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Abstract 

 

Canada has some of the largest metal deposits in the world and the Canadian mining industry is 

one the largest employers of labour in Canada. Consequently, mining and smelting operations in 

Canada are one of the sources of metal level increase in the environment. Metals pollute the 

terrestrial environment because of fall-out from the mining industry. Soils are major sinks for 

metals in the terrestrial environment. It is therefore important that metal risk assessment should 

clearly reflect the metal contamination in the soils.  

The main objectives of this thesis were to generate more realistic metal toxicity data using a native 

Canadian invertebrate species that will help improve metal risk assessment in Canada. Firstly, 

toxicity of common metals (Cu, Pb, Zn, Co, Ni) found in contaminated sites in Canada was 

assessed on an oribatid mite, Oppia nitens which is abundant in Canadian soils. The metal 

toxicities were assessed as singles and as mixtures in five different soils. The metal mixture ratios 

were fixed such that it reflected ratios of metals found in contaminated sites. The patterns of 

sensitivity of the mite to metals by soils differed between single metals and metal mixtures. Nickel, 

which had not been tested with Oppia nitens before, was found to be the most toxic metal to the 

mite and zinc was less toxic. Concentration addition was protective of 53% of metal mixture 

toxicity due to antagonistic and concentration addition. Bioavailable metals existed as metals 

bound to fulvic acid. 

After determining the toxicity of the metals in the five soils, the multigenerational effect of one of 

the metals on soil mites was investigated in the most sensitive soil to single metal contamination. 

Continuous and pulse zinc exposure effect on O. nitens populations was assessed in three 

generations of the mites. Using critical-effect levels (EC50s), pulse exposed mites seemed to be 
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tolerant and the continuous exposed mites were sensitive. However, the instantaneous population 

growth rate showed that both pulse and continuous exposures were more sensitive than their 

parents. The major finding from this study was that persistence of metals in soils can cause 

multigenerational adverse effects on continuously exposed mites in the soil.  

The last chapter of this thesis investigated the direct effect of soil habitat quality as a site-specific 

feature on organisms and how it influenced their response to metal contamination. For this test, 

forty-seven (47) soils were ranked according to their habitat qualities from one to three (high to 

low), using standard soil invertebrate species (Folsomia candida, Enchytraeus crypticus) fitness 

and plant (Elymus lanceolatus) productivity as metrics to choose habitat qualities. From the ranked 

47 soils, eighteen (18) soils comprising six soils making each habitat quality was chosen in a 

duplicated experiment. The soils were spiked with increasing concentrations of Zn and the Zn 

toxicokinetics, toxicodynamics, survival and reproduction of mites were assessed. The mites in the 

soils of high habitat quality were less stressed than mites in the low habitat quality soils despite 

being exposed to the same amount of bioavailable metals. The key findings from this study were 

that soil habitat quality has a direct influence on how its inhabitants cope with metal stress. 

Therefore, habitat qualities of soils can be considered as a site-specific feature in remediation of 

contaminated sites. 

 

 

 

 

 

 

 



iv 
 

Acknowledgements 

  

I would like to thank my supervisors Drs. Steven Siciliano and Beverley Hale who have been 

supportive to me as a person and their unwavering encouragement throughout my research work 

up to completion. I would like to extend my thanks to other members of my graduate committee: 

Dr. David Janz, Dr. Karsten Liber, Dr. Sina Adl, Dr. Som Niyogi and Dr. Elizabeth Haack who 

served as my external examiner. My supervisors and committee members have been helpful to me, 

serving as role models for me in developing into a scientist and researcher that I will like to be.  

I will like to thank Dr. John Owojori who has been a role model to me in all aspects of life and for 

his advices and help throughout my graduate education life. I will like to thank my friends and 

colleagues on the same project; Kobby Awuah, Mathieu Renaud and Mark Cousins who have been 

supportive as we navigated this work together through the good and bad times. I will like to thank 

Hamzat Fajana who is a friend and brother for his support and help whenever I call for it. I am 

grateful to Amy Gainer who has my back always as a colleague and does not hesitate to offer help 

when needed. My thanks goes to Richard Nhan who was helpful to me during his time as a 

laboratory technician in the Siciliano lab. I am grateful to Alix Schebel and Curtis Senger for 

helping me with lab logistics. I am thankful to the entire Siciliano lab group, students and staff of 

the Soil Science Department and Toxicology Centre for the support all through my program. 

I will like to appreciate the RCCG Grace Sanctuary Church that has been a family to me here in 

Saskatoon. My appreciation goes to my parents, Mr. Tope and Mrs. Elizabeth Jegede for giving 

me all I needed to succeed in life. I want to thank my wife, Grace and my children, Oreofeoluwa 

and Temidayo for their love and belief in me. You people make me happy and feel loved. Lastly, 

I want to thank God for being my overall support and grace to be alive. God bless!  



v 
 

Table of Contents 

 

Permission to Use ............................................................................................................................ i 

Abstract ........................................................................................................................................... ii 

Acknowledgements ........................................................................................................................ iv 

List of Tables ................................................................................................................................. ix 

List of Figures ................................................................................................................................. x 

List of Abbreviations ................................................................................................................... xiv 

1. Introduction ............................................................................................................................. 1 

2. Literature Review .................................................................................................................... 4 

2.1 Introduction ................................................................................................................................... 4 

2.2 Common Metals at Contaminated Sites ........................................................................................ 7 

2.2.1 Copper (Cu) .......................................................................................................................... 7 

2.2.2 Zinc (Zn) ................................................................................................................................ 9 

2.2.3 Lead (Pb) ................................................................................................................................... 10 

2.2.4 Nickel (Ni) ........................................................................................................................... 12 

2.2.5 Cobalt (Co) ......................................................................................................................... 13 

2.3 Metal Bioavailability .................................................................................................................. 14 

2.4 Mechanisms of Metal Toxicity ................................................................................................... 16 

2.5 Metal Mixture Toxicity ............................................................................................................... 19 

2.6 Soil Habitat Quality .................................................................................................................... 22 

2.7 Species Selection ........................................................................................................................ 24 

2.7.1 Oppia nitens ........................................................................................................................ 25 

3. Manuscript 1: Single Metal and Metal Mixture Toxicity of Five Metals to Oppia nitens in 

Five Different Canadian Soils. ...................................................................................................... 31 

3.1 Preface......................................................................................................................................... 31 

3.2 Abstract ....................................................................................................................................... 32 

3.3 Introduction ................................................................................................................................. 33 

3.4 Materials and Methods ................................................................................................................ 36 

3.4.1 Soil collection ...................................................................................................................... 36 

3.4.2 Test Species ......................................................................................................................... 37 

3.4.3 Metals .................................................................................................................................. 37 

3.4.4 Fixed Ratio Ray Determination and Rationale ................................................................... 38 

3.4.5 Test Design .......................................................................................................................... 41 



vi 
 

3.4.6 Test Performance ................................................................................................................ 41 

3.4.7 Chemical Analysis ............................................................................................................... 42 

3.4.8 Statistics .............................................................................................................................. 44 

3.5 Results ......................................................................................................................................... 46 

3.5.1 Metal Toxicity ..................................................................................................................... 46 

3.5.2 Metal Interactions in Mixtures ............................................................................................ 51 

3.5.3 Metal Speciation Differed Among Soils .............................................................................. 53 

3.5.4 Soil Properties Influenced the Toxic Response Better than Measured Metals ................... 55 

3.6 Discussion ................................................................................................................................... 58 

3.6.1 Soil Properties that Protect, also Hurt ............................................................................... 58 

3.6.2 Soil Properties and Metal Speciation Explains Toxicity ..................................................... 58 

3.6.3 Single Metal Toxicity .......................................................................................................... 59 

3.6.4 Metal Mixture Toxicity ........................................................................................................ 60 

3.6.5 Implications of Study ........................................................................................................... 61 

4. Manuscript 2: Multigenerational Exposure of Populations of Oppia nitens to Zinc Under 

Pulse and Continuous Exposure Scenarios ................................................................................... 63 

4.1 Preface......................................................................................................................................... 63 

4.2 Abstract ....................................................................................................................................... 64 

4.3 Introduction ................................................................................................................................. 64 

4.4 Materials and Methods ................................................................................................................ 67 

4.41 Test Soil ............................................................................................................................... 67 

4.4.2 Test Species ......................................................................................................................... 67 

4.4.3 Test Metal ............................................................................................................................ 68 

4.4.4 Multigenerational Test ........................................................................................................ 68 

4.4.5 Statistics .............................................................................................................................. 71 

4.5 Results ......................................................................................................................................... 72 

4.5.1 Pulse Exposure .................................................................................................................... 72 

4.5.2 Continuous Exposure .......................................................................................................... 76 

4.5.3 Niche Width ......................................................................................................................... 79 

4.5.4 EC50 and PGR Differences across Generations. ............................................................... 81 

4.6 Discussion ................................................................................................................................... 82 

4.6.1 Sensitivity of Mite Generations ........................................................................................... 82 

4.6.2 Mite Offspring Tolerance .................................................................................................... 83 

4.6.3 Stress Induced by Low Exposure Concentrations ............................................................... 83 

4.6.4 Population Growth Rate ..................................................................................................... 84 



vii 
 

4.6.5 Implications of Study on Tests for Metal Risk Assessment .................................................. 85 

5. Manuscript 3: The Forgotten Role of Toxicodynamics: How Habitat Quality Alters the Mite, 

Oppia nitens, Susceptibility to Zinc, Independent of Toxicokinetics. .......................................... 86 

5.1 Preface......................................................................................................................................... 86 

5.2 Abstract ....................................................................................................................................... 87 

5.3 Introduction ................................................................................................................................. 87 

5.4 Materials and Methods ................................................................................................................ 91 

5.4.1 Soil Collection ..................................................................................................................... 91 

5.4.2 Test Species ......................................................................................................................... 91 

5.4.3 Habitat Quality Determination ........................................................................................... 92 

5.4.4 Metal Toxicity Test. ............................................................................................................. 95 

5.4.5 Chemical Analysis. .............................................................................................................. 95 

5.4.6 Statistical Analysis .............................................................................................................. 99 

5.5 Results ....................................................................................................................................... 100 

5.5.1 Habitat Quality Influences Mite Fitness. .......................................................................... 100 

5.5.2 Low Habitat Quality Potentiates Zn Effects on Mite Reproduction .................................. 102 

5.5.3 Habitat Quality Influences Zn Speciation ......................................................................... 102 

5.5.4 Total Zn Predicted Body Burden and Toxicity Better than CaCl2 Extracted Zn or Free Zn

 103 

5.5.5 Toxicity of Zn Across the Three Habitat Qualities ............................................................ 103 

5.5.6 Zn Bioavailability Did Not Depend on Habitat Quality or Zn Speciation ........................ 104 

5.5.7 Habitat Quality Influences Cellular Responses ................................................................ 107 

5.6 Discussion ................................................................................................................................. 108 

5.6.1 Habitat Quality Influences Toxicodynamics ..................................................................... 108 

5.6.2 Soil Properties Determines Habitat Quality ..................................................................... 108 

5.6.3 Metal Bioavailability......................................................................................................... 109 

5.6.4 Stress Biomarkers ............................................................................................................. 110 

5.6.5 Implications of Study on Contaminated Site Remediation ................................................ 111 

6 Synthesis, Conclusions and Future Directions .................................................................... 113 

6.1 Single and Metal Mixture Toxicity (Manuscript 1) .................................................................. 115 

6.1.1 Synthesis and Conclusions ................................................................................................ 115 

6.1.2 Future Directions .............................................................................................................. 115 

6.2 Long-term Metal Exposure (Manuscript 2) .............................................................................. 117 

6.2.1 Synthesis and Conclusions ................................................................................................ 117 

6.2.2 Future Directions .............................................................................................................. 117 



viii 
 

6.3 Soil Habitat Quality's Influence on Metal Toxicity (Manuscript 3) ......................................... 119 

6.3.1 Synthesis and Conclusions ................................................................................................ 119 

6.3.2 Future Directions .............................................................................................................. 119 

7. References ........................................................................................................................... 121 

8. Appendix A: Chapter 3 Supplementary Material ................................................................ 150 

9. Appendix B: Chapter 4 Supplementary Material ................................................................ 157 

10.   Appendix C: Chapter 5 Supplementary Material ................................................................ 162 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

List of Tables 

 

Table 2- 1. Summary of the sensitivity of some soil invertebrates (Oppia nitens, Folsomia 

candida, Eisenia fetida, Enchytraeus albidus/crypticus) to six metals (Cu, Zn, Pb, Cd, Co, Ni) in 

Organization for Economic Cooperation and Development (OECD) artificial soil and some 

described natural soils. .................................................................................................................. 29 

 

Table 3- 1. The physicochemical properties of soils selected to mirror the European Union 

predicted no-effect concentration (EU PNEC) reference of the five reference soils. ................... 36 

 

Table 3- 2. Fixed rays used for the full metal mixture toxicity tests by weight-by-weight (w/w) 

and molar (mol) ratios of the metals in the mixture. Regulatory ray = Ratio relevant to existing 

regulations, Environmental ray = Ratio based on average metal concentrations found in sites at 

or near mining and smelting operations in Canada, Toxicity ray = Ratio based on a standard 

species’ (Folsomia candida) sensitivity to the individual metals in the mixture ......................... 40 

 

Table 3- 3. The effective concentrations ± SE of five metals inhibiting 10% (EC10) and 50% 

(EC50) mite reproduction expressed as mmol/kg of soil in five soils (ASF, LOA, LO, ASA and 

LOS). OC = Organic carbon (g/kg), CEC = Cation exchange capacity (mmol/100g of soil) ...... 48 

 

Table 3- 4. The test of significance of the variations explained by explanatory variables (soil 

properties, percentage of metal bound to Fulvic acid (% FA-Metal), free metal ions, total metals) 

and covariation of the explanatory variables on the toxicity of metal mixtures to Oppia nitens. 57 
 

Table 4- 1. The parent population (F0) reproduction compared with the reproduction of mite 

generations (F1, F2, F3, F2_Continuous) using a student's t-test. F1, F2, F3 are generations from 

the pulse Zn exposure and F2_Continuous is the second generation of continuous Zn exposed 

mites. Significant difference of mite generations with F0 was determined when p < 0.05. The 

power of the test was adjusted for Bonferroni correction ............................................................. 74 

 

Table 4- 2. Analysis of variance (ANOVA) of the EC50s and PGR per generation of mites. 

EC50 is the median effective concentration of zinc on mite reproduction in mg/kg of soil. PGR is 

the population growth rate. ........................................................................................................... 82 

 

 

 

 



x 
 

List of Figures 

 

Figure 3- 1. Dose response curves for response of Oppia nitens to five metals (Zn, Pb, Cu, Ni, 

Co) in each of five soils (Acid Sandy Forest, Loamy Alluvial, Loamy, Acid Sandy Arable, 

Loamy Sand) and the effective concentrations inhibiting 50% reproduction (EC50) expressed in 

mmol/kg of metal. ......................................................................................................................... 47 

 

Figure 3- 2. Toxic responses of mite to single metals (Co, Ni, Cu, Zn and Pb) [upper panels] and 

metal mixtures [lower panels] at effect levels 10% and 50% (EC10 and EC50 in mmol of metal 

per kg of soil) in five soils (Acid Sandy Forest, Loamy Alluvial, Acid Sandy Arable, Loamy, and 

Loamy Sand). Metal concentrations that caused effect levels were expressed as the sum of all 

metals in the mixtures, with the bars in lower panel indicating the average concentration in 10 

different mixtures and the associated standard error. The letters “a, b, c” represents significant 

difference (p < 0.05) when there is no overlap but no significant difference (p > 0.05) when there 

is an overlap. ................................................................................................................................. 50 

 

Figure 3- 3. Frequency (%) of occurrence from eighty (80) trials of mixture toxicity response 

types (synergism, antagonism and concentration addition) of metal mixtures in five soils (Acid-

Sandy-Forest, Loamy-Alluvial, Loamy, Acid-Sandy-Arable, Loam-Sandy) at EC10 and EC50 

levels. Synergism represents (TU < 1), antagonism represents (TU > 1) and concentration 

addition represents (TU =1). TU = Toxic unit. ............................................................................. 52 

 

Figure 3- 4. The mixture interaction factor (MIF) of metal mixtures to Oppia nitens in five soils 

(Acid-Sandy-Forest, Loamy-Alluvial, Loamy, Acid-Sandy-Arable, Loam-Sandy) at 10% and 

50% reproduction inhibition effect levels (EC10 and EC50). The broken line showed where the 

mixture is not interactive (CA = 1). When MIF is lower than 1, CA underestimates mixture 

toxicity (Synergism) and when MIF is higher than 1, CA overestimates mixture toxicity 

(Antagonism). The MIF is expressed as toxic units. .................................................................... 52 

 

Figure 3- 5. The bioaccessibility of Co, Ni, Cu, Zn, and Pb as percentage ± SE of (a) single 

metals bound to fulvic acid (b) metal mixtures bound to fulvic acid (c) free single metals in 

solution (d) free metal mixtures in solution that were assessed in five soils.  The soils are Acid-

Sandy-Forest, Loamy-Alluvial, Loamy, Acid-Sandy-Arable, and Loamy-Sand. ........................ 54 

 

Figure 3- 6. Venn diagram of the variation partitioning of the response matrix of metal toxicity 

explained by (a) soil properties and Fulvic acid bound metals (FA-Metal (%)) on toxicity (b) soil 

properties and free metal ions on toxicity (c) soil properties and total metal on toxicity at 10% 

effect levels. Residuals show the variations not explained by any of the explanatory variables 

(soil properties, fulvic acid bound metals, free metals, and total metals). .................................... 56 

 



xi 
 

Figure 4- 1. Pulse multigenerational study showing exposure of mites to different nominal soil 

concentrations (mg/kg) of zinc (0, 105, 158, 237, 335, 553, and 800) in the F0 generation from 

which offspring from four nominal concentrations of zinc (0, 158, 335, and 553 mg/kg) were 

collected as four different mite populations. The fitness of the unexposed subsequent three 

generations (F1, F2, and F3) from the four populations (0, 1, 2, and 3) was tested against four 

nominal concentrations of zinc (0, 158, 335, and 553 mg/kg).  Dashed lines indicate dose-

response testing for each generation, whereas solid lines indicate rearing of a new generation. . 70 

 

Figure 4- 2. Continuous dosing multigenerational study showing continuous exposure of mites 

to different nominal soil concentrations (mg/kg) of zinc (0, 105, 158, 237, 335, 553, and 800) in 

the F0 generation from which offspring from four nominal concentrations of zinc (0, 158, 335, 

and 553 mg/kg) were collected as four different mite populations. The fitness of the offspring 

from the exposed F1 generation mites were tested by exposing the mites to four nominal 

concentrations of zinc (0, 158, 335, and 553 mg/kg) in a dose response manner in the F2 

generation. Dashed lines indicate dose-response testing for each generation, whereas solid lines 

indicate rearing of a new generation. ............................................................................................ 71 

 

Figure 4- 3. The dose response of Oppia nitens exposed to zinc in a natural soil (3.22) for 

populations F0 generation (a), population 1 (b), population 2 (c), population 3 (d). The F0, F1, 

F2, F3 generations are the parent, first, second and third filial generations, respectively from the 

pulse-exposed mites. The F2 continuous are the F2 generations of the continuously exposed 

mites. The EC50 and the population growth rate concentration (PGRconc) are calculated for each 

generation within each population and printed on each dose response curve. ............................. 75 

 

Figure 4- 4. Simple effect means of zinc exposure of F0 on mite reproduction in subsequent 

generations. The zinc pre-exposure was either 0, 158, 335 or 553 mg/kg. F0 = parent, F1, F2 and 

F3 are the first, second and third generations in the pulse experiment, respectively. F2 

Continuous is the F2 generation of the continuously exposure experiment. The mite reproduction 

for each dosing group was normalized to the F0 generation’s reproduction after exposure to 

either 0, 158, 335 or 553 mg/kg, respectively. A Student’s t-test was used to determine the 

significant differences between F0 and other generations at corresponding zinc doses. The bar 

height represents the fitted values of the normalized mite reproductions from an ANOVA 

interaction plot, hence the error estimates are similar across all the plots .................................... 77 

 

Figure 4- 5. EC50s ± SE of multi-generations of pulse and continuously exposed mites in 

populations initially exposed to 158, 335 and 553 mg Zn / kg soil (populations 1, 2 and 3). F0 = 

parent, F1, F2, and F3 = first, second, and third generations of the pulse-exposed mites 

respectively. Continuous = F2 generation of the continuously exposed mites. The CCME zinc 

SQG = CCME zinc soil quality guideline value (CCME, 2018). All points above the line are 

protected Oppia nitens populations but all points below the line are unprotected O. nitens 

populations. ................................................................................................................................... 78 



xii 
 

 

Figure 4- 6. Zinc niche width for population 1, 2 and 3 mites by type of exposure. The naive are 

the parent population, pulse are the pulse-exposed mites and continuous are the continuously 

exposed mites. When concentration is above the tolerance range for the population, the 

population tends towards extinction. Zinc niche width is the zinc-contamination tolerance range 

for each of the mite populations. All mite populations were exposed to 0, 158, 335, and 553 

mg/kg doses of zinc. ..................................................................................................................... 80 

 

Figure 5- 1. Jitter plot of normalized plant biomass, enchytraeid reproduction and collembola 

(springtail) reproduction according to their habitat qualities (Panel a). The dotted lines indicate 

the average normalized score which is 100%.  Jitter plots of habitat quality (HQ) determinants, 

namely cation exchange capacity (CEC: mmol/100g soil) and organic carbon (%OC) in 47 soils, 

and mite reproduction in each HQ (Panel b).  Habitat quality (HQ) 1 is the high HQ, habitat 

quality two is the medium HQ and habitat quality three is the low HQ. Letters “a” and “b” 

represents significant differences (p < 0.01) and “ab” represent no significant differences (p > 

0.05). ........................................................................................................................................... 101 

 

Figure 5- 2. The proportion of Zn species in different habitat qualities at (Panel a) 4,500 and 

(Panel b) 14,000 mg/kg nominal Zn concentrations, separately for HQ = 1, 2 or 3. The 4500 

mg/kg of Zn is the low HQ EC50 and 14,000 mg/kg is the high HQ EC50. The proportion of Zn 

species in each HQ were calculated as averages in the six soils that made up each HQ. The letters 

“a” and “b” represents significant differences (p < 0.05) and “ab” represents no significant 

differences (p > 0.05). The letters “c” and “d” represents significant differences (p < 0.05) in 

ZnSO4 and “cd” represents no significant differences (p > 0.05) in ZnSO4 ............................... 103 

 

Figure 5- 3. Average EC50 for total soil Zn concentration for three habitat qualities (Habitat 

quality 1 - high HQ, Habitat quality 2 - medium HQ, Habitat quality 3 - low HQ). .................. 104 

 

Figure 5- 4. The distribution of the internal EC50 concentration of Zn (µg g-1 b.w) in mites, 

slope of the dose response curves and bioavailability of Zn in three different soil habitat 

qualities. The slope was measured as mite reproduction inhibition per concentration of exposed 

cadmium (Inhibition/ µg/g Zn). Bioavailability of Zn was calculated as the slope of the 

regression of the Zn body burden with total Zn concentration. Habitat quality 1 is the high HQ, 

habitat quality 2 is the medium HQ and habitat quality 3 is the low HQ. Body weight = b.w. 

Letters “a” and “b” represents significant differences (p < 0.05). No significant differences (p > 

0.05) where there are no letters. .................................................................................................. 106 

 

 

 



xiii 
 

Figure 5- 5. Activities of LDH (a) and Glucose 6-phosphate dehydrogenase (G6PDH) (b) in 

mites from three HQ soils exposed to nominal 1500 mg/kg and 14,000 mg/kg of Zn in three HQ 

soils. Habitat qualities are 1, 2, 3 high, medium and low HQ soil mites respectively. The letters 

“a” and “b” represents significant differences (p < 0.05). Bars within an HQ with the same letter 

represents no significant difference (p > 0.05). No letters in Habitat quality 1 for LDH and 

G6PDH  because there were no significant differences (p > 0.05). ............................................ 107 

 

Figure 5- 6. The alternative path to management of metal contaminated sites and protection of 

terrestrial organisms. ................................................................................................................... 111 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 
 

List of Abbreviations 

 

CCME   Canadian Council of Ministers of Environment 

EC25 OR EC50  Effective concentration (25 or 50% reduction compared to the control 

response) 

LOEC   Lowest observed effective concentration 

LC50 Lethal concentration causing 50% mortality compared to the control 

response 

EU REACH European Union Registration, Evaluation, Authorization and Restriction 

of Chemicals 

CEC   Cation exchange capacity 

WHAM  Windermere Humic Aqueous Model 

DNA   Deoxyribonucleic acid 

ISO   International Organization of Standardization 

OECD   Organization for Economic Co-operation and Development 

CSQG   Canadian Soil Quality Guideline 

 



1 
 

1. Introduction 

 

Metals are ubiquitous because they occur naturally, and their use by humans is inevitable. Canada 

is one of the largest producers of metals, with a vast mining industry to show for it. Mining 

accounts for about 30% of the total GDP of Canada. Therefore, metal risk assessment in soils is a 

priority in Canada because of the associated release of metals into the environment during mining 

and smelting operations. Metals commonly occur in the environment as mixtures; however, current 

data for metal risk assessment does not reflect mixtures. In Canada, like in many other 

jurisdictions, the risk assessment of mixtures of metals in contaminated sites have been based on 

data for single components of the mixture as provided by CCME's soil quality guidelines, and not 

on the risk as a mixture. Moreover, when mixtures are assessed, they are by default assumed to be 

merely additive of single metal toxicity, thereby not factoring in interactions that could lead to 

synergism or antagonism.  

Metals persist in the environment and do not succumb to degradation. Therefore, many soil 

organisms are exposed to metals for a period exceeding one life cycle. Whereas reproduction is 

often used as an endpoint, current soil remediation guidelines for metals reflect single generation 

laboratory studies not exceeding one life cycle.  

Soil is heterogeneous and supports many life forms. The habitat function and quality of the soil 

are related to its heterogeneity, but habitat function has not been factored into ecotoxicity tests that 

are needed to develop guidelines. The habitat quality of soils as it influences metal toxicity needs 

to be incorporated into ecotoxicity studies because it can help to achieve an increased 

understanding of the response of ecological receptors to metal contaminants.  
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The research for this Ph.D. thesis investigates how to generate metal toxicity data for commonly 

occurring metals (copper, zinc, lead, cobalt and nickel) that are representative of the Canadian 

environment for metal risk assessment. To achieve this, I used soils representative of the Canadian 

agricultural and mining sites. The test species is a soil oribatid mite, Oppia nitens, which is vital 

to soil function processes and is abundant in Canadian soils. 

Objectives and Hypotheses  

The global objective of this Ph.D. research was to generate metal toxicity data that explicitly 

incorporate the effects of metal mixtures, metal persistence and habitat quality.  In doing so, I 

aimed to improve the ecological relevance of test data used for site-specific metal risk assessment. 

To achieve this global objective, four hypotheses were tested, as follows: (1) Soil organism’s 

sensitivity to a single metal will remain similar when that metal is present in a mixture, (2) At 

environmentally relevant ratios, metals will interact and not follow concentration addition, (3) 

Continuous and pulse-like exposures of Oppia nitens to a metal will increase the mite’s sensitivity 

in successive generations, (4) Habitat quality will influence toxicity through toxicodynamics by 

increasing energy available to mites after accounting for soil's influence on metal speciation and 

bioavailability.  

The hypotheses were addressed in the manuscripts making up this Ph.D. thesis. Each manuscript 

in this thesis was submitted for publication. The contents of Manuscript 1 was submitted to 

Environmental Science and Technology, Manuscript 2 was submitted to and published in 

Environmental Toxicology and Chemistry, and Manuscript 3 was submitted to and published in 

Chemosphere.  

For the first hypothesis, O. nitens was exposed in five different soils to five single metals, and 

eleven unique mixtures of these metals using a fixed ratio ray to mimic environmentally relevant 
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ratios, which was presented in Manuscript 1 (Single Metal and Metal Mixture Toxicity of Five 

Metals to O. nitens in Five Different Canadian Soils). The second hypothesis was investigated by 

determining the frequency of toxicant-interactions in all the mixtures and in all the soils; this was 

also presented in Manuscript 1. To test the third hypothesis, the toxic effect of zinc on three 

generations of O. nitens was assessed after one-time exposure (pulse) and continuous exposure to 

zinc and it is presented in Manuscript 2 (Multigenerational Exposure of Populations of Oppia 

nitens to Zinc under Pulse and Continuous Exposure Scenarios). To investigate the fourth 

hypothesis, bioavailability and zinc toxicity to Oppia nitens was assessed in three levels of habitat 

quality from low to high and is presented in Manuscript 3 (The Forgotten Role of Toxicodynamics: 

How Habitat Quality Alters the mite, Oppia nitens Susceptibility to Zinc, Independent of 

Toxicokinetics). Chapter 6 discussed key findings from this study and suggested future directions.  
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2. Literature Review 

2.1 Introduction 

Canada is one of the countries in the world with the largest deposits of metals and large mining 

industry (MAC, 2018). Due to these large-scale mining and smelting operations, metals usually 

pollute the environment around these operations. There are more than 5,400 Federal sites (only 

soils) in Canada that are contaminated with metals and metalloids (Government of Canada, 2019). 

Therefore, metal risk assessment is important. It is also imperative to ensure that the risk 

assessment process and framework is widely applicable, relevant and provide onward remediation.   

Ecological risk assessment (ERA) is the evaluation of potential hazards of pollutants on 

populations of organisms, and the determination of safe levels of these pollutants in the 

environment (USEPA, 1998). Environmental and exposure sets of data are therefore collected, 

organized and analyzed in order to estimate risks from contamination in ERA (Niemeyer et al., 

2010). For contaminated site assessment (including metal-contaminated sites) and remediation, 

Canada adopts a three-tiered risk-based approach (CCME, 2006; Checkai et al., 2014). The first 

tier comprises the CSQGs, which is expected to protect most ecological receptors and preserve 

human health (Checkai et al., 2014). Organisms native to Canada are used in toxicity tests to 

generate data for deriving the CSQGs (CCME, 1999a). After factoring land use types for the soil, 

site-specific risk assessment of metals are triggered when metal levels exceed the lowest Tier 1 

CSQG value for the metal. Site-specific risk assessment is the second tier in the contaminated site 

assessment process, and it allows for modification of the CSQG based on site-specific objectives 

(CCME, 1999a). An example of this are sites with high natural metal background levels, multiple 

exposure pathways, metal mixtures, and different soil textures (CCME, 2007).   
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In Canada, regulatory jurisdictions determine the processes for deriving the soil quality guidelines. 

For example, the Federal jurisdiction adopts the guidelines developed by the CCME for lands that 

fall under Federal jurisdiction. Provincial jurisdictions like Ontario, British Columbia and Alberta 

develop guidelines for their provinces, using the CCME CSGQ as a guide (CCME, 2007). In order 

to derive SQG, scientifically sound literature relevant to direct soil contact pathways at optimal 

bioavailability are extensively searched for and compiled (CCME, 1999a; Checkai et al., 2014). 

When there are many quality data, the weight of evidence approach (WOE) is adopted to create a 

threshold effect concentration (CCME, 2006). The threshold effect concentration (TEC) is 

established from at least three studies, using two invertebrate, two plant species, and ten data 

points; and using a species sensitivity distribution (SSD) within which effective inhibitory 

concentrations (ECx) e.g. EC25s are ranked (CCME, 2000; CCME, 2006). To create soil quality 

guideline that protects the agricultural/residential and parkland land uses, the 25th percentile of the 

ranked ECx value is used, and 50th percentile is used for industrial and commercial land uses 

(CCME, 2006). When data is limited, the lowest observed effective concentration (LOEC) from 

at least one soil invertebrate and one terrestrial plant species can be used and the TEC derived will 

be divided by an uncertainty factor of 1 to 5 at the discretion of the risk manager (Checkai et al., 

2014). If this approach also fails, the lowest EC50 or LC50 value is divided by an uncertainty 

factor of 5 or 10 (Checkai et al., 2014). 

Ecologically relevant endpoints are the environmental values made up of an ecological entities and 

their attributes, which need to be protected. The ecologically relevant endpoints are considered 

when deriving guidelines (CCME, 2006). Ideally, the best measure of the ecological impact comes 

from assessment endpoint data collected at the structure and function of ecosystem levels (CCME, 

2006). However, this is an enormous challenge because of the variability in time and space 
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associated with biology and physicochemical conditions of terrestrial ecosystems (Pederson and 

Samsoe-Petersen, 1993; CCME 2006). Therefore, the assessment endpoints data are often 

restricted to the field population level. Most laboratory studies or data used in deriving soil quality 

guideline reflects population-level effects such as reproduction, even though single species are 

usually used. The endpoints traditionally assessed in ecotoxicology are survival, reproduction and 

growth (Van Gestel, 2012). 

In recent years, an increasing number of short and long-term toxicity tests have been developed 

(CCME, 2006). For soil invertebrates, long-term tests should contain at least one reproductive 

stage (CCME, 2006). There are more short term tests data available than long term tests, but in 

order to derive soil quality guidelines, long term tests are preferred (CCME, 2006). However, no 

consensus has been reached by scholars on what constitute short or long-term tests from agency to 

agency (CCME, 2006). Nevertheless, it is important that a set of data truly representing reality is 

generated for metal risk assessment. One reason for this is the persistence of metal exposure to soil 

organisms and the generation of their offspring in the soil (Jegede et al., 2019a). Long term tests 

should reflect multigenerational exposures to metals for at least two generations.  

Up until now, and like in many other jurisdictions, the Canadian metal ERA is commonly 

determined on metal-by-metal basis even if metals are present as a mixture (CCME, 2006). The 

omission to consider metal interactions as a possible outcome with metal mixtures could result in 

much uncertainty in the actual risk of metals. In addition, the Canadian ERA does not explicitly 

incorporate metal bioavailability, unlike the European Union (EU) REACH, which incorporates 

bioavailability for metal ERA. The EU incorporates bioavailability by considering metal 

speciation, ageing and soil characteristics. Despite that the Canadian ERA does not incorporate 

bioavailability like the EU does, technical reports reflect the rationale and data for each metal in 
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deriving the SQG, which makes the Canadian ERA, process more transparent (Checkai et al., 

2014). 

 

2.2 Common Metals at Contaminated Sites 

Metals constitute more than 70% of known elements (Sparks, 2005). Metals are also important in 

daily life. Therefore, to meet the demands of a growing global population, there is a tendency to 

increase the production of metals. This production increase results in increased dumping of metals 

in the environment. The deposited metals have accumulated in high concentrations in many cases 

in aquatic and terrestrial ecosystems, thus posing threats to the existence of plants, animals and 

humans (Adriano et al., 2004). The elevated concentrations of metals in the terrestrial environment 

is largely due to anthropogenic activities (Qui et al., 2014). Examples of anthropogenic activities 

that may lead to high concentrations of metals in soils include the application of organic and 

inorganic fertilizers, pesticides, and improper disposal of industrial solid wastes and effluents 

(Zhang et al., 2011; Alloway, 2012; Su et al., 2014). Others include fall-outs from mining and 

smelting operations such as ore tailing dumps (Alamgir, 2016). In Canada, like in many other 

jurisdictions, metal contamination is a concern because of its significant mining and smelting 

operations (MIHR, 2011). 

2.2.1 Copper (Cu) 

Copper is a metal with an atomic weight of 63.546, which exists in four oxidation states Cu, Cu1+, 

Cu2+, Cu3+ but commonly exists as the oxidation state of Cu2+. Cu usually occurs in the form of 

CuFeS2, Cu2S, Cu5FeS4, (CuFe)12Sb4S13 (CCME, 1997). Copper is used in industries to 

manufacture textiles, paints, pipes in plumbing, electrical conducting wires, fungicides, and 

monetary coins (CCME 1999b). Copper makes up a broad range of primary and secondary 
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minerals in mineral deposit types (CCME, 1999b). An average of 60 mg/kg of copper is found in 

the earth’s crust (Oorts, 2012).  

Canada is one of the countries of the world with large deposits of copper ore (NRCAN, 2018). In 

Canadian soils, copper concentrations range between 2 and 100 mg/kg with an average 

concentration of 20 mg/kg (CCME, 1999b). The highest average concentration of copper (46 

mg/kg) in Canadian soils are found in mountainous regions of Canada like British Columbia, the 

Yukon, Southwest Alberta and some part of Northwest territories (McKeague and Wolynetz 1980).  

Copper strongly absorbs soil particles, accumulates in soils, and has low mobility when compared 

to other trace metals (Alloway, 1990; Slooff et al., 1989). The concentration of copper in soil varies 

according to soil type, distance from anthropogenic disturbance, natural ore bodies, and the 

composition of the parent material (CCME, 1999b). Copper has higher affinity for soil organic 

matter (OM) than other metals, and copper is retained in the soil by binding strongly with OM 

(Adriano, 1986).  Another way by which copper is retained in the soil is through precipitation or 

adsorption on soil surfaces (McLean and Bledsoe, 1992). However, copper precipitates are 

unstable at the concentrations commonly found in native soils (McLean and Bledsoe, 1992). For 

non-calcareous soils, the clay mineral exchange phase is most important in retaining copper 

through adsorption (Mcbride, 1977). In calcareous soils, copper adsorbs to the calcium carbonate 

surfaces as a retention mechanism (Cavallaro and Mcbride, 1978; Dudley et al., 1991). Although 

organic matter makes copper to be immobile in soils, it can also contribute to the mobility of 

copper in soils. This mobility is because copper can form complex with soluble organic ligands 

due to copper’s strong affinity with OM (CCME, 1999b). 

Copper is one of the essential metals needed for normal functioning of plants, animals and humans. 

Some proteins and enzymes like cytochrome C oxidase, superoxide dismutases contain copper 
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(Oorts, 2012). Copper could have an adverse effect on the health of plants and animals if it is either 

too much or deficient. Elevated copper levels in soil can be toxic to soil organisms, thereby 

disrupting soil ecosystem function (Oorts, 2012). Toxicity of copper to soil organisms is highly 

dependent on copper bioavailability and sensitivity of the organisms. Some studies have shown 

that the toxic concentration of copper ranges from 28 to 122 mg/kg on soil earthworm species 

(CCME, 1999b). 

2.2.2 Zinc (Zn) 

Zinc is a divalent transition metal with an atomic weight of 65.38. It is the 24th most abundant 

element there is and is naturally found in the soil as part of rocks or zinc-rich ores in the earth 

crust (Mertens and Smolders, 2012; CCME, 2018). For the economically important zinc ores, 5-

15% of zinc occurs as sphalerite or wurzites (Zinc sulphides) (Mertens and Smolders, 2012). 

Zinc is useful for galvanizing in the automobile and construction industries (CCME, 1999c).  

Canada produces about 600,000 metric tons of zinc and is one of the largest producers of zinc in 

the world (NRCAN, 2018). McKeague and Wolynetz (1980) reported an average concentration 

of 74 mg/kg of zinc in Canadian soil. The highest concentration of zinc (81 mg/kg) is found in 

the regions of the Appalachian Mountains such as Newfoundland, Quebec, Nova Scotia, and 

New Brunswick.  

Zinc is very reactive in soils. It can be absorbed by non-specific ion exchange to metallic oxides 

or clay minerals in the soil (Sachdev et al., 1992). It can also sorb to ionized groups of soil 

organic matter (Mertens and Smolders, 2012). In soil solution, zinc can form a complex with 

inorganic matter such as sulphates or organic ligands such as humic acids, which reduces its 

charge and makes it more soluble (CCME, 1999c). Soil pH is one of the factors that influence 

zinc mobility and sorption in soils (Davis-Carter and Shuman, 1993). The solubility of zinc 
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increases as soil pH decreases, as it does for many other metals (CCME, 1999c).  Zinc 

compounds have varying degrees of solubility (Environment Canada, 1996a). For example, zinc 

sulphate is more soluble in soil solution than zinc oxide (CCME, 1999c). Although, in most zinc 

contaminated sites, zinc primarily exists as oxide minerals such as franklinite, sphalerite or 

willemite (Hamilton et al., 2016).  

Zinc is one of the metals essential for the proper functioning of plants, animals and humans, as it 

is a major constituent of more than 200 metalloenzymes (Vallee, 1959). As a characteristic of all 

essential metals, the deficiency or excess of zinc in the body of an organism can produce adverse 

effects. When concentrations of zinc are high, it could elicit toxic effects on microorganisms, 

soil-dwelling organisms and plants. Studies have shown some of their toxic values on some 

organisms, such as LC50 of 80 mg/kg concentration on earthworm (CCME, 1999b). Zinc is very 

reactive in soils and is found in the primary minerals of the soil parent material (Sachdev et al., 

1992).   

2.2.3 Lead (Pb) 

Lead has an atomic weight of 207.2 and exists primarily as a stable plumbous ion (Pb2+) oxidation 

state (CCME, 1999d).  Lead is used to make alloys, pipes, bend and blocks for caulking 

ammunition, and batteries (Environment Canada, 1996b). Lead and zinc often occur together in 

the ore, and they are usually produced together (CCME, 1999d).  

Environment Canada (1996b) reported that as of 1991, 5% of world-refined lead was from 

Canada. The production of lead in Canada decreased in the 1990s (CCME, 1999d). However, 

Canada was the seventh largest producers of lead in the world in 2017 (NRCAN, 2018). Average 

background level of lead in Canada is estimated as 20 mg/kg (McKeague and Wolynetz, 1980). 
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The highest concentrations of lead (25 mg/kg) were found in the St. Lawrence lowlands 

(McKeague and Wolynetz, 1980). 

Lead has a high affinity for organic matter in the soil and binds strongly to organic matter from 

pH 4 and above (Kerndorff and Schnitzer 1980). Mercury and copper are the only metals that have 

a stronger affinity for organic matter than lead (Steinnes, 2012). When organic matter is low in 

soils, lead sorbs strongly to iron oxides and clay minerals (Steinnes, 2012). The adsorption of lead 

to clay minerals is stronger than for metals such as copper, zinc, nickel and cadmium (Usman, 

2008). Lead sorbs to clay surface, or forms lead carbonate at a pH of 6 and above (McLean and 

Bledsoe, 1992). However, in the presence of competing cations and complexing ligands, sorption 

of lead decreases (McLean and Bledsoe, 1992). Under alkaline conditions, the formation of soluble 

lead is possible when lead binds to soluble organic and hydroxy complexes (McBride, 1994).  

Lead is not an essential metal and can be toxic at elevated levels in the soil (CCME, 1999d). 

Moreover, lead with its compound tends to accumulate and remain available in soil for a long time 

(CCME, 1999d). Therefore, there is a high likelihood for soil organisms to be exposed to lead in 

soil. Several studies have reported the toxicity of lead to soil invertebrates. For example, LC25 

and LC50 of lead to earthworms was 2067 mg/kg and 2500 mg/kg (Environment Canada, 1995) 

while the 50% inhibitory effect of lead on reproduction of another invertebrate, Folsomia candida, 

was 2970 mg/kg (Sandifer and Hopkin, 1996). On exposure, lead inhibits the reproduction of 

Oppia nitens by 50% at 1678 mg/kg soil concentration (Owojori and Siciliano, 2012). The clean-

up criteria for lead in Canadian soils was set at 70 mg/kg for the agriculture/residential and 

parkland land use (CCME, 1999d).  
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2.2.4 Nickel (Ni) 

Nickel has an atomic number of 28 and an atomic mass of 58.71. Nickel exists in oxidation states 

of -1, 0, +1, +2, +3 and +4 but predominantly exists in the soil as Ni2+(CCME, 2015) Nickel is 

used in more than 250,000 application as a constituent of alloys (MAC, 1991). Nickel is also used 

in making nickel-powered batteries that are used in electric cars. Therefore, nickel use will 

continue to increase in the coming years, consequently heightening environmental risk.  

Canada is one of the major countries of the world where nickel is mined in large quantities 

(NRCAN, 2018). Most of the nickels produced in Canada are got from Sudbury in Ontario and 

Thompson in Manitoba (CEPA, 1994). The average nickel level in Canadian soils is 26.8 mg/kg 

(Rencz et al., 2006; Grunsky, 2010). Nickel has a relatively strong affinity for soil organic matter, 

as 5% of total nickel in soil is usually related to the organic matter. Nickel is generally retained in 

the soil via its affinity for charged surfaces e.g. clay mineral surfaces, organic compounds, and 

hydroxides (Gonnelli and Renella, 2012). The affinity of nickel for these charged surfaces makes 

nickel to be removed from soil solution quite easily. However, in soil solution, the affinity of nickel 

also plays its role. Nickel forms complexes with dissolved inorganic and organic ligands in soil 

water (Gonnelli and Renella, 2012). 

Nickel is known to be essential to some bacteria, plants and animals (CCME, 2015). However, 

there has been no report of nickel’s essentiality to normal body functioning in soil invertebrates. 

Anthropogenic sources such as oil and coal combustion, nickel mining and smelting have been 

responsible for elevated nickel levels in soils (McGrath, 1995). Elevated levels of nickel cause 

toxicity to soil invertebrates.  The toxicity of nickel to some soil invertebrates is well documented. 

Based on EC50 of nickel to earthworms, springtails and enchytraeids, nickel is one of the most 

toxic metals for soil invertebrates. The EC50 of nickel to Eisenia fetida is 362 mg/kg (Lock and 
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Janssen, 2002a). The 50% reproduction inhibitory nickel concentration to Folsomia candida is 476 

mg/kg and 275 mg/kg to Enchytraeus albidus (Lock and Janssen, 2002a). The CSQG value of 

nickel is 45 mg/kg for agricultural/residential and parkland land use (CCME, 2015).  

2.2.5 Cobalt (Co) 

Cobalt has a molar mass of 58.93. It has one stable isotope and 26 known radioisotopes (WHO, 

2006). Cobalt has three valence states (0, +2 and +3) and Co2+ is the most stable. Cobalt, like other 

metals, occurs naturally (Environment Canada, 2017). It is used in making alloys, manufacturing 

pigment, and making rechargeable batteries (Environment Canada 2017; CDI, 2006). Cobalt as 

cobalt sulphate is used as a nutritional supplement in cattle feed (Environment Canada, 2009). The 

global average concentration of cobalt in the soil is 20-25 mg/kg (WHO, 2006; IPCS, 2006).  

Cobalt is retained in the soil through its binding with clay minerals, oxides and organic matter. 

Generally, cobalt is adsorbed very rapidly by the soil, doing so within 1 to 2 hours (WHO, 2006). 

Cobalt binds more to oxides than other soil constituents do, and its desorption from oxides is very 

low. Clay minerals adsorb a small amount of cobalt, and the adsorption is basically due to cation 

exchanges (McLaren et al., 1986). Increase in pH leads to the formation of more insoluble cobalt 

hydroxides and carbonates (WHO, 2006).  

Cobalt is an essential micronutrient, which is involved in many enzymatic processes such as the 

formation of vitamin B12 (Gal et al., 2008). Environmental elevated levels of cobalt mainly as 

cobalt oxide come from anthropogenic sources, which include burning of fossil fuels, mining and 

smelting of cobalt ores, and industrial wastes from nickel processing (WHO, 2006). Elevated 

levels of cobalt can be toxic to soil invertebrates. Hartenstein et al. (1981) reported that E. fetida’s 

growth was inhibited at about 300 mg/kg of cobalt. In a mixture of marshland soil and horse 

manure spiked with different cobalt concentrations, 100% reproduction of E. fetida was inhibited, 
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and 77% mortality occurred at 4720 mg/kg of cobalt (Fischer and Molnar, 1997). In a 28-day test, 

cobalt inhibited 50% reproduction of Folsomia candida at about 1480 mg/kg and 409 mg/kg in 

OECD artificial soils and LUFA soils respectively (Lock et al., 2004). The toxic effect of cobalt 

was also reported for Caenorhabditis elegans at LC50 of 1274 mg/L (Tatara et al., 1998).  

The clean-up criteria of cobalt in Canada have not been updated since developing the interim soil 

criteria in 1991. The criteria values are not risk-based but rather based on professional judgment, 

because cobalt toxicity data is limited.  Since trace element like cobalt can be found in 

contaminated sites, there is a need for updated guidelines.  

2.3 Metal Bioavailability 

For a metal to be toxic, it has to be bioavailable. In order to improve metal ERA, there must be a 

sound understanding of how to account for or incorporate metal bioavailability.  Moreover, soil 

quality guidelines do not explicitly consider metal bioavailability. Metals can be bioavailable 

depending on the species of metals present in the soil. The free metal ion is commonly related to 

metal toxicity (McLean and Bledsoe, 1992). However, other forms of metal other than free metal 

ion might be bioavailable and could correlate with toxicity. For example, Zhao et al. (2016) 

reported that there are cases where intact complex metals are internalized by organisms, cases 

where metal complexes react with biotic ligands, and cases where the complex metals dissociate 

close to the biotic ligands to increase the level of free ions that binds to the biotic ligands.  Because 

of the importance of metal speciation in determining bioavailability, models have been developed 

to calculate metal speciation. One of such models is the WHAM.  

The WHAM simulates how metals react in soil or water systems (CEH, 2019). The model 

calculates the equilibrium speciation of chemicals in water, sediment and soils (Tipping, 1994). 

The WHAM combines humic ion-binding model, inorganic solution chemistry models, cation 
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exchange on clay, precipitation of aluminium, manganese, silicon and iron oxyhydroxides, and 

adsorption-desorption reactions of fulvic acids (Tipping, 1994; CEH, 2019). The WHAM is 

currently made up of 248 data sets and 17116 data points and is used by more than a hundred 

laboratories around the world (CEH, 2019). Updates are available from time to time as more data 

are inputted, and the current version is the WHAM 7. The model considers soil parameters that 

influence metal speciation from which bioavailable metal species can be determined. Some of the 

parameters that are fed into the WHAM in order to calculate metal speciation relating to toxicity 

are competing ions like Mg2+, K+, Na+, Ca2+ and anions of carbonates, sulphates, nitrates, 

phosphates, and organic matter in form of humic acid or fulvic acid (Gopalapillai and Hale, 2017; 

Jegede et al., 2019b). Some studies have reported the use of WHAM in calculating metal speciation 

and determining metal bioavailability to soil invertebrates. Using WHAM (WHAM 7), Jegede et 

al. (2019b) reported the calculation of zinc speciation in soils of different habitat qualities as 

potential metal bioavailability estimates. In the study, predicted free zinc ion concentrations did 

not correlate with toxicity, whereas the total concentrations of zinc in the soil did correlate with 

toxicity. Using WHAM 6, free Ni2+ ion was calculated and found to be the toxic nickel species to 

E. crypticus (He et al., 2014). Competing ions like H+, Mg2+, Ca2+, K+, and Na+ at sites of uptake 

influence the amount of metals that are taken up by organisms (He et al., 2014).  

The biotic ligand model was developed to account for competing ions at the site of toxic action 

(Niyogi and Wood, 2004). The fish gill has been modelled as the biotic ligand for fishes, and the 

idea is applied to other organisms. For soil invertebrates, only earthworms have been explored for 

biotic ligand modelling. It is challenging to identify biotic ligands in other soil invertebrates 

because of their small body sizes (He et al., 2014). Therefore, whole metal body concentration is 
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used for approximating the amount of metals bound to toxic target sites in many soil invertebrates. 

Metal uptake by organisms demonstrates the potential of the metal to be bioavailable.  

Soil invertebrates can accumulate metals, and this phenomenon has been demonstrated in several 

studies (Heikens et al., 2001). Oribatid mites are efficient bioaccumulators for metals (Skubala 

and Kafel, 2004). For example, O. nitens accumulated zinc to about 2118 µg/ g bodyweight of the 

mite when exposed to zinc soil concentration of 2000 mg/kg (Owojori and Siciliano, 2012). 

Owojori and Siciliano (2012) also reported a substantial accumulation of cadmium, lead but a 

reduced accumulation of copper based on their biota soil accumulation factor (BSAF). However, 

in a study with nine different oribatid mites, the mites accumulated copper the most with 

bioaccumulation factor (BAF) ranging from 1.3 to as high as 22.7 in Oppiella nova (Skubala and 

Kafel, 2004). The BAF of nickel in the earthworm Lumbricus terrestris was between 0.6 and 0.91 

(Ardestani et al., 2014).    

2.4 Mechanisms of Metal Toxicity     

Metals cause toxicity, and the toxicity is often measured at the organismal level using reproduction 

and growth as sub-lethal effects and mortality. Metals do this through many mechanisms that may 

be detectable at the molecular level. One way to detect the effect of metals on soil invertebrates is 

by the production of protective enzymes to counteract the effect of metals. For example, the 

increase in the level of metallothionein and metallothionein-like proteins is well documented in 

soil invertebrates that are exposed to metals (Hodson, 2012). Zinc stimulated the induction of 

metallothionein-like proteins in Porcellio scaber that was exposed to zinc through feeding 

(Znidarsic et al., 2005). Zinc at 654 ug/g caused a 50% increase in the induction of the gene 

encoding metal-binding protein (mt-2) in Lumbricus rubellus (Spurgeon et al., 2005). On exposure 
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to copper, metallothionein (MT) levels in F. candida and E. albidus increased significantly in order 

to scavenge copper and mitigate against the toxicity (Maria et al., 2014).  

When Lumbricus rubellus was exposed to increasing concentrations of copper, lysosomal 

membrane was damaged, which correlated to increased body burden and decreased reproduction 

(Svendsen and Weeks, 1997). Another related study using Eisenia fetida also reported the 

reduction in the lysosomal membrane stability of coelomocytes on exposure to copper at about 8 

mg/kg (Scott-fordsmand et al., 2000). The increase in lysosomal membrane damage corresponding 

to significant reproduction inhibition was also observed when Eisenia venetta was exposed to 

Nickel (Scott-fordsmand et al., 1998).  

One traditional way by which metals cause toxicity is by causing oxidative stress characterized by 

the generation of reactive oxygen species (ROS) (Novais et al., 2011). Maria et al. (2014) reported 

that copper caused increased generation of hydrogen peroxide in Folsomia candida cells, which 

was evident from the induction of catalase (CAT) and glutathione reductase (GR) enzymes. In the 

same study, a consistent observation was made for Enchytraeus albidus. Glutathione S-transferase 

(GST) activity reduced in Enchytraeid albidus that was exposed to 100 mg/kg of zinc after 8 days 

indicating direct interaction of ROS with the enzyme (Novais et al., 2011). The generation of 

superoxide dismutase (SOD) after copper exposure shows that superoxide anion radical was 

produced and the effect had to be counteracted (Gomes et al., 2012). In addition, copper as a salt 

and as a nanoparticle both caused an increase in lipid peroxidation in E. albidus (Gomes et al., 

2012). 

Lead caused an increase in the expression of heat shock proteins (hsp) in the mite, Archegozetes 

longisetosus, which coincided with severe leg malformation in its larvae (Kohler et al., 2005). 

Elevated levels of hsp 70 were also observed in the isopod, Oniscus asellus, when exposed to lead, 
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zinc and cadmium singly, and as mixtures (Eckwert et al., 1997). Copper at 400 mg/kg was also 

found to cause significant elevation of hsp 70 in E. fetida after about 15 days exposure (Wenguang 

et al., 2014).  

The genotoxicity of metals has also been reported in some studies. In a toxicity study with nickel 

on Eisenia fetida, there was an increase in DNA strand breaks, indicative of DNA damage 

(Reinecke and Reinecke, 2004). This DNA damage is not surprising, as the carcinogenicity of 

nickel to mammalian cells is well documented (Reinecke and Reinecke, 2004). Although the effect 

of copper on DNA methylation in F. candida was assessed, the results showed that copper did not 

cause DNA methylation (Noordhoek et al., 2018). 

Some studies reported the effect of metals on energy metabolism. For example, Jegede et al. 

(2019b) reported an increase in induction of lactate dehydrogenase and glucose 6 phosphate 

dehydrogenase activities in Oppia nitens after exposure to toxic levels of zinc. Another study 

showed the increase in the energy consumption and protein budget of E. crypticus when exposed 

to EC20 levels of copper (Gomes et al., 2015a).  

Metals also tend to bioaccumulate in particular regions of soil invertebrate bodies. Earthworms 

preferentially accumulate metals in their posterior alimentary canal, collembolans preferentially 

accumulate metals in their midgut epithelium, and isopods are known to accumulate metals in their 

hepatopancreas (Hodson, 2012). These regions of metal storage or accumulation are rich in metal-

rich granules (Hodson, 2012). Cotter-Howells et al. (2005) demonstrated that the earthworm, 

Dendrodrilus rubidus, has calcium metal-rich granules that have high affinity for lead and zinc. 

The earthworm D rubidus also has sulphur-rich granules that have a high affinity for cadmium and 

copper. The sulphur-rich granules in hepatopancreas of Porcelio scaber that have a high affinity 

for copper have also been reported (Kohler, 2002). The collembola, Orchesella cincta possess the 
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calcium metal-rich granules in its midgut, which are usually excreted with the gut epithelium 

during moulting (Joosse and Verhoef, 1983; Van Straalen et al., 1987). There are suggestions that 

the excretion of the gut epithelium during moulting is responsible for tolerance to high 

concentrations of lead and cadmium in some populations of O. cincta (Kohler, 2002). 

2.5 Metal Mixture Toxicity 

Metal mixture toxicity has recently gained more attention because the reality of how metals occur 

in nature or from anthropogenic sources has dawned on many scholars. Due to the varying ways 

by which metals could exist and perhaps interact in mixtures in the environment, hazard 

assessment of all mixtures is not possible to achieve (Heys et al., 2016). The alternative is to rely 

on the knowledge of the toxicity of individual components of metal mixtures. Expectedly, metals 

often exist in the environment in low concentrations except in high metal-contaminated sites 

(Kortenkamp et al., 2009).  

Many studies suggest that mixture effect occurs when chemicals are combined at low 

concentrations (below single contaminant threshold). The mixture effect may be due to the 

additivity of the individual toxicities of the chemicals in the mixture (Kortenkamp et al., 2009). 

This type of mixture effect is called “concentration addition”. The individual toxicities are 

expressed as toxic units. The toxic unit is the concentration of a metal in the mixture divided by 

its effective concentration. When the toxic units are added together and equal to 1 (one), it means 

that concentration addition is valid for the particular mixture.  

∑
𝑐𝑖

𝐸𝐶𝑋𝑖

𝑛

𝑖=1

= 1 = Concentration Addition 

Where ci = concentration of a metal, i in the mixture, ECXi = X% reproduction inhibition 

concentration of metal, i derived from the single metal dose response. 
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Concentration addition (CA) theory postulates that contaminants in the mixtures have a similar 

mode of action. It is a concept that was first introduced by Loewe, a German pharmacologist in 

1926 in a publication by Loewe and Muischnek (Cleuvers, 2003). Another concept of mixture 

toxicity is the Independent action or response addition. The independent action (IA) theory 

suggests that individual components of a mixture have a different mode of action, but that their 

responses can be added up (Cleuvers, 2003). The CA and IA assume that there are no interactions 

between the mixture components (Backhaus and Faust, 2012). Due to the complex nature of 

assessing metal toxicity, regulators adopt CA as the default conservative estimate of metal mixture 

toxicity for risk assessment especially if none of the metals in the mixture exceeds its single metal 

threshold.  

A number of studies have been done on metal mixture toxicity to soil invertebrates. However, like 

many mixture studies, there is always no clear-cut way of predicting whether a particular mixture 

will be additive, synergistic or antagonistic on a particular species. Some studies have reported 

that CA is protective of mixtures. For example, the equitoxic binary mixture of zinc and cadmium 

have been found to result in antagonistic effects on E. albidus (Lock and Janssen, 2002b). The 

mixture effect of copper and zinc on E. crypticus was also antagonistic (Posthuma et al., 1997). 

When the earthworm, Aporrectodea calignosa, was exposed to a mixture of cadmium, copper and 

zinc, the effect was antagonistic (Khalil et al., 1996; Qui et al., 2011). Van Gestel and Hensbergen 

(1997) reported an additive effect of cadmium and zinc on the reproduction of F. candida. 

In contrast to these, some studies have shown that mixture effects are more than additive. A study 

looking at the mixture effects of cadmium and copper on C. elegans found out that the effect was 

synergistic (Jonker et al., 2004). The binary combinations of Cu, Ni and Mn were synergistically 

toxic to Paronychiurus kimi (Son et al., 2016). Some of the differences in type of mixture effects 
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are related to the effect levels considered in a mixture study. For example, there could be 

differences in the effect depending on if individual metals are expressed at low effect level (e.g 

EC10) or high effect level (EC50). Amorim et al (2012) reported antagonism of a mixture of Cd 

and Zn to F. candida at lower doses and synergism at higher doses. 

In some cases, metal toxicity depends on if metals were expressed as total metal or extractable 

metals. Weltje (1998) reported that metal mixture toxicity shifted from antagonism with total metal 

concentration to CA when metals were expressed as extractable metal concentrations. Using water-

soluble concentrations, the toxicity of Cd and Zn on springtail was higher than when the metals 

were expressed as total concentration (Van Gestel and Hensbergen, 1997). The joint effect of 

chemicals may also be specific to species tested. For example, using the same set of metals Cd Zn, 

dose-level dependent (antagonism at low concentrations and synergism at high concentrations) 

effects were observed with F. candida and Porcellionides pruinosus but was only antagonistic 

when tested on Enchytraeus albidus (Amorim et al., 2012).  

There are current efforts at developing statistical models to explain metal mixture toxicity. Jonker 

et al (2005) reported four patterns of metal mixture toxicity in respect to the additivity, which is 

the conservative estimate. The study reported that metal mixtures might not deviate from 

additivity, as it may be synergistic or antagonistic, and dose-level dependent or dose-ratio 

dependent. Although models are very important for interpreting or predicting metal mixture 

toxicity, there have been reports of inconsistency when applying complex statistical models to 

metal mixtures (Liu et al., 2017). For example, using parameters derived from one experiment that 

adopted the isobole-based statistical models, to detect deviations from additivity were not 

reproducible in three consecutive experiments (Sorensen et al., 2007; Liu et al., 2017). This 

phenomenon might be due to the sensitivity of the models in predicting metal mixture toxicity in 
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terms of significant statistical levels (between alpha = 0.05 and alpha = 0.01) (Liu et al., 2017). 

Liu et al. (2017) suggested that a more stringent alpha level (e.g. 0.01) might be adopted to reduce 

variability between models and raise the predictive power of models for metal mixture interactions. 

There are other factors such as discussed earlier; differences in species, and differences in the 

measure of metal bioavailability, which can constitute sources of variability in model predictions. 

2.6 Soil Habitat Quality 

The soil is a biologically active, permeable medium found in the uppermost layer of the earth's 

crust (Birkeland, 1999), which serves as habitat for many organisms. The maintenance of the soil 

system as a living and biologically active entity could be attributed to the range of organisms that 

inhabit the soils (Kamin, 2010; Ruiz et al., 2008). Apart from the biological make-up of soils, the 

physicochemical properties of soils mainly influence soil as habitat for a wide range of species. 

The heterogeneity of soil horizontally and vertically, which also influences biota diversity, is 

attributed to the various ways in which the soil properties are distributed (Voroney, 2007).  

The habitat quality of soils is an important characteristic of soil that should be taken into account 

when interpreting differences between toxic responses in soils. The International Organization for 

Standardization (ISO) 15799 suggests that habitat function of soils should be preserved when 

doing tests. Soils must be able to conserve biodiversity, be suitable to grow crops in Agriculture, 

and be useful for assessing the potential ecotoxicity of chemicals which chemical analysis cannot 

detect (ISO, 2019a). In order to preserve biodiversity or populations, the fitness (survival and 

reproduction) of organisms need to be sustained. The fitness of organisms is linked to the resources 

available within their habitat (Johnson, 2007). The resources could be in the form of food, access 

to food, space or shelter, which protects them from predators or adverse environmental conditions 

(Hope, 2001).  For a soil organism, fitness is related to the soil habitat quality, which in turn is 
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related to the soil properties such as soil pH, texture and organic matter (Jegede et al., 2019b). For 

example, at a pH of 3.5, Folsomia candida’s reproduction reduced by half of its optimum 

reproduction at pH range 5.4 to 6.6 (Jansch et al., 2005). The earthworm, Eisenia Andrei, 

reproduced significantly higher in clay loam and forest organic soils than in clayey agricultural 

and sandy soils (Jansch et al., 2005). Princz et al. (2010) reported that Oppia nitens laid more eggs 

in soils with higher organic matter. The effect of soil properties in mitigating toxicity is well 

established in soil ecotoxicology (Kuperman et al., 2009; Van Gestel, 2012; Son et al., 2007; 

Madani et al., 2015; Owojori et al., 2010). Therefore, many soil ecotoxicology studies account for 

soil properties or differences, thereby incorporating habitat quality partly or indirectly through 

toxicokinetics (toxicokinetics is how an organism influences uptake, metabolism and excretion).  

However, studies that examined the direct effect of habitat quality on toxic potentials of metals on 

soil invertebrates are scarce. Only one study (Jegede et al., 2019b) assessed the direct effect of 

habitat quality on metal toxicity to mites. In the study, the response of mites in high habitat quality 

soils, and those in low habitat quality soils were different. For example, mites in high habitat 

quality were able to withstand higher metal body burden than mites in low habitat quality. Energy-

based biochemical responses also showed that mites in high habitat quality were less stressed, 

hence, expended less energy. Although the mechanism by which habitat quality influenced metal 

toxicity in the mites is not clear at the moment, studies have shown that food quality can influence 

metal toxicity in soil invertebrates. When F. candida was fed with food amended with 2% or higher 

glucose, the gene coding for metallothionein expression levels was lower than when fed with lower 

glucose that exposed it to same cadmium concentrations (Nakamori and Kaneko, 2013). This 

phenomenon may be related to the energy budget allocated for detoxification (Kooijman, 2010) 

where high-quality foods supply more energy, thus making more energy available to detoxify 
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metals at toxic concentrations.  How habitat quality influences toxicity needs to be further studied 

in order to reduce the uncertainties in interpreting some soil ecotoxicology results, especially when 

comparing toxicity between soils.   

2.7 Species Selection 

In an ideal situation, the toxic effects of chemicals should be tested on all species inhabiting the 

soil. However, the diversity of organisms inhabiting the soil is very high, and some have not been 

identified nor characterized; therefore, it is not practical to use all the species for tests. Relative to 

soil biodiversity, only a few species are tested for the effect of chemicals for risk assessment 

(Princz, 2014). The species used in toxicity testing are selected based on some criteria. The criteria 

for test species selection are summarized from Rombke et al. (2009) as follows: 

• Species should be ecologically relevant. The species should play critical roles in food webs 

within the ecosystem.  

• The species should be easy to breed in the laboratory and should have rapid generation 

succession. 

• Species must be such that they are in close contact with soil, plants or plant residues 

• Sensitivity to stress: Species must be moderately sensitive to a broad spectrum of stress. 

• Ecological tolerance: The species must have low sensitivity to fluctuations in soil 

properties, and abiotic factors like temperature and moisture. 

• Distribution: The species must be well distributed in the environment. 

A number of toxicity tests with invertebrates are standardized for soils (e.g. with springtails, F. 

candida (ISO, 1999; OECD, 2009), earthworms Eisenia fetida/andrei (ISO, 1998; OECD, 2004a), 

enchytraeids Enchytraeus albidus/crypticus (ISO, 2004; OECD, 2004b), predatory mite Hypoaspis 

aculeifer (OECD, 2008), and Mollusca: Helix aspersa (ISO, 2006).  Environment Canada and 
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International Organization for Standardization (ISO) have finalized the addition of the oribatid 

mite O. nitens to the retinue of standard test species, and the protocol was released as ISO/DIS 

23266 (ISO, 2019b). 

2.7.1 Oppia nitens 

Oppia nitens (C.L. Koch, 1836) is an oribatid mite belonging to the Oppioidea superfamily and 

Oppiidae family (Norton and Behan-Pelletier, 2009). The Opiiddae family is the largest family of 

the oribatid order (Princz et al., 2010). O. nitens was first described in 1836 by C.L Koch (Baran 

and Ayyildiz, 2004). The species O. nitens can be found in Palearctic and Holarctic soils (Baran 

and Ayyildiz, 2004). Adult O. nitens are dark brown, and the length of the adult species varies 

between 467 to 533 µm and 260 to 320 µm in width (Baran and Ayyildiz, 2004; Michael 1888). 

The juvenile stages of O. nitens from larvae to tritonymphs are characterized by white/translucent 

colour (Hernandez, 2014). Apart from its smaller body size, the larvae of O. nitens is usually 

distinguished by its three pairs of legs, while at its advanced stages, it has four pairs of legs typical 

of acari (Krantz, 2009). The length of the larvae is approximately 200 µm, and width, 105 µm and 

the length of the tritonymphs is approximately 372 µm and width, approximately 195 µm 

(Seniczak 1975, Princz, 2014). Eggs laid by O. nitens eggs are about 90 to 150 µm in size, oval in 

shape, smooth and whitish (Seniczak, 1975; Princz, 2014). After hatching and at about 22-23oC 

and 60% humidity, it takes about 28 days for O. nitens to fully develop- this is after it might have 

gone through five instars (Sengbusch and Sengbusch, 1970). Until the present time, it is not yet 

clear if O. nitens exhibits sexual dimorphism (Princz et al., 2010). This lack of clarity is probably 

because males or females cannot be distinguished both as juveniles and as adults. Oppia nitens 

mainly feeds on fungi; however, lichens, humus, and carrion can be a part of its diet (Luxton, 1972; 

Princz et al., 2014). Nonetheless, O nitens are reared in the lab on yeast (Jegede et al., 2019a).  



26 
 

As a K-strategist, O. nitens produces few offspring and most live up to the nearly maximum life 

span, that is survival is preferred to reproduction. An individual O. nitens adult reproduces more 

than once in its lifetime. The adults prefer to lay eggs in their food or in crevices (Sengbush and 

Sengbish, 1970). Oppia nitens are heavily sclerotized, and their sclerotized cuticle might help to 

protect them from toxic chemicals. The mites can avoid metals (especially essential metals) at 

elevated or toxic concentrations in the environment (Owojori and Siciliano, 2012). A recent 

analysis of the lipid content of O. nitens showed that they have higher lipid contents than other 

soil invertebrates like F. candida, E. crypticus, E. fetida by about one to ten orders of magnitude 

(Gainer et al., 2018). The higher lipid content is a measure of more energy available for O. nitens 

to cope with the environment.  

Oppia nitens are widely distributed. They are abundant in soils and play vital roles in food webs. 

Oppia nitens is easy to breed and can be cultivated in the laboratory, thereby meeting the criteria 

for use in ecotoxicological tests (Rombke et al., 2009; Huguier et al., 2015). It has been used in a 

number of toxicity tests with chemicals such as petroleum hydrocarbons, polycyclic aromatic 

hydrocarbons (PAHs), pesticides, perfluorinated compounds, biopesticides, rare earth elements 

and metals (Princz et al., 2012; Gainer et al., 2018; Owojori and Siciliano, 2012; Princz et al., 

2018; Yu et al., 1997; eSilva et al., 2017; Keshavarz Jamshidian et al., 2017; Owojori and Siciliano, 

2015; Jegede et al., 2019a, b). 

2.7.1.1 Standardized Ecotoxicological Tests with O. nitens 

Although some oribatid mites such as Archegozetes longisetosus, Platynothrus scaber and Oppia 

nitens have been used in toxicity tests, there are no standardized protocols available for their use. 

Recently, efforts have been made by Environment Canada to include O. nitens as a standardized 
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species in ecotoxicological studies. The efforts have been successful, and the protocols for O. 

nitens is now available (ISO, 2019b). 

Some of the adaptations for O. nitens that were adopted in the protocol were about the validity 

criteria of tests.  For example, the reproductive capacity of mites was taken into account. Soil 

invertebrates like F. candida or E. crypticus have more fecundity than O. nitens, as their validity 

criteria for reproduction is set as ≥ 50 juveniles per 10 adults in control soils. In the case of O. 

nitens, the validity criteria is set at ≥30 juveniles per 15 adult mites in control soils. The survival 

was set ≥ 70% just like other soil invertebrates. The conditions for the tests are same as tests with 

F. candida (OECD, 2009) such as 16-h light: 8-h dark, light intensity of 400-800 lux equivalent to 

a quantal flux of 5.6−11.2 μmol/(m2  s) for cool-white fluorescent, the temperature of 20±2oC for 

28 days.  

It is noteworthy that metal risk assessment relies on data got from toxicity tests, with the 

assumption that they are protective of the long-term effect of metals. However, most toxicity tests 

only account for single generational exposure of organisms to contaminants, which are often short 

term. Therefore, the effect on multigeneration is often ignored. For contaminants such as metals, 

which are known to be non-destructible but persist in soil, current toxicity tests, might not reflect 

the full potential of metal toxicity to soil organisms. Jegede et al. (2019a) demonstrated that the 

sensitivity of O. nitens to metals increased in successive generations that were continuously 

exposed to metal thereby showing that tests need to be extended beyond single-generation when 

assessing metal toxicity in soils.  

2.7.1.2 Oppia nitens in Metal Toxicity Tests 

Like many soil invertebrates, O. nitens reproduction is more sensitive to metal toxicity than 

survival. The effects of Zn, Pb, Cu and Cd to O. nitens in standard artificial soil are well 
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documented. Cadmium is the most toxic of the metals to O. nitens with an EC50 of 137 mg/kg, 

which is at least ten places more toxic than Zn, Cu and Pb in the order of magnitude (Owojori and 

Siciliano, 2012). Next to Cd in terms of toxicity to O. nitens is Zn (1562 mg/kg). Although Zn is 

an essential metal, it exhibits toxicity to O. nitens at elevated concentrations (which are below Zn 

concentrations typical of some contaminated sites in Canada). In terms of inhibitory effects on O. 

nitens reproduction, copper is the least toxic of the metals (EC50 = 2896 mg/kg) (Owojori and 

Siciliano, 2012). However, O. nitens is the least sensitive to lead in terms of survival (LC50 = 

6761 mg/kg) (Owojori and Siciliano, 2012). Toxicity data of metals with O. nitens is relatively 

scarce when compared to standardized invertebrate species like F. candida. For example, there is 

no toxicity tests data available for Ni nor Co with O. nitens in standard artificial soils. Although 

O. nitens is adjudged to be somewhat less sensitive compared to F. candida or earthworms, the 

sensitivity of O. nitens to metals is comparable to established standard soil invertebrate species 

(Table 1).  
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Table 2- 1. Summary of the sensitivity of some soil invertebrates (Oppia nitens, Folsomia candida, Eisenia fetida, Enchytraeus 

albidus/crypticus) to six metals (Cu, Zn, Pb, Cd, Co, Ni) in Organization for Economic Cooperation and Development (OECD) 

artificial soil and some described natural soils.  

 

  Species Guideline 

reference 

Metal EC50 (mg/kg) Duration (d)      Soil    Reference 

Oppia nitens Not available    Cu   2896       35 OECD Artificial 

soil 

Owojori and Siciliano, 

2012 

Folsomia candida OECD, 2009     700       28 OECD Artificial 

soil 

Sandifer and Hopkin, 

1996 

Eisenia fetida OECD, 1998     316       28 OECD Artificial 

soil 

Owojori et al., 2009 

Enchytraeus albidus OECD, 2004     305       28 OECD Artificial 

soil 

Lock and Janssen, 

2002b 

Oppia nitens Not available    Zn   1562       35 OECD Artificial 

soil 

Owojori and Siciliano, 

2012 

Folsomia candida OECD, 2009     750       28 OECD Artificial 

soil 

Sandifer and Hopkin, 

1996 

Eisenia fetida OECD, 1998     705       28 OECD Artificial 

soil 

Lock and Janssen, 

2001d 

Enchytraeus albidus OECD, 2004     267       28 OECD Artificial 

soil 

Lock and Janssen, 

2001d 

Oppia nitens Not available    Pb   1678       35 OECD Artificial 

soil 

Owojori and Siciliano, 

2012 

Folsomia candida OECD, 2009    1600       28 OECD Artificial 

soil 

Sandifer and Hopkin, 

1996 

Eisenia fetida OECD, 1998    1940       28 OECD Artificial 

soil 

Spurgeon and Hopkin, 

1995 

Enchytraeus albidus OECD, 2004     320       28 OECD Artificial 

soil 

Lock and Janssen, 

2002b 

Oppia nitens Not available     Cd    137 

 

      35 OECD Artificial 

soil 

Owojori and Siciliano, 

2012 
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Folsomia candida OECD, 2009    315      28 OECD Artificial 

soil 

Sandifer and Hopkin, 

1996 

Eisenia fetida OECD, 1998    108      28 OECD Artificial 

soil 

Lock and Janssen, 

2001c 

Enchytraeus albidus OECD, 2004    158      42 OECD Artificial 

soil 

Lock and Janssen, 

2001b 

Oppia nitens Not available      Co 1213 - 14000      28 Natural soil (pH = 

3.4 - 6.8, %OC = 

17 – 29, CEC = 8 – 

20 mmol/100g) 

Present study 

Folsomia candida OECD, 2009    409      28 OECD Artificial 

soil 

Lock et al., 2004 

Eisenia fetida OECD, 1998    300      28 Sludge (pH = 6.5 – 

7.0 + Teel silt loam 

soil. 

Hartenstein et al., 1981 

Enchytraeus 

crypticus 

OECD, 2004    200      28 LUFA 2.2  Ribeiro et al., 2018 

Oppia nitens Not available      Ni 133 - 3600      28 Natural soil (pH = 

3.4 - 6.8, %OC = 

17 – 29, CEC = 8 – 

20 mmol/100g) 

Present study 

Folsomia candida OECD, 2009    476      28 OECD Artificial 

soil 

Lock and Janssen, 

2002a 

Eisenia fetida OECD, 1998    362      21 OECD Artificial 

soil 

Lock and Janssen, 

2002a 

Enchytraeus albidus OECD, 2004    275      42 OECD Artificial 

soil 

Lock and Janssen, 

2002a 
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3. Manuscript 1: Single Metal and Metal Mixture Toxicity of Five Metals to Oppia 

nitens in Five Different Canadian Soils.  

3.1 Preface 

The single and metal mixture toxicity of five metals to the survival and reproduction of Oppia 

nitens in five soils were assessed after 28 days. Metal concentration in mixtures followed fixed-

ratio rays. Metal speciation in soils was determined to explain the variation among soils in mite 

response. Multivariate statistics were used to explain interactions of soil properties on metal 

mixture toxicity to the mites. 
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3.2 Abstract 

Metal mixture toxicity across soil types is a daunting challenge to risk assessment.  Here, we tested 

some simple assumptions regarding metal mixture toxicity, namely: (i) concentration addition 

would predict metal response, (ii) soils where the mites are sensitive to single metals would also 

be the soils where the mites are susceptible to mixtures, (iii) the specific metal composition in 

mixtures would influence toxicity, and (iv) speciation of metals in mixtures could explain toxicity 

better than total metals.  We evaluated metal mixture toxicity in Oppia nitens, using ten fixed metal 

mixture ratios in five Canadian soils that closely matched some of the EU PNEC reference soils. 

Soils were dosed with five metals (Cu, Zn, Pb, Co, Ni) as single metals (ten concentrations) and 

as mixtures (eight concentrations). Synchronized adult mites were exposed to metals, with survival 

and reproduction assessed after 28 days. Total metal concentrations were determined, and 

speciation was calculated using WHAM 7. We found out that: (i) response to about 90% of the 

metal mixtures deviated from concentration addition, (ii) the differences among soils in mite 

sensitivity and single metals were not consistent when mites were exposed to metal mixtures, (iii) 

the specific metal composition in mixtures had little effect compared to differences among soils 

with regard to metal toxicity, but Zn emerged as a protective metal in most mixtures, and (iv) in 

combination with soil properties, metal speciation explained 57% of the variation in toxicity 

among soils but metal speciation alone only explained 14% of the variation in toxicity response.  

Instead, soil properties such as CEC, independent of effects on metal speciation, explained 23% 

of the variation.  Both CEC and Zn alter O. nitens toxicodynamics, and thus suggest that the 

toxicity of metal mixtures in soils is likely driven more by toxicodynamics than toxicokinetics. 

Further work is needed to insure that by protecting soil-dwelling organisms from single metals, 

the risk from metal mixtures is appropriately protected for. 
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3.3 Introduction 

Metals co-occur in the environment and the myriad potential combinations preclude a hazard 

assessment of each and every mixtures (Heys et al., 2016). The alternative is to rely on the toxicity 

of individual components of the mixtures and incorporate the typical conservativism of those 

single-metal toxicity thresholds into a reference mixture-toxicity concept. Concentration addition 

(CA) is one reference mixture-toxicity concept adopted by regulators (Jonker et al., 2005; Nys et 

al., 2017). The CA concept assumes that individual components of the mixture do not interact and 

that they have the same mode of toxic action (Qui et al., 2015). 

In many cases, the mode of action is unknown; nonetheless, the CA is applied to all mixtures 

because of the ease of interpretation (Qui et al., 2015). Mathematically, the CA is determined by 

simply adding the toxicities of each metal in the mixture after expressing the metals as toxic units. 

The toxic unit is the ratio of the concentration of a metal in the mixture to the metal’s effective 

concentration (ECx). When the sum of the toxic units of each metal in the mixture equals one, then 

such mixture toxicity follows concentration addition. However, when the sum is significantly 

higher or less than one, it means that the metals in the mixtures interact.   

Concentration addition predicts an increase in toxicity at low concentrations (concentrations below 

individual toxicity thresholds) due to additivity (Kortenkamp et al., 2009). However, metal 

interactions leading to synergism (CA < 1) enhance toxicity of mixtures more than additivity 

(Jonker et al., 2005). It is also possible that metal interactions can reduce mixture toxicity through 

antagonism (CA > 1). For example, an equitoxic binary mixture of zinc and cadmium resulted in 

antagonistic effects on E. albidus (Lock and Janssen, 2002b). In contrast, Jonker et al. (2004) 

reported that cadmium and copper’s effect on C. elegans was synergistic.  Synergism is a source 
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of concern to regulators because it implies higher risk with a particular mixture. For the proponents 

of contaminated sites, antagonism is also a concern because it can lead to greater risk management 

than needed, at greater cost. The interplay between metals in soils and soil properties is one of the 

reasons why interactions occur more often than not (Qui et al., 2015).  

Soil properties influence the performance of organisms in soils (Jansch et al., 2005; Kuperman et 

al., 2009). Soil properties determine the soil habitat quality, which relates to the fitness of soil 

organisms (Jegede et al., 2019b). For example, at a pH of 3.5, Folsomia candida’s reproduction 

was reduced to half of its optimum reproduction at pH range 5.4 to 6.6 (Jansch et al., 2005). High 

habitat quality as a function of soil properties protects organisms by providing more energy for its 

inhabitants to cope with metal exposure. The high cation exchange capacity (CEC) in some soils 

was given as the reason for the increased ability of O. nitens to withstand metal through 

toxicodynamics (Jegede et al., 2019b).  Studies have demonstrated that soil organism response is 

related to fundamental soil properties like soil texture, pH, organic matter content and clay (Van 

Gestel, 2012). For example, soil properties influenced the toxicity of metals like copper and lead 

on survival and reproduction of the enchytraeid, Enchytraeus albidus (Lock and Janssen, 2001a), 

and the toxicity of copper to the springtail, Folsomia candida (Criel et al., 2008). Generally, soil 

organism responses in metal-contaminated soils is more closely related to the bioavailable, rather 

than the total concentration of metals. 

Soil properties drive metal bioavailability. For example, keeping other soil properties constant, a 

soil with a lower pH and CEC tends to have a higher cationic metal bioavailability and vice versa 

(Alloway, 2012; Hasegawa et al., 2016). Soil properties influence metal bioavailability by altering 

the ratio of free to bound metals in soil solution. For example, soils with lower pH, organic carbon 

and CEC have a greater proportion of total metal as free ion or very labile species and therefore 
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possess increased toxicity when compared with soils with high pH, organic carbon and CEC 

(McLean and Bledsoe, 1992). He et al. (2014) reported that toxicity of nickel to Enchytraeus 

crypticus was due to free nickel [Ni2+] species because the [Ni2+] explained much of the 

accumulation and toxicity of nickel to the enchytraeid. Other metal complexes such as organic-

matter bound metals relate to metal toxicity because organisms can internalize intact metal-

complexes.  For example, Stockdale et al. (2010) reported that metals bound to humic acid 

correlated to metal-mixture body burdens causing toxicity in stream macroinvertebrate species.  It 

is thought that these metal-complexes react with biotic ligands, releasing free metal species, which 

are then absorbed by the organism (Zhao et al., 2016).   

Though mixture toxicity data are increasingly becoming available (Baas et al., 2010), mixture data 

are still relatively uncommon. Many of the metal mixture data in literature e.g. (Norwood et al., 

2003; Vijver et al., 2011) were based on nominal concentrations and acute effects rather than 

measured metal concentrations and chronic effects, which are more relevant for risk assessment of 

metals (Nys et al., 2018). Moreover to incorporate measures of bioavailability, it is important that 

properties of receiving environment, in our case soil properties, should be accounted for (Nys et 

al., 2018). To test the conservativeness of CA for risk assessment or how deviated mixtures are 

from CA, a mixture interaction factor (MIF) is used (Nys et al., 2018). In this study, we sought to 

ascertain if: (i) metal mixtures followed CA and if not, how the mixtures deviated from CA, (ii) if 

soil properties could be used to predict mixture effects, (iii) if the composition of the metal mixture 

significantly altered toxicity outcomes, and (iv) if metal speciation could explain mixture toxicity 

better than total metals.  Here for the first time, we assessed metal mixture toxicity effect of five 

metals on reproduction of Oppia nitens in five Canadian soils.  We used Oppia nitens as our model 

organism due to its importance in the boreal forest and Arctic regions where the majority of 
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Canadian mines are located, as well as the growing body of literature describing this organism’s 

response to toxicants.  The five metals (Zn, Pb, Cu, Ni, Co) used in this study are often found 

together in metal contaminated sites (CEM, 2004; Pourret et al., 2016). To increase the relevance 

of this study for metal risk assessment, we mimicked metal ratios found in soils near mining or 

metal smelting operations. We also tested how deviated from CA are the mixtures in all the five 

soils. 

3.4 Materials and Methods 

3.4.1 Soil collection 

Eighteen (n=18) soils were collected from sites across Canada. The soils spanned residential, 

agricultural and mining sites. The soils were air-dried until constant weight and stored as dry soils 

for about two weeks. The physicochemical properties of the soils were determined (Jegede et al., 

2019b). Five of the 18 soils were then selected as reference soils for their similarity in properties 

to five of the soils used in the EU REACH for the PNEC calculator (Table 3-1). 

Table 3- 1. The physicochemical properties of soils selected to mirror the European Union 

predicted no-effect concentration (EU PNEC) reference of the five reference soils. 

 

 Soil pH  

(CaCl2 ) 

Water 

Holding 

Capacity (%) 

Organic 

Carbon  

(g kg-1) 

Clay 

Content 

(g kg-1) 

CEC 

(mmol/

100g) 

Closest EU PNEC 

Reference 

1 3.22    3.4   29     17    45     8 Acid Sandy Forest 

2 Elora    6.7   30     21   200    21 Loamy Alluvial 

3 KUBC    5.6   20     12   24    28 Loamy 

4 WTRS    4.6   23     25   110    16 Acid Sandy Arable 

5 PC7    6.8   30     29    58    20 Loam Sandy 
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Two of the soils (3.22 and WTRS) were collected from mining sites in Flin Flon, Manitoba. Two 

other soils (Elora and PC7) were collected from Elora and Port Colborne, both in Ontario; while 

the fifth soil (KUBC) was a mixed soil from Kernen, which is an agricultural research field in 

Saskatchewan, and UBC soil from Iqaluit, Nunavut, mixed in a 1:1 ratio to create the desired soil 

properties. Henceforth, for easy identification, the soils are named according to their closest EU 

PNEC reference: 3.22 = Acid Sandy Forest, Elora = Loamy Alluvial, KUBC = Loamy, WTRS = 

Acid Sandy Arable, PC7 = Loamy Sand. 

3.4.2 Test Species 

3.4.2.1 Oppia nitens 

Oppia nitens is an oribatid mite, which is fungivorous. They are important nutrient recyclers in the 

soil and are the most abundant microarthropod in the boreal forest soils (Princz et al., 2010). They 

have been used in toxicity tests with metals (Owojori and Siciliano, 2012; Keshavarz Jamshidian 

et al., 2017; Jegede et al., 2019a). The O. nitens used for this study was taken from the already 

established laboratory cultures in the soil toxicology laboratory at the Soil Science department in 

the University of Saskatchewan, Canada. Adult mites were cultured on a medium made of Plaster 

of Paris (POP) and activated charcoal in an 8:1 ratio. The POP was moistened twice in a week, 

and the mites were fed with bread yeast ad-libitum. The mites were age-synchronized; after about 

5-6 weeks, newly emerged amber-colored adult mites were selected and placed in a new medium 

of POP and allowed to mature fully. The fully matured mites had dark brown sclerotized pigments.  

The fully matured mites were then used for the tests.  

3.4.3 Metals 

Five metals were used for this test as singles and were also combined as mixtures. The metals were 

purchased as metal oxides from Sigma Aldrich: zinc oxide (puriss p.a American Chemical Society 
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(ACS) reagent ≥ 99%), lead (II) oxide (ACS reagent, ≥ 99%), cobalt (II, III) oxide (powder, < 10 

µm, 98%), copper (II) oxide (powder , < 10 µm, 98%), and nickel oxide. The metal oxides were 

further ground to finer particles with mortar and pestle. The ground oxides were placed in contact 

with concentrated nitric acid in a desiccator for 48 hours to remove trace carbonates. Further, the 

oxides were air dried in a fume hood for 24 hours.  

3.4.4 Fixed Ratio Ray Determination and Rationale 

A fixed ratio ray is the combination of chemicals in a particular ratio with increasing doses 

maintaining this ratio. A fixed ratio ray design increases the ease of interpreting and visualizing 

experimental results (Kortenkamp et al., 2009). For example, predictions and observations of 

effect level deviations are better observed with a fixed ratio ray design (Crofton et al., 2005; 

Kortenkamp et al., 2009). Moreover, a fixed ratio ray design helps to reduce the amount of 

experimental effort associated with mixtures, and to easily evaluate environmentally relevant 

mixtures (Casey et al., 2005).    

Ratios relevant to existing regulations (regulatory ratios) were developed. One of the five ratios 

was created from the Canadian soil quality guidelines (CSQG) for each metal, for agricultural land 

use. The other four ratios were selected based on the PNEC estimates for individual metals in eight 

of the EU REACH soil types and the CSQG land use classes.  The ten potential regulatory ratios 

were combined into four, based on the similarity in the ratios between the soils/land uses (Table 

3-2).  Three environmental ratios were based on the average metal concentrations in Flin Flon, 

Sudbury, and Port Colborne soils (Johnson and Hale, 2004; Hamilton et al., 2016; Gopalapillai et 

al., 2018). Ratios based on organism sensitivity (toxicity ratios) were created from the Folsomia 

candida EC50 values of each metal in artificial soil (there was not enough O. nitens data to build 

such a ratio) (Sandifer and Hopkin, 1996; Sandifer and Hopkin, 1997; Lock and Janssen, 2002a; 
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Lock et al, 2004). The Folsomia candida EC50 values were used because it is a standard test 

species, as it is a microarthropod like mites, and has literature EC50 values for all the metals of 

interest. Two toxicity ratios were determined. One was determined based on the EC50 values of 

the metals, and the other ratio was based on equal concentrations of the metals. For easy 

visualization, metal concentrations in each fixed ratio ray are expressed as a percentage (w/w) and 

by molar ratios (Table 3-2). 
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Table 3- 2. Fixed rays used for the full metal mixture toxicity tests by weight-by-weight (w/w) and molar (mol) ratios of the metals in 

the mixture. Regulatory ray = Ratio relevant to existing regulations, Environmental ray = Ratio based on average metal concentrations 

found in sites at or near mining and smelting operations in Canada, Toxicity ray = Ratio based on a standard species’ (Folsomia 

candida) sensitivity to the individual metals in the mixture 

 

 Fixed Ratio Ray Type of Ray Dose composition 

         Co          Ni          Cu         Zn          Pb 

Mixture w/w mol w/w Mol w/w Mol w/w mol w/w mol 

    1 CSQG Regulatory 0.090 0.110 0.110 0.134 0.160 0.181 0.470 0.516 0.170 0.059 

    2 Clayey/Peaty 0.110 0.135 0.123 0.152 0.206 0.234 0.372 0.412 0.190 0.066 

    3 Ag/Res/Loamy 0.100 0.122 0.118 0.144 0.184 0.208 0.423 0.465 0.175 0.061 

    4 Loamy/Sand/Industry 0.097 0.123 0.109 0.138 0.155 0.182 0.421 0.479 0.218 0.078 

    5 Acid Sandy Arable 0.050 0.080 0.064 0.102 0.157 0.232 0.260 0.374 0.469 0.212 

    6 Flin Flon Environmental 0.003 0.003 0.003 0.003 0.202 0.216 0.726 0.755 0.066 0.021 

    7 Sudbury 0.037 0.065 0.072 0.128 0.039 0.064 0.290 0.461 0.561 0.282 

    8 Port Colborne 0.013 0.013 0.707 0.736 0.178 0.172 0.076 0.071 0.026 0.008 

    9 EC50 Toxicity 0.294 0.396 0.088 0.119 0.147 0.183 0.147 0.178 0.324 0.124 

   10 Equal Ratio 0.200 0.271 0.200 0.235 0.200 0.217 0.200 0.211 0.200 0.066 
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3.4.5 Test Design 

The experiment was designed such that at least 50 test units were randomly assigned into each of 

15 blocks. Each test unit contained each of the five soils, each of the single metals, and each of the 

ten mixture rays. Therefore, the single and metal mixtures were performed concurrently in this 

randomized fashion to minimize variation within treatment conditions in the laboratory, and to 

improve the reliability of the tests.  Dose replications were also randomized such that the controls 

and some concentrations had replications. In all, there were 870 test units including the replicates.  

Each of the single metals tests had 11 doses including control and each mixture test had 9 

treatments, including control.  

3.4.6 Test Performance 

All the soils were moistened with 50% water holding capacity, while the test soils were spiked 

with single metals and metal mixtures. Some of the soils were not spiked with any metal, for the 

control. Twenty-five (25) g of the spiked and control soils were weighed into a 2 cm diameter glass 

vials and labelled accordingly. Fifteen synchronized adult mites were then introduced into the vials 

containing the soils. The mites were fed with yeast once every week starting with week 0. The 

experiment was run under constant conditions for 28 days; 21oC, 50 - 60% humidity, >800 Lux, 

day to light; 16: 8h regime (Princz et al., 2010). The loss in moisture was also adjusted each feeding 

day. After 28 days, the mites were extracted using a modified Berlese tullgren extractor for 48 

hours (Jegede et al., 2019a). The number of surviving adults and the juveniles produced were 

counted and recorded against each concentration. 
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3.4.7 Chemical Analysis  

3.4.7.1 Total Metal Concentrations 

The total metal concentrations in the test soils were determined by X-Ray Fluorescence (XRF) 

(Margui et al., 2016). Four (4) g of dry soils were weighed and ground. The ground soils were 

homogenized with 0.8 g of 44 µm powdered Chemplex spectroblend, acting as adhesive to hold 

the soils together. The homogenized samples were transferred into Chemplex pellet cups, covered 

with polypropylene thin-films and vacuum-sucked into a pellet die set. The pellet set was mounted 

on a hydraulic press and the samples were pressed (10,000 pounds per square inch) for 5 minutes 

to form soil discs. The soil discs were analyzed on the Thermofisher ARL Optim-X X-ray analyzer 

for total metal concentrations. For quality control, the recoveries of each metal from a certified 

reference material (Montana 2710a) were determined. The recoveries of the metals ranged between 

90-95%. 

3.4.7.2 Bio-accessible and Free Metal ion Concentration  

Free metal ion concentrations were predicted using bioaccessible metal concentrations, anions, 

cations and the dissolved organic carbon. These were inputted into the WHAM 7 to calculate the 

free metal ions (Gopalapillai and Hale, 2017). The bio-accessible metal concentrations were 

determined by the calcium chloride extraction method (Quevauviller, 1998). Soil (2.5g) was 

weighed into a 50 ml centrifuge tube and 25 ml of 0.01M CaCl2 added. The CaCl2 and soil mixture 

were shaken for 3h at 15 rpm using a rotary shaker. A subsample of the solution was used for pH 

and the remaining sample centrifuged for 10 minutes at 5000g, filtered through a 0.45 µm filter, 

and was refrigerated prior to analysis. The filtered samples were then analyzed using an Agilent 

Microwave Plasma Atomic Emission Spectrometer (MP-AES) at the Department of Soil Science, 

University of Saskatchewan, Canada. Standard solutions of the metals (VWR atomic absorption 
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standards) were diluted with 0.01M calcium chloride serially from 0, 1, 5, 15, 30 and 50 mg/L as 

standards. The quality control included blanks, duplicates and calibration standards for every set 

of 21 samples. 

3.4.7.3 Anions and Cations  

The anions and cations in the soil were determined using water instead of calcium chloride 

(Quevauviller, 1998). The filtered extracted-samples were divided into two; while one part was 

analyzed for anions, the other part was analyzed for base cation concentrations. The anions were 

analyzed by ion chromatography (IC) with a Dionex ICS-2000 using the Chromeleon 7 software 

at the Department of Soil Science, University of Saskatchewan, Canada. The base cations (Ca2+, 

K+, Mg2+) were analyzed with an Agilent MP-AES at the Department of Soil Science, University 

of Saskatchewan, Canada. Standards for the cations were run randomly in the MP-AES, and the 

calibration curve of the absorbance (Ca2+ = 616.21 nm, K+, = 769.89 nm, Mg2+ = 383.80 nm) at 

different concentrations was determined. The quality control included blanks, duplicates and 

calibration standards in every set of 21 samples. 

3.4.7.4 Dissolved Organic Carbon 

Dissolved organic carbon (DOC) was determined by a method described by Chantigny et al. 

(2008). Soil (15 g) was mixed with 30 ml of 0.005M CaCl2 in a 50 mL centrifuge tube. The soil 

and the CaCl2 were mixed gently for a minute with a glass rod. After this, the soil-water mixture 

was centrifuged at 12000g for 10 minutes. The supernatants from the centrifuged samples were 

filtered with 0.4 µm polycarbonate through vacuum suction into 30 mL dram vials. The filtered 

samples were immediately analyzed for DOC using a Mandel Total Organic Carbon analyzer at 

the Department of Soil Science, University of Saskatchewan, Canada. Percent coefficient of 

variation for replicate injections was less than 2%.  
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3.4.7.5 Speciation Calculations. 

The Windermere Humic Aqueous Model version 7 (WHAM 7) (Tipping et al., 2011) was used to 

determine how metals were speciated in the soil solutions. The input parameters were: dissolved 

organic carbon (DOC), cations (Ca2+, Mg2+, K+, Co2+, Ni2+, Cu2+, Zn2+, Pb2+) and the anions (Cl-, 

NO3-, SO4
2-, CO3

2-, PO4
3-). The reaction conditions were: temperature at 298K, the partial pressure 

of CO2 at 0.00038 atm, and pH, which was as, measured (Peng et al., 2018). Fulvic acid (FA) was 

estimated from the DOC by assuming 65% of the DOC is the active FA and that DOC is 50% of 

dissolved organic matter in the soil (Tipping et al., 2003; Rooney et al., 2007). The output 

parameters were the free metal ion species (Co2+, Ni2+, Cu2+, Zn2+, Pb2+), metal bound to fulvic 

acid (FA-Me) and other metal (Me) species (Me-SO4, Me-(OH)+, Me-(OH)2, Me-CO3, Me-Cl2, 

Me-(HCO3)2) 

3.4.8 Statistics 

The total metal concentrations were expressed as mmol/kg.  The effective concentration inhibiting 

10% and 50% mite reproduction (EC10, and EC50) of the individual metals and the metal mixtures 

for reproduction were estimated with a non-linear regression model (three or four-parameterized 

log-logistic model  or Weibull 1 and 2 models using R.) The models were chosen based on which 

better fits the dose-response data (lower Akaike Information Criteria (AIC) values), using the 

DRM package in R (Ritz, 2016). The PNEC calculator (Version 3) was used to calculate the 

bioavailable PNEC value of each metal based on the soil properties (Arche, 2015). Analysis of 

variance (ANOVA) was used to check the difference (p < 0.05) in mean EC10 and EC50 values 

for mixtures among soils, while a Tukey post hoc test was used to identify the pair(s) of soils with 

difference. The number of toxic units of a metal in the mixture was calculated as (Equation 1): 
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𝑐𝑖

𝐸𝐶𝑋𝑖
= Toxic unit (TU)   (1) 

Where ci = concentration of a metal, i in the mixture, and ECXi = X% reproduction inhibition 

concentration of metal, i derived from the single metal dose response.  

The normalized mixture exposure concentrations were calculated as the sum of the toxic units for 

each metal (TU mixture) (Equation 2). 

∑
𝑐𝑖

𝐸𝐶𝑋𝑖

𝑛
𝑖=1 = TU mixture   (2) 

The TU Mixture was plotted as a dose against mite reproduction to fit a dose-response curve, using 

the DRM package to determine the TU10 and TU50. The TU10 and TU50 are the TU mixtures at 

which 10% and 50% reproduction inhibition were observed. The TU10 and TU50 values were 

compared to additivity, namely where TU mixture = one (1). The type of response was determined 

by if the TU10 or TU50 is equal to, greater or less than one. A one-sided T-test was used to 

determine if the observed TU10 or TU50 with its estimated standard error (error derived from the 

dose response analysis) differed (p < 0.05) from one. When TU10 or TU50 is equal to one, the 

mixture response type is additive. When TU10 or TU50 is > 1, it is antagonism, when TU10 or 

TU50 is < 1, it is synergism. The non-interactions or interactions of metals in the mixture were 

expressed as the percentage frequencies of each type of response in the soils. A mixture interaction 

factor (MIF) for each soil was derived at EC10 and EC50 level as the median of the TU10s and 

TU50s of all the ten mixtures in each soil. 

Multivariate analysis was used to determine which soil properties or measured metals better 

explained mixture toxicity or mixture interactions. Before performing the multivariate analysis, 

the sets of data were checked for normality with a QQplot, and transformed accordingly. The 

multivariate analysis was performed using variation partitioning of matrices of soil properties and 
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measured metals (total, free and % metals bound to Fulvic acid) with EC10 and EC50/TU10 and 

TU50 of metal mixtures as response variables (Borcard et al., 2018). A forward selection of a 

redundancy analysis (RDA) with the VEGAN package in R (Oksanen et al., 2013) was used to 

determine which soil property or metal significantly (P < 0.05) explained variation.  

3.5 Results 

3.5.1 Metal Toxicity 

Nickel was the most toxic metal (Average EC10 = 14.6 ± 8 mmol/kg) in four of the five soils used 

for the test, (Figure 3-1 & Table 3-3) while Zinc was the least toxic (68 ± 34 mmol/kg).  The Acid-

Sandy-Forest soil had the highest toxicity (EC10 = 3.7 ± 0.9 mmol/kg and EC50 = 11.2 ± 3.3 

mmol/kg), while the Loamy soil was the least toxic (EC10 = 55 ± 40 mmol/kg, EC50 = 209 ± 81 

mmol/kg) (Figure 3-1). However, Loamy-Alluvial soil had the highest metal mixture EC10 level 

(7.6 ± 3.5 mmol/kg) while Acid-Sandy-Forest soil had the highest metal mixture EC50 level (17.8 

± 2.4 mmol/kg) (Table 3-3). The Acid-Sandy-Arable soil had the lowest metal mixture toxicity 

(EC10 = 52.9 ± 14.3 and EC50 = 97.8 ± 19.0 mmol/kg) (Table 3-3). Toxicity irrespective of the 

mixture ratio was similar (within an order of magnitude) in the Acid-Sandy-Forest soil except in 

one mixture where it was within two orders of magnitude (Table 3-3).  The single metal EC10, 

EC25 and EC50 values from this study were also expressed as mg/kg (Appendix A, Table A-1). 
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Figure 3- 1. Dose response curves for response of Oppia nitens to five metals (Zn, Pb, Cu, Ni, 

Co) in each of five soils (Acid Sandy Forest, Loamy Alluvial, Loamy, Acid Sandy Arable, 

Loamy Sand) and the effective concentrations inhibiting 50% reproduction (EC50) expressed in 

mmol/kg of metal. 
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Table 3- 3. The effective concentrations ± SE of five single metals and ten metal mixtures inhibiting 10% (EC10) and 50% (EC50) mite 

reproduction expressed as mmol/kg of soil in five soils (Acid Sandy Forest, Loamy Alluvial, Loamy, Acid Sandy Arable, Loam Sandy). 

Not calculated = data that could not be fitted with the model due to errors. Not toxic = data that could not be fitted because there was no 

toxicity, even at the highest concentrations. 

 

  Acid Sandy Forest Loamy Alluvial Loamy Acid Sandy Arable Loam Sandy 

  EC10 

(mmol/kg) 

EC50 

(mmol/kg) 

EC10 

(mmol/kg) 

EC50 

(mmol/kg) 

EC10 

(mmol/kg) 

EC50 

(mmol/kg) 

EC10 

(mmol/kg) 

EC50 

(mmol/kg) 

EC10 

(mmol/kg) 

EC50 

(mmol/kg) 

 

Single 

metals 

Zn 3.80 ± 

1.20 

9.90 ± 

3.30  

78.62 ± 

27.24 

133 ± 

18.50 

Not toxic Not toxic Not toxic Not toxic 121.36 ± 

6.90 

124.36 ± 

3.78 

Pb 4.20 ± 

1.60 

6.60 ± 

3.18 

0.83 ± 

0.46  

14.64 ± 

6.08 

3.08 ± 

3.61 

104.36 ± 

100.00 

22.44 ± 

18.80 

44.23 ± 

18.65 

1.31 ±0.46 6.77 ± 

1.83 

Cu 5.10 ± 

3.71 

16.60 ± 

8.35 

Not toxic Not toxic 2.27 ± 

0.91 

420 ± 

51.20 

8.44 ± 

23.40 

59.78 ± 

20.33 

0.88 ± 

0.33 

54.58 ± 

17.80 

Ni 0.09 ± 

0.03 

2.26 ± 

3.10 

1.36 ± 

0.48 

2.71 ± 

1.31 

43.90 ± 

5.86 

61.43 ± 

4.41 

16.37 ± 

14.22 

41.55 ± 

24.44 

11.42 ± 

2.52 

17.41 ± 

1.33 

Co 5.51 ± 

5.20 

20.60 ± 

11.30 

Not toxic Not toxic 172.00 ± 

57.47 

253.32 ± 

28.56 

Not toxic Not toxic 14.35 ± 

29.46 

108.20 ± 

102.00 

            

Metal 

mixtures 

Mixture 1 7.88 ± 

21.06 

12.99 ± 

23.90  

0.14 ± 0.4 15.30 ± 

14.00 

34.90 ± 

92.75 

38.70 ± 

77.00 

68.00 ± 

99.87 

169.98 ± 

102.00 

1.25 ± 

4.01 

25.88 ± 

26.00 

Mixture 2 13.06 ± 

8.80 

19.00 ± 

4.30 

13.00 ± 

13.00 

59.30 ± 

27.00 

5.50 ± 

4.99 

50.01 ± 

36.87 

33.36 ± 

43.70 

136.00 ± 

62.90  

Not 

calculated 

Not 

calculated 

Mixture 3 8.55 ± 

4.75 

13.67 ± 

7.64 

2.00 ± 

4.00 

97.00 ± 

89.00 

5.09 ± 

17.22 

74.45 ± 

61.59 

40.88 ± 

9.91 

43.10 ± 

3.18 

51.80 ± 

9.60 

54.00 ± 

9.98 

Mixture 4 6.64 ± 

3.84 

9.69 ± 

5.56 

29.80 ± 

42.01 

33.10 ± 

37.90 

20.20 ± 

12.00 

21.33 ± 

27.67 

35.01 ± 

22.00 

59.10 ± 

36.77 

11.70 ± 

9.00 

36.88 ± 

18.01 

Mixture 5 8.00 ± 

18.00 

17.18 ± 

12.00 

Not toxic Not toxic 22.11 ± 

9.00 

37.15 ± 

14.86 

155.22 ± 

24.79 

161.98 ± 

8.01 

Not 

calculated 

Not 

calculated 

Mixture 6 17.87 ± 

9.00 

18.60 ± 

3.80 

Not toxic Not toxic 0.78 ± 

0.06 

 

97.49 ± 

33.93 

35.78 ± 

1.80 

35.89 ± 

2.20 

1.80 ± 

1.40 

10.00 ± 

5.13 



 

 
 

4
9

 

Mixture 7 11.30 ± 

6.02 

14.48 ± 

3.41 

Not toxic Not toxic 9.98 ± 

44.00 

13.31 ± 

3.01 

26.90 ± 

36.87 

27.99 ± 

33.01 

9.30 ± 

7.01 

10.11 ± 

2.00 

Mixture 8 10.30 ± 

4.40 

38.00 ± 

16.50 

4.50 ± 

13.00 

129.00 ± 

118.00 

Not toxic Not toxic Not toxic Not toxic Not toxic Not toxic 

Mixture 9 17.80 

±2.87 

18.44 ± 

17.00 

0.20 44.87 ± 

61.80 

81.01 ± 

39.90 

125.22 ± 

17.90 

71.89 ± 

14.00 

94.33 ± 

27.21 

Not toxic Not toxic 

Mixture 10 9.43 ± 

14.20 

16.26 ± 

8.80 

11.98 ± 

20.90 

71.00 ± 

43.97 

27.98 ± 

24.34 

123.00 ± 

44.01 

9.70 142.91 ± 

70.01 

1.76 ± 

2.61 

3.30 ± 

1.81 
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Figure 3- 2. Toxic responses of mite to single metals (Co, Ni, Cu, Zn and Pb) [upper panels] and 

metal mixtures [lower panels] at effect levels 10% and 50% (EC10 and EC50 in mmol of metal per 

kg of soil) in five soils (Acid Sandy Forest, Loamy Alluvial, Acid Sandy Arable, Loamy, and 

Loamy Sand). Metal concentrations that caused effect levels were expressed as the sum of all 

metals in the mixtures, with the bars in lower panel indicating the average concentration in 10 

different mixtures and the associated standard error. The letters “a, b, c” represents significant 

difference (p < 0.05) when there is no overlap but no significant difference (p > 0.05) when there is 

an overlap. 
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3.5.2 Metal Interactions in Mixtures 

Synergistic responses were the most common (57% - 67%) at the EC10 level in all the soils except 

Acid-Sandy-Arable soil, which was the only soil that had more antagonistic responses (67%). 

Concentration addition (CA) was only observed in the Loamy-Alluvial and Loamy soils at EC10 

level. The Loamy soil had the highest frequency of synergistic responses (89%) at EC50 level, while 

the Loamy-Alluvial soil had 100% antagonistic responses at the EC50 level. CA was observed in all 

soils except the Loamy-Alluvial soil at EC50 level, while the Acid-Sandy-Forest soil had the highest 

frequency (30%) of CA at EC50 level compared to other soils. Adding EC10 and EC50 levels 

together, the Loamy soil had the highest frequency of synergistic responses (73%) and the Loamy-

Alluvial soil had the highest incidence of antagonistic responses (64%) (Figure 3-3). CA was 

observed for all the soils with the highest frequencies occurring in the Acid-Sandy-Forest (15%) and 

Loamy (13.3%) soils. In general, synergism was the most frequent (47%) type of mixture toxicity 

response, followed by antagonism (43%), and concentration addition trailing behind with 10%. CA 

underestimated mixture toxicity the most in Loamy-Alluvial soil at 10% effect levels and 

overestimated mixture toxicity the most in the same soil at 50% effect levels (Figure 4). The dose-

response of the metal mixture toxicity is shown (Appendix A, Figure A-1) and types of mixture 

responses (Appendix A, Table A-2). 
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Figure 3- 3. Frequency (%) of occurrence from eighty (80) trials of mixture toxicity response types 

(synergism, antagonism and concentration addition) of metal mixtures in five soils (Acid-Sandy-

Forest, Loamy-Alluvial, Loamy, Acid-Sandy-Arable, Loam-Sandy) at EC10 and EC50 levels. 

Synergism represents (TU < 1), antagonism represents (TU > 1) and concentration addition 

represents (TU =1). TU = Toxic unit. 
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Figure 3- 4. The mixture interaction factor (MIF) of metal mixtures to Oppia nitens in five soils 

(Acid-Sandy-Forest, Loamy-Alluvial, Loamy, Acid-Sandy-Arable, Loam-Sandy) at 10% and 50% 

reproduction inhibition effect levels (EC10 and EC50). The broken line showed where the mixture 

is not interactive (CA = 1). When MIF is lower than 1, CA underestimates mixture toxicity 

(Synergism) and when MIF is higher than 1, CA overestimates mixture toxicity (Antagonism). The 

MIF is expressed as toxic units. 
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3.5.3 Metal Speciation Differed Among Soils 

Metal speciation did not have particular patterns both for metal bound to Fulvic acid and free metal 

ion concentration. In some cases, there were differences between soils; in some cases, there were 

differences between the single and metal mixtures; and in other cases, there were similarities. The 

Loamy soil had the highest proportion of lead bound to Fulvic acid (FA-lead), and together with 

Loam-Sandy had the highest FA-copper. However, Loamy-Alluvial had the highest FA-cobalt, nickel 

and zinc (Figure 3-5a). For mixtures, Loamy-Alluvial had the highest FA-nickel and FA-zinc, in 

consistence with single metal speciation. Loamy-Sand had the highest FA-copper and FA-lead, but 

Acid-Sandy-Arable had the highest FA-cobalt (Figure 3-5b) as against what was observed with single 

metals where it had the second lowest FA-cobalt after Acid-Sandy-Forest (Figure 3-5a). Speciation 

of the single metals was similar for the Loamy and Acid-Sandy-Arable soils, which also were similar 

in pHs (5.6 and 4.6 respectively) (Figure 3-5a). However, this pattern was not consistent for mixtures; 

rather, Acid-Sandy-Forest and Acid-Sandy-Arable soils had similar patterns and had the lowest pHs 

(3.4 and 4.6 respectively) (Table 3-1) of all the soils. Only zinc maintained the same speciation pattern 

from single to mixtures across all the five soils, while nickel also maintained the same speciation 

pattern from single to mixtures in four soils (Figure 3-5). The other metals did not maintain the same 

speciation from single to mixtures across the soils. The behaviour of free metals were expectedly the 

exact opposite of what was observed with FA-Metal species (Figure 3-5c and 3-5d). In general, the 

Acid-Sandy-Forest soils had the highest free metal species as single and mixtures. The Loamy-

Alluvial soil had the lowest free metal species both as single metal and metal mixtures. For metal 

mixtures, the pattern of percentage metal bound to Fulvic acid was Co < Ni < Zn < Pb < Cu (Figure 

3-5b) which was the opposite pattern for the free metals (Figure 3-5d). 
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(c)                                                        (d)       
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Figure 3- 5. The bioaccessibility of Co, Ni, Cu, Zn, and Pb as percentage ± SE of (a) single metals 

bound to fulvic acid (b) metal mixtures bound to fulvic acid (c) free single metals in solution (d) 

free metal mixtures in solution that were assessed in five soils.  The soils are Acid-Sandy-Forest, 

Loamy-Alluvial, Loamy, Acid-Sandy-Arable, and Loamy-Sand.  

 

 



 

55 
 

3.5.4 Soil Properties Influenced the Toxic Response Better than Measured Metals 

Soil properties explain either 2 to 180 times more variation in toxicity than measured or speciated 

metals (Figure 3-6). Total metals were the least successful in predicting toxicity (0.2%), while fulvic-

acid (FA) bound metals (33.7%) were the best metal speciation based predictor of toxicity followed 

by free metals (14.8%) (Figure 3-6, Table 3-4). Soil properties, independent of their effect on 

speciation, explained an additional 20%.  When combined with soil properties, FA bound metal 

explained 57% of the variation in toxicity.  At EC10, soil pH, CEC and OC (p < 0.01) in combination 

with FA bound metals predicted EC10 mixture response (Appendix A, Table A-2); only FA bound 

cobalt and lead drove toxicity response at EC10 mixture level (Appendix A, Table A-3). Free metal 

concentrations were not significantly predictive of EC10 mixture toxicity (Appendix A, Table A-3). 

FA bound zinc and nickel influenced (p < 0.01) interactions of metals in the mixtures only at TU50 

and not TU10, but free metal concentrations did not influence interactions both at TU10 and TU50 

(Appendix A, Table A-4).   
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(a)                                                                          (b) 

       

 

      (c)                                                               

       

 

Figure 3- 6. Venn diagram of the variation partitioning of the response matrix of metal toxicity 

explained by (a) soil properties and Fulvic acid bound metals (FA-Metal (%)) on toxicity (b) soil 

properties and free metal ions on toxicity (c) soil properties and total metal on toxicity at 10% effect 

levels. Residuals show the variations not explained by any of the explanatory variables (soil 

properties, fulvic acid bound metals, free metals, and total metals). 



 

57 
 

Table 3- 4. The test of significance of the variations explained by explanatory variables (soil 

properties, percentage of metal bound to Fulvic acid (% FA-Metal), free metal ions, total metals) 

and covariation of the explanatory variables on the toxicity of metal mixtures to Oppia nitens. 

 

Metal measure Matrix EC10 EC50 

p value p value 

% Fulvic acid bound 

metal (% FA-Metal) 

Soil properties  0.003** 0.002** 

% FA-Metal 0.014* 0.038* 

Covariation 0.003** 0.011* 

Soil properties + % FA-metal as 

covariate 

0.01** 0.07 

% FA-Metal + Soil properties as 

covariates 

0.082 0.38* 

Free metal ion 

concentration 

Soil properties  0.002** 0.004** 

Free metals 0.28 0.33 

Covariation 0.051 0.033* 

Soil properties + Free metals as 

covariates 

0.032* 0.023* 

Free metals + Soil properties as 

covariates 

0.91 0.77 

Total metal 

concentration 

Soil properties  0.001** 0.001** 

Total metals 0.65 0.54 

Covariation 0.035* 0.003** 

Soil properties + Total metals as 

covariates 

0.004* 0.001** 

Total metals + Soil properties as 

covariates 

0.77 0.13 

 

**p< 0.01, *p< 0.05 
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3.6 Discussion 

3.6.1 Soil Properties that Protect, also Hurt  

Soil properties that protect O. nitens from single metal toxicity, e.g. CEC, also make O. nitens in 

the same soil very sensitive to mixture toxicity.  For example, in Loamy Sand, the EC10 for the 

five combined singles was 30 ± 22 mmol/kg but these same metals present as a mixture had an 

EC10 of 13 ± 8 mmol/kg. The Loamy soil where O. nitens was least sensitive to single metals had 

the highest CEC and the lowest clay. Although O. nitens in the Loamy soil was not the most 

sensitive to metal mixtures, there were more synergistic interactions in the Loamy soil, which may 

have been responsible for the increased sensitivity of O. nitens in mixtures, compared to its single 

metal sensitivity. Interactions leading to synergism tend to be higher in soils with higher CEC (Qui 

et al., 2015). Thus, the protective effect that CEC has on an organism’s health by increasing its 

available energy to detoxify metals is partially lost by the increasingly synergistic effects of metals 

on the organism’s health (Jegede et al., 2019b). 

3.6.2 Soil Properties and Metal Speciation Explains Toxicity 

Soil properties control on toxicity was not explained by the influences of soil properties on metal 

speciation. Whereas the percentage of metals bound to fulvic acid explained some of the 

differences in the toxic response of O. nitens at EC10 in the soils, differences in soil properties 

played a much larger role. For example, Loamy-Alluvial soil had the highest clay and was the soil 

where O. nitens was most sensitive to mixtures at EC10 level. The Acid-Sandy-Arable soil where 

O. nitens was least sensitive to mixtures at both EC50 and EC10 levels, had intermediate soil 

property values (pH, CEC), although it had the second highest clay and organic carbon of all the 

soils. Therefore, an interplay between clay and organic carbon may be responsible for the response. 

Properties such as clay (Owojori et al., 2009) and organic matter (Princz et al., 2010) have been 
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linked to toxicity, but this is largely seen as an influence on speciation (Hasegewa et al., 2016). 

The CEC of a soil is a function of the clay (clay type and % clay) and organic matter (St. Arnaud 

and Sephton, 1972). Together with soil pH, the CEC influenced metal mixture toxicity to the mites 

at low effect levels (EC10). This work suggests that the influence of clay and organic matter or 

CEC on fluxes of metal mixtures into organisms may be more substantial than their effect on quasi-

equilibrium estimates of metal speciation.    

The fulvic-acid bound metal may be the metal fraction that is crucial to regulating uptake into the 

organism. For mixtures in stream macroinvertebrates, metals bound to humic acid correlated to 

metal-mixture body burdens causing toxicity (Stockdale et al., 2010). Similarly, we found that 

fulvic-acid bound metals predicted 34% of the toxicity.  For example, Loamy-Alluvial soil had the 

highest percentage metal bound to Fulvic acid (> 60% for zinc and copper, 25% for the nickel) 

and was the soil where O. nitens was most sensitive to metal mixtures. Mites had higher body 

burdens of metals when exposed in soils of higher fulvic-acid bound metals (Jegede et al., 2019b). 

Although this present study did not assess the mite’s body burden, increased body burden may be 

the reason why the mites were more sensitive to the metal mixtures.  

3.6.3 Single Metal Toxicity 

Nickel was the most toxic metal to Oppia nitens out of the five tested metals. This study is the first 

report on the toxicity of nickel (EC50 = 25.0 ± 11.6 mmol of Ni /kg of soil or 1471.8 ± 677.4 

mg/kg of soil) to O. nitens. The high nickel toxicity relative to the other metals in this study is 

consistent with the literature on nickel toxicity to Folsomia candida, which is a standard soil 

invertebrate species. For example, EC50 of nickel to F. candida was 475 mg/kg (Lock and Janssen, 

2002a) compared to ≥ 700 mg/kg recorded for the other metals (Sandifer and Hopkin, 1996; 

Sandifer and Hopkin, 1997; Lock et al., 2004). The present study was similar in that nickel toxicity 
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was 1.4 times greater on a molar level than the nearest other metal. Although, O. nitens seemed to 

be less sensitive to nickel than other soil invertebrates like F. candida, it should be noted that the 

present study could not be directly compared due to differences in soils and more importantly due 

to differences in metal dosing method (Awuah et al., 2019). 

3.6.4 Metal Mixture Toxicity 

Metal mixture toxicity did not follow concentration addition (CA), which is a regulatory default 

method of estimating mixtures (Bunke et al., 2014). Similarly, a meta-analysis of about 91 metal 

mixtures from the soil, freshwater and marine studies showed that most of the responses were 

either more or less than additivity and only 13% were additive (Vijver et al., 2010).  Across 10 

different mixtures, metal interactions were consistently not CA based.   

Antagonism and synergism are biological responses to metal mixtures that suggest interaction 

among metals either in the exposure medium or in the organism (Nys et al., 2017). The metal 

interactions might be responsible for the differences in sensitivities of O. nitens to metals in the 

soils when comparing single and mixture responses. Single metal toxicity was used to 

mathematically identify antagonism and synergism in metal mixture toxicity. The soil where O. 

nitens was least sensitive soil to single metals (EC10 = 55 ± 40 mmol/kg) had the highest 

synergistic responses of metal mixtures and might be responsible for the increased sensitivity 

(EC10 = 23 ± 8 mmol/kg) of O. nitens to metal mixtures.  The Acid-Sandy-Arable soil had the 

second highest antagonistic responses (56%) and was the soil where O. nitens was least sensitive 

to metal mixtures. In the same vein, antagonism was predominantly observed at EC50 level in the 

Loamy-Alluvial soil and might be responsible for the shift from the increased sensitivity of O. 

nitens at EC10 level to less sensitivity at EC50 level. Using the MIF, all the mixtures deviated 

from CA in all the soils and CA was not protective of the mite species for most of the soils. 



 

61 
 

Although, in aquatic systems, Nys et al. (2018) found that CA overestimated mixture effects on 

invertebrates at 10% effect levels, thus more protective of the species. However, our study showed 

that CA was more protective at EC50 levels than at EC10 levels in the soils which implies that 

metal risk assessment at least for Canadian soils may need to be focused on how to ensure that the 

terrestrial ecosystem is protected from low level metal mixture effects. Mechanistically, single 

metals’ influence on metal mixture interactions is a possibility. Zinc, being the least toxic single 

metal and maintaining the same pattern in single and in mixtures, may be playing a protective role 

by influencing interactions.  For example, Nys et al. (2017) reported that Zn protected against 

mixture toxicity of Cd, Cu, Pb, Zn and Ni to the plant, Hordeum vulgare, by shifting toxicity more 

to antagonism. Zinc can also influence organismal response to metal contamination by influencing 

increased production of antioxidant enzymes to counteract oxidative stress (Cakmak, 2000).  

3.6.5 Implications of Study 

This study and others showed that metal mixtures do not typically follow concentration addition 

(Vijver et al., 2010; Heys et al., 2016). In this study, concentration addition was wrong 90% of the 

time. Further, in a soil where O. nitens is sensitive to single metals, it does not mean the mite will 

be sensitive to metal mixtures in such soil and vice versa. Low level single metal effects in soils, 

grossly underestimates mixture effects assuming concentration addition. However, differences 

among soils were not driven by speciation, or put differently, toxicokinetics.   Instead, soil 

properties such as CEC were driving mixture response, likely by altering the toxicodynamics of 

metals in the organism (Jegede et al., 2019b). Mixture composition did not have a large influence 

on toxicity, except for protection by zinc. The protective ability of zinc is likely linked to its 

influence on toxicodynamics and toxicokinetics. Increased zinc reduces impact of oxidative stress 

(Cakmak, 2000) and zinc often outcompetes other metals for uptake (Posthuma et al., 1997). The 
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combination of the improved habitat quality (organism energetics) by CEC, with CEC’s promotion 

of synergistic metal toxicity, as well as the protective effect of Zn in metal mixtures, suggests to 

these authors that a simple assumption of concentration addition in risk assessment is not 

defensible.  Furthermore, differences in metal speciation alone are unlikely to be sufficiently 

predictive of metal mixture impacts.  
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4. Manuscript 2: Multigenerational Exposure of Populations of Oppia nitens to Zinc 

Under Pulse and Continuous Exposure Scenarios 

4.1 Preface 

The influence of zinc on parents and subsequent generations of Oppia nitens when exposed once 

and continuously was assessed. Survival and reproduction of O. nitens were assessed as endpoints. 

Populations of parents and offspring were modelled as endpoints and the effect of zinc was 

assessed on the populations. 
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4.2 Abstract 

Current soil remediation guidelines for metals reflect single generation laboratory studies, however 

in the field, organisms are exposed to metals for more than one generation. This study assessed the 

multigenerational effect of zinc on Oppia nitens under a pulse or continuous exposure scenario. 

Synchronized adult mites (parents) were exposed to six concentrations of zinc in a field soil (105, 

158, 237, 335, 553, and 800 mg/kg). For the pulse exposure, juveniles of parent mites from three 

of the six concentrations were kept in clean media and reared until the third generation. At every 

generation, the sensitivity of the mites to zinc was tested in a dose response manner. For the 

continuous exposure, the mites produced from the parents were re-exposed to the same 

concentration as their parents. Using critical level estimates like EC50, all populations of the F2 

and F3 generation mites in the pulse exposure were less sensitive to zinc than the parents and were 

protected at 250 mg/kg of zinc (CCME soil quality guideline). However, the mite generations of 

the continuous exposure remained as sensitive as the parent generation and were not protected by 

the zinc guideline level. The zinc niche width narrowed considerably for all continuously exposed 

mite populations indicating that they were more sensitive than the parent. The results of this study 

showed that zinc has a deleterious multigenerational effect to continuously exposed populations 

of mites.  

4.3 Introduction 

Ecotoxicology aims to understand the long term effects of pollutants on organisms (Van Gestel, 

2012); however, current guidelines use data collected from single generation laboratory toxicity 

studies that are often short term, typically 28 d (Amorim et al., 2017; Pereira et al., 2018). Long-

term exposure to contaminants like metals cause adverse multigenerational effects (Amorim et al., 

2017). For example, continuous exposure to cadmium, copper, lead, and zinc inhibited the growth, 
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reproduction, and feeding of the nematode Caenorhabditis elegans in the third and fourth 

generation (Yu et al., 2016). Another study showed that mercuric chloride inhibited reproduction 

in the third generation of the copepod, Tigriopus japonicus (Li et al., 2015). However, other studies 

showed increased tolerance after exposure to metals. For example, the earthworm Eisenia fetida 

tolerated copper and zinc better after two generations of exposure (Spurgeon and Hopkin, 2000). 

Similarly, the earthworm E. fetida and enchytraeid, Enchytraeus albidus laboratory cultures 

exposed to cadmium for more than 12 months showed increased tolerance to cadmium in 

subsequent toxicity tests (Reinecke et al., 1999, Lock and Janssen, 2001b). Finally, sometimes 

there are no long term effects.  In a study with the mite, Archegozetes longisetosus exposed to 

cadmium, toxicity was not different after two generations (Seniczak et al., 2006).  

Tolerance or susceptibility to metals is attributed to different mechanisms associated with the 

transgenerational effect of metals. One such mechanism is epigenesis. Epigenesis results from the 

transfer of non-genetic factors from parents to offspring rather than genetic inheritance to offspring 

(Youngson and Whitelaw, 2008; Polkki et al., 2012) such as DNA methylation (Nilsson and 

Skinner, 2015); however, the actual DNA sequence is unaltered. For example, the earthworm, 

Lumbricus rubellus from an arsenic-contaminated field soil tolerated arsenic exposure because of 

its altered DNA methylation transferred from the parents (Kille et al., 2013). Histome 

modification, another epigenetic mechanism, caused inhibition of vulval development in C. 

elegans (Schultz et al., 2016; Andersen and Horvitz, 2007). In addition to epigenesis, multi-

generational exposure can cause teratogenesis in which the embryo or foetus is malformed due to 

embryo exposure to chemicals (Vargesson and Fraga, 2017). Teratogenesis results in physical 

deformations (Hovland et al., 2000) and in some cases behavioural aberrations (Weis, 2014) that 

manifests later in life. For example, exposure to lead caused leg malformation in the larval and 
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nymphal stages of the mite, Archegozetes longisetosus (Kohler et al., 2005). There can also be a 

direct maternal transfer of metals to other generations (Kim et al., 2013; Schultz et al., 2016). A 

generational transfer of silver nanoparticles from the parent was detected in the unexposed F1 

generation of C. elegans (Luo et al., 2016).  Based on these examples, the fitness of offspring 

and/or subsequent generations of the germline can be compromised.  

Many multigenerational toxicity studies usually assume continuous or chronic exposure of 

organisms to persistent contaminants. In that case, both parents and offspring are exposed to these 

contaminants at the same time. But apart from the continuous exposure of organisms, persistent 

contaminants can have a long lasting effect and alter normal cell functions even when the 

contaminants are no longer present (Schug et al., 2011). Unexposed multigenerations of organisms 

can indirectly be exposed to contaminants through the exposure of their parents. These short-term 

exposures could be in a pulse-like manner. Pulse exposures are often short duration discharges of 

pollutants and discontinuous (Andersen et al., 2006). Pulse-like contaminations or discharges of 

pollutants can occur in the environment from activities such as sludge amendment applications, 

during mining or industrial and wastewater discharges (Mendes et al., 2018). It is important to 

evaluate the effect of persistence of metals when metals are present (continuous) and the persistent 

effect of metals when metals are absent (pulse).   

Common critical effect (ECX, LCX) estimates may not be adequate to represent effects at the 

population level because of their focus on individual health.  There is a need to use parameters that 

may represent pollutant effects on populations. One of the parameters that can be used effectively 

is the instantaneous population growth rate (r) that integrates survival and reproduction in order to 

measure population growth rate (Stark and Banks, 2000; Herbert et al., 2004). When evaluating 

the performance of pesticides on pests, the instantaneous population growth rate consistently 
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predicts deleterious effects of pesticides on pests better than other techniques (Andrade et al., 

2012). Thus, we also used instantaneous population growth rate in the form of a niche width to 

evaluate pulsed and continuous metal exposure. The niche width in this context is a term borrowed 

from Grimaud et al. (2017) who defined thermal niche width as the “thermal range on which a 

given species can thrive.” Therefore, we defined zinc niche width as a zinc exposure range in 

which population of organisms can thrive.   

We hypothesize that both pulse-like exposures and continuous exposures of a metal to the oribatid 

mite, Oppia nitens will cause an increase in sensitivity in successive generations and that the effect 

will be more severe in the continuously exposed mites. To test our hypotheses, we assessed the 

multigenerational toxic effect of zinc exposure to the adult mite populations by (a) evaluating the 

effect of zinc on subsequent generations of O. nitens offspring after one-time exposure to the 

parents, and (b) evaluating the continuous exposure of mite generations to zinc.   

4.4 Materials and Methods 

4.41 Test Soil 

The soil used was a natural soil (code name of soil = 3.22) collected from the Flin-Flon mining 

area, Manitoba, Canada.  The soils were air-dried, sieved with a 2 mm mesh-sized sieve and were 

stored dry for several weeks before use. Details of this soil can be found in Hamilton et al. (2016). 

The properties of the soil are summarized as follows: pH = 3.4, organic carbon = 2.7%, cation 

exchange capacity = 8 meq/100g, grain size distribution: 4.5% clay; 25.6% silt; 69.9% sand.  

4.4.2 Test Species 

Oppia nitens are fungivorous oribatid mites, important nutrient recyclers in the soil, and are the 

most abundant microarthropod in boreal forest soils (Princz et al., 2010). The O. nitens specimens 

used for this study were taken from established laboratory cultures in the Soil Toxicology 
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Laboratory at the Department of Soil Science, University of Saskatchewan, Canada. Adult mites 

were cultured on a medium made of plaster of Paris (POP) and activated charcoal in an 8:1 w/w 

ratio. The POP was moistened twice a week and the mites were fed with bread yeast ad-libitum. 

The mites were age-synchronized; after about 5-6 weeks, newly emerged amber-coloured adult 

mites were selected and placed in a new medium of POP and allowed to fully mature. Fully 

matured mites had dark brown sclerotized pigments and were used for tests.  

4.4.3 Test Metal 

Zinc oxide was used as the test metal (Sigma Aldrich, puriss p.a ACS (American Chemical 

Society) reagent ≥ 99%). The zinc oxide was ground to finer particles with a mortar and pestle.  

The oxide was weighed out into dry soil to make 105, 158, 237, 335, 553, and 800 mg Zn/kg dry 

soil concentrations for the parent generation test. The oxide was added into the soil and mixed 

thoroughly. For the control soil, no oxide was added. The test soils were equilibrated for 18 to 24 

h before the test organisms were added. 

4.4.4 Multigenerational Test 

4.4.4.1 Parent (F0) Generation Test 

All the zinc-spiked and control soils were moistened with deionised water to 50% water holding 

capacity of the soil. Twenty-five grams of the spiked and control soils were weighed into a 2 cm 

diameter glass vial. Fifteen synchronized adult mites were then introduced into the vials in six 

replicates for control and for spiked soils. The mites were fed with yeast once every week starting 

from week 0. The experiment was run under constant conditions for 28 d; 21oC, 50 - 60% humidity, 

> 800 Lux, day to light; 16: 8h regime (Princz et al., 2010). The loss in moisture was replenished 

by adding commensurate amount of water during feeding. After 28 d, the mites were extracted 

using a modified Berlese-tullgren extractor for 48 h. The number of surviving adults and the 
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juveniles produced were counted and recorded against each concentration as populations per 

concentration. The juveniles were reared to adulthood on POP and then used for the 

multigenerational tests. 

4.4.4.2 Pulse Exposure  

Two, three or four replicates (depending on the number of mites produced from previous 

generation) of fifteen (n=15) adult mites each were exposed to zinc in the spiked soils in increasing 

concentrations. After 28 d, survival and reproduction were assessed. Juveniles were selected from 

soils from the control (0 mg/kg) and three concentrations (158 mg/kg – low dose, 335 mg/kg – 

medium dose, 553 mg/kg – high dose). All the mite generations exposed to the same initial zinc 

dose were regarded as the same population. For example, all mite generations F1, F2, and F3 that 

were exposed to the low dose were called population 1. Generations exposed to the medium dose 

were called population 2, and those exposed to the high dose were population 3. The juveniles 

from these four populations (including population 0; mites in control soils) were reared on a POP 

medium until they became adults (F1). The F1 mites were then exposed to the four concentrations 

(including control) for 28 d. The adult survival and reproduction were again assessed. The 

juveniles from the control of this second range of exposure were reared on POP until adult (F2 

control) and juveniles from the other concentrations were also reared on POP until they became 

adults (F2 continuous). The F2 (control) adults were also exposed to the four concentrations for 28 

d. The adult survival and reproduction were assessed.  The juveniles from the control of this third 

range of exposure were reared on POP till they became adults (F3 control). The F3 control adults 

were then exposed to the four concentrations for 28 d. After the 28 d, adult survival and 

reproduction were assessed. The schematic representation of the experimental design is shown in 

Figure 4-1. 
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Figure 4- 1. Pulse multigenerational study showing exposure of mites to different nominal soil 

concentrations (mg/kg) of zinc (0, 105, 158, 237, 335, 553, and 800) in the F0 generation from 

which offspring from four nominal concentrations of zinc (0, 158, 335, and 553 mg/kg) were 

collected as four different mite populations. The fitness of the unexposed subsequent three 

generations (F1, F2, and F3) from the four populations (0, 1, 2, and 3) was tested against four 

nominal concentrations of zinc (0, 158, 335, and 553 mg/kg).  Dashed lines indicate dose-

response testing for each generation, whereas solid lines indicate rearing of a new generation. 

 

4.4.4.3 Continuous Exposure 

Mites from the F2 continuous were used for this test. The mites were exposed to the four Zn 

concentrations (0, 158, 335, and 553 mg/kg) for 28 d. After 28 d, the adult survival and 

reproduction were assessed. The schematic experimental design for this continuous exposure is in 

Figure 2. 
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Figure 4- 2. Continuous dosing multigenerational study showing continuous exposure of mites 

to different nominal soil concentrations (mg/kg) of zinc (0, 105, 158, 237, 335, 553, and 800) in 

the F0 generation from which offspring from four nominal concentrations of zinc (0, 158, 335, 

and 553 mg/kg) were collected as four different mite populations. The fitness of the offspring 

from the exposed F1 generation mites were tested by exposing the mites to four nominal 

concentrations of zinc (0, 158, 335, and 553 mg/kg) in a dose response manner in the F2 

generation. Dashed lines indicate dose-response testing for each generation, whereas solid lines 

indicate rearing of a new generation. 

 

4.4.5 Statistics 

All toxicity estimates were based on nominal zinc concentrations, as there was insufficient soil for 

total metal measurements. The dose-response relationship of zinc with mite reproduction was fitted 

with the drc function in the drm package in R (Ritz, 2016). The median effect concentration (EC50) 

causing 50% reduction in reproduction was estimated with non-linear regression models (3 or 4-

parameter log-logistic models) using R. The instantaneous population growth rate (PGR), ri was 

calculated thus 

 ri = In (nf/no)/∆T, 
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where nf = final number of animals (total number of mite survival and reproduction), no = original 

number of animals, ∆T is the difference in time (28 d). Logistic regression least-squared fitting of 

each replicate of ri were plotted against zinc concentration. The zinc concentration at which ri = 0 

(or PGR conc) was calculated as the concentration of zinc at which population is stable. Where 

PGRconc > highest zinc concentration (553 mg/kg), we assumed the PGR = highest concentration 

for analysis. The mite generations, F1, F2, F3 from pulse exposure and F2 from the continuous 

exposure were normalized to 100% of the parent (F0) at each dose. The normalization was 

calculated thus 

(Mite reproduction at Y mg/kg of zinc in F0 / Mite reproduction at Y mg/kg of zinc in FX) x 100% 

 and analysis of variance (ANOVA) interaction plot of their simple effect means at p < 0.05 was 

determined using Sigmaplot Systat 12.5. A Student’s t-test was used to check differences between 

each generation and the parent (F0 generation) at each dose, and the power of the test was adjusted 

for Bonferroni correction. Niche width was determined for the naïve (parent), pulse and continuous 

exposed mite populations as the average of the PGRconc values of all generations within the 

populations. Analysis of variance (ANOVA) was used to check the difference in means of EC50s 

and PGR between the generations in the pulse and continuous exposures, and a Tukey post hoc 

test was used to know where the differences lie.  

4.5 Results 

4.5.1 Pulse Exposure 

Zinc influenced mutigenerational mite reproduction (Table 4-1). Reproduction was not completely 

inhibited by zinc in any of the generations (Figure 4-3). Non-exposed F1 generation from 

population 3 displayed the greatest reproduction, with an average exceeding 100 juveniles. No 

other population’s reproduction reached 100 juveniles. There was a statistical interaction between 
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dose and generation in the ANOVA, thus simple effect means (Figure 4-4) were presented. At the 

highest dose, there was a significant spike in reproduction across all three generations compared 

to the parent generation (Figure 4-4, Table 4-1). The toxicity was less in the F1, F2, and F3 

compared to the parents by about two orders of magnitude (Figure 4-5). However, the Canadian 

Council of Ministers of Environment (CCME) soil quality guideline (2018) for zinc (250 mg/kg) 

did not protect the parent and did not protect two populations of the F1 generation. The CCME 

zinc SQG protected the F2 and F3 populations in all cases (Figure 4-5). 
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Table 4- 1. The parent population (F0) reproduction compared with the reproduction of mite 

generations (F1, F2, F3, F2_Continuous) using a student's t-test. F1, F2, F3 are generations from 

the pulse Zn exposure and F2_Continuous is the second generation of continuous Zn exposed 

mites. Significant difference of mite generations with F0 was determined when p < 0.05. The 

power of the test was adjusted for Bonferroni correction  

 

Dose Comparison p value 

Control F0 - F1  

F0 - F2 

F0 - F3 

F0 - F2_Continuous 

1.00 

1.00 

0.85 

1.00 

Low (158 ppm) F0 - F1  

F0 - F2 

F0 - F3 

F0 - F2_Continuous 

1.00 

0.001* 

0.913 

1.00 

Medium (335 ppm) F0 - F1  

F0 - F2 

F0 - F3 

F0 - F2_Continuous 

1.00 

0.89 

0.40 

0.11 

High (553 ppm) F0 - F1  

F0 - F2 

F0 - F3 

F0 - F2_Continuous 

0.01* 

0.003* 

0.001* 

1.00 
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(a)  (b) 

   

(c) (d) 

    

 

Figure 4- 3. The dose response of Oppia nitens exposed to zinc in a natural soil (3.22) for 

populations F0 generation (a), population 1 (b), population 2 (c), population 3 (d). The F0, F1, 

F2, F3 generations are the parent, first, second and third filial generations, respectively from the 

pulse-exposed mites. The F2 continuous are the F2 generations of the continuously exposed 

mites. The EC50 and the population growth rate concentration (PGRconc) are calculated for each 

generation within each population and printed on each dose response curve.  
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4.5.2 Continuous Exposure 

The median effective concentration showed that the continuously exposed mites were generally 

more sensitive to metals than the pulse-exposed mites (Figure 4-3) were. The controls of 

populations 1 and 2 reproduced more than the control group of the parent mites. In some cases, 

the highest concentration of zinc completely inhibited reproduction of mites. For example, zinc 

completely inhibited mite reproduction in two populations (populations 1 and 3) when exposed to 

553 mg/kg of zinc. Compared to the F0 and other generations, mite reproduction in the continuous 

exposed mites was lower except in the low dose (158 mg/kg) (Figure 4-4). Toxicity in the 

continuous population was similar to the parent because the EC50s were in the same order of 

magnitude. The CCME soil quality guideline for zinc did not protect the parents and the mites 

exposed to continuous zinc. (Figure 4-5). 
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Figure 4- 4. Simple effect means of zinc exposure of F0 on mite reproduction in subsequent 

generations. The zinc pre-exposure was either 0, 158, 335 or 553 mg/kg. F0 = parent, F1, F2 and 

F3 are the first, second and third generations in the pulse experiment, respectively. F2 

Continuous is the F2 generation of the continuously exposure experiment. The mite reproduction 

for each dosing group was normalized to the F0 generation’s reproduction after exposure to 

either 0, 158, 335 or 553 mg/kg, respectively. A Student’s t-test was used to determine the 

significant differences between F0 and other generations at corresponding zinc doses. The bar 

height represents the fitted values of the normalized mite reproductions from an ANOVA 

interaction plot, hence the error estimates are similar across all the plots  

* p < 0.05.  
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Figure 4- 5. EC50s ± SE of multi-generations of pulse and continuously exposed mites in populations initially exposed to 158, 335 and 553 

mg Zn / kg soil (populations 1, 2 and 3). F0 = parent, F1, F2, and F3 = first, second, and third generations of the pulse-exposed mites 

respectively. Continuous = F2 generation of the continuously exposed mites. The CCME zinc SQG = CCME zinc soil quality guideline 

value (CCME, 2018). All points above the line are protected Oppia nitens populations but all points below the line are unprotected O. 

nitens populations. 
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4.5.3 Niche Width 

Continuous zinc exposure significantly narrowed down the zinc niche of the mite populations 

relative to the naive population (Figure 4-6).   Zinc pulses also caused smaller decreases in niche 

width compared to the naive population. Niche width differed between population 1 and the other 

populations by almost two orders of magnitude in the continuous Zn exposure. ANOVA showed 

that PGRconc was significant (p = 0.0053) across mite generations. The Tukey post-hoc analysis 

showed that PGRconc significantly differed (p < 0.05) between the continuous zinc exposed mites 

and each of the F1, F2, and F3 generations of the pulse-exposed mites (Table 4-2). See PGRconc 

values (Appendix B, Figures B1-B4). 
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Figure 4- 6. Zinc niche width for population 1, 2 and 3 mites by type of exposure. The naive are the parent population, pulse are the 

pulse-exposed mites and continuous are the continuously exposed mites. When concentration is above the tolerance range for the 

population, the population tends towards extinction. Zinc niche width is the zinc-contamination tolerance range for each of the mite 

populations. All mite populations were exposed to 0, 158, 335, and 553 mg/kg doses of zinc. 
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4.5.4 EC50 and PGR Differences across Generations.  

EC50s in a similar way to mite reproduction, differed (P = 0.017) between mite generations (Table 

4-2). The tukey post-hoc analysis showed that there were no significant differences (p > 0.05) 

between the EC50s of the continuously exposed mites and the F1, F2 generations of the pulse-exposed 

mites. However, the EC50 in the F3 generation was high and differed significantly (p = 0.013) from 

the EC50 in the continuous exposed mites. The continuous zinc exposure increased the mites’ 

sensitivity more than the pulse zinc exposure did. The PGR differed (P = 0.0053) between 

generations. The tukey post-hoc analysis showed that continuous differed from all the pulse exposed 

generations. However, F1, F2 and F3 pulse did not differ (Table 4-2).   
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Table 4- 2. Analysis of variance (ANOVA) of the EC50s and PGR per generation of mites. EC50 is 

the median effective concentration of zinc on mite reproduction in mg/kg of soil. PGR is the 

population growth rate.  

 Analysis of variance Tukey 

EC50 P = 0.017* 

F = 6.26 

F1 – Continuous = 0.47 

F2 – Continuous = 0.13 

F3 – Continuous = 0.013* 

F1 – F2 = 0.74 

F1 – F3 = 0.10 

F2 – F3 = 0.40 

PGR P = 0.00531** 

F = 9.41 

F1 – Continuous = 0.0105* 

F2 – Continuous = 0.0267* 

F3 – Continuous = 0.00642** 

F1 – F2 = 0.895 

F1 – F3 = 0.979 

F2 – F3 = 0.709 

 * p < 0.05  

**p < 0.01 

 

4.6 Discussion 

4.6.1 Sensitivity of Mite Generations 

Multigenerational exposures of Oppia nitens to zinc manifested toxic effects that were not detected 

in single generation tests. Effects not seen in a single generation test can be observed in 

multigenerational exposures. When O. nitens are exposed to pulse of metals in the soil, unexposed 

offspring develop tolerance (Figure 4-4, Table 4-1).  Yet continuously exposed mites become more 

sensitive with some populations becoming extinct (Figure 4-3). Similarly, the nematode, C. elegans 

became more sensitive in the third and fourth generation after continuous exposure to metals (Yu et 

al., 2016). In contrast, the earthworm, Eisenia fetida developed tolerance to zinc after two generations 

of exposure (Spurgeon and Hopkin, 2000). Typically, soil quality guidelines assume a continuous 

exposure, and predictive models are needed to link the traditional single generation toxicity test to 

the multigenerational reality of soil pollution. 
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4.6.2 Mite Offspring Tolerance 

Once metal stress was removed, reproduction immediately rebounded.  After pulse exposing mites at 

553 mg/kg, mite reproduction increased (Figure 4-4) and after continuously exposing mites for two 

generations and then transferring to a clean soil, mite reproduction increased.  Similarly, Folsomia 

candida exposed to silver increased its juvenile production after transferring them to clean soil 

(Mendes et al., 2018). These authors attributed the phenomenon to activation of the anti-oxidant 

defenses when exposed to high levels of metal. The authors also found that when the stressor was 

removed, it must have induced a compensatory effect in reproduction. Another potential mechanism 

could be that adaptations can be transferred to subsequent generations by epigenetic mechanisms that 

can be observed under unstressed conditions (Calabrese and Mattson, 2017). Alternatively, k-

strategists like O. nitens may conserve energy under metal stress by reducing reproduction, and once 

this stress is removed, O. nitens diverts energy reserves into reproduction.  More work is needed to 

understand the dynamic energy budgets of invertebrates exposed to pollutants to disentangle 

physiological compensation to exposure from epigenetic influences.   

4.6.3 Stress Induced by Low Exposure Concentrations 

In O. nitens, a low pulse of zinc reduced the rebound in reproduction suggesting that there is a 

fundamental difference in response type between low and high doses of zinc. The toxicity of copper 

oxide nanoparticles (CuONMs) and copper chloride (CuCl2) to Enchytraeus crypticus was more 

severe when concentrations of CuONMs were 20 mg/kg and CuCl2 was 500 mg/kg than at 180 mg/kg 

CuONMs and 1400 mg/kg of  CuCl2 (Bicho et al., 2017). Low (32 mg/kg) cadmium concentrations 

inhibited F. candida reproduction more than 60 mg/kg of cadmium in a long duration study (Amorim 

et al., 2017). In the same study, after the 13th generation, the collembolans exposed to the lower 

cadmium concentration became extinct. In contrast, the collembolans recovered from the highest 
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concentrations did not go extinct until the experiment ended after 41 generations.  The authors 

suggested that the organisms developed adaptive mechanisms at higher concentrations of metal 

exposure. For example, Daphnia magna reduced mercury uptake in response to high, lethal 

concentrations of mercury (Tsui and Wang, 2006). Epigenetic mechanisms also help to induce 

tolerance to stressors in organisms. For instance, F1 generations of zebrafish through 

transgenerational epigenetic resistance developed hypoxia resistance (Ho and Burggren, 2010). 

Organisms continuously exposed to metals must trade off using energy for reproduction versus 

coping with the metal by transferring toxic metal loads to offspring.  The outcomes of this trade-off 

will likely determine the ability of populations to survive in metal contaminated soils.    

Continuous multigenerational exposure tends to have more severe effects than single generation. 

Continuous zinc exposure reduced mite reproduction considerably and completely inhibited 

reproduction in some of the mite populations. For example, zinc completely inhibited O. nitens 

reproduction in populations 1 and 3 when exposed to 553 mg/kg of zinc (Figure 4-3b and 4-3d). In a 

continuous exposure of Caenorhabditis elegans to gold nanoparticles, sensitivity increased in the 

third generation (Kim et al., 2013). Similarly, exposure to cadmium, copper, lead, and zinc increased 

the sensitivity of C. elegans in the third and fourth generations (Yu et al., 2016). Because metals 

persist in the soil, soil dwelling organisms are exposed to metals continually, which adversely affect 

their populations.  

4.6.4 Population Growth Rate 

Population growth rate (PGR) predicts the performance of populations in metal contaminated soils 

better than critical level estimates like EC50. PGR is a sensitive endpoint that improves the overall 

ecological relevance of a test (Forbes and Calow, 1999). Despite higher EC50 values indicative of 

less toxicity in the pulse and continuous zinc exposure, PGR through the use of niche width showed 
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that the pulse and continuous zinc exposure impacted the offspring more than the parents (Figure 4-

6). The niche width of the pulse and continuous zinc exposed mite populations narrowed as the 

concentration of zinc increased to as low as 177 mg/kg, below the putative EC50.   

Classically, toxicity of a stressor depends on the duration of exposure (Heckmann et al., 2010) and 

magnitude of the stressor (Campbell et al., 2006). Currently, data used for metal risk assessment are 

from single-generational tests (Amorim et al., 2017). However, ecological receptors are continuously 

exposed to metals. Aging or adjustment factors commonly used in risk assessments are typically 

meant to adjust for toxicity differences between freshly spiked and field polluted soils. Therefore, our 

study suggests uncertainty factors or predictive models correcting for multigenerational test data gaps 

should be developed. To the best of our knowledge, there are no uncertainty factors being used in soil 

risk assessment to adjust single generation to multigenerational values. 

4.6.5 Implications of Study on Tests for Metal Risk Assessment 

The toxic effects of zinc on populations of mites that were not seen in a single generation test were 

observed in a multigenerational test. In a multigeneration scenario, the toxic effect of zinc was more 

severe in the mites that were continuously exposed to zinc than the pulse exposed mites. In some 

instances, the mites that were pulse-exposed to high zinc concentrations developed tolerance relative 

to low pulse of zinc. Compared to the parents, pulse and continuous exposed mites had higher EC50 

values indicating less toxicity. However, the zinc niche width determined from the PGR, showed that 

the populations of both pulse and continuous exposed mites were impacted by the zinc contamination 

relative to the parents. The findings from this study implies that using results from a one-generational 

standard toxicity tests might not be protective enough of population effects.  Therefore, this study 

suggests the development of uncertainty factors or predictive models correcting for multigenerational 

test data gaps. 



 

86 
 

5. Manuscript 3: The Forgotten Role of Toxicodynamics: How Habitat Quality Alters the 

Mite, Oppia nitens, Susceptibility to Zinc, Independent of Toxicokinetics. 

5.1 Preface 

The influence of soil habitat quality on toxicodynamics and toxicokinetics of zinc was investigated. 

Survival, reproduction of mites, biochemical responses of mites, Zn speciation and Zn 

bioavailability were assessed in low, medium and high habitat quality soils.  
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5.2 Abstract 

Soil habitat quality is thought to influence metal toxicity via changes in speciation and thereby 

toxicokinetics. Here, we assessed the toxicokinetic and toxicodynamic effects of habitat quality on 

mite, Oppia nitens when exposed to zinc (Zn) contaminated soils. Forty-seven soils were ranked into 

three habitat qualities; high, medium, and low based on biological reproduction of Folsomia candida, 

Enchytraeus crypticus, and Elymus lanceolatus. From the 47 soils, eighteen soils (comprising of six 

soils from each habitat quality) were randomly selected, and dosed with field relevant concentrations 

of Zn. Mite survival and reproduction were assessed after 28 days. Total Zn, bioaccessible Zn, Zn 

bioavailability, Zn body burden, lactate dehydrogenase activity (LDH) and glucose-6-phosphate 

dehydrogenase (G6PDH) activities of the mites were determined.  Zinc toxicity and potency were 

much less in the high compared to low quality soils and the mites in the high habitat quality soils 

tolerated higher zinc body burdens (2040 ± 130 µg/g b.w) than the lower habitat quality (1180 ± 310 

µg/g b.w). Lower LDH activity (20 ± 2 µU mg-1) in the high quality soils compared to lower quality 

soils (50 ± 8 µU mg-1) suggested that there was less stress in the high habitat quality mites. Despite 

changes in speciation across habitat qualities, bioavailability of zinc was similar (~ 20%) irrespective 

of habitat quality. Our results suggest that the influence of soil properties on survival is modulated 

by toxicodynamics rather than toxicokinetics. Restoring habitat quality may be more important for 

soil invertebrate protection than metal concentration at contaminated sites.    

5.3 Introduction 

Toxicokinetics are how an organism influences chemical uptake, metabolism and excretion (Zhang 

et al., 2019). Metal speciation, influenced by environmental parameters such as pH and organic matter 

in the exposure medium, drives toxicokinetics (Constantino et al., 2011).  Biotic ligand and fugacity 
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models characterize the influence of environmental and organismal factors on the toxicokinetics of 

metals and organic chemicals respectively (Le et al., 2012; Celsie et al., 2016).  In contrast, 

toxicodynamics is how a chemical influences an organism (Ardestani et al., 2014).   It is widely 

assumed that the majority of the environment’s influence on metal toxicity is through toxicokinetics.  

However, soil modifies metal speciation and is the habitat for many organisms, and its influence on 

metal toxicodynamics may outweigh its toxicokinetic effects. 

Soils’ alteration of metal toxicokinetics are well established. For example, soil factors decrease metal 

toxicity by reducing cationic metals availability to an organism (Kuperman et al., 2009; Van Gestel, 

2012) i.e. by altering toxicokinetics.  Soil factors also influence survival and reproduction of soil 

organisms independently of their effects on metal speciation. For example, soil organic matter 

influences the reproduction of oribatid mite, Oppia nitens with peak reproduction occurring at 7% 

organic matter content (Princz et al., 2010).  Habitat quality is the ability of an ecosystem to sustain 

individuals and populations by providing appropriate ecological conditions (Hall et al., 1997). It is 

with this view that the soil habitat function was recommended to be tested (ISO, 2019a). The 

conditions necessary to sustain organisms is linked to the resources available for survival and 

suitability of environmental conditions (Johnson, 2007; Pulliam, 2000). 

Soil pH, texture and organic matter are some of the dominant drivers of soil habitat quality.  For 

example, optimal reproduction of the collembolan Folsomia candida occurs between pH 5.4 and 6.6, 

is reduced by 50% when pH is 3.5 and is completely inhibited at soil pH above 7.7 (Jansch et al., 

2005).  Similarly, the reproduction of the enchytraeid, Enchytraeus albidus is inhibited in soils below 

pH 5 (Kuperman et al., 2009). Texture has a strong influence on earthworm (Eisenia andrei) 

reproduction, which was less in clayey agricultural and sandy soils compared to organic, clay loam, 

or forest organic soils (Jansch et al., 2005). As noted above, high organic matter in soil leads to greater 
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reproduction and survival of organisms in soils (Princz et al., 2010; Son et al., 2007). Soil organic 

matter acts as a preferred location for mites to lay eggs (Princz et al., 2010), alters soil texture and 

can also serve as a surrogate food source.  For example, after 50 days in soils with high organic matter 

content (16.5%) and without food, Collembola juvenile and adult survival did not differ from low 

organic matter soils (ca 2%) with food (Bur et al., 2010). Organic matter also influences soil structure, 

increasing pores and channels which was ascribed to increasing the collembolan numbers (Son et al., 

2007). Thus, the interaction among soil pH, texture and organic matter content is a potentially strong 

predictor of habitat quality. 

Habitat quality is proportional to an organism’s energy balance, with increased habitat quality 

increasing energy supply, in the form of food, or limiting energy expenditure by reducing 

environmental stress (Hope, 2001). For example, organic matter is an indirect source of food and 

energy for many soil invertebrates. Increased organic matter in litter and humus layers leads to an 

increase in fungal biomass, which is a primary food source for the mites (Princz et al., 2010). The 

increased fungal biomass leads to an increase in energy for the mites.  Alternatively, habitat 

characteristics that reduce energy expenditures increase fitness because an invertebrate’s energy 

budget is critical for maintenance, growth and reproduction (Hope, 2001). For example, the 

earthworm E. fetida produced significantly more cocoons in soils with 40% clay than with 5% clay 

(Owojori et al., 2010). The authors attributed the higher cocoon production in soils with 40% clay to 

less movement of earthworms, thereby conserving energy that was used for reproduction. In the event 

of pollution, organisms will spend energy resisting contaminants by avoidance, exclusion or removal 

from the body thereby depleting the energy budget (Sibly and Calow, 1989; Donker, 1992). Energy 

budget depletion has a detrimental effect on survival, growth rate and reproduction of organisms 
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(Widdows and Donkin, 1991; Donker et al., 1993). Hence habitat quality is crucial to optimizing 

energy resources for invertebrates which could alter the toxicodynamics of metals.   

Biochemical markers of altered invertebrate energy regulation such as lactase dehydrogenase (LDH) 

and glucose-6-phosphate-dehydrogenase (G6PDH) are used in toxicology studies (Diamantino et al., 

2001), and can provide a measure of habitat quality’s influence on mite energy balance. LDH is a 

glycolytic enzyme that indicates glycogen breakdown to lactate and implies that aerobic energy was 

not enough to sustain an organism (Yallappa and Nuzhat, 2018). Increased LDH activity has been 

associated with chemical toxicity in a number of studies and it is indicative of organism stress. For 

example, LDH and G6PDH activities increased in response to mercury toxicity in Daphnia magna 

(De Coen et al., 2001). In earthworm (Glyphidrillus tuberosus), LDH activity increased with 

increasing solid waste (phosphogypsum) concentrations (Nayak et al., 2018).  Zn oxide nanoparticles 

induced cytotoxicity causing cell lysis, thus releasing cellular LDH into the cytoplasm (Saptarshi et 

al., 2015). The rate-limiting enzyme G6PDH is a biomarker of oxidative stress (Liu et al., 2007) and 

is involved in metabolising glucose through the oxidative pentose phosphate pathway (Liu et al., 

2007. Overall, G6PDH and LDH are two promising biomarkers for toxicodynamics responses and in 

studying the subcellular stress response of soil invertebrates. 

Here, we wished to differentiate the effects of soil properties on toxicokinetics from those of 

toxicodynamics. We hypothesize that soil habitat quality will dominate toxicodynamics by increasing 

energy available to mites after correcting for soil’s influence on metal speciation and bioavailability. 

To test our hypothesis, we categorized forty-seven soils spanning Western Canada into high, medium 

and low habitat quality categories using reproduction of F. candida, E. crypticus, and E. lanceolatus. 

Three soils from each habitat quality were chosen, and then for these nine soils, we exposed the mite, 

Oppia nitens to increasing Zn concentrations. After 28 days of exposure, we estimated metal 
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speciation and bio-accessibility (calcium chloride extracted metal concentration), dissolved organic 

carbon (DOC) assessed mite survival, reproduction, metal bioavailability and energy stores. We then 

repeated this entire experiment with another nine soils spanning all three habitat categories from the 

remaining 38 soils. Thus, in total we assessed the toxicodynamics and toxicokinetics of Zn in 18 soils 

in two independent experiments. 

5.4 Materials and Methods 

5.4.1 Soil Collection 

Forty-seven (n=47) soils were collected from agricultural and forested locations in Canada 

(Saskatchewan, Alberta, Manitoba and Western Ontario). The soils were air dried and sieved with a 

2 mm mesh-sized sieve to remove debris and rocks. The physicochemical parameters of the soils 

were determined (Appendix C, Table C-1). 

5.4.2 Test Species  

Oppia nitens is an oribatid mite which feeds mainly on fungi and the mites are important in soil 

nutrient cycling. Oribatid mites are the most abundant microarthropod in boreal forest soils (Princz 

et al., 2010). The specimens of O. nitens used for this study were supplied from the already established 

laboratory cultures in the Soil Toxicology Laboratory at the Department of Soil Science, University 

of Saskatchewan, Canada. The mites were cultured and used for the test as described in Jegede et al. 

(2019a).  

Folsomia candida is a springtail of the order Collembola. It is one of the most commonly used 

microarthropod species in the ecotoxicological literature and protocols (Environment Canada, 2014; 

OECD, 2009, ISO, 1999) are available for their use. The F. candida specimens used for this study 

were obtained from cultures maintained in the Soil Toxicology Laboratory at the Department of Soil 

Science, University of Saskatchewan, Canada. The cultures were maintained on a medium made of a 
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mixture of POP and activated charcoal in a 8:1 w/w ratio. The medium was moistened once a week 

and the collembolans were fed with bread yeast once in a week. After about 10 days, the eggs laid by 

the adult collembolans were picked up with a wet brush into a new medium where they were placed 

until hatching.  

Enchytraeus crypticus is an oligochaete annelid. Enchytraeids are actively involved in soil nutrient 

cycling, organic matter decomposition, soil aeration and stabilization by creating a soil fine-grained 

crumb structure after feeding (Jansch et al., 2005). The specimens of E. crypticus were obtained from 

cultures maintained in the Soil Toxicology Laboratory at the Department of Soil Science, University 

of Saskatchewan, Canada on artificial soils moistened to 50% water holding capacity (WHC) and fed 

once a week with oats.  

Elymus lanceolatus or northern wheatgrass, is widely distributed in North America (Scher, 2002). It 

is a perennial monocotyledon belonging to the family Poaeceae (Environment Canada, 2007). 

Northern wheatgrass is a common forage for livestock and is often applied as erosion control because 

of its deep root system (Scher, 2002). Northern wheatgrass grows very fast, has high seed vigour and 

is extensively used in plant toxicity testing (Anaka et al., 2008). The seedlings of the Northern 

wheatgrass used for these tests were donated by BrettYoung Seeds (Winnipeg, Manitoba). 

5.4.3 Habitat Quality Determination 

Habitat quality was determined from the survival and reproduction of the invertebrates (F. candida 

and E. crypticus), and plant (E. lanceolatus) biomass in the forty-seven soils with no Zn amendment. 

5.4.3.1 Survival and Reproduction of F. candida 

Soils were moistened to 50% of the WHC with distilled water. Ten age-synchronized (9-12 day old) 

collembolan juveniles were introduced into each replicate of soil. The springtails were fed once a 



 

93 
 

week with baker’s yeast and the moisture lost from the soil was replaced at the time of feeding. The 

springtails were kept in the soil for 28 days at a constant temperature of 21oC, 50 to 60% humidity, 

400 to 800 Lux, 16h light:8h dark (OECD, 2009). The surviving adult and juvenile springtails 

produced were counted after 28 days by adding water to the soil thereby causing the springtails to 

float.  The counts were used to determine adult survival and reproduction (juveniles produced) per 

soil.  

5.4.3.2 Survival and Reproduction of E. crypticus 

 For this test, the soils were moistened with distilled water to 50% of the WHC. Ten adult enchytraeids 

(selected based on their larger sizes and developed clitellum) were introduced into each replicate of 

soil. The enchytraeids were fed once a week with ground-rolled oats and moisture lost from the soil 

was replaced on each day of feeding. The enchytraeids were kept for 28 days at a constant temperature 

of 21C, 50 to 60% humidity, 400 to 800 Lux, 16h light: 8h dark, following the standard protocol 

(ISO, 2014). After 28 days, the surviving adults and juveniles were stained with Bengal red dye and 

were removed from the soil by wet sieving before counting under a microscope. 

5.4.3.3 Determination of E. lanceolatus Biomass Production  

Five seeds of Northern wheatgrass, E. lanceolatus were planted per 350g of dry soil, moistened to 

70% WHC. The soils were then kept in a chamber with full spectrum fluorescent light of 300 ± 100 

µmol/m2/s, constant temperature of 21C, 50 to 60% humidity (Environment Canada, 2007). Plants 

were harvested after thirty-five days of growth to maximize yield and biomass, oven-dried at 70C 

for 24 hours and then weighed with a Mettler Toledo balance to determine the biomass. 
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5.4.3.4 Calculation of Habitat Quality Scores  

Habitat quality was calculated by combining plant biomass, and enchytraeid and springtail 

reproduction tests into a single index as follows: Plant biomass, enchytraeid reproduction and 

springtail reproduction in each of the forty-seven (n=47) soils were normalized by dividing by their 

averages and multiplying by 100%. The normalized scores for each of the plant biomass, enchytraeid 

and collembolan reproduction were summed together to give a total score per soil. The soils with 

scores from 400 and above were indexed as 1 (high habitat quality), while those with score range of 

≥ 200 < 400 were indexed as 2 (medium habitat quality) and soils of < 200 were indexed as 3 (low 

habitat quality).  

How habitat quality was calculated: 

Given 'n' number of soils, 

∑ Plant biomass in ′n′ soils

n
 = Average plant biomass in 'n' soils (Average P) 

∑ Sprintail reproduction in ′n′ soils

n
 = Average springtail reproduction in 'n' soils (Average S) 

∑ Enchytraeid reproduction in ′n′ soils

n
 = Average enchytraeid reproduction in 'n' soils (Average E) 

Given a particular soil A, 

To normalize for plant biomass, Plant biomass in soil A

Average P
 x 100% = PA 

To normalize for springtail reproduction, Springtail reproduction in soil A

Average S
 x 100% = SA 

To normalize for enchytraeid reproduction, Enchytraeid reproduction in soil A

Average E
 x 100% = EA 
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Total score for soil A = PA + SA + EA. 

5.4.4 Metal Toxicity Test. 

 To assess the influence of these soils on O. nitens, the subset of nine soils chosen from the calculation 

of habitat quality score were dosed at 50% WHC with ZnO (Sigma Aldrich, puriss p.a ACS reagent 

≥ 99%) at increasing nominal concentrations of 0, 100, 200, 500, 1500, 4500, and 14000 mg of Zn 

per kg of soil. Fifteen (n=15) O. nitens were introduced to each of the four dosed soil replicates, 

baker’s yeast was added as food and the mites were exposed for 28 days. The exposed mites were fed 

once a week with baker’s yeast and the moisture loss was replaced at feeding time. After 28 days of 

exposure, the surviving adult and juveniles produced were extracted into a plastic cup with a modified 

Mcfayden apparatus for 48 hours. The surviving adults and juveniles in the plastic cups were counted 

to determine the survival and reproduction of the mites. The experiment was repeated with another 

subset of nine soils chosen from the remaining 38 soils, making a total of eighteen soils used for the 

both tests. 

5.4.5 Chemical Analysis.  

5.4.5.1 Total Zn Concentrations 

The total Zn concentrations in the dosed and control soils were determined by X-Ray Fluorescence 

(XRF) (Margui et al., 2016). Four (4) g of dry soils were weighed and ground. The ground soils were 

homogenized with 0.8 g of 44 µm powdered Chemplex spectroblend acting as adhesive to hold the 

soils together. The homogenized samples were transferred into Chemplex pellet cups, covered with 

polypropylene thin-films and vacuum-sucked into a pellet die set. The pellet set was mounted on a 

hydraulic press and the samples were pressed with a force of about 10,000 psi for 5 minutes to form 

soil discs. The soil discs were analyzed on the Thermofisher ARL Optim-X X-ray analyzer for total 



 

96 
 

metal concentrations. Recoveries of Zn from a certified reference material (Montana 2710a) were 95-

96.5%.  

5.4.5.2 Calcium Chloride Extracted Zn Concentrations 

The extracted Zn, otherwise called the bio-accessible Zn concentration, was determined by the 

calcium chloride extraction method (Quevauviller, 1998). Soil (2.5g) was weighed into a 50 ml 

centrifuge tube and 25 ml of 0.01M CaCl2 added. The CaCl2 and soil mixture was shaken for 3h at 

15 rpm using the rotary shaker. A subsample of the solution was used for pH and the remaining 

sample centrifuged for 10 minutes at 5000g, filtered through a 0.45 µm filter, and refrigerated prior 

to analysis. The filtered samples were then analyzed using an Agilent microwave plasma atomic 

emission spectrometer (MP-AES) at the Department of Soil Science, University of Saskatchewan, 

Canada. Standard Zn solution (VWR atomic absorption standard) was diluted with 0.01M calcium 

chloride serially from 0, 1, 5, 15, 30 and 50 mg/L as standards. The quality control included blanks, 

duplicates and calibration standards every 21 samples. 

5.4.5.3 Anions and Cations  

The anions and cations in the soil were determined using the method described by Quevauviller 

(1998). However, the method was modified by using water instead of calcium chloride. The filtered 

extracted-samples were divided into two and one part was analyzed for anions and the other part was 

analyzed for base cation concentrations. The anions were analyzed by ion chromatography (IC) with 

a Dionex ICS-2000 using the Chromeleon 7 software at the Department of Soil Science, University 

of Saskatchewan, Canada. The base cations (Ca2+, K+, Mg2+) were analyzed with an Agilent MP-AES 

at the Department of Soil Science, University of Saskatchewan, Canada. Standards for the cations 

were run randomly in the MP-AES and the calibration curve of the absorbance (Ca2+ = 616.21 nm, 
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K+ = 769.89 nm, Mg2+ = 383.80 nm) at different concentrations was determined. The quality control 

included blanks, duplicates and calibration standards every 21 samples. 

5.4.5.4 Dissolved Organic Carbon 

Dissolved organic carbon (DOC) was determined by a method described by Chantigny et al. (2008). 

Soil (15 g) was mixed with 30 ml of 0.005M CaCl2 in a 50 mL centrifuge tube. The soil and the CaCl2 

were mixed gently for a minute with a glass rod. After this, the soil-water mixture was centrifuged at 

12000g for 10 minutes. The supernatants from the centrifuged samples were filtered with 0.4 µm 

polycarbonate through vacuum suction into 30 mL dram vials. The filtered samples were immediately 

analyzed for DOC using a Mandel Total organic carbon analyzer at the Department of Soil Science, 

University of Saskatchewan, Canada. The precision criteria was met because the percent coefficient 

of variation for replicate injections was less than 2%.  

5.4.5.5 Speciation Calculations 

The Windermere Humic Aqueous Model version 7 (WHAM 7) (Tipping et al., 2011) was used to 

determine how Zn speciation differs in the different habitat quality soils. The input parameters were 

dissolved organic carbon (DOC), cations (Ca2+, Mg2+, K+, Zn2+) and the anions (Cl-, NO3
-, SO4

2-, 

CO3
2-, PO4

3-). The reaction conditions were temperature = 298K, partial pressure of CO2 = 0.00038 

atm, and pH (Peng et al., 2018). Fulvic acid (FA) was estimated from the DOC by assuming 65% of 

the DOC is the active FA and that DOC is 50% of dissolved organic matter in soil (Tipping et al., 

2003; Rooney et al., 2007). The output parameters were the free Zn ion species (Zn2+) and other Zn 

species (ZnSO4, Zn (OH)+, Zn(OH)2, ZnCO3, ZnCl2, Zn(HCO3)2, Zn-bound to FA).  

5.4.5.6 Mite Tissue Zn Concentration 

The mite tissue Zn concentrations (body burden) were determined after acid digestion (Owojori and 

Siciliano, 2012). Briefly, mite replicates per concentration were pooled together and frozen (-80C), 
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and then digested with a mixture of 5 ml of ultrapure 69% nitric acid and 1.5 ml of suprapur hydrogen 

peroxide. The fully digested samples were heated at 70C on a hotplate and were evaporated to about 

1cm3. The evaporated samples were then diluted with a 2% nitric acid and filtered using a 25 µm 

syringe filter before metal analysis. For every batch of digested mites, blanks were prepared in order 

to eliminate contamination effect during the digestion. The Zn concentrations per gram (g) body 

weight of mite were determined in the filtered samples using a multi-element inductively-coupled 

plasma mass spectrometer (ICP-MS) triple quad at the Toxicology Centre, University of 

Saskatchewan, Canada. The detection limit of Zn was estimated from the mean and standard deviation 

of the procedural blanks. For the quality control, the Zn content was determined in the certified 

reference material named TORT-3 (lobster hepatopancreas) obtained from the Natural Research 

Council, Canada using the same digestion procedures. The average recovery ranged from 86% to 

100%. 

5.4.5.7 Biochemical Analysis (Stress Biomarker Assays) 

Mites were recovered from 0, 1500 and 14,000 mg of Zn/kg of soil and their protein concentrations 

were determined using Coomassie reagent (Bradford, 1976) at an absorbance of 590 nm using Bovine 

Serum Albumin (BSA) as standard. All assays were carried out on 5µL of the sample supernatant. 

The supernatant was prepared by homogenizing 30 adult mites/test concentration/habitat quality soils 

in 100µL of Phosphate-buffered Saline (PBS) buffer (0.01M, pH=7.4). The homogenate was 

centrifuged at 10,000 g for 15 mins under 4℃ to obtain a clear supernatant. Lactate dehydrogenase 

(LDH) and glucose-6-phosphate dehydrogenase (G6PDH) were measured as described by De Coen 

et al. (2001) but adapted for a 96-well microplate using commercial kits (G6PDH assay kit, Cat. No. 

MAK015; LDH assay kit, Cat. No. MAK066) from Sigma-Aldrich, Canada. The activity of the 

enzymes was measured at an absorbance of 450 nm in a spectrophotometer and the relative activity 
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(mU/mL) was corrected by the protein concentration for each sample to obtain the specific activity 

(mU/mg of protein) of the enzymes.  

5.4.6 Statistical Analysis 

To check the differences in mite reproduction at 95% significant level across the different habitat 

qualities, a one-way analysis of variance (ANOVA) was used. Relationships between habitat quality 

and soil properties were assessed using an ordered logistic regression and significance was tested at 

p < 0.05 level. For the experimental replication, a mixed effect model was used to assess the fixed 

effects of nominal Zn concentration and habitat quality on mite reproduction and random effects of 

soils nested within the experiment. Because the experiments were performed at different times, a ratio 

of variance test was also used to see if there were time effects on experiments. For the toxic 

concentration of Zn, three or four parameter (depending on which best fit the model) non-linear log-

logistics was used to determine the effective median concentration (EC50) using the drm package in 

R (Ritz, 2016). The Trimmed Spearman-Karber (TSK) method (Hamilton et al., 1997) was used to 

determine the median lethal concentration (LC50) of Zn. The average slope of the three dose response 

curves per each of the three habitat qualities was determined to show the rate of change of the mite 

reproduction inhibition with Zn concentration. For all the regression analyses, the total, CaCl2 

extracted, and free Zn concentrations were expressed as moles of Zn per kg of soil. The body burden 

was expressed as moles of Zn per g body weight of mite. The bioavailability of Zn was calculated as 

the slope of the log-linear regression of Zn body burden after 28 days relative to the total Zn 

concentration in the soil. From the regression line, the EC50 for Zn tissue concentration was 

determined at the point where Zn body burden equals to the total Zn EC50. Generalized linear model 

with ANOVA was used to check if there were significant interactions at 95% level, between habitat 

quality and Zn doses on Zn speciation with soils as random effect. For the stress biomarkers, a two-
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way ANOVA with dose and habitat qualities as independent variable, was used to check if there were 

significant differences (p < 0.05) between LDH and G6PDH activities in different habitat qualities 

control and dosed soils.    

5.5 Results 

5.5.1 Habitat Quality Influences Mite Fitness.  

Mite reproduction was highest (175±11 juvenile mites) in soils with the greatest habitat quality (HQ) 

as defined by plant biomass, and enchytraeid and springtail reproduction. Mite reproduction 

significantly differed (p < 0.05) between high HQ (175±11) and low HQ (95±9) but there was no 

difference between high HQ and medium HQ (129±12) (Figure 5-1b). Across the 47 soils, soils (n=9) 

of high HQ values were linked with high CEC and % OC. If the HQs were based on enchytraeid and 

springtail reproduction only, more than 21 of the soils were classified as medium quality (Habitat 

quality 2) but if HQ was based on plant biomass only, then 18 soils were high quality (Habitat quality 

1) classification (Figure 5-1). When all the variables were factored together, both CEC and % OC 

were the significant (p < 0.05) HQ determinants but CEC was a stronger determinant (coefficient = 

0.66) of HQ compared to % OC (coefficient = 0.28) (Appendix C, Table C-2). Although, pH was not 

a significant (p > 0.05) HQ determinant when factored with other variables, it had the highest 

coefficient (0.78) when keeping other variables constant (Appendix C, Table C-2). 

 

 

 

 

 



 

101 
 

(a) (b) 

 

 

Figure 5- 1. Jitter plot of normalized plant biomass, enchytraeid reproduction and collembola 

(springtail) reproduction according to their habitat qualities (Panel a). The dotted lines indicate the 

average normalized score which is 100%.  Jitter plots of habitat quality (HQ) determinants, namely 

cation exchange capacity (CEC: mmol/100g soil) and organic carbon (%OC) in 47 soils, and mite 

reproduction in each HQ (Panel b).  Habitat quality (HQ) 1 is the high HQ, habitat quality two is the 

medium HQ and habitat quality three is the low HQ. Letters “a” and “b” represents significant 

differences (p < 0.01) and “ab” represent no significant differences (p > 0.05).  
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5.5.2 Low Habitat Quality Potentiates Zn Effects on Mite Reproduction 

Increasing Zn doses from 500 to 14,000 mg/kg of soil reduced (p < 0.05) mite reproduction by 50 % 

(Appendix C, Table C-3).  The EC20s expressed as nominal Zn in the high HQ was 3273 ± 1751, 

medium HQ was 2594 ± 1066 and the low HQ was 2038 ± 1194 (Appendix C, Table C-4). The 

highest nominal dose of 14,000 mg/kg completely inhibited mite reproduction in three of the six low 

HQ soils but mite reproduction was not completely inhibited in any of the six medium or six high 

HQ soils. For one of the low HQ soils, 4500 mg/kg completely inhibited mite reproduction; this soil 

had the lowest CEC and OC (9.9 mmol/100g and 0.4%, respectively). A linear mixed effect model 

of these data indicated that the difference between the experiments was negligible with a standard 

deviation of 0.0041 (Appendix C, Table C-3). The variance ratio test indicated no difference in 

variances between the two experiments (p = 0.93) and the ratio of the variances was 0.98 (Appendix 

C, Table C-5). 

5.5.3 Habitat Quality Influences Zn Speciation 

As expected, soils with high CEC and % OC had less free Zn because more soil Zn was bound to 

fulvic acid (FA-Zn) suggesting that high HQ soils would have lower Zn bioavailability. At the 

nominal Zn dose of 4,500 mg/kg (the closest concentration to the nominal Zn EC20 in the high HQ), 

the free Zn ion concentration in the high HQ soil (43 ± 2.8%) was less (p < 0.05) than in the low HQ 

(76.9 ± 2.4%). Conversely, the FA-Zn (40.9 ± 3.6%) in the high HQ soil was higher (p < 0.05) than 

in the low HQ soil (15.5 ± 1.8%).  At nominal Zn doses of 14,000 mg/kg, free Zn ion and FA-Zn 

followed the pattern observed at 4,500 mg/kg for the HQs but there were no differences (p > 0.05) 

(Figure 5-2). Other Zn species were similar across all the HQs, except for Zn sulphate at 14,000 

mg/kg, which was 1.3 ± 0.3% in the high HQ and more (p < 0.05) than in the low HQ (0.6 ± 0.7%). 
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Figure 5- 2. The proportion of Zn species in different habitat qualities at (Panel a) 4,500 and (Panel 

b) 14,000 mg/kg nominal Zn concentrations, separately for HQ = 1, 2 or 3. The 4500 mg/kg of Zn is 

the low HQ EC50 and 14,000 mg/kg is the high HQ EC50. The proportion of Zn species in each HQ 

were calculated as averages in the six soils that made up each HQ. The letters “a” and “b” represents 

significant differences (p < 0.05) and “ab” represents no significant differences (p > 0.05). The letters 

“c” and “d” represents significant differences (p < 0.05) in ZnSO4 and “cd” represents no significant 

differences (p > 0.05) in ZnSO4 

 

5.5.4 Total Zn Predicted Body Burden and Toxicity Better than CaCl2 Extracted Zn or Free Zn 

Based on log concentrations, all the measured external Zn concentrations in the soils positively 

correlated with the internal Zn concentrations (body burden) in the mites. Total soil Zn concentration 

was most strongly correlated (r=0.76) with body burden of Zn in the mite whereas the free Zn 

concentration was most weakly correlated (r=0.60) to body Zn burdens and the calcium chloride 

extracted Zn was moderately correlated (r=0.71) (Appendix C, Figure C-1 & C-2). Therefore, total 

Zn was selected as best representing measured external Zn concentrations exposed to the mites. 

5.5.5 Toxicity of Zn Across the Three Habitat Qualities  

Using the EC50s expressed as total Zn concentrations measured, the toxicity of Zn in the high 

HQ is about one quarter or one half that in the medium and low HQs, respectively. The Zn EC50 was 
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on average 16,000 ± 970 mg/kg for the high HQ compared to 7800 ± 2500 mg/kg for medium HQ 

and 4450 ± 2300 mg/kg for the low HQ (Figure 5-3). Mite reproduction was completely inhibited in 

three low HQ soils (Black spruce, Carrot river and PRT). Specifically, total Zn concentration of 3,215 

mg/kg completely inhibited mite reproduction in Black spruce (CEC = 9.9 mmol/100g, % OC = 0.4, 

EC50 = 139 mg/kg). Total Zn concentration of 14,000 mg/kg completely inhibited mite reproduction 

in Carrot river (CEC = 13.6 mmol/100g, % OC = 1.7, EC50 = 982 mg/kg) and PRT (CEC = 16.1 

mmol/100g, and % OC = 1.7, EC50 = 1,100 mg/kg). Lethal concentration of Zn causing 50% 

mortality (LC50) was determined in two low HQ soils (Black spruce LC50 = 1805 (1,380 - 2,361) 

mg/kg and Sarah LC50 = 11,076 (7,123 -17,223) mg/kg). The LC50 could not be determined in any 

of the high or medium HQ soils.    

 

Figure 5- 3. Average EC50 for total soil Zn concentration for three habitat qualities (Habitat quality 

1 - high HQ, Habitat quality 2 - medium HQ, Habitat quality 3 - low HQ).  

 

5.5.6 Zn Bioavailability Did Not Depend on Habitat Quality or Zn Speciation  

We calculated bioavailability as the slope of internal body burden versus total measured Zn in soil.  

Bioavailability did not differ (p > 0.05) between different quality soils averaging about 20% and mites 
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living in high HQ soils could tolerate higher internal Zn concentration (measured at external EC50 

level) compared to mites living in low HQ soils (Figure 5-4). The internal Zn concentration in the 

mites living in the high HQ soils (2040 ± 130 µg/g b.w) was not significantly greater (p < 0.05) than 

the internal Zn concentrations in the low HQ soils (1180 ± 310 µg/g b.w). Using the dose response 

slope as a metric, the change in mite reproduction relative to Zn was less (p < 0.05) in the high HQ 

(0.63 inhibition of mite reproduction per µg/g of Zn) compared to 5.05 inhibition of mite reproduction 

per µg/g of Zn for the low HQ. The slope from the medium HQ soils (1.35 inhibition of mite 

reproduction per g/g of Zn) was not different from that from the high HQ soils. 
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Figure 5- 4. The distribution of the internal EC50 concentration of Zn (µg g-1 b.w) in mites, slope of 

the dose response curves and bioavailability of Zn in three different soil habitat qualities. The slope 

was measured as mite reproduction inhibition per concentration of exposed cadmium (Inhibition/ 

µg/g Zn). Bioavailability of Zn was calculated as the slope of the regression of the Zn body burden 

with total Zn concentration. Habitat quality 1 is the high HQ, habitat quality 2 is the medium HQ and 

habitat quality 3 is the low HQ. Body weight = b.w. Letters “a” and “b” represents significant 

differences (p < 0.05). No significant differences (p > 0.05) where there are no letters. 
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5.5.7 Habitat Quality Influences Cellular Responses  

When stressed with Zn, mites living in soils of low and medium HQ increased their use of anaerobic 

reserves. The LDH enzyme activity increased for mites living in soils of both medium and low HQ 

when exposed to the high concentration of Zn (14,000 mg/kg) (Figure 5-5a). The activity of G6PDH 

increased in mites living in the soils of medium and low HQ at 1,500 mg/kg of Zn exposure but was 

regulated back to control levels at 14,000 mg/kg of Zn in the medium HQ. However, in the lower HQ 

soils, G6PDH activity increased at all tested Zn concentrations in a dose dependent pattern (Figure 

5-5b). There was no change in LDH and G6PDH activities in the mites living in high HQ soils at the 

moderate to high Zn concentrations tested (Figure 5-5a, 5-5b).  

(a) (b) 

  

 

Figure 5- 5. Activities of LDH (a) and Glucose 6-phosphate dehydrogenase (G6PDH) (b) in mites 

from three HQ soils exposed to nominal 1500 mg/kg and 14,000 mg/kg of Zn in three HQ soils. 

Habitat qualities are 1, 2, 3 high, medium and low HQ soil mites respectively. The letters “a” and “b” 

represents significant differences (p < 0.05). Bars within an HQ with the same letter represents no 

significant difference (p > 0.05). No letters in Habitat quality 1 for LDH and G6PDH  because there 

were no significant differences (p > 0.05). 
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5.6 Discussion 

5.6.1 Habitat Quality Influences Toxicodynamics 

Independent of toxicokinetic effects, greater HQ increases the resilience of Oppia nitens by altering 

the toxicodynamics of Zn (Figure 5-4). Increased resilience to Zn was indicated by less energy stress 

in higher quality soils that enables organisms to tolerate higher internal Zn concentrations before 

adverse reproductive or survival effects occurred.  As expected, soil quality altered metal speciation, 

but this change in metal speciation did not alter Zn bioavailability, with a slope of approximately 0.2 

mol of Zn kg-1 mite / mol of Zn kg-1 soil.   

5.6.2 Soil Properties Determines Habitat Quality 

As expected, CEC and OC were soil properties that determined habitat quality of soils. However, 

other properties commonly found to determine habitat quality, i.e. pH and soil texture (Kuperman et 

al., 2009) were not significant predictors in our study. This may be because our soil library was 

focussed on the Prairie region with less variability in pH whereas other studies using forest and 

agricultural soils found that Folsomia candida reproduction varied based on organic matter, pH and 

soil texture (Rombke et al., 2006). Oppia nitens performed better (increased reproduction) in soils 

that were amended with increased organic matter (Princz et al., 2010). This is consistent with the 

present study where Oppia nitens reproduced more in the high HQ soils than other soils because of 

the high CEC and OC associated with the high-quality soils. Apart from determining the performance 

of soil organisms, CEC and OC influence toxicokinetics of metals by modifying metal concentration 

in soils (Lock and Janssen, 2001c; Bur et al., 2012; He et al., 2015; Li et al., 2016). 
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5.6.3 Metal Bioavailability 

In order for metals to cause toxicity, they have to be bioavailable and bioavailability is thought to be 

dependent on metal speciation (McLean and Bledsoe, 1992; Sauve, 2002; Cances et al., 2003). Free 

metal ions are readily available for uptake by organisms (Qui et al., 2014) and sometimes Zn toxicity 

is linked to Zn free ion concentration (Hooper et al., 2011; Tourinho et al., 2013). In contrast, a 

number of studies reported total metal concentrations to be a good predictor of metal toxicity to soil 

invertebrates (Dai et al., 2004; Veltman et al., 2007; Gonzalez et al., 2013). For example, total metal 

(Zn, Cd, and Pb) content best predicted metal toxicity to the earthworm Eisenia fetida probably due 

to soil ingestion by the earthworm (Gonzalez et al., 2013).  In our study, speciation followed 

expectations with free Zn ion concentration lower in high quality soils than in the medium or poor-

quality soils due to changes in CEC and OC. Despite this, Zn toxicity to Oppia nitens was best 

explained by the total Zn concentration and not CaCl2 extracted Zn concentration or the free Zn ion 

concentration. We base this assertion on better dose-response models when total Zn was used (data 

not-shown), a stronger relationship to body burden across dose responses (Appendix C, Figure C-1) 

and at EC50’s (Supplemental Data Figure S2). Total Zn may be a better predictor for Oppia nitens 

toxicity because Zn exposure may be primarily occurring via the organic matter upon which Oppia 

nitens feeds or it may be linked to Zn’s role as an essential micronutrient. 

Despite changes in metal speciation across habitat qualities, Zn bioavailability was similar at about 

0.2 mol of Zn kg-1 mite / mol of Zn kg-1 soil across all habitat qualities. The similar concentrations of 

Zn may be due to the essentiality of Zn and homeostatic control of Zn by organisms. However, the 

internal concentration of Zn that caused impairment of reproduction and survival was higher in the 

mites of the high HQ soils than other HQ soils. Further, the slope of the dose response curve at EC50 

was smaller in high HQ compared to lower HQ levels. Thus, it appears that despite similar Zn 
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accumulation rates, i.e. toxicokinetics, Zn’s potency was lower in higher HQ soils.  The highest 

internal toxic concentration of Zn causing 50% reproduction was 2,040 µg/g in the high HQ soil, 

similar to about 2000 µg/g Zn reported by Owojori and Siciliano (2012). We suggest that habitat 

quality was modifying Zn toxicodynamics in mites by altering the dynamic energy budget of mites.  

This allowed the mites to tolerate higher metal contents before becoming physiologically impaired.   

5.6.4 Stress Biomarkers  

Two markers of mite energy systems, LDH and G6PDH (Firat et al., 2009; Yallappa and Nuzhat, 

2018) demonstrated that mites in the high HQ soils were more resilient. There were no changes in 

the LDH and G6PDH levels in the mites in high HQ soils when challenged with Zn. In contrast, in 

low HQ soils, both LDH and G6PDH increased in response to Zn challenge, indicating stress.  High 

HQ is associated with soils that have more food resources and thus provide more energy compared 

to low HQ sites (Hope, 2001). On exposure to metals, the metabolic activity of organisms increases, 

due to increased energy demand to combat stress (Gomes et al., 2015b). The increase in LDH and 

G6PDH during Zn challenge suggests that mites used energy reserves to combat Zn stress. In the case 

of the lower HQ soils, the mites depended on an additional increase in G6PDH to fight off stress. 

Alternatively, G6PDH increases may be linked to oxidative stress (Azevedo et al., 2007; Firat et al., 

2009) and not to increased demand for energy.  Metals are classically known to cause or promote 

oxidative stress as a mechanism of toxicity (Templeton, 2015) and habitat quality is one of the factors 

that contribute to oxidative stress levels (Adams et al., 2009; Theodokratis et al., 2017). Dynamic 

energy budgets models are needed for Oppia nitens to disentangle if enzymes are increasing energy 

available for organism to repair damaged proteins or if the enzymatic systems are directly combating 

primary or secondary toxicants, e.g. reactive oxygen species.   
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Figure 5- 6. The alternative path to management of metal contaminated sites and protection of 

terrestrial organisms.  

Our work suggests an alternative path for managing metals, or at least Zn contaminated soils (Figure 

6).  Rather than focus on only reducing or immobilizing Zn, restoration of habitat quality together 

with reducing or immobilizing Zn may be a sustainable means of reducing Zn impacts on terrestrial 

organisms.  Furthermore, remediation processes such as excavation can significantly degrade soils 

and reduce soil quality (Lanno, 2003), and based on our work, may exacerbate effects on biota from 

metal pollutants.  Practices that enhance the natural habitat quality of soils, such as cover crops to 

increase organic matter levels, are therefore encouraged. In some jurisdictions, sites are classified by 

land use and based on this, metal remedial guidelines are set.  Land use is used primarily due to its 

influence on organism exposure to pollutants.   We suggest that land-use should be extended to 

landscape by combining land-use and soil quality, as sites with higher soil quality will likely be able 

to tolerate higher Zn concentrations with no ill effect.  

5.6.5 Implications of Study on Contaminated Site Remediation 

Habitat quality (HQ) modulates Zn toxicity through toxicodynamics rather than toxicokinetics. The 

bioavailability of Zn was similar across the different HQs despite differences in Zn speciation 

observed across the different HQs. Total Zn predicted toxicity to Oppia nitens better than free Zn and 
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higher Zn body burdens were found in mites inhabiting high HQ soils than low HQ soils. Energy-

based biomarkers (LDH and G6PDH) demonstrated that mites inhabiting high HQ soils were more 

resilient to metal contamination. The result of this study implies that HQ plays a huge role in 

protecting organisms directly from metal toxicity rather than through reduction in metal 

bioavailability as commonly known. Organisms living in high HQs have more energy to combat 

metal stress than organisms inhabiting low HQs. In order to manage metal contaminated sites 

efficiently, restoring HQ may be more important than reducing the metal levels. For example, in a 

case of a zinc contaminated site, our study is suggesting that restoring the HQ may be a better 

sustainable way of reducing zinc impacts on soil biota than focus on reducing the zinc concentrations. 
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6 Synthesis, Conclusions and Future Directions 

Due to the inevitable use of metals and the consequent increase in metal production to meet human 

demands, the severity of metal pollution in the environment cannot be over-emphasized. It is against 

this background that metal risk assessment of terrestrial or aquatic ecosystems is very important. But 

more important is the robustness of the metal risk assessment, which is borne out of how close to 

reality the data used is. With the current metal toxicity data used in risk assessment, the reality was 

not often represented in previous works; rather "conservativeness" has been the prevailing approach. 

It is necessary however to use realistic data rather than just conservative data to account for over-

protection that "conservativeness" presents.  

To access metal risk, current risk assessment accounts for only single metals instead of metal mixture, 

which is more realistic. Furthermore, typically, it is assumed that metal mixture toxicity is just a 

simple addition of single metals present on site.  It is well known that metals cannot be degraded nor 

destroyed (Mansour, 2014); therefore, their effects linger on for a longer period than is currently 

accounted for in metal risk assessment. The inherent effect of habitat quality on resilience of 

organisms to metal stress, in this case soil habitat quality, has not been deliberately investigated. This 

might have helped to unravel some of the unexplained response of organisms to metal contamination 

across different sites.  Therefore, the primary goal of this research was to initiate and generate realistic 

site-specific metal toxicity data that can be used for metal risk assessment. The collected data were 

based on the facts that: (1) contaminated sites are usually polluted with metal mixtures as addressed 

in Manuscript 1 (2) metals persist in soils, so also its effect on biota as dealt with in Manuscript 2 and 

that (3) responses of ecological receptors to metal contaminated sites are dependent on the habitat 

quality regardless of metal bioavailability as addressed in Manuscript 3.  
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The principal goals of this research were to: (i) generate metal mixture toxicity data that is 

representative of the environmental occurrence of metal mixtures, taking into account the average 

mixture ratios of metals in agricultural sites and metal mining/smelting sites that are common to 

Canada; (ii) assess the effect of metal persistence on soil ecosystem through multigenerational 

exposure of metals to soil organisms and determine the sensitivity of organisms' populations to metal 

persistence; and (iii) assess the direct role the site quality plays on organisms' fitness in response to 

metal contamination. 

Fundamental research questions addressing these objectives were: 

• How can we move away from single metal toxicity to generate metal mixture toxicity data 

that is representative of the Canadian agricultural landscape and mining/smelting sites, hence 

increase confidence in site-specific risk assessment of metals in Canada? 

• How does persistence of metals in the soil affect biota exposed to the metals continually, and 

how will this impact the current way of doing metal risk assessment? 

• What is the advantage of soil habitat quality in mitigating metal effects on populations of 

organisms inhabiting the soil? Can this help to re-align metal risk assessment and 

contaminated site remediation processes? 
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6.1 Single and Metal Mixture Toxicity (Manuscript 1) 

6.1.1 Synthesis and Conclusions 

The traditional way of doing metal risk assessment is using single metal toxicity data to represent 

effects of metals and when considering metal mixtures, assume that metals do not interact and metal 

mixture toxicity is the sum of their individual toxic units. However, Manuscript 1 concluded that the 

pattern of the toxic response of soil organisms such as mites, Oppia nitens to single metals in different 

soils, was different from its response to metal mixtures. Mite sensitivity to metals in soils switched 

depending on if the exposure was to a single metal or a mixture of metals. The soil, which was the 

least sensitive to single metals, became more sensitive to metal mixtures. Soil properties like CEC 

and clay were significant modifiers of this switching. Metals that formed complexes with organic 

matter were the bioavailable metal species responsible for metal mixture toxicity. Few metals were 

responsible for driving most toxicity to the mites. Metal interactions were more common than non-

interactions of metals in a mixture, and more mixtures were synergistic with a marginally higher rate 

of 4% than antagonism.   

6.1.2 Future Directions 

The results generated here showed that CEC was the master soil variable influencing different 

responses with single and metal mixtures. Moreover, CEC influences organism fitness and 

susceptibility to metals (Jegede et al., 2019b). Therefore, there could be a link between organism 

fitness as dictated by CEC and single or metal mixture toxicity. CEC is a surrogate measure of soil 

fertility because it is the ability of soils to hold on to nutrients in the form of cations. These nutrients 

can then be made available to soil biota. It is possible that increased fitness of mites in Jegede et al. 

(2019b) as a function of CEC was due to increased provision of nutrients. In the event of metal 

mixture contamination of soils, increased CEC could lead to increased ability to hold on to myriads 
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of metals, consequently increasing the ability to supply such toxic metals to organisms in the soils. 

Qui et al. (2015) suggested that interactions of metals increased in the high CEC soils because of the 

more binding sites, hence leading to synergistic effects to Hordeum vulgare; this might be the case 

with Oppia nitens in this study. To estimate the influence of CEC on metal mixtures 

toxicodynamically, the mite body burden of the metals should be assessed. Therefore, it is 

recommended that future studies on metal mixture toxicity to Oppia nitens should include metal body 

burden in relation to the most accurate soil metal metric (total metal or other metal species) as done 

by Jegede et al. 2019b.  

The metals bound to fulvic acid predicted metal toxicity to O. nitens better than total and free metal 

speciation. This implies that using resins may be more predictive than metal speciation. The assertion 

that resins may be better aligns with Smolders and McLaughlin's (1996) claim that cadmium loaded 

on a chelating resin was more phytoavailable than free cadmium species to a plant, Beta vulgaris. 

Resins in the form of DGT (Diffuse gradients in thin films) 98% correlated with cadmium 

accumulation in earthworm, Eisenia fetida (Gu et al., 2017). Moreover, using resins avoids the 

uncertainties associated with calculating metal speciation (Versieren et al., 2013). Resins can better 

mimic metals bound to organic ligands, and it will be interesting to see if metal flux on resins can 

correlate with mite body burden in future metal mixture toxicity studies. Zinc was the least toxic of 

the metals. The role of zinc in modulating metal toxicity in the presence of other metals needs further 

investigation. Studies have reported the protective role that zinc plays in metal mixture toxicity (Wu 

and Zhang, 2002; Cherif et al., 2011; Versieren et al., 2016). One suggestion for this observation was 

that in an exposed organism, zinc reduces lipid peroxidation caused by other metals by activating 

protective enzymes such as superoxide dismutase (Versieren et al., 2016). Another suggestion was 

that, in the presence of other metals, zinc tends to be more soluble, and consequently outcompete 
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other metals at uptake sites in the organism. For example, Posthuma et al. (1997) observed that zinc 

did not sorb to soil particles in the presence of copper; instead, uptake of soluble zinc by E. crypticus 

was stimulated. Future studies should be designed to explore these proposed mechanisms as a way to 

explain how zinc might be protecting mites from metal mixture toxicity.  

6.2 Long-term Metal Exposure (Manuscript 2) 

6.2.1 Synthesis and Conclusions 

Existing toxicity data used for metal risk assessment are based on short-term tests that only cover one 

generation and may not be protective of multigenerational exposures of organisms to metals. In this 

regard, Manuscript 2 concluded that prior exposure or continuous exposure of metals had consequent 

toxic effects that were only seen in a multigenerational test scenario and not in the common single 

generational tests. Higher exposure concentrations triggered a tolerant response of the mites in 

subsequent generations. Continuous exposure to lower concentrations of metal (Zinc) was fatal to the 

mites than high concentrations of the metal. Both long-term persistent effect modelled by pulse 

exposure scenario and long-term exposure effect modelled by the continuous exposure scenario had 

detrimental effects on the population of the mites, using a zinc niche width. 

6.2.2 Future Directions 

The results generated here indicated that offspring developed tolerance to high concentrations of 

metals and was susceptible at lower concentrations. Metal tolerance in pre-exposed soil invertebrates 

has been demonstrated in some studies e.g. E. fetida developed tolerance to Zn after two generations 

(Spurgeon and Hopkin, 2000), the springtail, Orchesella cincta collected from metal-contaminated 

sites were more tolerant to cadmium than the ones collected from reference sites (Posthuma et al., 

1992). However, only one study (Amorim et al., 2017) has shown that offspring developed tolerance 

to high concentrations of metals and was susceptible at low concentrations just as was observed in 



 

118 
 

this present study.  Amorim et al. (2017) observed that F. candida exposed to Cd at EC10 level 

became extinct after one year but the ones exposed to Cd at EC50 levels did not go extinct till it was 

stopped at the 40th generation. Different mechanisms were suggested for this result. For example, 

there could have been reduced uptake of metals at higher concentrations by the springtails; a 

phenomenon that was observed in Daphnia magna where mercury uptake was reduced at lethal 

concentrations (Tsui and Wang, 2006). The induction of protective enzymes like metallothionein and 

other enzymes are concentration-dependent; hence, increased induction is observed when organisms 

have been pre-exposed to high metal concentrations such as organisms collected from metal-

contaminated sites (Van Straalen and Roelofs, 2005). It is also possible that organisms exposed to 

high concentrations of metals developed higher excretion efficiency than organisms exposed to low 

metal concentrations; therefore, metal transfer to subsequent generations may be lower for organisms 

exposed to higher metal concentrations. 

In recent times, knowledge about epigenetic memory is increasing. This is the case where a previous 

stimulus induces a heritable change in gene expression (D’Urso and Brickner, 2014). For example, 

when C. elegans was exposed to 25oC, a daf-21(Hsp90) promoter:: fluorescent protein constructs 

were highly expressed. These protein constructs were still highly expressed in a single copy transgene 

in subsequent five generations, but the descendants after the fifth generation did not express these 

transgenes (Klosin et al., 2017). Therefore, epigenetics might be able to explain why tolerance was 

induced in mites exposed to the high concentration of metal but not induced in mites exposed to low 

metal concentration.    

To unravel the mechanism behind this phenomenon going forward, multigenerational studies 

should be designed such that response of protective enzymes can be assessed, body burdens of 

parents and subsequent generations can be assessed in order to investigate excretion efficiencies and 
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possible maternal transfers. Although genome sequencing of O. nitens has not been done until date, 

it will be interesting to investigate if epigenetic mechanisms can be assessed in multigenerational 

studies with O. nitens after the full genome of O. nitens has been characterized.   

6.3 Soil Habitat Quality's Influence on Metal Toxicity (Manuscript 3) 

6.3.1 Synthesis and Conclusions 

Traditionally, it is known that habitat quality influences the toxicity of metals in contaminated sites 

by modifying metal bioavailability. In this vein, a high habitat quality soil should protect organisms 

by reducing metal bioavailability. However, this study showed that habitat quality may not 

necessarily change the metal bioavailability in contaminated sites, but more importantly, it influences 

the organism’s response directly. The main findings from Manuscript 3 concluded that soil mites, 

Oppia nitens inhabiting soils of high habitat quality were more resilient to metal stress than mites 

inhabiting soils of lower habitat qualities were. Soil CEC and OC were two soil properties 

determining soil habitat quality. Alteration of dynamic energy budgeting, when faced with stress, is 

a function of the habitat quality as demonstrated by LDH and G6DPH activities. High habitat quality 

does not only protect by reducing metal exposure but it dominantly protects by providing more energy 

for its inhabitant to cope with the metal exposure. 

6.3.2 Future Directions 

High habitat quality of soils is a function of high CEC (Jegede et al., 2019b) and high CEC is also 

related to synergistic effect (increased toxicity) of metal mixtures in soils. However, the increased 

ability of soil organisms to withstand single metals relates to high habitat quality. It will be interesting 

to see if high habitat quality will enable organisms to withstand metal mixture better or if organisms 

in high habitat quality will be susceptible to metal mixtures as a function of its high CEC. Therefore, 

the effect of habitat quality on the response of organisms to metals should be assessed with metal 
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mixtures in future studies, which will help our understanding of the roles CEC plays in influencing 

metal mixture toxicity in soil organisms. 

Another question to ask and answer is this: "How will habitat quality influence mite response to 

metals in a multigenerational metal exposure scenario?" Likely, high habitat quality will still protect 

organisms and their progenies in subsequent generations; but the reverse could also result. For 

example, the proposed mechanism of multigenerational effect of metal on O. nitens by Jegede et al. 

(2019a) shows that it is possible that increased induction in energy-based biomarkers like LDH and 

G6DPH may have a protective effect on subsequent generations in the low quality habitat versus the 

high quality habitat; and the opposite could be the case. Therefore, it will be interesting to address 

these concerns in future studies. 
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8. Appendix A: Chapter 3 Supplementary Material 
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Table A-1. The effective concentrations ± SE of five metals inhibiting 10% (EC10), 25% 

(EC25) and 50% (EC50) mite reproduction expressed as mg/kg of soil in five soils (ASF, LOA, 

LO, ASA, and LOS). ASF = Acid Sandy Forest, LOA = Loamy Alluvial, LO = Loamy, ASA = 

Acid Sandy Arable, LOS = Loamy Sand. 

Soil Metal EC50 (mg/kg) EC25 (mg/kg) EC10 (mg/kg) 

ASF Pb 1181 ± 627 1051 ± 311 712 ± 307 

 Zn 646 401 248 

 Cu 923 ± 491 537 ± 283 268 ± 195 

 Ni 133 ± 120 26 ± 24 5 ± 10 

 Co 1213 ± 667 567 ± 419 325 ± 307 

LOA Pb 3030 ± 1259 430 ± 107 171 ± 97 

 Zn 8689 ± 1209 6797 ± 1384 5134 ± 1781 

 Cu Not toxic Not toxic Not toxic 

 Ni 159 ± 77 107 ± 36 80 ± 28 

 Co Not toxic Not toxic Not toxic 

LO Pb 21625 ± 20813  2830 ± 2267 638 ± 747 

 Zn Not toxic Not toxic Not toxic 

 Cu 26671  2336 144 

 Ni 3606 ± 259 3049 ± 262 2577 ± 344 

 Co 14921 ± 1682 12482 ± 2589 10180 ± 3385 

ASA Pb 9165 ± 3866 6193 ± 3731 4649 ± 3908 

 Zn Not toxic Not toxic Not toxic 

 Cu 3796  1426 ± 2690 536 ± 900 

 Ni 2439  1425 ± 908 961 ± 838 

 Co Not toxic Not toxic Not toxic 

LOS Pb 1404 ± 380 654 ± 214 271 ± 97 

 Zn 8121 ± 247 8022 ± 334 7925 ± 451 

 Cu 3466 ± 1130 449 ± 161 56 ± 21 

 Ni 1022 ± 78 992 ± 102 670 ± 148 

 Co 6373 ± 6034 2320 ± 3361 845 ± 1200 
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Figure A-1. Dose response curves of ten fixed ratio rays made of five-metal mixtures (Zn, Pb, Cu, Ni, Co) to Oppia nitens in 

five soils (ASF = Acid Sandy Forest, LOA = Loamy Alluvial, LO = Loamy, ASA = Acid Sandy Arable, LOS = Loamy Sand). 

Metal mixture toxicity is expressed in toxic units. Fixed Rays: CSQG = Canadian Soil Quality Guideline, Flin = Flin Flon, Sud 

= Sudbury, Clay = Clay Peat, Port = Port Colborne, EC50, Equal = Equal Ratio, AgRes = Agricultural/Residential landscape 

+ loamy soil, Acid = Acid Sandy, LoamSand = Loam Sandy + Industrial landscape. 
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Table A-2. Metal mixture toxicity expressed as toxic units (TU) ± SE at 10% and 50% effect levels of ten mixtures (CSQG = 

Canadian Soil Quality Guideline, Flin Flon, Sudbury, Clay Peat, Port Colborne, EC50 = Effective concentration at 50% 

reproduction inhibition in Collembola, Equal = Equal metal ratio, Agric/Res/Loamy = Agricultural/Residential land use 

guideline values of Canada + Loamy soil values from EU PNEC reference, Acid Sandy = EU PNEC reference, Loamy Sand 

Industrial = Loamy Sand values from EU PNEC reference + Industrial land use guidelines of Canada) in five soils (ASF, LOA, 

LO, ASA, and LOS). ASF = Acid Sandy Forest, LOA = Loamy Alluvial, LO = Loamy, ASA = Acid Sandy Arable, LOS = 

Loamy Sand.  *Not significantly different (p < 0.05) from Concentration addition. 

 

Metal mixture ASF LOA LO ASA LOS 

TU50 TU10 TU50 TU10 TU50 TU10 TU50 TU10 TU50 TU10 

CSQG 1.68 ± 

0.91 

1.70 8.02 ± 

2.69 

0.12 0.13 ± 0.1 0.75 1.19 ± 

0.14 

4.20 1.85 ± 

0.54 

0.07 

Flin Flon 1.77 ± 

0.28 

4.42  Not toxic Not toxic 0.17 ± 

0.003 

24 0.24 ± 

0.04 

0.67 0.30 ± 

0.09 

0.0075 

Sudbury 1.47 ± 

0.63 

0.30 ± 

3.1 

Not toxic Not toxic 0.04 ± 

0.005 

0.57 0.90*± 

0.34 

0.89 0.57 ± 

0.16 

1.47 

Clay Peat 2.26 ± 

0.54 

12.77 ± 

11.8 

4.96 ± 

2.58 

3.0 ± 4.9 0.31 ± 

0.29 

0.1 2.06 ± 

0.49 

1.3 ± 

0.89 

N/A N/A 

Port Colborne 1.26*± 

0.54 

0.033 79 1.19* Not toxic Not toxic 4.00 ± 10 11.9 N/A N/A 

EC50 2.03 ± 

0.60 

10.32 2.18 ± 3 0.0039 0.59 ± 

0.09 

8.86 0.88 ± 

0.24 

2.32 7.57 ± 

1.14 

105 

Equal 2.84 ± 

0.53 

0.17 5.62 ± 

7.7 

0.23 0.9 ± 0.26 0.71 Not toxic Not toxic 0.4 ± 0.14 0.55 

Agric/Res/Loamy 0.84 0.18 6.26  0.24 0.48 ± 

0.19 

N/A 0.22 ± 0.1 0.87 1.40*± 

2.29 

4.3 

Acid Sandy 1.02*± 

2.07 

0.28 Not toxic Not toxic 0.91*± 1.5 N/A 1.54 ± 

0.12 

1.80 0.041 ± 

0.009 

0.01 

Loamy Sand Ind 0.97*  0.12 ± 

1.3 

2.25 ± 3 5.21 0.33 ± 

0.082 

1.03* 0.55 ± 

0.17 

1.80 0.68 ± 0.3 0.09 
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Supplementary 

(a)                                                                                      (b) 

  

(c) 

 

 

Figure A-2. Venn diagram of the variation partitioning of the response matrix of metal toxicity 

explained by (a) soil properties and Fulvic acid bound metals (FA-Metal (%)) on toxicity (b) soil 

properties and free metal ions on toxicity (c) soil properties and total metals at 50% effect levels. 

Residuals show the variations not explained by any of the explanatory variables (soil properties, 

fulvic acid bound metals, free metals, and total metals). 
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Table A-3. Subset of soil properties and metal that explained significant variances in toxic 

response at metal mixture 10% effect level (EC10) and 50% effect level (EC50) with fulvic acid 

bound metals, free metals, and total metals. 

Metal measure  EC10 EC50  EC10 EC50 

Soil 

properties 

p value p value Metal p value p value 

% Fulvic acid 

bound metal 

CEC 0.69 0.17 Cobalt 0.005*

* 

0.03* 

OC 0.69 0.26 Nickel 0.96 0.50 

pH 0.02* 0.28 Copper 0.61 0.39 

Clay 0.13 0.06 Zinc 0.17 0.42 

Lead 0.025* 0.65 

Free metal CEC 0.75 0.14 Cobalt 0.25 0.89 

OC 0.68 0.24 Nickel 0.80 0.71 

pH 0.02* 0.34 Copper 0.91 0.88 

Clay 0.15 0.07 Zinc 0.09 0.42 

   Lead 0.75 0.21 

Total Metal CEC 0.71 0.20 Cobalt 0.74 0.17 

 OC 0.62 0.98 Nickel 0.40 0.31 

 pH 0.005** 0.74 Copper 0.45 0.88 

 Clay 0.07 0.035* Zinc 0.60 0.36 

    Lead 0.17 0.45 

 

**p< 0.01 

*P< 0.05 

 

 

 

 

 

 

 

 

 

 

 

 



 

156 
 

 

Table A-4. Subset of soil properties and metal that explained significant variances in toxic 

response at 10% effect level (TU10) and 50% effect level (TU50) with fulvic acid bound metals, 

free metals, and total metals. 

Metal measure  TU10 TU50  TU10 TU50 

Soil 

properties 

p value p value Metal p value p value 

% Fulvic acid 

bound metal 

CEC 0.92 0.15 Cobalt 0.15 0.35 

OC 0.20 0.09 Nickel 0.94 0.03* 

pH 0.23 0.30 Copper 0.36 0.690 

Clay 0.71 0.01** Zinc 0.47 0.04* 

Lead 0.16 0.06 

Free metal CEC 0.92 0.035* Cobalt 0.36 0.72 

OC 0.23 0.12 Nickel 0.59 0.40 

pH 0.23 0.39 Copper 0.58 0.96 

Clay 0.69 0.005** Zinc 0.38 0.78 

   Lead 0.34 0.89 

Total Metal CEC 0.95 0.005** Cobalt 0.80 0.02* 

 OC 0.23 0.15 Nickel 0.66 0.05* 

 pH 0.19 0.23 Copper 0.46 0.42 

 Clay 0.57 0.31 Zinc 0.19 0.44 

    Lead 0.78 0.74 

 

**p< 0.01 

*P< 0.05 
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9. Appendix B: Chapter 4 Supplementary Material 
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Figure B1. Least-squared fitting logistic regression of the population growth rate (ri) of the parent 

mite (F0) with zinc concentration.  ri = 0 = PGRconc 
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Figure B2. Least-squared fitting of logistic regression of ri of 158 ppm (or Population 1) against 

zinc concentration in soil. When ri = 0, the mite populations are stable at the corresponding zinc 

concentration.  
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Figure B3. Least-squared fitting of logistic regression of ri of 335 ppm (or Population 2) against 

zinc concentration in soil. When ri = 0, the mite populations are stable at the corresponding zinc 

concentration.  
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Figure B4: Least-squared fitting of logistic regression of ri of 553 ppm (or Population 3) against 

zinc concentration in soil. When ri = 0, the mite populations are stable at the corresponding zinc 

concentration.  
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10. Appendix C: Chapter 5 Supplementary Material 
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Table C-1. Soil properties (pH, EC, WHC, Sand, Silt, Clay, and OC) of forty-seven (47) Canadian soils 

(pH was determined by 0.01 M CaCl2 in a ratio of 1 : 5 (solid : liquid) (Kamoun Jaabiri et al., 2018), 

WHC was determined as described by Kamoun Jaabiri et al. (2018), EC was measured by inserting 

an electrical conductivity meter electrode in soil solution made by adding ionized water to soil, soil 

texture was measured as described by Kamoun Jaabiri et al. (2018), OC was determined using the 

LECO SC-623 CNS analyzer (Elikem et al., 2019), CEC was determined as described by Yukelsen and 

Kaya (2008)). 

Soil Name  pH   EC  

(mS/m) 

WHC  

(ml/g) 

  Sand    

(mg/g) 

   Silt 

(mg/g) 

 Clay 

(mg/g) 
OC 

(g/kg) 

CEC 

(mmol/100g) 

Aaron 1 7.6 0.43 32.5 34.0 37.6 28.4 2.5 28.0 

Alameda 6.2 0.41  31.8   36.5   41.7   21.8 3.8 24.0 

Ardill 7.5 1.24  32.3   44.0   32.0   24.0 2.4 24.6 

Babisky 7.7 0.67  31.5   75.1    7.2   17.7 2.7 23.5 

Bernie 7.8 0.68  27.4   57.3   26.2   16.5 1.7 19.0 

Brewster 7.6 0.74  37.1   14.8   49.1   36.1 4.8 31.4 

Brian 1 6.9 0.16  26.8   47.9   30.1   22.0 3.0 21.6 

Brian 2 7.4 0.01  42.6   22.3   60.4   17.2 12.9 31.2 

Brownlee 7.7 0.40  26.8   47.6   25.0   27.4 1.5 24.4 

Carrot River 5.6 0.32  29.1   89.2    2.1   8.6 1.2 13.6 

Copeland 1 6.6 0.51  33.1   7.4   42.4   50.2 4.7 33.2 

Copeland 2 6.4 1.47  42.0   7.8   60.6   31.6 8.1 28.0 

Doelger 6.3 0.14  23.2   94.0    0.0   6.0 0.9 14.7 

Donny 7.5 1.18  32.8   44.4   27.5   28.1 3.9 26.3 

Echo 6.5 0.66  29.5   46.0   32.0   22 2.0 19.6 

Estevan 7.5 0.40  32.2   19.6   49.6   30.8 2.8 29.4 

Henry 1 5.5 0.60  31.1   81.2    4.6   14.2 2.6 18.4 

Henry 2 7.1 0.74  33.1   42.8   32.0   25.2 2.7 27.4 

Jackson 7.3 0.33  33.1   20.3   57.7   22.1 1.8 27.1 

Jay 7.4 0.80  32.4   26.3   58.1   15.6 1.9 21.9 

Jeremy 1 5.3 0.66  27.8   59.6   20.7   19.7 2.2 18.7 

Jeremy 2 5.3 0.74  26.7   71.3   14.4   14.3 1.8 17.7 

John 7.4 0.85  33.7   28.4   43.6   28.1 2.2 27.0 

Melita 6.7 0.13  25.7   75.9    9.7   14.5 1.6 19.9 

Nipawin 5.0 0.53  28.4   49.8   36.0   14.2 2.2 15.6 

P. Plain 6.5 0.67  72.6   16.1   21.7   62.2 36.0 34.8 

Powerline 6.5 0.66  40.2   64.6   20.8   14.6 8.6 28.8 

PRT 6.6 0.33  20.5   88.4    3.9   7.7 1.7 16.1 

Randy 1 6.8 0.48  31.8   62.8   15.3   21.9 3.6 26.3 

Randy 2 7.5 0.66  35.0   38.2   39.4   22.4 3.9 27.0 

Rob 6.0 0.46  29.9   41.0   36.2   22.9 3.2 20.3 

Roland 5.6 0.84  25.1   92.2    0.0    7.7 1.2 13.9 

Sand Lens 6.8 0.09  19.8   71.8   13.1   15.1 1.0 18.2 
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Sarah  6.4 0.12  28.6   67.9   16.2   15.9 1.1 18.4 

Sceptre 7.6 0.49  37.4    7.6   36.0   56.4 1.7 33.5 

Stuart 7.4 0.79  38.0    7.6   33.0   59.4 2.2 27.8 

Thomson 2 7.3 0.66  44.0   14.7   68.4   16.9 13.0 34.4 

William 7.5 0.86  38.3   25.9   55.3   18.8 6.8 29.7 

Yorkton 7.4 0.52  29.4   57.7   27.3   15.0 2.9 21.5 

Aaron 3 6.8 0.30  34.6    8.4   39.5   52.1 3.3 28.7 

Black Spruce 4.6 0.09  20.1   90.2   7.5    2.3 0.4 9.9 

Broad Creek 7.9 -  42.6   50.2   27.5   22.3 6.0 30.6 

Sherri 8.2 -  32.1   52.7   25.0   22.3 2.9 26.4 

Mixedwood 5.9 0.32  19.2   75.2   20    4.8 0.6 10.1 

Burnees 5.6 0.23  15.5   52.8   34.8   12.4 0.6 12.7 

Dave 2 7.4 0.20  34.4   29.6   52.1   18.3 3.5 21.4 

Sand dunes 6.3 -  17.4   85.1   10.0    4.9 0.3 10.8 

 
Footnote 

EC = Electrical conductivity of soil, WHC = Water Holding Capacity of soil, OC = Organic carbon of 

soil, CEC= Cation Exchange Capacity 
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Table C-2: Ordered logistic regression of habitat quality against CEC (cation exchange capacity), 

OC (organic carbon), pH, total nitrogen, WHC (water holding capacity) and EC (electrical 

conductivity) showing the value, standard error (Std. error), t-value and p-value. Delineation within 

high (high), medium (medium) and low (low) habitat qualities. Odds ratios of significant soil 

properties (CEC and OC) at 2.5% and 97.5% CI (Confidence interval). 

Variable  Value Std. Error t-value p-value 

CEC  -0.66   0.18  -3.7 0.00020 

OC   0.28   0.13   2.2 0.028 

pH   0.78   0.89   0.87 0.38 

Total Nitrogen  -0.0053   0.0028  -1.9 0.058 

WHC   0.012   0.052   0.23 0.82 

EC  -0.40   1.5  -0.27 0.79 

1 High|1 High   16.2   6.2  -2.6 0.0086 

1 High|2 Med  -12.8   5.9  -2.2 0.029 

2 Med|3 Low   -6.8   5.4  -1.3 0.20 

 Odds Ratio 2.5% CI 97.5% CI  

CEC    0.52   0.34   0.70  

OC    1.3   1.1   1.7  

 

*Significant at p < 0.05 
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Table C-3: Parameter estimates from linear mixed effect model (n=20) of the effects of habitat 

quality and dose on mite reproduction with random effects of experiments nested with soils. 

Parameters estimated were value, standard error (Std. error), degree of freedom (DF), t-value, p-

value 

Fixed effects: Mite reproduction ~ Habitat quality (HQ) * Dose 

 Value Std. Error DF t-value p-value 

Intercept 169.69 15.75 90 10.77 0.00 

HQ1:HQ2  -40.44 22.28 14  -1.82 0.09 

HQ1:HQ3  -74.44 22.28 14  -3.34 0.0048 

Dose 0:100 ppm     6.64 14.53 90   0.46 0.65 

Dose 0:200 ppm    -3.44 14.53 90  -0.24 0.82 

Dose 0:500 ppm  -30.86 14.53 90  -2.12 0.04 

Dose 0:1500 ppm  -42.40 14.53 90  -2.92 0.0044 

Dose 0:4500 ppm  -46.99 14.53 90  -3.23 0.0017 

Dose 0:14000 ppm  -78.69 14.53 90  -5.42 0.00 

HQ1:HQ2:Dose 100 ppm    -7.46 20.55 90  -0.36 0.71 

HQ1:HQ3:Dose 100 ppm  -14.22 20.55 90   0.69 0.49 

HQ1:HQ2:Dose 200 ppm     1.96 20.55 90   0.10 0.92 

HQ1:HQ3:Dose 200 ppm   11.78 20.55 90   0.57 0.57 

HQ1:HQ2:Dose 500 ppm   25.36 20.55 90   1.23 0.22 

HQ1:HQ3:Dose 500 ppm     8.51 20.55 90   0.41 0.68 

HQ1:HQ2:Dose 1500 ppm   13.28 20.55 90   0.65 0.52 

HQ1:HQ3:Dose 1500 ppm   15.24 20.55 90   0.74 0.46 

HQ1:HQ2:Dose 4500 ppm    -6.68 20.55 90  -0.33 0.75 

HQ1:HQ3:Dose 4500 ppm     0.07 20.55 90 0.0034 1.00 

HQ1:HQ2:Dose 14000 ppm  -10.65 20.55 90  -0.52 0.61 

HQ1:HQ3:Dose 14000 ppm     2.14 20.55 90   0.10 0.92 

      

Random effects:  

Formula: ~1| Experiment 

 Intercept     

Std Dev 0.0041     

Formula: ~1| Soil nested within experiment 

 Intercept Residual    

Std Dev 29.25 25.16    
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Table C-4:  The effective concentration inhibiting reproduction at 20% (EC20) and at 50% 

(EC50) of zinc (mg/kg of soil) in 18 soils and the mean and standard error (SE) of EC20s and 

EC50s per habitat quality of soils. 

 

Soil         

HQ 

   EC20           

(mg/kg) 

 Mean                                         

EC20 

(mg/kg) 

Standard 

error 

(SE) 

  EC50 

(mg/kg) 

Mean   

EC50 

(mg/kg) 

Standard 

error 

(SE) 

Henry 2 1   2711 3273 1751 21731 13920 4328 

Powerline 1 156   4524   

William 1 165   8816   

Stuart 1 126   3967   

Jackson 1 10796   13605   

Estevan 1 5688   30882   

Melita 2 7416 2594 1066 14499 6816 2102 

Rob 2 3091   11527   

Brian 1 2 315   6326   

Jeremy 2 2 394   1443   

Brownlee 2 1837   4267   

Randy 1 2 2512   2838   

PRT 3 476 2038 1194 1140 4523 1948 

Sand lens 3 772   5539   

Black spruce 3 102   201   

Sarah 3 7620   13155   

Carrot 3 2964   5339   

Bernie 3 298   1768   
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Table C-5:  The ratio of variance of two experiments, experiment 1 (Expt 1) and 

experiment 2 (Expt 2), p-value, degree of freedom (df).  

 Ratio of variance p-value df 

Expt 1:Expt 2       0.98   0.93 - 

    Expt 1         -     - 62 

    Expt 2         -     - 62 
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Figure C-1. The log of Zn body burden of adult Oppia nitens measured after 28 days of exposure to Zn in 18 soils related to the 

log of the total, calcium chloride (CaCl2) extracted and Zn concentrations in the soil. The lines show a linear fit for each of the 

measured external Zn (total, CaCl2, free Zn) and the body burdens. The correlation, r was determined as the Pearson's 

product moment correlation coefficient. 
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Figure C-2.  The internal toxic concentration of Zn (µg/g body of mite) after 28 days of exposure to Zn in 16 soils, related to 

the total  Zn EC50 and the calcium chloride extracted Zn EC50s. The internal toxic concentration of Zn for each soil was 

derived from the regression line of the external Zn (total and CaCl2 extracted) concentrations and body burden. The internal 

toxic concentration of Zn was the point where body burden equals to the external Zn EC50.    The lines show a linear fit for 

each of the measured external Zn EC50s  and internal toxic concentrations. The correlation, r was determined as the 

Pearson's product moment correlation coefficient and r2 as the fit of the regression 


