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ABSTRACT 

 Rapid growth in the bioenergy industry has created large amounts of the various 

by-products associated with bioenergy production. A proper method of utilizing these 

by-products has recently been sought, including their potential use as soil fertilizers or 

amendments. However, more knowledge is required to validate this option, as well as to make 

recommendations for their management. The objective of this research was to evaluate the 

effectiveness of bioenergy production by-products (BPB), mainly wet distillers’ grains (WDG), 

thin stillage (TS), glycerol (GL), biochar (BC) and ash, as sources of plant nutrients in prairie 

soils with emphasis on their impact on soil biological and chemical properties and processes. 

This was addressed through a series of growth chamber and field studies. Under controlled 

environment conditions, the WDG, TS and GL with urea nitrogen (N) fertilizer increased N2O 

emissions from soil, but not in excess of that produced from soil treated with urea alone. 

Microbial activity as indicated by emission of CO2 was also  increased significantly by WDG, 

TS and GL with N. The WDG and TS increased nutrient ion supply rates in soil, owing to their 

high content of readily available nutrient. In general, soil enzyme activity (alkaline phosphatase, 

dehydrogenase, protease) was significantly increased by WDG, TS and GL addition. These 

by-products also increased soil microbial biomass and microbial quotient with the exception of 

TS, likely related to its lower C content. Gasified dried distillers’ grains ash (DDGA) was an 

effective source of plant available phosphorus (P) whereas gasified meat & bone meal ash 

(MBMA) had lesser effects on crop yield and P uptake compared to mineral fertilizer. The 

majority of P remaining in the soil following MBMA application was in stable and recalcitrant 

forms. In a two-yr field study, TS was an excellent source of nutrient in promoting crop yield 

and nutrient uptake that was greater than or similar to urea fertilizer, especially when injected. 

However, residual NO3
--N and available P accumulated in soil after the second year of TS 

application. Amendment with BC and GL resulted in limited effects on crop yield and nutrient 

uptake, with GL tending to reduce crop yield and N uptake due to microbial immobilization. 

Overall, the BPB amendments can be of benefit by enhancing biological activity, nutrient 

availability and crop growth, although their effect is greatly dependent on the form and 

composition. 
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1. GENERAL INTRODUCTION  

1.1 Introduction 

Uncertainty about global oil reserves and the sustainability of petroleum commodity 

supply, along with environmental concerns about greenhouse gas emissions has led to 

considerable interest in alternative sources of energy (Lehmann, 2007; Liew et al., 2014). 

Production of energy from organic materials grown on the land is an example of an alternative  

energy source that can reduce reliance on fossil fuels.  

Various technologies have been implemented to produce different types of bioenergy. 

Some of these technologies are not new, but their application to certain types of organic 

materials as feedstock has not been widely evaluated or adopted. These technologies can be 

classified into three main categories: 1) biochemical 2) mechanical/chemical and 3) 

thermochemical processes (McKendry, 2002a). Biochemical conversion embraces two 

processes: fermentation and anaerobic digestion. Mechanical/chemical processes include 

transesterification of vegetable oil such as canola that results in production of biodiesel 

(McKendry, 2002a).  The thermo-chemical conversion technology includes four processes: 

combustion, gasification, pyrolysis and liquefaction.  

In addition to the bio-energy produced, each conversion process results in a specific 

by-product. The value and characteristics of these by-products vary according to the type of 

conversion process and feedstock converted (Cayuela, 2010). Bioenergy production by-products 

include, but are not limited to, distillers’ grains (DS) and thin stillage (TS) generated from 

fermentation of sugar crops and starch crops, glycerol (GL) produced from transesterification of 

plant oil during biodesel manufacture, ash resulting from gasification and biochar (BC)/charcoal 

produced from pyrolytic conversion. The composition of each by-product, including carbon (C) 

and plant nutrients such as nitrogen (N), phosphorus (P), potassium (K) and sulfur (S) is 

dependent on the method of processing. Therefore, BC produced from pyrolysis and GL 

produced from biodiesel production via transesterification of vegetable plants are materials that 

are rich in carbon, while by-products generated from ethanol manufacturing contain considerable 
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amounts of N and P together with other nutrients and C. Ash materials produced from 

gasification are rich in P, K, calcium (Ca) and magnesium (Mg) but contain relatively little C, as 

this is lost as CO2 during combustion. 

Production of energy from renewable sources has grown rapidly, and it was estimated 

that in 2002 renewables contributed to 14% of the world’s energy supply (McKendry, 2002b). 

Bioenergy manufacturing, especially ethanol, is the most common type of bioenergy product 

commercially produced on a large scale worldwide. In 2012, world ethanol production passed 

100 billion L (RFA, 2013). In 2012, US ethanol refinery plants produced over 50 billion L of 

ethanol (RFA, 2013) and nearly 4 billion L of biodiesel (NBB, 2014). About 1.9 billion L of 

ethanol was produced in Canada in 2012 and expected to increase to approximately 2 billion L in 

2013 (GAIN, 2013), with a significant portion of which produced in western provinces. 

Canadian biodiesel production was also estimated to reach about 0.5 billion L in 2013 (GAIN, 

2013). The ethanol is derived from fermentation and distillation facilities that use sugar and 

starch crops as feedstock. It is also believed that ethanol will eventually be produced on a wide 

scale from lignocellulosic feedstocks, which are referred to as second generation feedstocks, 

including crop residues, processing wastes and biomass energy crops like willow and poplar 

(Gronowska et al., 2009). It was predicted that lignocellulosic feedstocks could produce 

approximately 229 billion L of ethanol in the U.S. by the year 2030 (De La Torre Ugarte et al., 

2007). However, the advanced conversion technologies required to produce ethanol from 

lignocellulosic feedstocks are not available yet on a commercial scale, but are being researched 

and undergoing rapid development. The second generation bioenergy production by-products are 

not included here because they have not been produced in large quantities yet on a large scale.  

As a function of the growing bioenergy production industry, there will be an abundance 

of by-products being generated. These by-products are organic, containing C and plant nutrients 

that are potentially valuable to soils and the production of crops; thus the potential uses of the 

by-products must include their application to soil.  

Utilization of the by-products of bioenergy production as soil amendments can be a good 

strategy for recycling nutrients associated with production of feedstock, and thereby reduce 

reliance on mineral fertilizers for food production. Additionally, this potential use can help offset 

any negative impact on soil when crop residues are harvested for bioenergy production. 

Harvesting crop residues for bioenergy production is suggested to have implications on soil 
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quality and may jeopardize soil productivity through organic matter and nutrient loss (Lal, 2009). 

To compensate for the loss in nutrients that are harvested in crop and to maintain optimum crop 

production, there will be increased need for external organic matter and nutrient inputs to help 

maintain and improve fertility of the soil.  

There is a myriad of research work that has been completed on land application of 

organic materials such as compost and manure (e.g. Eghball, 2002; Singer et al., 2004; Gale et 

al., 2006; Schoenau and Davis, 2006; Lithourgidis et al., 2007), paper mill biosolids (Aitken et 

al, 1998; Curnoe et al., 2006; N’Dayegamiye, 2006), and oily food wastes (Rashid and Voroney, 

2004) and their effects on soils and crop growth. However, there has not been an attempt to 

evaluate the potential use of bioenergy production by-products as source of plant nutrients and 

soil amendments. Increased knowledge in this context is required to improve our understanding 

of bioenergy production by-products (BPB) potential contribution to soil enhancement and 

increased crop production.  

1.2 Ph.D. Research Objectives 

 The general objective of the research presented in this dissertation was to evaluate the 

potential utilization of a range of by-products associated with bioenergy processing as alternative 

soil amendments to improve soil fertility and crop growth. A desired outcome of the series of 

studies undertaken was to improve our understanding of the influence of the by-products on 

important biological and chemical processes in soil. The tested bioenergy production by-products 

(BPB) included wet distillers’ grains (WDG), thin stillage (TS), glycerol (GL), biochar (BC) and 

ash. A combination of controlled environment and field evaluations were used. The specific 

objectives were:  

• To identify the direct impact of WDG, TS and GL amendment on greenhouse gas 

emissions and nutrient supply rates under controlled environment conditions. 

• To investigate soil enzyme activity and microbial biomass content in soil receiving BPB 

and incubated under controlled environment conditions.  

• To evaluate the effectiveness of ash derived from gasification of organic materials as a P 

fertilizer. 

• To investigate the P fractions residing in the soil following ash application.  
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• To evaluate TS fertilizer potential under field conditions.    

• To investigate changes in chemical and biological properties of soil receiving repeated 

application of TS.  

• To examine direct and residual effects of BC and GL application on crop yield and 

selected chemical and biological properties of soil.   

1.3 Dissertation structure   

 This dissertation reports on impacts of land application of BPB as an alternative option 

for their utilization. The dissertation is organized in a manuscript-based format consisting of 11 

chapters. This chapter and the following one provide a general introduction and comprehensive 

literature review, respectively. The subsequent 7 chapters (3-9) report on specific research 

studies to address the objectives. These chapters are published, under review or submitted and 

under consideration in peer reviewed journals.  

Chapter 1 is a general introduction to the dissertation and addresses the research questions, 

objectives and scope of the studies conducted.  

Chapter 2 provides an in-depth review of the literature pertinent to the subject. It covers the 

background on selected BPB including their production processes, their existing methods of 

utilization and existing published studies on the feasibility of their usage as soil amendments.  

Chapter 3 presents results of a growth chamber study conducted to investigate the direct impact 

of BPB addition on greenhouse gas emissions (N2O and CO2) and nutrient supply rate using 

plant root simulator (PRSTM) probes in a Brown Chernozemic soil. 

Chapter 4 covers research with a similar experimental design to that of the study in Chapter 3, 

but with different objectives. In this chapter, response of selected soil enzyme activities 

(dehydrogenase, alkaline phosphatase, protease) and soil content of microbial biomass to 

application of BPB is reported. 

Chapter 5 reports on the results of a short-term study carried out under controlled environment 

conditions aimed at evaluating the effectiveness of two type of ashes derived from gasification of 
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meat & bone meal and dried distillers’ grains as a phosphorus fertilizer. In addition, this chapter 

also presents data regarding changes in soil chemical properties following ash application.  

Chapter 6 expands on the study presented in the Chapter 5 by investigating the influence of the 

ash amendments on P forms residing in soil after crop harvest. Fractions of P residing in soil 

following ash application are revealed using a sequential chemical P extraction procedure to give 

a better understanding of the fate of ash P and formation of P compounds when added to soil. 

Chapter 7 details a two-yr field study to evaluate the potential of using TS as a fertilizer in the 

field using advanced application techniques (band injection) that are usually employed to apply 

liquid animal manures. Comparisons of crop response to commercial fertilizer urea are made.  

Chapter 8 extends the work reported on in Chapter 7 to include response of soil attributes to TS 

application. The effects of repeated application of TS on residual available N and P and changes 

in selected soil chemical and biological properties are made.  

Chapter 9 reports on results of a three-yr field study in south central Saskatchewan to evaluate 

the direct and residual effects of BC and GL application on crop yield and nutrient uptake as well 

as changes in some chemical and biological properties of a Brown Chernozemic soil. In this 

study, amendments were applied only in the first year and the effects were monitored over a 

three-yr period.  

Chapter 10 synthesizes and integrates the key findings of the individual research studies reported 

in this dissertation and concludes with some recommendations for future research work. 
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2. LITERATURE REVIEW1 

2.1. Bioenergy Production By-Products 

2.1.1 Bioethanol production by-products 

2.1.1.1. Distillers’ grains 

 Bio-ethanol can be produced from grain using two milling processes: wet milling and 

dry-grind processing. In wet milling, the grain kernel is fractionated into primary components of 

germ, fiber and starch, resulting in several process streams and by-products (Raush and Belyea, 

2006; Liu, 2011). The by-products associated with wet milling processes of corn are: corn gluten 

meal, corn gluten feed, crude corn oil and germ meal. In contrast to dry-grind mills, wet mills are 

corporate-owned because they require high capital investment and extensive equipment (Belyea 

et al., 2004). In the dry-grind process, the entire corn is subjected to fermentation; corn is not 

separated into individual fractions (Raush and Belyea, 2006; Liu, 2011). Dry-grind mills require 

less equipment, have lower capital investment, can be owned by producers and therefore can 

have a significant contribution to local economies (Singh et al., 2001). Since dry-grind mills 

were recently reported to represent approximately 90% of total ethanol production in the USA 

(RFA, 2010) and are the most common ethanol production facilities in western Canada, the focus 

here is placed upon the by-products generated from dry milling-based ethanol production.  

In dry-grind milling as shown in Figure 2.1, cereal grain is processed by grinding and 

fermenting via yeast addition where grain starch is converted into ethanol and CO2. Then, 

ethanol is distilled off followed by centrifugation to remove the remaining liquid. The 

by-products that are left over after fermentation, distillation and centrifugation include a liquid 

fraction named thin stillage and the solid fraction termed wet distillers’ grains (WDG). Thin 
                                                
1This chapter has been published as: Alotaibi, K.D., Schoenau, J.J. 2012. Biofuel production byproducts as soil 
amendments. In: E. Lichtfouse, editor, Organic fertilization, soil quality and human health, vol. 9. Springer, New 
York, p 67-91.  The co-author (J.J. Schoenau) contribution was manuscript editing.  This publication was slightly 
modified to be consistent with the dissertation format. 
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stillage (TS) can be partially dried/evaporated and become condensed distillers solubles. 

Condensed distillers solubles can be added back to the wet distillers’ grains resulting in wet 

distillers’ grains with solubles (WDGS) by-product. The WDGS can also be dried, making dried 

distillers’ grains with solubles (DDGS). These by-products can differ slightly in terms of their 

nutrient content, partly as a function of heating/drying in the case of condensed distillers solubles 

and DDGS. However, all these by-products contain nearly all the nutrient originally present in 

the processed grains, but are now concentrated due to the starch removal. They contain fiber, fat, 

protein and minerals. Wet distillers’ grains has a high moisture content; approximately 70%, 

affecting the time it can be stored without spoilage and the economic viability of transporting 

long distances from the ethanol production plant (Bonnardeaux, 2007). Unlike WDGS, DDGS 

has less moisture content; approximately 12%, making its shelf life indefinite and economically 

viable to ship to longer distances. However, drying WDG requires further energy and adds extra 

cost to ethanol production. Additionally, possible changes can occur during drying that might 

reduce nutritional value of distillers’ grains (DG) when fed to animals (Ham et al., 1994). 

The amount of DG resulting from the conversion of cereal grain to ethanol varies 

according to the types of grains and the processes used. For example, one tonne of wheat 

generates 372 L of ethanol and 457 kg WDG or 295 kg of DDGS whereas one tonne of corn 

produces 378 L of ethanol plus 479 kg WDG or 309 kg of DDGS (Bonnardeaux, 2007). In 2012, 

USA ethanol biorefinery produced more than 34 million Mg of DG (RFA, 2013). In 2009, 

ethanol plants in western Canada generated 0.46 million Mg of DDGS (University of 

Saskatchewan, 2009). 

As a result of starch removal, the nutrient concentration in DG are approximately three 

times that in the original grains (Spiehs et al., 2002). Therefore, the DG has been traditionally 

used as animal feed due to its higher content of protein and nutrient (Ham et al., 1994; Raush and 

Belyea, 2006; Gibb et al., 2008; Harris et al., 2008). Use of DG as animal feed accounts for the 

second largest source of income for ethanol-producing plants, after ethanol marketing 

(Bonnardeaux, 2007). However, high concentrations of fiber and nutrient, especially P may 

impede the expansion of this market. High fibre concentration can limit the use of DG mainly to 

ruminant diets, and similarly high P content could pose manure disposal challenges for cattle 

producers (Raush and Belyea, 2006), due to a greater land area required for application to avoid 

P loading in the soil. This higher content of P, fiber and protein is greater than that needed in the 
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animal diets (Noureddini et al., 2008), and the excess nutrient in animal diets will be excreted in 

the urine and fecal material. Therefore, it is sometimes recommended to restrict inclusion of DG 

in animal diets to a certain ration, for example 20% of the diet (Hao et al., 2009). As a result, 

feeding DG to animals may not accommodate continued rise in DG production, as the rapid 

growth in the ethanol industry is expected to create a surplus of DDGS (Erickson et al., 2005; 

Rausch & Belyea, 2006). Therefore, alternative approaches to their utilization need to be 

considered, including direct land application as a fertilizer and soil amendment. This may create 

another outlet for utilization of ethanol by-products, as this is critical to sustain ethanol industry 

and could be another source of income to offset the expenses in ethanol production.  

The option of land application of ethanol production by-products has received little 

attention, and very few studies have looked at this option in the past. In a pot study conducted 

with horticultural plants, DDGS was reported to suppress weeds when applied to the soil surface 

and incorporated (Boydston et al., 2008). In a field study conducted near Novelty, Missouri, 

Nelson et al. (2009) concluded that DDGS might be utilized as a valuable fertilizer to supply 

nutrient to corn crops. They reported that application of DDGS at a rate of 140 kg N ha-1 resulted 

in similar corn yield to urea and anhydrous ammonia applied at the same rate of N. The DDGS 

did not have a significant effect on selected soil chemical properties such as soil organic matter, 

P, K, Ca or Mg content. In a growth chamber study carried out to determine the N mineralization 

rates and the amount of available N to plants from different types of organic amendments over a 

120-d growing season, it was found that N availability from DDG for the 210-d period of 

incubation was 56%, equivalent to 251 kg plant-available N ha-1 (Moore et al., 2010). This study 

also indicated that the mineralization rate of DDG organic N was slower compared to poultry 

litter amendment, and attributed this to compounds that are present in DDG that may have 

delayed the nitrification process and thereby increased NH4-N accumulation in the soil. 

Soil respiration and N release from soil amended with first generation bioenergy 

by-products, including DDGS, have also been recently investigated under controlled 

environment conditions (Cayuela et al., 2010). In this study, soil amended with DDGS and 

incubated for 60 d showed that more than 80% of DDGS added C was mineralized after 2 mo. 

Soil treated with DDGS did not show a significant increase in extractable N when sampled at day 

7 and 15 and was only significant after 60 d of incubation. This indicates a slow release of 

DDGS-contained N into plant available inorganic forms, and suggests a potential for DG by-
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products being utilized as a soil amendment that releases nutrient more slowly than mineral 

fertilizers when directly applied to arable soil. However, field studies are needed to verify their 

performance under different environmental conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.1. Simplified process flow chart of cereal grain conversion to ethanol and associated 
by-products of distillers’ grains and thin stillage. DDG: dried distillers’ grains; DDGS: dried 
distillers’ grains with solubles.  

2.1.1.2. Thin stillage 

Thin stillage (TS) is another major by-product associated with ethanol production. It can 

be defined as the aqueous by-product generated from the distillation of ethanol following 

fermentation of starch or sugar crops (Mustafa et al., 2000). The whole stillage, which contains 

solids from the grain along with added yeast and liquid from the water added during the process, 

is generated from fermentation and distillation processes (Fig. 2.1).  The whole stillage is then 
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centrifuged to separate the liquid components called TS and the solid components called WDG. 

The TS is then further processed by evaporation to produce syrup which can be blended with 

WDG resulting in WDGS (Bonnardeaux, 2007). However, the evaporation process is costly and 

adds more expense to the cost of producing ethanol. Currently, one of the potential uses of TS is 

that it can be used as a partial or complete drinking water replacement for cattle (Mustafa et al., 

2000). Approximately 6 L of TS is produced from one L of ethanol produced; a 190-million-L 

ethanol plant can produce about 1-3 million L of TS per day (AURI, 2008). It was also 

previously reported that up to 20 L of TS may be generated for each L of ethanol produced (van 

Haandel, 1994). There is growing interest in finding alternative uses for TS, including digestion 

to produce biogas; e.g. methane  which can be used to power the ethanol plant, replacing natural 

gas, and recovering phosphate, ammonia and magnesium contained in TS to produce struvite 

pellets as a slow release 5-21-1 fertilizer (AURI, 2008). More research is required to investigate 

alternative methods to utilize this significant by-product stream associated with bioenergy 

production. As TS contains all essential plant nutrients which can promote crop production, and 

soluble organic matter that can stimulate soil biological activity, its direct application to 

agricultural soil might be a practical alternative. Equipment for land application of liquid 

by-products such as liquid manure is readily available and works well for direct injection of TS 

into soil (Fig. 2.2). However, the chemical characteristics of TS are variable, and will differ 

according to feedstock type and the treatments used in the bioenergy production plant. For 

example, TS generated from fermentation of cereal crops; e.g. corn or wheat, is different in its 

chemical properties to distillery wastewater generated from sugar cane, also known as vinasse. 

Vinasse is the most common feedstock in Brazil which has been investigated more extensively 

(Gemtos et al., 1999; Resende et al., 2006; España-Gamboa et al., 2011). Chemical composition 

of TS collected from a local ethanol production plant located in Saskatchewan, Canada showed 

that this by-product contains essential plant nutrients (Chapter 7). A significant portion, which 

was about 20% of total N, is in immediately plant available ammonium form, similar to that of 

liquid manure. The high content of soluble forms of nutrient in this by-product would promote 

rapid availability of nutrients to plants, as well as enable better ability to predict the availability 

when added to soil. 
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Fig. 2.2. Liquid manure application equipment (left) used during thin stillage injection (right) in 
a field trial in east-central Saskatchewan, Canada.  

In an early field study carried out to investigate land application of TS generated from a 

sorghum grain feedstock in Texas, application of TS at a rate of 334 and 1040 kg N ha-1 provided 

essential macronutrients to the soil, but not to levels that were thought to pose plant or animal 

toxicity issues (Jenkins et al., 1987). It was also reported in this study that TS application did not 

have a negative effect on grain sorghum yield. Residual effects of TS on wheat grown on the 

same plots after the grain sorghum harvest resulted in wheat yield on the TS-treated plots that 

was equal to or higher than plots treated with mineral fertilizer, indicating the slow release of N 

and the availability of nutrient from stillage organic matter persisting into the second season. In a 

parallel incubation experiment to examine TS N mineralization rates in comparison to composted 

cattle manure and fresh swine manure, it was shown that 27% of the applied N was mineralized, 

and this was about twice the amount of N mineralized from the composted cattle manure, but not 

as high as the mineralization rate of swine manure (Jenkins et al., 1987). However, there is 

limited documented information in recent years regarding fertilizer value of TS, especially as a 

soil amendment in prairie soils. A comprehensive understanding of the effects of TS application 

on soil properties, crop growth and nutrient recovery under field conditions is needed to provide 

recommendations about the potential use of this material as a soil amendment. 
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2.1.2. Biodiesel production by-products 

2.1.2.1 Glycerol  

Biodiesel is a biofuel that can be produced from renewable sources such as vegetable 

oils, animal fats or waste cooking oils. As a response to the increasing demand, biodiesel 

production has been growing dramatically over the past several years (Thompson and He, 2006; 

Manosak et al., 2011). It has some advantages over conventional diesel, including the 

sustainability of its feedstocks and lower emissions. Although biodiesel is considered as a 

sustainable, renewable and environmentally sound alternative to petroleum-based diesel fuel, its 

economic viability remains a major concern (Fan et al., 2010). Biodiesel manufacturing 

generates a principal by-product called glycerol (GL), also known as glycerin, (Fig. 2.3). It is 

generated during the manufacture of biodiesel via transesterification of vegetable oils that have 

been remained from oilseeds by crushing (Fig. 2.3). The GL constitutes 10% of biodiesel 

production: every tonne of biodiesel generates 100 kg of GL. The global production of biodiesel 

is estimated to reach over 140 billion L by 2016 with an average annual growth of 42%, which 

will result in approximately 15 billion L of crude GL being generated (Fan et al., 2010).  

The large anticipated global increase in biodiesel production will lead to a surplus of 

glycerol, having environmental impact and will also affect the GL market (Tan et al., 2013). 

There is a wide range of applications for pure glycerol in pharmaceutical, food, cosmetic 

industries and many others; however, the refining of crude glycerol to a high purity is costly and 

may not be profitable for small and medium size biodiesel production plants; especially when the 

market for GL is already saturated (Groesbeck, et al., 2008). Glycerol has also been used as a 

feed ingredient in animal diets to reduce diet costs (Lammers et al., 2007; Groesbeck, et al., 

2008). Research is ongoing to explore alternative methods of crude GL utilization to improve the 

economic feasibility of the biodiesel industry. Some potential applications of crude GL have 

included combustion and thermo-chemical conversion (Kolesárová et al., 2010) and biological 

conversion or biological production of methane from crude GL using anaerobic sludge 

(Fountoulakis and Manios, 2009; Ma et al., 2008). Despite the existing uses of crude GL, more 

applications of this versatile by-product need to be developed to help sustain biodiesel 

production. One example of a potential use of GL is its direct application to soil as amendment. 

This potential has not been evaluated.  
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Fig. 2.3. Simplified process flow chart of vegetable oils conversion to biodiesel and associated 
by-product of glycerol. 

 Glycerol has no fertilizer value due to its lack of essential nutrient content, such as 

nitrogen and P. However, it is a concentrated C source, and could be used as a soil amendment to 

increase soil C content and build organic matter, especially in degraded soils that contain low 

organic matter due to the lack of organic inputs. It might also be used to prevent N losses via 

leaching and volatilization when combined with mineral N sources or liquid manure. This is 

related to its expected ability to tie up available N temporarily through microbial immobilization. 

In a study at the University of Saskatchewan, GL was obtained from a local biodiesel production 

plant and added to soil at a high rate (10000 kg ha-1). A reduction in wheat yield and N plant 

uptake was observed, and this was attributed to microbial immobilization of available N (Qian et 

al., 2009).  A recent study revealed that GL addition reduced N losses through N leaching, 
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relating this to its ability to immobilize available N (Redmile-Gordon et al., 2014). Research into 

GL application as soil amendment should be expanded to include its effects on soil physical, 

chemical and biological properties, including effects on microbial populations and activity along 

with plants growth.  

2.1.3. Gasification and pyrolysis process by-products 

Gasification and pyrolysis thermo-chemical technologies can be used to convert organic 

materials to energy. Thermal conversion such as incineration, combustion or gasification, of 

organic materials; e.g. wood to energy is not a new technology; however, its application to some 

types of organic materials is new and may be an effective strategy for organic waste recycling. 

There is a growing interest worldwide to develop such technologies to produce energy and at the 

same time reduce waste volume (McKendry, 2002a). Besides generating energy, gasification and 

pyrolysis technologies produce valuable by-products of ash resulting from gasification process 

and biochar (BC) resulting from pyrolysis process that can be utilized as soil amendments (Fig. 

2.4). 

2.1.3.1 Ash 

The gasification process is defined as the thermo-chemical decomposition of organic 

materials under high temperature (800 – 900 °C) and in presence of oxygen (Ferreira et al., 

2009). As shown in Figure 2.4, this process does not only produce biogas or syngas, such as CO, 

H2, CH4, CO2, but it also produces ash as another end product. The ash contains all the P and K 

originally present in the gasified materials (Kuligowski and Poulsen, 2009), and the ash fraction 

comprises only about 1% of the raw waste mass. As such there is a significant reduction in 

processed waste volume and nutrient is significantly concentrated, especially P and K in ash 

generated, lowering cost of transport. The ash generated from gasification of organic materials 

contains a relatively high P content. Kuligowski et al. (2008) reported a P content of 

approximately 5.4% P; however, this is influenced by the type of materials gasified and their 

original P content. In our laboratory testing, ash from gasification of DDG and meat and bone 

meal were found to contain 19% and 18% of total P, respectively (Chapter 5). 
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Fig. 2.4. Flow chart of conversion of organic materials to bioenergy through gasification and 
pyrolysis processes and associated by-products produced (ash and biochar). 

Growing interest in producing bioenergy from sustainable sources through gasification 

has lead to a large quantity of ash by-product being generated. For example, a power plant fueled 

with turkey litter in Minnesota, USA has capability to burn approximately 227000 Mg of turkey 

litter each year, resulting in approximately 45000 Mg ash being produced (Pagliari et al., 2010). 

It was estimated in Denmark that 1.5 million tons of pig manure gasified can result in 420000 

tons of ash being produced if all the pig manure is thermally gasified (Kuligowski and Poulsen, 

2009). In the light of the shrinking global phosphate rock reserves and increasing demand for P 

fertilizer in agricultural production, recycling P-rich ash would be a better option to replenish 

P-depleted soil. Therefore, there is a renewed interest in using ash as P fertilizer source. In the 

northeastern United States, most of the ash produced is land-applied (Campbell, 1990). The 

effects of ash on crop production and P nutrition vary depending on ash sources, gasified 

feedstock, tested crop and soil properties.  

 In a growth chamber study, alfalfa stem (Medicago sativa) gasification ash application to 

soil was found to be a potentially useful source of K and positively affected extractable soil P, 

but did not improve plant P nutrition (Mozaffari et al., 2002). Schiemenz and Eichler-Löbermann 

(2010) concluded that, based on results from pot experiments, crop biomass ashes can be 

effective source of P comparable to that of highly soluble triple superphosphate P fertilizer. 
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Wood ash application to soil increased K content in corn and winter wheat (Triticum aestivum 

L.) in greenhouse studies (Erich, 1991; Etiegni et al., 1991a) and alfalfa in field studies (Meyers 

and Kopecky, 1998). Plant P uptake and the most plant available resin extractable P fraction was 

increased in soil amended with poultry litter ash generated from combustion process, indicating 

the ashes may adequately substitute for mineral P fertilizers (Bachmann and Eichler-Löbermann, 

2010). On a low-P soil, corn dry matter and shoot P uptake increased with increasing rate of 

turkey manure ash addition (Pagliari et al., 2010). However, by 52 days after emergence, corn 

dry matter in soil amended with turkey manure ash was lower compared to that of inorganic P 

fertilizer, and this was attributed to the initial slow release of plant available forms of P present 

in ash. In a two-yr field study, it was indicated that turkey manure ash can be an effective source 

of nutrients, especially P and K, for alfalfa production (Pagliari et al., 2009). Positive yield 

responses of alfalfa, bean (Phaseolus vulgaris), and fescue (Festuca elatior) to wood ash 

application were reported (Krejsl and Scanlon, 1996; Meyers and Kopecky, 1998; Muse and 

Mitchell, 1995). Ryegrass (Lolium perenne L.) yield was found to be higher in soil fertilized with 

coal ash (Matsi and Keramidas, 1999), and similarly sewage sludge ash addition increased yield 

of field corn and sweet corn (Bierman and Rosen, 1994). When applied at 12 or 25 t ha-1 to an 

acid soil and with N fertilizer, wood ash significantly increased barley and canola seed yield by 

50% and 124%, respectively in a field trial conducted northeast of Edmonton, Canada (Patterson 

et al., 2004). In addition to noted positive effects on crop production, ash application also 

influences soil chemical, physical and biological properties. Acid agricultural soils treated with 

wood ash in northwestern Alberta, Canada was found to have higher soil pH, microbial biomass 

content, C mineralization and also a change in the functional structure of bacterial communities 

was noted (Lupwayi et al., 2009). 

 Despite the observed positive responses of crop yields to ash application, there may be 

concern associated with ash application to agricultural soils related to content of heavy metals 

which might limit its use as a soil amendment. However, several studies reported no adverse 

effect of ash application on soil and plant content of heavy metals (Pagliari, 2010; Mozaffari et 

al., 2002; Schiemenz and Eichler-Löbermann, 2010; Pagliari et al., 2010; Pagliari et al., 2009; 

Codling et al., 2002; Mandre et al., 2010). This might be also clarified by conducting a long-term 

study with repeated application of different doses of ashes, and monitoring heavy metal toxicity 

and accumulation in soil and their potential transfer to the food and feed chain.  
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Table 2.1. Elemental analysis of oat hull-derived biochar (BC), glycerol (GL) from canola 
biodiesel product and ash from dried distillers’ grains (DDGA) and meat & bone meal (MBMA) 
gasification. The by-products were chemically characterized at the University of Saskatchewan. 

§ ND = not determined  

2.1.3.2. Biochar 

Pyrolysis is the thermal breakdown of organic materials in absence of oxygen (O2) and at 

relatively low temperature (< 700 ˚C) (Lehmann and Joseph, 2009). As shown in Figure 2.4, this 

process converts organic materials into three by-products: 1) a liquid product called bio-oil 

(pyrolysis oil), 2) a non-condensable gas product called syngas or pyrolysis gas containing 

carbon monoxide (CO), carbon dioxide (CO2), hydrogen (H2), methane (CH4) and higher 

molecular weight volatile hydrocarbon, and 3) a solid inert residue rich in carbon known as 

biochar (BC) when intended for soil application (McCarl et al., 2009). The BC generated during 

pyrolysis processes as a charcoal can be used as a fuel to produce heat, and as activated carbon 

used in purification processes (Horne and Williams, 1996), or as a soil amendment. The latter 

option for BC utilization is not a new concept, but it has recently received more attention. 

Research studies examining the agronomic and environmental potential benefits of BC 

application to soil have been reported, but studies on the effects of BC addition on agricultural 

productivity is still limited, especially in dry and temperate climates, as the majority of studies 

have been conducted in tropical regions (Blackwell et al., 2009). Biochar application is reported 

to improve plant production directly through supply of essential nutrient, or indirectly through 

improving soil quality and fertility. The ability of BC to retain nutrients in the soil and improve 

fertilizer use efficiency are regarded as examples of indirect BC nutrient value (Chan and Xu, 

2009). The Amazonian Terra Preta soils containing high amounts of BC-like pyrogenic C were 

found to be more fertile compared to adjacent infertile soils, and this was related to their ability 

to retain nutrients (Glaser et al., 2001). The benefit of BC amended-soils will therefore be related 

at least in part to reduction in nutrient losses via volatilization, leaching and runoff. 

Parameter BC GL DDGA MBMA 
 -----------------------------------mg g-1------------------------------ 

N 15.4 0.95 1.2 0.2 
P 29.2 ND§ 156 127 
S 1.2 0.25 29.9 0.00 
C 714 566 8.7 0.9 
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In a pot experiment conducted near Manaus, Brazil, application of BC derived from 

wood applied at rates of 68 t ha-1 to 135 t ha-1 increased rice biomass production and cowpea by 

17 and 43%, respectively, and this was attributed to improved P and K nutrition provided by the 

biochar (Lehmann et al., 2003). It should be noted that rates of 100 t ha-1 would limit the distance 

such material could be economically transported. In a field trial conducted in Japan, BC addition 

increased height and volume of tea trees by 20 and 40%, respectively, and this was partly 

attributed to the ability of bamboo BC to keep the soil pH within the range suitable for tea tree 

growth (Hoshi, 2001).  Biochar produced from paper mill sludge added at a rate of 10 t ha-1 to an 

acidic soil from northern New South Wales, Australia in a pot experiment resulted in a 40% 

increase in wheat height (Van Swieten et al., 2007). The liming effect of BC may have promoted 

wheat growth by eliminating the toxic effects of soluble and exchangeable aluminium (Al) 

dominant in the acidic soils (Chan and Xu, 2009). 

The chemical and physical characteristics of BC vary according to temperature used 

during pyrolysis and the type of feedstocks used. In laboratory testing (Table 2.1), BC derived 

from oat hull showed a high content of C (71%), with low N (1.5%) and P (3%) content. The 

positive effects of BC application on plant production are not necessarily related to plant 

nutrition; it has been reported that BC behaved as sorptive agent and removed organic 

compounds such as phenolics released from humus (Wardle et al., 1998); improved soil physical 

properties, like water holding capacity (Iswaran et al., 1980) and reduced soil strength (Chan et 

al., 2007). 

Green waste BC applied at rates up to 100 t ha-1 in a combination with 100 kg N ha-1 

increased radish dry matter by up to 266%, but this increase was not observed at the same rate of 

N in absence of BC (Chan et al., 2007). This indicates an ability of BC to improve N fertilizer 

use efficiency. It was also demonstrated in another study that BC was able to protect applied 

fertilizer against leaching, resulting in increased fertilizer use efficiency (Lehmann et al., 2003).  

Despite the positive response of different crops to BC addition that has been documented 

in studies recently published, it was reported earlier that BC addition at 5 t ha-1 and 15 t ha-1 

resulted in soybean yield reductions of 37 and 71%, respectively (Kishimoto and Sugiura, 1985). 

This reduction in soybean yield was attributed to micronutrient deficiency as a consequence of 

pH increases.  It was also shown that long-term productivity of woody plants was inhibited on 
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charcoal hearths, and this was mainly attributed to higher pH and exchangeable base cations that 

were observed in charcoal hearth soils compared to nonhearth soils (Mikan and Abrams, 1995). 

In addition to agronomic potential benefits observed with BC application, BC might be 

considered as part of the solution for existing environmental issues such as reduction of mineral 

fertilizer losses through leaching and runoff, mitigation of greenhouse gases emissions, C 

sequestration, and potential application as sorbents in remediation of contaminated soils, and 

managing agricultural, urban and industrial wastes.  

It has been shown that BC was capable of retaining nutrients from applied mineral 

fertilizers due to a high sorptive surface area, reducing leaching and thereby increasing fertilizer 

use efficiency (Lehmann et al., 2003). Therefore, BC application could have environmental 

benefit through reduction of nutrients losses by its ability to absorb nutrients such as phosphate 

and ammonium that would cause eutrophication and pose pollution risks (Lehmann et al., 2003; 

Lehmann, 2007). Biochar was also found to absorb pesticides before they reached water bodies 

(Takagi and Yoshida, 2003). As for its effect on greenhouse gas emissions reduction, BC 

addition to soil could help mitigate greenhouse gas emissions through its ability to reduce N2O 

emissions and increase CH4 uptake from soil (Rondon et al., 2006; Yanai et al, 2007; Singh et al, 

2010). In a seven-day incubation study, addition of biowaste charcoal at a rate of 10% wt/wt 

(approximately equivalent to 180 t ha-1) to a grassland soil rich in organic matter suppressed N2O 

emissions by 90%, but the emission of N2O increased when the same soil was rewetted (Yanai et 

al., 2007). In a parallel trial in the same experimental set, these authors applied ash derived from 

the same BC feedstock (pH 11.6) to the same soil and found no N2O suppression when ash was 

added, suggesting that alkalinity properties of BC (pH factor) was not the reason behind reduced 

N2O emissions reduction. The mechanism responsible for N2O emissions reduction when BC 

was added is still unclear (Yanai et al., 2007; Van Swieten et al., 2009; Singh et al., 2010). 

Despite the few short-term incubation studies conducted under controlled conditions (Yanai et 

al., 2007; Singh et al., 2010), there is, however, a dearth of field studies on the potential of BC to 

mitigate greenhouse gas emissions. 
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2.2. Manure derived from cattle fed ethanol by-products 

Ethanol production by-products including DG and TS can be an excellent source of 

protein and nutrients when included in livestock diets (Mustafa et al., 2000). However, unlike 

DG, TS has not routinely been used in animal diets except as a source of water. 

Distillers’ grains have commonly been used as animal feed in the wet or dry form and are 

recognized as an excellent source of protein and phosphorus (Erickson et al., 2005; Harris et al., 

2008). Similarly,TS can be fed alone or in a combination with DG (Mustafa et al., 2000). 

However, due to it is liquid nature and for better utilization by beef cattle, TS can replace water 

as a fluid source for animals (Mustafa et al., 2000). The co-location of an ethanol plant with a 

feedlot, such as exists near Lanigan, Saskatchewan, allows TS to be used as a cattle watering 

source and WDG to be used as feed. 

 In cattle feeding, only about 10% of the N and only about 20% of the P in the feed is 

retained in the beef animal, and the rest is excreted in feces and urine (Bierman et al., 1999).  

Therefore, it is expected that manure produced from animals fed DG will have different 

characteristics compared to that derived from animals fed regular grains. In particular, owing to 

higher contents of N and P in DG, the DG derived manure will also have higher content of 

nutrients, especially N, P and S (Hao et al, 2009). Recycling these nutrients back to soil through 

manure application will partially compensate for nutrients remained from the soil (Benke et al, 

2010). This option will then, to some extent, help maintain soil quality and productivity.  

In general, animal manure has been shown to be a valuable source of plant nutrients, 

making an effective contribution to improved chemical and physical properties of soil as well as 

biological activity and plant nutrition (Schoenau and Davis, 2006; Edmeades, 2003). Many 

manure characteristics and its agronomic value are influenced by livestock diet (Eghball, 2002; 

Hao et al, 2009). For example, the capacity of manure to increase pH of acid soils is affected by 

the addition of CaCO3 to the diet (Eghball, 1999). Diet modification could also influence odor by 

affecting the various volatile fatty acid content (Hao et al., 2005). Reduction in protein and P 

intake was shown to result in a significant reduction in N and P concentration in manure and 

therefore decrease ammonia volatilization and P accumulation in manure amended soils (Satter 

et al., 2002; Maguire et. al., 2007). In a study at Lethbridge, Alberta to evaluate the effect of 

including wheat DDGS in finishing feedlot cattle diets on composition of manure, Hao et al., 

(2009) concluded that including 40 and 60% wheat DDGS in feedlot cattle diets resulted in 
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significant increases in water soluble NH4
+-N, total N, and total P in animal manure. Similarly, 

Spiehs and Varel (2009) reported that increasing amount of WDGS in feedlot cattle diets resulted 

in increased P, N and S content in cattle manure. Increased inclusion of DG in animal diets from 

0% to 40% (DM basis) increased diet crude protein from 13% to 18.7% and P in the diets from 

0.29% to 0.49% (Bremer et al., 2008). This increased the excreted N and P by 51% and 90%, 

respectively, as a consequence. It was also previously documented that cattle consuming dietary 

N  (Cole et al., 2005; Archibeque et al., 2007), P (Benson et al., 2006; Luebbe et al., 2008), and S 

(Fron et al., 1990) in excess of nutrients needs will result in extra nutrients being excreted in 

urine and feces. In terms of TS-derived manure, there is a lack of studies examining manure 

composition as affected by TS inclusion in animal diets. 

Distillers’ grains inclusion in animal diets does not only increase the amount of nutrient 

excreted, but it also can influence the forms of these nutrient. Water soluble P tended to increase 

when WDGS was included in the diet (Spiehs and Varel, 2009). Similarly, Ebeling et al. (2002) 

revealed that higher dissolved reactive P was observed in manure obtained from animals fed 

higher P concentration diets. Therefore, this could enhance nutrient availability and crop growth 

response when manure is land-applied, but also increase potential for transport of P in runoff.  

Greater concentration of nutrient in manure produced by animal fed DG can increase 

animal manure value as organic fertilizer by reducing handling and transportation costs per unit 

of nutrient. Moreover, recycling these nutrients back to soil through manure application will 

partially compensate for nutrients removed with grains and straw sent for bioenergy production 

and that otherwise will have to be replaced by mineral fertilizers. Land application will help 

maintain soil quality and productivity especially in land areas experiencing high demand for 

bioenergy and food production. However, application rates need to be adjusted for higher 

nutrient content that may be encountered to avoid excessive application rates of nutrients that can 

have environmental implications including water quality degradation through nutrient runoff and 

leaching.  
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1. GREENHOUSE GAS EMISSIONS AND NUTRIENT SUPPLY RATES IN SOIL 
AMENDED WITH BIOENERGY PRODUCTION BY-PRODUCTS 

3.1 Preface 

The sustained rise in bioenergy production from renewable sources has created a surplus 

of the by-products associated with the bioenergy industry. As documented in the Literature 

Review (Chapter 2), recycling of these materials by application to agricultural soils is a possible 

option for their usage. However, there is limited information on the impacts of land application 

on soil biological processes and nutrient cycling.  The main goal of this study was to investigate 

the direct effects of adding selected bioenergy production by-products (BPB) on greenhouse gas 

emissions (N2O, CO2) and nutrient supply rates (NH4
+-N, NO3

--N, PO4
-3-P) using Plant Root 

Simulator (PRSTM) resin membrane probes over a short incubation period. Initiation of this 

research with a growth chamber experiment conducted under optimum controlled conditions is 

necessary to provide information that can improve our understanding of greenhouse gas 

emissions and nutrient turnover as a function of the application of bioenergy production 

by-products. The information here is used to help understand results of longer-term field research 

studies that are covered in subsequent chapters.  

Chapter 3 has been published as: Alotaibi, K.D. and J.J. Schoenau. 2013. Greenhouse gas 

emissions and nutrient supply rates in soil amended with biofuel production by-products. 

Biol.Fertil Soils 49: 129-141. J.J. Schoenau’s contributions to this work were: guidance during 

the experimental setup, financial coverage of research expenses and manuscript editing.  
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3.2 Abstract 

Ethanol production results in distillers’ grains, and biodiesel produces glycerol as a 

by-product.  However, there is limited information on the effects of their addition on the 

evolution of N2O and CO2 from soils, yet it is important to understanding the impacts of 

bioenergy production on greenhouse gas budgets. The objective of this study was to evaluate the 

direct effects of adding wet distillers’ grains (WDG), thin stillage (TS) and glycerol at three rates 

on greenhouse gas emissions (N2O, CO2) and nutrient supply rates in a cultivated soil from the 

Canadian prairies. The WDG and TS application rates were: 100, 200 or 400 kg N ha-1 whereas 

glycerol was applied at: 40, 400 or 4000 kg C ha-1 applied alone (G-N) or in a combination with 

300 kg N ha-1 (G+N). In addition, conventional amendments of urea (UR) and dehydrated alfalfa 

(DA) were added at the same rates of total N as the by-products for comparative purposes. The 

production of N2O and CO2 was measured over an incubation period of 10 days in incubation 

chambers and Plant Root Simulator (PRSTM) resin membrane probes were used to measure 

nutrient (NH4
+-N, NO3

--N, PO4
-3-P) supply rates in the soil during incubation. Per unit of N 

added, UR tended to result in the greatest N2O production, followed by WDG and TS, with 

glycerol and DA resulting in the lowest N2O production. Cumulative N2O production increased 

with increasing rate of N-containing amendments and was greatest at the highest rate of UR. 

Addition of urea with glycerol contributed to a higher rate of N2O emission, especially at the low 

rate of glycerol. The DA and WDG resulted in the greatest evolution of CO2 from the soil, with 

the TS resulting in less CO2 evolved per unit of N added. Addition of N fertilizer along with 

glycerol enhanced microbial activity and decomposition. The amendments had significant 

impacts on release of available nutrient, with the UR treatments providing the highest NO3
--N 

supply rate. The TS treatments supplied the highest rate of NH4
+-N, followed by WDG compared 

to the other amendments. The WDG treatments were able to provide the greatest supply of 

PO4
-3-P supply in comparison to the other amendments. Microbial N immobilization was 

associated with G-N treatments. This study showed that the investigated bioenergy by-products 

can be suitable soil amendments as a result of their ability to supply nutrients, and N2O 

emissions that did not exceed that of the conventional urea fertilizer.   
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3.3 Introduction 

Bioenergy production is associated with a large amount of bioenergy processing 

by-products. These by-products include wet distillers’ grains (WDG) and thin stillage (TS) from 

ethanol production, and glycerol from biodiesel. Both WDG and TS are generated from ethanol 

production from grains involving the conversion of starch to alcohol through fermentation 

followed by distillation process (Bonnardeaux, 2007). Glycerol (also known as glycerin) is a 

by-product of biodiesel production; mostly produced from soybean and canola oil via 

transesterification process. Due to their nutritional value, WDG and TS are considered to be a 

valuable feedstuff for animals (Ham et al., 1994; Harris et al., 2008). However, increased ethanol 

production may result in a surplus of distillers’ grains (DG) (Rausch and Belyea, 2006); 

therefore, alternative uses need to be sought, including consideration of land application as a 

fertilizer. 

Large amounts of produced biodiesel have led to a surplus of glycerol (GL), which is 

disposed of by incineration (The Glycerol Challenge, 2007). The existing potential uses of GL 

include industrial, chemical and pharmaceutical preparations and potential for use in production 

of plastics is being explored. However, purification of crude GL is costly and the market of GL 

is already saturated (Groesbeck et al., 2008). Glycerol has also been used as a feed ingredient in 

animal diets to reduce diet costs (Lammers et al., 2007; Groesbeck et al., 2008). Another 

alternative use of GL is application to agricultural soil. However, this has received little 

attention, and the information about its application to soil is scarce. Qian and Schoenau (2008) 

found that application of GL at a high rate (10000 kg ha-1) resulted in wheat yield reduction, and 

this might be attributed to microbial immobilization of available N. 

The by-products discussed above contain C that can improve soil organic matter content 

and enhance microbial activity. They also contain essential plant nutrients such as N and P, 

especially DG and TS by-products. These characteristics suggest opportunity for their potential 

use as soil organic amendments to improve soil fertility and quality.  However, information 

regarding utilization of these by-products as soil amendments is scarce. In general, addition of 

organic materials to agricultural fields is an important source of CO2 and N2O (Akiyama and 

Tsuruta, 2003) as a result of microbial respiration and nitrification and denitrification in soils, 

which depend on temperature, moisture content, amendment N content and form and the soil 

content of organic matter (Meng et al., 2005). Incorporation of C and N-rich substrates into soil 
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can be a source of readily available C and N in the soil and is expected to influence the CO2 and 

N2O emissions (Flessa and Beese, 1995; Cochran et al., 1997; Lemke et al., 1999). However, the 

CO2 and N2O emissions depend on chemical composition of added materials and their rate of 

microbial breakdown in soil (Aulakh et al., 1991; Mckenney et al., 1993; Shelp et al., 2000).    

To best manage by-products of an expanded bioenergy production industry, a 

comprehensive knowledge of the impacts of adding bioenergy processing by-products to 

agricultural soils is needed. Thus, this research evaluates the effect of a range of by-products on 

N2O production, soil respiration and release of nutrients into available ionic forms under 

controlled environment conditions in a cultivated soil typical of the Canadian prairies.  The 

effect of WDG, TS and glycerol on N2O and CO2 production in a Saskatchewan soil is examined 

in comparison to more conventional N containing amendments including alfalfa and urea.  

3.4 Materials and Methods 

3.4.1 Soils 

The soil used for the growth chamber study was collected from the surface layer (0–20 

cm) of a cultivated (cereal-legume-oilseed rotation) Brown Chernozem (U.S. equivalent: Aridic 

Haploboroll) in south-central Saskatchewan, Canada. Three soil samples were collected from the 

same depth and mixed to produce a composite soil sample. This composite soil was 

mechanically mixed using a stationary mixer (Bouldin & Lawson Inc., McMinnville, Tennessee) 

to provide a homogenized sample and then stored at 20 ºC until its use. The soil was used for 

incubation within 2 wk of its collection to reduce the impact of storage on the biological 

assessments (Zelles et al., 1991). Selected chemical properties of the soil are given in Table 3.1.   

3.4.2 Bioenergy by-products preparation 

The bioenergy by-products examined in this study included: wet distillers’ grains 

(WDG), thin stillage (TS) and glycerol. In addition to these by-products, urea (UR) and 

dehydrated alfalfa (DA) were also included for comparative purposes. The by-products of WDG 

(solid) and TS (liquid) were obtained from a wheat-based ethanol production facility at Lanigan, 

Saskatchewan. Glycerol (GL) by-product, a thick syrupy liquid from canola-based biodiesel 

production, was obtained from Milligan Biotech at Foam Lake, Saskatchewan. Alfalfa used in 
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this study was a dried dehydrated powder obtained from MCN Bioproducts Inc., Saskatoon, 

Saskatchewan. All by-products were sub-sampled for composition analyses and characterization, 

and then stored at 4 ◦C until use. Selected characteristics of the by-products used in the controlled 

environment chamber experiment are given in Table 3.2.  

Table 3.1. Selected properties of cultivated Brown Chernozem soil used in the experiment. 
Property Value 

Organic C (mg g-1) 18.9 

Total N (mg g-1) 1.1 

Total P (mg g-1) 0.5 

NaHCO3-extractable P (mg kg-1) 5.73 

NO3-N (mg kg-1) 1.69 

NH4-N (mg kg-1) 5.34 

pH 7.9 

EC (mS cm-1) 0.29 
 

Table 3.2. Selected properties of organic amendments used in the experiment.  
Amendments¶ OC  Total N Total P S  pH C:N C:S MC# 
       --------------------mg g-1----------------------         % 

DA 432 25 2.2 2.8 ND§ 17:1 153:1 10 

WDG 511 37 4.2 13.7 ND 14:1 36:1 74 

TS 449 73∫ 13.3 14.6 3.8 6.20 31.10 92.5 
¶ DA denotes dehydrated alfalfa; WDG denotes wet distillers’ grains; TS denotes thin stillage. All 

nutrient content rates are on dry weight basis. 
§ ND, not determined. 
# MC, moisture content. 

  ∫  21% of total N in TS is in NH4
+ form on a wet basis. 

3.4.3 Treatment application 

Homogenized field-moist soil (650 g) was placed into each 1-L cylindrical plastic pot of 

12.2 cm height ×12 cm diameter (tapered) with a surface area of 113.04 cm2. Then, 50 g of soil 

were mixed with the required rate of amendment application and spread on the soil surface; then 

150 mL  of deionized water, which is adequate to bring soil moisture to field capacity, was added 

followed by 100 g of soil placed on top. In case of liquid or slurry substrates (TS, GL), 700 g of 

soil were weighed into each pot, and then the amount of amendment was mixed well with 150 
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mL of deionized water and then added to soil. Then, 100 g of soil were placed on the top. 

Therefore, a total amount of 800 g of soil were incubated in each pot. The N-containing 

amendments (UR, DA, WDG, TS) used in this study were applied at three rates: low, medium 

and high, providing 100, 200 and 400 kg N ha-1, respectively, assuming incorporation of the 

amendments to soil depth of 15 cm. The GL amendment was also applied at three rates: low, 

medium and high, providing 40, 400 and 4000 kg C ha-1, respectively, given a C content of the 

glycerol of 40% C by weight. The GL was applied based on its total C content because it does 

not contain N. Each rate of GL was applied alone or combined with one rate of urea, equivalent 

to 300 kg N ha-1. This rate of N will result in a C:N ratio of 13:1 when combined with the highest 

rate of glycerol-C which will ensure that N is not a limiting factor and will thereby stimulate 

microbial activity to utilize glycerol C.  A control that received no organic amendment was 

included as well. Each treatment was replicated four times in a completely randomized design. 

Moisture contents in the pots were constantly maintained at or near field capacity by measuring 

weight loss on a daily basis, and deionized water was added when needed. 

3.4.4 Nutrient availability measurement 

The bioavailable NO3
--N, NH4

+-N, and PO4
-3-P supply rates in the soil were determined 

using Plant Root Simulator (PRSTM) resin membrane probes as ion sinks as described by Qian 

and Schoenau (2002). Briefly, the PRSTM anion probes were initially soaked in distilled water for 

24 h. Then, the probes were charged for 2 h in 0.5 M NaHCO3 to saturate the exchange sites with 

bicarbonate as the counter ion, and this was repeated four times. The probes were then washed 

twice and stored in distilled water until their insertion into the soil. The PRSTM cation probes 

were charged by soaking in 0.5 M HCL two times for 2 h to saturate the exchange sites with H+ 

ions and then washed and stored as described above. Then, the anion and cation probes were 

inserted into the pots containing amended soil and remained installed in the pots for the entire 10 

d period of incubation. At the end of incubation, the probes were removed from the soil and 

placed into plastic ZiplockTM bags and transported to the laboratory. Then, the probes were 

washed thoroughly to remove all remaining soil particles and placed into a clean ZiplockTM bag 

in which each probe was placed in a separate ZiplockTM bag. A 20-mL aliquot of 0.5 M HCl was 

added to each bag containing the probe and shaken for 1 h to elute the sorbed ions from the 

membrane surface. The eluent was then placed in a 7 dram vial, capped, and stored at 4°C until it 
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was colorimetrically analyzed for NO3
--N, NH4

+-N and PO4
-3-P using TechniconTM 

Auto-Analyzer II. 

3.4.5 Gas emissions sampling 

All the pots containing amended soil and the PRSTM probes were equilibrated for about 

24 h under laboratory conditions. Then, they were placed into containers that were created from 

two PVC pipes 15 cm in diameter and 15 cm long with caps on each end. The two-part PVC 

container was joined together by a rubber airtight flange fastened with hose clamps (Nelson et 

al., 2007).  A rubber septum inserted into the cap was used to extract the gas samples. The 

incubation was conducted as described by Nelson et al. (2007). The airtight sealed containers 

were moved to a growth chamber, which was electronically set for 16 h at 25 °C (day) and 8 h at 

18°C (night), and incubated for a period of 10 d. For gas sampling, a 20-cm3 syringe needle was 

used to collect the gas sample and transfer it into a 10-cm3 evacuated vial.  Sampling was done 

every two days at noon over the 10 d period. After each sampling, the tops of the PVC containers 

were removed and allowed to remain open for 1 h to allow natural airflow exchange to ensure 

aerobic conditions. The collected gas was analyzed for CO2 and N2O using a gas chromatograph. 

The CO2 was determined using a Varian CP-2003 micro-GC with twin micro-thermal 

conductivity detectors. The N2O was determined using a Varian CP-3800 gas chromatograph 

with an electron capture detector set at 370 °C (Nelson et al., 2007). 

To ensure that the incubation condition remained aerobic when containers were sealed for 

2 d, a preliminary experiment was conducted to test the effect of different times of opening and 

sealing of PVC containers on the O2 content. We found that sealing the containers for 1 h, 3 h or 

2 d before sampling did not cause a decline in the O2 content; however, O2 concentration started 

to decrease after keeping the containers closed for 3 d. Therefore, we decided to maintain 

containers sealed for 2 d before sampling.  

A short term incubation was chosen because greatest response of microbiological 

indicators to addition of organic materials is expected to occur within a few days of incubation 

following application. It was also demonstrated that the PRSTM probes can be adequate in 

providing reliable results when incubated into soil for a short period of 2 wk or less (Qian and 

Schoenau, 2002). 
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3.4.6 Statistical Analyses 

The experimental treatments consisted of 6 amendments (UR, DA, WDG, TS, G-N and 

G+N) with three application rates (low, medium and high) in addition to a control where no 

amendment was added. This design provided a factorial arrangement. The measured parameters 

included GHG emissions (N2O and CO2), that were repeatedly measured and nutrient supply 

rates (NH4
+-N, NO3

--N, PO4
-3-P), that were measured at the end. Due to the sequential nature of 

GHG sampling from the experimental unit (PVC chamber), repeated measures analysis was 

conducted using the PROC MIXED procedure with restricted maximum likelihood (REML) of 

the SAS software, version 9.2 (SAS Institute, Cary, NC) as reported by Littell et al. (1998). 

Covariance structures were compared objectively using the Akaike information criterion and the 

Bayesian information criterion to find the best covariance model, and it was determined that the 

unstructured UN covariance structure provided the best fit for our model with the least 

complexity. The effects of treatments, day of sampling and their interaction with N2O and CO2 

emissions were tested using the above described model. The effects of treatments (amendment 

types), rate and their interaction on cumulative N2O and CO2, calculated for the entire period of 

incubation, and nutrient supply rates (NH4
+-N, NO3

--N and PO4
-3-P) were also tested using two-

way ANOVA procedure. For this analysis, the control treatment was omitted as there was only 

one level of this factor. Before applying the statistical analysis, data were checked and subjected 

to normal distribution test using Shapiro-Wilk at P < 0.05. This test revealed that nutrient supply 

rates variables (NH4
+-N, NO3

--N, PO4
-3-P) were not normally distributed and, to achieve 

uniformity, these variables were log-transformed, after which transformed data were used for 

statistical analysis; however, the raw data are reported here. Treatments means (averaged across 

the rates of application) were separated by the Student-Newman-Keuls test. The effects were 

declared statistically significant at P < 0.05.  

3.5 Results 

3.5.1 Nitrous oxide evolution 

Treatment, day and their interaction significantly affected N2O evolution rates (P < 

0.001). Generally, N2O evolution rates were much lower than CO2 evolution rates. The 
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application of amendments had variable effects on N2O fluxes according to the amendment type 

and rate of application (Fig. 3.1).  

Addition of UR increased N2O production rates, and this increase was rate-dependant, 

with the greatest emission observed at high rate of application (Fig. 3.1). The effect was delayed 

until day 4, reaching the peak at day 8 for high rate treatment and day 6 for medium rate 

treatment. The total cumulative N2O emission for the 10 d of incubation for UR treatment was 

the highest in comparison to other treatments, especially at the medium and high rate of 

application (Fig. 3.2). When averaged across the rates of application, N2O produced from soil 

treated with UR was significantly higher than that from other treatments (Fig. 3.2).  

Dehydrated alfalfa treatment had a small effect on N2O production rates over the course 

of the incubation (Fig. 3.1), especially when applied at medium and high rates. The total 

cumulative N2O production from DA treatment was similar amongst the three rates of 

application and did not significantly (P > 0.05) differ from G-N treatment (Fig. 3.2). However, it 

was significantly (P < 0.001) lower than UR, TS and WDG treatments.  

Wet distillers’ grains addition contributed to enhanced N2O evolution rates above the 

control over the entire duration of the incubation (Fig. 3.1). The effect of WDG treatment 

remained constant for all the rates of application until day 6 and increased rapidly, particularly at 

medium and high rates (Fig. 3.1). The total cumulative N2O evolved from soil treated with WDG 

was similar for medium and high rates of application (Fig. 3.2). When averaged across the three 

rates of application, it was significantly (P < 0.001) lower than UR treatment and higher than the 

other treatments with the exception of TS treatment, which did not significantly differ from 

WDG treatment (Fig. 3.2). 

Thin stillage treatment had a significant effect on the rates of N2O evolved from the 

amended soil (Fig. 3.1). The effect was delayed until day 2. Soil treated with TS applied at a high 

rate produced higher N2O compared to medium or low rate. Nitrous oxide evolution peaked at 

day 6 for the low and medium rate treatments followed by a rapid decline, and at day 8 for high 

rate treatment. The total cumulative N2O emission from soil treated with TS was relatively 

similar for low and medium rates and higher at the high rate of application (Fig. 3.2). It was not 

different from that of WDG treatment, significantly (P < 0.001) lower than UR treatment and 

higher than all the other treatments (DA, G-N, G+N), when averaged across the three rates of 

application (Fig. 3.2).  
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Fig. 3.1. Nitrous oxide emissions from soil amended with three rates (low, LR; medium, MR; 
high, H) of urea (UR), dehydrated alfalfa (DA), wet distillers’ grains (WDG), thin stillage (TS), 
glycerol without N (G-N) and glycerol with N (G+N). Error bars represent standard error of the  
mean (n = 4). *P < 0.05; **P < 0.01; ***P < 0.001. 
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Fig. 3.2. Cumulative N2O emissions,  calculated for the entire period of incubation, from soil 
amended with three rates (low, LR; medium, MR; high, H) of urea (UR), dehydrated alfalfa 
(DA), wet distillers’ grains (WDG), thin stillage (TS), glycerol without N (G-N) and glycerol 
with N (G+N). Points sharing the same letter among amendment type are not significantly 
different according to SNK test (P < 0.05). Error bars represent standard error of the mean (n = 
4). *P < 0.05; **P < 0.01; ***P < 0.001. Note that the statistical analysis was conducted on all 
amendments regardless of the basis of their application whether it is N or C and the same for 
means separation for all amendment types. However, after the analysis, glycerol treatments were 
considered separately to allow for better comparisons among its rate of application.  
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Glycerol applied alone did not have any effect on N2O evolution when applied at any rate 

and the evolved N2O from the amendment soil remained low throughout. However, this was not 

the case when GL was applied with N, since this treatment stimulated N2O evolution (Fig. 3.1). 

This increase was specifically observed with the low rate of application especially after the first 

measurement period, reaching the peak at day 6. Increasing G+N amendment rate tended to 

decrease N2O production rates particularly after day 2 (Fig. 3.1). The total cumulative N2O 

emission for the entire period of incubation study for G+N treatment was higher at the low rate 

and similar for the medium and high rates of application (Fig. 3.2). When averaged across the 

rates of application, cumulative N2O emission of soil treated with G+N was significantly (P < 

0.001) higher than that of glycerol treated soil (Fig. 3.2). It was also higher than that of the DA 

treatment.  

3.5.2 Carbon dioxide evolution 

Treatment, day and their interaction significantly impacted CO2 evolution from soil (P < 

0.001). Amendments produced different CO2 fluxes, depending on the type and rate of 

amendment (Fig. 3.3).  

Urea treatment had a significant impact on CO2 evolution compared to the control (Fig. 

3.3), with no significant rate effect observed among urea-N rates during the entire period of 

incubation. All urea –N rates showed similar effect on CO2 production. The effect was delayed 

until day 6, with CO2 evolution not reaching a peak until day 8 and 10. The total cumulative CO2 

emission from the urea treatment was the least among the other treatments, especially at the 

medium and high rates (Fig. 3.4), and this was also significantly different from other type of 

amendment, when averaged across the rate of application (Fig. 3.4). 

Carbon dioxide evolution rates in soil amended with dehydrated alfalfa were higher than 

that of the control at any rate of application (Fig. 3.3). The evolution of CO2 increased with 

increasing DA rates when compared to the control. The low rate of DA treatment showed similar 

CO2 fluxes for the period 2-10 d. For the medium and high rates of DA, peaks of CO2 evolution 

were observed at day 2 and 4 and declined thereafter. For the entire period of incubation, the 

total cumulative CO2 emission from DA treatment was the greatest in comparison to the other 

amendments (Fig. 3.4). When averaged across the rate of application, the cumulative CO2 
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emission for the DA treatment was similar to WDG treatment, but significantly (P < 0.001) 

higher than the other amendments (Fig. 3.4). 

The WDG treatment effect on CO2 production followed a similar pattern of DA treatment 

(Fig. 3.3), and the effect increased with increasing the amendment rate. For the medium and high 

rates of application, the CO2 evolution rates peaked on day 4 and declined  

thereafter. Together with DA, WDG treatment showed the greatest cumulative CO2 fluxes for the 

entire experimental period (Fig.3.4), compared to other amendments.  

The enhanced evolution of CO2 from soil treated with TS was of short duration (Fig. 3.3), 

with the peak of CO2 production at day 2 and 4 followed by a rapid decline. The highest rate of 

CO2 evolution was obtained with the high TS rate followed by medium and low rates. The 

control treatment remained the lowest over the course of incubation. The total cumulative CO2 

for TS treatment increased with increasing amendment rate (Fig. 3.4). It was significantly (P < 

0.001) higher than UR treatment and lower than DA and WDG, when averaged across the rate of 

application (Fig. 3.4).   

The impact of G-N on CO2 evolution rates was only evident with high rate of application 

(Fig. 3.3). The highest rate of CO2 evolved from GL-N amended soil was observed at the first 

two measurement periods and decreased after day 4. Soil treated with high rate of G-N showed 

the highest rate of CO2 evolved during the period of incubation whereas medium and low rates 

were not significantly (P > 0.05) different from the control. For the entire period of incubation 

(10 d), the total cumulative CO2 for the G-N treatment increased with increasing the amendment 

rate, and it was not significantly (P > 0.05) different from the urea treatment, when averaged 

across the three rates of application (Fig. 3.4).   

Addition of GL with N resulted in higher rates of CO2 evolution when compared to G-N 

treatment (Fig. 3.3). This increase in CO2 emission was particularly evident at the high rate of 

glycerol application, reaching the peak at day 4 and then levelled off after day 6.  The total 

cumulative CO2 emission from soil treated with G+N increased with increasing rate of 

application (Fig. 3.4). It was significantly (P < 0.001) higher than G-N and UR treatments, when 

averaged across the rates of application (Fig. 3.4). 
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Fig. 3.3. Carbon dioxide emissions from soil amended with 3 rates (low, LR; medium, MR; high, 
H) of urea (UR), dehydrated alfalfa (DA), wet distillers’ grains (WDG), thin stillage (TS), 
glycerol without N (G-N) and glycerol with N (G+N). Error bars represent standard error of the  
mean (n = 4). *P < 0.05; **P < 0.01; ***P < 0.001.    
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Fig. 3.4. Cumulative CO2 emissions, calculated for the entire period of incubation, from soil 
amended with three rates (low, LR; medium, MR; high, H) of urea (UR), dehydrated alfalfa 
(DA), wet distillers’ grains (WDG), thin stillage (TS), glycerol without N (G-N) and glycerol 
with N (G+N). Points sharing the same letter among amendment type are not significantly 
different according to SNK test (P<0.05). Error bars represent standard error of the mean (n = 4). 
*P < 0.05; **P < 0.01; ***P < 0.001. Note that the statistical analysis was conducted on all 
amendments regardless of the basis of their application whether it is N or C and the same for 
means separation for all amendment types. However, after the analysis, glycerol treatments were 
considered separately to allow for better comparisons among its rate of application.  
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3.5.3 Soil nutrient availability  

3.5.3.1 Soil NO3
--N supply rate  

Treatment, rate and their interaction had a significant effect on NO3
--N supply rate in the 

amended soil (P < 0.0001), and the effect was variable among treatments, depending on 

amendment type and rate (Fig. 3.5). Urea treatment showed the greatest NO3
--N supply that 

increased with increasing rate of application (Fig. 3.5). It was significantly (P < 0.01) greater 

than all other treatments when averaged across the rates of application. The NO3
--N supply in 

soil amended with DA was very low, compared to UR treatment (Fig. 3.5). The highest supply of 

NO3
--N in soil amended with different rates of DA was obtained at the low rate (15.1 µg NO3

--N 

cm-2) compared to the control (5.3 µg NO3
--N cm-2) and declined with the higher rates of 

application. The DA NO3
--N supply was significantly (P < 0.001) lower than UR, WDG, G+N 

and TS treatments and slightly but significantly (P < 0.001) higher than the G-N treatment (Fig. 

3.5). Both WDG and TS treatments were almost identical in their effect on soil NO3
--N 

availability (Fig. 3.5), which was significantly (P < 0.001) lower than the UR treatment and 

G+N, but higher than the DA and G-N treatments. Glycerol applied alone at any rate showed the 

lowest supply of NO3
--N (Fig. 3.5). However, when supplemented with N, GL addition at the 

low rate showed enhanced NO3
--N availability, compared to the other rates of GL application 

(Fig. 3.5). Increasing GL application rates reduced NO3
--N supply. After a10 d incubation, the 

treatments in order of descending NO3
--N supply were urea > G+N > WDG ≥ TS > DA > G-N.   

3.5.3.2 Soil NH4
+-N supply rate 

Ammonium-N supply rate was significantly affected by amendment type, rate and their 

interaction (P < 0.001). The NH4
+-N supply was the highest in soil amended with GL applied at 

the low rate combined with 300 kg N ha-1 as urea (Fig. 3.5). When averaged across the three 

rates of application, NH4
+-N supply of the G+N treatment was significantly higher than all the 

other treatments. The TS by-product application increased soil NH4
+-N availability (Fig. 3.5), 

and the effect was increased with increasing rate in the TS. The NH4
+-N supply rate in the TS 

treatment was significantly (P < 0.001) higher than WDG, UR, DA and G-N treatments, but 

significantly (P < 0.05) lower than the G+N treatment, when averaged across the three rates of 
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application (Fig. 3.5). Application of WDG, UR, and DA amendments at low and medium rates 

had a relatively similar effect on NH4
+-N availability (Fig. 3.5); however, at the high rate, WDG 

and UR amendments had higher NH4
+-N supply and were different whereas the DA amendment 

remained low even at the high rate of application and did not significantly (P > 0.05) differ from 

G-N treatment. Both DA and G-N treatments had the lowest supply rate of NH4
+-N, and they 

were not significantly different from each other. After a 10 d incubation, the treatments in order 

of descending NH4
+-N availability were G+N > TS > WDG ≥ UR > DA ≥ G-N.    

3.5.3.3 Soil PO4
--P supply rate 

The PO4-P supply rate in the incubated soil over the 10 d of incubation was significantly 

affected by treatment (P < 0.0001) and rate of application (P < 0.01).  Addition of WDG 

by-product resulted in the greatest PO4-P supply, especially when applied at medium and high 

rate (Fig. 3.5). When averaged across the three rates of application, this treatment resulted in 

significantly (P < 0.01) higher PO4-P release than the other treatments (DA, G-N, UR and G+N) 

with the exception of the TS treatment, which did not significantly (P < 0.05) differ from the 

WDG treatment. The TS treatment increased PO4-P supply, showing higher PO4-P availability, 

compared to UR, G-N and G+N treatments (Fig. 3.5). Addition of DA at any rate provided 

higher PO4-P availability especially at the low rate, compared to control whereas urea application 

showed a negative impact on PO4-P supply in soil (Fig. 3.5). Similarly, GL addition with or 

without N reduced PO4-P availability. In presence of N, GL addition resulted in lowest supply of 

PO4-P in soil (Fig. 3.5). After a 10 d incubation, the treatments in order of decreasing PO4-P 

availability were WDG ≥ TS ≥ DA > G-N ≥ UR > G+N. 
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Fig. 3.5. Nutrient supply rates (NO3

--N, NH4
+-N, PO4

-3-P) as measured by Plant Root Simulator 
(PRSTM) resin membrane probes for a 10-day incubation in soil amended with three rates (low, 
LR; medium, MR; high, H) of urea (UR), dehydrated alfalfa (DA), wet distillers’ grains (WDG), 
thin stillage (TS), glycerol without N (G-N) and glycerol with N (G+N). Points sharing the same 
letter among amendment type are not significantly different according to SNK test (P<0.05). 
Error bars represent standard error of the mean (n = 4). *P < 0.05; **P < 0.01; ***P < 0.001. Note 
that the statistical analysis was conducted on all amendments regardless of the basis of their 
application whether it is N or C and the same for means separation for all amendment types. 
However, after the analysis, glycerol treatments were considered separately to allow for better 
comparisons among its rate of application.  
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3.6 Discussion 

3.6.1 Effect on N2O evolution  

Nitrous oxide (N2O) is produced by nitrification and denitrification and can contribute to 

global warming (Granli and Bøckman, 1994). Both nitrification and denitrification depend on the  

availability of inorganic N, soil temperature and factors that affect the redox potential of the soil 

such as texture, moisture and organic C content (Granli and Bøckman, 1994; Skiba and Smith 

2000). Organic materials, such as animal manure, crop residues, municipal solid wastes and 

composts can enhance emissions of CO2 and N2O to the atmosphere compared to inorganic 

fertilizers (Jones et al., 2005; Ding et al., 2007; Johnson et al. 2007). In the present study, 

addition of bioenergy production by-products, with the exception of GL without N increased 

N2O production compared to the unamended control, probably due to stimulation of microbial 

activity. However, each by-product type showed a different N2O production response, owing to 

its chemical composition. With the exception of the WDG treatment, fluxes of N2O from the 

amended soil surface generally increased over the first few days of the incubation, followed by a 

levelling off or decrease. Rates of N2O production were the highest and sustained over the 

longest period at the high rate of urea addition, as expected. Of the organic amendments, the 

WDG and TS produced the highest rates of N2O per unit of N added, probably due to a greater 

net release of NH4
+-N by mineralization because of a narrow C:N ratio and more easily 

decomposed organic materials, with higher nitrification rates than other treatments. 

  In this study, organic materials with relatively higher C:N ratio exhibited low N2O 

production, as with DA treatment, or showed a delayed effect on N2O emission, as with WDG 

treatment, thus confirming previous findings (Khalil et al., 2002; Flessa and Beese, 1995). The 

low N2O emission from soil treated with DA might be attributable to microbial immobilization 

of inorganic N, affecting ammonium availability and nitrification. This explanation is supported 

by the extremely low inorganic N (NH4
+-N and NO3

--N) availability in DA treated soil measured 

for the entire period of incubation (Fig. 3.5). In comparison to the DA treatment, the application 

of WDG and TS led to higher N2O production, probably due to differences in the decomposition 

of these two by-products (WDG and TS) and therefore release of NH4
+-N (mineralization). 

However, each of these two by-products showed a different pattern of N2O fluxes. 
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Approximately 21% of total N in TS amendment is in NH4
+-N form, and can be an important 

contributor to microbial growth and activity. In a short incubation study to evaluate the role of 

NH4
+-N and the concomitant increase in N2O emission under different conditions of C and N 

supply, Azam et al. (2002) found increased N2O loss with the amount of applied NH4
+-N, as did 

the consumption of O2 and evolution of CO2.  

  Thin stillage slurry resembles, in terms of nutrient (NH4
+-N) and dry matter content, 

liquid swine manure; therefore, it may be appropriate to compare the TS treatment effects to 

previous findings from liquid animal manure experiments. Velthof et al. (2003) reported a rapid 

increase in N2O emission during the first few days of laboratory incubation after liquid pig 

manure application, and attributed this to increased denitrification of soil NO3
--N associated with 

the addition of easily decomposable organic substrates. Similarly, Chadwick et al. (2000) 

reported a peak in N2O evolution in the first days after manure addition. The increase in N2O 

evolution during the first days after TS application is presumably related to a presence of the 

large amount of easily degradable C compounds such as organic acids in addition to the amount 

of water that may help to distribute the C and N better through the soil matrix, leading to higher 

rates of N2O loss from partially anaerobic microsites, as observed from soil amended with low 

molecular weight substrates (Velthof et al., 2003). The decline in N2O emission in TS treatment 

at the end of incubation may indicate the depletion of soluble C and N. Moreover, the very low 

C:N ratio together with the presence of soluble nutrients that can be utilized by soil 

microorganisms in the TS amendment may have also accelerated the microbial decomposition 

process.      

  The higher C:N ratio of WDG amendment could have a significant influence on N 

availability and thus N2O production. The relatively slow onset of N2O production, which 

remained at the relatively similar level among all the rates of application until day 6, is probably 

due to an initial immobilization of N, resulting in a low N2O emission at the beginning of 

incubation. Velthof et al. (2003) indicated that soil amended with organic materials, such as 

animal manures with a C:N ratio of higher than 15, may result in an initial microbial 

immobilization of N. Cayuela et al. (2010) also reported that soil amended with dried distillers’ 

grains with solubles led to microbial immobilization of N during the first stages of 

decomposition and attributed this to the high content of labile organic matter in this by-product.  
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  As expected, the G-N treatments resulted in very little N2O produced at any rate of 

application, due to N immobilization. However, treatments of G+N increased N2O production, 

but levels were still low compared to WDG and TS treatments, and closer to flux rates observed 

for DA, probably due to the addition of N with GL stimulated soil microbial activity, 

decomposition of soil organic matter, and possibly denitrification. This is in line with other 

findings which demonstrated that incorporation of crop residues with urea resulted in higher N2O 

emission compared to that of crop residues applied alone (Huang et al., 2004). The reduction in 

N2O production by increasing glycerol C addition is likely related to C:N ratio increase and 

greater N immobilization. In comparison to urea treatments applied alone, GL addition at any 

rate with urea was able to reduce N2O emission. This demonstrates the ability of GL to conserve 

soil N through microbial immobilization and thus reduce N2O production.  

  The origin of N2O emissions in the present study is assumed to be related to nitrification 

since soil samples were incubated at moderate moisture (e.g. near field capacity) and the PVC 

headspace was maintained aerobic for the entire period of incubation. These conditions are 

considered to be favorable for nitrifying microorganisms (Skiba and Smith, 2000). However, 

several findings indicated that denitrification can take place under aerobic conditions. Müller et 

al. (2004) reported that the NO3
--N reduction through denitrification is the predominant 

mechanism responsible for N2O production even under aerobic soil conditions in a temperate 

grassland soil. Thus, despite the favorable conditions for nitrification, organic amendments 

addition might have promoted microbial growth and activity, with stimulation of microbial 

respiration and oxygen consumption with creation of temporary anaerobic microsites (Göek and 

Ottow, 1988; Cannavo et al., 2004; Huang et al., 2004).  McKenney et al. (1993) also found that 

addition of organic amendments resulted in higher denitrification rates in aerobic than in 

anaerobic conditions.  In a field study, Meijide et al. (2007) reported that nitrification was the 

main process responsible for N2O emissions from plots treated with urea whereas N2O emissions 

from organic fertilizer treatments were caused by denitrification.  

3.6.2 Effect on CO2 evolution  

Addition of substrates rich in C can affect CO2 emission from soil, which is governed by 

the substrate quality and C availability (Schimel and Holland, 2005). In the present study, all 

amendments significantly enhanced CO2 emission, but their impact varied considerably 
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according to amendment type and rate of application. The microbial breakdown of organic 

materials added to soils largely depends on the rate of decomposition of each of the C-containing 

materials (Reddy et al., 1980; Ajwa and Tabatabai, 1994) and is also influenced by the content of 

N, S, soluble C, lignin and carbohydrates (Herman et al., 1977; Reinertsen et al., 1984; Janzen 

and Kucey, 1988). Carbon dioxide produced by the urea treated soils may be derived from 

enzymatic (urease) hydrolysis of the urea to CO2 and ammonia, and stimulation of heterotrophic 

microbial activity (Serrano-Silva et al., 2011). However, higher fluxes of CO2 were observed 

from the N containing amendment treatments than urea at equivalent rates of added N, probably 

due to the effect of the addition of substrate C for microbial decomposition along with N in the 

amendment treatments. Similar findings were observed by Muhammad et al. (2011).  

Generally, fluxes of CO2 were greatest for the amendments at day 2 and 4 and then 

declined, presumably related to microbial consumption of easily degradable C fractions present 

in the amendment. Similarly, in a 30-d incubation, Ajwa and Tabatabai (1994) reported that 

more than 50% of the total CO2 evolved from soils treated with crop residues occurred in the 

first 6 days of the incubation and related the greater increase in CO2 evolution that initially 

occurred for some organic residues to their higher content of decomposable organic C. The 

decrease in CO2 evolution from the soil with time was greater in the TS treatment compared to 

other amendments, probably due to the higher contents of available organic C in the TS. Jarecki 

et al. (2008) also found that addition of swine manure slurry to soil resulted in a peak of CO2 

emissions after 4 days of slurry application, followed by a rapid decline.  

The DA and WDG resulted in the greatest CO2 evolution per unit of N added, owing to a 

higher C content relative to N than TS or UR. The CO2 flux from G-N was low, especially at 

medium and high rates, compared to other amendments, due to lack of N restricting microbial 

respiration and decomposition of substrate C. When N fertilizer was added, CO2 evolution rates 

were significantly increased, as the N fertilizer supplied the N needed for microbial growth. This 

is in agreement with previous findings that mineral N availability had a positive impact on 

increased microbial decomposition of organic residues (Recous et al. 1995; Sakala et al., 2000).   

3.6.3 Effect on soil nutrient availability 

  Organic amendments such as animal manures, composted materials from municipal, 

industrial and agricultural operations, meat, blood and bone meal, and paper mill biosolids (e.g. 
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Edmeades, 2003; Schoenau and Davis, 2006; Hargreaves et al., 2008; Diacono and Montemurro, 

2010; Quilty and Cattle, 2011) have shown to increase contents of plant available nutrients in 

soil. A few studies have recently assessed the impact of bioenergy by-products addition on crop 

yield, N mineralization and C and N dynamics (Nelson et al., 2009; Cayuela et al., 2010; Moore 

et al., 2010; Qian et al., 2011). Incubation of soil treated with different bioenergy by-products 

under controlled environment conditions for a period of 30 d led to an increase in N and P 

content (Galvez et al., 2011).  

  Ammonium supply rates were generally low for the low and medium rate urea 

treatments, indicating that NH4
+-N formed from urea hydrolysis was rapidly converted to nitrate 

through nitrification. Nitrification is likely the dominant mechanism and source of N2O in UR 

treatments.  

  High NH4
+-N supply rates were observed sometimes at high rates of some amendments 

like WDG and TS, probably due to their content of NH4
+-N. Indeed, 21% of the total N content 

was present as NH4
+-N in the TS whereas NH4

+-N was formed by decomposition or hydrolysis 

of other amendments like DA and UR. Similarly, addition of DDG and mustard meal 

by-products to soils increased NH4
+-N concentrations initially through ammonification, and 

these by-products maintained higher NH4
+-N concentrations for a longer period of incubation, 

than other organic amendments, indicating some nitrification inhibition associated with these 

by-products (Moore et al., 2010). Therefore, the supply rate of NO3
--N over the 10-day 

incubation was limited in the WDG and DA treated soils. The release of available N from these 

amendments may also have been limited by microbial immobilization, due to the C:N ratio that 

was higher in DA than WDG.  This also corresponded with low N2O emission rates from the DA 

amendment.  More available N, and N2O, would likely be released in following weeks as 

microbial decomposition of the amendments proceeded, converting C to CO2 and therefore 

narrowing C:N value suitable to microbial N mineralization (Moore et al., 2010). This is in line 

with findings by Galvez et al. (2011) in which alkaline soils amended with different types of 

bioenergy by-products, including bioethanol residues from wheat starch and rapeseed meal from 

biodiesel production, showed that NO3
--N concentrations increased with time during a 30-d 

incubation.  

  The GL amendment alone immobilized nearly all soil available N as shown by the low 

supply rates of NO3
--N and NH4

+-N and this N immobilization was decreased by adding urea 
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with GL. This suggests the significant role that GL can play in preserving fertilizer N through 

microbial immobilization, and thereby its positive effect on N2O emissions reduction as 

previously discussed.  

  As expected, UR addition reduced soil phosphate supply rates over the 10-d incubation, 

likely due to microbial utilization/immobilization of soil P as a result of the stimulated microbial 

growth by the addition of N.  This is particularly evident in the GL treated soil, in which GL 

promoted high N immobilization as described above. Of the organic amendments, the WDG and 

TS were most effective at increasing soil supply rates of available P. The greatest effect of WDG 

on available P is consistent with the higher content of total P in this by-product.  

3.7 Conclusion 

The impact of adding bioenergy production by-products to soil on increasing N2O and 

CO2 emissions and influencing nutrient availability was evident in this study. However, their 

effect on N2O emissions was less than that of urea fertilizer, when applied at the same N rate. 

This mitigates some environmental concerns associated with their utilization as soil amendments. 

The bioenergy by-products were not recalcitrant to microbial decomposition, showing a 

decomposition rate similar to, or somewhat less than, that of the DA reference amendment. This 

supports their potential value as slow release fertilizers that can increase soil N and P 

availability. As expected, the by-product of GL cannot be used as a source of nutrient directly 

due to its lack of N, but its application indicates that this by-product could have a significant 

influence on conserving inorganic N under high loss potential environmental conditions via 

stimulating microbial immobilization process.  
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4. ENZYMATIC ACTIVITY AND MICROBIAL BIOMASS IN SOIL AMENDED WITH 
BIOENERGY BY-PRODUCTS 

4.1 Preface 

Given the importance of biological indicators in evaluating changes in soil quality when 

introducing new management practices, enzyme activity and microbial biomass in soil treated 

with bioenergy production by-products (BPB) were investigated and are reported on in this 

chapter. In Chapter 3, the effects of amendment on cycling of nutrients from BPB into 

greenhouse gases and plant available ionic forms under controlled conditions was covered. 

Enzyme activity and microbial biomass parameters have frequently been used as sensitive 

indicators of the general ability of the soil to carry out nutrient turnover and of overall soil 

quality and health. Therefore, the main objective of this study was to investigate the direct 

effects of BPB application on selected enzyme (alkaline phosphatase, protease, dehydrogenase) 

activity and microbial biomass C and N content over a short period of incubation. The data 

presented in this chapter is obtained from the same experimental set reported in Chapter 3.  

This chapter has been published as: Alotaibi, K.D. and J.J. Schoenau. 2011. Enzymatic 

activity and microbial biomass in soil amended with bioenergy production byproducts. Appl. 

Soil Ecol. 48: 227-235. The contribution of the co-author, J.J. Schoenau, is greatly appreciated, 

and included providing suggestions and guidelines during the entire course of this study in 

addition to manuscript editing. 
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4.2 Abstract 

This study examined the effect of addition of by-products generated from the bioenergy 

industry on soil quality as measured by response of soil enzyme activity, microbial biomass C 

(MBC) and N (MBN) content and microbial quotient (MQ) to the addition of these materials. 

By-products of ethanol manufacture utilized included: wet distillers’ grains (WDG) and thin 

stillage (TS) that were applied at three rates of N (100, 200, and 400 kg N ha-1), whereas glycerol 

(GL), a by-product of biodiesel production, was applied at three rates of C (40, 400, 4000 kg C 

ha-1) alone (G-N) or combined with 300 kg N ha-1 as urea (G+N).  Urea and dehydrated alfalfa 

(DA) were applied at the same N rates as WDG and TS, as reference amendments. With the 

exception of TS and G-N, alkaline phosphatase activity was significantly enhanced by WDG, 

G+N, urea and DA addition, especially with low and medium rates. All amendments 

significantly increased dehydrogenase activity, but the rate effect was variable among all 

treatments. Protease activity was also enhanced by all amendment additions, with TS being less 

effective than others. All amendments with exception of TS significantly increased MBC, MBN 

and MQ. TS had no effect on these parameters, which is attributed to less organic carbon added 

relative to nitrogen in this amendment. Overall, addition of bioenergy processing by-products to 

soil stimulated microbial growth and enzyme activity; supporting their overall use and value as 

soil amendments to enhance soil biological activity and recycle plant nutrients.   

4.3 Introduction 

Increased demand for renewable sources of energy has driven the need to consider 

bioenergy as an alternative to fossil fuel. Ethanol production from cereal grain (mainly corn) 

involves conversion of starch to ethanol through fermentation followed by distillation. The 

by-products of these processes are wet distillers’ grains (WDG) comprised of coarse grain 

particles and thin stillage (TS) containing yeast cells, soluble nutrients and very small grain 

particles (Bonnardeaux, 2007). Due to their nutritional value of relatively high protein, 

phosphorus concentration and other minerals, distillers’ grains (DG) have commonly been used 

as animal feed (Ham et al., 1994; Bonnardeaux, 2006; Harris et al., 2008). However, expanded 
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ethanol production may result in a surplus of DG (Rausch and Belyea, 2006); therefore, 

alternative approaches of their utilization are needed, including consideration of land application.  

The manufacture of biodiesel from oilseed like canola is accompanied by a primary 

by-product of glycerol (GL), produced via transesterification of oils from plants (The Glycerol 

Challenge, 2007). One tonne of biodiesel produced is associated with 100 kg of GL as a 

by-product (The Glycerol Challenge, 2007). Traditional uses of GL include food additive, 

industrial chemical and pharmaceutical preparations, as well as new uses such as addition to 

animal feeds (Groesbeck et al., 2008). As GL is a carbon-rich substrate, it may have utility as a 

soil amendment; however, there is limited information on effects of GL when land applied as a 

carbon containing soil amendment.  

The bioenergy production by-products discussed above can be deemed somewhat similar 

to other organic amendments such as animal manures, paper mill biosolids, sewage sludge, 

compost and crop residues; especially in terms of their low content of essential plant nutrients 

compared to commercial inorganic fertilizer. Many studies have investigated the effect of such 

traditional amendments on nutrient availability (Lupwayi et al., 2005; Schoenau and Davis, 

2006) and soil enzyme activity (Mandal et al., 2007; Fernández et al., 2009). Enzymes are 

considered to be a key soil component catalyzing important transformations related to nutrient 

turnover. As such their activity in soil can be revealing and they are attractive as one measure of 

soil health (Dick, 1997). Other microbial indices that have been suggested as soil health 

indicators are microbial biomass and microbial quotient, which is the proportion of total soil 

organic C represented by microbial biomass C (Sparling, 1997). The amount of microbial 

biomass in soils typically reflects total organic matter content (Sparling, 1997) and is an active 

fraction of soil organic matter. Microbial biomass carbon comprises 1-5% (w/w) of total soil 

organic C, while microbial nitrogen comprises 1-6% of total soil organic N (Jenkinson and Ladd, 

1981; Sparling, 1985; Wardle, 1992).  

Microbial biomass C, phosphatase and dehydrogenase activities have all been found to be 

higher in soils treated with animal manure (Parham et al., 2002; Masto, 2006). Rose et al. (2006) 

found that application of different composts to soil significantly enhanced enzyme activities. 

However, Fernández et al. (2009) reported that application of composted or non-composted 

sewage sludge caused decreases in microbial biomass C and enzyme activities. Soil amended 

with crop residues (straw and cotton), animal by-products (meat bone meal and blood meal) 
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produced a significant increase in soil microbial biomass C and enzymatic activities (Cayuela, 

2009). 

It is clear that addition of organic materials to soil can have variable effects on enzyme 

activity and microbial biomass. However, information on impact of application of bioenergy 

production by-products is scarce. As these organic materials are rich in carbon and other 

nutrients, their application to soil should stimulate microbial activity and therefore contribute to 

nutrient turnover. Therefore, the objective of this study was to investigate the effect of applying 

bioenergy by-products at different rates on activity of three selected enzymes (alkaline 

phosphatase, dehydrogenase and protease), microbial biomass C, microbial biomass N, and 

microbial quotient in comparison to urea and alfalfa as conventional amendments, in order to 

understand how these materials may be better utilized on a large scale as alternative soil 

amendments.  

4.4 Materials and Methods 

4.4.1 Experimental design 

4.4.1.1 Soil and by-products preparation 

 The soil selected for the incubation study was a field fresh soil collected from the surface 

layer (0-15 cm) of a cultivated Brown Chernozem (U.S. equivalent: Aridic Haploboroll) in 

south-central Saskatchewan, Canada. Wet distillers’ grains (WDG) and thin stillage (TS) were 

obtained from a wheat-based ethanol production facility at Lanigan, Saskatchewan. Glycerol 

(GL), a thick syrupy liquid from canola-based biodiesel production, was obtained from Milligan 

Biotech at Foam Lake, Saskatchewan. Alfalfa used in this study for comparison was a dried 

dehydrated (DA) powder obtained from MCN Bioproducts Inc., Saskatoon, Saskatchewan. All 

by-products were sub-sampled for composition characterization and then stored at 4 °C until use. 

Selected characteristics of the soil and by-products used in the controlled environment chamber 

experiment are given in Table 4.1 and Table 4.2 respectively. The amendment treatments of urea, 

DA, WDG, TS and GL were applied at three rates. Glycerol treatments included an application 

alone (G-N) and with nitrogen (G+N). The three rates were equivalent to 100, 200 or 400 kg N 

ha-1 for all amendments with exception of GL; referred to as low, medium and high rate 

respectively in this study. The three rates of GL (low, medium and high) were 100, 1000 and 
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10000 kg GL ha-1 respectively, equivalent to 40, 400, and 4000 kg C ha-1 or 20, 200 and 2000 µg 

C g-1 soil respectively, given a C content of the GL of 40% C by weight. The three rates of 

glycerol C addition were chosen along a range of rates of other amendments commonly used on 

the Canadian Prairies such as manures at 10 – 15 kg tonnes ha-1 and mineral fertilizer at 100 kg 

ha-1. The rates of application were determined based on nitrogen content of amendments, except 

glycerol in which the rate was selected according to C content since it does not contain N. Each 

rate of GL was applied alone or combined with 300 kg N ha-1 of urea. The C:N ratio of GL plus 

urea is 13:1 for 10000 kg GL ha-1 (4000 kg C ha-1) combined with 300 kg urea-N ha-1 treatment. 

This will ensure that N is not a limiting factor and will thereby promote microbial activity to 

decompose/utilize GL carbon.  

Table 4.1. Selected properties of soil used in the experiment. 
Properties Value 
Organic C (mg g-1) 18.9 
Total N (mg g-1) 1.1 
Total P (mg g-1) 0.5 
Extractable P (mg kg-1) 5.7 
Extractable NO3-N (mg kg-1) 1.7 
pH 7.9 
EC (mS cm-1) 0.3 

 

Table 4.2. Selected properties of organic amendments used in the experiment.  
Amendments¶ OC  Total N Total P S  pH C:N C:S MC#  
       --------------------mg g-1----------------------         % 

DA 432 25 2.2 2.8 ND§ 17:1 153:1 10 

WDG 511 37 4.2 13.7 ND 14:1 36:1 74 

TS 449 73∫  13.3 14.6 3.8 6.20 31.10 92.5 
¶ DA denotes dehydrated alfalfa; WDG denotes wet distillers’ grains; TS denotes thin stillage. All 

nutrient content rates are on dry weight basis. 
§ ND, not determined. 
# MC, moisture content. 
∫  21% of total N in TS is in NH4

+ form on a wet basis. 

4.4.1.2 Incubation set-up 

 Field-moist soil samples were weighed (650 g) and placed in 1-L pots (12.2 cm height × 12 

cm diameter). Three rates of urea (0.0864, 0.1728 and 0.3456 g pot-1), DA (1.5773, 3.1564, and 
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6.3092 g pot-1), WDG (4.36, 8.72 and 17.44 g pot-1), TS (8.512, 17.024 or 34.048 g pot-1) and the 

GL treatments with or without 263.2 mg of urea (150 µg N g-1
 or 300 kg N ha-1) were prepared. 

A control that received no organic amendment was included. In preparation of the solid 

amendment treatments, first, 50 g of soil was mixed with the amendment and spread on the soil 

surface. Then 150 mL of deionized water, which is sufficient to bring soil moisture to field 

capacity level, was added and then 100 g of soil was placed on top. In case of liquid or slurry 

amendments (GL, TS), 700 g of soil was weighed into each pot, and then the amount of 

amendment was mixed well with 150 mL of deionized water and then added to soil. Then, 100 g 

of soil was placed on the top. Some of the liquid amendment may have infiltrated below the 

depth of placement. Solid organic materials were mixed with smaller quantity of soil first to 

ensure that they are homogenously incorporated and evenly distributed in the surface soil in the 

pots. Addition of 100 g of soil to cover amendments was intended to represent a shallow layer of 

soil covering the amendment that would happen if they were injected or banded in the field as a 

possible method of their application. Each treatment was replicated four times. All pots 

containing amended soil were placed on a bench in laboratory and allowed to remain in place for 

6 h prior to incubation. Pots containing amended soils were then incubated for a period of 10 d in 

a growth chamber with electronically controlled environmental settings in which the chamber 

was set for 16 h at 25 °C (day) and 8 h at 18°C (night). A short-term incubation was chosen 

because greatest response of biological indicators to addition of organic materials is expected to 

occur within a few days of incubation following application. Moisture contents in the pots were 

constantly maintained by measuring weight loss on a daily basis, and deionized water was added 

when needed. At the end of incubation, soils were removed, air-dried and then coarse sieved (< 2 

mm) for preparation to determine enzymatic activity and microbial biomass C and N in each 

treatment.  

4.4.2 Enzyme assays 

 Alkaline phosphatase activity was determined using p-nitrophenyl phosphatase substrate 

made in a buffer solution with pH = 11 as described by Alef et al. (1995). Briefly, 1 g of moist 

soil was treated with 0.25 mL of toluene, 4 mL of modified buffer (pH 11), 1 mL of 

p-nitrophenyl phosphate made in the same buffer, mixed and incubated for 1 h at 37 °C. After 

incubation, 1 mL of 0.5 M CaCl2 and 4 mL of 0.5 M NaOH were added, and contents were 
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mixed and filtered through a filter paper. The absorbance in the filtrate was then measured at 400 

nm using a spectrophotometer.  

 Dehydrogenase activity was determined by the reduction of 2,3,5-triphenylterazolium 

chloride (TTC) to triphenyl formazan (TPF) as described by Casida et al. (1964) and slightly 

modified by Serra-Wittling et al. (1995). In particular, 3 g of air-dried soil (< 2 mm) was 

incubated with 3 mL water and 3 mL TTC at 37 °C for 24 h in darkness. After incubation, 10 mL 

of methanol was added, and contents were mixed and filtered through a glass fiber filter. 

Additional methanol was added until the reddish color disappeared from the filter. The filtrate 

was then diluted with methanol to a 100-mL  volume. The intensity of reddish color caused by 

the reduction of TTC to TPF was then measured using a spectrophotometer at 485 nm.  

 Protease activity was measured based on a method described by Alef and Nannipieri 

(1995). The activity was estimated by determination of amino acids released from 1 g of moist 

and sieved soil sample (< 2 mm) incubated with sodium caseinate (2%) for 2 h at 50 °C using 

Folin-Ciocalteu reagent. Centrifuged and filtered mixtures were read in a spectrophotometer at 

700 nm.   

Enzyme assays were conducted in duplicate with one control where the same procedure 

for enzyme assay was followed but the measurement substrate was added to soil after incubation 

and the value subtracted from a sample value. 

4.4.3 Microbial biomass analyses 

 The microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) were 

determined by fumigation extraction method as described by Voroney et al. (2008). Briefly, two 

25 g portions of sieved soil (< 2 mm) that were preincubated at 50% water holding capacity were 

weighed out. One sample portion (25 g) was fumigated with ethanol-free CHCl3 for 24 h under 

vacuum and then extracted with 0.5 M K2SO4 (1:2 soil: extractant ratio). The other sample 

portion was extracted immediately. Total organic C and N from fumigated and non-fumigated 

(control) soil extract were analyzed using a CN analyzer (TOC-VCPH-TN Shimadzu). The non-

fumigated control values were subtracted from fumigated values, and MBC and MBN were 

calculated using KEC factor of 0.45 for MBC (Wu et al., 1990; Joergensen, 1996) and KEC factor 

of 0.54 for the MBN (Joergensen and Mueller 1996).  
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To calculate microbial quotient (MQ), organic carbon (OC) in air-dried soil (< 2 mm) 

was determined using Leco CR-12 Carbon Analyzer. Then, microbial quotient (MQ) was 

calculated as MBC/OC (%).  

4.4.4 Statistical Analyses 

 The experiment was set up as a completely randomized design. The treatments were 

arranged as a complete factorial. It consisted of six amendment treatments with three levels plus 

a control. Shapiro-Wilk test was used for testing whether data come from a normal distribution. 

Data corresponded to required assumptions and did not need to be transformed; therefore, 

statistical analysis was conducted on the raw data. The effects of organic amendments, rate and 

their interaction on activity of each selected enzyme, MBC, MB N and MQ were carried out 

using the General Linear Model (GLM) procedure in SAS software, version 9.2 (SAS Institute, 

Cary, NC). Main and interaction effects of amendment type and application rate were determined 

after excluding control data from the dataset in order to obtain factorial combination of various 

factors including 6 types of amendments and 3 rates of application. Means of the control and the 

three rates of each organic amendment application were separated by Fisher’s protected LSD at 

P < 0.05 to test if they are significantly different. The effects were declared statistically 

significant at P < 0.05.  

4.5 Results 

4.5.1 Enzyme activity 

Phosphatase activity was significantly influenced by amendment (P < 0.001), rate (P < 

0.05) and their interaction (P < 0.001). The greatest phosphatase activity was obtained with 

dehydrated alfalfa applied at the low rate and activity of this enzyme decreased with increasing 

rate (Fig. 4.1). All rates of DA were significantly different from the control. Urea treatments 

significantly increased phosphatase activity, compared to the control, and similar results were 

obtained for WDG treatments, although the high rate of WDG was not significantly different 

from the control (Fig. 4.1). Neither TS nor G-N at any rate differed significantly from the control 

(Fig.4.1).  
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Dehydrogenase activity was significantly influenced by amendments (P < 0.001), rate (P 

< 0.001) and their interaction (P < 0.01). The highest value for dehydrogenase activity was 

observed when thin stillage was applied, followed by dehydrated alfalfa, WDG, and urea (Fig. 

4.2). The activity of dehydrogenase enzyme was higher when GL was applied with N compared 

to without N (Fig. 4.2).  

Amendment (P < 0.001), rate (P < 0.001) and their interaction (P < 0.001) also 

significantly affected protease activity in the amended soil. Urea, DA and WDG amendments 

showed a similar pattern in their effect on protease activity, in which the tyrosine value increased 

with increasing rate (Fig. 4.3). However, the effect of TS was only significant when applied at a 

low rate (Fig. 4.3). Glycerol addition greatly stimulated protease activity whether in absence or 

presence of N (Fig. 4.3). 

4.5.2 Microbial biomass C 

The content of MBC was higher in all amendment treatments compared to the control, 

with the exception of TS. The DA treatment significantly increased MBC content, with no 

significant differences observed among the DA rates of application (Fig. 4.4). The MBC content 

in soil treated with WDG applied at any rate was significantly higher than that of the control, 

with greatest content of MBC obtained with the high rate of WDG (Fig. 4.4). However, TS had 

no significant effect on MBC when applied at any rate (Fig. 4.4). The MBC content in soil 

treated with GL in the absence of N was significantly higher than that of the control, but with no 

significant differences observed among rates of application. In presence of N, GL addition also 

enhanced MBC content in soil (Fig. 4.4), with the high rate of GL plus N having the highest 

MBC. 

4.5.3 Microbial biomass N 

The content of MBN in soils treated with DA or WDG at different rates increased with 

increasing rate and was highest in WDG-treated soil at the high rate (Fig. 4.5). Only the medium 

rate of urea produced significantly higher MBN than the control. Glycerol alone and TS did not 

have a significant effect (Fig. 4.5). 
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4.5.4 Microbial quotient 

With the exception of TS, the amendments had a significant effect on MQ (P < 0.001), 

whereas rate and interaction effects were not significant (P > 0.05). The highest value was 

observed under WDG applied at the high rate (Fig. 4.6). Regardless of the application rate, all 

amendments except the TS significantly increased the MQ ratio (Fig. 4.6).  
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Fig. 4.1. Alkaline phosphatase enzyme activity in soil amended with three rates (low, L; 
medium, M; high, H; control, C) of urea, dehydrated alfalfa (DA), wet distillers’ grains (WDG), 
thin stillage (TS), glycerol without nitrogen (G-N) and glycerol with nitrogen (G+N). Bars 
sharing the same letter within each amendment treatment are not significantly different according 
to LSD test (P < 0.05). Error bars represent standard error of the mean (n =4). *P < 0.05; **P < 
0.01; ***P < 0.001. 
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Fig. 4.2. Dehydrogenase enzyme activity in soil amended with three rates (low, L; medium, M; 
high, H; control, C) of urea, dehydrated alfalfa (DA), wet distillers’ grains (WDG), thin stillage 
(TS), glycerol without nitrogen (G-N) and glycerol with nitrogen (G+N). Bars sharing the same 
letter within each amendment treatment are not significantly different according to LSD test (P < 
0.05). Error bars represent standard error of the mean (n = 4). *P < 0.05; **P < 0.01; ***P < 
0.001. 
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Fig. 4.3. Protease enzyme activity in soil amended with three rates (low, L; medium, M; high, H; 
control, C) of urea, dehydrated alfalfa (DA), wet distillers’ grains (WDG), thin stillage (TS), 
glycerol without nitrogen (G-N) and glycerol with nitrogen (G+N). Bars sharing the same letter 
within each amendment treatment are not significantly different according to LSD test (P < 
0.05). Error bars represent standard error of the mean (n = 4). *P < 0.05; **P < 0.01; ***P < 
0.001. 
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Fig. 4.4. Microbial biomass carbon (MBC) in soil amended with three rates (low, L; medium, M; 
high, H; control, C) of urea, dehydrated alfalfa (DA), wet distillers’ grains (WDG), thin stillage 
(TS), glycerol without nitrogen (G-N) and glycerol with nitrogen (G+N). Bars sharing the same 
letter within each amendment treatment are not significantly different according to LSD test (P < 
0.05). Error bars represent standard error of the mean (n = 4). *P < 0.05; **P < 0.01; ***P < 
0.001. 
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Fig. 4.5. Microbial biomass nitrogen (MBN ) in soil amended with three rates (low, L; medium, 
M; high, H; control, C) of urea, dehydrated alfalfa (DA), wet distillers’ grains (WDG), thin 
stillage (TS), glycerol without nitrogen (G-N) and glycerol with nitrogen (G+N). Bars sharing 
the same letter within each amendment treatment are not significantly different according to LSD 
test (P < 0.05). Error bars represent standard error of the mean (n = 4). *P < 0.05; **P < 0.01; 
***P < 0.001. 
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Fig. 4.6. Microbial quotient (MQ) in soil amended with three rates (low, L; medium, M; high, H; 
control, C) of urea, dehydrated alfalfa (DA), wet distillers’ grains (WDG), thin stillage (TS), 
glycerol without nitrogen (G-N) and glycerol with nitrogen (G+N). Bars sharing the same letter 
within each amendment treatment are not significantly different according to LSD test (P < 
0.05). Error bars represent standard error of the mean (n = 4). *P < 0.05; **P < 0.01; ***P < 
0.001. 
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4.6 Discussion 

4.6.1 Enzyme activity 

 Soil enzymes play a vital role in numerous essential functions related to nutrient 

cycling. The activity of these enzymes is a reflection of microbial activity in soil, and therefore 

they act as soil quality indicators (Dick and Wang, 2000). Extracellular phosphatase enzyme 

activity functions in soil P cycling through hydrolysis of organic phosphate compounds (Skujis 

and Burns, 1976), and is expected to be influenced by P containing amendments (Marianari et 

al., 2000). With exception of TS and G-N treatments, addition of bioenergy processing 

by-products stimulated microbial growth and activity as reflected by their significant effect on 

phosphatase activity. This could be in part due to the relatively high content of organic P, 

especially in WDG and DA amendments. This is supported by other workers who found that an 

elevated phosphatase activity reflects presence of organic P and the lack of available P to soil 

microorganisms (Skujins, 1967; Nannipieri et al., 1979; Bol et al., 2003). Similarly, phosphatase 

activity was also found to be significantly higher in soil treated with different composts (Rose et 

al., 2006). Phosphatase activity was not affected by TS addition, and this might be due to the 

relatively high concentration of available soluble P as has been shown with pig slurry (Plaza et 

al., 2004) or dairy slurry addition (Bol et al., 2003). In a growth chamber study, Schoenau et al. 

(2009) revealed that soil amended with TS showed a higher level of available P than that of the 

control or urea-treated soil. Another possible explanation is that the acidic nature of TS might 

have contributed to the absence of significant impact on phosphatase activity. Similarly, Bardgett 

et al. (1995) reported that addition of acidic silage effluent had no consistent effect on both 

phosphatase and urease activity.  

The dehydrogenase enzyme activity in the soil reflects the functioning of microbial redox 

systems (Trevors, 1984) that are involved in oxidation of soil organic matter (Skujins and Burns, 

1976). Therefore, it has been frequently used for assessing management influences on soil 

quality (Gil-Sotres, 2005). Incorporation of bioenergy by-products into soils will promote 

microbial growth, explaining the significant increase in dehydrogenase activity we observed. The 

enhancement of dehydrogenase activity in soil treated with bioenergy by-products was higher or 

relatively similar to that of DA or urea. Rate of amendment application did have inconsistent 
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effects on dehydrogenase activity. Our findings are in agreement with other studies that have 

revealed that soil amended with organic fertilizer, landfill effluents and industrial waste had 

higher dehydrogenase activity than unamended equivalents (Bardgett et al., 1995; Pascual et al., 

1999; Langer and Gunther, 2001). 

The protease enzyme hydrolyses N compounds to NH4
+ using low molecular weight 

substrates (Tabatabai, 1982; Alef and Nannipieri, 1995). The significant increase in protease 

activity of bioenergy by-product amended soils is possibly due to stimulation of microbial 

activity by enhancing resource availability, especially with high rates of addition. The 

enhancement of protease activity in treated soils could be explained by addition of N containing 

organic substrates. This is in agreement with another study that showed a significant 

enhancement of protease activity by sewage sludge and cattle manure compost addition (Rose et 

al., 2006). However, greatest protease activity was observed with GL treatments and the GL 

itself does not contain N. The high content of labile low molecular weight carbon in GL would 

be readily available and utilized by soil microorganisms as a source of energy, thereby 

stimulating the microbial population to hydrolyze soil organic N to NH4
+ via protease enzyme. 

This may be an appropriate interpretation of elevated protease activity shown with GL-amended 

soil. The limited effect of TS application may be due to the fact that 20% of total N present in 

this material is in available form of NH4
+, which may inhibit protease activity at high rates. This 

interpretation is supported by other researchers who found limited effect of pig slurry addition on 

urease activity and attributed this to the large portion of NH4
+ incorporated with this amendment 

(Béline et al., 1998; Plaza et al., 2004). Microbial production of enzymes occurs at expense of 

growth and metabolism if available nutrients are scarce (Koch, 1985; Allison and Vitousek, 

2005), and it has been reported that activities of nutrient-releasing enzymes are often negatively 

correlated with concentrations of available nutrients (Pelletier and Sygush, 1990; Chróst, 1991; 

Sinsabaugh and Moorhead, 1994). 

4.6.2 Microbial biomass carbon 

The soil microbial biomass plays a vital role in breakdown of organic materials added to 

soil, thereby enhancing nutrient cycling and availability to plants (Moore et al., 2000). The soil 

microbial biomass is the most labile pool of organic matter, and can give an early indication of 

changes in total soil organic matter content long before changes in total soil C and N can be 
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reliably detected (Powlson et al, 1987). The increase in MBC content observed in soil amended 

with bioenergy by-products can be attributed in part to input of readily decomposable nutrient 

containing substrates, as shown in other studies of soil amended with organic materials such as 

animal manures, crop residues and silage effluent (Martens et al., 1992; Wardle, 1992; Kandeler 

and Eder, 1993; Bardgett et al., 1995). Thin stillage addition was less effective in enhancing 

MBC than other amendments. This effect was consistent with its limited effect on activity of 

phosphatase and protease enzymes. The DA and WDG treatments had a higher MBC content, 

and this is most likely related to a wider C:N. Fauci and Dick (1994) reported that soil amended 

with poultry manure showed less impact on MBC compared to beef manure or pea vine 

amendments and related this to the narrow C:N ratio of 8.3 of the poultry manure, where C was 

apparently limiting MBC accumulation in the poultry manure treatment. Lack of response to rate 

of C substrate addition as GL suggests that microbial growth is not limited by C at the higher 

rates but may be limited by N. 

4.6.3 Microbial biomass nitrogen  

 In a field experiment, Zaman et al. (2002) reported that soil amended with organic 

amendments, such as dairy shed effluent exhibited a more significant impact on soil MBN than 

soil treated with chemical fertilizer (NH4Cl) and attributed this to C, N, and other energy rich 

nutrient, such as PO4-P, and SO4-S present in the organic amendment. When averaged across the 

three rates, urea addition was least effective in terms of its impact on MBN. Unlike the medium 

rate, high rate and low rate application of urea did not show a significant impact on MBN. The 

high rate of urea-N was actually suppressing microbial activity, resulting in less N tied up in 

their cells.  The WDG, G+N and DA contributed most to soil MBN increase. This is probably 

due to readily available nutrient substrates and C that would have a significant impact on 

microbial growth and activity. This is in agreement with other studies of soil amended with 

different types of organic materials such as sugarcane trash, press mud, mustard oil cake and cow 

dung (Paul and Solaiman, 2004); straw incorporation (Powlson et al, 1987); and application of 

dairy shed effluent (Zaman et al., 2002) reporting that soil amended with organic materials had 

higher MBN content compared to unamended soil. 
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4.6.4 Microbial quotient 

Microbial quotient is a useful measure of soil quality change and soil organic matter state 

after addition of organic materials, and has been reported to be a better indicator than either 

MBC or total C (Sparling, 1992; 1997). Jenkinson and Ladd (1981) reported that MBC typically 

comprises 1-5% of soil organic C. Similarly, in the current study, MQ content was within this 

range in all treated-soils; with the lowest value in the unamended control and the highest value in 

the high rate WDG-amended soil. It is believed that the larger the MQ is, the more active and 

susceptible is the organic matter to change (Sparling, 1992).  

4.7 Conclusion 

Generally, a significant positive response of microbial parameters measured in this study 

to addition of the by-products indicates that amendment has a beneficial impact on soil quality as 

it relates to microbial growth and activity. The results of this study would support the potential 

use of these organic materials as soil amendments. Long-term controlled environment and field 

experiments are needed to assess the agronomic value of these materials as organic fertilizers to 

increase soil nutrient availability and crop growth, particularly as the bioenergy industry expands 

and availability of its by-products increases. 
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5. POSSIBLE UTILIZATION OF ASH FROM MEAT & BONE MEAL AND DRIED 
DISTILLERS’ GRAINS GASIFICATION AS A PHOSPHORUS FERTILIZER: CROP 

GROWTH RESPONSE AND CHANGES IN SOIL CHEMICAL PROPERTIES 

5.1 Preface 

 Ash is a by-product generated during gasification/combustion of organic materials to 

produce biogas. Unlike the amendments investigated in Chapters 3 and 4, the ash by-product 

lacks C and N content due to its production conditions, but a high content of phosphorus makes it 

a good candidate for being a P fertilizer.  Ash will primarily affect soil chemical conditions 

rather than biological properties like the organic BPBs evaluated in Chapters 3 and 4. This study 

evaluated the effectiveness of gasified meat & bone meal ash (MBMA) and dried distillers’ 

grains ash (DDGA) as a phosphorus source for canola in a growth chamber experiment. Changes 

in selected soil chemical properties were also assessed at the end of the experiment.  

This chapter has been published as: Alotaibi, K.D. and J.J. Schoenau, T. Fonstad. 2013. 

Possible utilization of ash from meat and bone meal and dried distillers grains gasification as a 

phosphorus fertilizer: crop growth response and changes in soil chemical properties. J. Soils 

Sediments 13: 1024-1031. The contributions of  co-authors to this publication were as follows: 

J.J. Schoenau provided guidance and suggestions in addition to manuscript editing. T. Fonstad 

provided the gasified organic materials ash used in the current study.  
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5.2 Abstract 

The gasification process is regarded as a viable option for treatment of various types of 

organic waste. Its application to meat and bone meal (MBM) and dried distillers’ grains (DDG) 

is a new concept that is recently receiving more attention as a possible strategy for safe recycling 

of these materials to benefit from their energy and nutrient value. This process produces ash that 

is rich in phosphorus (P) and may be suitable for utilization as a P fertilizer. Therefore, the 

objective of this study was to evaluate the effectiveness of these specific types of ashes as P 

fertilizers via evaluating their direct effect on canola growth, P uptake, apparent P recovery and 

changes in selected soil chemical properties after their addition to a P deficient soil. A growth 

chamber controlled environment experiment was set up to meet the study objective. The 

experimental treatments included meat and bone meal ash (MBMA) and dried distillers’ grains 

ash (DDGA) applied at three rates (25, 50 or 100 kg P ha-1) in comparison to a mineral 

(mono-calcium phosphate) fertilizer (MP) applied at the same rates in addition to non-P treated 

soil (control). After a growth period of five wk, the DDGA was the most effective ash type and 

provided biomass yield, P uptake and apparent P recovery better or similar to that of MP, 

indicating high availability of its P. The MBMA had a limited effect on measured crop variables, 

suggesting that a significant portion of this ash P is present in insoluble form and is not as readily 

available for plant uptake. This was also indicated by its lesser effect on enhancing extractable 

available P remaining in soil after harvest in comparison to MP or DDGA. Application of all ash 

material caused a slight but significant change in soil content of inorganic N as well as soil pH 

and EC ; however, this change was more evident with DDGA treatments. Ash derived from 

gasified DDG was the most effective P fertilizer and was comparable to mineral fertilizer. The 

results of this study demonstrated that the effectiveness of organic material ash as a P fertilizer is 

controlled by the type of gasified feedstock. The positive results obtained from this study should 

stimulate further research on utilization of these ashes as a source of P for different crops in 

different soil types, especially repeated application under field conditions. 



 

 

68 
 

    

5.3 Introduction 

 Rapid growth in energy demand coupled with uncertainty of fossil fuels reserves and 

attempts to mitigate greenhouse gas emissions have stimulated the production of energy from 

biomass. Conversion of biomass to energy can be achieved via various types of technologies, 

some of which are thermochemical conversion processes, such as combustion, gasification and 

pyrolysis. Gasification is a process that can be employed to convert biomass (Balas et al., 2007) 

and meat production waste (Fedorowicz et al., 2007) to energy. Gasification process is defined as 

the thermal-chemical decomposition of organic materials under high temperature (800-900°C) 

and in presence of oxygen (Ferreira et al., 2009). This technology is not a new concept, but its 

application to certain types of organic materials as feedstocks has not been widely evaluated or 

adopted. For example, biomass gasification as a means of meat and bone meal (MBM) and dried 

distillers’ grains (DDG) recycling and energy recovery has recently gained interest (Fedorowicz 

et al., 2007; Tavasoli et al., 2009; Cascarosa et al., 2012;).  

The MBM, a by-product of rendering industries, is obtained after eliminating fat from 

mammal carcasses during the cooking process followed by drying and crushing (Cascarosa et al., 

2012). The DDG is the by-product resulting from the conversion of cereal grain starch to ethanol 

through fermentation and distillation processes. In addition to generation of biogas or syngas, 

such as CO, N2, CH4, CO2, the gasification of MBM and DDG also produces a valuable 

by-product of ash. Thus, progressive adaptation of thermochemical treatment of biomass waste 

has led to a large quantity of ash by-product being generated (Kuligowski and Poulsen, 2009; 

Pagliari et al., 2010). Therefore, best uses of this ash need to be explored, including its utilization 

as a phosphorus (P) fertilizer.  An attractive option is to recycle P-rich ash to replenish 

P-depleted soil, especially in the light of the shrinking global phosphate rock reserves and 

increasing demand for P fertilizer in agricultural production. The ash by-product contains higher 

concentrations of the P and K than what is originally present in the gasified materials 

(Kuligowski and Poulsen, 2009), and the ash fraction constitutes only about 1% of the raw waste 

mass. As such there is a significant reduction in processed waste volume and nutrient is 

significantly concentrated, especially P and K in ash generated, lowering cost of transport. 

However, the fertilizer value of ash may vary depending on feedstock and gasification 

conditions, tested crop and soil properties. Ashes derived from different organic materials, such 

as poultry litter, turkey manure and crop residues were found to have a positive effect on crop 
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yield and soil properties when utilized as P fertilizer source (Codling et al., 2002; Pagliari et al., 

2009; Schiemenz and Eichler-Löbermann, 2010). However, evaluation of ashes derived from 

MBM and DDG as P fertilizer is lacking and deserves attention. The MBMA and DDGA were 

characterized for their high content of P, and were suggested as a potential phosphate source for 

agricultural soil (Deydier et al., 2005; Coutand et al., 2008). Since gasification of MBM and 

DDG is a new concept and the produced ash is rich in P and is suitable for land application, more 

information is needed to determine the value of these specific ash types as a P source for crop 

growth. Therefore, the objective of this study was to evaluate canola growth and changes in 

selected soil chemical properties after the application of different rates  MBMA and DDGA in 

comparison to conventional soluble P fertilizer (mono-calcium phosphate), under controlled 

environment conditions.  

5.4 Materials and Methods 

5.4.1 Soils 

The soil used for this study was collected from the surface layer (0–20 cm) of a cultivated 

(cereal-legume-oilseed rotation) Brown Chernozem (U.S. equivalent: Aridic Haploboroll) in 

south-central Saskatchewan, Canada. This soil type (Brown Chernozem) was selected for this 

particular study because it was relatively low in its content of plant available P and is typical of 

the south-central prairie region of Saskatchewan. Bulk soils were collected from the same depth 

and combined to give a composite soil sample. Then, the composite soil was brought to the soil 

processing unit at the University of Saskatchewan and mechanically mixed using a stationary 

mixer to provide a homogenized sample, followed by air-drying and storage at 20°C until its use. 

Soil was analyzed for its basic characteristics immediately prior to experiment initiation.  The 

soil has organic C content  of 19 mg C g-1, pH of 7.2, electrical conductivity of 0.19 dS m-1, 

NO3
--N of 9.7 mg kg-1, NH4

+-N of 6.1 mg kg-1, and available P and K of 7.3 and 450 mg kg-1, 

respectively.   

5.4.2 Ash production and procurement 

The MBM ash (MBMA) was produced from gasification of bovine MBM cracklings that 

was supplied by Saskatoon Processing Ltd., Saskatoon, SK, Canada. The DDG ash (DDGA) was 
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produced from gasification of DDG that was provided by a wheat-based ethanol production 

facility near Lanigan, Saskatchewan. First, the MBM and DDG products were ground in the lab. 

Then, they were gasified at atmospheric pressure in a two-stage fixed bed reactor using a 

fluidized bed gasification pilot system developed by the Fluidization Laboratory of 

Saskatchewan (FLASKTM) at the University of Saskatchewan, Department of Chemical 

Engineering to produce syngas from biomasses and other carbonaceous materials (Campbell et 

al., 2012). The materials were gasified at a temperature of 650 – 850°C. Details of the 

gasification process were previously given by Campbell et al. (2012). The MBMA and DDGA 

were collected and ground to pass through a 600 µm sieve to ensure appropriate homogeneity. 

The resulting ash was then stored in the lab until its use. Prior to ash application to soil, a 

representative sample of each ash type was collected and sent to a commercial laboratory (ALS 

Laboratory Group, Saskatoon, SK) for chemical composition analyses. The commercial 

laboratory used a standard method that is widely employed to analyze solid waste materials, such 

as animal manures (Peters et al., 1998). Basic properties of both ashes are given in Table 5.1.   

Table 5.1. Basic characteristics of dried distillers’ grains ash (DDGA) and meat and bone meal 
ash (MBMA). All contents are expressed on a dry weight basis.  

Parameter (total) 
Ash type 

DDGA   MBMA 
  mg g-1 

 C  8.7   0.9 
 N  1.4   2.4 
 P  187   177 
 K  149   29 
 S  8   4 

 Na  75   66 
 Ca  79   247 
 Mg  54   11 
Cu  0.2   0.1 
 Fe 6.2   3.6 
 Mn  1.7   0.1 
Zn 1.2   0.7 

C:N 6.2  0.4 
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5.4.3 Treatment application 

The experiment was set up to include ten treatments, consisting of three P sources:1) 

soluble MP fertilizer as mono-calcium phosphate, 2) MBMA, and 3) DDGA applied at three 

rates: 0.013, 0.025 and 0.050 g P pot-1. These rates are equivalent to 25, 50 and 100 kg P ha-1, 

referred to as low (L), medium (M), and high (H) rate, respectively. A control treatment that 

received no P was included. Each treatment received 200 kg N ha-1 as urea, including the control, 

to supply adequate amount of N to ensure that N was not a limiting factor for plant growth. 

Moreover, as soil used in this experiment shows deficiency in S, and canola crop requirement of 

S is high (Malhi et al., 2005), each treatment was supplied with a basal application of 40 kg S 

ha-1 as K2SO4 solution, including the control. Each treatment was replicated four times in a 

completely randomized design. 

In the experimental set-up, 800 g sample of homogenized field-moist soil was weighed and 

placed into each 1-L cylindrical plastic pot of 12.2 cm height ×12 cm diameter (tapered). P 

fertilizers (MP, MBMA, DDGA) were mixed with 50 g of soil, followed by addition of urea to 

this amount of soil, and the mixture was spread on the surface of the soils already weighed into 

each pot. Potassium sulfate (K2SO4) solution (1.25% S) was then added to soil in an amount that 

provided 20 ug S g-1, equivalent to 40 kg S ha-1.  Then 100 g of soil was added on top to cover all 

amendments. Pots containing amended soils were equilibrated for 24 h, after which 10 seeds of 

Argentine canola (Brassica napus L.L. 5030) were sown in each pot, followed by addition of 50 

g soil to each pot to cover the soil and to bring the total soil weight to 1000 g. Deiononized water 

was added to bring soil moisture to 80% of field capacity. This moisture content was maintained 

for the entire duration of study by daily watering. The pots were then moved to the growth 

chamber that was set at 22°C day and 13°C night, with an 18-h d length and 6-h night length. 

Moisture content was checked on a daily basis by weight loss, and water was added if necessary. 

After plant emergence, seedlings were thinned to keep the three most robust plants per pot.  

After five week of growth, the total aboveground biomass was harvested, dried at 50°C and 

weighed for dry matter yield determination. Plant samples were then ground and prepared for 

determination of total P content. Total P was measured by digesting the ground plant samples in 

sulfuric acid-peroxide (H2SO4-H2O2) using a temperature-controlled digestion block (Thomas et 

al., 1967), followed by automated colorimetry for determining P using a Technicon Autoanalyzer 
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II (Technicon Industrial Systems, 1973). Total P uptake was then calculated from plant P content 

and total dry matter yield. Apparent P recovery was calculated as follows: 

 

Apparent phosphorus recovery = 

€ 

TPUTP−TPUC
TotalP applied

×100  

where TPUTP denotes total P uptake for a given treatment pot, TPUC is the total P uptake in 

control pot and total P applied is the amount of P applied for a given rate of P application. 

After canola plant harvest, soils were removed, air-dried and ground to pass a 2-mm sieve 

prior to laboratory analysis. The air-dried and sieved soil samples were then analyzed for 

available P, K, inorganic N (NH4
+-N and NO3

--N), organic C, pH and electrical conductivity 

(EC). Soil pH was measured at the end of the growth period in the Department of Soil Science 

laboratory, and by ALS Labs Saskatoon for the initial soil characterization. Available P and K 

were determined by a modified Kelowna method (Qian et al., 1994). Exchangeable NH4
+-N and 

NO3
--N were extracted by shaking 5 g of soil with 50 mL of 2 M KCl for 1 h on rotary shaker, 

followed by filtration. The NH4
+-N and NO3

--N content in the KCl extracts were measured 

colorimetrically using a Technicon Autoanalyzer II (Keeney and Nelson, 1982). The organic C 

content was determined using a LECO CR-12 combustion carbon analyzer (LECO Corporation, 

St, Joseph, MI) set at 840°C (Wang and Anderson, 1998).  The pH and electrical conductivity 

were measured in 1:1 soil:water suspension. 

5.4.4 Statistical analyses 

The experiment was a completely randomized design with a complete factorial 

arrangement. It consisted of three amendment types (factor) with three rates of addition along 

with a control. Before conducting the statistical analysis, the data was subjected to Shapiro-Wilk 

test for data normality check. This test revealed that the response variables of soil NO3
--N, 

available P, pH and EC exhibited lack of normality, and this was addressed by log-

transformation. The effects of P sources (MP, MBMA and DDGA), rate (control, L, M and H) 

and their interaction on soil and crop variables were conducted using two-way ANOVA 

procedure. Treatment effects were considered significant at a probability level of P < 0.1, and 

the means were separated at P  ≤ 0.05. Treatment means separation was conducted using 
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Student-Newman-Keuls (SNK) test. Statistical analysis was carried out using the statistical 

software R (version 2.13.0; R Development Core Team, 2011).  

5.5 Results 

5.5.1 Ash characteristics 

Both of the ash types exhibited low content of total C and total N, with DDGA showing 

slightly higher content of C (see Table 5.1). The total N content in MBMA was approximately 

two times higher than that in DDGA. The dominant plant macronutrient in DDGA was P (187 

mg g-1), followed by K (149 mg g-1), Ca (79 mg g-1), Mg (54 mg g-1) and S (8 mg g-1) was the 

lowest. However, the dominant nutrient in MBMA was Ca (247 mg g-1), which was about three 

times higher than that in DDGA, followed by P (177 mg g-1), K (29 mg g-1), Mg (11 mg g-1) and 

S (4 mg g-1) which was the least prevalent nutrient present in the MBMA. The Na content in both 

ashes was 75 and 66 mg g-1 in DDGA and MBMA, respectively. The DDGA had a higher 

content of Mn, Zn, Fe and Cu compared to that in MBMA.  

5.5.2 Crop response 

Phosphorus source and rate of P application had a significant impact on total biomass yield 

of canola, and there was no significant interaction of P source and rate of P application (Table 

5.2). The response of canola crop to fertilization with the ashes was more evident with DDGA, 

compared to MBMA (Fig. 5.1).  

Phosphorus source, rate and their interaction were highly significant in their effect on P 

uptake (see Table 5.3). The P uptake significantly increased with increasing rate of application of 

all three amendments (Fig. 5.2). All treatments resulted in significantly higher P uptake than the 

control. The P uptake with DDGA application was higher than under MBMA application at all 

application rates; they were similar to those with MP application at the low and medium 

application rate, but higher at the high application rate (see Fig. 5.2).  

The P recovery by the canola plants was significantly influenced by the two factors of P 

source and rate of application, but there was no significant interaction (see Table 5.3). Overall, 

the P recovery was similar between MP and DDGA (Fig. 5.3). The canola recovered 
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significantly less P from the MBMA than the other two sources. For MP and DDGA treatments, 

P recovery decreased with increasing rate of P application.  

 

Table 5.2. Significance levels of treatment factors of P source, rate and interactions for analysis 
of crop variables (yield, P uptake and apparent P recovery).  
  Source of variation F value P value 
   

Yield 

P Source 2.79 0.079 

Rate 3.45 0.046 

P Source × Rate 0.92 0.465 
      

P uptake 
P Source 102.72 <0.001 
Rate 125.49 <0.001 
P Source × Rate 4.91 <0.001 

       

P recovery 
P Source 3.96 0.031 
Rate 3.55 0.042 
P Source × Rate 0.22 0.924 

 

5.5.3 Soil response 

The content of available P remaining in the soil after crop harvest was significantly 

influenced by P source and rate of application, and their interaction was significant (Table 5.3). 

All P treatments resulted in significantly higher extractable available P than the control (see 

Table 5.3). The available phosphorus level in soil increased significantly with increasing rate of 

application for DDGA and MP treatments, but not for MBMA treatment. The DDGA and MP 

treatments provided the highest content of residual available P, when applied at the high rate. 

The MBMA effect on residual extractable available P was reduced in comparison to MP or 

DDGA, and no significant differences were found among rates of application.  

The effect of P source on the available K in soil was significant, but the rate factor was not 

significant (see Table 5.3). The difference in soil K was small among all treatments, and was 

only significantly higher in soil treated with DDGA applied at the high rate.  

Both forms of soil residual inorganic N (NH4
+-N, NO3

--N) were significantly affected by P 

fertilizer type and rate, and their interaction was significant (see Table 5.3). The dominant 

inorganic N form remaining in soil after crop harvest was NH4
+-N. The residual soil content of  



 

 

75 
 

    

 

 

Fig 5.1 Total biomass of canola grown for five weeks in soil amended with mineral P (MP), 
meat and bone meal ash (MBMA) and dried distillers’ grains ash (DDGA), all of which were 
applied at three rates of P: 25, 50 and 100 kg P ha-1 in addition to a 0-P control. Bars sharing the 
same letter among treatments are not significantly different according to Student-Newman-Keuls 
(SNK) test (P ≤ 0.05). Errors bars represent standard error of the mean (n = 4). 
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Fig 5.2 Total plant P uptake in soil amended with mineral P (MP), meat and bone meal ash 
(MBMA) and dried distillers’ grains ash (DDGA), all of which were applied at three rates of P: 
25, 50 and 100 kg P ha-1 in addition to a 0-P control. Bars sharing the same letter among 
treatments are not significantly different according to Student-Newman-Keuls (SNK) test (P ≤ 
0.05). Errors bars represent standard error of the mean (n = 4) 

 

 

 

 

 

0 25 50 100 25 50 100 25 50 100
0

2

4

6

8

10

12

14

Phosphorus application rate (kg P ha-1)

T
o
ta
l
P
u
p
ta
k
e
(m
g
p
o
t-
1
)

Control MP MBMA DDGA

g

a

b
bc

c

d

dede

e

f



 

 

77 
 

    

 

Fig 5.3 Apparent phosphorus recovery by canola plant grown for five weeks in soil amended 
with mineral P (MP), meat and bone meal ash (MBMA) and dried distillers’ grains ash (DDGA), 
all of which were applied at three rates of P: 25, 50 and 100 kg P ha-1 in addition to a 0-P control. 
Bars sharing the same letter among treatments are not significantly different according to 
Student-Newman-Keuls (SNK) test (P ≤ 0.05). Errors bars represent standard error of the mean 
(n = 4) 
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    Table 5.3. Selected soil properties determined after crop removal (mean ± standard error). 

Treatment   P K NO3
--N NH4

+-N   OC   pH   EC 

P Source   Rate   --------------------mg kg-1----------------------  mg g-1    dS m-1 
Control   0   7.8 ± 0.2e§  400 ± 5b  3.2 ± 0.6bc 6.9 ± 0.2b   15.7 ± 0.1   8.40 ± 0.07a   0.18 ± 0.00ab 

                            

MP 
  L   9.7 ± 0.3d 385 ± 5b 3.4 ± 0.2bc 6.1 ± 0.1b   16.2 ± 0.3   8.10 ± 0.04b   0.18 ± 0.00ab 
  M   13.4 ± 0.4c 380 ± 9b 4.5 ± 0.3b 7.2 ± 0.4b   16.3 ± 0.2   7.93 ± 0.02c   0.18 ± 0.00ab 
  H   19.2 ± 0.5b 381 ± 6b 3.3 ± 0.2bc 9.1 ± 0.6b   16.3 ± 0.3   7.80 ± 0.01d   0.18 ± 0.00ab 

                            

MBMA 
  L   9.1 ± 0.4d 395 ± 10b 3.1 ± 0.3bc 9.4 ± 0.3a   16.6 ± 0.2   7.74 ± 0.01d   0.18 ± 0.01b 
  M   10.0 ± 0.3d 411 ± 9ab 3.8 ± 0.3bc 10.0 ± 0.6a   16.7 ± 0.2   7.72 ± 0.01d   0.20 ± 0.01ab 
  H   10.1 ± 0.4d 390 ± 4b 2.6 ± 0.3c  6.9 ± 0.4b   16.1 ± 0.5   7.72 ± 0.01d   0.18 ± 0.01ab 

                            

DDGA 
  L   10.1 ± 0.5d 397 ± 3b 3.5 ± 0.7bc 6.8 ± 0.3b   16.5 ± 0.5   7.64 ± 0.02e   0.18 ± 0.00b 
  M   12.6 ± 0.2c 397 ± 5b 4.3 ± 0.4bc 8.6 ± 0.1a   16.6 ± 0.4   7.60 ± 0.01e   0.18 ± 0.00b 
  H   22.7 ± 0.4a 429 ± 7a 6.4 ± 0.7a 9.5 ± 0.4a   16.6 ± 0.5   7.52 ± 0.01e   0.21 ± 0.01a 

                            
ANOVA   P value 

P Source     0.0001 0.0004 0.001 0.001   0.6444   0.0001   0.5889 
Rate       0.0001 0.408 0.012 0.001   0.7904   0.0001   0.0735 
P Source × Rate   0.0001 0.007 0.001 0.0001   0.8831   0.0001   0.0094 

      § Means within a column sharing the same letter are not significantly different at P ≤ 0.05 
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NO3
--N was all quite low, but was significantly higher in the DDGA treatment when applied at 

the high rate than all other treatments (see Table 5.3).  

The response of soil organic C to treatments application was not significantly affected by P 

source or rate of application (see Table 5.3). However, phosphorus source, rate and their 

interaction were significant for soil pH. Addition of P treatments slightly but significantly 

reduced soil pH (Table 5.3). The greatest reduction in soil pH level was obtained with DDGA 

treatments. Similarly, there was a slight increase in soil EC, and this change was not significantly 

affected by P source, but it was affected by rate of P application (see Table 5.3). However, the 

multiple comparison test showed that none of the treatments were significantly different from the 

control. 

5.6 Discussion 

5.6.1 Ash characteristics 

The chemical composition differences observed between the two ashes are mainly 

attributed to the different characteristics of the gasified raw materials (DDG and MBM), as both 

feedstocks used for gasification were subjected to the same gasification conditions (e.g. 

temperature, residence time). The DDGA had a greater amount of essential nutrient than reported 

for most of the biomass ashes reviewed by Tan and Lagerkvist (2011), probably due to the 

higher nutrient present in the original material of this specific type of DDG. It also showed 

higher content of P, Mg and K, but less Ca than chicken litter ash, wood ash and sewage sludge 

ash (Franz et al., 2008; Yusiharni et al., 2007).  

The MBMA was also rich in P, but contrary to DDGA, it had much higher concentration 

of Ca. The MBMA used in this study had relatively similar composition compared to other 

MBMA reported in other studies (Deydier et al., 2005; Coutand et al., 2008). The Ca and P in 

MBMA constitute about 42% of the total ash weight. This was anticipated, since a significant 

part of non-organic fraction of MBM is bone, the mineral portion of which consists of calcium 

phosphates (Countand et al., 2008). The content of heavy metal in MBMA was consistent with 

other types of MBMA characterized in previous studies (Deydier et al., 2005; Countand et al., 

2008), and less than in many other ash types, such as sewage sludge ash (Franz, 2008) and 

municipal solid waste ash (Rosen et al., 1994; Ferreira et al., 2003) which may not be suitable for 
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land application due to their high content of heavy metal. Both ashes used in the present study 

had low heavy metal content, and were similar or less than that found in natural rock phosphate 

or soil (Countand et al., 2008). 

5.6.2 Crop response 

Crop response to addition of DDGA was comparable to the MP treatment, with the 

MBMA being less effective, which may be attributed to reduced P availability as a result of low 

solubility of calcium phosphate present in the ash or formed in soil. The effect of P fertilization 

on crop biomass yield was found to be less pronounced and lower than for crop P uptake. 

Similarly, Schiemenz and Eichler-Löbermann (2010) deemed that ashes derived from rape meal, 

straw and cereal were adequate P sources comparable to highly soluble commercial P fertilizer, 

as demonstrated by their significant impact on crop yield and P uptake. In a two-yr field study in 

Minnesota, Pagliari et al. (2009) reported that alfalfa yield was similar in turkey manure ash 

amendment to that of mineral P fertilizer and both were higher than that of the control, when 

both P sources were applied at the same rate of P. These authors also found that P uptake was 

significantly increased with ash application. It was also noted under greenhouse conditions that 

poultry litter ash was as effective for wheat as mineral P (potassium phosphate) and provided 

greater wheat tissue P concentrations (Codling et al. ,2002).  In contrast, other studies found that 

P uptake by corn, alfalfa and Swiss chard was greater in fertilizer treatments compared to ashes 

derived from wood and municipal waste incineration (Erich and Ohno, 1992; Rosen et al., 1994). 

These inconsistent effects of ash on crop yield and P uptake may be explained by differences in 

availability of the P that depends on ash type and composition. This explains the difference in 

response of crop variables to both ashes used in the current study. The DDGA was a more 

effective source of P than that of MBMA, as shown in crop P uptake and apparent P recovery. 

This can be explained by the chemical composition of MBMA, which contains high amount of 

Ca and that can react with P to form Ca-P compounds both in the ash and as reaction products in 

the soil. Calcium phosphate in the form of apatite, a primary mineral P (Tiessen et al., 1984), is 

generally considered to have low solubility and therefore low availability for plant uptake 

(McKenzie et al., 1992). Therefore, the precipitation of poorly soluble Ca phosphates, mainly 

hydroxyapatite (Lindsay et al., 1989), could contribute considerably to the lack of recovery of 

applied P with MBMA, as seen in the present study. Identification of the specific P minerals 
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present in the ash and in the soil following application is needed. The decreased P recovery with 

increasing the rate of P application observed in this study in the MP and DDGA treatments was 

also observed by other researchers (e.g. Eghball and Sander, 1989; Miller et al., 2009). 

5.6.3 Soil response 

The soil content of extractable available P after crop removal, as influenced by P treatments, was 

consistent with effects on crop P uptake and apparent P recovery. Schiemenz and 

Eichler-Löbermann (2010) found higher readily plant available P forms in soil treated with 

biomass ashes, and Pagliari et al. (2009) found turkey manure ash also increased available P and 

K in soil. Poultry litter ash was noted to increase soil content of available P higher than mineral P 

and control, and this was attributed to the slow release of P from the initially insoluble phosphate 

compound in the litter ash (Codling et al., 2002).  

With the exception of MBMA treatments, soil available P content increased with 

increasing P rate of application, which is consistent with crop P recovery where apparent P 

recovery decreased with increasing the rate of application. This suggests that application of ash 

at higher rates may pose environmental concern through accumulation of high levels of soluble P 

in soil. The higher soil content of K in soil amended with DDGA at the high application rate is a 

result of higher K content of this type of ash application.    

Due to its low content of N, ash is not expected to have a large influence on soil N content 

following its application. However, the observed small increase in soil content of inorganic N 

(NH4
+-N, NO3

--N) after crop removal in soil amended with ashes, especially DDGA applied at 

medium and high rates, could be another positive effect of ash application. One possible 

explanation for this impact is that ash addition may have caused an indirect effect through 

stimulation of the microbial activity and thereby N mineralization by amelioration of soil 

chemical and physical characteristics (Demeyer et al., 2001). Otherwise, the mechanism 

responsible for this change in soil inorganic N content following ash application remains 

unknown.   

The ash application showed an unexpected effect on soil pH in which it caused a minor but 

significant decrease in soil pH; especially DDGA treatment applied at the high rate which 

showed approximately 10% decrease in soil pH compared to the control. Previous studies have 

shown an inconsistent effect of ash addition on soil pH, and its effect was mostly governed by 
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ash feedstock type, and amount of ash added (Eichler-Löbermann and Schnug, 2006; Schiemenz 

and Eichler-Löbermann, 2010). For instance, straw ash addition increased soil pH whereas rape 

meal ash or cereal ash did not, and this was related to the liming effect of straw ash that was 

applied at a larger rate because of its low content of P. Some other type of ashes, such as chicken 

litter ash, wood ash and poultry litter ash were found to increase soil pH (Codling et al., 2002; 

Yusiharni et al., 2007).  

The influence of ash application on total soluble salts (EC) in soil has been shown to be 

variable according to the feedstock incinerated and the rate of ash application (Codling et al., 

2002; Pagliari et al. 2009). The low rate of ash applied in the current study is consistent with the 

lack of effect on EC. Much higher rates would likely be required to produce significant 

measureable increases in soil salinity.  

5.7 Conclusion 

The DDGA was as effective as mineral P fertilizer in the form of mono-calcium 

phosphate. In contrast, the MBMA was less effective, probably related to the high content of Ca 

which combines with P to form calcium phosphates that are relatively insoluble and of low 

availability for plant uptake. The content of available P left in soil after crop harvest in the 

DDGA treatments was consistent with the crop response to ash addition, reflecting the higher 

solubility of P applied with DDGA. This suggests that application of this type of ash at high rates 

repeatedly could result in accumulation of potentially mobile P and pose environmental concern. 

Future work is recommended to assess the specific P forms present in the ash and formed within 

the soil following application.  

The positive results obtained from this study should stimulate further research on 

utilization of these ashes as a source of P for different crops in different soil types, especially 

repeated application under field conditions. 
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6. PHOSPHORUS SPECIATION IN GASIFIED MBM AND DDG ASH AMENDED SOIL AS 
ASSESSED USING A SEQUENTIAL FRACTIONATION PROCEDURE 

6.1 Preface 

Ash phosphorus may reside in soil in different forms due to dissolution or reaction with 

other compounds following its application to soil. Thus, fractionation of P into different forms of 

varying solubility and plant availability in soil after ash application will help understand the 

possible fate of the P and thereby assist in proper management. The results obtained from the 

study in Chapter 5 showed that meat & bone meal ash (MBMA) derived soil P was not as plant 

available as dried distillers’ grains ash (DDGA) P. This raised questions about what specific P 

forms may arise in the soil from the two different feedstocks, despite the fact that both ashes 

were produced using the same processing conditions. Therefore, a further investigation, reported 

on in this chapter, was conducted to examine the P species residing in the soil after crop harvest. 

This was carried out using the sequential chemical P extraction procedure as first outlined by 

Hedley et al. (1982).  This technique uses different chemical extractants of increasing strength to 

separate P in soils into various fractions of decreasing bioavailability, such as readily 

exchangeable, Ca-associated, Al oxide and Fe oxide-associated P. This chapter is in preparation 

for submission to a refereed journal. 
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6.2 Abstract 

Gasification of organic materials produces a large amount of P rich ash that can be 

utilized as a P fertilizer. However, the P present in ash may reside in soil in different forms after 

application as a result of varying proportions of other constitutes of the ash like calcium and 

interactions with the soil. Therefore, the objective of the current study was to identify P fractions 

residing in the soil after crop harvest in soil fertilized with ashes derived from gasified organic 

materials. Under controlled environment conditions, a Brown Chernozemic soil received three 

rates (25, 50 or 100 kg P ha-1) of meat and bone meal ash (MBMA) and dried distillers’ grains 

ash (DDGA) in comparison to a mineral (mono-calcium phosphate) fertilizer (MP) applied at the 

same rates, in addition to non-P treated soil (control). Soil P was fractionated into different forms 

using the sequential chemical extraction procedure. Ash addition had significant impacts on the P 

forms in the soil, and the content of each extractable form varied according to P source type. The 

largest amounts of the most labile forms of P (resin-Pi, NaHCO3-Pi) were extracted from MP 

amended soil, followed by DDGA and MBMA treated soil. The moderately available forms of P 

(NaOH-Pi, NaOH-Po) were found to be the lowest in soil treated with MBMA. Averaged over 

the three rates of application, the more recalcitrant and resistant P forms (HCl-Pi and residual-P) 

were the greatest in MBMA treated soil, representing 24 and 47% of total P, respectively. This 

increased content of HCl-Pi and residual-P forms is explained by enhanced formation of calcium 

phosphate compounds in soil treated with MBMA, as this ash type contains a high amount of 

calcium (25% by weight). The results of this study demonstrated that the P fractions formed in 

soil after ash application is to a great extent controlled by the initial composition of ashes, that 

will vary according the gasified feedstock type 

6.3 Introduction 

Phosphorus (P) is an essential element for plant nutrition, and its supply is critical in 

maximizing crop production and improving food and feed quality. Unlike N, P cannot be 

biologically fixed from the atmosphere, and it is mainly mined from phosphate rock, a 

non-renewable resource used for manufacturing mineral P fertilizer. The global demand for P 

supply is projected to increase by 50-100% by 2050 to enable high food production for a 
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growing world population that is predicted to reach about 9 billion by 2050 (EFMA, 2000; Steen, 

1998 as cited in Cordell et al., 2009; Godfray et al., 2010). This will put further pressure on the 

global natural resource of good quality phosphate rock reserves (Cordell et al., 2009). Therefore, 

a complete reliance on P fertilizer manufactured from phosphate rock may not be a good strategy 

for sustainable agricultural productivity. This stimulates the need to find other alternative  P 

sources. One option is the utilization of ash generated during bioenergy production from organic 

materials via gasification process, a thermal breakdown of organic materials under high 

temperature (800-900 °C) and in presence of oxygen (Ferreira et al., 2009). Application of this 

technology to meat and bone meal (MBM) and dried distillers’ grains (DDG) as a means of 

recycling nutrients and energy recovery has recently gained interest (Fedorowicz et al., 2007; 

Tavasoli et al., 2009; Cascarosa et al., 2012). The gasification of MBM and DDG produces ash 

by-product that was characterized for its high content of P, and has a potential as P fertilizer 

source (see chapter 5). Utilization of this by-product as a fertilizer can be a good source of 

recyclable P and will help to balance off-takes by crop removal. This option can therefore reduce 

the amount of required mineral P fertilizer. 

In general, ashes derived from various feedstocks, such as poultry litter, turkey manure 

and crop residues were shown to have a positive impact on crop yield and soil properties when 

utilized as P fertilizer source (Codling et al., 2002; Pagliari et al. 2009; Schiemenz and 

Eichler-Löbermann, 2010). However, the effects of ash on crop production and soil P availability 

may vary depending on feedstock as shown in the previous chapter, and gasification conditions 

as well as tested crop and soil properties.  

A variety of robust and adequate methods have been employed to understand phosphorus 

speciation in waste and waste treated soil. The sequential chemical extraction technique based on 

Hedley et al. (1982) has widely been applied to characterize different forms of soil P (McKenzie 

et al., 1992; Guo et al., 2000; Qian et al., 2004; Zhang et al., 2004; Verma et al,. 2005; 

Bachmann and Eichler-Löbermann, 2010). This concept of this technique is to use different 

chemical extractants of increasing strength to separate P in soils into various fractions of 

decreasing bioavailability, such as soluble, exchangeable, Ca-associated, Al oxide and Fe 

oxide-associated P.  

However, to the best of our knowledge, there is a lack of documented studies using 

sequential chemical extraction to understand transformations of P forms in soils receiving ash 



 

86 
 

    

application. Identification of P forms also is necessary to help predict the agronomic and 

environmental impact of ash P forms that may reside in soil after application. Therefore, the 

objective of this study was to determine chemical speciation of P in soil fertilized with ash under 

controlled environment conditions using chemical extraction technique.  

6.4 Materials and Methods 

6.4.1 Soil sample collection and analysis  

Bulk soil was manually collected with a shovel from the surface layer (0-20 cm) of a 

cultivated field (cereal-legume-oilseed rotation) in south-central Saskatchewan, Canada and 

classified as a Brown Chernozem (U.S. equivalent: Aridic Haploboroll). The composite soil 

sample was shipped to the soil processing facility at the University of Saskatchewan and 

mechanically mixed using a stationary mixer to give a homogenized sample. Then, the sample 

was air-dried and stored until its use. A subsample of the soil was ground to pass a 2-mm sieve 

and analyzed for its basic characteristics. The soil has organic carbon content  of 19 mg C g-1, pH 

of 7.2, electrical conductivity of 0.19 dS m-1, NO3
--N of 9.7 mg kg-1, NH4

+-N of 6.1 mg kg-1, and 

available P and K of 7.3 and 450 mg kg-1, respectively. 

6.4.2 Production of ash from gasification of MBM and DDG, procurement and preparation  

The ashes used in the current study were by-products generated during gasification of 

two organic materials, meat and bone meal and dried distillers’ grains, that were evaluated 

locally for their utilization feasibility as feedstock candidates for biogas production. The MBM 

ash (MBMA) was obtained from bovine MBM cracklings that were provided by Saskatoon 

Processing Ltd., Saskatoon, SK, Canada. The DDG ash (DDGA) was generated from 

gasification of DDG that was provided by a wheat-based ethanol production facility near 

Lanigan, SK, Canada. Both products (MBM, DDG) were first ground in the lab and then fed to a 

two-stage fixed bed reactor, followed by a gasification process using a fluidized bed gasification 

pilot system developed by the Fluidization Laboratory of Saskatchewan (FLASKTM) at the 

University of Saskatchewan, Department of Chemical Engineering to produce syngas from 

biomasses and other carbonaceous materials (Campbell et al., 2012). Gasification of both 

materials occurred at atmospheric pressure and a temperature of 650 - 850°C. The gasification 
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process is described in detail by Campbell et al. (2012). The MBMA and DDGA were collected 

and ground to pass through a 600 µm sieve to obtain a homogeneous product. The resulting ash 

was then stored in the lab until its use. Prior to the experiment initiation, a representative sample 

of each ash type was collected and shipped to a commercial laboratory (ALS Laboratory Group, 

Saskatoon, SK) for their chemical composition analyses. Basic characteristics of both ashes are 

provided in Table 6.1.  

 

Table 6.1. Selected basics properties of meat & bone meal ash (MBMA) and dried distillers’ 
grains ash (DDGA), expressed on a dry weight basis.  

Parameter (total) 
Ash type 

DDGA   MBMA 

  mg g-1 
C 8.7  0.9 
N 1.4  2.4 
P 187  177 
K 149  29 
S 8  4 

Na 75  66 
Ca 79  247 
Mg 54  11 
Cu 0.2  0.1 
Fe 6.2  3.6 
Mn 1.7  0.1 
Zn 1.2  0.7 

  

6.4.3 Incubation experiment set-up and treatment application 

Homogenized field-moist soil (1000 g) was placed into 1-L cylindrical plastic pots and 

treated with ash fertilizer. Details on experimental design and treatments are provided in Chapter 

5 of this dissertation. Briefly, the experimental treatments included three P sources; soluble 

mineral P fertilizer as mono-calcium phosphate (MP), meat and bone meal ash (MBMA), and 

dried distillers’ grains ash (DDGA) applied at three rates equivalent to 25, 50 and 100 kg P ha-1, 

referred to as low (L), medium (M), and high (H) rate, respectively. A control treatment that 

received no P was included. Each treatment received 200 kg N ha-1 as urea, including the control, 

to supply sufficient amount of N to eliminate N deficiency as a limiting factor for plant growth. 
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Moreover, as soil used in this experiment shows deficiency in sulfur, and canola crop 

requirement of sulfur is high (Malhi et al., 2005), each treatment was supplied with a basal 

application of 40 kg S ha-1 as K2SO4 solution, including the control. Each treatment was 

replicated four times in a completely randomized design. Treated soil in each pot was seeded to 

Argentine canola (Brassica napus L.L. 5030) and incubated in a growth chamber that was set at 

22°C d and 13°C night, with an 18-h d length and 6-h night length for a period of five week. 

After canola plant harvest, soils were removed, air-dried and ground to pass a 2-mm sieve prior 

to laboratory analysis. 

6.4.4 Sequential chemical extraction of P  

The P sequential extraction protocol was based on a modified Hedley et al. (1982) 

procedure as described by Tiessen and Moir (2008). In this method, a 0.5 g sample of air-dried 

and sieved soil was weighed into a 50-mL centrifuge tube followed by addition of 30 mL of 

deionized water and two strips of anion-exchange resin membrane. The content was shaken for 

16 h on a rotary shaker, and then the resin strips were transferred to a clean 50-mL tube and 

shaken with 20 mL of 0.5 M HCl for 16 h, followed by a determination of inorganic P (Pi) as 

described below. The tubes containing soil suspension were centrifuged at 10000 × g for 10 min 

at 0 °C, and the liquid was discarded. Then, 30 mL of 0.5 M NaHCO3 (pH 8.5) was added to 

tubes, shaken and centrifuged as above and the supernatant was filtered through a 0.45-µm filter. 

The inorganic and total P (Pt) in NaHCO3 extract was then determined as outlined below. The 

extraction process was repeated as above with the extractants of 0.1 M NaOH and 1 M HCl, 

respectively, and Pt and Pi in NaOH extract, and Pi in the HCl extract were determined as 

described below. The remaining (residual) soil residues were transferred to a 75-mL digestion 

tube using distilled water, and digested using concentrated H2SO4 and 30% H2O2 following the 

method of Thomas et al. (1976), and P concentration in the solution was determined.  

Inorganic P recovered from the resin strip and Pi in HCl extracts was determined directly 

using the method of Murphy and Riley (1962). For the NaHCO3 and NaOH extracts, a suitable 

aliquot of each extract was acidified first by adding 0.9 M H2SO4 to precipitate organic matter 

prior to Pi determination using Murphy and Riley method (1962). Total extractable P was 

determined in NaHCO3 and NaOH extracts by oxidizing the dissolved organic matter with 

ammonium persulfate as described by Tiessen and Moir (2008), and then the total P was 
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determined colormetrically using Murphy and Riley method (1962). Light absorbance through 

samples was measured using a Beckman spectrophotometer at a wavelength of 712 nm. 

Inorganic P was subtracted from total P to determine organic P (Po) in the respective extract.  

The forms of P recovered from the various extractants employed here are interpreted 

according to our understanding of the action of individual extractants, their sequence, and their 

relationship to the soil chemical and biological properties (Tiessen and Moir, 2008). Resin-P is 

reasonably well-defined as labile inorganic P that is directly exchangeable and bioavailable. The 

NaHCO3-P is the labile Pi and Po sorbed to soil mineral surfaces in addition to a small portion of 

microbial P. The NaOH-P represents Pi and Po that are strongly chemisorbed to aluminum- and 

iron-oxide minerals. The HCl-Pi is defined as insoluble apatite-type minerals (Ca-bound Pi). The 

acid-digested P is the highly insoluble Pi and recalcitrant and stable Po. 

6.4.4 Statistical analyses 

The experiment consisted of three amendment types (factor) with three rates of 

application in addition to a control. Thus, it was a completely randomized design with a 

complete factorial arrangement. Prior to statistical analysis, the data were checked for normality 

using Shapiro-Wilk test. This showed that data were normally distributed, and accordingly 

statistical analysis was conducted on the raw data. Two-way ANOVA procedure was carried out 

to study the effects of P sources (MP, MBMA, and DDGA), rate (low, medium, and high), and 

their interaction on P forms recovered by each extractant. Treatment effects were deemed 

significant at P < 0.05 and they were considered a trend at 0.05 < P < 0.10. Treatment means 

were separated at P ≤ 0.05 using Student-Newman-Keuls (SNK) test.  

6.5 Results 

The concentration of inorganic P recovered from resin membrane strip, which is defined 

as freely exchangeable Pi, was significantly affected by P source, rate of P application and their 

interaction (Table 6.2). The high rate of MP and DDGA treatments had the highest content of 

resin-Pi, and both treatments were significantly higher than the control. Similarly, P source, rate 

of application and their interaction had a strong impact on concentration of NaHCO3-Pi, showing 

a relatively similar pattern of treatment effect to that observed in resin fraction. The amount of 
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organic P in NaHCO3 fraction was significantly influenced by P source and its interaction with 

rate of application (Table 6.2). The greatest content of NaHCO3-Po was observed with DDGA 

when applied at the high or medium rate, and this was significantly higher than the control and 

MP when applied at any rate (Table 6.2), but did not differ from that in MBMA treatments. 

When averaged over the three rates of application, the organic P concentration in NaHCO3 

fraction was the highest in DDGA treatment, followed by MBMA and then MP treatments 

(Table 6.3). It comprised 6%, 5% and 3% of total P in DDGA, MBMA and MP treatments, 

respectively.  In the MP treatments, the P content in resin and NaHCO3-Pi fractions were the 

greatest, especially at the highest rate of application when compared to MBMA or DDGA 

treatments, and this was significantly higher than that in MBMA or DDGA treatments, when 

averaged over the three rates of application (Table 6.3).  

The inorganic P content in NaOH fraction was significantly affected by P source, rate and 

their interaction whereas organic P concentration in this fraction was significantly influenced by 

P source and its interaction with rate of application (Table 6.2). In this fraction, both inorganic 

and organic P were higher than the most labile P (resin-Pi, NaHCO3-Pi, NaHCO3-Po), with the 

NaOH-Po representing 64% of total P (inorganic + organic) in this fraction, on average. The soil 

content of inorganic and organic P in NaOH fraction varied amongst the various treatments, with 

the greatest amount observed with the control (Table 6.2).  

Phosphorus source, rate and their interaction had a strong significant impact on inorganic 

P content in HCl fraction (Table 6.2). On average, the majority of the total P in this soil is 

present in HCl-Pi pool, with the MBMA applied at the high rate having a large proportion (61% 

of the total P in HCl-Pi pool), which was significantly higher than all other treatments. When 

averaged across the three rates of application, MBMA treatment had a significantly higher 

concentration of HCl-Pi than DDGA or MP treatments (Table 6.3). This fraction comprised 47%, 

36% and 22% of the total P in MBMA, DDGA and MP treatments, respectively.  

The residual P fraction was significantly influenced by P source, but not by rate or its 

interaction with P source (Table 6.2). The greatest amount of residual P was observed with 

MBMA when applied at the high rate, making up approximately 25% of the total P present in 

this treatment (Table 6.2). This treatment was significantly higher than all the other treatments.



  

Table 6.2. Effects of meat & bone meal ash (MBMA) and dried distillers’ grains ash (DDGA) application on sequentially extracted P 
fractions in soil (mean ± SE)  

Treatment  Resin 
Pi 

 NaHCO3 
Pi 

 NaHCO3 
Po 

 NaOH 
Pi 

 NaOH 
Po 

 HCl 
Pi 

 Residual 
P  Total 

P 
P 

source 
Rate 

kg ha-1 
 ------------------------------------------------------------------mg P kg-1 soil-------------------------------------------------------------------------- 

                  
Control 0  7 ± 4 de¶  12 ± 5 c  20 ± 4 bc  52 ± 1 abc  124 ± 11 a  115 ± 10 de  105 ± 8 b  471 ± 4 cd 

                  

MP 
25  15 ± 5 cd  32 ± 3 ab  15 ± 1 c  56 ± 2 abc  116 ± 5 a  70 ± 18 e  103 ± 6 bc  467 ± 7 cd 
50  22 ± 3 bc  24 ± 2 abc  17 ± 2 c  52 ± 3 abc  94 ± 7 bc  119 ± 19 de  105 ± 4 bc  471 ± 9 cd 

100  54 ± 4 a  32 ± 4 ab  16 ± 1 c  59 ± 2 ab  100 ± 3 b  132 ± 17 cd  96 ± 8 bcd  510 ± 7 a 
                  

MBMA 
25  9 ± 2 de  9 ± 3 c  27 ± 3 ab  39 ± 2 bcd  69 ± 4 d  198 ± 23 b  107 ± 1 b  466 ± 7 cd 
50  7 ± 2 de  13 ± 3 c  25 ± 1 abc  39 ± 2 bcd  76 ± 5 cd  179 ± 19 bc  109 ± 4 b  483 ± 9 bd 

100  8 ± 1 de  20 ± 4 bc  23 ± 1 abc  38 ± 2 cd  73 ± 3 cd  313 ± 18 a  129 ± 7 a  513 ± 15 a 
                  

DDGA 
25  6 ± 1 e  13 ± 1 c  23 ± 1 abc  32 ± 1 d  65 ± 4 d  158 ± 17 bcd  90 ± 2 cd  459 ± 7 d 
50  10 ± 1 de  18 ± 2 bc  29 ± 3 ab  48 ± 10 abcd  75 ± 3 cd  161 ± 7 bcd  85 ± 1 d  477 ± 5 cd 

100  25 ± 1 b  35 ± 5 a  31 ± 3 a  62 ± 9 a  76 ± 4 cd  199 ± 28 b  93 ± 8 bcd  505 ± 5ab 
                  
   P > F 

Source of variation                 
P source  ***  ***  ***  ***  ***  ***  **  ns 

Rate  ***  ***  ns  *  ns  ***  ns  *** 
P source × Rate  ***  *  *  *  **  *  ns  ns 

¶ For a P fraction in a column, values followed by the same letter are not significantly different (P < 0.05). 
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Table 6.3. Sequentially extracted P forms in soil treated with mineral P (MP), meat & bone meal 
ash (MBMA) or dried distillers’ grains ash (DDGA), averaged over rates of P application). 

P  
Source  Resin 

Pi 
  NaHCO3 

Pi 
  NaHCO3 

Po 
  NaOH 

Pi 
  NaOH 

Po 
  HCl 

Pi 
  Residual 

P 
        --------------------------------------------mg P kg-1 soil---------------------------- -------------- 

MP  30 a¶  29 a  16 b  56 a  104 a  107 c  102 b 
MBMA  8 b  15 c  25 a  39 c  73 b  230 a  114 a 
DDGA  13 b  22 b  28 a  47 b  72 b  173 b  90 c 

 ¶ For a P fraction in a column, values followed by the same letter are not significantly different 
(P < 0.05). 

The DDGA applied at the medium rate treatment provided the lowest content of residual P form, 

which significantly differed from all other treatments including the control (Table 6.2). When 

averaged over the three rates of application, the MBMA showed the highest amount of residual 

P, which was significantly higher than MP and DDGA treatments (Table 6.3). The total P 

determined at the end of the experiment was not significantly affected by P source, but was 

greatly influenced by the rate of application (Table 6.2). Application of P at the high rate of 100 

kg P ha-1 resulted in higher amount of total P in soil treated with any P source, and this was 

significantly higher than all other treatments (Table 6.2).  

6.6 Discussion 

 The labile P fractions of resin-Pi and NaHCO3-P (inorganic and organic) represented 

together only a small proportion of the total P, ranging from 8%, in unamended soil, to 15% in 

MP treatments, averaged across the three rates of application. This is relatively consistent with 

previous studies conducted with grassland or cultivated Brown Chernozem soil in which the 

summed P fraction recovered by resin and NaHCO3 did not exceed 10% of the total P (Tiessen et 

al., 1983; Schoenau et al., 1989). The greatest amount of P in resin and NaHCO3-Pi fractions 

observed in the MP treatments is not surprising, given that the MP is comprised of highly water 

soluble Ca(H2PO4)2. In general, the labile P was higher in DDGA treatments in comparison to 

that in MBMA treatments, and this is in line with the higher P uptake by canola observed in 

DDGA-amended soil (see Chapter 5), indicating the high solubility of P in this type of ash. A 

similar pot study that examined P fractions in soil fertilized with poultry litter ash found that 

resin-Pi content in ash treated soil was higher than the control and comparable to that in soil 
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treated with mineral P, implying the high release of P from this type of ash (Bachmann and 

Eichler-Löbermann, 2010). Ash produced from gasified alfalfa stems increased soil extractable P 

(Mozaffari et al., 2000a). Soil treated with poultry litter ash was also found to have a greater 

content of soluble P (Codling et al., 2002). In a pot experiment, addition of ash generated from 

straw gasification showed a significant increase in soil content of soluble P whereas ash 

generated from citrus peel fiber gasification did not (Müller-Stöver et al., 2012). It seems that the 

level of P solubility in soil following ash application can be related to the P solubility in the 

ashes, which is variable according to feedstock and combustion/gasification processes, as 

demonstrated in the current study. For instance, agricultural residue-derived ashes appear to 

exhibit greater P solubility than that in wood biomass-derived ashes (e.g. Eichler-Löbermann et 

al., 2008; Mozaffari et al., 2000b; Clarholm, 1994; Patterson et al., 2004) whereas ash generated 

from meat and bone meal is dominated by calcium phosphates (e.g. apatite), which are 

recalcitrant  form of P and of low plant-availability (Deydier et al., 2003; Coutand et al., 2008). 

This can explain the different effects of both ashes in the current study on the level of P 

solubility in soil.   

The NaOH-extractable P fraction (Pi and Po) is considered as moderately labile P (Hedley 

et al., 1982) and assumed to have relatively low availability to plants (Hedley et al., 1982; Cross 

and Schlesinger, 1995). Generally, the percentage of P in NaOH fraction (Pi and Po) observed in 

this study is within the range of that found in different soil orders worldwide as reviewed by 

Cross and Schlesinger (1995). The addition of either ash did not enrich the NaOH-P pool when 

compared to the control, probably related to the presence of large concentration of the ash P in 

Ca-bound phosphate, especially with MBMA, with the slow release of P from initially insoluble 

P compounds in both ashes, leading to lack of fixation of inorganic P as Fe and Al phosphates. 

The reduced contribution of ash addition to this pool might also be attributed to low initial 

content of Fe and Al compounds added with the ashes, leading to insignificant formation of 

moderately soluble Al- and Fe-phosphates that can be extracted with NaOH extractant. This is in 

agreement with previous work, which reported that poultry litter ash addition did not 

significantly increase NaOH-P fraction when compared to the control (Bachmann and Eichler-

Löbermann, 2010). According to these authors, the P in their specific ash type might not be 

converted quickly to enrich the NaOH-P pool, as the P in the poultry litter ash was previously 

found to be mainly Ca-phosphates (Codling, 2006). It was also reported in a recent study that 
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bone char had no significant impact on soil concentration of inorganic and organic forms of P 

extracted with NaOH, and this was attributed to the direct effect of Ca-associated P where the 

char contains 80% of H2SO4-extractable P (Siebers et al., 2013). However, it was documented in 

other studies that mineral fertilizer application resulted in an increase of NaOH-P fraction in soil 

(He et al., 2004; Bachmann and Eichler-Löbermann, 2010). 

Phosphorus extracted with diluted HCl constitutes stable Ca-bound P in soils that is 

considered to be very low of availability for plant uptake (Williams et al., 1980; McKenzie et al., 

1992). Calcium is the dominant cation in MBMA (25%) and was anticipated to react with 

phosphate in ash and in soil after application, leading to a preponderance of calcium phosphate 

compounds (e.g. apatite). It was also demonstrated earlier that calcium phosphates compounds 

were found to be major constituents of ash derived from combusted meat and bone meal 

(Deydier et al., 2003; Coutand et al., 2008). This can explain the high concentration of P in 

HCl-Pi fraction in MBMA, explaining the low availability of P in this ash type and therefore 

reducing its effectiveness as a P source for crop nutrition, as in Chapter 5. In contrast, the lower 

content of HCl-Pi in DDGA, compared to MBMA, may be attributed to its lower content of Ca 

(8%), contributing less to formation of Ca-bound P in soil. This is reflected in the high 

concentration of P in the labile fractions (resin-Pi, NaHCO3-Pi, NaHCO3-Pi) in DDGA, compared 

to the control or MBMA. Furthermore, P in DDGA was very accessible by the canola crop, 

similar to that in MP. However, it was reported in another study that poultry litter ash addition 

did not influence soil content of H2SO4-P fraction in comparison to mineral P or control 

treatment after crop harvest, indicating the high solubility of P in this particular ash or of its 

possibly rapid transformation into other forms of P (Bachmann and Eichler-Löbermann, 2010). 

The residual P fraction is regarded as the most recalcitrant fraction with very low 

solubility and bioavailability (Cross and Schlesinger, 1995). It is considered to be a mixture of 

insoluble (occluded) inorganic P adsorbed onto sequioxides and nonextractable stable organic P 

(Dedley et al., 1982; Tiessen and Moir, 1993). On average, this fraction accounted for about 24% 

of the total P in soil treated with MBMA. The greater amount of this fraction in MBMA indicates 

that a higher Ca in this type of ash together with the high pH of the tested soil may have favoured 

formation of more stable forms of P in treated soil. Formation of this resistant fraction of P may 

have limited the availability of P to crop grown in soil treated with MBMA as observed in the 

canola P uptake covered in Chapter 5 of this dissertation. 
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6.7 Conclusion 

Both ashes used in the current study had contents of total P around 18% P (41% P2O5 

equivalent), making them attractive as high analysis recycled P sources for agriculture.  

However, this P was found to reside in different forms in soil following application. The labile P 

fractions: resin-Pi and NaHCO3-Pi in soil were in the order of MP > DDGA > MBMA, and it 

increased with increasing rate of P application. The moderately labile P forms (NaOH-Pi, 

NaOH-Po) in all P-treated soils did not significantly differ from the control. The soil content of P 

in HCl-Pi and residual-P pools was found in greater amount in MBMA treatment, comprising 

47% and 24% of total P in HCl-Pi and residual-P fraction, respectively. This is mainly due to the 

greater content of calcium (25%) present in this type of ash that led to the formation of Ca-P 

compounds in soil. This study clearly showed that the P solubility and availability varies 

according the type of ash applied.  Future studies may consider using spectroscopic techniques 

like XANES to specifically identify P minerals in the ash and in amended soils.  
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7. FIELD EVALUATION OF FERTILIZER POTENTIAL OF THIN STILLAGE 

7.1 Preface 

Thin stillage (TS) is a major by-product of bioethanol production industry. Positive 

effects of TS application on soil biological and chemical attributes under controlled environment 

conditions were observed and are described in Chapters 3 and 4.  This warranted a further 

investigation into the suitability of this by-product for being utilized as an organic fertilizer in 

prairie soil under field conditions in a field trial. In Chapter 3, the TS addition greatly increased 

nutrient supply rates, especially NH4
+-N and PO4

-3-P under optimum conditions and this needs to 

be verified on a larger scale, over a longer period and under conditions in which the material is 

applied using field scale equipment. Advanced equipment for land application of liquid manure 

is readily available and was utilized for direct injection of thin stillage into soil in this study. In 

this two-yr field study, the response of crop yield, nutrient uptake and recovery to broadcasted 

and incorporated or injected TS was assessed.  

This chapter has been accepted for publication with minor revision in Alotaibi, K.D, J.J. 

Schoenau and X. Hao. 2014. Fertilizer potential of thin stillage from wheat-based ethanol 

production. BioEnerg. Res. (Accepted with minor revision). The contributions of the co-authors 

to this work were: J.J. Schoenau provided financial support to cover the research expenses, 

supervised the research progress and edited the manuscript; X. Hao edited the manuscript and 

provided comments and suggestions to improve the manuscript. This publication was slightly 

modified here to be in accordance with the dissertation format.  
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7.2 Abstract 

Accumulation of thin stillage (TS), a by-product resulting from ethanol production, has 

led to a need to explore all possible means of its utilization. The objective of this research was to 

evaluate the effectiveness of TS derived from wheat (Triticum aestivum L.) based ethanol 

production as a fertilizer. The experiment was conducted over a two-yr period in east-central 

Saskatchewan, Canada. Treatments included three rates of TS: 50, 100 and 200 kg N ha-1 using 

two methods of application: 1) broadcast and incorporation and 2) injection. For comparison, 

conventional fertilizer urea (46-0-0) was applied at the same rates of N as the TS. Responses of 

crop yield (wheat and canola (Brassica napus L), N and P uptake, and apparent N recovery were 

measured over two growing seasons on a Black Chernozemic soil. For both seasons, at 

equivalent N rate the TS produced similar or greater crop yield and nutrient recovery compared 

to urea fertilizer, especially when injected. This is attributed to the effect of other plant nutrients, 

such as P and S in TS, and its relatively high plant available NH4
+-N content. The injection of TS 

appears to be a more effective application method compared to broadcasting, likely through 

reducing volatile N loss, and placing nutrient closer to the growing crop roots when injected in 

bands in soil. The TS did not show any adverse effect on measured crop parameters even at the 

high rate of application. The results of this study suggest that land application of TS can be an 

effective solution for TS management that recycles nutrients in the feedstock grain used for the 

ethanol production back into the soil.  

7.3 Introduction 

Thin stillage (TS) is the aqueous by-product generated from the distillation of ethanol 

following fermentation of starch or sugar crops (Wilkie et al., 2000) during the ethanol 

production process. The fermentation and distillation processes of the feedstocks generate the 

whole stillage, which contains solids from the grain along with added yeast and liquid from the 

water added during the process. The whole stillage is then centrifuged to separate the liquid 

component called thin stillage, and the solid component called wet distillers’ grains (WDG). The 

TS is then further processed by evaporation to produce syrup that can be blended with WDG 

resulting in WDG with solubles (Bonnardeaux, 2007). High volumes of TS are produced during 
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ethanol production, as each litre of ethanol produced results in approximately 20 L of associated 

TS (van Haandel and Catunda, 1994). Thus, increases in ethanol production will require effective 

solutions for TS utilization (Wilkie et al., 2000). Although the evaporation process helps to 

concentrate TS constituents into a lesser volume, it can have a negative impact on the energy 

balance of ethanol production (Faust et al., 1983).  

Although it is not a common practice, one of the alternative uses of TS is as a partial or 

complete drinking water replacement for cattle (Mustafa et al., 2000). However, this method of 

utilization may not accommodate the continual rise in TS production, as the rapid growth in 

ethanol manufacturing is anticipated to create a surplus of ethanol by-products (Rausch and 

Belyea, 2006). Alternative utilization approaches need to be considered. One potential use is the 

direct land application as a fertilizer. This option may create another outlet for utilization of 

ethanol by-products, and can help to recycle the plant nutrients that are used in producing the 

original feedstocks. Since TS contains essential plant nutrients that can promote crop production 

and soluble organic matter that can stimulate soil biological activity (see Chapters 3 and 4 of this 

dissertation), its direct application to agricultural soil might be a practical alternative use. 

Equipment for land application of liquid manure is readily available and anticipated to work well 

for direct injection of TS into soil. 

The chemical characteristics of TS are variable, and differ according to feedstock type 

and the treatments used in the bioenergy production plant. For example, TS derived from 

fermentation and distillation of corn or wheat, two most popular crops for ethanol production in 

the U.S., Canada and Europe (Mustafa et al., 2000; Cardona and Sánchez, 2007), is different in 

its chemical properties from distillery wastewater (vinasse) generated from sugar cane or 

molasses (España-Gamboa et al., 2011).  

The fertilizer value of vinasse stillage produced from molasses, a by-product of the sugar 

industry, has previously been studied (Gemtos et al., 1999; Singh et al., 2003; Resende et al., 

2006; Hati et al, 2007). However, the fertilizer potential of TS derived from starch crops has 

received little attention. Field studies examining effects of TS as a fertilizer under field 

conditions using advanced application techniques are needed. Therefore, the objective of the 

current study was to assess the fertilizer potential of TS derived from wheat-based ethanol 

production by examining the response of crop yield, and nutrient uptake and recovery to TS 

application.  
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7.4 Materials and Methods 

7.4.1 Experimental site 

 The field experiment was initiated in the fall of 2008 near the town of Dixon located in 

east-central Saskatchewan, Canada. The predominant soil at the site is classified as a Black 

Chernozem (Cudworth Association) of clay-loam texture. The average particle-size distribution 

in the 0-15 cm depth was 30% sand, 23% silt and 47% clay, determined using pipette method 

(Gee and Bauder, 1986). The study site has a nearly level topography and is considered fertile 

agricultural land in Saskatchewan (Stumborg et al., 2007). The field was cropped to barley 

(Hordeum vulgare L.) in the year prior to the current study. The basic characteristics of the field 

soil are provided in Table 7.1. The average long-term annual precipitation and temperature for 

this area is 373 mm and 0.7 °C respectively (Stumborg et al., 2007). Monthly cumulative rainfall 

and mean air temperature over the two growing seasons and the 30-yr average are summarized in 

Fig. 7.1. The climate data were retrieved from a weather station located at Humboldt 

approximately 5 km from the experimental site (Environment Canada, 2012).  

7.4.2 Experimental design 

The field experimental setup used a 3 × 3 factorial design and consisted of three main factors: 

injected TS (INJ-TS), broadcasted and incorporated TS (BR-TS) and banded urea and three 

levels of application for each factor: low (L), medium (M) and high (H). An unfertilized, 

unamended control was included for comparison. The three levels of TS application were 

equivalent to 16800, 33600 and 67200 L ha-1, providing approximately 50, 100 and 200 kg 

available N ha-1, respectively, based on an assumption that about 60% of the total N in TS would 

be available during the course of the year (Qian et al., 2011). The actual amounts of N applied as 

thin stillage are found in Table 2. The three levels of commercial fertilizer urea (46-0-0) N 

applied for comparison were 50, 100 and 200 kg N ha-1. Treatments were arranged in a 

randomized complete block design with four replications. Each treatment plot had dimensions of 

3 m width × 9 m length. Plots received the same treatments in both 2009 and 2010.  
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Table 7.1 Selected soil properties at the start of the field study in fall 2008 in samples collected 
from control plots at 0-15 cm depth. 
Property     Value§ 
NO3

--N (mg kg-1)      7.0 ± 0.3 
NH4

+-N (mg kg-1)     4.3 ± 0.3 
Available P (mg kg-1)     5.1 ± 1.0 
Available K (mg kg-1)     275 ± 23 
Organic C (mg g-1)     28 ± 2.0 
pH     8.0 ± 0.1 
Electrical Conductivity (dS m-1)   1.5 ± 0.8 
Sand (%)     29.7 ± 0.5 
Silt (%)     23.6 ± 3.0 
Clay (%)     46.7± 3.5 

 § Values presented are means followed by standard error. 

 

 
Fig. 7.1. Monthly total rainfall and mean air temperature at Humboldt for the 5-mo growing 
season for both years of the study (2009, 2010). The 30-yr rainfall and temperature averages 
(normal) are also included  
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Table 7.2. Thin stillage nutrients applied at the rates of application (L, M and H) for both years 
of the study. 

Treatment     Total N   Total P   NH4
+-N 

Rate  Yr     ------------------kg ha-1-------------------- 

L   
2009 

    79   15   15 
M       158   30   30 
H       316   60   67 
                    
L   

2010 
    95   19   17 

M       190   37   34 
H       380   75   60 

 

7.4.3 Thin stillage procurement and treatment application 

 The TS was obtained from Pound-Maker Agventures ethanol plant located at Lanigan, 

Saskatchewan. It is a by-product of ethanol production using wheat grain as feedstock. The TS 

materials were collected, delivered to the site and applied by the Prairie Agricultural Machinery 

Institute (PAMI, Humboldt, SK). Treatments were applied to the field in the preceding fall (1st 

wk of October) of each growing season. For the injection method of application, TS was applied 

using the PAMI liquid slurry injector truck. The TS was agitated as it was pumped into the 

PAMI injector truck. The injector truck is equipped with modified Bourgault low disturbance 

injector disc coulters spaced 30 cm apart. The TS was applied in bands behind the coulter at an 

average depth of 8-10 cm. For the broadcast and incorporation method, the injectors were lifted 

above the soil surface to get TS applied on the soil surface in a band, followed by immediate 

incorporation with a chisel plow cultivator using one pass with 30 cm sweeps on a 20 cm row 

spacing, followed by harrowing. During TS application to soil and for both years, several 

samples were collected at the injector opening, mixed to yield a homogenous representative 

sample and stored in the freezer (-20 °C) until analysis for chemical composition. The analysis of 

TS was conducted at a commercial laboratory (ALS Laboratory Group, Saskatoon, SK). Basic 

characteristics of TS applied for each year are provided in Table 7.3. Commercial granular urea 

fertilizer (46-0-0) was banded into the soil using PAMI’s plot drill at an 8 cm depth with knives 

on a 20 cm row spacing.  
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The field was seeded to Lillian hard red spring wheat on May 9th of 2009 at a rate of 128 

kg ha-1 and to BrettYoung 719 Roundup Ready canola (Brassica napus L.) on May 19th of 2010 

at a rate of 6 kg ha-1. In-crop weed control was achieved by using appropriate systemic 

herbicides. 

Table 7.3. Basic characteristics of thin stillage (TS) applied in 2008 and 2009. All contents are 
expressed on a fresh wet weight basis.  

Property 
  Year 

  2009   2010 

Total N (mg g-1)   4.7   5.7 

NH4
+-N (mg g-1)   0.90   0.10 

Total P (mg g-1)   0.90   0.11 

Total K (mg g-1)   1.1   1.2 

Total S (mg g-1)   0.6   0.7 

Na (mg g-1)   0.4   0.3 

Ca (mg g-1)   0.2   ND 

Mg (mg g-1)   0.4   ND 

pH   3.8   4.10 

Moisture (%)   92.5   91.6 

7.4.4 Plant harvest and analysis 

In both years, the crop was harvested when it reached physiological maturity in 

September. Duplicate 1-m2 plant samples per plot were cut manually at 5 cm above the soil 

surface. The samples collected were dried by forced air at 45 °C, the total biomass weighed, and 

mechanically threshed using a stationary thresher followed by weighing to determine yield. 

Straw samples were ground to < 2 mm in a WileyTM mill and grain samples were finely ground 

with a CycloneTM mill. Total N and P were measured by digesting the ground grain and straw 

samples in sulfuric acid-peroxide (H2SO4-H2O2) using a temperature-controlled digestion block 

(Thomas et al., 1967), followed by automated colorimetry for determining P and the NH4
+-N 

using a Technicon Autoanalyzer II (Technicon Industrial Systems, 1978). Total N and P uptake 

were then calculated from plant N and P contents and total dry matter yield. Apparent N 

recovery (ANR) and apparent P recovery (APR) were calculated as follows: 
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ANR or APR =  

where TNUTP denotes total N or P uptake for a given treatment plot, TNUC is the total N or P 

uptake in control plot and total N or P applied is the amount of N or P applied in the amendment 

treatment for the crop year. 

7.4.5 Statistical analyses 

 Prior to conducting the statistical analysis, raw data were checked for normality and 

homogeneity of variance using histograms and Shapiro-Wilk tests. Data that were not normally 

distributed and showed lack of variance homogeneity were transformed by performing an 

appropriate mathematical operation. Two statistical procedures were conducted. First, a mixed 

effects model was used to determine the effect of the main treatments factors that included 

fertilizer type (INJ-TS, BR-TS, Urea) and rate of application (L, M, H) and all interactions on 

crop dependant variables. Fertilizer type and rate of application were treated as fixed effects 

whereas block was treated as a random effect in the model. In this analysis, the control treatment 

was omitted because there was only one level of this treatment. The second procedure of analysis 

was a one-way ANOVA that was used to determine the effect of all 10 individual treatments 

including the control on crop dependant variables. This one-way ANOVA procedure permits 

comparison of all 10 treatments means, which were separated using LSD test. Treatment effects 

were considered significant at a probability level of P ≤ 0.05 at which means were also 

separated, and they were considered a trend at P < 0.10. The analyses were conducted on each 

year’s data separately due to differences in the crop type. Statistical analysis was conducted 

using the statistical analysis system (SAS) software, version 9.2 (SAS Institute, Cary, NC).  

7.5 Results  

7.5.1 Climatic conditions 

The weather data for the two growing seasons are shown in Fig. 7.1. In the 2009 growing 

season (April to August), total rainfall (281 mm) was slightly above the long-term average (268 

mm). The total amount of the rainfall received during the month of May when the crop was 

seeded and the month of June was less than the long-term average (Fig. 7.1). Unusually high 

TNUTP − TNUC 

total N or P applied 
× 100 
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rainfall was received during the 2010 growing season, in which the total rainfall during the 2010 

growing season was about 539 mm. This is nearly double the amount of rainfall that was 

received in 2009 growing season and more than double the long-term average. The total rainfall 

received during the first three months of the 2010 growing season was approximately 66% 

higher than the long-term average. The excess moisture that occurred in the 2010 growing season 

was anticipated to adversely affect crop performance. The monthly mean air temperature for the 

two growing seasons did not differ much from the long-term average (Fig. 7.1).  

7.5.2 Thin stillage characteristics 

The chemical analysis of TS applied in the fall of 2008 or 2009 showed that the chemical 

composition of TS applied in both years was relatively similar, consistent with its origin from the 

same production facility (Table 7.3). According to its basic chemical analysis, the TS by-product 

used in this experiment contains a significant amount of essential plant nutrient, especially N, P, 

K and S. On a wet basis, the TS contains approximately 0.52%, 0.10%, 0.12% and 0.10% of total 

N, P, K and S, respectively, when averaged across the two-yr. More importantly, the TS showed 

a relatively high content of NH4
+-N, which represents about 20% of the total N contained in TS. 

Nitrate-N was not detected in the TS. The TS is considered acidic material, as shown by its low 

pH value of 4.0. Most of the wet weight of the TS was comprised of water, which represents 

approximately 92% of its weight.  

7.5.3 Crop yield response 

The statistical analysis showed that wheat yield response to fertilizer type and its rate of 

application was highly significant (Table 7.4) while the interaction between these factors 

(fertilizer type and rate) tended to be significant (P = 0.10) in the 2009 season. The effect of 

treatments on crop yield was very evident when compared to the control (Fig. 7.2), and this 

effect increased with increasing the fertilizer rate of application. Crop yields from all amended 

treatments were significantly higher than the control treatment (Fig. 7.2). The greatest yield 

response was observed with INJ-TS when applied at the medium and high rate and BR-TS when 

applied at the high rate. When averaged across the three rates of application, the INJ-TS 
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provided a significantly higher yield than the BR-TS or urea whereas BR-TS and urea 

amendments produced similar crop yield.  

The significant impact of treatments on crop yield of canola was also seen in the 2010 

season, but the overall yield response compared to the control was less pronounced than that 

observed in the season of 2009. The yield response to fertilizer type and rate of application was 

observed to be highly significant (Table 7.4) whereas their interaction was not. With the 

exception of BR-TS and urea treatments when applied at the low rate, all treatments provided 

higher yield than the control (Fig. 7.2), and the yield showed an increase trend with the rate of 

application. As in 2009, the most pronounced effect on canola yield was observed with INJ-TS 

treatments (Fig. 7.2), while the BR-TS and urea treatments mostly followed a similar pattern in 

their effect on crop yield. The yield obtained from INJ-TS treatments was significantly higher 

than that from BR-TS or urea treatments, when averaged across the three rates of application. 

7.5.4 Nutrient uptake response  

Fertilizer type and rate of application had a significant influence on total plant N uptake 

in both growing seasons; however, the interaction between the two factors was significant only 

in the 2010 growing season (Table 7.4). For the 2009 growing season, all treatments showed a 

significantly greater N uptake than the control treatment (Fig. 7.3), and N uptake increased with 

the rate of fertilizer application. For the 2010 growing season, the treatment effect followed a 

similar pattern as in the first growing season, but was more pronounced (Fig. 7.3). For both 

growing seasons, N uptake was significantly higher in INJ-TS treatments in comparison to BR-

TS or urea treatments, when averaged across the three rates of application. 

Total plant P uptake was significantly affected by fertilizer type, rate and their interaction 

in both growing seasons (Table 7.4). For the 2009 growing season, all treatments were 

significantly higher than the control (Fig. 7.4), and INJ-TS and BR-TS treatments were more 

effective than the urea treatments. The impact of treatments on P uptake was more evident in the 

2010 growing season, especially with INJ-TS and BR-TS treatments whereas urea treatments 

applied at any rate did not significantly differ from the control (Fig. 7.4). In this season, the 

INJ-TS treatments showed the greatest impact on P uptake, followed by BR-TS, while urea 

treatments were the least.  

 



 

Table 7.4. Significance levels of treatment factors of fertilizer, rate of application and interactions for analysis of crop yield, N and P 
uptake, and apparent N and P recoveries (ANR, APR) for 2009 and 2010 growing seasons. 
  2009   2010 
  Yield N uptake P uptake ANR APR   Yield N uptake P uptake ANR APR 

  P value 

Fertilizer (F) 0.0007 <0.0001 <0.0001 <0.0001 0.0006   <0.0001 <0.0001 <0.0001 0.0048 0.0006 
Rate (R) <0.0001 <0.0001 0.0003 0.0002 0.0019   0.0001 0.0004 <0.0001 0.141 0.3416 
Interaction                       

F × R 0.097 0.5876 0.0313 0.0900 0.0173   0.7087 0.0813 0.0064 0.4387 0.4155 
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Fig. 7.2. Wheat and canola yield responses to experimental treatments during the 2009 (wheat) 
and 2010 (canola) seasons at Dixon, SK. The experimental treatments included injected thin 
stillage (INJ-TS), broadcast and incorporated thin stillage (BR-TS) and urea, all of which are 
applied at three rates: low (L), medium (M) and high (H) in addition to a control. For a season, 
bars sharing the same letter among treatments are not significantly different according to LSD 
test (P ≤ 0.05). Errors bars represent standard error of mean (n = 4) 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.3. Total plant N uptake responses to experimental treatments during 2009 and 2010 
growing seasons at Dixon, SK. The experimental treatments included injected thin stillage 
(INJ-TS), broadcast and incorporated thin stillage (BR-TS) and urea, all of which are applied at 
three rates: low (L), medium (M) and high (H) in addition to a control. For a season, bars sharing 
the same letter among treatments are not significantly different according to LSD test (P ≤ 0.05). 
Errors bars represent standard error of the mean (n = 4)  
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7.5.5 Apparent N and P recovery 

Fertilizer type, rate and their interaction had a significant impact on apparent N recovery 

(ANR) in the 2009 growing season while the fertilizer type was the only factor that showed a 

significant effect on ANR in the 2010 growing season (Table 7.4). For both seasons, the ANR 

tended to decrease with increasing rate of application in INJ-TS and urea treatments (Fig. 7.5). 

The ANR was the lowest in soil treated with BR-TS, with no significant differences among the 

rate of its application in both years. In the 2009 growing season, the INJ-TS and urea treatments 

provided ANR significantly higher than that in BR-TS treatments whereas the INJ-TS and urea 

treatments did not significantly differ from each other, when averaged across the three rates of 

application. However, in the 2010 growing season, the INJ-TS treatments showed a significantly 

higher ANR than BR-TS and urea treatments, when averaged across the three rates of 

application.  

The impact of fertilizer type, rate and their interaction on apparent P recovery (APR) was 

significant in the 2009 growing season (Table 7.4). Fertilizer type had also a significant effect on 

APR in the 2010 growing season, but rate and interaction between fertilizer type and rate had no 

effect (Table 7.4). The APR tended to decrease with increasing the rate of application in INJ-TS 

treatments in both seasons (Fig. 7.6). No significant differences were found among the rates of 

BR-TS application (Fig. 7.6). The APR was significantly higher in INJ-TS treatments than that 

in BR-TS treatments, when averaged across the three rates of application. 
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Fig. 7.4. Total plant P uptake responses to experimental treatments during the 2009 and 2010 
growing seasons at Dixon, SK. The experimental treatments included injected thin stillage 
(INJ-TS), broadcast and incorporated thin stillage (BR-TS) and urea, all of which are applied at 
three rates: low (L), medium (M) and high (H) in addition to a control. For a season, bars sharing 
the same letter among treatments are not significantly different according to LSD test (P ≤ 0.05). 
Errors bars represent standard error of the mean (n = 4)  
 
 

 
 
Fig. 7.5. Apparent N recovery (ANR) responses to experimental treatments during the 2009 and 
2010 growing seasons at Dixon, SK. The experimental treatments included injected thin stillage 
(INJ-TS), broadcast and incorporated thin stillage (BR-TS) and urea, all of which are applied at 
three rates: low (L), medium (M) and high (H) in addition to a control. For a season, bars sharing 
the same letter among treatments are not significantly different according to LSD test (P ≤ 0.05). 
Errors bars represent standard error of the mean (n = 4) 
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Fig. 7.6. Apparent P recovery (APR) responses to experimental treatments during the 2009 and 
2010 growing seasons at Dixon, SK. The experimental treatments included injected thin stillage 
(INJ-TS) and broadcast and incorporated thin stillage (BR-TS), all of which are applied at three 
rates: low (L), medium (M) and high (H) in addition to a control. For a season, bars sharing the 
same letter among treatments are not significantly different according to LSD test (P ≤ 0.05). 
Errors bars represent standard error of the mean (n = 4)  
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7.6 Discussion 

Fertilization of soil with TS clearly stimulated crop growth, resulting in yield that was 

similar or better than that in plots treated with urea fertilizer at similar rate of added N in both 

growing seasons. This is  supported by results of work in the growth chamber reported on in 

Chapter 3 where TS addition contributed a significant amount of NH4
+-N, NO3

--N, and P over a 

10-d incubation study, indicating the rapid decomposition of TS organic matter in soil and 

associated release of available nutrient for plant uptake. Moreover, the positive effect of TS 

application on crop yield in the field study can also be explained by the presence of other 

nutrients in TS, such as P and S that contribute to plant nutrition and yield response. Increasing 

rate of fertilizer application, especially TS, contributed to higher yield and N and P uptake in 

both growing seasons. The NH4
+-N represents approximately 20% of total N in TS and is 

considered to be available for plant uptake. This portion of NH4
+-N along with mineralization of 

organic N would enhance the fertilizing value of TS by-product, as previously demonstrated with 

liquid manure, whose fertilizer value was mainly based on its NH4
+-N content (Bechini and 

Marino, 2009).  

Overall treatment effects on crop yield were less pronounced in the second year (2010) 

with canola. This may be attributed to the excess moisture experienced in the growing season of 

2010 that was expected to negatively influence the crop growth and consequently limit the 

treatment effects. However, in contrast to the first year, the nutrient uptake (N, P) and recovery, 

especially P, were clearly greater in the second year even at the low rate of TS application. This 

is a possible consequence of additional nutrient supply resulting from the mineralization of 

residual organic nutrient in the TS applied for the previous year. This was also confirmed by 

other studies conducted with different organic fertilizers, such as slurry or solid animal manures 

(Pratt et al., 1973; Paul and Beauchamp, 1993; Eghabll and Power, 1999; Mooleki et al., 2004), 

paper mill sludges (N’Dayegamiye et al., 2003; N’Dayegamiye, 2006) and TS derived from 

sorghum grain feedstock (Jenkins et al., 1987). The other reason is the generally higher nutrient 

demand and uptake potential of canola versus wheat (Malhi et al., 2008).  

Both ANR and APR markedly decreased with increasing rate of application in both 

growing seasons, especially with injected TS and urea treatments. The ANR was reported in 

other studies to decline with increasing rate of different types of organic fertilizers or 
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amendments (e.g., N’Dayegamiye et al., 2003; Mooleki et al., 2004; N’Dayegamiye, 2006). 

Mooleki et al. (2004) related the decrease in ANR with increasing rate in soil fertilized with 

liquid swine manure, which has, to some extent, a similar nature to TS, to several reasons. The 

first and most obvious reason is the finite capacity of the plant to assimilate the added N and 

produce biomass and protein. Suppression of organic N mineralization could result from the 

abundance of NH4
+-N. Another reason could be higher N losses associated with high application 

rates of slurry, especially when broadcasted (Qian and Schoenau, 2000). In addition, application 

of TS, particularly at the high rates, may cause N losses through promoting conditions that are 

favorable for denitrification processes in which the TS provides carbon, which stimulates 

microbial activity and depletes soil oxygen supply. This would be accompanied by the filling of 

soil pores by the water in the TS effluent band, enhancing denitrification. This has been reported 

for injected animal slurries as well (Paul and Zebarth, 1997; Mooleki et al., 2004).  Similar to 

ANR in urea treatments in the current study, it was also found that increasing urea rate linearly 

decreased ANR by corn crop (Gagnon et al., 2012). However, Paul and Beauchamp (1993) did 

not find significant differences in ANR among the rates of liquid dairy cattle manure, solid cattle 

manure and composted cattle manure when applied at 100, 200 and 300 kg total N ha-1 by 

broadcast and incorporation method. This is in agreement with the current study in which there 

were no significant differences observed among the rates of the broadcasted and incorporated TS 

treatments. This may be due to low efficiency of broadcast method. The higher APR with the 

low rate of TS application, especially when injected, is consistent with the previous studies 

conducted with animal manures that found P use efficiency was usually greater with a low rate of 

manure application (Eghball and Sander, 1989; Miller et al., 2009).  

The injection method of TS application was clearly more effective than the broadcast and 

incorporation method. The greater yield and nutrient uptake and recoveries observed with the 

injection TS treatments may be in part attributed to conserving TS NH4
+-N by reducing NH3 

volatilization loss, and may also relate to placement of TS nutrient closer to the growing crop 

roots. It was also reported by Huijsmans et al. (2003) that band injection is an effective technique 

for organic material application, to reduce NH3 volatilization and improve N recovery. Similarly, 

Mooleki et al. (2004) revealed that the band injection method of swine slurry was efficient and 

superior to broadcast/incorporated in providing higher yield, plant N concentration and N use 

efficiency.  
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7.7 Conclusion 

The TS derived from wheat grain feedstock greatly promoted crop growth, showing 

significant potential fertilizer value. The TS supplied nutrients that were sufficient for wheat and 

canola production since the nutrient removal and recoveries were higher than or similar to the 

urea commercial fertilizer. However, the benefit of TS as a fertilizer depends on the rate and 

method of application. Injected TS was superior to broadcast and incorporated, similar to other 

fertilizer materials. The TS was effectively applied in the field using equipment developed for 

injecting liquid swine manure slurries. If injection method is to be adopted for TS application, 

the low rate of application generally appears to be appropriate and sufficient, especially under 

repeated application. The results of this study suggest that fertilization with injected TS using 

liquid manure applicators can be an effective solution for TS management. Recycling nutrients 

contained in TS by application as a fertilizer to soil will help compensate for the nutrients that 

are removed from the soil when ethanol feedstocks are grown and thereby lead to a more 

sustainable ethanol production system. Further research should investigate changes in chemical 

and biochemical soil properties following repeated application of TS.  
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8. UTILIZATION OF THIN STILLAGE FROM WHEAT-BASED ETHANOL 
PRODUCTION IN AGRICULTURAL SOIL FERTILIZATION: ITS IMPACT ON SOIL 

CHEMICAL AND BIOLOGICAL PROPERTIES IN THE FIELD 

8.1 Preface 

In Chapter 7, thin stillage (TS) was shown to be an effective nutrient source for field 

production of wheat and canola, especially when injected. However, the acidic nature (pH = 4.0) 

of TS may alter soil pH, affecting pH dependant parameters such as trace metal availability, 

microbial activity and also nutrient solubility. Residual nutrient accumulation, especially 

available P and NO3
--N, in the soil profile in the field is also of environmental concern, 

especially if rate of nutrient application exceeds crop requirements for many years. Therefore, 

the objective of the current study reported in this chapter was to assess some selected soil 

chemical and biological properties in the Black Chernozemic soil after two field seasons of TS 

application.  

This chapter has been submitted to a refereed Journal. The appreciated contribution of the 

co-author, J.J. Schoenau, included  financial support to cover the research expenses, supervision 

of the research progress and manuscript editing. 
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8.2 Abstract 

Rapid growth in the bioenergy industry has resulted in a large volume of its associated 

by-product of thin stillage (TS). Appropriate uses of TS need to be explored, including its 

application to soil. The aim of the current study was to assess the effects of direct application of 

TS over two growing seasons on soil residual available N and P content along with some 

selected soil chemical (organic C, pH, electrical conductivity, metals content) and biological 

(dehydrogenase activity and microbial biomass) properties after crop harvest. The experimental 

treatments included injected TS, broadcasted and incorporated TS, and urea fertilizer with three 

application rates equivalent to 50, 100, and 200 kg available N ha-1 in addition to a control. In the 

second year, TS increased NO3
--N content after crop harvest even at the lower soil depths, 

especially with injected TS at high rate. Soil available P content significantly increased in both 

years, but was greater in the second year. This reflects the high plant availability of N and P in 

TS and a persistence of release of nutrient through TS organic matter decomposition. In selected 

treatments, microbial biomass was higher in TS than urea treatments, but not significantly 

different from the control. The other measured soil parameters remained unchanged for both 

years. This study indicates that continuous application of TS may contribute to NO3
--N and P 

accumulation in soil beyond the year of application via carryover of unused inorganic forms and 

also possibly through increased microbial mineralization. 

8.3 Introduction 

Biochemical conversion of starch or sugar crops to produce ethanol also results in 

generation of TS, a major by-product associated with this process. This by-product is a 

consequence of the fermentation and distillation processes involved in ethanol generation from 

renewable sources (Mustafa et al., 2000). The fermentation and distillation process of the 
feedstock results in a product called whole stillage, which contains solids from the used 
feedstock plus added yeast and liquid from the water added during the process. This whole 
stillage is then centrifuged to separate the liquid components, called TS, and the solid 
components termed WDG. The TS may then be further processed by evaporation to produce 
syrup which can be blended with WDG resulting in WDG with solubles (Bonnardeaux, 2007).  
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 The pressing demand for sustainable energy from renewable sources has resulted in 
expansion of ethanol production worldwide, and coincidentally the associated by-product of TS. 
It has been estimated that each litre of ethanol produced is associated with about 20 L of TS 
generated (van Haandel and Catunda, 1994). This high volume of TS requires a proper method 

of utilization that is economically sound and environmentally benign. The evaporation process 

can help to concentrate TS constituents into a lesser volume; however, this process can have an 

undesirable impact on the energy balance of ethanol production (Faust et al., 1983). One possible 

uses of TS is to use it to partially or completely replace drinking water for cattle (Mustafa et al., 
2000). However; this method is not a commonly adopted practice and may not be able to 

accommodate the continual rise in TS accumulation, as the rapid growth in ethanol 

manufacturing is expected to create a surplus of ethanol by-products (Rausch and Belyea, 2006). 

Therefore, other alternative utilization avenues need to be sought, including direct application to 

soil as organic amendment. This possible option can benefit plant and soil by recycling the plant 

nutrients and carbon that are present in TS. A broad range of organic material (e.g. animal 

manures, biosolids, composts) application to agricultural soils have already been extensively 

evaluated, with results showing positive impacts of additions of these materials on various soil 

properties that far outweighed the negative impacts (Edmeades, 2003; Hargreaves et al., 2008; 

Diacono and Montemurro, 2010; Quilty and Cattle, 2011). However, effects of bioenery 

by-products, such as TS on soil attributes are not well documented.   

 A few studies have evaluated the effect that application of vinasse stillage produced from 

molasses, a by-product of the sugar industry, has on soil properties (Gemtos et al., 1999; Singh et 

al., 2003; Resende et al., 2006; Tejada and Gonzalez, 2005; Hati et al, 2007; Tejada et al., 2007). 

However, the chemical characteristics of TS are different from vinasse and variable, and differ 

according to feedstock type and the treatments used in the bioenergy production plant. For 

instance, TS derived from biochemical conversion of a starch crop, such as corn or wheat (the 

two most popular crops for ethanol production in North America and Europe) (Mustafa et al., 

2000; Cardona and Sánchez, 2007), is different in its chemical properties from distillery 

wastewater (vinasse) produced from sugar cane or molasses (España-Gamboa et al., 2011). Field 

studies examining effects of repeated application of TS using advanced application techniques on 

soil attributes are lacking. Fertilization with TS may contribute to build-up of residual available 

N and P in the soil as a result of unused plant available forms added in excess of crop demand, 

and also as a result of continued mineralization of organic forms of these nutrients into inorganic 
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forms. Excess nutrient may pose an environmental risk, especially if rate of nutrient application 

exceed crop requirements for many years. In addition, the acidic nature of TS and its high 

content of salts may adversely affect soil chemical and biological properties. These possible 

effects need to be clarified. Therefore, the objective of the current study was to assess changes in 

some selected soil chemical and biological properties in a Black Chernozemic fertilized for two 

years in the field with TS derived from wheat-based ethanol production. 

8.4 Materials and Methods 

8.4.1 Site description 

The experimental site was located near the town of Dixon in east-central Saskatchewan, 

Canada. It is located within a productive agricultural region in Saskatchewan (Stumborg et al., 

2007). The predominant soil at the site is classified as a Black Chernozem (Cudworth 

Association) of clay-loam texture. The average particle-size distribution in the 0-15 cm depth 

was 30% sand, 23% silt and 47% clay, determined using pipette method (Gee and Bauder, 1986). 

The study site has a nearly level topography. Prior to the current study, the field was cropped to 

barley (Hordeum vulgare L.). The basic characteristics of the field soil are shown in Table 8.1. 

The average long-term annual precipitation and temperature for this area is 373 mm and 0.7 °C 

respectively (Stumborg et al., 2007). Monthly cumulative rainfall and mean air temperature over 

the two growing seasons and the 30-yr average are summarized in Fig. 8.1. The climate data 

were retrieved from a weather station located at Humboldt approximately 5 km from the 

experimental site (Environment Canada, 2012). 

8.4.2 Experimental design 

The field experiment was established in fall 2008. The experimental setup was a 

randomized complete block design with 10 treatments repeated four times. The experimental 

treatments included: injected TS (INJTS), broadcasted and incorporated TS (BRTS) and banded 

urea (UR) for comparative purposes, each of which was applied at three rates: low (L), medium  



 

 

 
 

118 

 

Table 8.1. Selected soil properties at the start of the field study in fall 2008 in samples collected 
from control plots at three depths. 

Property 
Soil depth (cm)§ 

0-15  15-30  30-60 
NO3

--N (mg kg-1)  7.0 ± 0.3  4.8 ± 0.2  5.1 ± 0.3 
NH4

+-N (mg kg-1) 4.3 ± 0.3  5.0 ± 0.1  5.0 ± 0.5 
Avail. P (mg kg-1) 5.1 ± 1.0  1.9 ± 0.0  2.0 ± 0.1 
Avail. K (mg kg-1) 275 ± 23  128 ± 15  115 ± 3 
Organic C (mg g-1) 28 ± 2.0  13 ± 2.0  7.0 ± 1.0 
pH 8.0 ± 0.1  7.8 ± 0.1  7.9 ± 0.03 
EC (dS m-1) 1.5 ± 0.8  3.7 ± 0.7  4.8 ± 0.2 
Sand (%) 29.7 ± 0.5  19.4 ± 3.3  22.8 ± 3.3 
Silt (%) 23.6 ± 3.0  26.3 ± 1.8  22.4± 2.1 
Clay (%) 46.7± 3.5  54.2 ± 5.1  54.8 ± 1.2 

§ values presented are means followed by standard error 

 

 
Fig. 8.1. Monthly total precipitation and mean air temperatures at the experimental site for the 
entire growing season for the two years of the study (2009, 2010). The 30-yr rainfall and 
temperature averages (normal) are also included.   
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(M) and high (H). A control (unfertilized, unamended) was included for comparison. The three 

rates of TS application were: 16800, 33600 and 67200 L ha-1, intended to provide approximately 

50, 100 and 200 kg available N ha-1, respectively, based on an assumption that about 60% of the 

total N in TS would be available during the course of the year (Qian et al., 2011). The three rates 

of conventional fertilizer urea (46-0-0) applied for comparison were 50, 100 and 200 kg N ha-1. 

Plot dimensions were 3 by 9 m in blocks that were spaced apart by 27 m. Plots received the same 

treatments in both 2009 and 2010. 

8.4.3 Treatment application 

The TS utilized in this study is a by-product of bio-ethanol production from wheat grain 

feedstock. It was provided by Pound-Maker Agventures ethanol plant located at Lanigan, 

Saskatchewan. The collection, delivery and application of the TS were carried out by the Prairie 

Agricultural Machinery Institute (PAMI, Humboldt, SK). Application of treatments to the field 

took place in the preceding fall (1st wk of October) of each growing season. For the injection 

method of application, TS was applied using the PAMI liquid slurry injector truck. The TS was 

agitated as it was pumped into the PAMI injector truck. The injector truck is equipped with 

modified Bourgault low disturbance injector disc coulters spaced 30 cm apart. The TS was 

applied in bands behind the coulter at an average depth of 8-10 cm. For the broadcast and 

incorporation method, the injectors were lifted above the soil surface to get TS applied on the 

soil surface in a band, followed by immediate incorporation with a chisel plow cultivator using 

one pass with 30 cm sweeps on a 20 cm row spacing, followed by harrowing. During TS 

application to soil and for both years, several samples were collected at the injector opening, 

mixed to yield a homogenous representative sample and stored in the freezer (-20 °C) until 

analysis for chemical composition. The analysis of TS was conducted at a commercial laboratory 

(ALS Laboratory Group, Saskatoon, SK). Basic characteristics of TS applied for each year are 

provided in Table 8.2. Commercial granular urea fertilizer (46-0-0) was banded into the soil 

using PAMI’s plot drill at an 8 cm depth with knives on a 20 cm row spacing.  

The field was seeded to Lillian variety hard red spring wheat (T. aestivum) and 

BrettYoung 719 Roundup Ready variety canola (Brassica napus L.) in the seasons of 2009 and 

2010, respectively. Information regarding planting and harvesting details and crop related 
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parameters measured and their response to treatment application were previously reported in 

Chapter 7. 

Table 8.2. Basic characteristics of thin stillage (TS) applied in 2008 and 2009. All contents are 
expressed on a fresh wet weight basis.  

Property 
  Year 
  2009   2010 

Total N (mg g-1)   4.7   5.7 
NH4

+-N (mg g-1)   0.90   0.10 
Total P (mg g-1)   0.90   0.11 
Total K (mg g-1)   1.1   1.2 
Total S (mg g-1)   0.6   0.7 
Na (mg g-1)   0.4   0.3 
Ca (mg g-1)   0.2   ND 
Mg (mg g-1)   0.4   ND 
pH   3.8   4.10 
Moisture (%)   92.5   91.6 

8.4.4 Soil sample collection 

The first soil sample collection occurred immediately after experimental plot layout in 

fall of 2008 for initial soil characterization of the study site. For this purpose, soil samples were 

collected only from the control plots at three soil depth increments (0-15, 15-30 and 30-60 cm). 

To evaluate treatments effects on residual soil available N and P and some selected soil chemical 

and biological properties, soil samples were collected immediately after crop harvest at the end 

of growing seasons before freeze-up (mid October) for both years from all plots. A hydraulic 

punch truck was used to collect soil cores (three per plot), which were separated into different 

soil depths increments: 0-15, 15-30 and 30-60 cm in the first year whereas in the second year the 

samples were collected at 0-15, 15-30, 30-60 and 60-90 cm depths. The triplicate soil samples 

collected from each depth were mixed thoroughly to produce a single composite sample for each 

depth per plot. A subsample was taken from the prepared composite soil sample of selected 

treatments and immediately frozen at -20°C for later use for microbial biomass analysis. The rest 

of soil samples were air-dried and ground to pass a 2-mm sieve prior to laboratory analysis. Soil 

samples collected in both years at all depths were analyzed for inorganic N (NH4
+-N and 
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NO3
--N) whereas the analysis of other selected parameters were limited to soil samples collected 

from the upper soil depth (0-15 cm). Dehydrogenase enzyme activity and microbial biomass 

were determined only in medium rate of injected TS and urea treatments in addition to the 

untreated soil. 

4.5 Soil analysis 

 Exchangeable NH4
+-N and NO3

--N were extracted by shaking 5 g of soil with 50 mL of 2 

M KCl for 1 h on rotary shaker, followed by filtration. The NH4
+-N and NO3

--N content in the 

KCl extracts were measured colorimetrically using a Technicon Autoanalyzer II (Keeney and 

Nelson, 1982). Available P and K were determined by a modified Kelowna method (Qian et al., 

1994). Electrical conductivity and pH were measured in 1:1 soil:water suspension. Soil available 

Cu, Zn and Cd were extracted by ammonium bicarbonate (AB)-diethylenetriaminepentaacetic 

acid (DTPA) as described by Lipoth and Schoenau (2007). Extracted Cu, Zn and Cd were then 

determined using atomic absorption spectrometry (Baker and Amacher, 1982). Dehydrogenase 

activity analysis involved the reduction of 2,3,5-triphenylterazolium chloride (TTC) to triphenyle 

formazan (TPF) as described by Casida et al. (1964) and slightly modified by Serra-Wittling et 

al. (1995). Soil content of microbial biomass C (MBC) and microbial biomass N (MBN) was 

determined by fumigation extraction procedure as outlined by Voroney et al. (2008). The values 

of nonfumigated samples were subtracted from those obtained from fumigated samples, and 

MBC and MBN were calculated using KEC factor of 0.45 for MBC (WU et al., 1990; Joergensen, 

1996) and KEC factor of 0.54 for the MBN (Joergensen and Mueller, 1996). 

8.4.6 Statistical analyses 

 Normality of raw data and homogeneity of variance were checked prior to data analysis 

using Shapiro-Wilk and Bartlett tests, respectively. Then, a one-way analysis of variance 

(ANOVA) was employed to analyze treatment effects on soil variables. Treatments effects were 

declared statistically significant at a probability level of P ≤ 0.1 at which means were also 

separated by Fisher’s protected LSD. A probability level of 0.1 rather than 0.05 was selected as 

the significance level for this study owing to the inherently high degree of variability in soil and 

biological properties encountered in liquid fertilized fields (Stumborg and Schoenau, 2008).  
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8.5 Results  

8.5.1 Effects on residual available N and P 

  Residual inorganic N (NH4
+-N and NO3

--N) contents in soil collected from different 

depths after harvest in the first year are shown in Table 8.3. The inorganic N content at all depths 

was dominated by NH4
+-N, which was not significantly affected by treatment application at any 

depth.  Concentrations of residual NO3
--N were low (< 7 mg kg-1) and NO3

--N concentration was 

only affected by treatment at the depth of 15-30 cm. At this depth, urea applied at the high rate 

had the highest content of residual NO3
--N, but was not significantly different from the control 

(Table 8.3). In contrast to the fall of 2009, the effects of two years of treatments made on 

residual NO3
--N as measured in the fall of 2010 were more pronounced, with higher levels of 

residual NO3
--N observed in the year 2010 (Table 8.4). In fall of 2010, treatment had a 

significant impact on soil NO3-N content in all soil depths measured after harvest. In the surface 

soil (0-15 cm), the residual NO3
--N concentration was greatly affected by treatment application, 

with injected TS treatment having the highest NO3
--N content compared to the other treatments, 

when averaged across the three rates of application. With the exception of BRTS-L and UR-L 

treatments, all the treatments had significantly higher amounts of soil NO3-N than the control. 

The medium and high rates of injected TS and urea plus the high rate of broadcasted and 

incorporated TS treatments contained the greatest concentrations of NO3
--N (> 10 mg kg-1) and 

these treatments did not differ significantly from each other. Treatment effects on NO3
--N 

content persisted to the second soil depth increment (15-30 cm) in which most of the treatments 

had significantly higher  concentration of NO3
--N than that in the control (Table 8.4). At this 

depth, the NO3-N content in injected TS at any rate was significantly higher than that in the 

control, with the INJTS-H treatment showing the greatest amount of NO3
--N.  

 When averaged over the three rates of application, injected TS had the highest content of 

NO3
--N followed by urea whereas the broadcasted and incorporated TS treatment had the least.  

Greater losses of N as a result of volatilization and immobilization may be occurring with 

broadcast and incorporate application compared to injection. Moreover, the significant impact of 

treatments continued to the lower soil layer (30-60 cm). At this depth, the high rate of injected 

TS and urea treatments had the highest NO3
--N content, and both were significantly higher than  
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Table 8.3. Soil content of residual inorganic N (NH4
+-N, NO3

--N) at three soil depth increments 
determined in soils collected in the fall of the first year (2009) of the two-yr field trial (mean ± 
standard error). 
  Depth (cm) 

Treatment¶ 
0-15    15-30    30-60  

NH4
+-N   NO3

--N   NH4
+-N   NO3

--N   NH4
+-N   NO3

--N 
---------------------------------------------------mg kg -1------------------------------------------------- 

Control 10.4 ± 0.9§   4.5 ± 0.3   10.5 ± 2.3   3.7 ± 0.5 ab   20.1 ± 6.4   2.7 ± 0.7 
INJTS-L 11.7 ± 1.9   5.2 ± 0.2   19.2 ± 2.0   2.7 ± 0.2 bc   15.0 ± 3.8   3.4 ± 1.4 
INJTS-M 10.2 ± 1.3   6.5 ± 0.5   14.6 ± 4.2   3.0 ± 0.5 bc   8.2 ± 4.3   3.9 ± 1.3 
INJTS-H 8.0 ± 1.1   5.4 ± 1.3   15.1 ± 3.8   3.6 ± 1.3 bc   11.2 ± 2.0   2.7 ± 0.7 
BRTS-L 9.6 ± 2.1   6.0 ± 0.6   18.3 ± 2.9   2.4 ± 0.2 c   16.2 ± 4.8   2.3 ± 0.1 
BRTS-M 8.5 ± 2.0   5.2 ± 0.7   12.1 ± 2.0   2.7 ± 0.2 bc   6.1 ± 0.5   2.5 ± 0.4 
BRTS-H 8.7 ± 0.7   5.3 ± 0.6   16.3 ± 4.5   2.3 ± 0.1 c   9.1 ± 2.5   1.8 ± 0.1 

UR-L 11.3 ± 1.5   5.8 ± 0.7   18.9 ± 4.9   2.4 ± 0.1 c   17.3 ± 2.2   2.4 ± 0.4 
UR-M 8.7 ± 1.6   5.9 ± 0.8   11.2 ± 2.5   3.2 ± 0.4 bc   8.8 ± 2.0   4.8 ± 1.7 
UR-H 8.1 ± 0.8   6.3 ± 0.9   11.3 ± 3.0   4.5 ± 0.4 a   10.1 ± 3.3   4.1 ± 0.6 

                        
  ANOVA 

Treatment NS   NS   NS   0.057   NS   NS 
¶ INJTS denotes injected thin stillage, BRTS denotes broadcasted and incorporated thin stillage, 
UR denotes urea fertilizer. Each of these treatments are followed by the rate of application: high 
(H), medium (M) and low (L). ). For TS, high rate is 67200 L ha-1, medium rate is 33600 L ha-1, 
and low rate is 16800 L ha-1 
§ Means within a column sharing the same letter are not significantly different at P < 0.10.  
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all other treatments including the control (Table 8.4). However, NO3
--N content in broadcasted 

TS at any rate treatment did not differ from the control. The treatments had also a strong impact 

on NO3
--N content at the deepest soil depth increment (60-90 cm), with the high rate of urea 

fertilizer treatment having the highest level of NO3
--N, followed by the injected TS applied at the 

high rate (Table 8.4). This suggests greater leaching potential of nitrate derived from the 

fertilizer urea compared to the TS. At this depth, the broadcast and incorporate TS treatment had 

lowest NO3
--N, when averaged over the three rates of application.  

 Soil content of residual extractable P was significantly influenced by amendment 

application in both years, but the treatment effects were more evident after the second year of 

application (Table 8.5). In both years, post-harvest extractable P content of the soil tended to 

increase with increasing rate of TS application, and was the greatest in soil when the TS was 

injected or broadcasted at the high rate (Table 8.5). At equivalent rate of application for a second 

year, the amount of extractable P in the fall of 2010 was higher than that observed in the fall of  

2009.  As expected, soil fertilized with urea had the lowest content of available P, and this was 

significantly lower than the control in the year 2010, reflecting depletion by crop uptake over 

two years. 

8.5.2 Effects on other selected soil chemical properties 

  Extractable K and organic C determined after crop harvest in both years were not 

affected by treatment application (Table 8.5).  Soil pH measured after crop harvest in both years 

remained unchanged, and the same was also observed with EC (Table 5). Extractable trace 

metals (Cu, Zn, Cd) determined in the second year were not also influenced by treatment 

application (Table 8.5). 

8.5.3 Effect on dehydrogenase activity and microbial biomass 

Dehydrogenase activity determined in the selected treatments was not significantly 

influenced by treatment application in both years (Table 8.6). However, in the same selected 

treatments, MBC and MBN were both affected by treatment application in the year 2009, but not 

in the year 2010 (Table 8.6). In general, soil content of MBC and MBN was higher in the fall of 
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2009 than in 2010. Urea addition resulted in reduced MBC and MBN content, that was 

significantly lower than the INJTS-M and control treatments (Table 8.6). 
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Table 8.4. Soil content of residual inorganic N (NH4
+-N, NO3

--N) at four soil depth increments determined in the fall of the second 
year (2010) of the two-yr field trial (mean ± standard error). 

 Depth (cm) 

Treatment¶  
0-15  15-30  30-60  60-90 

NH4
+-N  NO3

--N  NH4
+-N  NO3

--N  NH4
+-N  NO3

--N  NH4
+-N  NO3

--N 
----------------------------------------------------------------------mg kg -1----------------------------------------------------------------------- 

Control 5.8 ± 1.2  6.4 ± 0.7 d§  7.1 ± 1.9  4.0 ± 0.2 d  10.6 ± 2.8  2.6 ± 0.2 b  13.0 ± 3.4  2.0 ± 0.1 e 
INJTS-L 5.6 ± 0.6  9.5 ± 1.4 bc  10.3 ± 5.2  6.5 ± 1.7 abc  11.4 ± 2.2  3.0 ± 0.3 b  8.7 ± 2.3  2.3 ± 0.1 de 
INJTS-M 6.1 ± 1.1  16.2 ± 3.3 a  12.7 ± 4.3  6.8 ± 1.1 abc  10.5 ± 3.3  4.0 ± 0.6 b  9.2 ± 3.9  3.5 ± 0.8 cd 
INJTS-H 5.5 ± 1.4  11.9 ± 2.0 ab  6.5 ± 2.1  10.3 ± 2.9 a  6.9 ± 2.7  10.3 ± 3.3 a  6.3 ± 1.9  7.9 ± 1.8 b 
BRTS-L 7.6 ± 0.9  7.7 ± 0.5 cd  13.3 ± 4.2  5.2 ± 0.9 bcd  12.0 ± 2.4  3.1 ± 0.4 b  11.6 ± 2.6  2.5 ± 0.2 de 
BRTS-M 6.5 ± 0.5  8.5 ± 0.3 c  7.4 ± 1.3  4.8 ± 0.2 cd  15.0 ± 2.6  2.9 ± 0.1 b  11.8 ± 2.1  3.2 ± 0.8 cde 
BRTS-H 6.5 ± 1.2  11.5 ± 0.7 ab  5.7 ± 1.0  5.9 ± 1.2 bcd  15.2 ± 3.9  3.2 ± 0.1 b  11.3 ± 2.4  3.1 ± 0.1 cd 

UR-L 5.6 ± 0.5  7.5 ± 0.9 cd  10.0 ± 2.5  4.9 ± 1.0 cd  8.3 ± 1.8  3.6 ± 0.7 b  8.4 ± 1.6  3.6 ± 1.1 cd 
UR-M 5.5 ± 0.6  13.3 ± 1.1 a  8.1 ± 2.3  6.2 ± 0.5 abc  8.8 ± 3.2  4.2 ± 0.7 b  6.3 ± 1.3  4.4 ± 1.1 c 
UR-H 6.4 ± 0.6  12.1 ± 1.3 ab  6.0 ± 0.9  8.2 ± 1.8 ab  11.0 ± 3.4  10.1 ± 2.8 a  9.9 ± 1.9  12.0 ± 2.1 a 

                
 ANOVA 

Treatment NS  <0.01  NS  0.066  NS  <0.001  NS  <0.001 
¶ INJTS denotes injected thin stillage , BRTS denotes broadcasted and incorporated thin stillage, UR denotes urea fertilizer. Each of 
these treatments are followed by the rate of application: high (H), medium (M) and low (L). ).  For TS, high rate is 67200 L ha-1, 
medium rate is 33600 L ha-1, and low rate is 16800 L ha-1. 
§ Means within a column sharing the same letter are not significantly different at P = 0.10.  
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Table 8.5. Soil content of residual available P and other selected soil properties at 0-15 cm depth determined in fall of both years of 
the two-yr field trial (mean ± standard error). 

Treatment¶ 
2009  2010 

P  K  OC  pH  EC  P  K  Cu  Zn  Cd  OC  pH  EC 
-------mg kg -1-----  %    dS m-1  ---------------------mg kg -1-----------------------  mg g-1    dS m-1 

Control 7.1 bc§  295  2.76  7.8  1.31  10.5 bc  281  2.49  2.16  0.28  27  8.0  0.8 
INJTS-L 6.3 c  263  2.60  7.8  2.26  9.8 cde  274  1.68  2.28  0.26  30  8.0  0.7 
INJTS-M 8.6 bc  313  3.01  7.6  1.49  11.2 bc  274  1.59  1.98  0.32  29  8.0  0.8 
INJTS-H 13.7 a  307  3.01  7.6  1.24  15.2 a  280  2.05  2.28  0.25  28  7.9  1.4 
BRTS-L 7.7 bc  330  2.92  7.8  1.14  10.4 bcd  316  1.79  2.15  0.37  27  8.1  0.7 
BRTS-M 7.8 bc  298  2.95  7.7  1.32  11.9 b  312  2.09  1.97  0.28  26  8.0  0.8 
BRTS-H 10.5 ab  320  2.92  7.8  0.82  17.0 a  350  2.04  2.31  0.39  27  8.0  0.7 

UR-L 6.5 c  275  3.14  7.8  0.58  8.4 e  270  1.91  1.85  0.26  27  8.0  0.6 
UR-M 6.1 c  298  2.97  7.9  0.65  8.1 e  285  1.91  1.84  0.36  27  8.1  0.6 
UR-H 6.1 c  226  2.37  7.8  1.50  8.5 de  252  1.56  2.03  0.29  27  8.1  0.7 

 ANOVA 
Treatment 0.080  NS  NS  NS  NS  <0.001  NS  NS  NS  NS  NS  NS  NS 

¶ INJTS denotes injected thin stillage , BRTS denotes broadcasted and incorporated thin stillage, UR denotes urea fertilizer. Each of 
these treatments are followed by the rate of application: high (H), medium (M) and low (L). ). For TS, high rate is 67200 L ha-1, 
medium rate is 33600 L ha-1, and low rate is 16800 L ha-1. 
§ Means within a column sharing the same letter are not significantly different at P = 0.10.  
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Table 8.6. Dehydrogenase activity, microbial biomass C and microbial biomass N responses to 
experimental treatments in soil collected in fall for both years (mean ± standard error). 

Treatment¶ 
Dehydrogenase Activity   Microbial Biomass C   Microbial Biomass N 

2009  2010  2009  2010  2009  2010 
µg TPF g -1  µg g-1 

Control 263 ± 45  386 ± 28  546 ± 23 a§  259 ± 23  146 ± 18 a  31 ± 5 
INJTS-M 222 ± 39  445 ± 50  602 ± 66 a  247 ± 34  150 ± 20 a  37 ± 7 

UR-M 191 ± 38  370 ± 17  293 ± 26 b  246 ± 20  51 ± 12 b  37 ± 3 
  ANOVA 

Treatment NS  NS  0.002  NS  0.004  NS 
¶ INJTS-M denotes injected thin stillage at medium (M) rate of 33600 L ha-1, UR-M denotes 

urea fertilizer applied at 100 kg N ha-1, referred to as medium rate (M).  
§ Means within a column sharing the same letter are not significantly different at P = 0.10.  
 

8.6 Discussion 

The lack of clear effect of treatments on residual NO3
--N content following crop harvest 

in the first year is a consequence of the overall higher plant N uptake observed in treatment plots 

in that year (see Chapter 7) as the plants efficiently utilized the nutrient applied in the treatments. 

The accumulation of NO3-N in the soil profile observed in this study in the fall of 2010 after two 

years of treatment application is in line with other studies that reported a potential of NO3-N 

buildup in soil treated with distillery effluent (Sweeney and Graetz, 1991; Jenkins et al., 1988). 

This can be related to the high mineralization rate of applied thin stillage N, as previously 

documented by Jenkins et al., 1988. In a growth chamber study Qian et al. (2011) estimated that 

more than half of the TS total N became available for plant uptake over the five wk period. The 

higher NO3-N observed in the second year of the current study might be also related to additional 

contribution from the release of N from TS organic matter applied in the previous year.   

 Tejada and Gonzalez (2005) found that application of beet vinasse during three 

consecutive years increased soil NO3
--N concentration, but this increase was limited to the lower 

rates (3 and 6 t ha-1) whereas higher rates of application decreased NO3
--N in soil. However, in 

most cases, and as in the current study, increases in soil NO3
--N were associated with increasing 

rate of application and higher levels were also observed at the high rate of TS application, 

especially when injected. Soil treated with digestate was also found to contain higher amount of 
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NO3
--N, and this was assumed to be a result of nitrification of the large content of NH4

+-N 

present in the digestate (Goberna et al., 2011). Ammonium represents about 20% of the TS total 

N, and nitrification of this ammonium may have contributed to the high NO3
--N content 

observed after the second year of the current study. The increased soil NO3
--N associated with 

injected TS compared to the broadcasted and incorporated TS may have partially been related to 

conserving NH4
+-N by reducing N loss via volatilization processes. It was previously reported 

that band injection of organic materials is an effective method in reducing NH3 volatilization 

(Huijsmans et al.; 2003). The experimental site area experienced excessive and unusually high 

rainfall amounts in the summer of 2010 (Fig 1), and resulted in leaching of NO3
--N to greater 

depths, as seen in the fall 2010 samples. Despite the high crop removal of N in both growing 

seasons, the larger amount of NO3
--N residing in soil after crop harvest in the second year 

indicates that repeated application of TS at the high rates could pose an environmental risk of 

NO3
--N accumulation in soil profiles, increasing leaching potential to groundwater.         

 Addition of TS resulted in increased available P in soil. This is in line with other previous 

findings. In a study similar to the one conducted here, application of TS derived from sorghum 

feedstock resulted in a significant increase in residual available P (Jenkins et al., 1988). The 

same was also observed under controlled environment conditions, where TS enhanced soil 

content of residual available P (Qian et al., 2011). The TS used here had a high content of total P 

similar to that found in liquid animal manures. This increases its fertilizer value as a source of P, 

as shown by its significant impact on crop P uptake. However, just like for many animal 

manures, repeated application of TS based on N requirement may lead to excessive supply of P 

that exceeds crop demand, due to the narrow N:P ratio in TS. The continued increase in soil 

content of available P after crop harvest, especially at the high rates of application, is of 

environmental concern for the potential build-up of P in the soil profile.  

 The inherent high fertility and organic matter content of the Black Chernozem soil used 

in this study may have resulted in the absence of a clear effect on some selected parameters, such 

as organic C and available K. The Black Chernozemic soil has a high content of native soil 

organic matter, and the amount of added organic matter as TS was likely not adequate to produce 

a measurable significant difference in soil organic C content. It was reported elsewhere that soil 

C content was not a sensitive indicator of changes in the C pools in high organic matter soils 

receiving organic materials (Eghball et al., 2004). 
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 The lack of a significant impact of TS addition on soil pH and salinity (EC) in the current 

study is consistent with findings in a study in which addition of distillery effluent for three 

consecutive years to a clay soil with a pH of nearly 8.0 did not affect the soil pH, attributing this 

to the high buffering capacity of the studied soil (Hati et al., 2007). However, in an early 

greenhouse study, application of distillery waste anaerobic digester effluent to a relatively acidic 

soil increased soil pH (Sweeney and Graetz, 1991). In the current study, a pH of 8.0 indicates 

that this soil may contain free CaCO3, and thereby has a high buffering capacity against pH 

alteration (Bache, 1984). This is consistent with the results obtained from a growth chamber 

study where a similar TS was used (Qian et al., 2011). Sweeney and Graetz (1991) also observed 

no effect on trace metals content in soil receiving distillery effluent. The low concentration of 

trace metals added with TS, and the high soil pH that remained unaltered may explain the soil 

content of extractable trace metals being unaffected by TS application.  

 The reported effects of distillery effluent on soil biological properties (e.g. enzyme 

activities and microbial biomass) are inconsistent in the literature. This is likely related to the 

variations in chemical composition among the by-products used, in addition to differences in soil 

conditions among the studied soils, and the time period that had elapsed between amendment and 

measurement. For instance, fresh beet vinasse was found to have a negative impact on 

dehydrogenase activity and microbial biomass (Tejada et al., 2007), whereas another study found 

that addition of three distillery effluents varying in their chemical characteristics resulted in 

increased dehydrogenase activity in soil (Singh et al., 2003). It was also reported that microbial 

biomass increased in soil treated with distillery effluent addition (Hati et al., 2007). In the current 

field study, the TS derived from wheat grain had no negative effect on biological properties of 

the Black Chernozemic soil measured in the fall of the year after crop harvest. This indicates that 

TS did not suppress soil microbial activity. An interesting finding was that urea fertilizer 

amendment tended to reduce soil content of MBC and MBN in the first year of the study, but not 

the second year.  Unfortunately measurements of MBC and MBN were not made throughout the 

growing season. A longer-term field study may help clarify these effects and their origin.  

8.7 Conclusion 

The results of the current study indicate that repeated application of TS can lead to 

build-up of residual NO3
--N and extractable P in soil. Such accumulations of NO3

--N and P in 
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soil could result in potential risks of NO3
--N leaching and P runoff. Under annual application 

practice, release of nutrients from TS application likely can persist into the following year, due to 

its high decomposability in soil. Injection of TS appears to result in better retention of added N 

than broadcast application. Reduced frequencies of TS application with continuous crop 

production might be a better solution to allow maximum utilization of available nutrients left in 

soil from previous applications. A low rate application may be recommended especially under 

repeated yearly application regimes. There were no significant impacts of two years of TS 

application on pH, salinity, organic C or extractable metals content at this site. Addition of TS 

did not show any negative impact on measured microbial parameters (dehydrogenase enzyme 

and microbial biomass). A further field study monitoring the effects of several years of TS 

amendment may be useful to better understand the effect of TS addition on soil microbial 

community structure and activity. 
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9. BIOCHAR AND GLYCEROL APPLICATION TO A PRAIRIE SOIL IN THE FIELD: 
CROP RESPONSE AND CHANGES IN SOIL BIOLOGICAL AND CHEMICAL 

PROPERTIES 

9.1 Preface 

Biochar (BC) is a by-product of pyrolysis of organic materials during biogas production 

whereas glycerol (GL) is by-product of transesterification of vegetable oils during biodiesel 

production. These two by-products have a high content of C, and based on this, they were 

grouped in one study and reported in this final chapter. The studies conducted on the impact of 

GL on soil nutrient release and biological properties under controlled environment conditions are 

covered in Chapter 3 and Chapter 4 revealed that GL application to soil may be a possible option 

for its utilization. Unlike GL, the number of research studies concerning soil amendment with 

BC continues to grow globally. A field research study was conducted to investigate direct and 

residual effects of BC and GL application on crop yield, nutrient uptake and changes in selected 

soil chemical and biological properties in a Brown Chernozemic soil. This soil type was selected 

because it may better benefit from C-rich substrate application due to its lower content of organic 

matter.   

This chapter has been submitted to a refereed Journal. The appreciated contribution of the 

co-author, J.J. Schoenau, included  financial support to cover the research expenses, supervision 

of the research progress and manuscript editing. 
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9.2 Abstract 

Unlike glycerol (GL), biochar (BC) has recently received more attention globally as a 

potential soil amendment, especially in highly weathered, acidic soils. However, this potential 

has not been well-evaluated for young neutral to alkaline soils. This study investigated the 

immediate and residual effects of a single application of BC and GL to a cultivated Brown 

Chernozem from the semi-arid region of southwestern Saskatchewan. Field plots were treated 

with BC and GL applied alone at 2000 kg C ha-1, or with N (BC+N and GL+N, respectively). A 

treatment of 100 kg N ha-1 as urea (UR) was included for a comparison. Selected crop and soil 

parameters were measured. In the first season following a spring application of the amendments, 

addition of BC and GL alone had no significant impact on crop or soil parameters. However, 

when combined with 50 kg N ha-1, BC provided similar or larger yields than those following the 

100 kg N ha-1 treatment, suggesting that BC may have improved urea N use efficiency. The 

GL+N reduced crop yield and N uptake, probably due to microbial immobilization of N. 

However, this treatment had a significant residual effect in the second year on crop yield and N 

uptake, presumably because of the re-mineralization of the N that was immobilized after 

application in the first season. Both GL and GL+N treatments enhanced dehydrogenase activity 

compared to other treatments whereas BC+N significantly decreased microbial biomass C, 

possibly related to the depletion of soil nutrients owing to high crop growth observed in the same 

treatment. No further residual impacts were detected in following seasons. The soil response to 

application of amendments, especially BC, was less than expected according to the previous 

studies conducted elsewhere. A greater application rate of amendments may be required to 

demonstrate a response.  

9.3 Introduction 

 Biochar (BC) is the carbon-rich by-product of the thermal breakdown of C-based 

feedstocks in absence of oxygen and at relatively low temperature (< 700°C) using the pyrolysis 

process, which is employed to convert biomass into liquid, gas and BC (Lehmann and Joseph, 

2009; Kwapinski et al., 2010). Application of BC to soil is not a new concept, but it has recently 

attracted a global interest due to its potential agronomic and environmental benefits in addition to 
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offering an improved organic waste management strategy. It has widely been evaluated as a 

possible means to improve soil fertility, increase crop productivity and reduce greenhouse gas 

emissions (Lehmann et al., 2011) in a variety of soils. The relatively recalcitrant nature of C in 

BC to microbial decomposition leads to its effective use for sequestering carbon in soil, thereby 

mitigating climate change (Laird, 2008; Sohi et al., 2010). In addition, BC addition was shown to 

decrease N2O and CH4 emissions from soil (Rondon et al., 2005; Yanai et al., 2007; Roberts et 

al., 2010) and frequently reported that crop growth can be improved by BC application 

(Lehmann et al., 2003; Yamato et al., 2006; Rondon et al., 2007; Steiner et al., 2007; Chan et al., 

2008; Blackwell et al., 2009; Major et al., 2010).  

The increases in crop productivity following BC application may occur directly through 

supply of essential nutrient, or indirectly through improving soil properties and functions 

(Lehmann and Joseph, 2009; Woolf et al., 2010). However, BC itself is not expected to supply 

nutrient due to its low content of available plant nutrients and the recalcitrant nature of the 

material. Consequently, it has been recommended that BC be supplemented with fertilizer when 

applied to soil (Lee et al., 2010). It has been found that the mechanisms responsible for the 

improvements in crop production include enhanced water and nutrient retention, improved soil 

structure and drainage (Jeffery et al., 2011) as well as increased cation exchange capacity, 

changes in pH and in electrical conductivity (EC) (Liang et al., 2006; Gundale and DeLuca, 

2007; Warnock et al., 2007; Amonette and Joseph, 2009). Indirect added value from BC to 

nutrient efficacy is related to its ability to reduce N loss through volatilization and leaching 

processes via absorbance of NH3 and retention of ammonium (Chan and Xu, 2009; Singh et al., 

2010; Lehmann et al., 2003a; Major et al., 2009).  

Some previous studies have reported effects of BC application on soil microbial activity 

and microbial community structure that are considered to be indicators of soil health and quality 

(Rondon et al., 2007; Warnock et al., 2007; Steiner et al., 2008). Most of the work examining the 

agricultural and environmental impacts of BC application, especially the ones showing positive 

benefits of BC application, have been limited to tropical regions (Atkinson et al., 2010; Spokas et 

al., 2012). Therefore, several key soil properties and functions pertinent to soil productivity in 

highly weathered or degraded and acidic soils are likely to show positive benefits of BC 

utilization (Atkinson et al., 2010). However, crop and soil responses may be different when BC 

is applied to soils in arid, semi-arid or temperate regions. Studies in this context need to be 
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geographically expanded to include regions with different soils and climatic conditions in order 

to create a robust body of scientific research to understand how BC effects and benefits vary 

geographically and temporally prior to serious contemplation of global scale implementation of 

BC.  Currently, BC application to agricultural soils is rare in Canada, with no studies conducted 

on calcareous prairie soils typical of the northern Great Plains. 

Glycerol (GL), also known as glycerin, is another C-rich by-product generated during the 

manufacture of biodiesel via transesterification of vegetable oils.  It comprises a significant 

portion of biodiesel production in which every tonne of biodiesel produced generates 100 kg of 

GL. The global production of biodiesel is projected to reach over 140 billion L by 2016 with an 

average annual growth of 42%, which will lead to approximately 15 billion L of crude GL being 

generated (Fan et al., 2010). This will lead to a surplus of GL and will also have an impact on the 

GL market. Surplus GL by-product is dealt with as a waste material. More applications of this 

by-product need to be developed to help sustain biodiesel production. One example of a potential 

use of glycerol is its direct application to soil as amendment. This potential has received little 

attention. 

Glycerol lacks essential plant nutrient content, such as N and P. However, one potential 

benefit of its agricultural use is that it could be used as a C source amendment to improve soil 

quality through enhancing soil organic matter content and biological activity, especially in 

degraded soils that contain low organic matter due to the lack of organic inputs. As shown in 

Chapter 3, under growth chamber conditions, addition of GL to soil led to microbial 

immobilization of soil N. Addition of GL also showed a positive impact on enzyme activity and 

soil microbial C content in a controlled environment study. These findings encourage further 

research studies under field conditions to help assess their potential as soil amendment.  

The objective of the current study was to examine the effect of BC (derived from oat 

hull) and GL (derived from canola biodiesel production) applied once to a semi-arid prairie soil 

on crop yield, nutrient uptake, dehydrogenase activity, soil microbial biomass C and N and 

selected soil chemical properties over a 3-yr period. 
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9.4 Materials and Methods 

9.4.1 Experimental site 

The experiment was carried out on agricultural land in a canola-wheat rotation located 

near the town of Central Butte (50°47´31˝ N lat, 106°30´28˝ W long) in south-central 

Saskatchewan. The soil at this site is classified as Orthic Brown Chernozem (Soil Association: 

Ardill Loam), with a loamy texture and nearly level topography. The field at this site was 

cropped to hard red spring wheat in the year prior to the current study. Immediately after 

experimental plots were laid out in spring of 2009, selected soil properties to characterize site 

were determined on soil samples collected across the study area from the control plots at three 

soil depth (0-15, 15-30 and 30-60 cm) increments (Table 9.1). The soil is deficient in available N 

and P, sufficient in K, and with low organic matter content and high pH. The soil is non-saline. 

Climate data during the growing season for the three-yr study period were obtained from a 

weather station located near the experimental site (Environment Canada, 2012). Monthly 

cumulative rainfall and mean air temperature over the three growing seasons and the 30-yr 

average are given in Table 9.2.   

9.4.2 Experimental design 

The field experiment was initiated in spring 2009. Experimental plots were laid out with 

a dimension of 2 m × 2 m for each plot, to which the treatments were immediately applied. The 

limited amount of available BC and GL amendments dictated the plot size. The amendments of 

BC and GL were applied based on applying equal amount of C. Thus, the experimental 

treatments included one rate of BC and GL applied at 2000 kg C ha-1, either alone or combined 

with urea N. The GL was combined with 100 kg N ha-1 (GL+N) whereas BC was combined with 

50 kg N ha-1 (BC+N), as the N content of BC applied at 2000 kg C ha-1 rate added 50 kg N ha-1 

itself, giving a total of 100 kg N ha-1. The treatments also included one rate of urea (UR) 

fertilizer applied at 100 kg N ha-1, which is the typical rate of N applied in the area and an 

unamended/unfertilized plot (control). The assigned treatments were applied in a completely 

randomized design and replicated four times. The amendments were added only once in spring 

2009, but the effects of treatments were monitored for three growing seasons (2009-2011). 
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Table 9.1. Selected soil properties at the beginning of the field study in spring 2009 at three soil 
depth increments (0-15, 15-30 and 30-60 cm) 

Property 
Soil depth (cm)§ 

0-15  15-30  30-60 

NO3
--N (mg kg-1) 3.9 ± 0.9  3.2 ± 0.8  3.1  ± 0.4 

NH4
+-N (mg kg-1) 2.6 ± 0.1  2.6 ± 0.2  3.0 ± 0.1 

Avail. P (mg kg-1) 10.6 ± 1.4  8.4 ± 1.3  4.9 ± 0.8 

Avail. K (mg kg-1) 348 ± 36  279 ± 32  239 ± 22 

OC (%) 1.1 ± 0.1  1.0 ± 0.1  1.0 ± 0.2 

pH 7.9 ± 0.1  7.9 ± 0.0  8.0 ± 0.1 

EC (dS m-1) 0.1 ± 0.0  0.1 ± 0.0  0.2 ± 0.0 
 § values presented are means (n = 4) followed by standard error 

 

Table 9.2. Monthly total precipitation and mean air temperatures at the experimental site for the 
entire growing season for the three growing seasons (2009, 2010, 2011).  

 Precipitation  Mean temperature 

Month 2009 2010 2011 30-yr Avg.  2009 2010 2011 30-yr Avg. 

 -------------------------mm--------------------------  ∘C 

April 10.2 34.1 4.5 22.9  2.6 6.2 3.2 4.6 

May 19.6 124.4 31.2 51.8  9.3 9.0 10.3 11.6 

June 47.7 75.3 96.1 67.9  14.9 16.4 15.0 16.2 

July 80.9 55.7 52.5 63.6  16.3 17.8 18.8 18.5 

Aug. 48.5 43.6 14.7 44.1  15.8 16.8 18.1 17.9 

Sept. 14.6 55.4 5.2 31.9  16.6 10.9 14.4 11.7 
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9.4.3 Amendment procurement, preparation and application 

  The BC material was obtained from Titan Clean Energy, Prince Albert, Saskatchewan, 

produced from pyrolysis of oat hulls, a by-product obtained from the oat milling process. The 

application of oat hull BC to soil can be a viable option for recycling nutrient contained in this 

by-product. A homogenous subsample of BC was collected and sent to a commercial laboratory 

(ALS Laboratory Group, Saskatoon, SK) to determine its nutrient content. Selected 

characteristics of the BC are provided in Table 9.3.   Prior to field application, the bulk BC was 

homogenized by breaking and crushing larger chunks manually to pass through a 2 mm sieve. It 

was weighed, bagged and broadcast applied by hand. For the treatment in which BC was 

combined with mineral fertilizer, first the UR was broadcast by hand, and then the BC applied. 

The GL material, a thick syrupy liquid from canola-based biodiesel production, was obtained 

from Milligan Biotech Ltd, Foam Lake, Saskatchewan. It was stored at 4 °C prior to use. The GL 

used was a crude methanol-stripped product. It is a carbon rich material containing 57% total C, 

as determined using a Leco CNS 2000 Elemental Analyzer (Leco Instruments Limited, 

Mississauga, ON) with N and P below detection limits. Prior to application, the required amounts 

of GL were weighed out and placed in plastic containers. Then, 7 L of distilled water were added 

and the mixture shaken for 12 h. This step was taken to ensure homogenization and ensure even 

distribution when applied to each plot. The GL-water mixture was poured into a sprinkler can for 

application to each plot. For the treatment where GL was combined with UR, UR was broadcast 

by hand first, and then GL was applied immediately. Granular UR was broadcast by hand. 

Immediately after the application and prior to seeding, amendment treatments were incorporated 

with a tandem disk to a depth of 5 cm. The same day, canola (Brassica napus var. Invigor 5030) 

was seeded on May 21st, 2009 at a rate of 5.6 kg ha-1 using John Deere 610 air seeder at 30 cm 

row spacing and 2 cm depth. On May 16th, 2010, unfertilized Hard Red Spring Wheat (var. 

Waskeda) was seeded at a rate of 75 kg ha-1. On May 1st, 2011, a blanket application of fertilizer 

was made across the site at a rate of 45 kg N ha-1 and 12 kg P2O5 ha-1 as pre-plant banded 

fertilizer. Then, plots were seeded with canola (var. Invigor 5030) on May 10th, 2011 at rate of 5 

kg ha-1. At the time of seeding, an additional 20 kg N ha-1 and 10 kg P2O5 ha-1 were applied with 

the seed in the seed-row.  
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Table 9.3. Basic characteristics of oat hull biochar used in the field study.  
Property  Value 
C (mg g-1)  714 

N (mg g-1)  20 

P (mg g-1)  25 

K (mg g-1)  15 

S (mg g-1)  1.0 

Na (mg g-1)  8.0 

Ca (mg g-1)  46 

Mg (mg g-1)  2.0 

Cu (mg kg-1)  11.5 

Fe (mg g-1)  4.0 

Mn (mg kg-1)  109 

Zn (mg kg-1)  80 

Surface area (m2 g-1)  13.4 

9.4.4 Plant and soil sample collection and analysis  

 Crops were harvested in late August of each year at physiological maturity. Plant samples 

from one square meter (1-m2 samples) were cut manually 5 cm above the soil surface.  The 

samples were dried by forced air at 45 °C, and mechanically threshed to determine seed and 

straw yield. Straw samples were ground to < 2 mm in a WileyTM mill and wheat grain samples 

were finely ground with a CycloneTM mill. Total N and P were measured by digesting the canola 

seed and ground wheat grain and straw samples in sulfuric acid-peroxide (H2SO4-H2O2) using a 

temperature-controlled digestion block (Thomas et al., 1967), followed by automated 

colorimetry for determination of P and the NH4
+-N using Technicon Autoanalyzer II (Technicon 

Industrial Systems, 1973). Total N and P uptake were then calculated from plant N and P 

contents and total dry matter yield. The total N and P uptake was not determined in crop samples 

collected in the final year of 2011.  

Soil sample collection occurred three times during the course of the study: immediately 

after crop harvest in fall 2009 (September), before planting in spring 2010 (April) and again in 

fall 2010 (September) after crop harvest. No soil samples were collected during the cropping 

year 2011. During sampling, a hydraulic punch truck was used to collect bulk samples that 
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consisted of three soil cores taken per plot, at two soil depth increments (0-15 and 15-30). The 

three soil cores collected randomly from each plot for each soil depth were mixed thoroughly to 

generate a representative sample. A subsample was taken from each composite soil sample and 

immediately frozen until their use for microbial biomass analysis. The rest of the soil samples 

were air-dried and ground to pass a 2-mm sieve prior to laboratory analysis. The air-dried soil 

samples collected in fall 2009 were analyzed for inorganic N (NH4
+-N and NO3

--N) in all depths 

and for available P and K, organic C, electrical conductivity (EC) and pH in the 0-15 cm depth. 

The soil samples collected in spring 2010 were only analyzed for their content of inorganic N 

whereas the selected chemical parameters for analysis in soil collected in fall 2010 included 

inorganic N determined in the two depths and total N, total P, available P and K and organic C 

determined in the 0-15 cm depth. Dehydrogenase activity and microbial biomass C (MBC) and 

N (MBN) were determined in soil samples collected from the 0-15 cm depth for all three 

sampling periods (fall 2009, spring 2010 and fall 2010).   

Exchangeable NH4
+-N and NO3

--N were extracted by shaking 5 g of soil with 50 mL of 2 

M KCl for 1 h on rotary shaker, followed by filtration. The NH4
+-N and NO3

--N content in the 

KCl extracts were measured colorimetrically using a Technicon Autoanalyzer II (Keeney and 

Nelson, 1982). Available P and P were determined by a modified Kelowna method (Qian et al., 

1994). Electrical conductivity and pH were measured in 1:1 soil:water suspension. The soil 

organic C content was determined using a LECO CR-12 combustion carbon analyzer (LECO 

Corporation, St, Joseph, MI) set at 840 °C (Wang and Anderson, 1998). Soil total N and P 

contents were determined by sulfuric acid peroxide digest.  

 Dehydrogenase activity analysis involved the reduction of 2,3,5-triphenylterazolium 

chloride (TTC) to triphenyle formazan (TPF) as described by Casida et al. (1964) and slightly 

modified by Serra-Wittling et al. (1995). Briefly, 3 mL  water and 3 mL  TTC were added to 3 g 

of air-dried soil (< 2 mm) and incubated for 24 h in darkness at 37 °C. After incubation, the 

suspension received 10 mL  of methanol, and the content was mixed and then filtered through a 

glass fiber filter. Extra methanol was gradually added until the reddish color vanished from the 

filter, followed by dilution of the filtrate with methanol to a 100-mL  volume. The intensity of 

reddish color produced through the reduction of TTC to TPF was measured using a 

spectrophotometer at 485 nm.   

Soil content of MBC and MBN was determined by fumigation extraction procedure as 
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outlined by Voroney et al. (2008). In particular, two 25 g portions of sieved field-moist soils (<2 

mm) were weighed out. The first soil portion (25 g) was fumigated with ethanol-free CHCl3 for 

24 h at laboratory temperature in a vacuum desiccator and then extracted with 50 mL  of 0.5 M 

K2SO4. The other soil portion was extracted immediately with the same extractant. Total organic 

C and N in both fumigated and non-fumigated (control) soil extracts were analyzed using a CN 

analyzer (TOC-VCPH-TN Shimadzu). The values of nonfumigated samples were subtracted from 

those obtained from fumigated samples, and MBC and MBN were calculated using a KEC factor 

of 0.45 for MBC (WU et al., 1990; Joergensen, 1996) and KEC factor of 0.54 for the MBN 

(Joergensen and Mueller, 1996).  

9.4.3 Statistical analyses 

Prior to data analysis, raw data were subjected to normality and homogeneity of variance 

tests using Shapiro-Wilk and Bartlett tests, respectively. Then, a one-way analysis of variance 

(ANOVA) was employed to analyze treatment effects on plant and soil variables. Treatments 

effects were declared statistically significant at a probability level of P ≤ 0.1 at which means 

were also separated by Fisher’s protected LSD.  As in the field study in Chapter 8, the 

probability  level of 0.1 was used in this field study owing to variability arising from the need to 

hand apply the amendments, and the high variability inherently present in biological soil 

properties in the field.  Due to differences in the crop type, the analysis was performed on each 

year or sampling period data separately. 

9.5 Results  

9.5.1 Crop yield and nutrient uptake 

In the first year following the amendments application, crop yield and N and P uptake 

were significantly affected by treatment application (Fig. 9.1, Fig. 9.2). The impact of 

amendments application in spring 2009 persisted to the following growing season (spring 2010) 

in which the amendments addition showed a significant effect on wheat yield and N uptake (Fig. 

9.1, Fig. 9.2). However, no significant impact on the measured crop variables was observed in 

the third growing seasons. In the first year, the greatest yield was observed for BC+N treatment 

and was almost double that produced by the control or BC treatments. The yield in the BC 
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treatment was not significantly different from that provided by the control treatment. The yield 

obtained from the BC+N treatment was not significantly different from that observed in the 

treatment of UR applied at 100 kg N ha‐1. For GL applied alone the mean yield was slightly but 

not significantly smaller than the control. However, application of GL+N significantly increased 

the yield compared to the control or GL-N treatment, but significantly reduced the yield when 

compared to a 100 kg N ha‐1. In the second year, the residual effect of treatments application 

was most evident with GL+N treatment, providing the greatest crop yield when compared to the 

other treatments (Fig. 9.1). 

In the first year, the N uptake was the highest in UR treatment, followed by BC+N and 

GL+ N treatments. The N uptake was significantly higher in  UR treatment than BC+N treatment 

(Fig. 9.2). The addition of BC or GL without N did not show a significant effect on N uptake and 

both were not significantly different from the control. The GL+N treatment resulted in plant N 

uptake that was significantly lower than that observed with UR applied alone. Similarly, the P 

uptake was the greatest in UR and BC+N treatments, followed by GL+N treatment (Fig. 9.2). 

The C-based amendments (BC, GL) applied in absence of N did not have a significant impact on 

P uptake, compared to the control treatment. In the second year, the residual effect of 

amendments applied in the first year on N uptake was observed. The N uptake was the greatest in 

GL+N treatment and was significantly different from that observed in the other treatments (Fig. 

9.2). However, there was no residual effect on the P uptake measured in the second year of the 

experiment. 

9.5.2 Dehydrogenase activity and microbial biomass 

Dehydrogenase enzyme activity in soil samples collected in the fall 2009 after first year 

harvest was significantly influenced by amendment applications (Table 9.4). However, there was 

no residual effect on dehydrogenase activity in soil samples collected in spring 2010 or fall 2010 

(Table 9.4). In fall 2009, the dehyrogenase activity was the greatest in soil treated with GL+N, 

followed by GL, and both treatments were significantly higher than all other treatments including 

the control. Biochar application with or without N did not have any significant impact on 

dehydrogenase activity when compared to the control. 
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Soil microbial biomass C content was significantly affected by amendment only in fall 2009, but 

not in the other two sampling periods (Table 9.4). The BC+N treatment had the lowest content of 

soil MBC and was significantly lower than all other treatments. The rest of the treatments were 

not significantly different. Similarly, soil MBN content was also significantly influenced by 

amendment addition only in fall 2009 (Table 9.4). Soil amended with BC+N showed the lowest 

content of MBN, followed by BC treatment. Both BC+N and BC treatments were significantly 

different from the control, which provided the greatest content of soil MBN compared to all 

other treatments, with the exception of GL treatment that also did not differ from the control.  

9.5.3 Selected soil chemical properties 

  The residual inorganic N content varied with depth, with NH4
+-N being the dominant 

form of inorganic N, especially in fall 2009, the first period of sampling following the 

amendment application (Table 9.5). The other measured soil chemical parameters, such as 

extractable P and K, organic C, pH, total N and P, in fall 2009 or fall 2010 were not significantly 

influenced by amendments application, with the exception of EC which showed a slight but 

significant decrease in fall 2009 in all amended soils, compared to the control (Table 9.6).   
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Fig. 9.1. Yield responses to treatment application during a three-yr field study in Central Butte, 
SK. Treatments were applied once in spring 2009 and were control (Cont), urea (UR), biochar 
(BC), biochar plus N (BC+N), glycerol (GL) and glycerol plus N (GL+N). For a year, bars 
sharing the same letter among treatments are not significantly different according to LSD test (P 
≤ 0.1). Errors bars represent standard error of mean (n = 4). NS denotes not significant at P ≤ 0.1. 
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Fig. 9.2. Total plant N uptake (A) and total plant P uptake (B) responses to treatment application 
during a three-yr field study in Central Butte, SK. Treatments were applied once in spring 2009 
and were control (Cont), urea (UR), biochar (BC), biochar plus N (BC+N), glycerol (GL) and 
glycerol plus N (GL+N). For a year, bars sharing the same letter among treatments are not 
significantly different according to LSD test (P ≤ 0.1). Errors bars represent standard error of 
mean (n = 4). NS denotes not significant at P ≤ 0.1.  



 

Table 9.4. Dehydrogenase activity, microbial biomass C and microbial biomass N responses to experimental treatments during three 
sampling periods (mean ± standard error). 

Treatment¶  

Dehydrogenase Activity   Microbial Biomass C   Microbial Biomass N 

Fall  
2009   

Spring  
2010   

Fall  
2010   

Fall  
2009   

Spring  
2010   

Fall  
2010   

Fall  
2009   

Spring  
2010   

Fall  
2010 

------------------µg TPF g -1----------------  ----------------------------------------------µg g -1-------------------------------------------------- 
Cont 187 ± 8b§   212 ± 10   299 ± 37   244 ± 34a   250 ± 63   205 ± 20   71 ± 13a   51 ± 19   30.5 ± 3.8 
UR 203 ± 19b   235 ± 21   289 ± 22   191 ± 21a   259 ± 54   211 ± 7   38 ± 6bc   57 ± 23   30.7 ± 0.9 

BC 171 ± 15b   211 ± 10   279 ± 22   220 ± 57a   187 ± 79   207 ± 4   35 ± 9bc   53 ± 16   29.7 ± 1.0 

BC+N 199 ± 16b   199 ± 8   348 ± 52   109 ± 13b   220 ± 9   235 ± 33   24 ± 8c   40 ± 3   34.2 ± 5.4 
GL 247 ± 20a   206 ± 9   324 ± 32   217 ± 14a   202 ± 30   223 ± 18   52 ± 7ab   41 ± 14   32.9 ± 3.2 

GL+N 252 ± 18a   238 ± 4   257 ± 13   191 ± 18a   287 ± 71   199 ± 8   48 ± 4b   69 ± 25   28.5 ± 2.6 
 
  ANOVA 

Treatment 0.020   NS   NS   0.040   NS   NS   0.020   NS   NS 
 ¶ Cont denotes control, UR denotes urea, BC denotes biochar, BC+N denotes biochar plus N, GL denotes glycerol, GL+N denotes 

glycerol plus N. 
 § Means within a column sharing the same letter are not significantly different at P = 0.10.  
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Table 9.5. Soil content of inorganic N (NH4
+-N, NO3

--N) at 2 soil depth increments determined 
in soils collected after crop harvest in 2009, before planting in 2010 and after crop harvest in 
2010 (mean ± standard error). 
  0-15 cm 

Treatment¶  
Fall 2009   Spring 2010   Fall 2010 

NH4
+-N   NO3

--N   NH4
+-N   NO3

--N   NH4
+-N   NO3

--N 
--------------------------------------------------mg kg -1-------------------------------------------------- 

Cont 6.4±1.5   3.4±0.6   3.0±0.3   5.0±0.8   6.1±1.1   4.8±0.5 
UR 6.3±0.8    2.9±0.8   3.6±0.6   5.9±0.5   7.3±1.5   3.7±0.3 
BC 7.6±1.4   2.9±0.7   3.3±0.3   4.0±1.2   6.0±0.9   4.1±0.2 

BC+N 6.6±1.2   2.0±0.3   3.3±0.4   5.0±1.2   5.5±1.1   4.2±0.9 
GL 6.3±1.2   3.3±0.7   3.3±0.4   5.9±0.6   6.0±1.1   3.9±0.2 

GL+N 6.4±1.0   3.3±0.9   3.3±0.1   7.3±0.5   6.3±1.5   3.6±0.5 
 

  ANOVA 
Treatment NS   NS   NS   NS   NS   NS 

  
  15-30 cm 
                                    

Cont 7.0±1.1   2.6±0.6   3.3±0.4   4.4±1.1   7.1±1.2   2.2±0.2 
UR 7.2±1.2   1.7±0.3   3.4±0.6   4.4±1.5   8.4±1.6   2.0±0.2 
BC 9.7±1.1   2.5±0.8   3.4±0.3   2.5±0.7   6.2±0.8   2.4±0.3 

BC+N 5.3±1.5   2.3±0.5   3.9±0.4   4.4±1.5   6.0±0.9   3.0±0.8 
GL 8.4±0.2   2.9±0.6   6.5±3.6   5.4±0.2   7.1±1.1   2.7±0.4 

GL+N 7.8±1.0   2.1±0.7   3.3±0.3   4.4±0.7   6.6±1.4   2.1±0.1 
  

  ANOVA 
Treatment NS   NS   NS   NS   NS   NS 

 ¶ Cont denotes control, UR denotes urea, BC denotes biochar, BC+N denotes biochar plus N, 
GL denotes glycerol, GL+N denotes glycerol plus N.



 

Table 9.6. Selected soil chemical properties at 0-15 cm depth determined after crop harvest in 2009 and 2010 (mean ± standard error). 

Treatment¶ 

Fall 2009   Fall 2010 

Extract  
P   

Extract  
K   

Organic  
C   pH   EC   

Total  
N   

Total  
P   

Extract  
P   

Extract  
K   

Organi
c  
C 

------mg kg -1-------   mg g-1       dS m-1   --------------------mg kg -1-----------------------   mg g-1 
Control 7.2±2.7   291±24   10.5±1.0   7.6±0.2   0.29±0.13a§   1070±19   441±8   13.7±1.7   323±26   11.6±0.5 

Urea 7.5±1.5   306±10   10.2±0.3   7.3±0.2   0.15±0.02b   1066±38   440±98   14.4±2.5   329±19   12.3±0.3 

GL 5.7±1.0   343±24   10.6±0.6   7.5±0.1   0.13±0.01b   1087±27   448±8   12.1±1.5   364±28   11.9±0.4 
GL+N 6.5±1.5   330±20   10.6±0.9   7.3±0.3   0.17±0.03b   996±10   418±7   12.7±1.5   336±20   11.5±0.5 

BC 9.0±2.0   325±34   10.9±0.7   7.4±0.1   0.13±0.01b   1092±26   443±6   14.5±1.7   354±27   12.5±0.4 
BC+N 5.1±0.8   357±11   10.8±0.1   7.5±0.2   0.14±0.02b   1105±52   450±13   11.6±0.7   399±23   12.7±0.8 

  
  ANOVA  
Treatment NS   NS   NS   NS   0.10   NS NS   NS   NS   NS 

 ¶ Cont denotes control, UR denotes urea, BC denotes biochar, BC+N denotes biochar plus N, GL denotes glycerol, GL+N denotes 
glycerol plus N. 

 § Means within a column sharing the same letter are not significantly different at P = 0.10.  
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9.6 Discussion 

 Application of BC alone at a rate of 2000 kg C ha-1, equivalent to approximately 2.8 T 

ha-1, did not benefit crop yield and nutrient uptake in the immediate or subsequent two growing 

seasons following application. This is an indication that the BC used in the current study did not 

itself supply nutrient for plant uptake. Similarly, Van Zwieten et al. (2010) generally found little 

crop response to BC addition in absence of N to acidic and alkaline soils, under controlled 

environment conditions. Gaskin et al. (2010) also reported limited effects of peanut hull and pine 

chip BC on yield and nutrient concentrations in plant, relating this to lack of N availability from 

BC. This may explain the absence of BC effect on crop parameters in the current study in which 

the nutrient, especially N and P, contained in oat hull BC was not immediately plant available 

following application or did not become available with time during the subsequent two growing 

seasons. Based on the application rate used here, the BC is assumed to add about 50 kg total N 

ha-1 in addition to about 70 kg total P ha-1. However, it appears little of any of these nutrients 

became available for plant, as shown in the similar N and P uptake in BC alone amended soil and 

the control. Nutrients, especially N, in manure-based BCs may be more available for plant 

compared to these in plant-derived BCs (Chan et al., 2008; Tagoe et al., 2008; Hass et al., 2011; 

Gaskin et al., 2010). Thus, to better benefit from BC application, additional N application may be 

needed as observed in the current study as well as others (Nelson et al., 2011). Joint application 

of BC and UR showed equivalent or greater yield and nutrient uptake than other treatments, 

despite having only half as much UR N added. Biochar addition is reported to sustain soil 

fertility when an additional nutrient source is provided, and in presence of fertilizer, it was able 

to improve plant growth and grain yield, compared to the fertilizer without BC (Steiner et al., 

2007). Steiner et al. (2008) reported improved efficiency of mineral N fertilizer in Amazonian 

soil amended with BC, as shown by higher N retention in the soil and the enhanced uptake by 

biomass. In the current study, the treatment of 50 kg N ha-1 combined with BC benefited the crop 

yield similar or better than that in 100 kg N ha-1 applied alone treatment. This could be due to the 

ability of BC to reduce UR N losses through reduction of leaching or gaseous losses (Lehmann et 

al., 2003; Yanai et al., 2007). 

Glycerol application tended to reduce crop yield and nutrient availability in the first 

growing season (spring 2009), as shown specifically by N uptake in GL+N treatment, compared 
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to urea applied alone treatment. This is very likely a consequence of microbial immobilization of 

soil N. The immobilized N in GL+N treatment in spring 2009 appeared to become remineralized 

and plant available during the subsequent growing season (spring 2010), resulting in higher yield 

and N uptake. Similarly, Qian et al. (2011) reported that N supply from UR fertilizer was 

adversely affected by GL application, especially at the high rates, leading to a significant 

reduction in plant growth and N uptake.  Under growth chamber conditions, GL amendment was 

also shown to immobilize soil available N, as shown by small supply rates of NO3
--N and 

NH4
+-N measured in the soil (see Chapter 3). This indicates that GL can contribute to N 

reservation when co-applied with conventional fertilizer. In a recent study, GL was also found to 

significantly reduce N loss through minimizing nitrate leaching, owing to microbial 

immobilization of N (Redmile-Gordon et al., 2014). 

Dehydrogenase is an intracellular enzyme participating in the biological oxidation of 

organic compounds in soil (Tabatabai, 1994), and has been reported to be correlated to the 

organic matter availability in the soil (Serra-Wittling et al., 1995; Moeskops et al., 2010). In the 

few studies identifying the impact of BC on soil enzymes, there are discrepancies and 

inconsistencies among the documented findings. Under controlled environment conditions, 

Ameloot et al. (2012) revealed that dehydrogenase enzyme activity increased in soil amended 

with BCs from pyrolyzed swine manure digestate and willow wood at 350 ∘C, but the enzyme 

activity was suppressed in the same soil amended with the BCs produced from the same 

feedstocks, but pyrolyzed at 700 ∘C. The authors related this to the higher level of volatile 

compounds present in BCs produced at low temperature that can stimulate enzyme activity, as 

also reported elsewhere (Smith et al., 2010; Bailey et al., 2011). In the current study, BC neither 

increased nor suppressed dehydrogenase enzyme activity, which is in line with the recent 

findings that used BC from wheat straw (Wu et al., 2012). Biochar C from the source used in the 

current study is resistant to microbial breakdown and not accessible by soil microbes, and 

thereby did not stimulate enzyme activity. However, GL applied alone or with N promoted 

dehydrogenase activity in the year of application that was significantly higher than any other 

treatment. This may be explained by lower recalcitrance of C in GL and greater availability for 

soil microbes, resulting in stimulated enzyme activity. The same was observed when GL was 

added at different rates but under growth chamber conditions as reported on in Chapter 3 of this 

dissertation.  
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The soil microbial biomass can enhance nutrient cycling and availability to plants 

following application of organic materials to soil, due to its key role in organic matter 

decomposition (Moore et al., 2000). It is the most labile pool of organic matter, and is frequently 

used as a sensitive indicator of changes in soil organic matter content (Powlson et al., 1987). Few 

research studies most of which were conducted under controlled conditions, have specifically 

evaluated the effect of BC addition on soil microbial biomass content and reported inconsistent 

findings. For instance, Kolb et al. (2009) found increased microbial biomass content and activity 

in a range of temperate soil types amended with one type of BC whereas Dempster et al. (2012) 

reported decreased MBC but not MBN in a course textured soil treated with Eucalyptus BC. In 

the current study and only in the fall 2009 sampling, the BC applied alone did not alter MBC, but 

decreased MBN content compared to the control, as also did BC plus N. However, when BC was 

combined with N, the content of MBC was the lowest in comparison to other treatments. The 

reason for the significant decrease in MBC here is not clear, but is coincident with greatest crop 

yield and nutrient uptake in the first growing season (2009) prior to first soil sampling period for 

microbial analysis. This may be related to the depletion of soil nutrients and surface soil moisture 

arising from high crop growth that subsequently limited microbial growth and N accumulation 

potential. Changes in nutrient and C availability may increase or decrease microbial biomass 

growth and activity, depending on soil background of nutrient and C and the microbial groups 

responsible for decomposition (Lehmann et al., 2011).  

The amount of BC used here and the conditions of low precipitation (semi-arid 

environment) may limit the ability to show a clear effect on selected soil chemical properties, 

especially if applied only once. Application rate of BC is critical for the effects on plant and soil 

(Lehmann et al., 2003; Spokas et al., 2010), and as reported in most studies, the greatest positive 

effects of BC were observed at the rates of 100 t ha-1 (Jeffery et al., 2011). However, given the 

difficulty in broadcasting large quantities of powdery, fine BC in the windy prairie conditions, 

rates less than 10 t ha-1 appear more practical. 

9.7 Conclusion 

Addition of BC in absence of N to prairie soil at a rate of 2000 kg C ha-1 (approximately 

equivalent to 2.8 t BC product ha-1) had no significant effects on measured plant, soil and 

microbial parameters in this study. This indicates that this specific BC type was rather inert 
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material that neither supplied nutrient or caused immobilization. However, its combination with 

50 kg N ha-1 provided similar crop response to a treatment of 100 kg N ha-1 applied urea. This 

suggests that BC may conserve urea N from potential losses via leaching and volatilization 

processes and thereby improve N use efficiency. Glycerol was more effective in its role in 

reducing urea N availability via microbial immobilization as shown by its impact on reducing 

yield and N uptake in the first growing season following amendments application. This N 

seemed to become released via remineralization process during the subsequent growing season 

as mirrored by increased crop yield and N uptake. It also enhanced dehydrogenase enzyme 

activity, indicating utilization of its C by soil microorganisms. Overall, the effects, especially 

with BC amendment, on plant and soil variables observed in the current study were generally 

smaller than reported in other studies. This can be due to differences in BC type, soil type and 

also the rate of application that is lower in this study compared to many other studies. This study 

indicates that GL may have a potential in reducing N losses from soil when combined with N 

fertilizers. This potential needs be clarified in further lab and field studies.    
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10. SYNTHESIS, SUMMARY AND CONCLUSIONS 

10.1 Synthesis 

The increasing global demand for energy leads to growing concern about the heavy 

reliance on fossil fuel reserves. From an environmental perspective, use of fossil fuel has a 

significant impact on global warming due to its role in increasing greenhouse gas emissions. As 

such, alternative sources of fuel are sought, emphasizing those derived from renewable resources 

such as biomass. Besides bioenergy production from these sources, various by-products are also 

generated. The type of generated by-product varies according to the various technologies that 

have been employed to convert organic materials to energy. Examples of these by-products 

include distillers’ grains and thin stillage (biochemical conversion), glycerol 

(mechanical/chemical), ash (gasification) and biochar (pyrolysis).  

Expansion in bioenergy production has resulted in accumulation of  by-products. Finding 

a practical method of utilization that captures value from the by-products will help to sustain the 

bioenergy production system economically. The transition from a waste material to a resource 

also needs to address the many aspects of effective recycling and reutilization of materials and 

energy.  An important consideration in the life cycle analysis of any bioenergy production 

system is that a portion of the plant nutrients that were utilized in the production of the bioenergy 

feedstock are present  in the by-products and can be potentially recycled. As these by-products 

contain carbon and/or mineral nutrients, one possible option of utilization can be application to 

soil to improve soil fertility and plant production. The main objective of this dissertation was to 

assess the potential of using bioenergy production by-products as soil amendments to improve 

soil fertility and quality by determining their impact on various soil biological and chemical 

attributes as well as crop growth. The research work was conducted under controlled 

environment conditions using soils and plants grown in the growth chamber along with 

complementary trials conducted with the by-products under actual field conditions and, where 

possible, using field scale equipment. 
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The series of studies that were conducted and reported on in this thesis were intended to 

provide new, important information on the potential for amending prairie soils with bioenergy 

production by-products. Prior to this thesis research, little or no information existed on the 

effects of amending soils with these novel materials on soil chemical and biological conditions, 

nutrient cycling processes, plant nutrition and crop yield. An understanding of these effects 

however, is needed to develop recommendations for their best use. 

 The initial characterization of the bioenergy production by-products (BPB) evaluated in 

this dissertation revealed that these by-products contain varying, but considerable amounts of C 

and plant nutrients. This promotes their utilization as sources of plant nutrients. The availability 

of nutrients contained in these by-products was determined by crop yield and N and P uptake 

responses to application of BPB under growth chamber and/or field conditions. The crop yield 

response to wet distillers grains (WDG), thin stillage from fermentation (TS) and ash application 

was often equal to or better than that from conventional single nutrient source commercial 

fertilizers. However, the magnitude of BPB effects on crop yield varied among the BPB type, 

according to the initial composition of each by-product. Ash derived from dried distillers’ grains 

(DDGA) was an excellent source of P as shown in its higher crop yield and P uptake responses 

when compared to mineral P fertilizer. However, ash derived from meat & bone meal (MBMA) 

was less effective as a P fertilizer (Chapter 5). The cause of this was shown to be related to the 

high content of stable and recalcitrant P forms in MBMA that appeared to limit P release from 

this type of ash (Chapter 6). The ethanol fermentation by-products WDG and TS were also 

shown to supply sufficient nutrients that stimulated crop yield, N and P uptake responses 

(Chapter 7), owing to the readily plant available nature of the nutrients contained in these 

by-products (Chapter 3). Specifically, TS was as effective per unit of N added as urea in 

enhancing crop yield, with the injection method of application being more effective than 

broadcast and incorporation (Chapter 7). Given that a high portion of total N in TS is in a form of 

NH4
+-N (Chapter 3 and Chapter 7), the injection method may have reduced N losses through 

volatilization. These findings indicate that best practices for land application of BPB’s requires 

the same type of considerations as for more traditional nutrient amendments like manure, 

compost and commercial inorganic fertilizers: addressing the rate, composition, timing and 

placement in the soil.  It is important to note that, just like for manures and composts, the BPB 
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materials generally have lower nutrient concentrations than commercial inorganic fertilizers, 

making them more costly to transport long distances and apply economically.    

Evaluating short and longer term effects of land application of any new amendment is 

relevant to agronomic and environmental sustainability. The repeated application over two-yr of 

fermentation by-products like TS also increased soil NO3
--N and available P contents measured 

each year, especially after the second year of application, indicating the persistence of nutrient 

release from TS organic matter turnover (Chapter 8). The rapid C and N turnover to CO2 and 

N2O after BPB application to soil also shows that these are easily decomposable materials. 

However, the evolved CO2 and N2O from soil amended with BPBs did not exceed those from 

soil receiving conventional amendments (urea and dehydrated alfalfa). This is important to 

document, as greenhouse gas emissions that may be produced following land application are an 

important consideration in the overall environmental impact of any bioenergy production system.  

Unlike N or P rich by-products like stillage or ash, biochars from pyrolysis (BC) and 

glycerols from transesterification (GL) are C-rich by-products, making them unique and novel 

soil amendments. Thus, it was hypothesized that their application was not expected to directly 

influence crop nutrition, but  may affect some soil biological processes that can ultimately  

impact crop yield and nutrient uptake. The BC had no clear effect on crop yield and nutrient 

uptake, whereas GL tended to reduce crop yield in the initial year of application (Chapter 9). 

This can be attributed to microbial immobilization of soil N, as was also shown under controlled 

environment conditions (Chapter 3).  While immobilization may be considered detrimental when 

it coincides with crop demand for N, it could also be beneficial in helping reduce losses of excess 

nitrate present in the soil if it occurs in late fall after harvest or in early spring after snowmelt. As 

such, timing of glycerol application could be adjusted to regulate levels of nitrate present in the 

soil. 

10.2 Summary of Findings 

Addition of decomposable organic materials to agricultural soils can have impact through 

release of C and N and subsequent transformations of the released nutrients that can influence 

available nutrient supply for plants and greenhouse gas emissions from the soil. The main 

objective of the first study of this research was to examine the direct effects of application of 

selected bioenergy production by-products including wet distillers’ grains, thin stillage  and 
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glycerol on greenhouse gas emissions (N2O and CO2) and nutrient supply rates (NH4-N, NO3-N 

and PO4-P) using Plant Root SimulatorTM resin membrane probes over a short term incubation 

under controlled environment conditions (Chapter 3). Selected soil enzyme activities and 

microbial biomass content response to the same amendments were also investigated (Chapter 4). 

In comparison to reference amendments of urea  and dehydrated alfalfa , urea fertilizer produced 

the greatest amount of N2O, followed by WDG and TS whereas the lowest N2O production was 

observed with GL and dehydrated alfalfa.. The bioenergy by-products tested here were found to 

have significant impacts on release of available nutrient, with the urea treatments providing the 

highest NO3
--N supply rate. The TS treatments supplied the highest rate of NH4

+-N, followed by 

WDG compared to the other by-products. The WDG treatments were able to provide the greatest 

supply of PO4-P in comparison to the other amendments. Microbial N immobilization was 

associated with glycerol treatments applied alone. The results of this study indicate that these 

bioenergy by-products can be suitable soil amendments as a result of their ability to supply 

nutrients and result in N2O emissions per unit of N added that did not exceed that of the 

conventional urea fertilizer. The same by-products were also found to have a positive impact on 

soil enzyme activity and microbial biomass content under the same controlled environment 

conditions (Chapter 4). Alkaline phosphatase activity was significantly enhanced by WDG, 

GL+N, urea and alfalfa addition, especially at low and medium rates of addition. All 

amendments significantly increased dehydrogenase and protease activity and all amendments 

with exception of TS significantly increased microbial biomass C and N. The reduced effect of 

TS on these parameters is attributed to less organic carbon added relative to nitrogen in this 

amendment. Overall, addition of bioenergy processing by-products to soil stimulated microbial 

growth and enzyme activity; supporting their potential use as soil amendments to recycle plant 

nutrients and enhance soil biological activity. 

 Ash is another bioenergy by-product that is generated during gasification of organic 

materials to produce biogas. The ash is rich in phosphorus and can be utilized as P fertilizer for 

crops in prairie soils. The effectiveness of MBMA and DDGA as P fertilizer was assessed via 

evaluating their direct effect on canola growth, P uptake and apparent P recovery after addition 

to a P deficient soil under controlled environment conditions (Chapter 5). In addition, P forms 

residing in the soil following ash application were also investigated using a sequential extraction 

procedure (Chapter 6). After a growth period of 5 weeks, the DDGA was the most effective ash 
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type and provided biomass yield, P uptake and apparent P recovery better or similar to that of a 

mineral (mono-calcium phosphate) fertilizer, indicating high availability of its P. The MBMA 

had a limited effect on measured crop variables, suggesting that a significant portion of this ash P 

is  not as readily available for plant uptake. The lower availability of soil P derived from MBMA 

compared to DDGA was explained by the results of sequential extraction to speciate the soil 

phosphorus. The fractionation revealed that recalcitrant P fractions (HCl-Pi and residual-P) were 

the dominant forms of P in soil receiving MBMA (Chapter 6). This is attributed to the presence 

and formation of Ca-P compounds of low solubility with this MBMA treatment. The high 

content of calcium (25%) in the MBMA leads to formation of Ca-P compounds. Clearly the 

source and composition of the feedstock greatly influences the behavior and value of the 

amendment as a fertilizer.  

Thin stillage (TS), the aqueous by-product generated from the distillation of ethanol 

following fermentation, is a potential source of plant nutrient that may be easily and effectively 

land applied using equipment that was developed for low disturbance injection of liquid manure 

slurries.  Thus, a field trial was conducted involving direct addition of TS to a Black Chernozem 

soil over a two-yr period using two methods of application: broadcast and incorporation, and 

injection (Chapter 7). For both seasons of the study, at equivalent N rate the TS provided similar 

or greater crop yield and nutrient recovery compared to conventional urea fertilizer, especially 

when injected. This is explained by the contribution of other plant nutrients, such as P and S in 

TS, its relatively high plant available NH4
+-N content and rapid mineralization of the organic N 

component. The injection of TS appears to be a more effective application method compared to 

broadcasting and incorporating likely through reducing volatile N loss, and placing nutrient 

closer to the growing crop roots when injected in bands in soil. The TS did not show any adverse 

effect on measured crop parameters even at the high rate of application. In this field trial, the 

effect of TS on residual NO3
--N was more pronounced in the second year, leading to high 

content of NO3
--N after crop harvest, especially with injected TS at the high rate of application 

(Chapter 8). Soil residual available P content also significantly increased in both years, but was 

greater in the second year. This reflects the high plant availability of N and P in TS and a 

persistence of release of nutrient through TS organic matter decomposition. This is in accordance 

with the high nutrient supply rates observed with TS when applied to a Brown Chernozemic soil 

under controlled environment conditions (Chapter 3). In selected treatments, microbial biomass 
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was higher in TS than urea treatments, but not significantly different from the control. The other 

measured soil parameters remained unchanged for both years. The results of this study suggest 

that land application of TS through injection with conventional liquid manure injection 

equipment can be an effective solution for TS management that recycles nutrients contained in 

the feedstock grain. However, this field study also indicates that attention should be given to 

rates of application over time, as continuous application of TS may contribute to NO3
--N and P 

accumulation in soil beyond the year of application via carryover of unused inorganic forms and 

also possibly through increased microbial mineralization. 

Pyrolysis of organic materials and transesterification of vegetable oils are popular 

technologies that are employed to produce biogas and biodiesel, respectively. Production of 

bioenergy using these techniques also results in carbonaceous by-products, including biochar 

(BC) in case of pyrolysis and glycerol (GL) in case of the transesterification process. These 

bioenergy by-products are C-rich substrates that can be suitable soil amendments. Their 

recycling may especially benefit soils with lower organic matter contents, such as those found in 

the Brown soil zone of the prairies. Direct and residual effects of BC and GL application on crop 

growth and selected soil chemical and biological properties in a Brown Chernozemic soil were 

evaluated over a three-yr period in a field trial (Chapter 9). In the first season following a spring 

application of the amendments, addition of BC and GL alone had no significant impact on crop 

or soil parameters. However, when combined with 50 kg N ha-1, BC provided similar yields to 

the 100 kg urea N ha-1 treatment, suggesting that BC may have improved urea N use efficiency. 

The GL+100 kg urea N ha-1 treatment had lower crop yield and N uptake than the urea treatment 

alone; a result of  microbial immobilization of N. However, this treatment had a significant 

residual effect in the second year on crop yield and N uptake, presumably because of the re-

mineralization of the N that was immobilized after application in the first season. Both GL and 

GL+N treatments enhanced dehydrogenase activity compared to other treatments. No further 

residual impacts were detected in the following two growing seasons. The results of this study 

showed that the response of the Brown Chernozemic to application of amendments, especially 

BC, was smaller than expected based on previous studies conducted elsewhere such as in tropical 

regions.  A greater application rate of amendments may be required to allow for a better 

response.  
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10.3 Conclusion and Suggestions for Future Research 

 Overall, it is concluded that bioenergy production by-products have great potential as a 

new means to add nutrients to the soil for improved soil biological and chemical conditions, 

more efficient nutrient recycling, and improved crop growth. Effectiveness of these products 

depends on the rate of application, the source and composition of feedstock, and the timing and 

method of application. Attention should be given to these aspects when making practical 

management decisions. Some identified future research needs related to utilization of bioenergy 

by-products as soil amendments are listed below: 

• Char and ash research should to be extended geographically to include more trials in arid 

and semi-arid regions.  

• Long-term effects of application of biochar in combination with mineral fertilizers need to 

be carried out to investigate its ability to conserve mineral N and reduce losses to 

environment through volatilization, denitrification and leaching over the long term; e.g. 

several years. 

• Evaluation of combinations of biochars with other amendments like manure and stillage.  

• Effect of variables such as feedstock type, temperature and oxygen status on biochar 

physical and chemical characteristics and efficacy when added to soil. This can be 

conducted by comparing several biochar types produced from different feedstocks under 

different conditions and examining their effect in the field.  

• Engineered solutions and technology for handling and application of chars and ashes to soil 

in an efficient manner, as these were found to be very difficult to manage under field 

conditions. 

• Most studies with ashes and chars are either conducted under controlled environment 

conditions or under field conditions but only for a short-term (usually ~ two years). This 

does not give an appropriate period to make inferences about the potential for heavy metal 

accumulation in soils and phytotoxicity.  

• Land application of glycerol has potential to conserve N fertilizer through microbial 

immobilization as well as its ability to increase organic matter content. This should be 

further investigated under controlled environment and field conditions. Glycerol might also 

be used as composting additive as a source of carbon. 
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• Application of distillers’ grains and thin stillage to land directly as organic fertilizer needs to 

have an economic and lifecycle evaluation to determine if land application is a viable 

alternative to feeding distillers’ grains and thin stillage to animals.  
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12.  APPENDICES 

12.1 Appendix A. Crop and Soil Response to Fertilization with Distillers’ Grains Derived 
Manure in Saskatchewan Soil 

A.1 Preface 

 As noted in the literature review of this dissertation, utilization of bioenergy production 

by-products (BPB), especially DG, TS and GL, for animal feeding is a common practice. 

However, this use will result in a significant portion of nutrient contained in the DG ending up in 

the soil when the animal manure is ultimately land-applied. The main focus of the dissertation is 

on the direct application of BPB to soil.  However, indirect effects through land application of 

animal manure from cattle that are fed DG were considered worthwhile to evaluate and are 

reported on in the appendix. Therefore a field-based comparison of the crop and soil responses to 

application of manure derived from feeder cattle fed DG in the ration in comparison to regular 

feed grain ration was conducted. A two-yr field study was carried out in east-central 

Saskatchewan on a Black Chernozemic soil in which crop and soil response to fertilization with 

manure from cattle fed DG versus manure from cattle fed regular feed grain ration were 

investigated.  

This chapter was submitted to Communications in Soil Science and Plant Analysis and is 

now under review. It has been submitted as: Alotaibi, K.D., J.J. Schoenau and X. Hao. 2014. 

Crop and soil response to fertilization with distillers’ grains derived manure in Saskatchewan 

soil. Commun. Soil Sci. Plant Anal. (submitted). The co-authors of this manuscripts played 

appreciated roles in this work. Their contributions were: J.J. Schoenau provided financial support 

for this study related expenses, supervised the work and edited the manuscript. X. Hao’s 

contribution was the manuscript editing.  
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A.2 Abstract 

Including distillers’ grain, a by-product of ethanol production, in animal diets has been 

shown to increase nutrient content in manure. This can increase manure value as organic 

fertilizer but could also contribute to environmental degradation if not accounted for in manure 

management plans. A two-yr field trial was conducted on a Black Chernozem soil to evaluate 

crop and soil responses to application of manure from cattle fed distillers’ grain (DGM) in 

comparison with manure from cattle fed the standard western Canadian finishing diet based on 

barley (Hordeum vulgare L.) grain (BGM). The experimental treatments were: two types of 

manure (DGM or BGM) applied at two rates (15 or 30 Mg ha-1) using two methods of 

application (broadcast followed by incorporation or band injection). An unamended control was 

also included for comparison. Manure addition in general promoted grain and straw yield 

increases, and increased plant N and P uptake in both years by 30-50%. However, manure type 

had no consistent effects on crop responses, with the exception of N and P recoveries in which N 

recovery was higher in BGM treatment whereas P recovery was higher in DGM treatments. The 

absence of manure type effect in the first year is consistent with the similar chemical 

composition of both manures. Overall, a higher rate of application provided higher crop yield 

and N and P uptake in both years. Placing solid manure below the soil surface in bands was 

slightly better in promoting yield and N uptake than broadcasting followed by incorporation in 

both years. Manure application in general increased soil residual NO3
--N and available P 

contents at 0-15 cm depth. Manure type had no significant impact on selected soil chemical 

properties (inorganic N, available P, K, OC, Cu, Zn, Cd, pH and EC) after the two-yr of manure 

application.  

A.3 Introduction 

 The growing interest in producing energy from sustainable sources to reduce 

dependency on fossil fuel has resulted in increased production of ethanol and related 

by-products, one of which is distillers’ grains (DG). The DG is generated when original grains 

are subjected to fermentation process to convert grain starch into ethanol, followed by distillation 

and centrifugation processes. As a result of starch removal, the nutrients contained in the original 
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grains are concentrated in higher amount in the resulting by-product of DG. Using this 

by-product as animal feed has been a common practice and accounts for the second largest 

source of income after ethanol fuel for the ethanol-production plant (Bonnardeaux, 2007). It has 

been recognized as an excellent source of protein and P when included in animal diets (Erickson 

et al., 2005; Harris et al., 2008). In cattle feeding, it is estimated that only about 10% of N and 

20% of P present in feed is retained by the beef animal, and the rest is excreted in feces and urine 

(Bierman et al., 1999). As a result, it is expected that manure produced from animals fed DG will 

differ in its characteristics compared to that derived from animals fed regular grains. In 

particular, the distillers’ grain derived manure will contain higher nutrient content, especially N, 

P and S, due to the higher level of these nutrients in DG by-product (Hao et al., 2009).  

Several manure characteristics and its fertilizer value are influenced by livestock diet 

(Eghball, 2002; Hao et al., 2009). In a study conducted at Lethbridge, Alberta,  manure chemical 

composition was reported to be significantly affected by including wheat (Triticum aestivum L.) 

dried distillers’ grains with solubles (DDGS) in finishing feedlot cattle diets (Hao et al., 2009). 

These authors found that the manure produced was significantly affected in its nutrient content 

by DDGS inclusion in the animal diets, resulting in significant increases in total N, water soluble 

NH4
+-N and total P. Similarly, another study showed that increasing amount of wet distillers’ 

grains with solubles in feedlot cattle diets resulted in increased N, P and S content in cattle 

manure (Spiehs and Varel, 2009). The effect of including DG in animal diets is not only confined 

to increasing the quantity of nutrient excreted; it may also influence the forms of these nutrients, 

especially soluble P (Sphiehs and Varel, 2009; Ebeling et al., 2002). This can have a positive 

effect in terms of enhancing nutrient availability and crop growth when this manure is used as a 

fertilizer. Higher nutrient content in DG derived manure also means it has higher agronomic 

value as organic fertilizer via lower handling and transportation costs per unit nutrient. However, 

it could have a negative environmental impact by increasing the potential for nutrient leaching 

and runoff if not properly managed. Higher N and P content has to be considered in the farm 

nutrient management plans in order to reduce the susceptibility of the nutrients to loss to surface 

water or air.  

There has been little or no work, especially under field conditions, comparing the 

behaviour of cattle manure from distillers’ grain- to barley (Hordeum vulgare L.) grain-based 

diets. In a growth chamber study to investigate nutrient uptake by barley forage and nutrient 
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accumulation in soil treated with manure produced from DDGS in comparison to soil treated 

with manure produced from cattle fed regular grain (REG), Benke et al. (2010) reported that soil 

total P and available P contents were higher in DDGS treatments than REG and un-amended 

control treatments. These authors also found that barley forage N and P uptake and yield were 

higher in DDGS than in REG treatments. Therefore, the objective of the study reported on this 

paper was to expand on the work by Benke et al. (2010) by investigating in the field the effect of 

applying distillers’ grain derived manure collected from feedlot pens at two rates using two 

different methods of application in comparison with barley grain derived manure on crop yield, 

nutrient uptake and recovery over two years along with soil available nutrient (N, P, and K) 

content, organic C, pH, salinity and heavy metals (Cu, Zn and Cd) after the second year of 

application.  

A.4 Materials and Methods 

A.4.1 Experimental site 

This two-yr experiment was conducted from fall 2008 to fall 2010 near the town of 

Dixon (52°13´3.2˝ N lat, 105°11´41.3˝ W long) in east-central Saskatchewan, Canada. After 

experimental plot layout in fall of 2008, soil samples were collected only from the control plots 

at three soil depth increments (0-15, 15-30 and 30-60 cm) for the purpose of the field soil 

characterization (Table 1). The predominant soil at the site is classified as a Black Chernozem 

(Cudworth Association) of clay-loam texture. The average particle-size distribution in the 0-60 

cm depth was 28% sand, 23% silt and 49% clay determined using pipette method (Gee and 

Bauder, 1986). The site has nearly level topography and considered productive agricultural land 

in Saskatchewan (Stumborg et al., 2007). The field was cropped to barley (Hordeum vulgare L.) 

in the year prior to current study. Basic characteristics of the field soil are provided in Table A.1. 

Climate data during the growing season for the two-yr study period were retrieved from the 

nearest weather station located at Pilger, approximately 15 km from the experimental site 

(Environment Canada, 2012). Monthly cumulative rainfall and mean air temperature over the 

two growing seasons and the 30-yr average are summarized in Fig. A. 1.  
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A.4.2 Experimental design 

The field experiment was established in fall 2008 with experimental treatments consisting of two 

manure types: distillers’ grain fed cattle manure (DGM) and barley fed cattle manure (BGM), 

two rates of application(low and high) and two methods of application: broadcast followed by 

incorporation, and band injection. The rates of fresh manure application were 15 and 30 Mg ha-1 

(wet weight basis) that are referred to as low and high rate, respectively. The selected application 

rates were based on typical rates of manure product applied per hectare in Western Canada. It 

could have been a N-based or a P-based rate, but it was decided to utilize manure product weight 

to represent typical application rate ranges in Western Canada. An undisturbed check was 

included as a control for comparison. Treatments were arranged in a randomized complete block 

design with four replications. Each treatment plot had dimension of 3 m width × 6 m length.  

Table A.1. Selected soil properties at the start of the field study in fall 2008 in samples collected 
from control plots at three soil depth increments (0-15, 15-30 and 30-60 cm) 

Property 
Soil depth (cm)§ 

0-15   15-30   30-60 

NO3
--N (mg kg-1)  7.4 ± 0.1   4.8 ± 0.1   4.5 ± 0.2 

NH4
+-N (mg kg-1) 3.1 ± 0.7   5.0 ± 0.1   4.8 ± .4 

Avail. P (mg kg-1) 4.5 ± 0.8   2.2 ± 0.1   1.7 ± 0.3 

Avail. K (mg kg-1) 288 ± 26   132 ± 14   98 ± 18 

OC (mg g-1) 27 ± 1.0   13 ± 1.0   7.0 ± 1.0 

pH 7.8 ± 0.2   7.8 ± 0.1   7.9 ± 0.2 

EC (dS m-1) 0.4 ± 0.1   2.1 ± 0.7   4.2 ± 0.5 

Sand (%) 28.3 ± 0.1   24.2 ± 0.7   30.8 ± 10.0 

Silt (%) 20.2 ± 1.0   25.0 ± 2.3   24.6 ± 3.6 

Clay (%) 50.6 ± 1.0   51.0 ± 1.7   44.7 ± 6.3 
 § values presented are means followed by standard error 
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Fig. A.1. Monthly total rainfall and mean air temperatures at Humboldt for the 5-month growing 
season for both years of the study (2009, 2010). The 30-yr rainfall and temperature averages 
(normal) are also included.   
 

A.4.3 Manure procurement and application 

The two types of manure were collected from the feedlot pens at the University of 

Saskatchewan Beef Cattle Research Unit in early fall of each year. For DGM, cattle were fed a 

diet that consisted of 40% wet distiller grain (wheat-based), 45% barley grain, 5% mineral 

supplement and 10% silage. For the control manure (BGM), cattle were fed a diet containing 

85% barley grain, 10% barley silage and 5% mineral supplement. This is a typical diet used in 

the western Canadian feedlot industry (Hao et al 2009). Feedlot cattle manure used in the study 

was surface manure pack consisting of straw, fecal material and urine deposited in University of 

Saskatchewan Department of Animal Science experimental feed trial pens over the ration 

feeding period that was then scraped off during pen cleaning at the end of the experiment. The 

manure was then stockpiled for approximately 4 months and mixed by hand prior to application 

in the field. Prior to manure application to soil, a composite sample from each manure type was 

collected in a 5-L plastic container, thoroughly mixed to reach appropriate homogeneity and 
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stored in the freezer (-20 °C) until their chemical composition analyses. Two representative 

subsamples from each manure type were then taken to perform the analysis. Basic characteristics 

of both manures are provided in Table A.2.  

Manure was applied in the preceding fall (October) of each growing season. It was 

applied using Prairie Agricultural Machinery Institute (PAMI, Humboldt, SK) prototype solid 

manure applicator (Landry et al. 2011). The broadcast and incorporation of manure consisted of 

applying the manure on the soil surface and then immediately incorporating it with a chisel plow 

cultivator using one pass with 30 cm sweeps on a 20 cm row spacing, followed by harrowing.  

 
Table A.2. Basic characteristics of distillers’ grains manure (DGM) and barley grain manure 
(BGM) used in the field study. All contents are expressed on a fresh wet weight basis.  

Property 
Manure Type 

DGM BGM   DGM BGM 

2009   2010 

Total N (mg g-1) 14.7 16.0   15.4 10.5 

NH4
+-N (mg kg-1) 355 251   193 134 

Total P (mg g-1) 2.7 5.1   5.5 4.5 

Avail. P (mg kg-1) 136 98   49 48 

Total K (mg g-1) 9.2 12.2   10.3 8.5 

Total S (mg g-1) 1.5 3.0   3.4 2.7 

Total Na (mg g-1) 1.8 2.9   1.7 1.5 

Total Ca (mg g-1) 13.6 19.8   16.8 18.4 

Total Mg (mg g-1) 5.5 9.3   7.3 7.2 

Total Cu (mg kg-1) 37.5 66.5   29.0 32.0 

Total Fe (mg g-1) 17.0 8.4   11.7 10.0 

Total Mn (mg kg-1) 199 410   300 200 

Total Zn (mg kg-1) 11.5 24.5   132 113 

Moisture (%) 45 11   22 26 

The band injection of solid cattle manure was performed using the PAMI prototype applicator in 

which manure was applied in six subsurface bands to a depth of 10 cm. Detailed information 

about the application techniques of solid manure are described by Landry et al. (2011). Manure 

was applied during the month of October of 2008 and 2009. Total nutrients in manure were 
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determined at a commercial laboratory (ALS Laboratory Group, Saskatoon, SK). 

Extractable-NH4-N and -PO--P content in both manures were measured by shaking 5 g of manure 

with 15 mL  of deionized water for an hour on a rotary shaker at low speed. The suspension was 

then filtered and the filtrate was analyzed for NH4
+-N and PO4

3--P using automated colorimetry 

(Technicon Autoanalyzer II, Technicon Industrial Systems, 1978). Rates of nutrients applied in 

both years were calculated based on nutrient content and rate of manure applications (Table A.3). 

The field was seeded to Lillian hard red spring wheat on May 9th of 2009 at a rate of 128 kg ha-1 

and to BrettYoung 719 Roundup Ready canola (Brassica napus L.) on May 19th of 2010 at a rate 

of 6 kg ha-1. Herbicides were applied to control annual and broadleaf weeds in-crop using 

standard practices described in Guide to Crop Protection 2009, Saskatchewan Ministry of 

Agriculture.   

Table A.3. Manure nutrients applied at both rates of application (15 and 30 T ha-1) for both years 
of the study. 

Treatment    N P NH4
+-N AP K S 

Manure Type  Rate  Year  ----------------------kg ha-1---------------------- 

  T ha-1          

DGM 

 15  
2009 

 221 41 5.3 2.04 138 23 
 30   442 82 10.7 4.08 276 46 
           
 15  

2010 
 231 83 3.0 0.74 155 51 

 30   462 166 6.0 1.48 310 102 

            

BGM 

 15  
2009 

 240 77 3.8 1.47 183 45 
 30   480 154 7.5 2.94 366 90 
           
 15  

2010 
 158 68 2.0 0.72 128 41 

 30   316 136 4.0 1.44 256 82 

A.4.4 Plant and soil sample collection and analysis 

Both years, the crop was harvested when it reached physiological maturity in September. 

Duplicate 1-m2 plant samples per plot were cut manually at 5 cm above the soil surface. The 

samples collected were dried by forced air at 45 °C, the total biomass weighed, and mechanically 
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threshed using a stationary thresher followed by weighing to determine yield. Straw samples 

were ground to < 2 mm in a WileyTM mill and grain samples were finely ground with a 

CycloneTM mill. Total N and P were measured by digesting the ground grain and straw samples 

in sulfuric acid-peroxide (H2SO4-H2O2) using a temperature-controlled digestion block (Thomas 

et al. 1967), followed by automated colorimetry for determining P and the NH4
+-N using a 

Technicon Autoanalyzer II (Technicon Industrial Systems, 1973). Total N and P uptake were 

then calculated from plant N and P contents and total dry matter yield. Apparent N recovery 

(ANR) and apparent P recovery (APR) were calculated according to Gagnon et al. (1997) as: 

 

ANR or APR = 

€ 

TNUTP−TNUC
TotalN orP applied

×100 

where TNUTP denotes total N or P uptake for a given treatment plot, TNUC is the total N or P 

uptake in control plot and total N or P applied is the amount of N or P applied for the crop year. 

Soil samples were collected immediately after crop harvest in September 2010 at the end 

of September. A hydraulic punch truck was used to collect soil cores (three per plot), which were 

separated into four soil depths increments (0-15, 15-30, 30-60 and 60-90 cm) and the soil from 

each depth was mixed to make one composite soil sample per plot for each of those depths. The 

soil samples were air-dried and ground to pass a 2-mm sieve prior to laboratory analysis. The 

air-dried soil samples were then analyzed for organic C, inorganic N (NH4
+-N and NO3

--N), 

available phosphorus and potassium, electrical conductivity (EC) and pH. The organic C content 

was directly measured using a LECO CR-12 combustion carbon analyzer (LECO Corporation, 

St, Joseph, MI) set at 840 °C (Wang and Anderson 1998). Exchangeable NH4
+-N and NO3

--N 

were extracted by shaking 5 g of soil with 50 mL of 2 M KCl for 1 h on rotary shaker, followed 

by filtration. The NH4
+-N and NO3

--N content in the KCl extracts were measured 

colorimetrically using a Technicon Autoanalyzer II (Keeney and Nelson, 1982). Available 

phosphorus and potassium were determined by a modified Kelowna method (Qian et al., 1994). 

Electrical conductivity and pH were measured in 1:1 soil:water suspension. Soil available Cu, Zn 

and Cd were extracted by ammonium bicarbonate (AB)-diethylenetriaminepentaacetic acid 

(DTPA) as described by Lipoth and Schoenau (2007). Extracted Cu, Zn and Cd were then 

determined using atomic absorption spectrometry (Baker and Amacher, 1982). Inorganic N 
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(NH4
+-N and NO3

--N) was the only soil parameter measured at the four soil depths increments 

(0-15, 15-30, 30-60 and 60-90 cm) whereas the rest of the soil parameters were only measured in 

the upper soil layer (0-15 cm).  

A.4.5 Statistical analysis  

Before selecting the appropriate analysis procedure, Shapiro-Wilk and Bartlett tests were 

applied to check data normality and homogeneity of variance, respectively. Log-transformation 

was implemented on data that were not normally distributed and showed lack of variance 

homogeneity. Statistical analyses were conducted using the MIXED model procedure to 

determine the effects of the main treatments factors which included manure type, rate of 

application, method of application and all interactions on soil and crop dependant variables. 

However, the interactions among factors were not reported here in the tables due to the absence 

of significant impact. Manure type, rate of application and method of application were treated as 

fixed effects whereas block was treated as a random effect in the model. Treatment effects were 

considered significant at a probability level of P ≤ 0.1 at which means were also separated using 

LSD test procedure. The analyses were conducted on each year’s data separately due to 

differences in the crop type.  

A.5 Results 

A.5.1 Climatic conditions 

Total rainfall (281 mm) in the 2009 growing season (April to August) was close to the 

long-term average (263 mm), especially during the month of April, before seeding, which 

showed similar rainfall to the long-term average and May, during seeding, and June which both 

exhibited less rainfall than the long-term average (Fig. A.1). Unlike the first growing season, the 

entire region experienced unusually high rainfall during the 2010 growing season. The total 

rainfall during the first three months of the 2010 growing season was about 66% higher than the 

long-term average. The total rainfall during the 2010 growing season was approximately 539 

mm, nearly double the amount received in 2009 and more than double the long-term average. 

The excess moisture observed in 2010 growing season was expected to impact crop performance. 
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The monthly mean air temperature for both growing seasons did not differ greatly from the 

long-term average (Fig. A.1).  

A.5.2 Manure characteristics  

Both manure types applied in the fall of 2008 for the 2009 season showed relatively 

similar total N content whereas the total P content was slightly higher in DGM (Table A.2). 

However, the available forms of N (NH4
+-N) and P were considerably higher in DGM than 

BGM. Manures applied in the fall of 2009 for the 2010 season were generally different in their 

chemical composition, especially their TN and TP content. The TN and TP content in DGM was 

approximately 27% and 20%, respectively, higher than in BGM. The NH4
+-N content was 

slightly higher in DGM than BGM whereas the available P content was almost similar in both 

manures. 

A.5.3 Crop yield response 

Crop response to manure type was not significant (Table A.4) while rate and method of 

application had significant effects on crop responses (Table A.4). The effect of manure 

application was more evident when manure was applied at the high rate regardless whether it 

was broadcasted or injected. Wheat grain yields at the high rate of manure application were 

significantly higher (P < 0.05) than the control. At equivalent rate, injection method tended to 

provide a higher yield than the broadcast and incorporated.  

  Manure rate of application had a significant impact on canola seed yield (Table A.5); 

however, neither manure type nor method of application had a significant influence on crop 

yield. Treatment effects on crop yield were more pronounced in the year 2010 (Table A.5) 

compared to year 2009 (Table A.4). Grain yield of canola was significantly higher for all 

treatments than that of the control. The high rate of application of both manure types tended to 

produce higher canola yield when compared to the low rate of application regardless of the 

method of application. This increase in yield was more evident with injected DGM, where the 

high rate treatment was significantly higher than the low rate treatment (Table A.5). 
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A.5.4 Nutrient uptake response 

Crop N and P uptake was not significantly affected by manure type whereas the manure 

application rate significantly affected both parameters (Table A.4), The application method had 

only a significant impact on N uptake, but not P uptake (Table A.4). The greatest N uptake was 

observed in plots receiving the high application rate of manure (Table A.4). This value tended to 

be higher still when manure was injected. High rate of application treatments provided 

significantly higher N uptake than the control. Total P uptake was found to be significantly 

higher in soil treated with high rate of manure application when compared to untreated control 

(Table A.4).  

In the year 2010, manure type had also no significant impact on either N or P uptake 

(Table A.5). It was only the application rate factor that showed a significant effect on N and P 

uptake (Table A.4). The effect of the treatments on plant N uptake was more evident in the year 

2010 (P < 0.001) (Table A.5), compared to the year 2009. With the exception of DGM injected 

at the low rate treatment, N uptake from all treatments were significantly higher than the control. 

The highest N uptakes were obtained with the high rate of manure addition regardless of the 

method of application. Broadcast or injected DGM at the high rate resulted in significantly 

higher N uptake than that of injected DGM applied at the low rate. However, this was not the 

case for the BGM type. Canola P uptake from manure applied treatments were significantly 

higher than from the control in the year 2010. The P uptake tended to be greater when both 

manures were applied at the high rate especially when broadcasted (Table A.5). The treatment 

effects on canola P uptake in 2010 were more pronounced compared to wheat P uptake in 2009. 

Additionally, the P uptake among all treatments in 2010 ( 12.9 to 40.2 kg ha-1) were much higher 

than values in 2009 (8.2 to 13.5 kg ha-1). 

A.5.5 Apparent N and P recovery  

Manure type and rate of application did not significantly affect ANR; however, method 

of application showed a significant impact on ANR in the year 2009 (Table A.4). Overall, 

injected manure resulted in higher ANR compared to broadcasted manure. In contrast to the year 

2009, manure type showed a significant effect on ANR in the year 2010 (Table A.5). Similar to 

the year 2009, method of manure application showed a significant impact on ANR in the year 
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2010; however, rate of application remained insignificant (Table A.5). When averaged across all 

treatments, DGM type application resulted in lower ANR (22%) compared to BGM type (34%) 

in the year 2010. In the same year, broadcasted manure resulted in higher ANR (32%) in 

comparison to injected manure (24%), when averaged across all treatments.   

The apparent P recovery (APR) data for the years 2009 and 2010 are presented in Table 

A.4 and Table A.5, respectively. In 2009, APR was not affected by manure type, rate and method 

of manure application (Table A.4). However, manure type and rate of application were shown to 

have a significant effect on APR in the year 2010 (Table A.5).  When averaged across all 

treatments, APR was higher in DGM treatments (26%) than BGM (21%). The average of low 

rate treatments showed greater APR (26%) compared to the high rate treatments (20%). Overall, 

nutrient recovery was higher in 2010 than in 2009 (Table A.5). 

A.5.6 Soil response-changes in soil chemical properties 

Residual inorganic N (NH4
+-N and NO3

--N) data collected from different depths after 

harvest in the second year are provided in Table A.6. The inorganic N content varied with depth 

and among treatments. The soil NO3
--N content was highest near the surface (0-15 cm). At the 

0-15 cm depth, method of manure application had a significant impact on NO3
--N and NH4

+-N 

(Table A.6). However, inorganic N content was not affected by manure type or rate of 

application (Table A.6).  

The broadcast and incorporation method of manure application showed a higher NO3
--N 

content, averaging 24 kg NO3
--N ha-1 across all treatments, compared to 15 kg NO3

--N ha-1 when 

manure was injected in the 0-15 cm. However, the NH4
+-N content was slightly greater when 

manure was injected (11 kg NH4
+-N ha-1) than broadcast (10 kg NH4

+-N ha-1) (Table A.6). 

Unlike the surface (0-15 cm), inorganic N was dominated by NH4
+-N in the lower 3 soil 

sampling depths (Table A.6). The NH4
+-N content increased with soil depth until the 30-60 cm 

increment whereas the NO3
--N content remained the highest in the upper soil profile (0-15 cm). 

The NO3
--N content was significantly influenced by the method of manure application at the 

depth of 15-30 cm and the rate of application at the depth of 60-90 cm (Table A.6). At those 

depths, the broadcast method showed a slightly higher NO3
--N content (11 kg ha-1) than injection 

(9 kg ha-1) at 15-30 cm depth, and the high rate of application gave a greater NO3
--N content (12 
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kg ha-1) compared to that of the low rate (9 kg ha-1) at the 60-90 cm depth, when averaged across 

all treatments. 
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Table A.4. Grain yield of wheat, total plant N uptake, total plant P uptake, apparent N recovery 
(ANR) and apparent phosphorus recovery (APR) responses to experimental treatments during 
first growing season (2009) of the two-yr field trial.  

Treatment¶  
Grain 
yield 

 
N 

uptake 
P 

uptake 
 ANR APR 

Manure Type  Rate  Method  t ha-1  kg ha-1  % 

Control  0  Control  1.19 e§  47 d 8.2 d  naʃ na 

DGM 

 
L 

 BRC  1.41 cde  53 cd 9.3 cd  5.0 d 2.6 
  INJ  1.51 bcde  56 bcd 9.6 bcd  12.2 abc 3.2 
 

H 
 BRC  1.83 ab  71 abc 12.3 ab  14.5 ab 4.2 

  INJ  1.96 a  80 ab 13.5 a  14.8 ab 5.3 

BGM 

 
L 

 BRC  1.38 de  55 cd 9.8 bcd  7.9 cd 2.6 
  INJ  1.74 abcd  67 abc 11.9 abc  18.1 a 5.9 
 

H 
 BRC  1.78 abc  70 abc 12.8 a  12.8 abc 3.6 

  INJ  2.07 a  82 a 12.8 ab  10.3 bcd 3.6 
             

ANOVA      P value 
Manure Type (MT)  0.403  0.346 0.280  0.288 0.780 

Rate (R)  0.000  0.000 0.001  0.308 0.447 
Method (M)  0.053  0.077 0.327  0.035 0.214 

ʃ Not applicable. 
§ Means within a column sharing the same letter are not significantly different at P = 0.10.  
¶ DGM denotes distillers’ grains manure, BGM denotes barley grain manure, BRC denotes 

broadcast and incorporate, INJ denotes band injection.  
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Table A.5. Grain yield of canola, total plant N uptake, total plant P uptake, apparent N recovery 
(ANR) and apparent phosphorus recovery (APR) responses to experimental treatments during 
second growing season (2010) of the two-yr field trial. 

Treatment¶  
Grain 
yield 

 
N 

uptake 
P 

uptake 
 ANR APR 

Manure Type  Rate  Method  t ha-1  kg ha-1  % 

Control  0  Control  0.61 d§  79 e 12.9 e  naʃ na 

DGM 

 
L 

 BRC  1.51 abc  147 bcd 31.5 bcd  27.6 b 33.9 a 
  INJ  1.14c  117 de 24.5 d  14.6 b 20.4 bc 
 

H 
 BRC  1.72 ab  190 a 39.5 ab  23.0 b 24.6 abc 

  INJ  1.84 a  187 ab 40.2 a  22.2 b 25.2 abc 

BGM 

 
L 

 BRC  1.51 abc  157 abcd 33.1 abc  46.3 a 28.5 ab 
  INJ  1.38 bc  137 cd 28.5 cd  33.5 b 21.7 bc 
 

H 
 BRC  1.80 a  176 abc 36.1 abc  29.1 b 16.5 c 

  INJ  1.62 ab  164 abc 34.6 abc  25.4 b 15.3 c 
             

ANOVA      P value 
Manure Type (MT)  0.808  0.826 0.711  0.026 0.091 

Rate (R)  0.004  0.001 0.002  0.207 0.082 
Method (M)  0.208  0.129 0.185  0.089 0.109 

ʃ Not applicable. 
§ Means within a column sharing the same letter are not significantly different at P = 0.10.  
¶ DGM denotes distillers’ grains manure, BGM denotes barley grain manure, BRC denotes 

broadcast and incorporate, INJ denotes band injection.  
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Soil available P content in the 0-15 cm depth, determined after harvest in 2010, is shown 

in Table A.7. The available P content was significantly affected by the rate of manure application 

whereas manure type and method of application did not have a significant impact on the soil 

available P content (Table A.7). Treatment means comparison showed that only injected manure 

at the high rate was significantly higher than most of the other treatments. When averaged across 

all treatments, the high rate of manure addition resulted in a higher soil available P content in the 

0-15 cm depth (51 kg ha-1) compared to the low rate of application (30 kg ha-1). 

Manure type did not have any significant effect on the other soil parameters (available K, 

Cu, Zn, Cd, OC, pH, EC) measured in the current study (Table A.7). However, the application 

rate and method had a significant impact on Zn and Cu, respectively (Table A.7). The high rate 

of manure application resulted in a slightly higher residual Zn content (3.4 kg ha-1) compared to 

that of the low rate (2.8 kg ha-1). The Cu content was slightly higher in manure injection 

treatment (2.0 kg ha-1) than broadcast (1.7 kg ha-1). 



 

Table A.6. Soil content of inorganic N (NH4
+-N, NO3

--N) at 4 soil depth increments determined after crop harvest of the second 
growing season (2010) of the two-yr field trial. 

      Soil depth (cm) 

Treatment¶ 
 0-15 cm  15-30 cm  30-60 cm  60-90 cm 
 NO3-N NH4-N  NO3-N NH4-N  NO3-N NH4-N  NO3-N NH4-N 

Manure Type  Rate  Method  ---------------------------------------------------kg ha-1---------------------------------------------- 
Control  0  Control  11.4 c§ 11.3 ab  7.6 d 11.90  9.60 27.4  7.6 b 35.4 

 
DGM 

 
L 

 BRC  23.1 ab 12.9 abc  9.6 abcd 22.20  10.10 47.5  7.9 b 41.7 
  INJ  13.6 bc 9.7 bc  8.7cd 15.10  9.40 48.0  7.9 b 40.2 
 

H 
 BRC  21.3 abc 8.8 c  12.1 a 14.40  11.30 25.2  14 a 20.4 

  INJ  15.4 bc 11.2 abc  9.8 abcd 15.10  12.00 39.8  11.3 ab 37.4 

BGM 

 
L 

 BRC  29.8 a 8.8 c  10.6 abc 10.80  12.00 34.7  8.9 b 43.2 
  INJ  13.5 bc 11.3 abc  9.2 bcd 14.80  11.60 16.3  9.9 ab 39.3 
 

H 
 BRC  21.9 abc 8.6 c  11.5 ab 11.10  11.10 35.5  10.8 ab 40.1 

  INJ  16.7 bc 13.6 a  9.1 bcd 16.40  11.70 43.6  9.9 ab 36.30 
                 

ANOVA      P value 
Manure Type (MT)  0.268 0.505  0.922 0.107  0.162 0.855  0.957 0.434 

Rate (R)  0.537 0.682  0.120 0.443  0.260 0.217  0.032 0.224 
Method (M)  0.000 0.038  0.018 0.451  0.905 0.184  0.670 0.749 

§ Means within a column sharing the same letter are not significantly different at P = 0.10.  
¶ DGM denotes distillers’ grains manure, BGM denotes barley grain manure, BRC denotes broadcast and incorporate, INJ denotes 

band injection. 
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Table A.7. Selected soil properties at 0-15 cm depth determined after crop harvest of the second growing season (2010) of the two-yr 
field trial. 

Treatment¶  P K Cu Zn Cd  OC  pH  EC 
Manure Type  Rate  Method  kg ha-1  mg g-1    dS m-1 

Control  0  Control  17.3 b§ 467 1.7 b 2.1 b 0.25  24  7.9  0.9 

DGM 

 
L 

 BRC  29.6 b 592 1.7 ab 2.8 ab 0.28  26  8.0  1.2 
  INJ  30.2b 526 2.0 ab 3.0 ab 0.29  26  8.0  1.0 
 

H 
 BRC  49.9 ab 625 1.8 ab 3.3 ab 0.23  23  7.9  1.3 

  INJ  66.1 a 655 1.9 ab 3.6 a 0.26  23  8.0  1.2 

BGM 

 
L 

 BRC  30.5 b 577 1.7 b 2.8 ab 0.26  26  8.0  1.0 
  INJ  31.6 b 540 1.9 ab 2.6 ab 0.28  26  7.9  1.1 
 

H 
 BRC  41.5 ab 558 1.7 ab 3.7 a 0.28  27  8.2  0.9 

  INJ  46.4 ab 666 2.1 a 3.1 ab 0.29  26  7.9  1.8 
                 

ANOVA  P value 
Manure Type (MT)  0.472 0.977 0.955 0.717 0.287  0.120  0.616  0.772 

Rate (R)  0.000 0.103 0.606 0.051 0.238  0.200  0.516  0.801 
Method (M)  0.419 0.835 0.018 0.963 0.160  0.664  0.243  0.338 

§ Means within a column sharing the same letter are not significantly different at P = 0.10. 
¶ DGM denotes distillers’ grains manure, BGM denotes barley grain manure, BRC denotes broadcast and incorporate, INJ denotes 

band injection. 
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A.6 Discussion 

A.6.1 Manure characteristics 

The relatively similar composition of both manures applied the first year may have been 

the result of dilution by bedding materials used in the cattle feedlot pens. The other possible 

reason that may explain the lack of anticipated higher nutrient content in the DGM compared to 

that of BGM is the higher moisture content, which was about four times higher than that of 

BGM. However, the available forms of N (NH4
+-N) and P were considerably higher in DGM 

than BGM. This is in agreement with other studies that found that forms of manure nutrient can 

be influenced by inclusion of distillers’ grains in animal diets (Ebeling et al., 2002; Sphiehs and 

Varel, 2009). Hao et al. (2009) also found a significant increase in water soluble NH4
+-N content 

in manure produced from animal fed dried distillers’ grain with solubles. 

Unlike the manures applied in the fall of 2008, the manures applied in the fall of 2009 for 

the 2010 season generally showed differences in their chemical composition; especially TN, TP 

and NH4
+-N contents. The higher content of some nutrients in DGM is in line with previous 

findings (Ebeling et al., 2002; Hao et al., 2009; Sphiehs and Varel, 2009).  

A.6.2 Crop responses 

The absence of manure type effects on wheat yield and total plant N uptake is consistent with 

similar initial nutrient content of both manures, especially in the first year. Despite the higher 

NH4
+-N content in DGM than BGM in the first year, DGM treatments did not lead to higher 

yield or plant N uptake. In comparison to other findings, several studies that compared crop and 

nutrient uptake responses to addition of fresh and composted beef cattle manures that differed in 

their chemical and physical composition have reported inconsistent results. Other researchers 

found that yield and N and P uptake responses to addition of fresh and composted manures to 

two soils with different properties were dependent on soil type (e.g., Xie and MacKenzie 1986). 

This may explain the lack of significant differences between the two types of manures used in 

the current study in which the soil used for the field study exhibits relatively high background 

levels of N, P and organic matter in addition to fine texture. These soil properties may explain 

the lack of response to the manure treatments. Mooleki et al. (2004) also found less response of 



 

 

 
 

210 

N uptake and grain yield to manure application in a soil that had relatively higher background 

levels of available N when compared to another soil that had low available nutrient and organic 

matter content. 

The greater N uptake observed with the high rate of manures application in both years is 

consistent with the higher amount of available N (NH4
+-N) associated with manure application at 

the high rate. Similarly, greater P uptake in high rate treatments is explained by the higher 

available P -in soil arising from the high rate of manure application. 

In general, overall treatment effects on all crop responses were more pronounced in the 

second year with canola, a crop with a higher nutrient demand than wheat (Malhi et al. 2008). 

Unlike the first year, all treatments produced significantly higher canola yield and N and P 

uptake than the control, including the low rates of manure application. This can also be attributed 

to additional N supplied through the mineralization of residual organic N applied in the previous 

year (Pratt et al. 1973). Eghball and Power (1999) revealed that N availability in the first and 

second year after feedlot cattle manure addition was 40 and 15%, respectively. Similarly, 

Mooleki et al. (2004) reported that effect of single application of animal manure continued for 

the second year, producing greater wheat yield. 

In contrast to the first year, the second year of the study showed that manure type had a 

significant impact on ANR and APR, in which ANR in BGM treatments was higher than in 

DGM treatments and APR in DGM treatments was greater than in BGM treatments. Overall, 

nutrient recoveries were higher in the second year, which could be a result of a contribution from 

the previous year and the higher nutrient requirement and uptake potential of canola versus 

wheat. The higher APR with the low rate of manure application treatments in the second year is 

consistent with the previous studies that found phosphorus use efficiency was usually greater 

with a low rate of manure application (Eghball and Sander 1989; Miller et al. 2009). 

A.6.3 Soil responses 

The available N content at the 0-15 cm depth, especially NO3
--N, was generally affected 

by manure application regardless of manure type. The absence of significant effects of manure 

type on available N remaining in soil after second year crop harvest can be related in part to the 

similar initial total N content of both manure types in the first year. Although initial available N 

content in DGM was higher than in BGM in the first year, and initial total N content in DGM 
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was considerably higher than in BGM in second year, soil available N did not differ between the 

two types of manure treatments. The very wet conditions the region experienced in the second 

year is an important factor that may have contributed to additional soil N losses. In a similar 

study but under controlled conditions, Benke et al. (2010) found that barley grain manure and 

dried distillers’ grain with solubles manure showed similar effects on soil total N content after 

harvest and attributed this to the similar content of initial total N. These authors also found that 

the two types of manure treatments did not differ in their effects on soil available N content even 

though initial available N content in DGM was about three times higher than in BGM. They 

related this to volatile NH3 loss after amendment addition that might be higher from DGM than 

BGM at the high soil pH since the amount of NH4
+-N and proportion of available N in NH4

+-N 

form was greater in DGM than in BGM. This may in part explain the significant impact of 

manure application method in this study where NH4
+-N was higher in injected manure treatments 

than broadcast and incorporation treatments in which soil conditions would promote more NH3 

volatilization (pH = 7.8 at 0-15 cm depth). However, the broadcast and incorporation treatments 

had higher NO3
--N content than injected method treatments. This may be related to the higher N 

uptake observed with the injected method treatments especially in the first year. The dominancy 

of NH4
+-N over NO3

--N in lower depths is likely related to the NH4
+-N being fixed and bound in 

clay mineral interlayers. The NH4
+-N fixation process in the field study may explain the build-up 

of the NH4
+-N pool in the soil profile in which NH4

+-N ion is protected against nitrification and 

subsequent leaching (Nieder et al. 2011). It was also reported that NH4
+-N content increased with 

soil depth due to decreasing soil organic matter content (Zhang et al. 2003; Nieder et al. 2011). 

This is in agreement with the current study findings. The soil in this study has a relatively high 

clay content, and NH4
+-N fixation is greater in clay soil than in sandy soil (Chantigny et al. 

2004).  

Despite the fact that total P content was slightly higher in DGM than BGM in the second 

year, manure type did not have a significant impact on post harvest soil available P content. This 

is in contrast to results of Benke et al. (2010) which found that, under controlled conditions, 

DGM treatments had greater amount of soil total and available P content than BGM treatments, 

and this increase was attributed to the higher total and available P contents in DGM than in 

BGM. Generally, manure treatments in the present study contributed to higher available P 

present in soil after harvest, and this was significantly affected by the rate of application. This 
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observed increase in soil available P is in agreement with previous long-term field studies that 

reported increases in soil available P after addition of animal manures to agricultural soils 

(Sharpley et al. 1984; Motavalli and Miles 2002; Hao et al. 2008).  

The lack of significant treatments effect on other measured soil properties, such as K, Cd, 

OC, pH and EC under field conditions may be partially related to the relative similarity of both 

manures’ chemical properties. In addition, the Black Chernozemic soil is rich in organic matter 

and nutrients, and therefore high background levels of soil nutrient and carbon may explain the 

absence of significant treatment effect on most measured soil properties. The higher organic 

matter and clay content of this soil would buffer against pH changes (Wu and Powell 2007). 

Mooleki et al. (2004) also found that there was no change in soil pH following 4 years of cattle 

manure application to a Black Chernozemic soil. Chang et al. (1990) reported a significant 

decrease in pH after 11 years of annual feedlot cattle manure to a Brown Chernozem. However, 

Hoyt and Rice (1977) mentioned that cattle manure might have a buffering impact against 

decreases in soil pH, when added to a Luvisolic soil.  

The rate of manure application had a significant impact on extractable Zn level in soil, in 

which higher Zn content was found in soil treated with a higher rate of manure (3.4 kg Zn ha-1, 

mean across treatments) compared to treatments with the low application rate (2.8 kg Zn ha-1). 

Compared to manure injection method, the lower Cu content associated with broadcast and 

incorporation may result from a greater Cu interaction and fixation with reactive soil constituents 

like carbonates and clays as manure is in greater contact with soil constituents under the 

broadcast than banded injection method. Qian et al. (2003) observed no significant differences in 

total Cu and Zn after repeated application of cattle manure on Black Chernozemic soils and 

related this to the relatively low amounts of Cu and Zn added over the years to cause any 

significant build-up in soil. However, the same authors found a slight increase in moderately 

labile Cu and Zn after manure addition; but this increase was only observed with large amounts 

of added cattle manure.   

A.7 Conclusion 

Manure derived from cattle fed distillers’ grain in the ration had different characteristics 

compared to manure derived from cattle fed the regular barley grain ration, especially for 

manures collected in the second year of the trial. The similar composition of both manures 
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particularly in the first year may be related to dilution with bedding materials. The effects of 

distillers’ grain manure on most measured crop and soil parameters did not differ greatly from 

that of regular barley grain fed cattle manure. The only crop variable that was higher in DGM 

treatments was the apparent P recovery; this may be due to higher total and soluble P content 

associated with DGM. The injection method of manure application appeared to be more effective 

in yield response and promoting N uptake and recovery than broadcast and incorporate, 

suggesting that band injection application may conserve N, increase NH4
+-N in the upper soil 

depth (0-15 cm) and promote N uptake. Application of manure at the high rate resulted in higher 

yield and nutrient uptake; however, it also led to a higher NO3
--N content at the lower soil depth 

(60-90 cm), suggesting some downward leaching of soil nitrate under the unusually wet 

conditions of 2010.   

Future work is needed to evaluate DDGS manures derived from cattle fed different 

DDGS sources, e.g., corn (Zea mays L) versus wheat studies on their effect on manure properties 

and soil, and crop response to these manures is also required. Increasing DDGS inclusion in 

animal diets to a higher ratio, e.g., higher than 40% and evaluating this increase on manure 

properties may be of interest. 

 

 


