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ABSTRACT 
 

 An investigation was conducted to determine the contribution of the 

gastrointestinal microbiota to variation in bioefficacy of methionine sources and the 

interrelationship between intestinal microbiota and cereal grain type with respect to 

gastrointestinal physiology.  Apparent gastrointestinal absorption of DL-methionine 

(MET) and 2-hydroxy-4-methylthiobutanoic acid (MHA-FA), post-weaning intestinal 

morphology, digestive physiology, mucin dynamics and digesta flow were studied in a 

series of experiments using conventional and gnotobiotic pigs. At 14 d of age, sow - 

reared conventional (CON) pigs and isolator -  reared monoassociated gnotobiotic pigs 

(EF) were weaned to corn or wheat/barley based diets supplemented with MET or MHA-

FA. At 24 d of age, after an overnight fast, pigs were fed experimental diet supplemented 

with 107 Bq of either 3H-L-MET or 3H-L-MHA-FA per kg of feed and chromic oxide 

(0.5% wt/wt). Pigs were killed 3 h after consuming the meal to collect digesta and tissue 

samples from the stomach and along the small intestinal (SI) length.  Conventional pigs 

fed a wheat/barley-based diet had increased (P < 0.05) total aerobes, whereas 

supplementation with MHA-FA increased (P < 0.05) total aerobes and lactobacilli 

populations in proximal SI. Among the gnotobiotic pigs, 8 pigs (2 isolators) were 

monoassociated with a bacteria closely related to Providencia spp. and 16 pigs (4 

isolators) were monoassociated with Enterococcus faecium (EF). Species of bacterial 

contaminant and diet composition did not affect residual MET or MHA-FA in digesta. 

Decreased (P < 0.05) apparent residual MET in digesta compared with MHA-FA in CON 

but not monoasscoiated pigs, along with significantly higher (P<0.05) MET associated 

radioactivity at 5% SI tissue suggested that microbial metabolism of MHA-FA increases 
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its retention in small intestinal digesta and contributes in part to the lower bioefficacy of 

MHA-FA compared to MET.  A comparison of CON and EF pigs showed that 

wheat/barley diets increased digesta viscosity (P < 0.01) and  proliferating cell nuclear 

antigen (PCNA) expression (P < 0.001) and tended to decrease (P < 0.07) 

aminopeptidase  N (APN) activity. Monoassociation decreased (P < 0.01) body weight, 

relative spleen weight, crypt depth, PCNA expression, caspase-3 activity, sucrase 

expression, total goblet cells in crypts and mucin gene expression and increased (P < 

0.01) relative SI length, digesta viscosity, villus height, APN and sucrase activity. 

Interactive effects between cereal grain type and microbial status were observed only as 

trends (P < 0.1) for PCNA, Muc2, APN and sucrase suggesting these effects were 

mediated indirectly through microbial changes. Decreased % retained chromic oxide in 

digesta at all SI locations and no chromic oxide at 95% SI length in monoassociated pigs 

indicated slower small intestinal transit of digesta in monoassociated pigs. We 

successfully developed the chromic oxide microassay for estimating chromic oxide in 

1/20th of original sample size (2.0 g). Results of this study indicate that microbial 

metabolism of MHA-FA contributes in part to the lower bioefficacy of MHA-FA 

compared to MET. Monoassociation had major effects on intestinal physiology whereas 

limited indirectly mediated effects of cereal type were observed suggesting no major 

influences of cereal grain type during the short early post-weaning phase.   



 

 iv 

ACKNOWLEDGEMENTS 
 
 

 I will ever be grateful to my supervisor, Dr. Andrew Van Kessel for his advice, 

challenges, and support throughout the course of my project. Thank you to the members 

of the advisory committee; Dr. Murray Drew, Dr. Ruurd Zijlstra, Dr.Volker Gerdts, Dr. 

Fiona Buchanan and Dr. Bernard Laarveld for your contributions and guidance. I want to 

thank Dr. Andrew Olkowski for his technical support.   

I am grateful to Natural Sciences and Engineering Research Council of Canada 

(NSERC) and Evonik Degussa GmbH, Hanau, German Ltd. for providing funding 

support for this project. I am also thankful to Dr. Dirk Hoehler and Mieke Rademacher of 

Evonik Degussa GmbH, Hanau, German Ltd. for their intellectual and technical support.   

I would also like to acknowledge the excellent technical assistance of Jason Marshall 

and Charlotte Hampton. Thanks to all those graduate students in and outside the 

laboratory including Darryl Wilkie, Ben Willing, Sangeeta Dalal, Rose Whelan and 

Daniel Petri, I have had the pleasure of interacting with over the past few years.  

I would like to express my sincerest gratitude to my father, Om Parkash Malik and 

mother, Vidya Devi and my brothers Vinod, Deepak and their families. Without their 

hard work and efforts, a little girl from a small village in India couldn’t ever dream to do 

PhD, forget at the University of Saskatchewan, Canada.  

 I dedicate this thesis to my caring and patient husband Jaipal Dahiya and to the 

lights of my life, Akash and Robin. Without their love and sacrifices, this journey could 

not have been completed. 

 



 

 v 

TABLE OF CONTENTS 
 

PERMISSION TO USE ....................................................................................................... i 
ABSTRACT ........................................................................................................................ ii 
ACKNOWLEDGEMENTS ............................................................................................... iv 
TABLE OF CONTENTS .................................................................................................... v 
LIST OF TABLES ........................................................................................................... viii 
LIST OF FIGURES ........................................................................................................... ix 
LIST OF ABBREVIATIONS ............................................................................................. x 
1.0 INTRODUCTION ........................................................................................................ 1 
2.0. LITERATURE REVIEW ............................................................................................ 4 

2.1. Composition of feed ingredients .............................................................................. 4 
2.1.1. Chemical structure of dietary fibre components in cereal grains ..................5 

2.2. Physico-chemical properties of cereal fibre components and implications ............. 8 
2.2.1. Physical properties .........................................................................................8 
2.2.2. Digesta transit ................................................................................................9 
2.2.3. Nutritional influences...................................................................................10 
2.2.4. Physiological implications ...........................................................................11 

2.3. Fermentative properties of dietary fibre ................................................................ 13 
2.3.1 Digestion of dietary fibre ..............................................................................14 
2.3.2. Bacterial fermentation products ...................................................................15 
2.3.3 Possible Influences on Microbiota ................................................................17 

2.4 Microbiota and its significance to host ................................................................... 19 
2.4.1.1 Microbial contributions to the host ........................................................... 20 
2.4.1.2 Nutrients digestion, absorption and bioavailability .................................. 22 
2.4.3.1 Mucus secretion and composition ............................................................. 28 
2.4.2 Nutrient requirements ...................................................................................30 
2.4.2.1 Intestinal histology and morphology ........................................................ 30 
2.4.2.2 Intestinal motility ...................................................................................... 33 

2.5. Summary ................................................................................................................ 33 
3.0. APPARENT ABSORPTION OD METHIONINE AND 2-HYDROXY-4-

METHYLTHIOBUTANOIC ACID FROMGASTROINTESTINAL TRACT OF 
CONVENTIONAL AND GNOTOBIOTIC PIGS ..................................................... 35 

3.1. Abstract .................................................................................................................. 35 
3.2. Implications............................................................................................................ 36 
3.2. Introduction ............................................................................................................ 37 
3.3. Materials and methods ........................................................................................... 38 

3.3.1. Source and synthesis of radiotracers ............................................................38 
3.3.2. Experimental diets .......................................................................................39 
3.3.3. Conventional pig experimental design.........................................................41 
3.3.4. Preparation of gnotobiotic isolators .............................................................41 
3.3.5. Gnotobiotic pig derivation and maintenance ...............................................42 
3.3.6. Gnotobiotic pig experimental design ...........................................................42 
3.3.7. Sample collection .........................................................................................43 
3.3.8. Microbial identification and enumeration ....................................................43 



 

 vi 

3.3.9. Measurement of apparent retention of L-[methyl-3H] MET and L-[methyl-
3H] MHA-FA in digesta ...................................................................................45 

3.3.10. Analysis of 3H activity in intestinal tissue .................................................46 
3.3.11. Statistical analyses .....................................................................................46 

3.4. Results .................................................................................................................... 47 
3.4.1. Health and microbial status ..........................................................................47 
3.4.2. Microbial enumeration - conventional pigs .................................................47 
3.4.3. Microbial enumeration and identification - monoassociated pigs ...............47 
3.4.4. Apparent retention of L-[methyl-3H] MET and L-[methyl-3H] MHA-FA in 

digesta ..............................................................................................................48 
3.4.5. Apparent tissue associated L-[methyl-3H] MET and L-[methyl-3H] MHA-

FA activity .......................................................................................................49 
3.5. Discussion .............................................................................................................. 53 

4.0. POST WEANING INTESTINAL PHYSIOLOGY AND MUCIN DYNAMICS IS 
INFLUENCED BY DIET AND COMMENSAL MICROBIOTA ............................ 58 

4.1. Abstract .................................................................................................................. 58 
4.2. Introduction ............................................................................................................ 59 
4.3. Materials and methods ........................................................................................... 60 

4.3.1 Experimental Design and Diets ....................................................................60 
4.3.2. Conventional pig experimental design.........................................................61 
4.3.3 Gnotobiotic pig experiments .........................................................................61 
4.3.4. Monitoring of Microbial Status ...................................................................62 
4.3.5. Sample collection .........................................................................................63 
4.3.6. Digesta physicochemical properties ............................................................63 
4.3.7. Intestinal morphology ..................................................................................64 
4.3.8. Intestinal goblet cell histochemistry ............................................................64 
4.3.9. Gene Expression Analysis ...........................................................................64 
4.3.10. Protein and Enzyme activity Assays ..........................................................67 
4.3.11. Caspase-3 activity ......................................................................................68 
4.3.12. Statistical analysis ......................................................................................68 

4.4. Results .................................................................................................................... 69 
4.4.1. Health, body weight, organ weights and SI length ......................................69 
4.4.2. Microbial Status ...........................................................................................71 
4.4.3. Intestinal environment .................................................................................71 
4.4.4. Enterocyte replacement ................................................................................72 
4.4.5. Digestive enzyme activity and expression ...................................................72 
4.4.6. Goblet cell histochemistry and mucin expression .......................................77 

4.5. Discussion .............................................................................................................. 79 
5.0. DIGESTA FLOW IN UPPER GASTROINTESTINAL TRACT IN 

CONVENTIONAL AND GNOTOBIOTIC PIGS ..................................................... 89 
5.1. Abstract .................................................................................................................. 89 
5.2. Introduction ............................................................................................................ 90 
5.3. Materials and Methods ........................................................................................... 91 

5.3.1. Chromic oxide microassay ...........................................................................91 
5.3.1.1. Validation of chromic oxide microassay ................................................. 92 

5.3.1.1.1. To confirm linearity and repeatability .............................................. 92 



 

 vii 

5.3.2. Animal experiments .....................................................................................93 
5.3.2.1. Conventional pig study ............................................................................ 93 
5.3.2.2. Gnotobiotic pig study ............................................................................... 94 
5.3.3. Laboratory Analysis .....................................................................................95 
5.3.3.1. pH and viscosity measurement ................................................................ 95 
5.3.4 Statistical analysis .........................................................................................95 

5.4. Results .................................................................................................................... 96 
5.4.1. Validation of chromic oxide microassay .....................................................96 
5.4.2. Microbial status of gnotobiotic pigs ............................................................97 
5.4.3. Digesta flow .................................................................................................97 
5.4.4. Intestinal environment ...............................................................................100 

5.5. Discussion ............................................................................................................ 104 
6.0. GENERAL DISCUSSION AND CONCLUSIONS ................................................ 109 

6.1. Limitations of present studies .............................................................................. 115 
6.2. Future research ..................................................................................................... 117 

7.0. LIST OF REFERENCES ......................................................................................... 119 
8.0. APPENDICES ......................................................................................................... 152 

8.1. Appendix A .......................................................................................................... 152 



 

 viii 

 LIST OF TABLES 
 
Table 2.1. The types and concentration (g/kg dry matter) of polysaccharides, fibrous 

components and lignin in some cereal grains ………………………………7 
 
Table 3.1. Diet formulations used in the experiment………………………………….  40 
 
Table 3.2. Percent retained radioactivity in gastrointestinal tracts of conventional and 

monoassociated pigs fed corn and wheat-barley based diets supplemented 
with DL-methionine or DL-MHA-FA on equimolar basis…………………51 

 
Table 4.1. Quantitative real - time PCR primers for all genes………………………….67 
 
Table 4.2. Body weights and average relative lengths of small intestine, weights of liver, 

spleen and heart in conventional and monoassociated pigs fed corn or wheat-
barley diets …………………………………………………........................71 

 
Table 4.3. Effect of cereal type and microbial status on pH, viscosity and intestinal 

morphology in conventional and monoassociated pigs fed corn or wheat-
barley diets………………………………………………………………….75 

 
.Table 4.4. Effect of cereal type and microbial status on digestive enzymes activity and 

expression in conventional and monoassociated pigs fed corn or wheat-barley 
diets……………………………………………………………………….…76 

 
Table 4.5. Effect of cereal type and microbial status on goblet cells staining pattern and 

mucin gene expression in conventional and monoassociated pigs fed corn or 
wheat-barley diets…………………………………………………………..79 

 
Table 5.1. Comparison of chromic oxide content (μg/mg) in the four experimental diets 

using the original Fenton and Fenton (1979) procedure or the modified 
procedure……………………………………………………………………100 



 

 ix 

 
LIST OF FIGURES 

 
Figure 2.1. Structure of methionine and methionine hydroxy-analogue………………26 
 
Figure 3.1.  Apparent retention of L-[methyl-3H] MET and L-[methyl-3H] MHA-FA 

in digesta in conventional (A) and monoassociated pigs (B) fed corn or wheat-
barley based post-weaning diets ……………………………………………52 

 
Figure 3.2. Apparent tissue associated L-[methyl-3H] MET and L-[methyl-3H] MHA-FA 

activity in conventional (A) and monoassociated pigs (B) fed corn or wheat-
barley (WB) based post-weaning diets …………………………………….53 

 
Figure 4.1. PCNA expression (A), APN activity (B), sucrase expression (C) and Muc 2 

expression (D) in conventional (CON) and monoassociated (EF) pigs fed corn 
or wheat-barley based post-weaning diets …………………………………77 

 
Figure 5.1. Calibration curves for three experiments showing relation between 

absorbance and chromic oxide………………………………………………99 
 
Figure 5.2. Percent chromic oxide recovered in digesta at 5, 25, 50, 75 and 95% length of 

small intestine at 3, 4 and 5 hrs. in conventional (A) and 5, 25, 50, 75% SI 
length in monoassociated pigs (B) at 3 hrs. after being fed corn or wheat-
barley based diets ………………………………………………………….102 

 
Figure 5.3. pH (A) and viscosity (B) digesta at 75% of small intestinal length in 

conventional pigs fed corn or wheat-barley based diets ..............................103 
 
Figure 5.4. pH (A) and viscosity (B) digesta at 75% of small intestinal length in 

monoassociated pigs fed corn or wheat-barley based diets………………..104 



 

 x 

LIST OF ABBREVIATIONS 
 
A: G   activity: gene expression 
ADF   acid detergent fibre  
ANOVA  analysis of variance 
APN   aminopeptidase N 
ATP   adenine triphosphate 
BB   brush border 
BSA   bovine serum albumin 
cAMP   cyclic adenosine monophosphate 
casp3   caspase 3 
cDNA   complementary deoxyribonucleic acid 
CFU   colony forming units 
CMC   carboxymethylcellulose 
CON   conventional  
Cpm   counts per minute 
cpn60   chaperonin 60 
cpnDB   chaperonin 60 database 
DF   dietary fibre 
DM   dry matter 
DNA   deoxyribonucleic acid 
dNTP   deoxynucleotide triphosphate 
EC   Escherichia coli 
EDTA   ethylene diamine tetra acetate 
EML   epithelial mucosal layer 
GAPDH  glyceraldehyde-phosphate dehydrogenase 
GF   germfree 
GIT   gastrointestinal tract 
GLM   general linear models 
GLP-2   glucagon like peptide-2 
GLUT2  glucose tranporter-2 
HPLC   high pressure liquid chromatography 
IgG   immunoglobulin G 
IL-1β and IL-6 interleukin 1β and interleukin-6 
LF   Lactobacillus fermentum 
LI   large intestine 
LPH   lactase phlorizin hydrolase 
LPS   lipopolysaccharide 
MA   monoassociated 
MET   methionine 
MHA-FA  2-hydroxy-4-methyl thiobutanoic acid 
MHC   major histocompatability complex 
mRNA   messenger ribonucleic acid 
NDC   nondigestible carbohydrates 
NDF   neutral detergent fibre 
NF-κB   nuclear factor kappa B 



 

 xi 

NSC   non-starch carbohydrates 
NSP   non-starch polysaccharides 
ODC   ornithine decarboxylase 
PBS   phosphate buffered saline 
PBS-T   phosphate buffered saline + Tween 
PCNA   proliferating cell nuclear antigen 
PCR   polymerase chain reaction 
PDV   portal-drained viscera 
PMSF   phenylmethylsulfonyl fluoride 
PSA   polysaccharide A 
qPCR   quantitative PCR 
RNA   ribonucleic acid 
RT-PCR  reverse transcriptase polymerase chain reaction 
SCFA   short chain fatty acid 
SE   standard error 
SGLT-1  sodium glucose cotransporter 
SI   small intestine 
TNF-α   tumour necrosis factor- α 
UT   universal target 
 
 
 
 
 



 

 1 

1.0 INTRODUCTION  

 Dietary carbohydrates constitute a major part of swine diets but with diverse 

composition originating from various cereal grain sources (Bach Knudsen, 1997). 

Considering the purported health benefits of dietary fibre and whole cereal grains (Slavin, 

2003), dietary strategies promoting gastrointestinal health are becoming more popular. 

Feeding diets based on corn, wheat or barley as carbohydrate source alters gut microbial 

population composition (Hill et al., 2005). These enteric bacteria play an important role 

in modifying the structure, biochemistry and physiology of the gastrointestinal tract of 

the host. Gastrointestinal tract morphology and physiology are altered by enteric bacteria 

which in turn could affect the digestion and absorption of nutrients as well as host 

defenses against pathogens.  

Another factor generating increased interest in the role of the commensal 

gastrointestinal microbiota in livestock health and performance is consumer concern 

regarding antibiotic resistance in zoonotic pathogens arising from sub-therapeutic use of 

antibiotics (Ratcliff, 2000). Since the growth promotion associated with sub-therapeutic 

antibiotic use has at least in part been attributed to modification of the gastrointestinal 

microbial composition, efforts in search of alternatives to antibiotics have considered 

alternative means of modifying intestinal microbial composition. While these efforts have 

been limited by a lack (but improving) of understanding of the desirable characteristics of 

a health/growth-promoting intestinal microbiota, approaches have included management 

practices, feed ingredient selection, prebiotics and probiotics.   

Methionine is supplemented as DL-methionine (DL-MET) or methionine 

hydroxy-analogue - free acid (MHA-FA), chemically identified as DL-2-hydroxy-4-
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methylthiobutanoic acid  in pig diets. A significant amount of literature has demonstrated 

that DL-MHA-FA has lower bioefficacy as a methionine source than DL-MET (Jansman 

et al., 2003). Various mechanisms might be responsible for this reduced bioefficacy 

including variation in efficiency of intestinal transport, conversion of MHA-FA to 

methionine and metabolism by intestinal microbiota. In chickens, there is evidence that 

intestinal bacteria metabolize MHA-FA making it less available to the bird (Drew et al., 

2003). However, there is no direct evidence to support this in the pig where 

gastrointestinal physiology, digesta passage and microbial populations are considerably 

different than in chicken.   

 Availability of a gnotobiotic pig model in our laboratory provides us a unique 

opportunity to study the interactions of dietary components, intestinal microbial 

composition and host physiology.  Earlier work has reported that early colonizing 

commensal bacteria differentially affect digestive function of the host and the 

proliferative and apoptotic activity which was associated with the induced expression of 

antinflammatory cytokine and death ligands (Shirkey et al., 2006; Willing and Van 

Kessel, 2007). Inclusion of fibre in diet produces changes in intestinal physiology and 

digestion of nutrients (Wenk, 2001). Furthermore, studies in other laboratories have 

suggested that physiological responses to dietary fibre are mediated indirectly by gut 

microbiota (Komai et al., 1982; Sakata, 1986). With this background, this thesis was 

developed based on the exploration of two hypotheses. Firstly, we hypothesized that 

intestinal microbial metabolism contributes to variation in bioavailability of methionine 

sources in the pig. Secondly, we hypothesized that cereal grain type differentially affects 
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gastrointestinal physiology and that these effects are mediated by changes in gut 

microbiota.  

 To test these hypotheses we provided gnotobiotic and conventional pigs diets 

based on corn or wheat and barley. Furthermore diets were supplemented with one of two 

methionine sources, DL-methionine and DL-MHA-FA.  Research objectives included the 

determination of the effects of cereal type and microbial status on apparent retention of 

the two methionine sources in intestinal contents and determination of the effect cereal 

type and microbial status on digesta flow, intestinal physiology and mucin dynamics. 
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2.0. LITERATURE REVIEW 

2.1. Composition of feed ingredients 

Cereal grains and their by-products are the major feed ingredients in pig diets 

worldwide (FAO, 2001). However, the cereal sources used vary from region to region 

which influences the carbohydrate fraction of feed (Bach Knudsen, 1997). Carbohydrates 

are the main constituents of plant ingredients with starch as the major carbohydrate. The 

non-starch carbohydrates (NSC)/nondigestible carbohydrates (NDC) include non-starch 

polysaccharides (NSP) and other carbohydrates such as pectins and glycoproteins that 

make up plant cell walls. These polysaccharides are indigestible by vertebrate enzymes 

and are the major constituents of dietary fibre. Waxes, cutin, lignin and even resistant 

starch are also considered to be a component of dietary fibre (Theander and Aman, 1979) 

while others also include phenolic esters, proteins and gums from feed additives 

(Selvendran, 1984). 

Despite extensive research on the significance of dietary fibre (DF) in monogastric 

nutrition over the last quarter of the 20th century, no universal agreement over the 

definition of DF has been reached (De Vries et al., 1999). In terms of practical 

application of dietary fibre concept in animal nutrition, the physiological definition of 

dietary fibre by Theander and Aman (1979) seems to be the most appropriate. Theander 

and Aman (1979) define DF as ‘a group of polysaccharides and other polymers in plant 

material in the diet which are neither digested by normal secretions nor absorbed in the 

upper gastrointestinal tract’. So accordingly, the carbohydrate constituents of DF are the 

cell wall non digestible carbohydrates which include cellulose, hemicelllulose, pectic 

substances and also other non-structural plant substances (Baker et al., 1979). The term 
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non-starch polysaccharide (NSP) covers a large variety of polysaccharide molecules 

excluding starch. The NSPs fall into three main groups including cellulose, non-cellulosic 

polymers and pectic polysaccharides (Bailey, 1973). Of all the dietary plant 

polysaccharides ingested by vertebrate animals only starch can be digested by host 

enzymes. A substantial portion of this escapes small intestinal digestion and enters the 

large intestine where it undergoes bacterial fermentation.  

 

2.1.1. Chemical structure of dietary fibre components in cereal grains 

 Polysaccharides are polymers of 11 or more monosaccharides joined through 

glycosidic linkages (Theander et al., 1989). The monosaccharides commonly present in 

cereal cell walls are five carbon sugars (pentoses) such as L-arabinose and D-xylose and 

six carbon sugars (hexoses) as D-glucose, D-galactose and D-mannose. The acidic sugars 

are D-galacturonic acid, D-glucuronic acid and its 4-O-methyl ether. These have a 

carboxyl group on C-5 of the ring structure. The deoxyhexoses are rhamnose and fucose 

with a methyl group on C-5.  

The main polysaccharides of plant cell walls are cellulose, arabinoxylans, mixed 

linked β-(1-3) (1-4)-D-glucans, xyloglucans and rhamnogalacturonans (Selvendran, 

1984).  The NSP in cereal grains are composed predominantly of arabinoxylans 

(pentosans) and beta-glucans which form an amorphous matrix around cellulose 

microfibrils closely associated with glucomannans (Selvendran, 1984). Pectic 

polysaccharides represent a complex group of polysaccharides in which D-galacturonic 

acid is a major component with small amounts of sugars along with some uronic acids as 

methyl esters. Only small amounts of pectic polysaccharides are found in the stem and 
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leaves of cereal grains. Lignin is a polymer of phenyl propane and is not digested in the 

gastrointestinal tract. The relative proportion of NSP content varies in different cereal 

ingredients (Table 2.1). Corn and sorghum contain very low levels of NSP, whereas 

wheat, rye and triticale contain substantial amounts of both soluble and insoluble NSP. 

The main soluble NSP in these grains are arabinoxylans, whereas barley and oats have 

mostly β-glucans. In barley, β-(1-3), (1-4) glucans make up 30-60g/kg DM (Fincher and 

Stone, 1986). In rye, arabinoxylans are present at around 100g/kg (Chesson, 1995). In 

wheat arabinoxylans are largely located in the cell walls of aleurone layer and are present 

around 50-80 g/kg (Posner, 2000). Arabinoxylans in corn vary from 43-66g/kg, mostly 

present in bran and are largely insoluble (Choct and Annison, 1990). 
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Table 2.1. The types and concentration (g/kg dry matter) of polysaccharides, fibrous 

components and lignin in some cereal grains1 

 

 Wheat Barley Corn Soybean 

meal 

Oats Triticale Rye 

Starch 651 587 690 27 468 na 613 

Cellulose 20 43 22 62 82 25 16 

NCP2 

Soluble 

Insoluble 

 

25 

74 

 

56 

88 

 

9 

66 

 

63 

92 

 

40 

110 

na4  

42 

94 

Arabinoxylans 81 79 52 na na 108 89 

b-glucans 8 43 na na na 17 20 

T-NSP3 119 187 97 217 232 na 152 

Lignin 19 35 11 16 66 na 21 

Dietary fibre 138 222 na 233 298 na 174 

1Adapted from Choct (1997) and Chesson (1995) 

2Non cellulose polysaccharides 

3Total Non-starch polysaccharides 

4Not available 
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 2.2. Physico-chemical properties of cereal fibre components and implications 

The physical and chemical associations of fibre components with non-

carbohydrate fractions in plant cell wall have a large influence on the use of plant sources 

as an animal feed ingredient. These associations can influence the physico-chemical 

properties of dietary fibre components and consequently their action in the 

gastrointestinal tract of pigs affecting availability of nutrients to the animal.zzz 

 

2.2.1. Physical properties 

Different dietary fibre compounds have different chemical composition and 

thereby have special physical properties that affect the efficiency of digestive functions in 

different ways (Bach Knudsen, 2001). The major physico-chemical properties of dietary 

fibre are the cation exchange capacity, hydration properties, viscosity and organic 

compound absorptive properties (Bach Knudsen, 2001).  

Water holding/binding capacity (WHC/WBC) reflects the ability of a fibre source 

to incorporate water in its matrix. It is determined by the structure of the molecules, pH 

and electrolyte concentration of the surrounding fluid. The majority of polysaccharides 

form viscous solutions when dissolved in water (Morris, 1992). The viscosity is 

dependent on the molecular weight and concentration of the polymer. Branched structure 

of arabinoxylans allows them to absorb water and form viscous solutions in digesta of 

poultry (Chesson, 1995) and pigs (Johansen, 1996). The solubility of NSP also affects the 

physical properties and thereby has physiological significance. With high soluble fibre in 

diet, the viscosity of digesta is increased and pH is stabilized at low levels (Wenk C, 

2001).  
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2.2.2. Digesta transit 

High fibre content of digesta is thought to increase peristaltic action and therefore, 

reduces the passage time in the small and large intestine giving lesser time for absorption 

of nutrients. However different studies reported variable effects of fibre on digesta 

passage rate. High soluble fibre content in the diet will cause more water binding thus 

increasing volume of digesta thereby reducing transit time in stomach (Wenk, 2001). 

Jorgenson et al., (1996) reported that pigs fed high dietary fibre had a five to six fold 

increase in the flow rate of digesta through the terminal ileum. In another study, both 

guar gum and cellulose were found to reduce digesta passage rate in growing pigs 

(Owusu-Asiedu et al., 2006). Wilfart et al., (2007) reported no influence of wheat bran 

content of diet on gastric emptying, however, decreased mean retention time of solid 

phase in the small intestine was observed. 

 Transit in the hindgut is generally reported to be increased by dietary fibre 

content (Wenk, 2001). Another study in pigs found that dietary NSP stimulate digesta 

passage through the GIT especially the large intestine (Van Leeuwen and Jansman, 

2007). Le Goff et al., (2002) suggested that fibre supplementation exerts a direct physical 

action in the hind gut of pigs stimulating propulsive colonic motility due to greater bulk 

of digesta. Fukomoto et al., (2003) reported that SCFAs stimulate colonic transit in rats.  
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2.2.3. Nutritional influences 

Increased viscosity of digesta associated with soluble NSP in the diet has been 

shown to decrease digestibility of starch, fat and proteins in broiler chickens (Smits and 

Annison, 1996) and to affect energy value of cereal grains in pigs (Bach Knudsen and 

Hansen, 1991). Also s reduction of protein, amino acids and mineral digestion occurs 

when fibre is added to diet of pigs (Eggum, 1995). High gut viscosity decreases rate of 

diffusion of substrates and digestive enzymes hindering their effective interaction at the 

mucosal surface in rats (Ikegami et al., 1990). Furthermore, soluble NSPs may interact 

with glycocalyx of the intestinal brush border and thicken the rate-limiting unstirred 

water layer of the mucosa (Johnson and Gee, 1981). Soluble NSPs also change gut 

functions by modifying endogenous secretions of water, proteins, electrolytes and lipids 

(Angkanaporn et al.,1994) and increasing digestive secretions in pigs (Dierick et al., 

1989).  

NSP can also bind nutrients and digestive enzymes and some regulatory proteins 

in the gut. In addition, certain NSP can bind bile salts, lipids and cholesterol (Vahouny et 

al., 1981) causing their continuous drainage from the intestine. These effects could lead 

to major changes in the digestive and absorptive dynamics of the gut leading to poor 

nutrient assimilation by the animal. 

An increased intake of dietary fibre could reduce total tract digestibility and leads 

to increased proportion of energy being digested in the large intestine (Jorgenson et al., 

1996; Just et al., 1983). This leads to less energy being absorbed as monosaccharides 

from the small intestine and more energy being provided as SCFA and lactic acids. 
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2.2.4. Physiological implications  

Major effects of NSP are linked with the viscous nature of polysaccharides. These 

effects are mediated by altered ingesta passage rate, interaction with gut microbiota, 

modification of intestinal mucosa and changes in hormonal regulation due to altered rate 

of nutrient absorption (Vahouny, 1982). 

Feeding diets high in fibre have been shown to alter intestinal morphology in 

chickens (Langhout, 1998; Iji et al., 2001), rats (Southon et al., 1985) and humans 

(Malkki and Virtanen, 2001). High fibre diets have also been shown to cause hypertrophy 

of gastrointestinal tract in pigs (Anugwa et al., 1989 and McDonald et al., 2001). Jin et 

al., (1994) reported that feeding diets containing high levels of insoluble fibre such as 

wheat straw increased cell proliferation in intestinal crypts of the jejunum and colon and 

increased epithelial cell death rate in jejunum and ileum of growing pigs. McCullough et 

al., (1998) reported that feeding a diet containing a mixture of fermentable dietary fibre 

sources to rats enhanced crypt fusion in the proximal colon. Any change in quantity and 

quality of mucus secretion may have important physiological implications (Rhodes, 

1989). It was shown that neutral, acidic and sulphated mucins vary widely in various 

diseases in man (Smith and Podolsky, 1986). Cassidy et al., (1990) reported an increase 

in sulphomucins and total mucins in small intestine and colon of conventional rats fed 

with many soluble or insoluble dietary fibres postulating that the changes in mucin 

composition contributed to protective effects of dietary fibre in the incidence of colon 

cancer. Dietary supplementation with fibre is reported to increase the secretory activity of 

goblet cells in rats (Vahouny et al., 1985; Satchithanandam et al., 1990 and 

Satchithanandam et al., 1996). Increased turnover of jejunal mucins was observed in pigs 
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fed diets based on fibre (More et al., 1987). Satchithanandam et al., (1996) observed that 

addition of 5% citrus fibre in diet of rats caused increased concentration of luminal mucin 

in the stomach (3.5 fold) and small intestine (2-fold). Increased number of mucous cells 

was reported in small and large intestine of rats fed fermentable fibre (McCullough et al., 

1998). Christelle Piel et al., (2005) reported 30% increase in the total number of goblet 

cells/villus and 56% higher crude mucin output in piglets fed carboxymethyl cellulose 

(CMC) at 40 g/kg compared to cellulose based control diet. 

Apart from age and diet, microbial flora is known to affect the chemical 

composition of intestinal mucins. Sharma and Schumacher (1995) observed differences 

in the relative proportion of acidic and neutral mucins in the goblet cells of rats fed 

different diets. Germ-free rats fed diets based on cereal fibre showed neutral mucins 

predominantly. Surface mucus staining was more intense in conventional than germ-free 

rats. Fontaine et al., (1996) reported that germ-free rats fed a diet supplemented with 

inulin at 100 g/kg had increased amount of neutral mucins in caecal content and higher 

sulfated mucins in the colonic contents. It also increased neutral mucins and 

sulphomucins in caecal mucosa and decreased the amount of sialomucins. In heteroxenic 

rats having human flora, inulin decreased acidic mucins and increased sulphated mucins 

in caecal contents and mucosa. Kleesen et al., (2003) demonstrated that both intestinal 

bacteria and diet have an influence on mucin composition of epithelial mucous layer. 

Bacterial association of germ-free rats elevated acidic mucins in their colon. Among the 

microbiota associated groups, the group fed fructan-inulin based diet had sulfomucins 

predominantly compared to sialomucins in commercial diet fed group. Bacterial 
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colonization of germ-free rats also caused an increase in neutral mucin in distal jejunum 

and colon.  

 

2.3. Fermentative properties of dietary fibre 

Diet is one of the most influential environmental factors affecting the GIT 

microbiota. The chemical composition of digesta as determined by the chemical 

composition of the diet is one of the major determinants of the makeup of GIT microbiota 

(Apajalahti and Bedford, 2000). Microbial density increases to 108-109/gm of digesta in 

distal small intestine presumably due to slow passage rate and large amount of digesta 

(Jensen and Jorgensen, 1994). This microbiota is responsible for digestion of a substantial 

portion of NSP (Fadel et al., 1989). The slower passage rate of digesta in large intestine 

creates an ideal physico-chemical environment with beneficial pH, temperature and 

humidity for bacterial proliferation and fermentation. Several studies report that 

nondigestible nutrients such as soluble dietary fibres, resistant carbohydrates (starch) and 

resistant protein modify the gastrointestinal physiology, mainly through fermentation in 

the large bowel (Campbell et al.,, 1997 and Roberfroid and Delzenne, 1998). Short chain 

fatty acids have been proposed to be the mediators of the systemic effects of such 

nutrients.  There is not much information available on the involvement of other 
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fermentation/metabolic products, namely polyamines and bioactive peptides in the 

physiological effects of nondigestible carbohydrates.  

 

2.3.1 Digestion of dietary fibre 

Cereal dietary fibrous components can not be digested by host digestive enzymes. 

The enzyme activities in the small intestine are specific for α-linked units and are inactive 

against β-linked glucose polymers in dietary fibre (Chesson, 1987). However, proximal 

small intestine has some fibre degrading bacteria which can disrupt cell walls (Graham et 

al., 1986) potentially affecting digestibility of nutrients. Apparent digestibility of fibrous 

components in swine diets is quite variable and may range from 0 to 97% (Rerat, 1978). 

Digestion of DF is commonly believed to occur primarily in the large intestine yet 10-

62% of NSP disappear in upper intestine (Fadel et al., 1989) suggesting considerable 

small intestinal bacteria-mediated digestion. In the large intestine, digestion is 

accomplished either by enzymes from small intestine or by microbial fermentation. The 

main sites for DF degradation are the caecum and proximal colon (Gdala et al., 1997 and 

Glitso et al., 1998). Depending on the origin, dietary fibre is digested to various degrees. 

The amount of cereal NSP reported to be digested in the large intestine varies from 48-

95% (Bach Knudsen et al., 1993; Gdala et al., 1997, Jorgensen et al., 1996). Total tract 

cereal cellulose digestibility varies from 2-84% depending on its source (Bach Knudsen, 

2001). Pectic substances and hemicellulose are digested to a greater extent than cellulose. 

β-glucans appear to be completely digested in the gastrointestinal tract (Bach Knudsen et 

al., 1993b). This is because of partial depolymerisation of β-glucans making those readily 

available sources for microbiota in the large intestine (Johansen et al., 1997). For soluble 
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NSP, swelling and high WBC cause increased surface area for microbial action 

encouraging degradation. Cereal diets containing linear and relatively soluble β-glucans 

show higher digestibility in the range of 17-73 % in oats (Bach Knudsen et al., 1993a, b) 

and 70%-97% in barley (Graham et al., 1986, 1989). Branched chain arabinoxylans from 

wheat, rye and oats have digestibility values ranging from 8% to 19% in wheat, oat or rye 

products (Bach Knudsen et al., 1991 and Glitso et al., 1998).  

 

2.3.2. Bacterial fermentation products 

The main end products of microbial fermentation are lactic acid, short chain fatty 

acids and various gases (hydrogen, carbon dioxide and methane) (Bach Knudsen et al., 

1991). Organic acids are well known examples of luminal factors that affect gut 

functions. The SCFAs are absorbed in the large intestine and contribute to the energy 

supply of the pig (Fonty and Gouet, 1989). The three major SCFA produced in the colon 

are acetate, propionate and butyrate. The SCFAs are absorbed rapidly by passive 

diffusion in the caecum and colon as suggested by decreasing SCFA concentration from 

the caecum and proximal colon to the distal colon in pigs (Bach Knudsen et al., 1991; 

Ruppin et al., 1980). Individual SCFAs are ultimately taken up by different organs and 

have different metabolic fates. Acetate is carried to the liver and then taken up by 

peripheral tissues such as skeletal and cardiac muscles (Cummings and Farlane, 1997) 

and can also be used by adipocytes for lipogenesis (Bergman, 1990). Butyrate is used 

primarily by colonic epithelium which derives 60-70% of its energy from butyrate 

(Roediger, 1980; 1982; Rerat et al., 1987). Propionate is transported to liver, converted to 

glucose for gluconeogenesis in ruminants (Bergman, 1966) but not much is known about 
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its role in other species. The mean supply of net energy from SCFA to net energy for 

maintenance is about 15-24% for growing and finishing pigs (Dierick et al., 1989 and 

McBurney and Sauer, 1993) and 5-10% for man (Nordgaard et al., 1995). 

Apart from nutritional value, SCFAs have important effects on other aspects of 

gut physiology. SCFA, particularly butyrate, have been implicated to have a role in 

human and animal health (Skata and Inagaki, 2001). SCFAs also stimulate epithelial cell 

proliferation and differentiation (Skata, 1987 and Kripke et al., 1989). Epithelial cell 

proliferation was found to be less active in small and large intestine of germ-free rats than 

in conventional animals (Komai et al., 1982 and Sakata, 1987). Absence of intestinal 

proliferation in germ-free rats fed diets supplemented with fibre has shown the 

importance of intestinal microbiota in intestinal proliferation (Komai et al., 1982; 

Goodlad et al., 1989). Use of non-fermentable dietary bulk (Kaolin) neither stimulates 

epithelium nor modifies the effect of SCFA (Sakata, 1986) suggesting that it is not likely 

that physical abrasion stimulates epithelial proliferation. However, in one study, addition 

of high viscosity non fermentable carboxymethyl cellulose (CMC) at 40 g/kg air dried 

diet; 400-800mPa/s for a solution of 20g/l) to cooked rice diet for weanling piglets led to 

decreased villus length and increased crypt depth (McDonald et al., 2001). SCFAs are the 

predominant anions in the colon and stimulate the resorption of water and sodium (Hume, 

1997). In an acidic environment these are capable of inhibiting the growth of some 

intestinal bacterial pathogens such as Escherichia coli, Clostridium difficile in pigs 

(Prohaska, 1986; May et al., 1994). Systemic SCFAs have also been reported to increase 

plasma GLP-2, mRNA abundance of ileal proglucagon, GLUT2, SGLT-1 and increased 

expression of early response genes involved in the control of the cell cycle and 
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proliferation (Tappenden et al., 1997 and Tappenden and McBurney, 1998). Short chain 

fatty acids have also been looked into for their role in influencing gene expression in 

human colonocytes (Basson et al., 2000).  

 

2.3.3 Possible influences on microbiota 

One of the most important factors influencing microbial population and activity in 

the gastrointestinal tract is the type diet including its structural composition, solubility 

(Hogberg and Lindberg, 2004) and amount of substrate available (McFarlane and 

Cummings, 1991). Source of dietary fibre influences the digestion site, gut environment 

and thereby conditions for the proliferation of microbes in the gastro-intestinal tract 

(Hogberg and Lindberg, 2004). Cereal grain fibre components are important energy 

substrates for microbes. Inclusion of these in the diet shifts the enzymatic digestion of α-

glycosidic linkages in the small intestine to β-glycosidic linkages fermentation by 

microbiota in the large intestine (Chesson, 1987; Bach Knudsen and Jensen, 1991). 

Feeding a high fibre diet containing wheat bran (102g NSP/kg feed) or oat bran 

(93gNSP/kg feed) to pigs increased the microbial activity in GIT by 5.5 times as 

measured by ATP concentration (Jorgenson and Just, 1988). The maximum microbial 

activity was observed at the end of the caecum or in the proximal part of the small 

intestine compared to the end of the small intestine in low fibre diet fed pigs. Increased 

(5-9 times) carbon dioxide and methane production in GIT of pigs fed high fibre diet also 

reflected increased microbial activity. Jensen and Jorgenson (1994) observed greater 

microbial activity in the stomach, last third of small intestine, caecum and proximal colon 

based on higher bacterial counts, ATP concentration, adenylate energy charge and low 
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pH in pigs fed pea fibre and pectin.  Increased numbers of cellulolytic bacteria were 

found in the colon of growing pigs and adult animals by prolonged feeding of high fibre 

diets (Varel, 1987).  

Higher (2-3 log) anaerobic microbial counts were reported in the ileum of birds 

fed rye or pectin enriched diets compared to corn-soy diets (Wagner and Thomas, 1978). 

Varel et al., (1982) observed an initial suppression of gastrointestinal tract microbiota in 

pigs when exposed to high-fibre diet (50% alfalfa meal). However, after prolonged 

feeding (17 weeks) total bacterial counts as well as the number of cellulolytic bacteria 

increased significantly in lean genotype pigs. Pigs fed diets based on cooked white rice 

and different carbohydrate sources showed different ATP concentration in the digesta 

(Pluske et al., 1998). The pigs fed diets containing sources of resistant starch and guar 

gum+ starch had higher conc. of ATP in the caeca than pigs fed all other diets.  

There are few studies studying the effects of various dietary cereals on the 

gastrointestinal microbiota composition in pigs. Drew et al., (2002) studied the influence 

of feeding diets based on corn, wheat or barley as main carbohydrate source to weaned 

pigs and reported that the bacterial populations were significantly related with ADF and 

NDF contents of the diets. In ileum, the barley based diet lowered the number of 

Enterobacteria and increased Lactobacilli compared to the corn diet. The wheat diet also 

increased the number of Lactobacillus spp. In the caecum barley based diet increased 

number of total anaerobes, Lactobacillus spp. and Bifidobacterium spp. compared to the 

corn diet. The wheat diet increased the number of Bifidobacterium spp. and decreased 

total aerobes and Clostridium spp. compared to barley diets. This variation in bacterial 

composition with different cereal grains in diet was further confirmed using a 
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chaperonin-60 based phylotype profiling of intestinal contents and quantitative PCR (Hill 

et al., 2005). 

Increased bacterial counts were observed except for Bifidobacteria spp. in grower 

pigs fed diets containing high NSP (Owusu-Asiedu et al., 2004). Lactobacilli, 

Bifidobacteria, Clostridia, Streptococcus and Enterobacteria counts were highest for pigs 

fed 14% NSP (7% guar-gum+ 7% cellulose). 

 

2.4. Microbiota and its significance to host physiology 

 The gastrointestinal tract is inhabited by the largest, most complex and dynamic 

collection of microorganisms in nature. In fact, the prokaryotic cells in the body 

outnumber human cells by a factor of 10 (Savage, 1977). Microbial densities in the 

proximal and middle small intestine are relatively low but increase drastically in the 

distal small intestine (108 bacteria/ml of luminal content) and colon (1011-12/g) (Savage, 

1977; Swords et al., 1993) and comprise an estimated > 500 different bacterial species 

(Moore et al., 1987; Hill et al., 2002 and Leser et al., 2002). The intestinal ecosystem is 

shaped by the interactions between its microbes, intestinal epithelium, mucosal immune 

system, microvasculature and enteric nervous system (Gordon et al., 1997). Host-

bacterial interactions play an important role in modifying the structure, chemistry and 

physiology of the GIT (Hooper and Gordon, 2001). The gut microbiota provides the host 

with nutritional, proliferative and protective benefits. But all these benefits have a cost 

involved with them in form of competing for nutrients, generating toxic compounds, 

increasing host maintenance requirements due to altered morphology and stimulating 

intestinal inflammatory responses. 
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2.4.1 Microbial contributions to the host 

Commensal/symbiotic relationships of host and bacteria are based on metabolic 

capabilities of one or both partners to exploit an otherwise unavailable nutrient. Two 

complimentary mechanisms seem to work for benefiting the host. Commensal microbiota 

is responsible for metabolizing dietary substances to nutrients that can be absorbed and 

utilized by the host. Also the presence of microbes can alter the intrinsic metabolic 

activities of host cells resulting in more efficient nutrient absorption and assimilation 

(Hooper et al., 2002). 

Mammals are well equipped to absorb monosaccharides and hydrolyze certain 

disaccharides and starch, but are limited in their ability to hydrolyze and utilize other 

polysaccharides. Carbohydrates represent the biggest fraction accounting typically for  

300-500g/kg of dry solid passing from the small to the large intestine. The most active 

sites for dietary carbohydrate digestion are the caecum and proximal colon (Canibe and 

Bach Knudsen, 1997; Glitso et al., 1998). Because of the anaerobic environment, carbon 

and monosaccharides released from carbohydrate polymers are converted to pyruvate via 

glycolysis resulting in net production of ATP. The prominent end products of bacterial 

fermentation in the gut are short chain fatty acids.  

Gut commensals protect the host from pathogens by suppressing colonization by 

newly entering bacteria and pathogenic microbiota (Van der Waaij et al., 1971). The 

phenomenon of competitive exclusion works as commensals compete for epithelial 

adhesion sites, nutrients, stimulate immune system and intestinal motility, secrete anti-

microbial compounds such as organic acids (Ewing and Cole, 1994; Kelly and King, 
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2001). Commensal bacteria can also inhibit inflammation (Kelly et al., 2004), which may 

be protective to the host as excessive inflammation can lead to disruption of the epithelial 

barrier.    

Gastrointestinal microbiota also contribute to amino acid homeostasis particularly 

in ruminants (Virtanen, 1966). In humans 1-20% of circulating plasma lysine and 

threonine may be derived from intestinal microbiota (Metges et al., 2000). Pigs have also 

been shown to absorb some of the amino acids synthesized by their microbiota 

(Torrallardona et al., 2003). High concentrations of urea are found in the colon of germ-

free rats indicating microbial role in nitrogen recycling in the gut (Moreau et al., 1976) as 

urea is hydrolysed to ammonia by the intestinal microbiota. Yamanaka et al., (1974) 

examined effects of mono-association of mice on protein digestion and retention. 

Colonization with a Staphylococcus sp. caused the host to increase nitrogen retention. 

Colonization with other species like Bacteroides sp, E coli, Lactobacillus sp, 

Staphylocccus epidimis or St. faecalis had no effect on nitrogen retention.  

Synthesis of vitamins by gut microbes has been known for many years. Germ-free 

rodents need vitamin K in their diets as compared to conventionally raised (Wostmann, 

1981). Also some germ-free animals require higher amounts of vitamin B (example B12, 

biotin, folic acid and pantothenic acid) as compared to conventional animals (Sumi et al., 

1977). 

Microbial induction of intestinal genes that facilitate the recovery of nutrients has 

been shown by Bacteroides thetaiotaomicron colonization of germ-free mice. This 

monoassociation produced changes in expression of a number of host genes involved in 

the processing and absorption of carbohydrates e.g. increased ileal expression of 
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Na+/glucose co-transporter (Hedeger et al., 1987). There was concerted increase in 

different proteins/factors involved in host’s lipid absorption (Lowe et al., 1998). This also 

changed the expression of genes involved in regulated absorption of dietary metal ions 

(Hooper et al., 2001). 

 

2.4.2 Nutrient digestion, absorption and bioavailability 

Absorption of nutrients from the small intestine in essence depends on the 

functional capabilities of intestinal mucosa as a whole and of individual enterocytes and 

the conditions in the lumen. Gut commensals have direct as well as indirect effects on the 

activity of digestive enzymes (Corring et al., 1981). The direct effects include microbial 

synthesis of enzymes that are comparable to enzymes of host resulting in increased total 

enzyme activity. Microbial synthesis of enzymes not produced by host, such as cellulase, 

improves the nutrient utilization by the host (Cranwell, 1968). The microbiota may 

indirectly influence host enzymatic activity through changes in luminal PH, alteration of 

secretory and absorptive functions and changes in intestinal epithelial cell renewal rates 

(Bruckner and Szabo, 1984). Recently, in the gnotobiotic pig, bacteria have been shown 

to affect expression of digestive enzymes in a manner anti-parallel to changes in specific 

activity (Willing and Van Kessel, 2008).  

Total enzyme activity could also decrease due to splitting or inhibition of host 

enzymes by microbiota. The microbiota apparently does not affect the concentration and 

secretion of pancreatic enzymes including trypsinogen, chymotrypsinogen, amylase, 

lipase, elastase and carboxypeptidase A and B (Bruckner and Szabo, 1984). But these 

enzymes undergo a progressive microbial inactivation. As the bacterial density increases 
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from small intestine to large intestine in the conventional animal, host intestinal 

enzymatic activity decreases accordingly (Reddy et al., 1969).  Luminal peptidase and 

disaccharidase (except lactase) activity has been found to decrease progressively from 

small intestine to caecum and colon in conventional pigs, rats and chickens. Whereas, in 

germ-free animals, activities of these enzymes in lumen of large intestine were similar to 

those found in small intestine (Corring et al., 1981). In contrast pancreatic lipase activity 

appears to be identical in germ-free and conventional animals (Reddy et al., 1969).  

There are also inconclusive reports of increased peptidases and disaccharidases 

activity in small intestinal epithelial cells of germ-free rats and piglets (Bruckner and 

Sazbo, 1984). In germ-free animals slower epithelial renewal results in more mature 

epithelial cells with better developed brush borders which may result in increased 

concentration and activity of brush border enzymes including lactase, maltase, sucrase 

and alkaline phosphatase (Wostmann, 1981).  

Many in vitro absorption studies indicated that absorption of some nutrients was 

impaired by the presence of microorganisms (Heneghan, 1963). The passive or carrier-

facilitated transport appeared to be greater in a germ-free gut (Heneghan, 1984). Presence 

of longer villi and slower intestinal propulsion in germ-free animals may enhance 

absorption. Generally, ATP-driven active absorption seem to be unaffected by 

microbiota. Yokota and Coates (1982) investigated the effects of intestinal bacteria on 

nutrients uptake in in vivo chicken jejunal loop model. Germ-free, conventional and 

monoassociated chicks (Streptococcus faecium) were compared for their ability to absorb 

L-[3H]-methionine and D-[14C]-glucose. Uptake of both nutrients/g of intestinal tissue 
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was less in conventional and mono-associated groups compared to germ-free chicks but 

no differences were detected when uptake was expressed per unit length of intestine.  

Microbes can hydrolyse conjugated bile salts in the intestine and hydroxylate 

primary bile acids (Andrieaux et al., 1989). This microbial metabolism of bile acids was 

reported to impair the host’s ability to absorb lipids and could modulate the absorption 

rate of fat soluble compounds. The microbiota not only affects the absorption of fatty 

acids but also the type of dietary and endogenous fatty acids excreted in faeces (Bruckner 

and Szabo, 1984). 

Several observations have suggested that gut microbiota could be affecting 

nutrient bioavailability by affecting enzymatic digestion and absorption by intestinal 

mucosa. Intestinal bacteria are capable of hydrogenating unsaturated fatty acids thereby, 

may decrease intestinal fat absorption. Cobb et al., (1991) examined the role of gut 

microbiota in ascorbic acid catabolism using conventional and germ-free guinea pigs and 

reported that hepatic decarboxylation and gut microbiota, in tandem contributed to 

ascorbic acid decarboxylation. Grolier et al., (1998) observed that the bioavailability of 

both α and β-carotene was improved when the intestinal microbiota was absent or 

partially destroyed in rats. The bioavailability of chlorogenic acid, a polyphenol in human 

diets with antioxidant and anticarcinogenic properties, was shown to depend largely on 

its metabolism by the gut microbiota (Gonthier et al., 2003).  

Several studies have tried to determine the effect of microbiota on host’s protein 

status. The results have consistently indicated that the digestion of protein in the small 

intestine of germ-free and conventional animals is very similar but there are significant 

differences in the lower bowel (Bruckner and Szabo, 1984). Increased concentration of 
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urea, amino acids, mucoproteins and peptides were observed in caecal contents of germ-

free rats and chickens compared to conventional counterparts (Bruckner and Szabo, 

1984). This was suggested to be due to production of microbial proteolytic enzymes 

resulting in an increase in the host’s ability to utilize undigested feed residues and 

endogenous nitrogenous compounds. Microbiota could utilize nitrogen available in form 

of dietary amino acids, endogenous amino acids, and urea and also from non-protein-

nitrogenous compounds like urea, purines, pyrimidines, polyamines and amino sugars 

etc. The contribution of each of these sources to microbial protein is not clear. Depending 

on the maximum contribution from dietary amino acids or urea and other non-protein 

nitrogen compounds, microbial de novo amino acid synthesis could be deleterious or 

beneficial to the host (Fuller, 1998). 

Also the GIT microbiota competes with host enzymes for substrates. Non protein 

nitrogen compounds are degraded and incorporated into bacterial protein (Braun and 

Campbell, 1989; Mead, 1989). Earlier studies compared absorption of MET and MHA-

FA (Figure 2.1) in conventional chicken by determining the amount of each compound 

remaining in digesta following intestinal passage. 
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Figure 2.1. Structure of methionine and methionine hydroxy-analogue 
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It was reported that about 2.8% of MET and 9.2% of MHA-FA remained in the 

digesta after intestinal passage (Rostagno and Barbosa, 1995). This approach, however, 

did not account for possible conversion of MET and MHA-FA to other compounds by 

bacterial metabolism resulting in an overestimate of absorption. Other studies in chickens 

(Esteve Garcia and Austic 1993; Lingens and Molnar, 1996; Maenz and Engele Schaan, 

1996a) used radiolabelled MET and MHA-FA to overcome this problem and reported 

that 10-20% of the original radiolabelled MHA-FA activity in the feed was present in the 

distal sections of the small intestine compared to 3.5-5% for MET. Drew et al., (2003) 

reported that the competition for nutrients between the host and gut bacteria can have 

significant effect on nutrients availability to the host. It was found that the residual 3H 

activity in ileum of conventional chickens was higher (10-15%) compared to the germ-

free group (4-8%) demonstrating that intestinal bacteria significantly reduce the apparent 

absorption of MHA-FA from the intestinal tract of broiler chickens. 

Liu et al., (2003) reported significant inter- and intra-species differences in the 

metabolism of amino acids by lactic acid bacteria. Some amino acids were utilized, 

whereas others were produced. Some species like Lactobacillus brevis and L. fermentum 

were the most metabolically active whereas Leuconostocs were the least active. In vitro 

bacterial metabolism of methionine and MHA-FA was studied by Hegedus et al., (1993). 

They reported that none of the three lactic acid bacteria they studied (Lactobacillus 

plantarum, L. casei and Leuconostoc mesenteroides) could utilize MHA-FA though all 

could use methionine.  
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2.4.3 Mucus secretion and composition 

Apart from age and diet, presence of gut microbiota also alters the mucin 

secretion and composition. Germ-free rats and new born children were shown to excrete 

large amounts of mucin with faeces as compared to conventional rats and healthy adult 

humans (Carlstedt-Duke et al., 1986). Wostmann (1996) indicated 35-50% more goblet 

cells in germ-free rats, dogs and piglets than their conventional counterparts. Kleesen et 

al., (2003) reported that bacterial association of germ-free rats with Bacteroides vulgatus 

and Bifidobacterium longum or with a human faecal flora and diet based on fructans and 

inulin increased the thickness of epithelial mucous layer (EML) and number of goblet 

cells per crypt in the intestine. 

Gastrointestinal microbiota also alters mucin composition. It is suggested that 

acidic mucins protect against bacterial translocation as are less degraded by bacterial 

glycosidases and host proteases. This idea is supported by findings where intestinal 

regions with high population of microbes express acidic mucins predominantly 

(Roberton, 1997; Amerogenon et al., 1998). In germ-free rodents, increased neutral to 

acidic mucin ratio was observed in the colon (Sharma and Schumacher, 1995; Meslin et 

al., 1999). Also sulfomucins were increased while sialomucins showed a decrease. The 

small intestine of germ-free rats showed fewer sialylated mucins than conventionally 

raised rats on a commercial diet (Sharma and Schumacher, 1995). Heteroxenic rats 

(germ-free rats conventionalized with human microbiota) showed larger number of more 

sulfomucin-containing cells in small intestine and more sialomucin containing cells in the 

large intestine than in germ-free rats. The ability of bacteria to bind mucin carbohydrates 

could avoid their expulsion and these mucus resident microbes prevent pathogenic 
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microbes from colonizing the mucus layer (Deplancke and Gaskins, 2001). Thus it would 

be advantageous for the commensal and pathogenic bacteria to regulate mucus synthesis, 

mucin secretion and composition.  

Mucin molecules consist of a protein core to which various carbohydrate chains 

are attached by glycosidic linkages. In humans, eighteen mucin genes encoding human 

mucin glycoproteins have been assigned to Muc gene family (Moniaux et al., 2001). The 

regulation of goblet cell responses by intestinal signals is not very well understood. Most 

of the information for microbial modulation of mucin secretion comes from in vitro 

studies with pathogens. Cholera-toxin of Vibrio cholerae has been shown to trigger heavy 

mucin release either directly (Epple et al., 1998) or via a cAMP dependent mechanism 

(Lencer et al., 1990). Similar findings were reported with Entamoeba histolytica (Chadee 

and Meerovitch, 1985) and Listeria monocytogenes (Coconnier et al., 1998). Expression 

of non-epithelial mucin genes Muc 2 and Muc 5AC was upregulated in cultured airway 

epithelial cells by exposure to Gram positive (Staphylococcus aureus, St. epidermis and 

Streptococcus pyogenes) and Gram negative (Pseudomonas aeruginosa and E coli 

(Dohrman et al., 1998). Exposure of HT-29 intestinal epithelial cells to an 

enteropathogenic E coli did not alter Muc 2 or 3 gene expression (Mack et al., 1999). 

However, the probiotic strains Lactobacillus plantarum 299v and L. rhamnosus GG 

increased expression of both Muc2 and 3 in HT-29 colon cell culture. Bacteria may also 

inhibit mucus production in the gut. Exposure of human gastric cell line KA-70 III to 

Helicobacter pylori inhibited mucin synthesis and also suppressed expression of Muc1 

and 5AC genes (Byrd et al., 2000). 
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Administration of lipopolysaccharides of indigenous E coli strain to germ-free 

rats caused an increase of colonic neutral mucins (Enss et al., 1996). This concept was 

consistently proved by Bry et al., (1996). They showed that monoassociation of germ-

free mice with common intestinal bacteria Bacteroides thetaitaomicron signalled the host 

epithelial cell to produce fucosylated glycol conjugates on small intestinal epithelial cells. 

Host derived cytokines have also been shown to affect mucin synthesis and secretion. IL-

1 induced rapid mucin release from LS 180 goblet cell lines (Enss et al., 2000). TNF-α 

and IL-6 also increased expression of Muc 2 and Muc 5B and Muc 2, Muc 5B and Muc 

6, respectively. These pro-inflammatory cytokines stimulated the release of less 

glycosylated mucins which might be due to reduced glycosylation in Golgi apparatus 

because of accelerated passage. 

 

2.4.4 Nutrient requirements 

2.4.4.1 Intestinal histology and morphology 

Gastrointestinal tissues represent only approximately 5% of body weight, but 

consume a very high proportion of (~15–35%) of whole-body oxygen consumption and 

protein turnover (Ebner et al., 1994). In conventional animals the normal cell turnover 

rate has been calculated to be about 108 cells/d which varies with patho-physiological 

conditions (Norin and Midtvedt, 2000). The higher rates of cellular metabolism, 

proliferation and renewal of gut tissues explain their large proportional impact on whole 

body metabolism despite being only 3-6% of the body weight. In absence of bacteria, the 

transit time of an epithelial cell from crypt to tip of villus may be increased by a factor of 

two (Abrams et al., 1963). Reduced weight of small intestine and cecum was found in 
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germ-free animals (Gordon et al., 1966), chickens (Reyniers et al., 1960) and pigs 

(Miniats and Valli, 1973), respectively. Furuse and Yokota (1984) reported shorter 

absolute and relative length (length/body weight) of the small intestine of germ-free 

chicks. The difference in weight was largely attributed to thinner intestinal wall and 

reduced lymphoid tissue in lamina propria and reduced submucosal depth (Shurson et al., 

1990). 

Apart from weight, intestinal morphology differs substantially in germ-free 

animals. Bacterial load and the species colonizing the gut affect epithelial cell 

morphology and the rate of turnover in the small intestine in mouse (Khoury et al.,1969) 

and pigs (Kenworthy, 1970), respectively. Because of reduced crypt depth in GF animals, 

the villus height to crypt depth ratio is higher than conventional animals (Wostmann, 

1996). Shirkey et al., (2006) reported conventional pigs to have shorter villi and 

significantly deeper crypts thereby, a significantly lower villus height/ crypt depth 

compared to germ-free pigs. Monoassociated group with Lactobacillus fermentum had a 

villus height/crypt depth closer to GF group and EC group had even less villus height. 

Intestinal mucosa utilizes substantial amounts (40–60%) of dietary amino acids 

(Stoll et al., 1998). This higher rate of amino acid utilization by portal drained viscera 

(PDV) can have a significant impact on systemic availability of amino acids. Recent 

studies have shown that the portal-drained viscera (PDV) largely comprised of 

gastrointestinal tissue, accounts for 25-50% of whole body protein and amino acid 

metabolism (Stoll et al., 1998; Yu et al., 2000). In young pigs, 30-60% of total dietary 

intake of some limiting amino acids such as lysine, threonine and methionine could be 

used by gastrointestinal tissue (Stoll et al., 1998).  
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Commensal microbiota has long been known for its nutritional contributions to 

the host, however, the area studying nutrients utilization by microbes is still in its 

infancy. Based on studies using radiolabelled 14C, Fuller (2003) suggested that less than 

4% of amino acids in ileal digesta are derived from de novo synthesis, the rest coming 

from pre-formed amino acids from diet or endogenous secretions. Due to bacterial 

utilization of dietary amino acids, nitrogen utilization by the host is reduced (March et 

al., 1978 and Furuse and Yokota, 1985). It is becoming increasingly apparent that 

nutritional and gut environment conditions that stimulate bacterial growth or metabolism 

may lead to limited dietary essential amino acid availability for growth. Yu et al., (2000) 

showed that parasitic infection in sheep increased leucine oxidation and utilization by 

PDV tissues, reducing systemic availability of amino acids by 20-30%. Thus, it is highly 

likely that the presence and load of commensals directly affects the intestinal nutrient 

requirements, which in turn limits the availability of dietary nutrients. 

As we know the type of diet fed to the animals influences the population and 

activity of intestinal microbiota (Drew et al., 2002; Hill et al., 2005), this in turn could 

affect the protein digestibility and amino acids availability to the host. Therefore, the diet 

and thereby quantitative and qualitative changes in the gastrointestinal tract are likely to 

play an integral role in overall growth and maintenance of health in pigs. 
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2.4.4.2 Intestinal motility 

Digestibility is influenced by interactions between various processes including 

digesta transit, digestion, absorption and the physico-chemical conditions of gut and feed 

(Wilfart et al., 2007). Many studies have reported slower digesta passage rate through the 

small intestine in germ-free animals. Sacquet et al., (1971) observed a slower small 

intestinal digesta passage rate in germ-free rats but the differences disappeared after 

caecectomy. Abrams and Bishop (1967) established by using a radiolabelled marker that 

the caecum of germ-free mice retained greater % of the marker and the passage of marker 

into faeces was also slower. However, Ford (1971) found no significant differences in the 

transit time of food through gastrointestinal tract in germ-free chicks compared to 

conventional chicks. Germ-free rats were reported to have a slower and restricted spatial 

and temporal transport of migrating motor complexes in small intestine than in 

conventional animals (Falk et al., 1998). Because of slower passage of food in the gut in 

germ-free animals, intestinal digestion has been suggested to be more efficient as the 

enzymes are in contact with food for longer times (Corring et al., 1981). 

 

2.5. Summary 

  The relative bioefficacy value of MHA-FA compared to methionine is subject of 

considerable controversy however there is general agreement that DL-MHA-FA has a 

lower bioefficacy compared to DL-methionine (Jansman et al., 2003). Still not much 

is known about the mechanisms responsible for this variation especially in pigs. Also 

in our quest to develop ‘optimal microbiota’ to achieve maximum animal health and 

production potential in this new century without the use of antibiotics , many new 
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strategies have to be explored. Use of variation in fibre content and composition of 

commonly used dietary cereal ingredients in this effort might be one of the most 

useful ideas. Based on these observations, the overall objectives of this study were to 

elucidate whether metabolism of MHA-FA by gut microbiota could be responsible 

for its reduced bioefficacy compared to DL-methionine and whether use of different 

cereal grains in diet influence GI physiology and if so, whether these effects were 

carried out by altered microbiota.
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3.0 APPARENT ABSORPTION OF METHIONINE AND 2-HYDROXY-4-

METHYLTHIOBUTANOIC ACID FROM GASTROINTESTINAL TRACT 

OF CONVENTIONAL AND GNOTOBIOTIC PIGS 

3.1. Abstract 

 The effect of commensal microbiota and feeding corn or wheat/barley-based diets 

on the apparent gastrointestinal absorption of DL-methionine (MET) and 2-hydroxy-4-

methylthiobutanoic acid (MHA-FA) was studied in conventional (n = 32) and gnotobiotic 

pigs (n = 24).  Conventional pigs were vaginally delivered and sow-reared until weaning 

at 14 d of age. Gnotobiotic pigs were derived by caesarian section and reared in HEPA ( 

high efficiency particulate air) -filtered isolator units with ad libitum access to a milk-

based formula. Corn or wheat/barley-based diets were fed to all pigs from 14 to 24 d of 

age. At 24 d of age, after an overnight fast, pigs were fed 20 g/kg BW of experimental 

diet supplemented with 107 Bq of either 3H-L-MET or 3H-L-MHA-FA per kg of feed and 

chromic oxide (0.5% wt/wt). Pigs were killed for sample collection 3 hours after 

consuming the meal. Residual 3H-MET and 3H-MHA-FA were estimated in 

gastrointestinal contents as the ratio of 3H:chromic oxide in digesta samples to the ratio of 

3H:chromic oxide in feed. In conventional (CON) pigs, feeding a wheat/barley-based diet 

increased (P < 0.05) total aerobes, whereas supplementation with MHA-FA increased (P 

< 0.05) total aerobes and lactobacilli populations in proximal small intestine (SI). Among 

the gnotobiotic pigs, bacterial contamination occurred such that 8 pigs (2 isolators) were 

monoassociated with a Gram negative bacteria closely related to Providencia spp. and 16 

pigs (4 isolators) were monoassociated with Gram positive Enterococcus faecium. 
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Species of monoassociated bacterial contaminant and diet composition did not affect 

residual MET or MHA-FA in digesta.  In both CON and monoassociated (MA) pigs, 

MET and MHA-FA were retained in stomach (92%) but disappeared rapidly from 

proximal SI. Residual MET and MHA-FA in digesta was not different in MA pigs, 

however, in CON pigs less (P < 0.01) apparent residual MET was found in digesta 

recovered at 25% (from cranial to caudal) and 75% of SI length compared with MHA-

FA. Apparent residual MET was 16 and 8 % compared with 34 and 15% for MHA-FA, at 

the 25 and 75% locations, respectively. In proximal SI tissue significantly (P<0.05) 

higher radioactivity (cpm/mg wet issue) was associated with MET pigs (8.56±0.47) as 

compared to MHA-FA (5.45±0.50). This study suggests that microbial metabolism of 

MHA-FA increases retention in small intestinal digesta relative to MET and contributes 

in part to the lower bioefficacy of MHA-FA compared to MET.  

 
3.2. Implications 

 
 This work has shown that the intestinal microbiota in pigs can metabolize even 

readily available nutrients such as supplemented amino acids, hence affecting their 

availability to the host. Significant amount of literature has demonstrated that DL-2-

hydroxy-4-methylthiobutanoic acid. (MHA-FA) has lower bioefficacy as a methionine 

source than DL-methionine (MET). We provide evidence that in swine diets the lower 

ioefficacy of MHA-FA is, in part, due to its high microbial metabolism relative to MET. 

However, we did not find any effect of diet composition on the degree of microbial 

metabolism of MET or MHA-FA, indicating that changes in microbial composition do 

not necessarily reflect a significant change in the level of metabolism of supplemented 

amino acid source. 
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3.3. Introduction 

There is increasing realization that along with a nutritional contribution mainly by 

the hindgut communities, the upper gut microbiota competes with animal cells for a wide 

variety of nutrients including the amino acids (Savage, 1986). Conventional microbiota 

were reported to catabolise ascorbic acid and chlorogenic acid (Cobb et al., 1991; 

Gonthier et al., 2003) and can also take up and incorporate amino acids into microbial 

protein (Salter et al., 1974) or utilize the carbon skeleton as an energy source. Liu et al., 

(2003) concluded that the various Lactobacillus species, which predominate in the pig 

small intestine (Hill et al., 2005) show a wide diversity in their abilities to metabolise 

amino acids in in vitro experiments.  

Crystalline amino acids are commonly supplemented in livestock diets to provide 

optimum essential amino acid balance with minimum nitrogen excretion. DL-methionine 

(DL-MET) and hydroxy-analogue of methionine, DL-2-hydroxy-4-methylthiobutanoic 

acid (MHA-FA) are alternate sources for supplementation of methionine. The Dutch 

Central Bureau for Livestock Feeding (Jansman et al., 2003) summarized the available 

literature and reported bio-efficacy values of DL-MHA-FA as 77% in broiler chickens, 

83% in layers and 82% in piglets on equimolar basis compared to DL-MET. 

The mechanisms responsible for the lower bio-efficacy of MHA-FA could 

involve efficiency of intestinal transport, efficiency conversion of MHA-FA to L-

methionine and microbial metabolism. Studies in poultry have reported lower apparent 

absorption of MHA-FA associated with low affinity, low velocity brush border transport 

mechanisms compared to MET (Maenz and Engele Schaan, 1996b). Earlier results from 

our laboratory using the germ-free chicken suggested that the more slowly absorbed 
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MHA-FA may be metabolised by the intestinal microbiota reducing host availability 

(Drew et al., 2003).  Therefore, the present study was designed to examine whether 

gastrointestinal microbiota similarly affect the apparent absorption of MET and MHA-FA 

in conventional and gnotobiotic pigs. Since diet composition, and specifically cereal 

grain variety, affects microbial composition in the pig small intestine, (Hill et al., 2005; 

Pieper et al., 2008), we also investigated whether diets formulated on corn or barley and 

wheat affected apparent absorption of methionine sources. 

 

3.4. Materials and methods 

3.4.1. Source and synthesis of radiotracers 

L-[methyl-3H] methionine (93% pure) was purchased from Amersham 

Biosciences (Oakville, ON, Canada). L-[methyl-3H] MHA-FA was synthesized by 

nitrous deamination of L-[methyl-3H] methionine according to the procedure of Winitz et 

al., (1956) except that sodium nitrite was used at 5.68 mol/L to improve yield. The 

method for the purification and separation of L-[methyl-3H] methionine and MHA-FA 

was first developed and validated with non radioactive L-methionine (Sigma chemicals) 

and MHA-FA (Novus International Inc.) on HPLC using an ultraviolet post column 

detection system at 210 nm. For HPLC analysis, a C-18 column (Phenomenex Luna 3µ; 

150x4.6mm) with a mobile phase of 17.5% methanol (pH 3.8) at a flow rate of 0.8 

mL/min was used. L-[methyl-3H] methionine was isolated from contaminant radioactivity 

by single peak elution on HPLC. Elution profiles of L-[methyl-3H] methionine 

(Amersham Biosciences) and synthesized L-[methyl-3H] MHA-FA were determined by 

scintillation counting (Beckman LS6000 TA liquid scintillation counter, Beckman 
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Instruments, Fullerton, CA). Aliquots of purified L-[methyl-3H] MET (99%) and L-

[methyl-3H] MHA-FA] (99%) were stored in liquid nitrogen and used within 3 weeks. 

 

3.4.2. Experimental diets 

Dietary treatments included diets based on corn or wheat and barley and 

supplemented with DL-methionine or its hydroxy-analogue (MHA-FA) as the methionine 

source. Diet formulations, calculated and analysed nutrient composition are presented in 

Table 3.1. Diets were formulated to meet or exceed nutrient requirements (NRC, 1998). 

Methionine was added as either DL-methionine (0.26% of 99% pure product) or MHA-

FA (0.295% of 88% pure product)) on an equimolar basis generating 4 experimental 

diets. For gnotobiotic experiments diets were sterilized by gamma-irradiation at 5 Mrads 

(MDS Nordion, Canadian Irradiation Centre, Laval, Quebec). All protocols were 

approved by the University of Saskatchewan Animal Care and Use Committee and 

Radiation Safety Committee. 
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Table 3.1. Diet formulations used in the experiment 

Ingredients (%) Corn-soy- 
MET/MHA-FA 

Wheat-barley-soy 
MET/MHA-FA 

Corn 41.53 0.00 
Soybean meal (48%) 35.00 29.70 
Wheat 0.00 28.50 
Barley 0.00 18.00 
Whey powder  12.00 12.00 
Canola oil 4.00 4.16 
Blood cells  2.40 2.47 
Celite1 1.90 1.90 
Dicalcium phosphate 0.73 0.65 
Calcium carbonate 0.67 0.73 
Vitamin-mineral premix2 1.00 1.00 
DL-methionine, 99%     0.26 or      0.26 or 
DL-MHA-FA, 88% 0.295 0.295 
L-Lysine HCl 0.24 0.33 
L-Threonine 0.13 0.17 
L-Tryptophan 0.04 0.03 
Pro-bond 0.10 0.10 
Nutrients (calculated)   
   ME (Mcal/Kg) 3.35 3.35 
   Digestible Lysine 1.45 1.45 
   Digestible Methionine 0.56 0.55 
Nutrients (analysed)   
   CP 26.83 28.05 
   ADF 4.23 5.26 
   NDF 7.45 10.43 
  
1Celite Corporation, Lompoc, California. 
2Provided (per kg of diet): Zn, 100 mg as zinc sulphate; Fe, 80 mg as ferrous 

sulphate; Cu, 50 mg as copper sulphate; Mn, 25 mg as manganous sulphate; I, 

0.50 mg as calcium iodate; Se, 0.10 mg as sodium selenite. 

Vitamin A, 8250 IU; Vitamin D, 825 IU; Vitamin E, 40 IU; niacin, 35 mg; D-
pantothenic acid, 15 mg; menadione, 4 mg; folacin, 2 mg; thiamine, 1 mg; D-biotin, 
0.2 mg; Vitamin B12, 25 µg. 
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3.4.3. Conventional pig experimental design   

All experiments were conducted using Large White x White Duroc pigs sourced 

from from Prairie Swine Centre, Inc. (Saskatoon SK). In two replicate experiments a total 

of 32 vaginally delivered, sow-reared pigs were weaned at 14 d of age and randomly 

assigned to one of four experimental diets (4 pigs per diet in each experiment) balanced 

for litter of origin, sex and body weight.  Ten d after weaning, and following a 10 hour 

overnight fast, pigs were offered a test meal (20 g/kg BW) of the corresponding 

experimental diet with added chromic oxide (0.5%) and 107 Bq of HPLC purified L-

[methyl-3H] MET  or L-[methyl-3H] MHA-FA per kilogram feed. At 3 hours following 

the meal, pigs were killed by asphyxiation with carbon dioxide and exsanguinated.  

  

3.4.4. Preparation of gnotobiotic isolators   

Gnotobiotic isolators (Class Biologically Clean Ltd., Madison, WI) were 

maintained under positive pressure, and ventilation occurred through High Efficiency 

Particulate Air (HEPA) filters to maintain sterility. All components of the isolators and 

experimental materials placed inside were sterilized by autoclaving at 121˚C for 30 

minutes or by spraying with 1:10:1 (base:water:activator) clidox (Pharmacal Research 

laboratories, Naugatuck, CT). The isolators were further sterilized with a 5% solution of 

peracetic acid (35%; FMC Corp., Philadelphia, PA), sealed for 24 hours, and vented for a 

minimum of at least 36 hours prior to pig placement.  
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3.4.5. Gnotobiotic pig derivation and maintenance 

Pigs were delivered by caesarian section and aseptically passed through a 

betadine filled (10% povidone-iodine; Purdue Pharma, Stanford, CT) dip tank into a 

sterile HEPA-filtered transfer unit. Pigs from 2 sows were revived in the transfer unit, 

dried and then transferred aseptically to gnotobiotic isolators (4 pigs/isolator), balancing 

for litter of origin, sex and body weight. Each of the piglets were bottle fed 100 ml of γ-

irradiated colostrum within the first 24 hours and thereafter fed infant formula (Similac, 

Abbott Laboratories, Abbott Park, IL) as similac:water as 2:1 (vol/vol) containing  

3.13g/100 mL protein, 8.13g/100 mL lipid, 16.2g/100 mL carbohydrate as fed. Pigs were 

fed ad libitum in 3 equal feedings at 8 hours intervals until weaning at 14 d of age. Room 

temperature was maintained at 34˚C on day 1 and reduced by 1˚C every 2 d until 30˚C.   

 

3.4.6. Gnotobiotic pig experimental design 

 In each of 2 gnotobiotic trials, 16 pigs were assigned to one of four gnotobiotic 

isolators each with a capacity of rearing 4 pigs. At 14 d of age, one pig in each isolator 

received one of the 4 sterilized experimental diets such that there were 4 pigs per 

treatment in each experiment. Sterile water was available ad libitum. At 10 d post 

weaning pigs, were fasted overnight and fed the corresponding experimental diets 

containing a 3H-labelled methionine source as a meal using an identical protocol as 

described for conventional pigs. 
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3.4.7. Sample collection 

Immediately following exsanguination, an incision was made along ventral 

midline of abdomen, and after clamping at the pylorus and ileo-cecal junction, the small 

intestine was dissected from mesentery. The stomach and caecum were removed 

separately. The length of the small intestine was measured and regions corresponding to 

5, 25, 50, 75 and 95% of length beginning at the pyloric sphincter were identified. 

Digesta was collected from stomach and a 30 cm segment at each small intestinal 

location, snap-frozen in liquid nitrogen and frozen at –80˚C for subsequent analysis. 

Approximately 10 cm tissue segment was also collected from 5% of SI length, snap-

frozen in liquid nitrogen and frozen at -80˚C for analysis of 3H activity. 

 

3.4.8. Microbial identification and enumeration 

Digesta was sampled (100 mg) aseptically from 25 and 75% of SI location, placed 

in 15 mL sterile plastic tubes containing 1 ml of 0.1% sterile peptone buffer  with 5 g/L 

of cysteine hydrochloride (Sigma Chemical Co., St. Louis, MO) and kept on ice until 

diluted for culture within 3 hours of collection. For conventional pigs, total aerobes and 

anaerobes were enumerated on BBL blood agar base (VWR Int., Mississauga, ON, 

Canada) containing 5% sheep blood using an automated spiral plater (Autoplate, Spiral 

Biotech inc., Bethesda, MD) and incubated aerobically and anaerobically (10% CO2, 

10% H2, and 80% N2) respectively,  for 24 hours at 37 ˚C. Lactobacilli were enumerated 

by culture on de Man, Rogosa and Sharpe agar (Becton, Dickinson and Co., Sparks, MD, 

USA) anaerobically for 48 hours at 37 ˚C. Digesta samples were also cultured aerobically 

on MacConkey’s agar (Becton, Dickinson and Co., Sparks, MD, USA) and Bile esculin 
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agar (Becton, Dickinson and Co., Sparks, MD, USA) for the enumeration of 

enterobacteria and enterococci, respectively.  For gnotobiotic pigs, only total aerobes and 

anaerobes were enumerated. All dilutions were plated using an automated spiral plater 

(Autoplate, Spiral Biotech inc., Bethesda, MD). Results were expressed as log10 colony 

forming units per gram of wet intestinal contents. 

For gnotobiotic experiments, colonies cultured from digesta samples were isolated 

and further cultured in trypticase soy (TS) broth (Difco, Becton Dickinson and Co. 

Sparks, MD, USA) followed by freezing in 15% glycerol at -80 ˚C. Colony taxonomic 

identification was by cpn60 universal target (UT) sequencing (Hill et al., 2004). Briefly, 

after overnight culture from frozen stocks in TS broth, bacterial cells were harvested by 

centrifugation and genomic DNA was extracted with phenol-chloroform-isoamyl alcohol 

according to previously described methods (Dumonceaux et al., 2006). The cpn60 UT 

was amplified by PCR using 1µl of extracted DNA, 0.5 U of Taq polymerase, 50mM 

MgCl2, 10mM of dNTPs and 0.375 µM for each of the degenerate primers H729 and 

H730 (Hill et al., 2002). Reactions were subject to 95˚C for 3 minutes, followed by 40 

cycles of 1minute at 95˚C, 1 minute at 46˚C, 1 minute at 72˚C and a terminal 5 minutes 

extension at 72˚C. PCR products were purified using QIAquick Gel extraction Kit 

(Qiagen) and sequenced directly (National Research Council, Plant Biotechnology 

Institute, Saskatoon, SK).  Nucleotide sequences were trimmed of plasmid and primer 

sequence and identified by comparison to typed strain sequences in cpnDB 

(http://cpndb.cbr.nrc.ca) using BlastN (Hill et al., 2004). 

 

http://cpndb.cbr.nrc.ca/�


 

 45 

3.4.9. Measurement of apparent retention of L-[methyl-3H] MET and L-

[methyl-3H] MHA-FA in digesta 

Chromic oxide (Cr2O3) was estimated in diets and freeze-dried digesta according 

to the procedure of Fenton and Fenton (1979) adapted for small sample sizes. 

Approximately, 100 mg of freeze-dried digesta or 400 mg of feed was digested with the 

digestion mixture (Fenton and Fenton, 1979) following by overnight ashing in muffle 

furnace at 450˚C, further dilution to 10ml with distilled water, centrifugation ( 3000g, 10 

minutes). Absorbance was measured at 440 nm in spectrophotometer (Spectramax, 

Molecular Devices Corp., Sunnyvale, CA). Chromic oxide concentration was calculated 

from the regression equation developed from a standard curve ranging from 250 μg to 3 

mg chromic oxide (Anachemia Canada Inc. Lachine, Quebec). 3H activity in freeze dried 

digesta and feed samples was determined according to methods described previously 

(Drew et al., 2003). Briefly, 20 mg of freeze-dried digesta or approximately 50 mg of diet 

was mixed with 1 mL of BTS-450 tissue solubilizer (Beckman Coulter Inc., Mississauga 

Ontario) in 18 mL scintillation vials and the mixture was incubated for 2 hours at 40 0C 

followed by addition of 0.5 mL isopropanol and 0.2 mL hydrogen peroxide.  After 10 

min. at room temperature and a further 2 h at 40 0C, the mixture was diluted with 5 mL 

deionized water, combined with 10 mL scintillation cocktail (Beckman Coulter Inc., 

Mississauga Ontario) and counts per minute (cpm) recorded using a Beckman LS600 TA 

liquid scintillation counter. Apparent retention of methionine and MHA-FA in digesta 

was determined using chromic oxide as indigestible marker according to following 

equation: 

Apparent retention = (3H activitydigesta: Cr2O3digesta) / (3H activityfeed: Cr2O3feed) X 100% 
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3.4.10. Analysis of 3H activity in intestinal tissue 

To measure 3H activity in intestinal tissue, frozen samples were coarsely ground 

under liquid nitrogen with mortar and pestle. An 80-100 mg homogenous sub-sample was 

weighed and mixed with 1ml of BTS-450 tissue solubilizer (Beckman Coulter Inc.). The 

tissue was incubated at 40˚C for 3-4 hours with frequent vortexing. Thereafter 10 mL of 

scintillation cocktail and 70 µL of glacial acetic acid was added. Radioactivity was 

determined using a Beckman LS600 TA liquid scintillation counter (Beckman Coulter 

Inc.) and reported as cpm per mg wet tissue. 

 

3.4.11. Statistical analyses 

Monoassociation of isolator-reared pigs with either of two bacterial species required a 

reconsideration of data analysis.  Analysis of data from monoassociated pigs by one-way 

ANOVA using a GLM (SPSS Inc, Chicago IL, USA) indicated no effect of 

monoassociated species on any parameter. Similarly a separate one-way ANOVA 

indicated no replication effect in the conventional pig experiments. Consequently data 

was analyzed as 2 x 2 x 2 factorial using a GLM procedure with fixed main effects of 

cereal grain (corn vs. wheat and barley), methionine source (DL-methionine vs. DL-

MHA-FA) and microbial status (conventional vs. monoassociated), plus interactions as 

sources of variation. Because of significant (P<0.07) methionine source by microbial 

status interaction at 75% location and absence of data at 95% SI length, data were 

analyzed separately for conventional and monoassociated pig experiments as 2 X 2 

factorial with cereal grain and methionine source as main effects.  
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3.5. Results 

3.5.1. Health and microbial status 

In the conventional pig experiment one pig was euthanized at 21 d of age due to 

anorexia without other clinical signs. Three isolator reared pigs were emaciated after 

failing to consume the post-weaning diet and were euthanized at 24 days of age. All other 

CON and MA pigs appeared healthy based on visual appearance and appetite.  

 

3.5.2. Microbial enumeration - conventional pigs 

 Standard plate counts on selective agars revealed significant differences only for 

digesta collected at the 25% SI location. Total aerobic counts (log cfu/g digesta) in 

digesta collected at 25% of SI length for pigs fed wheat-barley diets (5.48±0.14 ) was 

higher  (P<0.05) compared to corn- based diets (4.81±0.23).  Total aerobe count was also 

significantly (P<0.05) higher with MHA-FA supplementation (5.42±0.19) compared to 

with MET supplementation (4.90±0.20). Similarly, lactobacilli counts increased 

significantly in digesta from the 25% SI location for the MHA-FA group (6.22±0.15) 

compared to the MET group (5.63±0.19).  Cereal grain type or source of methionine did 

not affect total anaerobes, enterobacteria or enterococci at 25% or 75% SI location. 

 

3.5.3. Microbial enumeration and identification - monoassociated pigs  

 Culture of small intestinal contents at 25 and 75% locations showed bacterial 

contamination of isolator-reared pigs. Morphologic examination of the colonies on 

aerobic and anaerobic blood agar suggested the presence of a single bacterial species. 
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Identification by cpn60 UT sequence analysis of 2-3 colonies from each pig confirmed 

that pigs in two isolators were monoassociated with a Gram negative Providencia like 

spp. (98 % identity to Providencia rettgeri). Pigs in the remaining isolators were 

monoassociated with Gram positive Enterococcus faecium (100% identity). 

Among Gram-negative monoassociated pigs, total aerobic counts were 7.24±0.21 

and 8.31±0.17 log cfu/g at 25 and 75% of SI length, respectively. Anaerobic plate counts 

were 7.10±0.21 at 25% and 8.26±0.20 log cfu/g at 25 and 75% SI locations, respectively. 

For the Gram-positive monoassociated pigs, total aerobe counts (log cfu/g) were 

7.66±0.24 and 8.76±0.09, whereas total anaerobic counts were 7.98±0.31 and 8.88±0.07 

at 25 and 75% of SI length, respectively.  

  

3.5.4.  Apparent retention of L-[methyl-3H] MET and L-[methyl-3H] MHA-

FA in digesta 

 Residual L-[methyl-3H] MET and L-[methyl-3H] MHA-FA activity in contents of 

conventionally raised and monoassociated pigs is shown in Table 3.2. In stomach of 

CON and MA pigs both methionine sources were present at similar high levels (92 to 

99%) which were not affected by cereal source or microbial status. Both Methionine 

sources disappeared rapidly from proximal small intestine such the less than 50% residual 

activity was observed at the 5% location. Approximately 12-14% residual activity was 

observed in the distal small intestine.  Cereal grain did not affect the residual amounts of 

either methionine source. At 75% of SI length an interaction (P=0.06) between 

methionine source and microbial status was observed. Furthermore, no data could be 

determined for the 95% of SI length in MA pigs because chromic oxide concentration 
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was below detection at this location at 3 hours after feeding. Separate analysis of residual 

activity for CON pigs revealed that residual L- MHA-FA was significantly (P<0.01) 

higher (34% , 15% and 13%)  compared to  L-MET (16% , 8% and 7.8%) at 25%, 75% 

and 95% of SI length, respectively (Figure 3.1A). In MA pigs, the apparent retention of 

MET and MHA-FA was similar at all small intestinal locations excepting at the 75% SI 

location where a trend (P< 0.07) to increase residual MHA-FA was observed (Figure 

3.1B). 

 

3.5.5.  Apparent tissue associated L-[methyl-3H] MET and L-[methyl-3H] 

MHA-FA activity  

Radioactivity in small intestinal tissue associated with feeding L-[methyl-3H] 

MET and L-[methyl-3H] MHA-FA was detectable only at the 5% SI location (Figure 3.2 

A and B).  A significant (P< 0.01) methionine source by microbial status interaction was 

observed  for tissue radioactivity (Bq/ mg wet weight) such that at the 5% SI location  

activity associated with L-[methyl-3H] MET feeding (8.56±0.47) was  significantly 

(P<0.05) higher as compared to L-[methyl-3H] MHA-FA feeding (5.45±0.50) in CON 

pigs only (Figure 3.2A).  Cereal grain type did not affect tissue radioactivity levels. 
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Table 3.2. Percent retained radioactivity in gastrointestinal tracts of conventional 

and monoassociated pigs fed corn and wheat-barley based diets supplemented with 

DL-methionine or DL-MHA-FA on equimolar basis 

 Stomach 5% 25% 50% 75% 

Methionine source  

DL-MET 91.79 41.01 20.75 12.03   8.99 

DL-MHA-FA 91.52 44.87 30.19 16.70 14.60 

Pooled SEM   2.04   3.18    1.58    0.99   0.65 

Cereal type      

Corn 95.05 45.96 26.29 12.86 11.95 

Wheat-barley 88.26 39.93 24.65 15.87 11.63 

Pooled SEM   1.98   3.03    1.77   1.03   0.79 

Microbial status      

Conventional1  92.23 37.53 23.85 15.07 11.54 

Monoassociated2 91.07 48.36 27.09 13.66 12.04 

P. rettgeri3          92.38 55.77 26.71 10.81 8.60 

E. faecium3 90.75 42.69 28.05 14.61 13.31 

Pooled SEM 2.04 3.17 1.75 1.05 0.79 

P-value      

Cereal type 0.121 0.402 0.599 0.146 0.810 

Methionine source 0.950 0.591 0.004 0.027 0.000 

Microbial status 0.787 0.142 0.30 0.491 0.707 

Methionine 
source*microbial status 

0.878 0.323 0.224 0.882 0.062 

1 n= 8 except wheat-barley MHA-FA treatment where n= 7; 2 n=6 except wheat-barley 
MET and Corn-MET treatments where n=5; 3Retained radioactivity was not different 
between pigs monoassociated with different bacterial species such that observations were 
combined. 
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Figure 3.1.  Apparent retention of L-[methyl-3H] MET and L-[methyl-3H] MHA-FA 
in digesta in conventional (A) and monoassociated pigs (B) fed corn or wheat-barley 
based post-weaning diets. Values over each bar are mean percent retained 
radioactivity. The vertical bars depict SE.  Bars with a different letters are 
significantly different at P<0.05 (panel A) or P<0.07 (panel B). 
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Figure 3.2. Apparent tissue associated L-[methyl-3H] MET and L-[methyl-3H] 
MHA-FA activity in conventional (A) and monoassociated pigs (B) fed corn or 
wheat-barley (WB) based post-weaning diets. The vertical bars depict SE.  Bars 
with different letters are significantly different (P<0.05) 
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3.6. Discussion 

 The highly complex enteric microbiota play an important role in modifying the 

structure, biochemistry and physiology of the gastrointestinal tract impacting nutrition 

and health of the host (Falk et al., 1998). Gnotobiotic animals, where gastrointestinal 

bacterial populations are clearly defined, offer an indispensable tool to study a broad 

range of specific host-bacterial and host-nutrient-bacterial interaction. Here we utilized 

the gnotobiotic model to establish in the pig the role of the intestinal microbiota in 

determining the availability for absorption of supplemented amino acids, particularly 

supplemented methionine and MHA-FA. Since different cereal grains are known to affect 

the composition of intestinal microbiota in conventionally reared animals (Hill et al., 

2005), the study compared corn and wheat/barley based diets. 

In the present study, residual 3H-MHA-FA activity observed in intestinal contents 

was significantly higher than 3H-MET activity along the entire SI in the conventionally 

reared pigs. In contrast, in monoassociated pigs, residual 3H-MHA-FA and 3H-MET 

activity in small intestinal contents was similar. We hypothesize that the increase in 

residual MHA-FA activity in digesta of conventional pigs, but not monoassociated pigs, 

reflects a preferential metabolism of MHA-FA, relative to methionine, by the complex 

consortia of bacteria present in the intestine. This increase in microbial metabolism of 

MHA-FA could reduce the amount of MHA-FA available for absorption and contribute 

to the lower bio-efficacy of MHA-FA (Jansman et al., 2003).  Our results in pigs are in 

agreement with an earlier report by our laboratory in the chicken where conventional 

chickens had increased residual 3H-MHA-FA in intestinal contents compared with the 

germ-free chicken (Drew et al., 2003).  
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  MHA-FA is transported by non-stereospecific intermediate affinity H+-

dependent system whereas methionine is transported by Na+ dependent system B 

transporter with higher substrate affinity and maximal velocity compared to H+-

dependent system (Maenz and Engele Schaan, 1996b). We have previously suggested 

that the slower rate of transport of MHA-FA may prolong the opportunity for microbial 

metabolism relative to methionine (Drew et al., 2003). 

Many studies in chicken (Esteve Garcia and Austic 1993; Lingens and Molnar, 

1996; Maenz and Engele Schaan, 1996a) used radiolabelled MET and MHA-FA and 

estimated intestinal absorption based on residual radioactivity in intestinal contents.  This 

method is not affected by bacterial metabolism of MET and MHA-FA since the 

radiotracer would remain within the intestinal contents even following metabolism. All 

three studies reported that 10-20% of the original radiolabelled MHA-FA activity in the 

feed was present in the distal sections of the small intestine compared to 3.5-5% for 

MET, thus in agreement with our results. Moreover, HPLC analysis of gut contents from 

the distal ileum showed that only 10% of the residual radioactivity was associated with 

MHA-FA suggesting that the compound had been metabolized during intestinal transit 

(Maenz and Engele Schaan, 1996a) and further supporting metabolism by gut microbiota. 

We found that MHA-FA supplementation increased the number of total aerobes 

and lactobacilli in the upper small intestine, a response which may have contributed to 

the increased residual MHA-FA activity in upper small intestinal contents.  Among lactic 

acid bacteria, which are dominant in the upper small intestine, there is significant inter-

and intra-species differences in their utilization of various amino acids (Liu et al., 2003).  

Hegedus et al., (1993) reported that of the three lactobacilli species (Lactobacillus 
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plantarum, L. casei and Leuconostoc mesenteroides) studied none could utilize MHA-FA 

though all could use methionine. In this regard, further characterization of the proximal 

gut microbiota and species variation in metabolizing various amino acids is required.   

Although the methionine sources disappeared rapidly from the upper small 

intestine in the pig, interestingly, the residual activity in intestinal contents of both 

methionine sources was much lower (9-15%) in the upper small intestine of chicken 

(Drew et al., 2003) as compared to the pig (35-45%).  The rate of absorption of 

methionine sources may be slower in the upper SI of pig compared to chicken.  Also both 

MET and MHA-FA were essentially completely retained in the pig stomach in contrast to 

a report by Richards et al., (2005) in the chicken in which only 15% of supplemented 

MHA-FA could be detected by HPLC in digesta recovered just prior to the duodenum. 

The authors suggested 85% of supplemented MHA-FA was passively absorbed from the 

upper tract of the chicken (crop, proventriculus), a phenomenon that does not appear to 

occur appreciably in pig stomach. Alternatively, it is possible that the low recovery of 

MHA-FA by HPLC in chicken proventriculus could be partly explained by microbial 

metabolism to alternate products not detected by HPLC.  

Wester et al., (2006) reported that in lambs, small intestinal tissues are capable of 

converting MHA-FA to methionine and further that MHA-FA-derived methionine is 

preferentially retained in the intestine to support anabolism, sparing absorbed methionine 

from dietary protein for transport to the liver.  This raised the possibility that in the 

current study increased radioactivity observed in digesta in the MHA-FA supplemented 

pigs may be due to preferential in situ metabolism which could contribute to higher 

radioactivity associated with endogenous losses.  In the current study, however, increased 
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upper small intestinal tissue radioactivity was associated with the MET supplemented 

diet compared to MHA-FA. This is consistent with greater apparent absorption of MET 

from the upper small intestine (lower residual radioactivity) and suggests, although not 

conclusively, that the increased residual radioactivity in the digesta observed for MHA-

FA supplementation could not be accounted for by increased radioactivity in endogenous 

losses.  

Chromic oxide content in digesta from 95% of SI length was below the assay 

detection limit for monoassociated pigs preventing determination of residual radioactivity 

in digesta. In contrast, chromic oxide content in conventional pigs was always highest at 

95% length of small intestine. This could be due to a slower transit rate from stomach to 

distal small intestine in MA pigs resulting in negligible chromic oxide content.  Previous 

reports indicate that the commensal microbiota decrease the intestinal transit time in rats 

(Riottot et al., 1980).  

Gut microbiota is influenced by many factors including age, weaning and diet. 

Nutrients in the gut affect the microbiota by providing preferential substrates for bacterial 

growth (Jensen and Jorgensen, 1994 and Hill et al., 2005). Although we did not conduct 

an extensive molecular examination of the composition of the intestinal microbiota in 

conventional animals in the current study, limited culture-based analysis detected an 

effect of cereal grain type. Interestingly, wheat-barley based diets increased total aerobes 

in upper GI, a location for greatest opportunity for microbial metabolism of 

supplemented methionine source, given the rapid absorption. Nevertheless no effect of 

cereal grain source on residual activity of MHA-FA or MET was observed.   
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Our results support the hypothesis the intestinal microbiota compete with the host 

for metabolism of readily available nutrients such as supplemented amino acids. Our 

previous results of increased residual 3H-MHA-FA in intestinal contents of conventional 

but not germ-free chicken and current similar results in conventional and monoassociated 

pigs suggest that microbial metabolism of MHA-FA reduces the availability of MHA-FA 

for absorption relative to MET. Whether MHA-FA is a preferred substrate for intestinal 

bacteria or the slower absorption kinetics relative to MET provide greater opportunity for 

microbial metabolism is not clear. Microbial metabolism of MHA-FA is, however, a 

likely contributor to reduced bio-efficacy of MHA-FA relative to methionine. 
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4.0. POST WEANING INTESTINAL PHYSIOLOGY AND MUCIN DYNAMICS 

IS INFLUENCED BY CEREAL GRAIN TYPE AND COMMENSAL 

MICROBIOTA 

 

4.1. Abstract 

Mechanisms by which diet composition and commensal microbiota influence 

post-weaning intestinal physiology were studied using conventional and gnotobiotic pigs 

in a 2x2 factorial design. Caesarean-section derived germ-free pigs (n=16) were reared in 

HEPA-filtered isolator units (4 pigs/unit) and fed sterilized sow colostrum (120 mL/pig) 

followed by infant formula (2:1; forumula: water) ad libitum. Conventional (CON) pigs 

(n=32) were vaginally delivered and sow-reared.  At 14 d of age all pigs were weaned to 

diets formulated to meet nutrient requirements using corn or wheat/barley. At 24 d of age, 

pigs were killed and digesta and tissue collected at 75% (cranial to caudal) of small 

intestinal (SI) length. Contamination of germ-free pigs resulted in monoassociation with 

Enterococcus faecium.  Villus height, crypt depth and number of goblet cells (acidic, 

neutral and total) were determined using stained formalin-fixed tissue cross-sections 

taken at 75% of SI length. Proliferative and apoptotic activity were assessed by analysis 

of proliferating cell nuclear antigen (PCNA) expression and activated caspase-3 activity, 

respectively. Aminopeptidase and sucrase activities and expression were determined as 

indicators of digestive function. Mucin cell counts and expression of membrane 

associated mucin genes Muc 1, Muc 13 and secreted type Muc 2 was also determined.  

Wheat/barley diets increased digesta viscosity (P < 0.01) and PCNA expression (P < 

0.001) and tended to decrease (P < 0.07) APN activity. Monoassociation reduced (P < 



 

 59 

0.01) body weight, relative spleen weight, crypt depth, PCNA expression, active caspase 

3 abundance, sucrase expression, neutral, acidic and total goblet cells in crypts and 

neutral goblet cell in villi and mucin gene expression. Monoassociation increased (P < 

0.01) relative SI length, digesta viscosity, villus height, APN and sucrase activity and 

tended to increase acidic mucin cells in the villi. Interactive effects were observed only as 

trends (P < 0.1) such that increased PCNA expression was evident only in conventional 

wheat-barley-fed pigs, Muc 2 expression was lower only in monoassociated pigs fed 

wheat-barley and APN activity was highest in monoassociated pigs fed corn. In 

conclusion, as expected, monoassociation markedly influenced intestinal physiology. 

Limited effects of cereal type were observed. Only the increase in expression of PCNA in 

wheat-barley diets appeared microbially mediated.  

 

4.2. Introduction 

The mammalian gut harbors a vast and complex community of microbiota in a 

continuous and dynamic relationship with the host. There is increasing evidence that 

commensal bacteria, through intimate contact with the mucosa, play a crucial role in gene 

expression and functional development of several components of the immune and 

gastrointestinal systems (Hooper, 2004).  Gnotobiotic animals represent a valuable model 

for evaluating the effects of single species or defined populations of microorganisms on 

host response. Earlier studies in gnotobiotic pigs in our laboratory have reported 

significant differences in intestinal morphology and gene expression in pigs 

monoassociated with different bacterial species (Shirkey et al., 2006; Willing and Van 

Kessel, 2007; Siggers et al., 2008; Danielsen et al., 2007).  
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Diet composition and specifically cereal grain type can affect microbial 

composition in the pig small intestine (Drew et al., 2004; Hill et al., 2005; Pieper et al., 

2008). Furthermore, various studies have fed different fibre sources in an effort to 

optimize gut environment and health at weaning in pigs (Pluske et al., 1998; Montagne et 

al., 2004 and Hedemann et al., 2006). Dietary fibre has been reported to alter 

gastrointestinal physicochemical environment, morphology (Jin et al., 1994) and 

digestive enzyme activity in pigs (Hedemann et al., 2006). Increasing evidence in 

monogastric animals suggest that nature and origin of fibre also influences mucin 

synthesis, secretion and composition (Sharma and Schumacher, 1995 and Christelle Piel 

et al., 2005). The physiological responses associated with changes in diet composition 

and fibre content have largely been assumed as indirect, associated with changes in 

microbial composition (Flint et al., 2007). We therefore investigated whether the whole 

cereal grains influenced gastrointestinal physiology and if so, whether these effects were 

direct or associated with altered microbial status.  

 

4.3. Materials and methods 

4.3.1 Experimental Design and Diets 

 All experimental protocols were approved by the Animal Care Committee of the 

University of Saskatchewan and were performed in accordance with recommendations of 

the Canadian Council on Animal Care (1993). 

Experimental diets (Table 3.1) were formulated using corn or wheat and barley 

using supplemented DL-methionine or its hydroxyl-analog (MHA-FA) to meet or exceed 

nutrient requirements (NRC, 1998). For the gnotobiotic experiments, diets were vacuum 
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sealed and sterilized by gamma-irradiation at 5 Mrads (MDS Nordion, Canadian 

Irradiation centre, Laval, Quebec). Pigs in all treatments groups had ad libitum access to 

feed and water. All the parameters were examined at 75% SI location consistent with the 

site of maximum influence of microbiota on intestinal morphology as previously 

observed (Shirkey et al., 2006). 

 

4.3.2. Conventional pig experimental design   

In two replicate conventional pig  (Large White x White Duroc; Prairie Swine 

Centre, Inc., Saskatoon SK) experiments (16 pigs per replicate) were vaginally delivered 

and sow reared until 14 d of age. Pigs were then weaned and randomly assigned to one of 

four experimental diets (4 pigs per diet in each experiment) balanced for litter of origin, 

sex and body weight. Ten days after weaning, pigs were killed by asphyxiation with 

carbon dioxide and exsanguinated. This is the same group of 32 conventional piglets as 

reported in chapter 3.3.3 

 

4.3.3 Gnotobiotic pig experiments  

Enterococus faecium (EF)-monoassociated piglets described in Chapter 3, 

sections 3.3.4., 3.3.5. and 3.3.6 were utilized in this experiment. 
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4.3.4. Monitoring of Microbial Status  

Peri-anal swabs were taken from gnotobiotic pigs during the course of the 

experiment to monitor microbial status. Swabs and the intestinal contents collected 

aseptically at 75% of SI length of SI following euthanasia were cultured aerobically and 

anaerobically on tryticase soy (TS) agar (Difco, Becton Dickinson and Co. Sparks, MD, 

USA), for enumeration and identification of colonizing bacteria. Bacterial populations 

were expressed as log10 colony forming units per gram of wet intestinal contents. 

In the case of gnotobiotic pigs, isolated bacterial colonies were identified by 

cpn60 universal target (UT) sequencing (Hill et al., 2004). Briefly, bacterial DNA was 

extracted from overnight culture in TS broth with phenol-chloroform-isoamyl alcohol 

according to previously described methods (Dumonceaux et al., 2006). PCR reactions 

were set up using 1µl of extracted DNA, 0.5 U of Taq polymerase, 50mM MgCl2, 10mM 

of dNTPs and 0.375 µM for each of the degenerate primers H729 and H730 (Hill et al., 

2002). The protocol included denaturation at 95˚C for 3 min, followed by 40 cycles of 

1min at 95˚C, 1 min at 46˚C, 1 min at 72˚C and finally a 5 min extension at 72˚C. PCR 

products were purified using QIAquick Gel extraction Kit (Qiagen) and sequenced 

directly by cycle sequencing at the NRC Plant Biotechnology Institute core facility by 

using M13 forward and reverse sequencing primers. PreGap4 (version 1.1) and Gap4 

(version 4.6) in the Staden software package (release 2000: J. Bonfield, K. Beal, M. Betts, 

M. Jordan, and R. Staden, 2000) were used to assemble raw data. Contig sequences were 

compared to cpnDB (http://cpndb.cbr.nrc.ca) using FASTA (Hill et al., 2004). 
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4.3.5. Sample collection 

 At 24 d of age piglets were removed from isolators, weighed and killed by 

submersion in CO2 and exsanguination. An incision was made along ventral midline of 

abdomen, and after clamping at the pylorus and ileo-cecal junction, the small intestine 

was dissected from mesentery and length recorded. A 2 cm segment obtained at 75% of 

the small intestinal length was placed in 10% buffered formalin for 24 hours and 

subsequently transferred to 70% ethanol before embedding in paraffin and staining with 

hematoxylin and eosin for histological analysis.  Two 10 cm segments for mRNA and 

protein analysis were obtained at 75% of the small intestinal length, snap frozen and 

stored at -80°C. Digesta was also collected from 75% small intestinal location for 

estimation of pH and viscosity. Liver, spleen and heart were dissected from the 

peritoneum, blotted and weighed. 

 

4.3.6. Digesta physicochemical properties 

 The pH and viscosity of digesta samples at 75% of small intestinal location were 

measured immediately after collection.  For measuring viscosity, 1-2 g of contents was 

centrifuged at 14000 rpm for 3 minutes and viscosity (centipoise) was determined using a 

digital viscometer (Brookfield digital viscometer, Model LVTDVCP-

II, Brookfield Engineering Laboratories, Stoughton, MA., USA). For estimation of pH, 

the ileal digesta (1-2 g) was vortexed well to make slurry and pH was determined using 

digital pH/mV/°C meter (Cole Palmer Instrument Company, Chicago, IL, USA). The 

probe of pH meter was washed well with deionized water between samples.  
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4.3.7. Intestinal morphology 

 Using hematoxylin and eosin stained cross sections, villus height and crypt depth 

were measured by a blinded observer in 10, well oriented, villi for each pig using an 

Axiostar plus light microscope (Carl Zeiss Canada Ltd., Toronto, ON) and analyzed 

using AxioVision 3.1 measurement software (Carl Zeiss Canada Ltd.).   

 

4.3.8. Intestinal goblet cell histochemistry 

All tissue sections were stained in 1 batch to minimize differences in technical 

manipulations. Tissue sections were stained with alcian blue for acidic mucin, periodic 

acid-Schiff reaction for neutral mucin and alcian blue plus periodic acid-Schiff reaction 

for total mucin by Prairie Diagnostic Services (University of Saskatchewan). All slides 

were coded and examined by a blinded observer. Mucin containing cells were counted in 

10 full sized villi and crypts, using an Axiostar plus light microscope (Carl Zeiss Canada 

Ltd., Toronto, ON) and analyzed using AxioVision 3.1 measurement software (Carl Zeiss 

Canada Ltd.).  

 

4.3.9. Gene expression analysis 

 Whole intestinal segments were ground using a mortar and pestle and total RNA 

was extracted from 20-30 mg of tissue using an RNeasy Mini Kit (Qiagen, Mississauga, 

ON). Genomic DNA was removed from RNA using RNase-free DNase Set (Qiagen).  

RNA was quantified by optical density at 260/280 nm using a spectrophotometer 

(Ultrospec 2000, Pharmacia Biotech, Baie d’Urfe, PQ) and 1 µg of RNA was used to 

generate first strand cDNA using SuperScriptTM III First-Strand Synthesis System 
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(Invitrogen, Carlsbad, CA). Porcine PCNA sequence was not available thus a segment of 

the gene was sequenced by amplification with primers designed based on human 

sequence (GenBank accession BC062439). The resulting sequence (GenBank accession 

DQ473295) showed 93% identity to human PCNA transcript.  Primers for APN, LPH, 

sucrase, PCNA, and housekeeping gene glyceraldehyde phosphate dehydrogenase 

(GAPDH)  were designed (Table 4.1) using Oligo 6 (Molecular Biology Insights, Inc., 

Cascade, CO) and Beacon Designer (PREMIER Biosoft International, Palo Alto, CA) 

software. Primers for mucin genes Muc 1 (accession number AY24350801; product size 

194bp), Muc 2 (accession number AK231524.1; product size 168bp) and Muc 13 

(accession number AK231169.1; product size 189bp) were designed using software 

Primer 3 (Table 4.1). Target specificity of the PCR primers was confirmed by 

comparison against the Genbank database using BLAST (National Centre for 

Biotechnology Information, Bethesda, MD). Transcript abundance was measured by 

qPCR using SYBR Green detection (iCycler iQ Real-Time PCR detection system, Bio-

Rad).  Respective  RT-PCR products were cloned using the pGEM-T® Easy Vector 

System II (Promega Co., Madison, WI) followed by purification (Qiagen Plasmid Mini 

Kit, Qiagen) and quantification using PicoGreen DNA Quantitation Kit (Molecular 

Probes, Eugene, OR) to generate standard curves (range 101-107 copies target gene).  The 

PCR products for all the genes were confirmed by sequencing. Transcript numbers are 

reported per 100 copies of GAPDH except for mucin genes where transcript numbers are 

reported per 10,000 copies of GAPDH. 
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Table 4.1. Quantitative real - time PCR primers for all genes 

 

Gene Forward  (5’-3’) Reverse (5’-3’) 

APN  CAATATGCCGCCCAAAGGTTC CCGGATCAGGACGCCATTT 

LPH CCAAGTTCTACGCCTCCATAGTC TCCAAGAAGCAGAAGAGCAAAGA 

PCNA TACGCTAAGGGCAGAAGATAATG CTGAGATCTCGGCATATACGTG 

GAPDH GTTTGTGATGGGCGTGAAC ATGGACCGTGGTCATGAGT 

Sucrase TGGCATCCAGATTCGAAGAA GATCTCGCTTAAATGCCGTGT 

Muc 1 CGGAAGCAGGCACCTATAAC TCACGGCTGCTTTCTTGACA 

Muc 2 CGGCTCTCCAGTCTACTCGT CTCACAACGTTCTTCACGGT 

Muc13 GGTGATTGCATTCGTCCTCT CCAGTCGGTGTCTTAGGGAT 
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4.3.10. Protein and enzyme activity assays  

Intestinal tissue at 75% of SI length was ground over liquid nitrogen using a 

mortar and pestle. The pulverized tissue (200 mg) was homogenized in 10 mL of 1% 

Triton X-100 with a Brinkman Homogenizer and centrifuged at 1500g for 5 min.  The 

supernatant was used for estimating protein content, lactase phlorizin hydrolase, 

aminopeptidase N and sucrase activity.  Enzyme activities are reported per minute per 

gram of protein determined using the Bio-Rad protein microassay procedure (Bio-Rad 

Laboratories) with a bovine serum albumin standard (Bradford, 1976).   

APN activity was determined by modification of a previously reported method 

(Maroux et al., 1973).  Substrate for the APN assay was 10 mM L-alanine-4-nitroanilide 

with 50 mM TRIS HCl at pH 7.3.  The standards included a range from 6.25 to 200 µM 

of 4-nitroaniline with 10 µl boiled protein homogenate, with the blank containing 200 µl 

substrate and 10 µl boiled homogenate. Substrate (200 µl) was added to 10 µl of 

homogenate and the color development measured at 405 nm (Spectramax, Molecular 

Devices Corp., Sunnyvale, CA) after 5 minutes at 37°C. 

 Lactase  and sucrase activity was measured by determining the amount of glucose 

liberated from lactose or sucrose, respectively, as modified from Dahlqvist (1964). β-

lactose or sucrose (20 μL of 0.1 M solution) was added to 20 μL of homogenate and 

incubated in a 96 well plate for 30 minutes at room temperature.  Glucose liberated was 

then measured using the Wako Glucose Assay Kit (Wako Bioproducts, Richmond, VA) 

according to manufacturer’s instructions. 
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4.3.11. Caspase-3 activity 

 Caspase-3 like enzyme activity was measured in homogenized tissue based on 

fluorescence emission following Asp-Glu-Val-Asp (DEVD) specific cleavage using the 

EnzChek® Caspase 3 Assay Kit (Molecular Probes, Inc., Eugene, OR).  Briefly, 5 mg 

pulverized intestinal tissue at 75% SI length was lysed in 200 μL of lysis buffer (10 mM 

TRIS, pH 7.5, 0.1 M NaCl, 1 mM EDTA, 0.01% TRITONTM X-100) using a freeze thaw 

cycle in liquid nitrogen.  Then the lysed cells were centrifuged at 5000 rpm for 5 minutes 

and 50 μL of the resulting lysate was placed in duplicate in a 96 well plate. To each 

sample well, 50 μL of 2X reaction buffer [20 mM PIPES, pH 7.4, 2 mM EDTA, 0.2% 

CHAPS, 0.02 mM Z (benzyloxycarbonyl group)-DEVD-AMC (7-Amino-4-

methylcoumarin)] was added and incubated for 10 min at room temperature. 

Fluorescence emission (excitation/emission wavelength - 342/441 nm) was determined 

using a Fluoroskan Ascent fluorometer (Thermo Labsystems, Helsinki, Finland). Assay 

linearity was confirmed by analysis of fluorescence when serial 2-fold dilutions of lysed 

tissue homogenate were used.  Specificity of fluorescence emission to DEVD cleavage 

was confirmed by addition of a non-fluorescent reversible aldehyde substrate inhibitor 

(Ac-DEVD-CHO). A standard curve was prepared using AMC ranging from 6.25-100 

μM.   

 

4.3.12. Statistical analysis  

 A separate one-way ANOVA using general linear models (GLM, SPSS software 

v. 12.0, SPSS Inc, Chicago IL, USA) showed no replication effect for conventional pigs. 

Data were subsequently analyzed as a 2x2x2 ANOVA using GLM with main effects of 
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cereal grain (corn vs. wheat/barley), microbial status (conventional vs. monoassociated) 

and methionine source (MET versus MHA-FA) plus interactions as sources of variation. 

Source of methionine did not affect any parameter studied and was removed from the 

model. Therefore, the final model was a 2x2 factorial with main effects of cereal grain 

and microbial status plus interactions as sources of variation. Where significant 

interactions were observed between cereal grain type and microbial status, data was 

aggregated as a single main effect and means were separated using REGWF with 

significance of P < 0.05. 

 

4.4. Results 

4.4.1. Health, body weight, organ weights and SI length  

Generally all pigs were in good health except one conventional pig fed corn 

(replicate 1) and one gnotobiotic pig fed wheat/barley were euthanized due to 

postweaning anorexia. All other pigs appeared healthy based on visual appearance, 

appetite, fecal consistency and final body weight (Table 4.2). Initial body weights of 

gnotobiotic pigs were not recorded to avoid an increased possibility of introducing 

contamination. Final body weight (kg) at 24 d of age was markedly greater (P< 0.0001) 

in conventional pigs compared with monoassociated pigs. Also, pigs fed wheat barley 

were heavier (P< 0.05) than corn-fed pigs. Mean relative length of SI and relative heart 

and liver weight was greater (P< 0.05) in monoassociated pigs as compared to CON pigs. 

Relative spleen weight was greatest in CON pigs. Diet composition did not affect relative 

organ length or weight. 



 

 70 

 

Table 4.2. Body weights and average relative lengths of small intestine, weights of liver, 
spleen and heart in conventional and monoassociated pigs fed corn or wheat-barley diets 
 

 Body wt.  

(kg) 

SI length  

(m/kg) 

Liver  

(g/kg) 

Spleen  

(g/kg) 

Heart  

(g/kg) 

Cereal type      

Corn 4.23 1.85 23.03 1.72 6.33 

Wheat-barley 4.70 1.71 23.75 1.89 6.18 

Pooled SEM 1.02 0.42 1.26 0.27 0.66 

Microbial status      

Conventional 5.62 1.25 22.54 2.03 5.76 

EF 3.32 2.32 24.25 1.59 6.74 

Pooled SEM 0.64 0.16 1.73 0.40 0.57 

P value      

Cereal type 0.042 0.057 0.254 0.225 0.587 

Microbial status 0.001 0.001 0.008 0.002 0.004 

Cereal*microbial status 0.140 0.196 0.903 0.837 0.619 
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4.4.2. Microbial Status 

 Culture of peri-anal swabs indicated contamination of gnotobiotic pigs at 1 d of 

age. Morphologic examination of colonies observed on aerobic and anaerobic blood agar 

from cultured swabs or digesta collected at 25% and 75% of SI length suggested the 

presence of a single bacterial species. Furthermore, the nucleotide sequence for the cpn60 

UT amplified from all selected colonies showed 100% identity to the Gram positive 

bacterium, Enterococcus faecium (EF) confirming monoassociation.  For monoassociated 

pigs, total aerobic counts at 25% and 75% of SI location (log cfu/g) were not significantly 

different for corn (7.73±0.27, 8.82±0.26) and wheat-barley (7.61±0.25, 8.71±0.25) diets, 

respectively. Total anaerobic counts at 25% and 75% of SI length also did not differ  

between corn (8.17±0.34, 8.99± 0.23) and wheat-barley (7.76±0.34, 8.78 ±0.22) fed pigs, 

respectively.  

 For conventional pigs, total aerobe counts (log cfu/g) at 25% location were 

significantly (P<0.05) higher in wheat-barley fed pigs (5.47±0.19) compared to corn 

(4.81±0.19). Total aerobes at 75% location (6.35±0.19, 6.26±0.20) and total anaerobes at 

25% (5.70± 0.14, 5.92± 0.15) and 75% location (6.48± 0.21, 6.42± 0.23) for corn and 

wheat/barley, respectively, were not significantly different for corn or wheat/barley. 

 

4.4.3. Intestinal environment  

 Ileal pH at 75% of small intestinal length was not significantly different for cereal 

grain type or the type of microbiota (Table 4.3). However, both the type of the cereal and 

microbial status influenced the ileal digesta viscosity measured at 75% of small intestinal 
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length (Table 4.3). Higher viscosity was found in monoassociated pigs (P<0.001) and 

wheat-barley fed pigs (P<0.01) compared to CON and corn fed pigs, respectively.   

 

4.4.4. Enterocyte replacement  

 Microscopic examination of the small intestinal cross-sections at 75% length 

revealed that conventional pigs had shorter (P<0.001) villi and longer (P<0.001) crypts 

than monoassociated pigs (Table 4.3). Diet composition did not affect villus height or 

crypt depth. PCNA transcript abundance (copies per 100 copies GAPDH) was higher 

(P=0.001) in conventionally raised pigs (Table 4.3) consistent with deeper crypts. 

Interestingly, PCNA transcript abundance was higher (P<0.001) in pigs fed wheat/barley 

compared to corn. The effect was associated with a trend (P<0.1) towards a cereal type 

by microbial status interaction (Figure 4.1, panel A) such that PCNA expression was 

highest in conventional pigs fed wheat barley.  Caspase-3 activity in SI tissue, as an 

indicator of apoptotic activity, was increased (P<0.001) in conventional pigs, compared 

to monoassociation with EF (Table 4.3).  Dietary composition did not affect caspase-3 

activity.  

 

4.4.5. Digestive enzyme activity and expression 

 Aminopeptidase expression was relatively consistent among treatment groups 

except that monoassociated pigs tended to have higher (P=0.07) expression (Table 4.4). 

There was a trend (P=0.1) towards a significant interaction between microbial status and 

APN activity. (Table 4.4, Figure 4.1, Panel B).  Monoassociated pigs had increased APN 

activity relative to conventional pigs however this effect was most pronounced in corn 
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than wheat/barley-fed pigs. Sucrase expression and activity were markedly affected by 

microbial status such that in monoassociated pigs expression was decreased (P<0.001) 

and activity was increased (P<0.001) altering (P<0.001) the ratio. Examination of the 

trend (P<0.1) towards a significant interaction for sucrase expression did not reveal a 

marked shift from this pattern (Figure 4.1, Panel C). Cereal type did not affect sucrase 

parameters. No significant differences were observed for LPH gene expression, activity 

or the ratio of activity to expression (data not shown).  
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Figure 4.1. PCNA expression (A), APN activity (B), sucrase expression (C) and Muc 2 
expression (D) in conventional (CON) and monoassociated (EF) pigs fed corn or wheat-
barley based post-weaning diets. Bars with different letters are significantly different 
(P<0.05)  
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4.4.6. Goblet cell histochemistry and mucin expression 

The total number of goblet cells per villus was not significantly affected by 

microbial status, however, monoassociation decreased (P<0.001) the number of neutral 

mucin cells per villi and tended (P<0.1) to increase the number of acidic mucin cells 

compared with conventional pigs. In crypts, monoassociation decreased (P<0.001) the 

number of neutral and acidic goblet cells as well as the total goblet cell number. Type of 

cereal grain did not affect the number or type of goblet cells in villi or crypts.  

 Relative transcript abundance for three mucin genes in whole intestinal tissue at 

75% SI length is presented in Table 4.5. Based on the number of copies/10,000 copies of 

GAPDH, Muc 13 was the most highly expressed followed by Muc 2 and Muc 1. The 

expression of membrane associated mucin genes (Muc 1 and Muc 13) was significantly 

reduced (P<0.001) in monoassociated compared to conventional pigs.  Relative 

expression of the secreted mucin (Muc 2) was also significantly (P<0.05) lower in 

monoassociated pigs, however, analysis of the interaction trend ( P<0.1) for this gene 

revealed that the reduction in Muc 2 expression was more marked in monoassociated pigs 

fed wheat/barley compared to monoassociated pigs fed corn ( Figure 4.1, Panel D). 
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4.5. Discussion 

These experiments were initially planned to examine the effect of cereal grain type on 

post weaning digestive physiology in conventional and germ-free pigs. This approach 

enabled the separation of responses mediated directly by the cereal grain constituents 

(including but not limited to the difference in ADF and especially NDF content of 

different cereal grains) versus those mediated indirectly through microbial fermentation. 

We hypothesized that cereal grain type affects digestive physiology and these would be 

mediated indirectly by changes in the composition of intestinal microbial community 

(Hill et al., 2005) or fermentation products. Unfortunately, contamination of the germ-

free pigs with E. faecium occurred. Fortunately, however, based on viable plate counts, 

the number of E. faecium in intestinal contents was not affected by cereal-type.  Thus, 

cereal type did not influence bacterial colonization in monoassociated pigs in contrast to 

conventional pigs in which the mixed microbial population was altered based on viable 

plate counts. Testing of the original hypothesis therefore remains essentially valid. 

Our finding of heavier conventional pigs at the end of the experiment is in agreement 

with results reported by Landy and Ledbetter (1966) and Waxler and Drees (1972) where 

conventional pigs were found to be heavier than germ-free and isolator reared 

contaminated pigs at three weeks of age. Raising of conventional pigs with sows until 

weaning compared to gnotobiotic pigs which were kept in isolators from day 0 probably 

added to the difference in their growth rates. Although gamma irradiation is the preferred 

method of diet sterilization resulting in less severe nutrient loss versus other methods 

(Sickel et al., 1969) some nutrient loss is still accepted. Thus, some caution should be 

used in assessing the effects of monoassociation versus a conventional microbiota. While 
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the pigs were of the same chronological age, the observed differences in growth rate 

could have affected developmental age. Results of relative comparison of organs are also 

in agreement with Waxler and Drees, (1972) with a heavier heart in germ-free pigs with 

no difference in liver weight. Reduced weight of spleen in gnotobiotic pigs is consistent 

with limited immune system development and less antigenic stimulation (Rothkotter, 

1991). Relative SI length was greater in monoassociated pigs in contrast to the hypothesis 

that an increase in SI length could be a host response to improve competition with 

bacteria for nutrients. Mochizuki and Makita (1997) found that small intestine was 

significantly shorter only in female SPF swine compared to conventional swine. Length 

of germfree rat small intestine was found to be comparable to its conventional 

equivalents (Wostmann, 1996). Thus there is little support to suggest increased SI length 

imparts an advantage in nutrient competition with the microbiota. Numerous studies 

examining dietary fibre effects on physicochemical environment and gastrointestinal 

morphology of the gut indicate variation in results due to different fibre sources, levels 

and duration of fibre feeding. For example McDonald et al., (2001) found decreased 

villus height and crypt depth with addition of CMC whereas others found no or only 

small visible effects on morphology by feeding high levels of non-fermentable dietary 

fibre (Anugwa et al, 1989; Vahouny, 1987).  Nevertheless, it is generally accepted that 

soluble fibre increases digesta viscosity and reduces pH in the SI associated with 

increased microbial enzymatic degradation of NSP and fermentation to lactic and volatile 

fatty acids (Drochner and Coenen, 1986; Van der Meulen and Bakker, 1991; Jensen and 

Jorgensen, 1994 and Hogberg and Lindberg, 2004).  We did not find significant cereal 

grain type or microbial status effects on ileal pH. This was somewhat surprising in terms 
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of microbial status in that we expected a higher pH in monoassociated pigs associated 

with reduced fermentative capability. However, Enterococci spp. are among the lactic 

acid bacteria which produce lactic acid as a major fermentation product. Although we did 

not measure digesta lactic acid or VFA content it is possible that lactic acid levels were 

comparable in monoassociated and conventional pigs.  Digesta viscosity was increased in 

wheat/barley fed pigs consistent with the high soluble fibre content. Pigs associated with 

EF also demonstrated increased viscosity independent of diet consistent with a limited 

capacity of EF in fibre degradation. Although fibre degradation is often discussed as 

primarily a function of the hindgut microbiota, our results do confirm a microbial 

contribution to small intestinal fibre degradation and digesta viscosity.   

In the present study, there was good agreement among changes in villus height, crypt 

depth, expression of PCNA and caspase-3 activity as indicators of intestinal morphology. 

Conventional pigs had short villi and longer crypts associated with higher PCNA 

expression and caspase-3 activity in agreement with earlier studies in pigs (Willing and 

Van Kessel, 2007). Wheat-barley fed conventional pigs were found to have higher PCNA 

expression primarily associated with a conventional microbiota. Previous studies have 

reported that high dietary fibre alters the rate of intestinal cell turnover as well as 

intestinal morphology in growing pigs (Jin et al., 1994). Furthermore, McCullough et al., 

(1998) concluded that dietary fibre has direct and indirect effects on the gut including 

higher crypt cell production and decreased enteroendocrine cells in small intestine of 

conventional rats. We observed that wheat-barley diets increased total aerobes 

significantly (P<0.05) (chapter 3.4.2.) based on conventional culture analysis.  Our 

finding of higher PCNA transcript abundance in conventional and wheat-barley diet fed 
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pigs along with a trend of significant interaction suggests that at the intestinal cellular 

level dietary fibre effects were mediated by gut microbiota  and also supporting the 

hypothesis that high dietary fibre increases intestinal proliferation. Surprisingly, however, 

cereal grain fibre had no effect on crypt depth pointing to the fact that cell proliferation 

might not be limited to the crypts in pigs as has already been reported in chicken (Uni et 

al., 1998).  

The trophic effects of dietary fibre may be caused directly by physicochemical 

changes in the gut environment or indirectly mediated by bacterial fermentation products 

and/or the stimulation of trophic hormones. Use of non-fermentable dietary bulk (Kaolin) 

neither stimulates epithelium nor modifies the effect of SCFA (Sakata, 1986) suggesting 

that it is not likely that physical abrasion stimulates epithelial proliferation. Other studies, 

however, have reported decreased villus length and increased crypt depth with addition of 

high viscosity non fermentable carboxymethyl cellulose (CMC) to the diet of weanling 

piglets (McDonald et al., 2001) and increased villus height in pigs fed high insoluble 

dietary fibre (Hedemann et al., 2006). Absence of increased intestinal proliferation in EF 

pigs in this study is in accordance with earlier studies in germ-free rats suggesting the 

importance of intestinal microbiota in intestinal proliferation (Komai et al., 1982; 

Goodlad et al., 1989 and Fuller et al., 1993). Short chain fatty acids are the main end 

products of bacterial fermentation but the mechanisms of their trophic action on intestinal 

tissue have not been clarified. The findings here indicate that at molecular level effects of 

cereal grain type on gut morphology were indirectly mediated by conventional 

microbiota. SCFAs were reported to increase functional capacity of bowel by increasing 

the mRNA abundance of nutrient transporters including facilitative glucose transporter 
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(GLUT2), brush-border sodium/glucose cotransporter (SGLT-1) (Tappenden, 1997) and 

by increasing epithelial surface area (Bartholome et al., 2003). Other studies revealed that 

SCFA induced intestinal adaptation was associated with upregulation of ileal 

proglucagon mRNA abundance as well as plasma GLP-2 concentrations (Tappenden and 

McBurney, 1998 and Tappenden et al., 1998). Intestinal microbiota has also been shown 

to differentially affect the proglucagon gene expression (Siggers et al., 2008). However, 

the specific attributes of dietary fibre that affect these processes are unclear.  

In the present study, aminopeptidase and disaccharidases activity and gene expression 

was estimated in whole intestinal tissue at 75% length of small intestine. Intestinal 

microbiota can affect digestive physiology by altering digestive enzymes directly by 

microbial synthesis or inhibition of enzymes (Borgstrom et al., 1959) or indirectly 

through alterations in luminal pH, secretory and absorptive functions and epithelial 

turnover (Lesher et al., 1964 and Khoury et al., 1969). We found reduced activity of 

brush border enzyme aminopeptidase N in conventional pigs in agreement with previous 

studies (Borgstrom et al., 1959 and Willing and Van Kessel, 2009). However, in contrast 

to the previous study (Willing and Van Kessel, 2009) where in conventional pigs 

decreased APN activity was found concomitantly with increased expression, we observed 

that APN expression tended to be higher in monoassociated pigs. These studies were 

carried out in 24 d old post weaned pigs on a solid corn-soy or wheat-barley soy diets and 

therefore, different experimental design including age of pigs, weaning status and dietary 

factors might be responsible for the change in expression. In this study, presence of 

higher number of mature enterocytes as indicated by finding of longer villi in 

monoassociated pigs could be responsible for higher APN enzyme activity as postulated 
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in germ-free rats (Reddy and Wostmann, 1966). Alternatively, in conventional pigs 

microbial products could inactivate digestive enzymes leading to reduced activity as 

reported earlier (Corring et al., 1981). It is not clear why the increase in APN activity in 

EF pigs tended to be less in wheat-barley compared to corn-fed pigs. It is possible 

however, that the physico-chemical properties of wheat-barley relative to corn impacted 

APN activity directly.  

We found reduced sucrase activity along with higher expression in conventional pigs 

suggesting increased turnover of this enzyme. These results agree with earlier results of 

increased expression and decreased activity of APN in milk fed conventionalized pigs 

(Willing and Van Kessel, 2007). In this study, reduced villus height, increased PCNA 

expression and higher caspase-3 activity in conventional pigs indicate reduced mature 

cell number and hence might be responsible for reduced activity. For higher expression of 

sucrase some other mechanism might play a role. It is known that postnatal maturation of 

intestinal digestive enzymes can be regulated at the levels of transcription (Krasinski et 

al., 1980), synthesis (Seetharam et al., 1980), post-translational glycosylation (Beaulieu 

et al., 1989) and turnover (Seetharam et al., 1980). Ontogenic expression of sucrase 

isomaltase is primarily regulated at transcriptional level in rats (Leeper and Henning, 

1990) and humans (Traber et al., 1992). Various exogenous and endogenous factors 

including nutrients, growth factors and glucocorticoids can affect brush border enzyme 

activities by influencing these processes (Kodolvsky, 1981). This increased expression 

could be as a feedback response to reduced activity or as a direct response to microbial 

colonization in conventional pigs as suggested for APN (Willing and Van Kessel, 2007). 
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Cereal grain type was not found to affect sucrase activity to expression ratio despite 

higher PCNA expression in wheat-barley fed pigs. 

Our results of no significant effects of cereal grain type or the microbial status on the 

activity or expression of LPH in post-weaned pigs can be explained by reports that LPH 

activity diminishes around weaning because of reduced gene expression and protein 

translation and increase enzyme turnover in rats (Tsuboi et al., 1992) and pigs (Torp et 

al., 1993).  

In chapter 3.0 we reported that MHA-FA supplemented pigs had higher number of 

total aerobes and lactobacilli in the upper small intestine. Absence of any significant 

effects of methionine source in spite of changes in microbial composition suggest that 

these changes were not sufficient for influencing GI physiology as studied by the 

parameters here. 

We estimated the number of different types of mucin cells in the villi as well as 

crypts. Conventional pigs had higher neutral mucin goblet cells and a trend of 

significantly higher acidic cells in their villi in monoassociated pigs. Though not 

analyzed statistically, we also observed more acidic than neutral goblet cells in villi in 

conventional as well as monoassociated pigs. This is in agreement with a report by 

Deplancke and Gaskins (2001) which indicated that the ratio of neutral to acidic mucins 

increases between birth and weaning and decreases after weaning. Also the higher 

number of acidic than neutral mucins in villi agree with the studies indicating that the 

intestinal regions densely populated by microbes predominantly express acidic mucins as 

these appear less degradable by bacterial glycosidases and host proteases (Roberton and 

Wright, 1997 and Deplancke et al.,  2000). In crypts, we found a higher number of acidic, 
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neutral as well as total mucin cells in conventional compared to monoassociated pigs in 

agreement with previous studies reporting that germfree rodents had few and smaller 

sized goblet cells (Enss et al., 1992; Kandori et al., 1996 and Meslin et al., 1999). In the 

crypts we also observed increased number of neutral compared to acidic mucin cells in all 

pigs. Increased number of goblet cells in conventional pigs can be explained as mucus 

offers a number of ecological advantages to the host such that goblet cell number and 

presumably mucus secretion is increased in response to intestinal microbes. It was also 

reported that both commensals and pathogenic bacteria regulate mucus synthesis, 

secretion and composition from host goblet cells (Deplancke and Gaskins, 2001). Cereal 

grain type was not found to affect mucin cell number or mucin composition in villi or 

crypts suggesting the microbial composition changes associated with cereal type did not 

markedly change mucin composition or goblet cell number.  

The chemical composition of mucin within cells undergoes changes as the goblet 

cells mature in mid-crypt region and migrates both upwards toward the villi and 

downward into deeper regions of crypts (Cheng and Bjerknes, 1980). The production of 

different types of mucins is dependent not only on number of goblet cells and their mucin 

content but also on the extent of secretion of preformed mucins and onset and rate of 

biosynthesis of different mucin types (Brown et al., 1988). In addition to changes in 

goblet cell counts and types, expression of mucin genes was also influenced by gut 

microbial composition. Significantly higher expression of membrane bound Muc 1 and 

Muc 13 in conventional pigs suggested increased capacity for mucin synthesis at the 

molecular level. As membrane bound mucins, this expression activity is likely associated 

with enterocytes rather than goblet cells and suggests an important role for these mucins 
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in the host response to microbial colonization.  Interestingly, expression of the secreted 

mucin (Dharmani et al, 2009) Muc 2, tended to be lower in monoassociated pigs fed 

wheat-barley but not corn. This contrasts the finding for goblet cell number and indicates 

that goblet cell number and mucin synthesis may not always be associated.  

The regulatory mechanisms that mediate microbiota induced changes in goblet cell 

number, composition and mucin genes expression are poorly understood. Two 

hypotheses have been put forward including direct microbial effects through the release 

of bioactive factors or indirectly by activating the host cells (Deplancke and Gaskins, 

2001). Bacterial products like lipopolysaccharides and flagellin A from Gram negative 

and  lipoteichoic acid from Gram positive bacteria were reported as modulators of Muc 2  

and Muc 5AC (Dharmani et al., 2009). Others have reported a direct cross-talk between 

microbes and host epithelium suggesting that the host capacity for synthesizing diverse 

carbohydrates may have evolved in part from their need both to evade pathogenic 

relationships and to coevolve in symbiotic relationships with nonpathogenic microbes 

resident in gut (Hooper and Gordon, 2001). To our knowledge, there are no reports 

studying expression of mucin genes in pigs. Detailed investigation of mucin dynamics in 

monoassociated gnotobiotic animals could shed more light on these regulatory 

mechanisms. 

In summary, the intestinal microbiota has major influences on intestinal morphology 

and digestive physiology including increased viscosity, villus height, APN and sucrase 

activity along with  a decrease in body weight, spleen weight, crypt depth, PCNA 

expression, caspase-3 activity, sucrase expression, goblet cell counts and mucin genes 

expression. This study also demonstrates that the post-weaning decline in expression and 
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activity of LPH is not influenced by the intestinal microbiota.  Cereal grain type was 

found to influence gastrointestinal physiology although differences were relatively minor. 

Interactions between cereal grain type and microbial status were observed for APN 

activity and PCNA, sucrase and Muc 2 expression. The nature of those interactions 

suggested that the microbiota were required for the increase in PCNA expression 

associated with wheat-barley diets and is consistent with microbial compositional 

changes associated with fibre content relative to corn.  For the other interactions observed 

it is unclear whether differences were affected directly by components of the cereal or 

indirectly through microbial fermentation.  This study confirms previous studies 

demonstrating a marked microbial influence on intestinal development. Limited 

physiological differences were associated with cereal grain type in the diet suggesting 

that dietary cereal ingredient selection, other than for supply of essential nutrients may 

not be important for the early (10 days) post weaning phase.  
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5.0. DIGESTA FLOW IN UPPER GASTROINTESTINAL TRACT IN 

CONVENTIONAL AND GNOTOBIOTIC PIGS   

 

5.1. Abstract 

 Two studies were conducted using sixteen, 14 d old weanling conventional 

(CON) and sixteen gnotobiotic pigs. For both studies, the experimental diets were based 

on corn-soybean meal or wheat-barley-soybean meal and supplemented with DL-

methionine or its hydroxy-analogue (MHA-FA) as the methionine source to yield four 

experimental treatments. At 24 d of age after an overnight fast, piglets were offered 

predetermined (20g/kg BW) meal of their respective experimental diets containing 0.5% 

chromic oxide. CON pigs were killed at 3 (3 pigs per treatment), 4 (3 pigs per treatment) 

and 5 (2 pigs per treatment) hours and gnotobiotic pigs were killed at 3 hours after the 

start of the meal. Intestinal digesta samples were collected at 5, 25, 50, 75 and 95% of 

small intestinal length. The pH and viscosity were measured in digesta samples at 75% of 

small intestinal location immediately after collection. An assay was modified and 

validated to be suitable for detection of chromic oxide in small digesta samples. Percent 

recovered chromic oxide in digesta samples was estimated at all locations in CON and 

MA pigs. In CON pigs, corn based diets produced higher pH (P<0.05) and lower 

viscosity (P<0.05) compared with wheat-barley based diets. Cereal grain type did not 

affect the pH or viscosity in MA pigs. Chromic oxide concentration increased distally in 

the small intestine in both conventional and MA pigs. In conventional pigs for both diets 

the chromic oxide concentration in small intestine was not significantly different at 

different time points. Compared with CON, MA pigs showed decreased percent chromic 
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oxide in digesta at all locations suggesting smaller boluses of feed exited the stomach of 

MA pigs. Chromic oxide at 95% SI length in MA pigs was not detectable suggesting a 

slower small intestinal transit of digesta in these pigs. The type of cereal grain in the diet 

did not affect the percent chromic oxide recovered in CON or MA pigs. In conclusion, a 

novel chromic oxide microassay was developed and demonstrated an microbial impact on 

gastric chyme emptying and small intestinal transit time 

 

5.2. Introduction 

Nutrient digestibility is a function of passage rate of digesta especially through the 

stomach and upper small intestine. Digestion in turn is affected by animal factors (Noblet 

and Shi, 1994) and physico-chemical characteristics of the feed (Le Goff and Noblet, 

2001).  

Various indigestible markers are used for digestibility studies including titanium 

oxide (TiO2), ytterbium oxide (Yb2O3), chromium-EDTA (Cr-EDTA), acid insoluble ash 

(AIA) and chromic oxide (Cr2O3). Use of chromic oxide as an indigestible marker in this 

study required large sample sizes for its estimation posing a constraint for its use, 

especially in individual small pigs, when sampling proximal intestinal segments and 

when multiple analyses are proposed. Therefore, a microassay for estimation of chromic 

oxide in small sample size needed to be developed.  

Many studies have evaluated effects of dietary fibre on digestive processes but 

there is limited literature available describing fibre effects on digesta transit through the 

gastrointestinal tract. For example, Owusu-Asiedu et al., (2006) reported that increasing 

non starch polysaccharides in the diet in form of guar gum (soluble) and cellulose 
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(insoluble) reduced the digesta passage rate in the small intestine. Increasing the 

insoluble dietary fibre in diet decreased the mean retention time in small intestine 

(Wilfart et al., 2007). Furthermore, indigenous microbiota have been shown to influence 

intestinal motility in rats (Tennant et al., 1969) suggesting a possible relationship 

between microbiota and digesta rate of passage. Rate of passage of digesta through the 

gastrointestinal tract has important implications affecting opportunity for the host for 

nutrient digestion and absorption and particularly at locations where digesta is retained 

for longer periods of time, affect opportunity for microbial fermentation as well. 

Therefore, the current study was designed to determine the effects of corn vs. 

wheat/barley and commensal microbiota on digesta flow in the pig.  

 

5.3. Materials and Methods 

5.3.1. Chromic oxide microassay  

The chromic oxide microassay was based on the procedure of Fenton and Fenton 

(1979) with modifications to accommodate small sample size. Briefly, 100 mg of freeze-

dried digesta or 600 mg of freeze-dried diet were placed at 450oC overnight to eliminate 

all organic matter. These samples were then digested with 5 mL of digestion mixture (2 

% sodium molybdate, 40% of 70% perchloric acid and 30% of sulfuric acid in distilled 

water) on a pre-heated hotplate at 300ºC until the color became yellow or red and then 

further heated for an additional 15 min. After cooling, the digested samples were adjusted 

to 10 mL using distilled water and centrifuged at 3000 rpm for 10 min. The absorbency 

of the supernatant was measured using a spectrophotometer (Spectramax, Molecular 

Devices Corp., Sunnyvale, CA) at 440 nm after transferring 250 µL in triplicates into 96 
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well plates ( Nalge Nunc International, USA). A blank and series of chromic oxide 

standards (Anachemia Canada Inc. Lachine, Quebec) ranging from 250-3000 µg were 

prepared according to the same assay procedure. Chromic oxide was weighed using a 

microbalance (Mettler Instrumente AG, Switzerland). Chromic oxide concentration 

(µg/mg or mg/g of digesta) was calculated using a linear regression equation describing 

the relationship between the mass of chromic oxide and optical density at 440 nm. 

Chromic oxide concentration (µg chromic oxide/mg digesta dry matter) in digesta was 

normalized to (divided by) concentration of chromic oxide in feed (µg chromic oxide/mg 

digesta dry matter) to correct for any variation in endogenous secretions.    

 

5.3.1.1. Validation of chromic oxide microassay  

5.3.1.1.1. To confirm linearity and repeatability 

 Chromic oxide standards were prepared by weighing aliquots of chromic oxide as 

described above. Aliquots were prepared in triplicates within 10% of 250, 500, 1000, 

1500, 2000 and 3000 µg. Actual mass was recorded and used in the  calculations. 

Calibration standards were prepared on 3 separate days and assays used to determine 

chromic oxide content in a representative high and low content digesta sample (determine 

by visual inspection). For each calculation series a linear equation was fitted to the plot of 

chromic oxide mass versus optical density (440nm). The slope, intercept and correlation 

coefficient (R2) for each line were recorded. To compare the modified procedure with the 

standard assay described by Fenton and Fenton (1979), four experimental diets were 

assayed in triplicates using both procedures.  
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5.3.2. Animal experiments 

Two studies involving conventional and germ-free pigs were conducted. The 

experimental protocol was approved by the University of Saskatchewan Animal Care and 

Use Committee (IACUC) and was performed in accordance with recommendations of the 

Canadian Council on Animal Care (1993) as specified in the Guide to the Care and Use 

of Experimental Animals. For both studies, the experimental diets were based on corn-

soybean meal and wheat-barley-soybean meal and supplemented with either DL-

methionine or its hydroxy-analogue (MHA-FA) as the methionine source to yield four 

experimental treatments. Diets were formulated to meet or exceed nutrient requirements 

of pigs (NRC, 1998) and pelleted. Table 3.1 depicts the diet formulations and calculated 

as well as analyzed nutrients composition.  

 

5.3.2.1. Conventional pig study 

The experimental design for conventional pigs was as described in 

Chapter 3 section 3.3.3 (Conventional pig experimental design).  
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Pigs were weighed and humanely killed at 3 (3 pigs per treatment), 4 (3 

pigs per treatment) and 5 (2 pigs per treatment) hours after the start of the meal. Intestinal 

digesta samples were collected at 5, 25, 50, 75 and 95% of small intestinal length, kept on 

ice and then stored at -20˚C until further analysis. Separate digesta samples were also 

collected aseptically to confirm bacterial status as described in Chapter 3 section 3.3.7 

(Sample collection). 

 

5.3.2.2. Gnotobiotic pig study 

Gnotobiotic pigs were the same pigs as described in Chapter 3 section 3.3.4 

(Preparation of gnotobiotic isolators), 3.3.5 (Gnotobiotic pig derivation and maintenance) 

and 3.3.6 (Gnotobiotic pig experimental design). At 24 d of age piglets were offered meal 

corresponding to 20g/kg BW of their respective experimental diets containing 0.5% 

chromic oxide. At 3 hours after the start of the meal pigs were weighed and killed by 

submersion in CO2 and exsanguination. The small intestine was dissected from the 

mesentery and digesta was collected from 5, 25, 50, 75 and 95% of small intestinal 

length, kept on ice and then stored at -20˚C until further analysis. Digesta samples were 

also collected aseptically to confirm bacterial status (see Chapter 3, section 3.3.8. 

Microbial identification and enumeration). 
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5.3.3. Laboratory Analysis 

5.3.3.1. pH and viscosity measurement  

 The pH and viscosity of digesta samples at 75% of small intestinal location were 

measured immediately after collection.  For measuring viscosity, 1-2 g of content was 

centrifuged at 14000 rpm for 3 minutes and viscosity (centipoise) was determined using a 

digital viscometer (Brookfield digital viscometer, Model LVTDVCP-

II, Brookfield Engineering Laboratories, Stoughton, MA., USA). For estimation of pH, 

the ileal digesta (1-2 g) was vortexed well to make slurry and pH was determined using 

digital pH/mV/°C meter (Cole Palmer Instrument Company, Chicago, IL, USA). The 

probe of pH meter was washed well with deionised water between samples.  

 

5.3.4 Statistical analysis 

 In a separate one-way ANOVA using the general linear model, source of 

methionine did not affect any of the parameters studied for conventional or gnotobiotic 

pigs and therefore was excluded from both final models. Conventional pigs data was 

analyzed as 2X3X5 factorial using the general linear models procedure of SPSS software 

(v. 12.0, SPSS Inc, Chicago IL, USA) with main effects of cereal grain type (corn vs. 

wheat and barley) and time after the meal (3 vs. 4 vs. 5 hrs.) and SI location (5, 25, 50, 75 

and 95% of SI length) and interactions as source of variation. For gnotobiotic pigs, data 

was analyzed as 2X5 factorial with main effects of cereal grain type (corn vs. wheat-

barley) and SI location and interactions as sources of variation. Treatment means were 
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separated using the Least Square Difference and differences were considered significant 

where P<0.05.  

 

5.4. Results 

5.4.1. Validation of chromic oxide microassay 

 The R2 for the linear regression of each series of chromic oxide standards against 

absorbance ranged from 0.9917 to 0.9988 as indicated (Figure 5.1). The slope of the 

calibration curve ranged from 5600 to 5900 µg/unit O.D. (450 nm) and the y-intercept 

from 11 to 65 µg chromic oxide. Triplicate determination of chromic oxide mass for the 

same relatively high content digesta sample on each calibration curve produced a mean 

(±SEM) chromic oxide mass of 18.23±0.12, 17.36±0.11 and 18.01±0.11 µg providing a 

CV of 2.53 %. For a representative low concentration digesta sample determinations on 

each curve were 2.89±0.02, 2.83±0.02 and 3.30±0.03 µg with a CV of 8.44%.  Table 5.1 

shows the CV for chromic oxide determinations in digesta samples analyzed using the 

original procedure of Fenton and Fenton, (1979) and the modified microassay. The CV 

varied between 0.86 to 4.26 %. 
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5.4.2. Microbial status of gnotobiotic pigs 

 Conventional cultural and further molecular sequence analysis (Hill et al., 2004) 

confirmed that pigs in the four isolators were monoassociated with Gram positive 

Enterococcus faecium (100% identity). 

 

5.4.3. Digesta flow 

 Figure 5.2 (panels A and B) present chromic oxide recovered in digesta as a 

percent of chromic oxide in diet for conventional and monoassociated pigs, respectively. 

Percent recovered chromic oxide increased distally in the small intestine in both 

conventional and monoassociated pigs. Interestingly, in conventional pigs percent 

chromic oxide recovered declined at the 95% location.  In conventional pigs for both 

diets the chromic oxide concentration in the small intestine was not significantly different 

at different time points following the meal, nor did time following the meal show any 

significant interaction with other main effects. In monoassociated pigs percent chromic 

oxide recovered in intestinal contents was much lower than for conventional pigs. Also 

we failed to detect any chromic oxide at 95% length of small intestine at 3 hours 

following the meal. The type of cereal grain in the diet did not affect the percent chromic 

oxide recovered in conventional or monoassociated pigs. 
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Figure 5.1. Calibration curves for three experiments showing relation between 

absorbance (440 nm) and chromic oxide mass using the modified microassay 

procedure. The linear equation and R2 for each series is given at the top of the 

figure. 
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Table 5.1. Comparison of chromic oxide content (µg/mg) in the four experimental 

diets using the original Fenton and Fenton (1979) procedure or the modified 

procedure. 

 

Type of diet Original procedure  Modified procedure  CVa 

Corn-Soy-MET 5.6 5.74 1.75 

Wheat-Barley-Soy-

MET 

5.8 6.16 4.26 

Corn-Soy-MHA-FA 5.7 5.77 0.86 

Wheat-Barley-Soy-

MHA-FA 

5.8 5.92 1.45 

a Coefficient of variance 
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5.4.4. Intestinal environment 

 The corn and wheat-barley diets were found to significantly alter digesta pH and 

viscosity. In conventional pigs, corn diets had higher pH (P<0.05) and lower viscosity 

(P<0.05). In monoassociated pigs cereal grain type did not affect the pH or viscosity. 

Though a statistical comparison could not be made, monoassociated pigs had higher 

viscosity and lower pH for both corn and wheat-barley diets than conventional pigs. 
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Figure 5.2. Percent chromic oxide recovered in digesta at 5, 25, 50, 75 and 95%   
length of SI at 3, 4 and 5 hrs. in CON (A) and 5, 25, 50, 75% SI length in MA pigs 

(B) at 3 hrs. after feeding a corn or wheat-barley based meal. The vertical bars 
depict SE.  a, b Means with a different letter are significantly different (P<0.05) 
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Figure 5.3. pH (A) and viscosity (B) in digesta at 75% of small intestinal length in 
conventional pigs fed corn or wheat-barley based diets. The vertical bars depict SE.  
a, b Different lowercase letters on each bar indicate significant difference (P<0.05) 
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Figure 5.4. pH (A) and viscosity (B) in digesta at 75% of small intestinal length in 
monoassociated pigs fed corn or wheat-barley based diets. The vertical bars depict 
SE.  a, b Different lowercase letters on each bar indicate significant difference 
(P<0.05).  
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5.5. Discussion 

The flow of dry matter through the gastrointestinal tract has been estimated by 

measurement of an indicator in intestinal contents or faeces at regular intervals. 

Chromium oxide does not fullfill all of the ideal characteristics of an indicator (Faichney, 

1975; Beever et al., 1978) nevertheless it is one of the most commonly used markers of 

dry matter flow in swine digestibility studies. The limitations of chromic oxide as an 

indigestible marker include interference of phosphorus with Cr2O3 estimation, possibility 

of environmental pollution due to heavy metal chromium (Cr) and hazardous nature of 

perchloric acid used in this procedure. We were successfully able to scale down the assay 

to estimate chromic oxide in 1/20th of original assay sample size. The correlation 

coefficient of the plots between chromic oxide values and optical density was above 0.99 

indicating linearity. Although the CV between assays increased at lower chromic oxide 

concentrations interassay variation was in an acceptable range. The coefficient of 

variance between the original assay of Fenton and Fenton (1979) and the microassay 

ranged from 0.86 to 4.26% showing good agreement with the original assay. 

We used chromic oxide concentration in digesta as a percent of chromic oxide in 

feed along the small intestine as a measure of flow of digesta through the upper gut so as 

to correct for endogenous secretions and any changes of biomass. Because we did not 

collect total mass of digesta and therefore, we could not calculate absolute % of chromic 

oxide at each location. 

In conventional pigs, the amount of marker recovered in digesta was not different 

for different cereal grains or at different time points indicating steady emptying of 

stomach over that period. Gastric emptying is represented as a mass-action law driven by 
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total dry matter mass (Usry et al., 1991) or protein mass (Bastianelli et al., 1996). Gastric 

emptying is likely to be faster for about 30 minutes after ingestion because of higher 

intragastric pressure (Laplace and Tomassone, 1970). However, after this initial phase of 

rapid gastric emptying, the flow rate would be slower because of the feedback from the 

small intestine. Ultimately gastric emptying will be dependent on the rate of passage of 

digesta along the small intestine and rate of digestion of food (Potkins et al., 1991). Many 

studies investigating effects of dietary fibre on the passage rate of digesta (Le Goff et al., 

2002, Leeuwen and Jansman, 2007; Wilfart et al., 2007) report decreased mean retention 

time with increasing dietary fibre. However, a lot of variability has been reported in the 

results associated with animal factors, the nature and origin of dietary fibre, use of 

different markers and calculation differences.  Use of guar gum and pectin (soluble 

polysaccharides) accelerated gastric emptying and digesta passage rate along small 

intestine but did not significantly alter overall transit time whereas bran and oatmeal by-

product increased rate of passage of digesta through the large intestine resulting in faster 

passage rate through gastrointestinal tract (Potkins et al., 1991). Our results of no effects 

of type of cereal grains (corn versus wheat-barley) on digesta flow through small 

intestine are in accordance with previous studies by Latymer et al., (1985) and Potkins et 

al., (1991) which reported that wheat bran and oatmeal by-product had no significant 

effects on digesta passage rate in the small intestine. Use of whole cereal grains instead of 

soluble or insoluble fibre sources in this study, might have been responsible for absence 

of any significant effects on small intestinal digesta passage rate. In particular, fibrous 

components in the cereal matrix would be expected to take longer to solubilize reducing 

opportunity for impact in the upper gastrointestinal tract relative to purified fibres.   
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Our results of higher recovery of chromic oxide in all locations of small intestine 

of conventional pigs suggest that the bolus size leaving the stomach was larger. In this 

study, percent chromic oxide recovered across different locations of small intestine 

increased distally in both conventional and monoassociated pigs. This response probably 

reflects the addition of dry matter to digesta in proximal intestine from bile and 

pancreatic secretions, possibly mucus secretion, plus the removal of dry matter as nutrient 

absorption moving distally.  Interestingly, chromic oxide recovery declined at the 95% SI 

location which we speculate could reflect the contribution of microbial biomass to digesta 

dry matter. 

Percent chromic oxide recovered at any time point in conventional pigs was 

higher than percent chromic oxide recovered in monoassociated pigs at 3 hours following 

test meal. We did not detect any chromic oxide in the distal small intestine in MA pigs at 

3 hours post meal suggesting slower stomach emptying or slower small intestine transit in 

these pigs. Earlier studies have found that germfree rats had significantly reduced gastric 

emptying of oleic acid and triolein and subsequently reported reduced gastrointestinal 

motility (Tennant, et al., 1969). In this study based on % chromic oxide values in digesta 

to feed we concluded that the flow rate of digesta was slower in monoassociated pigs. 

Availability of total mass of digesta in stomach and at each small intestinal location and 

hence calculation of absolute mass of chromic oxide would have added further valuable 

information.  

Increased viscosity in monoassociated pigs could also contribute to slower digesta 

passage caused by higher water holding capacity resulting in less bulkiness (Le Goff et 

al., 2002). Another study reported that the spatial and temporal spread of migrating motor 
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complexes (MMC) is more restricted in the small intestines of germfree rats and slower 

than in conventional animals (Falk et al., 1998). Husebye et al., (1994) concluded from 

studies with conventionalization of germfree rats that the intestinal microbiota exerts a 

marked stimulatory influence on the spatial and temporal spread MMC in the small 

intestine. Also in another study (Caenepeel et al., 1989) the myoelectric complex was 

found to migrate slowly in germ-free rats which became faster when the germ-free rats 

were associated with a limited microbiota. While the mechanisms by which bacteria 

influence small bowel motor function are not understood, our results suggest that the 

influence of the microbiota on peristalsis and rate of passage of digesta can also be 

extended to the pig. 

Bacterial colonization might influence the types and amounts of neurotransmitters 

and hormones or the enteric neuronal plexus. The role of other mediators like short chain 

fatty acids can not be ruled out as these have been shown to stimulate contractions in the 

terminal ileum in dogs (Kamath et al., 1987) and humans (Kamath et al., 1988). It seems 

plausible that complex interactions exist between bacteria, with their metabolic pathways, 

toxins (Mathias and Clench, 1985) and antigenic properties, and the host’s responses. 

Lower pH observed in germ-free pigs could also be a mediator for the slower ileal 

motility in accordance with a previous in vitro study using rat tissues showing that the 

contractile effects of short chain fatty acids were brought out by pH changes (Cherbut et 

al., 1996). 

 Our finding of higher viscosity and low pH in wheat-barley fed conventional pigs 

are in accordance with previous studies by Jensen and Jorgensen (1994) and Wenk 

(2001). It was reported that a diet with high soluble fibre content will cause more water 



 

 108 

binding leading to increased viscosity and lower pH (Wenk, 2001) because of higher 

production of SCFAs by microbial fermentation. No cereal grain effects were observed in 

MA pigs because of absence of bacterial digestion and fermentation of cereal grain fibre. 

However, as noted in chapter 4, the pH of ileal digesta from MA pigs was lower than in 

conventional pigs and may have increased rate of passage compared to the germ-free 

state. The lower pH in MA pigs could reflect lactic acid production by E. faecium. 

 In conclusion, we were able to successfully modify and develop the microassay 

for estimation of chromic oxide in 1/20th of original sample size. We have also provided 

data to suggest that the commensal microbiota influence passage rate of digesta in the pig 

small intestine, extending previous findings primarily from rodents.   
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6.0. GENERAL DISCUSSION AND CONCLUSIONS 
  

There is growing amount of interest and need for researching gastrointestinal 

microbiota to study three way interaction including microbe-microbe interactions, 

microbe-host interactions and microbe –nutrient interactions. These interactions could 

potentially affect host nutrient availability, immune status and gut health and may be 

expressed differentially based on the host’s age, genetics and environment.  Therefore, an 

understanding of interactions of various cereal grains in diet with the intestinal 

microbiota and their effect on host nutrient supply and physiology will help in developing 

alternative management and dietary measures to maintain animal health and performance.  

Availability of a gnotobiotic pig model in our laboratory provides us a unique 

opportunity to study the interactions of dietary components with the desired microbial 

populations and the mechanisms involved.  Our hypotheses for this body of work 

explored the specific role of the intestinal microbiota in the host:microbiota:nutrient 

interaction relationship as it applies to outcomes related to animal nutrition and health. To 

investigate the role of the microbiota we utilized an in vivo gnotobiotic model. The 

approach allows the study of experimental treatments on the host in an environment 

where microbiota do and do not contribute to the host response.  A comparison of 

responses with and without a microbial influence permits a clear delineation of the 

microbial contribution to host response.  Clearly, this model is disadvantaged by the 

significant technical requirements to maintain a gnotobiotic environment and the 

significant constraints this places on experimental design.  Constraints include 

availability of isolator space, raising enough experimental units and the inability to study 

pathways involved. For this reason microbial influences on host response are often 
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studied indirectly or using in vitro models.  The gnotobiotic model does, however, deliver 

a number of advantages compared with in vitro approaches; these include the ability to 

study specific host responses to colonization with a single or a group of bacteria. 

Therefore, gnotobiotic animals provide an indispensable tool to study importance of 

gastrointestinal microbiota and host response to microbial colonization.  

 In previous work we reported the effect of an intestinal microbiota in 14 day old 

pigs fed infant formula (Shirkey et al., 2006; Willing and Van Kessel., 2007). In the 

present work we extended our gnotobiotic pig model from pre-weaning to post weaning 

by introducing γ - irradiated cereal based diets from 14 to 24 days of age. This was 

obviously an important extension of the model necessary to examine the effect of cereal 

type and allow further investigation of effects of feed ingredients on host physiology 

beyond the preweaning phase.  Furthermore, the model was improved by using γ-

irradiated sow colostrum, a source of passive antibody protection versus porcine serum. 

While pigs in previous studies were in good health, analysis of serum antibodies levels 

indicated marginal passive protection and a possible area to improve the model.    

In chapter 3, we hypothesized that microbial metabolism contributes to variation 

in bioavailability of methionine sources in pigs. Objectives of this research were to 

determine the small intestinal retention of methionine and its hydroxy- analogue in 

conventional and germ-free pigs and whether it was affected by cereal grain composition 

of the diet. Here we found increased retained MHA-FA associated radioactivity in 

conventional but not in monoassociated pigs along with decreased MHA-FA tissue 

radioactivity suggesting that microbial metabolism of MHA-FA could be responsible for 

its reduced relative availability for absorption. We extended previous findings of 
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microbial metabolism of MHA-FA in chickens to pigs (Drew et al., 2003). However, it 

was not clear whether MHA-FA is preferentially metabolized or its comparatively slower 

transport because of low affinity and low velocity H+ nonstereospecific transport system 

compared to a system B transporter for D- and L-methionine (Maenz and Engele Schaan, 

1996b), leads to increased metabolism by gut microbiota.  

We found higher counts of total aerobes and lactobacilli in MHA-FA 

supplemented pigs but whether these bacteria could be involved in its metabolism, is not 

clear. We did in vitro experiments to investigate which gut bacteria could have 

metabolised 3H- MHA-FA or 3H-MET starting with E. coli and L. fermentum but 

unfortunately the methodology didn’t work. Our results also indicate that even for readily 

available nutrients where absorption occurs rapidly in upper small intestine, there is 

potential for microbial competition and catabolism. This may have implications for 

amino acid supplementation. We we did not see any effect of cereal type on apparent 

absorption of MET or MHA-FA. Our cereals differed primarily in fibre content more 

likely to impact distal rather than proximal intestinal microbial community structure. One 

wonders whether differences in abundance of readily available carbohydrates may have 

had a greater impact on microbial catabolism of rapidly absorbed dietary supplements.  

In chapter 4, we hypothesized that the cereal grain type alters gastrointestinal 

physiology and mucin dynamics and that these effects are mediated indirectly by altered 

microbiota. Gnotobiotic pigs were monoassociated in the current study, however, the 

viable counts of contaminating bacteria were not influenced by cereal grain type and 

therefore, we could still test whether effects of cereal grain type were indirectly mediated 

by changes in gut microbiota.  
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In this chapter, we learned that type of cereal grain used influenced 

gastrointestinal morphology and physiology and these limited effects were indirectly 

brought about by changes in gut microbial composition as indicated by interactive effects 

for PCNA, APN activity, sucrase and Muc 2 expression. In this study we elected to 

compare cereal grain type as an approach to changing dietary fibre composition. 

Alternatively we could have used a number of available synthetic or purified fibre 

sources such as carboxymethyl cellulose, pectin, β-glucan.  These various purified 

sources would have permitted an examination of soluble versus insoluble fibre effects 

and/or allowed a more precise examination of effects of fibre without confounding 

impact of differences in other whole cereal components. We chose to utilize cereal grain 

for two reasons. Firstly because fibre in livestock diets is normally fed in the context of 

the whole grain matrix which is likely to impact its physicochemical properties along the 

length of the intestine. Secondly, and related to that, use of whole grain diets is more 

relevant to the commercial industry. Inclusion of fibre in diet causes changes in intestinal 

secretions and altered morphology (Wenk, 2001) and digestive physiology (Hedemann et 

al., 2006). The increased intestinal epithelial turnover, as observed here with the higher 

fibre wheat/barley diet, can lead to a reduction of digestion of various complex nutrients 

such as proteins and starch as well as in absorption of their digestion products, and other 

dietary components (minerals, vitamins). This suggests that the relationship between 

digestibility of a feed ingredient and its chemical composition may not solely reflect the 

relative ease of releasing absorbable monomers (e.g. amino acids, glucose) but also 

differences in digestive and/or absorptive capacity mediated indirectly by host responses 

(e.g. epithelial cell turnover rate) to changes in microbial composition.  
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Intestinal cell proliferation will have implications for digestive physiology as well 

as host intestinal health. Our findings of reduced villus height, longer crypts along with 

higher PCNA expression and caspase-3 activity in post-weaned conventional pigs 

confirm similar earlier findings of increased intestinal cell turnover in unweaned pigs 

(Willing and Van Kessel, 2007),  however the differences in this study were less dramatic 

which could be because of solid diet in postweaned conventional and monoassociated 

pigs.  

The mucus gel layer present on intestinal epithelial surface acts as a protective 

barrier and any change in quality and quantity of mucus secretion may have important 

physiological implications. In view of the ever changing animal husbandry, appropriate 

dietary modifications could correlate with the protection of intestinal mucosa from 

various infections. Dietary factors are known to affect the number of goblet cells and 

composition of intestinal mucins (Sharma and Schumaccher., 1995). One objective of this 

study was also to compare conventional and germ free animals to gain some insight into 

the levels to which dietary effects on mucin dynamics are mediated by indigenous 

microbiota. It is well known that effects of dietary fibre on mucin parameters vary 

depending on the nature, level and duration of fibre feeding. In this study, cereal grain 

type was not found to affect goblet cell numbers in intestinal crypts or villi, mucin 

composition or mucin gene expression and therefore, we were limited to a discussion of 

effects of microbiota on mucin dynamics. Based on the results of increased total and 

different types of mucin cells in conventional animals we were able to confirm that mucin 

secretion is enhanced with microbial colonization. Our novel work of investigation of 

mucin genes expression also indicated that conventional pigs had higher capacity of 
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mucin secretion at molecular level again consolidating the fact that mucin secretion is 

enhanced with microbial colonization to provide the host with various protective 

advantages. Our results of more acidic mucin cells in crypts of conventional pigs and 

higher acidic than neutral mucin in villi of all animals are in agreement with studies 

reporting that the intestinal regions densely populated by microbes predominantly express 

acidic mucins as these appear less degradable by bacterial glycosidases and host 

proteases (Roberton and Wright, 1997 and Deplancke et al., 2000).  

In chapter 5, we set out to examine the effects of dietary cereal grains and 

commensal microbiota on digesta flow in newly-weaned pigs. We successfully developed 

a microassay for estimation of chromic oxide in small sample sizes which was essential 

for our study because of low sample recovery from the proximal locations of small 

intestine. However, we understand that use of chromic oxide as indigestible marker is 

diminishing because of hazardous nature of perchloric acid used in the assay. Still, the 

microassay may be of value where small sample size is an issue.   

We found evidence of a slower rate of passage of digesta along small intestine in 

monoassociated pigs extending these finding from rodents (Riottot et al., 1980). 

Although the exact mechanisms of bacterial interactions with intestinal motility are not 

known, it seems plausible that complex interactions exist between bacteria, with their 

metabolic pathways, toxins (Mathias and Clench, 1985) and antigenic properties, and the 

host’s responses and these interactions have implications for nutrient digestibility. 

Nutrient digestion and absorption including that of amino acids is typically enhanced 

with slower passage rate of digesta because of ample time for enzymatic hydrolysis and 

absorption (Murray et al., 1977; Corring et al., 1991).  In the case of comparable residual 
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radioactivity for MET and MHA-FA in gnotbiotic pigs, perhaps the slower rate of 

passage offered more opportunity for MHA-FA absorption via the slower, low affinity 

lactate transport system as compared to the system B transporter for methionine.  

Whether rate of passage is a major contributor here is subject to debate. Few interactions 

were observed between intestinal morphology and cereal type such that speculation on 

the role of rate of passage of digersta is probably not warranted.  

In the present studies we accepted our hypotheses by concluding that intestinal 

microbial metabolism could be responsible for reduced availability of MHA-FA for 

absorption and that the cereal grain type had limited effects on intestinal morphology and 

physiology which were indirectly mediated via gut microbial changes. Also microbiota 

was found to have major influences on intestinal physiology and mucin dynamics and 

digesta flow rate. 

 

6.1. Limitations of present studies 

 In the present studies, gnotobiotic pigs grew poorly compared to conventional 

pigs which were raised with sows until weaning at 14 d of age. Use of infant formula 

compared to sow’s milk during pre-weaning period may have accounted for much of the 

performance differences because lactose is the main energy source in infant formula 

compared to fat in sow’s milk (Veum and Odle, 2001). Also the absence of maternal 

transfer of bioactive factors, leucocytes and cytokines in isolator reared monoassociated 

pigs might have contributed to reduced immune response and hence reduced growth  

(Bocci et al., 1993; Ellis et al., 1997).  
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We also experienced greater difficulty with adjusting isolator reared pigs to solid 

feed intake compared with conventional pigs. The difference in final weight of 

conventional and monoassociated pigs was significant and raised the question whether 

comparison of these groups examined a microbial influence or an impact of physiological 

age (chronological age was controlled).  Another option to avoid this outcome could have 

been to compare gnotobiotic pigs with isolator reared conventionalized pigs as reported 

previously (Shirkey et al., 2006). But in this case, availability of isolator space, raising 

enough experimental units in each trial favored the selection of earlier mentioned 

experimental design. Furthermore, the sow-reared conventional pigs used in the present 

study reflected an animal model more consistent with a commercial pig and the 

application of our finding to the commercial swine industry. 

 As we know, the gnotobiotic animal research has difficulties including caesarian–

section delivery, sterile derivation of pigs, resuscitation, maintaining gnotobiotic 

conditions in isolators and providing appropriately sterilized feed and water. In the 

current study, pigs were contaminated with one or more bacterial species during the 

course of trial 1 and with a single bacterial species in trial 2. Presence of a pin point hole 

was thought to be responsible for contamination in the first trial while we couldn’t 

pinpoint the reason for contamination in second trial.  Another possible source of 

contamination is unobserved respiration in caesarian section derived pigs prior to being 

passed through the iodine bath into the sterile transfer unit for resuscitation.  

Another factor to be kept in mind while interpreting results of gnotobiotic 

research is that contaminating bacteria might colonize at much higher levels due to 

absence of microbial competition as found in this study where MA bacterium E. faecium 
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counts varied from 7.61±0.25 to 8.82±0.26 log cfu/g of digesta compared to lower levels 

of conventional microbiota ranging from 4.81±0.19 to 6.48± 0.21 log cfu/g. In other 

cases, contaminants might colonize at lower levels than in a conventional environment 

because of their dependency on co-habitants. Also a single contaminating bacterium may 

not be generating same fermentation products as in a conventional setting due to absence 

of cross-feeding. There is also a possibility that the contaminating bacterium might have 

a different gene expression profile in absence of conventional microbiota and hence the 

host response to a single bacterium might be different than in the presence of 

conventional microbiota. 

       

6.2. Future research 

In the current study, we only investigated microbial influences on the host 

availability of methionine from different sources. However, complex interactions in the 

gut warrant further studies to understand microbial effects on availability of nutrients to 

the host and its implications on animal performance. As mentioned earlier,  it was not 

clear whether MHA-FA is preferentially metabolized or its comparatively slower 

transport leads to increased metabolism by gut microbiota. Therefore, the mechanisms 

involved in microbial metabolism of MHA-FA need to be elucidated. Also the bacterial 

species involved in metabolism of MHA-FA need to be identified probably by first 

investigating the responsible bacteria in in vitro studies and then by verifying the results 

in vivo.  

The implications of changes in gastrointestinal physiology and mucin type need to 

be elucidated in terms of animal health and performance. Along with GI physiology and 
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mucin composition, studying commensal and pathogen colonization patterns with varied 

dietary composition will contribute to the development of an ‘optimal microbiota’ 

correlated to animal health. Effects and relationship of various dietary components with 

flow rate of digesta need to be investigated. This interrelationshiop will influence 

digestion and absorption of nutrients and hence their availability to the host  which will 

have implications for animal performance. 

This is a new era in nutrition where consumers are shaping the science of animal 

nutrition leading to increasing restrictions on subtherapeutic use of antibiotics as growth 

promoters. Thus new methods are needed to allow for the development of ‘optimal 

microbiota’. Our findings contribute to a better understanding of interactions between 

dietary constituents, gut microbiota and host physiology and will help us in formulating 

diets so as to improve animal health and performance. 
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8.0. APPENDICES 

 8.1. Appendix A 

  Chapter 3.0 is reproduced with permission of the Animal Consortium (www.animal-

journal.eu) as journal article: Malik, G., Hoehler, D., Rademacher, M., Drew, M.D. and 

Van Kessel, A.G. 2009. Apparent absorption of methionine and 2-hydroxy-4-

methylthiobutanoic acid from gastrointestinal tract of conventional and gnotobiotic pigs. 

Animal. 3: 1378-1386. 
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