”>{{updated}}</div>

91

{% e n d i f %}
{% i f form %}

<div>
<form ac t i on =”{{ f o rm act ion }}” method=”{{ form method}}”>

<div >{{form . o r i g i n u r i . l a b e l }} {{ form . o r i g i n u r i (c l a s s =”
c s s c l a s s ”) }}</div>

<div >{{form . c l i e n t s c r e e n . l a b e l }} {{ form . c l i e n t s c r e e n (
c l a s s=” c s s c l a s s ”) }}</div>

<div >{{form . d e s c r i p t i o n . l a b e l }} {{ form . d e s c r i p t i o n (c l a s s=”
c s s c l a s s ”) }} </div>

<div >{{ form . i s a r c h i v e d (c l a s s =” c s s c l a s s ”) }} {{ form .
i s a r c h i v e d . l a b e l }}</div>

<input type=”submit” value=”Update”/>
</form>
</div>

{% e n d i f %}
{% endblock %}

Listing A.14: Admin UI for editing a URI Alias record -
templates/admin/urialias/edit.html

{% extends ”admin/ base . html” %}
{% block t i t l e %}Root URI L i s t i n g{% endblock %}
{% block h e a d s c r i p t s %}
{% endblock %}
{% block content %}

<h3>Root URI L i s t i n g f o r {{ u r i a l i a s . a l i a s }}</h3>
<div id=” l i n k e d d a t a l i s t ”>
{% f o r ld in ld q ry %}

<div c l a s s =”{{ loop . c y c l e (’ odd ’ , ’ even ’) }}”>
/ a l i a s / f l a v i o −{{ ld . a l i a s u r i }} <a h r e f =”/puric admin / u i /

l inkeddata /{{ ld . key () }}”>Edit
</div>

{% endfor %}
</div>

{% endblock %}

Listing A.15: Admin UI for listing the Linked Data records-
templates/admin/linkeddata/list.html

{% extends ”admin/ base . html” %}
{% block t i t l e %}New Root URI{% endblock %}
{% block h e a d s c r i p t s %}
{% endblock %}
{% block content %}

{% i f form %}
<form act i on =”{{ f o rm act ion }}” method=”{{ form method}}”>

<div >{{form . o r i g i n u r i . l a b e l }} {{ form . o r i g i n u r i (c l a s s =” c s s c l a s s ”)
}}</div>

<div >{{form . d e s c r i p t i o n . l a b e l }} {{ form . d e s c r i p t i o n (c l a s s =” c s s c l a s s
”) }}</div>

<div >{{form . c l i e n t s c r e e n . l a b e l }} {{ form . c l i e n t s c r e e n (c l a s s=”
c s s c l a s s ”) }}</div>

<button>Add</button>
</form>
{% e n d i f %}

{% endblock %}

Listing A.16: Admin UI for creating a Linked Data record -
templates/admin/linkeddata/add.html

{% extends ”admin/ base . html” %}
{% block t i t l e %}Update root URI f o r {{ u r i a l i a s . a l i a s }}{% endblock %}
{% block content %}

<h3>Update Root URI (URI a l i a s v{{ ve r s i o n }}) f o r {{ u r i a l i a s . a l i a s }}</h3>
{% i f e r r o r %}

<div c l a s s=”e r r o r ”>{{ e r r o r }}</div>

92

{% e n d i f %}
{% i f updated %}

<div c l a s s=”updated”>{{updated}}</div>
{% e n d i f %}
{% i f form %}

<div>
<form ac t i on =”{{ f o rm act ion }}” method=”{{ form method}}”>

<div >{{form . o r i g i n u r i . l a b e l }} {{ form . o r i g i n u r i (c l a s s =”
c s s c l a s s ”) }}</div>

<div >{{form . c l i e n t s c r e e n . l a b e l }} {{ form . c l i e n t s c r e e n (
c l a s s=” c s s c l a s s ”) }}</div>

<div >{{form . d e s c r i p t i o n . l a b e l }} {{ form . d e s c r i p t i o n (c l a s s=”
c s s c l a s s ”) }} </div>

<div >{{ form . i s a r c h i v e d (c l a s s =” c s s c l a s s ”) }} {{ form .
i s a r c h i v e d . l a b e l }}</div>

<input type=”submit” value=”Update”/>
</form>
</div>

{% e n d i f %}
{% endblock %}

Listing A.17: Admin UI for editing a Linked Data record -
templates/admin/linkeddata/edit.html

A.3 Client Templates

The files listed in this section consist of the code for the client side templates, mainly html files
with code injection.
<!DOCTYPE HTML PUBLIC ”−//W3C//DTD HTML 4.01//EN”>
<html lang=”en”>
<html xmlns=”http ://www. w3 . org /1999/ xhtml”>
<head>

{% block head %}
<t i t l e >{% block t i t l e %}{% endblock %}</ t i t l e >
{% block c s s h e e t s %}{% endblock %}
{% block j s s c r i p t s %}{% endblock %}

{% endblock %}
</head>
<body>

{% i f e r r o r %}
<div c l a s s=”e r r o r ”>{{ e r r o r }}</div>

{% e n d i f %}

<div id=”content”>{% block content %}{% endblock %}</div>

<div id=”f o o t e r”>
{% block f o o t e r %}

{% endblock %}

</div>

{% block body j s %}
{% endblock %}

</body>
</html>

Listing A.18: Base HTML template used by the client/public UI screen -
templates/public/base.html

{% extends ” pub l i c / base . html” %}
{% block t i t l e %}Media Page{% endblock %}

{% block j s s c r i p t s %}
<s c r i p t s r c =”/ s t a t i c / j son2 . j s ”></s c r i p t >

93

<s c r i p t language=”JavaScr ipt”>
var l i n k e d d a t a l i s t = [

{% i f s i n g l e l d %}
{
” s i z e ” : {{ s i n g l e l d . s i z e }} ,
” u r l ” : ”{{ s i n g l e l d . u r l }}” ,
}

{% e l s e %}
{% f o r ld in l d l i s t %}

{
” s i z e ” : {{ ld . s i z e }} ,
” u r l ” : ”{{ ld . u r l }}” ,
} ,

{% endfor %}
{% e n d i f %}

] ;

f unc t i on getBestFitURI () {
var largestWidthResource ;
var sc reen width = sc r e en . width ;
var s c r e e n h e i g h t = sc r e en . he ight ;

// Fix f o r S a f a r i browser in iOS , s i n c e i t w i l l not change
the s c r e en width based on o r i e n t a t i o n .

i f (nav igator . userAgent . match (/ (iPhone | iPod | iPad) / i)) {
i f (o r i e n t a t i o n == 90 | | o r i e n t a t i o n == −90) {

// landscapeMode
sc reen width = sc re en . he ight ;
s c r e e n h e i g h t = sc r e en . width ;

}
}

f o r (var i = 0 ; i < l i n k e d d a t a l i s t . l ength ; i++) {
i f (s c r een width >= l i n k e d d a t a l i s t [i] . s i z e) {

i f ((largestWidthResource == n u l l)
| | (largestWidthResource != n u l l &&

l i n k e d d a t a l i s t [i] . s i z e >
largestWidthResource . s i z e))

{
largestWidthResource =

l i n k e d d a t a l i s t [i] ;
}

}
}
document . getElementById (’ media s i ze ’) . innerHTML=’ Reso lut ion

(width) : ’+ largestWidthResource . s i z e +’p ’ ;
r e turn largestWidthResource ;

}
</s c r i p t >
{% i f f i l e t y p e == ”Video” %}

< l i n k h r e f=”http :// v j s . zencdn . net /c/ video−j s . c s s ” r e l =”s t y l e s h e e t ”>
<s c r i p t s r c=”http :// v j s . zencdn . net /c/ video . j s ”></s c r i p t >

{% e n d i f %}
{% endblock %}

{% block content %}
<p>A {{ f i l e t y p e }} posted by {{ p u b l i s h e r }} . </p>

<div id=”re sou r c e”></div>

{% endblock %}

{% block body j s %}
<s c r i p t language=”JavaScr ipt”>

var ld = getBestFitURI () ;

{% i f f i l e t y p e == ”Image” %}

94

document . getElementById (’ r e source ’) . innerHTML = ’<img s r c
=”’+ ld . u r l +’” a l t=”Resource ” / > ’;

{% e l i f f i l e t y p e == ”Audio” %}
document . getElementById (’ r e source ’) . innerHTML = ’<video id=”

my video 1 ” c l a s s=”video−j s v js−de fau l t−sk in ” c o n t r o l s \
pre load=”auto ” width=”’+ ld . s i z e +’” he ight =”’+(ld . s i z e / 1 . 5)

+’” \
data−setup=”{}”> \
<source s r c =”’+ ld . u r l +’” type=”{{ source type }}”> \

</video > ’ ;

{% e l i f f i l e t y p e == ”Video” %}
document . getElementById (’ r e source ’) . innerHTML = ’<video id=”

my video 1 ” c l a s s=”video−j s v js−de fau l t−sk in ” c o n t r o l s \
pre load=”auto ” width=”’+ ld . s i z e +’” he ight =”’+(ld . s i z e / 1 . 5)

+’” \
data−setup=”{}”> \
<source s r c =”’+ ld . u r l +’” type=”{{ source type }}”> \

</video > ’ ;

{% e l s e %}
document . getElementById (’ r e source ’) . innerHTML = ’< i f rame

width=”420” he ight =”315” s r c =”’+ ld . u r l +’” frameborder
=”0” a l l o w f u l l s c r e e n ></i frame > ’ ;

{% e n d i f %}
</s c r i p t >

{% endblock %}

Listing A.19: HTML template used by the client/public UI screen to consume the web
resource requested - templates/public/ld.html

<!DOCTYPE html>
<html>
<head>

<t i t l e >Home screen </ t i t l e >
</head>
<body>

{{ t e s t }}

< l i ><a h r e f =”/puric admin / u i / u r i a l i a s ”>Linked Data Admin</l i >
<!−− l i ><a h r e f =”/ l o g i n /”>Login</l i >
< l i ><a h r e f =”/sadmin/”>Admins l o g i n with Google App Account</l i >
< l i ><a h r e f =”/passwordrese t”>Forgot Password</l i −−>

</body>
</html>

Listing A.20: Landing page for web resource publishers and administrators -
templates/public/home.html

95

Appendix B

Data Results

B.1 Local GAE Development Server Test Results

B.1.1 Load Test Data for 5 qps over 5 minutes

Name Highest
10sec mean

Lowest 10sec
mean

Highest rate Mean Count

Connect 2.13 sec 48.86 msec 14.2 / sec 1.01 sec 2,960
Page 23.73 sec 2.45 sec 9.9 / sec 9.12 sec 1,480
Request 22.34 sec 1.13 sec 16.8 / sec 4.46 sec 2,960
Session 26.01 sec 3.42 sec 10.6 / sec 10.56 sec 1,480

Table B.1: Main Stats

Name Highest rate Total
size rcv 570.02 Kbits/sec 13.83 MB
size sent 16.47 Kbits/sec 430.70 KB

Table B.2: Network Throughput Stats

Name Highest rate Total
error connect etimedout 0.4 / sec 13

Table B.3: Errors

B.1.2 Load Test Data for 50 qps over 5 minutes

Name Highest
10sec mean

Lowest 10sec
mean

Highest rate Mean Count

Connect 3.29 sec 35.93 msec 87.5 / sec 1.43 sec 19,308
Page 5mins 22sec 4.09 sec 49.8 / sec 32.87 sec 9,451
Request 3mn 48sec 1.92 sec 95.7 / sec 15.92 sec 19,188
Session 5mn 32sec 4.95 sec 49.5 / sec 50.68 sec 12,509

Table B.4: Main Stats

Name Highest rate Total
size rcv 723.61Kbits/sec 17.68 MB
size sent 102.08 Kbits/sec 2.75 MB

Table B.5: Network Throughput Stats

96

Figure B.1: Tsung Experiment 1: 5qps for 5 minutes.

97

Name Highest rate Total
error abort max conn retries 27.5 / sec 3,058
error connect etimedout 6 / sec 597
error connect system limit 126.1 / sec 18,918

Table B.6: Errors

Figure B.2: Tsung Experiment 2: 50qps for 5 minutes.

B.2 Cloud GAE Production Server Test Results

B.2.1 Load Test Data for 5 qps over 5 minutes

Name Highest
10sec mean

Lowest 10sec
mean

Highest rate Mean Count

Connect 18.67 msec 13.99 msec 5.8 / sec 14.45 msec 1,410
Page 0.26 sec 0.14 sec 5.7 / sec 0.23 sec 1,410
Request 0.13 sec 68.21 msec 11.3 / sec 0.12 sec 2,820
Session 2.26 sec 1.18 sec 5.7 / sec 1.68 sec 1,410

Table B.7: Main Stats

98

Name Highest rate Total
size rcv 893.01 Kbits/sec 27.03 MB
size sent 14.29 Kbits/sec 437.87 KB

Table B.8: Network Throughput Stats

Figure B.3: Tsung Experiment 1: 5qps for 5 minutes.

B.2.2 Load Test Data for 50 qps over 5 minutes

Name Highest
10sec mean

Lowest 10sec
mean

Highest rate Mean Count

Connect 17.59 msec 14.04 msec 47.9 / sec 14.54 msec 13,219
Page 0.60 sec 0.23 sec 48.7 / sec 0.31 sec 13,219
Request 0.30 sec 0.12 sec 97.1 / sec 0.16 sec 26,438
Session 3.24 sec 1.59 sec 48.8 / sec 1.73 sec 13,219

Table B.9: Main Stats

99

Name Highest rate Total
size rcv 7.46 Mbits/sec 253.31 MB
size sent 119.60 Kbits/sec 4.01 MB

Table B.10: Network Throughput Stats

Figure B.4: Tsung Experiment 2: 50qps for 5 minutes.

B.2.3 Load Test Data for 100 qps over 5 minutes

Name Highest
10sec mean

Lowest 10sec
mean

Highest rate Mean Count

Connect 16.20 msec 13.99 msec 91.9 / sec 14.41 msec 25,444
Page 0.93 sec 0.29 sec 93 / sec 0.40 sec 25,444
Request 0.46 sec 0.14 sec 185.8 / sec 0.20 sec 50,888
Session 2.93 sec 1.65 sec 92.1 / sec 1.81 sec 25,444

Table B.11: Main Stats

100

Name Highest rate Total
size rcv 14.26 Mbits/sec 487.68 MB
size sent 229.04 Kbits/sec 7.72 MB

Table B.12: Network Throughput Stats

Figure B.5: Tsung Experiment 3: 100qps for 5 minutes.

101

