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Abstract

The Higgs boson has an important role in the theoretical formulation of the stan-

dard model of fundamental interactions. Symmetry breaking of the vacuum via the

Higgs field allows the gauge bosons of the weak interaction and all fermions to ac-

quire mass in a way that preserves gauge-invariance, and thus renormalizablility.

The Standard Model can accommodate an arbitrary number of Higgs fields with

appropriate charge assignments. To explore the effects of multiple Higgs particles,

the SU(2)-multi-Higgs model is studied using lattice simulations, a non-perturbative

technique in which the fields are placed on a discrete space-time lattice. The formal-

ism and methods of lattice field theory are discussed in detail. Standard results for

the SU(2)-Higgs model are reproduced via Monte Carlo simulations, in particular the

single-Higgs phase structure, which has a region of analytic connection between the

symmetric and Higgs phases. The phase structure of the SU(2)-multi-Higgs model

is explored for the case of NH ≥ 2 identical Higgs fields. There is no remaining

region of analytic connection between the phases, at least when interactions between

different Higgs flavours are omitted. An explanation of this result in terms of en-

hancement from overlapping phase transitions is explored for NH = 2 by introducing

an asymmetry in the hopping parameters of the Higgs fields.
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Chapter 1

Quantum Field Theory

1.1 Introduction

The Higgs boson is a hypothetical spin-0 particle, introduced as a way of explain-

ing the origin of mass for all other particles in the standard model of fundamental

interactions. The motivation for the Higgs particle is to give particles mass in a

way that allows for a renormalizable electroweak theory [1]. This is done through

the Higgs mechanism [2], where symmetry-breaking occurs via a non-zero vacuum

expectation value (vev) for the Higgs, and the vev effectively gives mass to the other

particles. On a discretized space-time lattice, the spontaneous symmetry breaking

of the Higgs vacuum manifests itself as a phase transition between the symmetry

restoring and symmetry breaking (Higgs mechanism) phases. Currently, the Large

Hadron Collider in Cern Switzerland is working towards experiments to test for the

existence of the Higgs particle. It is difficult to place experimental constraints on the

number of Higgs particles in the Standard Model. For example, an arbitrary num-

ber of Higgs fields with conventional quantum numbers (isospin I = 1
2
, hypercharge

Y = ±1) is consistent with experimental observations. The inclusion of multiple

Higgs within the Standard Model is the simplest extension of the minimal Higgs

sector, in particular the minimal supersymmetric Standard Model [3]. The focus of

my thesis research is to study the Higgs phase transition in the SU(2)-Higgs model

with multiple Higgs particles using lattice simulation techniques.

In this paper, the foundations of lattice field theory are discussed starting from

the perspective of classical Lagrangian field theory and non-Abelian gauge theories,

and are developed in a way that is relevant to the lattice. Lattice simulations are

1



based on the path integral formalism and so the path integral approach to quan-

tization in quantum field theory is discussed in detail. Lattice field theory is a

non-perturbative approximation scheme in which space-time is discretized. Quanti-

ties in the form of a path integral can then be calculated numerically, using statistical

methods, i.e. Monte Carlo simulations. The form of the path integral, when trans-

formed to Euclidean space-time, allows for the use of statistical mechanics methods.

The derivation of the lattice Lagrangian for non-Abelian gauge theories and the

combined gauge-Higgs theory are given. The Monte Carlo methods for the pure

SU(2)-gauge theory and the SU(2)-Higgs model are discussed in detail. Simula-

tion results and benchmarks for SU(2)-gauge theory and the SU(2)-Higgs model are

presented, which demonstrate that the computer simulations have produced correct

results. The SU(2)-Higgs phase structure is mapped using hysteresis curves and a

region is found where the phase transition terminates, which is consistent with pre-

vious simulation results [4] and the theoretical prediction of an analytic connection

between the symmetric and Higgs phases for a single Higgs field in the fundamental

representation [5]. When multiple Higgs particles are included, the region of ana-

lytic connection disappears and the symmetric and Higgs phases become completely

separated by a phase transition. This phenomenon is hypothesized to originate

from an enhancement from overlapping phase transitions, as reported for the multi-

Higgs three-dimensional U(1) theory [6]. In particular, supporting evidence for this

hypothesis is found in the exploration of an asymmetric two-Higgs model as it ap-

proaches the symmetric limit of identical quadratic terms (hopping parameters in

the discretized theory).

1.2 Lagrangian Field Theory

In non-relativistic quantum mechanics, particles are described by scalar fields that

provide a probabilistic description about the behaviour of the particles. Space and

momentum are the dynamical variables of the theory, and time describes the evolu-

tion of a system. However, this approach lacks the ability to predict the processes of
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particle annihilation and creation, which occur for relativistic particles through the

exchange/equivalence of energy and mass. A relativistic quantum theory should be

based on the interactions of particles with other particles, and thus the interaction

of their fields should be built into the theory. For a relativistic quantum theory,

the fields become the dynamical variables, which leads to a natural formulation of

particle interactions. The approach to develop quantum field theory in this paper is

to start from a classical Lagrangian and move into the path integral formulation.

A first step in developing a theory of fields is to derive the dynamical equations

of motion and conservation laws in terms of the fields. The principle of least-action

is retained as a fundamental concept, which is used to derive the Euler-Lagrange

equations for fields, and also Noether’s theorem (For standard discussions see [7, 8]).

The Lagrangian is generalized to the Lagrangian density so that it can be written as

a function of the fields φ and their 4-derivatives, where the fields themselves depend

on space-time. The action S can now be written as the integration of the Lagrangian

density L over space-time,

S =

∫

d4xL(φ, ∂µφ, xµ) . (1.1)

The Euler-Lagrange equation follows from taking the extremum of the action

with respect to first order variations in the fields φ(x) → φ′(x) = φ(x) + δφ(x), the

derivatives of the fields, and the space-time coordinates xµ → x′µ = xµ + δxµ,

δS =

∫

R

d4x

{[

δL
δφ

− ∂µ

(

δL
δ(∂µφ)

)]

δφ + ∂µ

(

δL
δ(∂µφ)

δφ + Lδxµ

)}

= 0 . (1.2)

The integration of the 4-divergence can be rewritten as the integration over the

surface of the integration region. By setting the variations in the fields and the

coordinates to zero on the boundary of the region of integration, i.e. the fields have

fixed boundary conditions, the surface term will equal zero,
∫

R

d4x ∂µ

(

∂L
∂(∂µφ)

δφ + Lδxµ

)

=

∮

∂R

d3σµ

(

∂L
∂(∂µφ)

δφ + Lδxµ

)

= 0 . (1.3)

Because the variations of the field inside R are arbitrary, the integrand of the re-

maining part of Eq. (1.2) must equal zero. This gives the Euler-Lagrange equations,

∂L
∂φ

− ∂µ

(

∂L
∂(∂µφ)

)

= 0 . (1.4)

3



The fixed surface variations leave the Lagrangian invariant up to a 4-divergence.

To derive Noether’s theorem, variations are used that are arbitrary on the boundary

but that leave the Lagrangian invariant L → L, which implies that the action is

also invariant δS = 0. Such a transformation is also called a symmetry. Since the

Lagrangian is invariant, the Euler-Lagrange equations still hold for these different

boundary conditions. The result is Eq. (1.3) but for arbitrary symmetry transfor-

mations. Because the region R is now arbitrary with respect to the variations the

integrand of Eq. (1.3) is zero, which gives Noether’s theorem,

∂µ

(

∂L
∂(∂µφ)

δφ + Lδxµ

)

= ∂µJµ = 0 . (1.5)

The 4-divergence of Jµ is zero, and it is therefore a conserved current. A conserved

physical quantity can be calculated for any infinitesimal transformation of the fields

or coordinates that preserves the Lagrangian.

The next step is to obtain the Lagrangian for a spinless relativistic field. The

dynamical equation of motion can be motivated using1 p2 = E2 − ~p = m2, and the

methods of first quantization, ~p → −i~∇, E → i ∂
∂t

. This gives the Klein-Gordon

equation,

(

∂2 + m2
)

φ = 0 . (1.6)

A Lagrangian for the real Klein-Gordon field that reproduces this equation of motion

is

L = 1
2
(∂µφ)2 − 1

2
m2φ2 . (1.7)

1.3 Gauge Theories

One of the simplest gauge theories is electromagnetism. The Lagrangian for the

electromagnetic fields in a vacuum is

L = −1
4
FµνF

µν , (1.8)

1For a list of conventions used see appendix A.
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where Fµν is the field strength tensor represented by the four-dimensional curl of the

gauge fields Aµ,

Fµν = ∂µAν − ∂νAµ . (1.9)

Using the Euler-Lagrange equations with Aµ as the dynamical variable we get the

equation

∂µF
µν = 0 , (1.10)

and from the definition of Fµν we obtain the geometric constraint

∂λFµν + ∂µFνλ + ∂νFλµ = 0 . (1.11)

Eqs. (1.10) and (1.11) are just the source-free Maxwell equations in a manifestly

covariant form.

Quantum Electrodynamics (QED) is the quantum field theory for the electro-

magnetic force. Particle interactions are manifested through an exchange of photon

particles represented by the field Aµ. One of the most important properties of QED

is invariance of the Lagrangian under local gauge transformations involving Aµ and

the matter fields (e.g. electron/positron). QED is classified as an Abelian gauge

theory because the gauge transformations are commuting. The weak and strong

forces are non-Abelian gauge theories, and contain non-commuting gauge symme-

tries. Additional vector fields, which describe the force carrying particles of the weak

and strong forces, are introduced in a way that preserves and generalizes local gauge

invariance.

Three different perspectives for gauge theories will be briefly discussed: group

generators, local symmetry transformations, and phases along paths.2 The last def-

inition will be used later on in the development of lattice gauge theory.

1.3.1 Group Generators

For non-Abelian gauge theories, the essential form of the Lagrangian remains the

same as in Eq. (1.8). However, additional field components are added with the

2The discussion on gauge theories is adapted from Refs. [7, 8, 9].
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introduction of a group index (i.e. Aµ → Aα
µ, Fµν → F α

µν). The different group com-

ponents of Aα
µ become coupled to one another by adding an additional antisymmetric

term to F α
µν

F α
µν = ∂µA

α
ν − ∂νA

α
µ + g0f

αβγAβ
µAγ

ν , (1.12)

where g0 is the bare coupling constant and fαβγ are the completely antisymmetric

structure constants of the group. The structure constants are related to commutators

of the group generators λα,

[

λα, λβ
]

= ifαβγλγ , (1.13)

where λα are Hermitian matrices corresponding to a representation of the generators

for a unitary group (e.g. SU(N)). A matrix representation of the vector potential is

defined by

Aµ = Aα
µλα . (1.14)

Similarly Fµν = F α
µνλ

α, the expression for Fµν becomes

Fµν = ∂µAν − ∂νAµ − ig0 [Aµ, Aν ] . (1.15)

The group generators are orthonormalized in the fundamental representation such

that

Tr
(

λαλβ
)

= 1
2
δαβ . (1.16)

The Lagrangian for non-Abelian gauge theory can now be written as

L = −1
4
F α

µνF
µν
α = −1

2
Tr (FµνF

µν) . (1.17)

For SU(2), the simplest non-Abelian gauge theory and the one considered in

this paper, the group generators in the fundamental representation are the Pauli

matrices,

λα = 1
2
σα , (1.18)

σ1 =





0 1

1 0



 σ2 =





0 −i

i 0



 σ3 =





1 0

0 −1



 , (1.19)

fαβγ = ǫαβγ . (1.20)
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1.3.2 Local Symmetry Transformations

A local symmetry occurs when a modification of the fields in a local region of space-

time leaves the action unchanged. Electromagnestism is an Abelian gauge theory,

and its Lagrangian is symmetric under the local gauge transformations

φ → eig0Λ(x)φ , (1.21)

Aµ → Aµ − ∂µΛ(x) , (1.22)

where the gauge function Λ(x) is an arbitrary function of space-time, and φ represents

the matter fields interacting with Aµ. A gauge-invariant Lagrangian can be obtained

by replacing derivatives of the matter fields φ by covariant derivatives of the form

Dµ = ∂µ + ig0Aµ . (1.23)

For non-Abelian gauge theories, generalized gauge transformations are defined

for the matter fields and the covariant derivative such that Dµφ transforms in the

same way as φ,

φ → gφ , (1.24)

Dµφ → gDµφ , (1.25)

Dµ → gDµg
−1 , (1.26)

where g(x) is a mapping of space-time into the gauge group,

g(x) = exp (ig0 Λα(x)λα) . (1.27)

The anti-symmetric field strength tensor Fµν is defined as the commutator of covari-

ant derivative operators, and has a simple transformation,

Fµν = − i

g0
[Dµ, Dν ] , (1.28)

Fµν → gFµνg
−1 . (1.29)

The Lagrangian in Eq. (1.17) is therefore left gauge invariant. For covariant deriva-

tives of the form Dµ = ∂µ+ig0Aµ, Fµν is the same as in Eq. (1.15). The corresponding
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transformation for the gauge field Aµ can be derived to be

Aµ → gAµg
−1 − i

g0

g∂µg
−1 . (1.30)

For the gauge group U(1) (i.e. an Abelian group) g(x) = eig0Λ(x) and we can obtain

the transformations for electromagnetism in Eqs. (1.21) and (1.22).

1.3.3 Phases Along Paths

When a particle tranverses a space-time path P , its field acquires an additional phase

factor due its interaction with an externally imposed gauge field Aµ,

φ → exp

(

ig0

∫

P

Aµdxµ

)

φ = U(P ) φ . (1.31)

For electromagnetic interactions, U(P ) is a complex phase rotation. In the Abelian

case it is easy to show that for a path P starting at point x and ending at point

y, the field φ(x) has the same gauge transformation as U(x → y)φ(y). This leaves

the quantity φ†(x)U(x → y)φ(y) gauge invariant. The path-dependent phase factor

connects particles at different space-time points in a gauge invariant way. In the

more general sense, U(P ) can be thought of as a parallel transporter in the gauge

group geometry.

For the non-Abelian case we use the analogy with parallel transportation to define

the more general phase factor,

dxµ

ds
DµU †(s) = 0 , (1.32)

U(0) = 1 . (1.33)

The path is parametized by xµ(s), s ∈ [0, 1]. From Eqs. (1.32) and (1.33) the gauge

transformation for U(s) depends only on the end points of the path,

U(s) → g(0) U(s) g−1(s) , (1.34)

which leaves φ†(0)U(s)φ(s) gauge invariant. Eq. (1.32) can be written as the differ-

ential equation,

d U †(s)

ds
+ ig0

dxµ

ds
Aµ(s) U †(s) = 0 , (1.35)
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whose solution with initial condition (1.33) is a path-ordered exponential,

U(s) = P exp

(

ig0

∫ s

0

ds
dxµ

ds
Aµ

)

. (1.36)

The path-ordering operation P puts A(s) on the left and A(0) on the right. From

Eq. (1.34) it follows that for a closed path C the trace of U(C) is gauge invariant,

W (C) = Tr(U(C)) → W (C) . (1.37)

The quantity W (C) is called a Wilson loop, and its expectation value depends only

on the shape of the closed path C.

1.4 The Path Integral

1.4.1 Introduction to the Path Integral

The path integral approach3 to quantum mechanics is an alternative to the canonical

formulation (e.g. Schrodinger wave equation), and is the basis for calculations in

lattice gauge theory. The path integral is a weighted sum over all possible paths

of a particle. To construct the path integral in non-relativistic quantum mechanics,

consider the expansion of a propagator using complete sets of position basis states

at different times ~x(tj) = ~xj ,

〈~xf , tf | ~x0, t0〉 =

∫

d3~x1 〈~xf , tf | ~x1, t1〉 〈~x1, t1| ~x0, t0〉

=

∫

d3~xn · · · d3~x1 〈~xf , tf | ~xn, tn〉 · · · 〈~x2, t2| ~x1, t1〉 〈~x1, t1| ~x0, t0〉 ,

(1.38)

t0 < t1 < · · · < tn < tf .

As the time interval δt = tj+1−tj is made infinitesimal and the number of integrations

n goes to infinity, Eq. (1.38) becomes an integration over all possible configurations

of some weight factor given by the propagators. For a Hamiltonian of the form

3The following development on the path integral is adapted from Refs. [7, 8].
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H = ~p2

2m
+V (~x), which is approximately constant in the infinitesimal interval tj+1−tj ,

the propagator becomes

〈~xj+1, tj+1| ~xj, tj〉 = 〈~xj+1| e−iĤ(tj+1−tj) |~xj〉

=

∫

d3 ~pj

(2π)3
exp

[

i(tj+1 − tj)

(

~pj ·
~xj+1 − ~xj

tj+1 − tj
− Hj

)]

=

(

m

2πi(tj+1 − tj)

)
3
2

exp

[

i(tj+1 − tj)

(

m

2

(

~xj+1 − ~xj

tj+1 − tj

)2

− V (~xj)

)]

.

(1.39)

Taking n → ∞ and tj+1 − tj → 0 the propagator in Eq. (1.38) becomes

〈~xf , tf | ~x0, t0〉 = N

∫

D~x(t) eiS ≡ Z [~x(t)] , (1.40)

where S =
∫ tf

t0
dt L(~x(t)) is the action, and N is a normalization factor. The inte-

gration measure D~x(t) represents an integration over all possible paths ~x(t) (moving

forward in time), for continuous time. In other words, the path integral is an infi-

nite number of time-sliced ordinary integrations over ~x. The integration measure is

expressed as

D~x(t) = lim
n→∞

n
∏

j=0

d~x(tj) . (1.41)

The expectation values of operators can be expressed as path integrals by using the

same techniques as before. From Eq. (1.38) the path integral is time ordered. In

order to insert operators into the expansion, the product of the operators must also

be time ordered,

〈~xf , tf |T
{

Q̂(tm) · · · Q̂(t1)
}

|~x0, t0〉 = N

∫

D~x(t) Q(tm) · · ·Q(t1)e
iS . (1.42)

1.4.2 Field Theory Path Integral

To establish an analogous path integral for quantum field theory, we will modify

Eq. (1.40) by replacing the coordinates with field variables, ~x(t) → φ(x),

Z[φ] =

∫

Dφ eiS , S =

∫

d4xL(φ, ∂µφ) . (1.43)
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As in the canonical approach to relativistic quantum mechanics, the fields become

the dynamical variables and the Lagrangian is retained as a fundamental quantity.

The integration measure Dφ is defined as

Dφ =
∏

x

dφ(x) , (1.44)

where x spans all of space-time. The sum over all possible trajectories has been

replaced by a sum over all field configurations. That is, the path integral is an

integration over all values of the fields for an infinite number of space-time slices.

Correlation functions of time ordered field operators are written in the same way

as in Eq. (1.42). The correlation function is normalized by dividing by Z, which

removes vacuum bubble contributions,

〈0|T {φ(xm) · · ·φ(x1)} |0〉 =

∫

Dφ φ(xm) · · ·φ(x1)e
iS

∫

Dφ eiS
. (1.45)

Adding a source term J(x)φ(x) to the Lagrangian turns the path integral into a

more general quantity called the generating functional,

Z[J ] =

∫

Dφ eiS(J) , S(J) =

∫

d4xL + J(x)φ(x) . (1.46)

By taking functional derivatives of the generating functional with respect to the

source, and then setting the source to zero, Z[J ] can generate correlation functions,

〈0|T {φ(xm) · · ·φ(x1)} |0〉 =
1

Z

1

i

δ

δJ(xm)
· · · 1

i

δ

δJ(x1)
Z[J ]

∣

∣

∣

∣

J=0

. (1.47)

Correlation functions give the propagation amplitude for m particle scattering pro-

cesses.

For the free Klein-Gordon Lagrangian L0 = 1
2
∂µφ∂µφ− 1

2
m2φ2 + 1

2
iǫφ2, the gener-

ating functional can be rewritten so that it can be used for finding explicit expressions

for the correlation functions,

Z0[J ] =

∫

Dφ exp

[

i

∫

d4xL0 + J(x)φ(x)

]

. (1.48)

The iǫφ2 term is introduced to make the path integral converge, and it also naturally

leads to the Feynman propagator. The integral inside the exponential in Eq. (1.48)
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can be rewritten using integration by parts and then a change in the field variables,

φ(x) → φ(x) −
∫

d4y DF (x − y)J(y) . (1.49)

The quantity DF (x − y) is a Green’s function of the Klein-Gordon equation,

(∂2 + m2 − iǫ)DF (x − y) = −iδ(x − y) , (1.50)

DF (x − y) =

∫

d4p

(2π)4

i

p2 − m2 + iǫ
e−ip·(x−y) , (1.51)

which is also known as the Feynman propagator. Performing the change of variables

the generating functional becomes,

∫

d4x 1
2

(

∂µφ∂µφ + m2φ2 − iǫφ2
)

+ J(x)φ(x)

=

∫

d4x − 1
2
φ
(

∂2 + m2 + iǫ
)

φ + J(x)φ(x) (1.52)

→
∫

d4x − 1
2
φ
(

∂2 + m2 − iǫ
)

φ + 1
2

∫

d4xd4y J(x)DF (x − y)J(y) ,

Z0[J ] = Z0[0] exp

[

− i

2

∫

d4xd4y J(x)DF (x − y)J(y)

]

. (1.53)

The generating functional Z0[J ] is now explicitly written in terms of Green’s func-

tions. The term that contains the Green’s function and the source terms can be

separated from the path integral because it is independent of the fields.

A simple example of the usefulness of the generating functional is the two-point

function for the free Klein-Gordon field,

〈0|T {φ(x1)φ(x2)} |0〉 =
1

i

δ

δJ(x1)

1

i

δ

δJ(x2)

Z0[J ]

Z0[0]

∣

∣

∣

∣

J=0

= DF (x1 − x2) . (1.54)

Eq. (1.54) states that the time-ordered propagation of a particle from point x1 to

point x2 is given by the Feynman propagator. It gets more interesting if we look at

the four-point correlation function,

〈0|T {φ(x1)φ(x2)φ(x3)φ(x4)} |0〉 = DF (x1 − x2)DF (x3 − x4) (1.55)

+ DF (x1 − x3)DF (x2 − x4)

+ DF (x1 − x4)DF (x2 − x3) .
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The higher-order correlation functions become the sum of all permutations of the

Feynman propagators. This is identical to the result that follows from Wick’s theo-

rem, which states that the time ordered product of fields is the sum of all possible

contractions (i.e. Feynman propagators) of the fields, where a contraction is simply

defined as a Feynman propagator. Partial contractions produce vacuum bubbles,

which are divided out by the Z0[0] factor. What we are left with in Eq. (1.55) is

a sum of three Feynman diagrams, in which there are no interactions among the

particles.

Particle interactions can be introduced by adding an interaction term to the

Lagrangian, L = L0 + Lint,

Z[J ] =

∫

Dφ exp

[

i

∫

d4xL0(φ) + Lint(φ) + J(x)φ(x)

]

. (1.56)

The interaction term can be separated from the path integral by changing its argu-

ment to an operator that is independent of φ, Lint(φ) → Lint(
1
i

δ
δJ

),

Z[J ] = exp

[

i

∫

d4xLint

(

1

i

δ

δJ(x)

)]

Z0[J ] . (1.57)

This replacement can be performed because φ is an eigenvalue of the operator 1
i

δ
δJ

,

when it operates on eiS[J ].

By expanding the exponential of the interaction term, and using the form of Z0[J ]

in Eq. (1.53), Z[J ] becomes a perturbation series. The contributions from the inter-

action can be formulated to arbitrarily high order by taking functional derivatives of

Z0[J ]. What we are left with is sum of propagators, which we integrate over, times

Z0[J ].

1.4.3 The Euclideanized Path Integral

The path integral formalism bears resemblance to statistical mechanics in which Z

is a sum over all configurations of an exponential weight, which is like a partition

function, and correlation functions are expressed as derivatives of Z[J ] with respect

to an external source J . By Wick-rotating the time coordinate, x0 = −ix0
E , the
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integrand of Z becomes identical in form to a Boltzmann weight factor,

Z =

∫

Dφ e−SE , SE =

∫

d4xE
1
2
(∂Eµφ)2 + 1

2
m2φ2 , (1.58)

where SE is the Euclideanized real Klein-Gordon action. The Euclideanized space-

time alters the covariant derivative and so the gauge fields must be Wick rotated in

such a way that the gauge theory is preserved [10],

A0 = iAE0 , (1.59)

D0 = iDE0 , (1.60)

LE = 1
2
Tr (FEµνF

µν
E ) = −L , (1.61)

U(P ) = exp

(

ig0

∫

P

AEµdx
µ
E

)

. (1.62)

The subscript E will be dropped from here on.

The path integral may now be re-interpreted as a classical statistical system in

which field configurations that minimize the Euclideanized action, i.e. the classical

field solutions, contribute a large amount to expectation values, while configura-

tions away from the minimal action constitute quantum corrections. Quantization

is implemented via the path integral by allowing classical fields to explore all con-

figurations. The dynamics of the field theory are enforced by the weighting of the

exponentiated action. This is different from the canonical formulation that treats

the fields as operators that satisfy the Euler-Lagrange equation.
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Chapter 2

Lattice Gauge Theory

2.1 Lattice Gauge Theory

Lattice field theory is an approximation scheme in which space-time is discretized,

and the quantum fields become discrete elements on the space-time lattice. The

lattice is usually regular with equal lattice spacing a. The lattice approximation

allows us to perform numerical path integral calculations, as the partition function

becomes a finite number of ordinary integrations. It also provides a regularization

scheme that parameterizes ultra-violet divergences, as there are no wavelengths less

than two times the lattice spacing in the momentum space formulation.

The gauge fields in lattice theory1 are represented by elemental links Uxµ of the

path dependent phase factor from Eq. (1.36),

Uxµ = eig0Aµ(x)a . (2.1)

The link can be represented geometrically by a vector starting at point x and pointing

in the µ-direction, and U †
xµ is a link pointing towards x in the negative µ̂-direction.

Uxµ = x • µ̂ // • x + µ̂ U †
xµ = x • •µ̂oo x + µ̂

The gauge link variable can be used to construct U(P ) for any type of path on the

lattice.

The next step is to construct a gauge-invariant Lagrangian on the lattice that

is equivalent to Eq. (1.17) in the limit a → 0 [11]. We may gain some intuition by

noting that the field strength tensor is a generalized curl of the vector potential, and

1For standard discussions on lattice gauge theories see Refs. [9, 10]
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also that Fµν in Eq. (1.28) is a curvature tensor in the gauge group geometry. This

leads us to a guess that the Lagrangian may be formulated as elementary squares

constructed from the gauge links,

U� ≡ Uµν(x) ≡ UxµUx+µ̂νU
†
x+ν̂µU †

xν = •

U
†
xν

��

•
U

†
x+ν̂µoo

•
Uxµ

// •

Ux+µ̂ν

OO (2.2)

L� ≡ Lµν(x) ≡ β[1 − 1
n
Re Tr Uµν(x)] . (2.3)

The dimension of the group matrices is given by n (e.g. for SU(n), Tr(1) = n) and

β is a normalization constant. The elementary squares, which are commonly called

plaquettes, are the smallest possible Wilson loops and are therefore gauge invariant

objects on the lattice. To prove that the plaquette variables give us the correct

Lagrangian, we must do a little algebra,

U� = eig0Aµ(x)aeig0Aν(x+aµ̂)ae−ig0Aµ(x+aν̂)ae−ig0Aν(x)a

≈ eig0a2(∂µAν−∂νAµ+ig0[Aµ,Aν ])+O(a3) , (2.4)

L� ≈ β
[

1 − 1
n

Tr
(

1 − 1
2
g2
0F

2
µνa

4 + O(a5)
)]

= β
g2
0

2n
Tr
(

F 2
µν

)

a4 + O(a5) . (2.5)

The constant β is now defined to be β = 2n
g2
0
. The term F 2

µν is not an implied sum, i.e.

F 2
µν = F 2

�
has directional information. To get the correct form for the Lagrangian,

the lattice action is defined as the sum over all plaquettes,

S ≡
∑

�

L� =
∑

x

∑

µ>ν

Lµν(x) , (2.6)

L(x) =
∑

µ>ν

Lµν(x) = Tr

(

∑

µ>ν

F 2
µν

)

a4 + O(a5) = 1
2
Tr (FµνF

µν) a4 + O(a5) .

(2.7)

As the continuum limit is approached the lattice action becomes identical to the

continuum (Euclideanized) action,

Sa→0 =

∫

d4x 1
2
Tr (FµνF

µν) + O(a) . (2.8)
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2.2 Monte Carlo Simulation

The lattice formulation makes it possible to compute the path integral numerically.

However, because of the very large number of integration variables, it becomes prac-

tically impossible to calculate the integrals using a nested summation. The very large

number of degrees of freedom suggests that we use statistical methods instead (see

[9, 10, 12] for standard discussions). As noted earlier, the Euclideanized form of the

path integral is completely analogous to the partition function for a thermodynamic

system, and so all of the numerical methods of statistical mechanics can be used to

study quantum field theory.

The partition function is a weighted sum over all possible field configurations, and

a large portion of the configurations are suppressed by the Boltzmann factor, so only

a relatively small number of “important” configurations are needed to approximate

the path integral. Monte Carlo simulations randomly generate the most statistically

significant field configurations according to the Boltzmann factor. The expectation

value of an observable Q can be approximated by the average of a relatively small

number of configurations N ,

〈Q〉 =

∫

Dφ Q e−S

∫

Dφ e−S
≈ 1

N

N
∑

n=1

Qn , (2.9)

where Qn is an observable for the nth-configuration. The factor e−S is taken into

account by the probability in which the configurations are generated. Expectation

values of any gauge invariant quantity can then be calculated with a statistical error

that falls off like 1√
N

.

Monte Carlo algorithms generate a Markov chain of field configurations, that is,

the probability for generating each configuration depends on the previous one. The

probability to randomly generate a new configuration φnew from an old configuration

φ is given by P (φ → φnew). The evolution of the Markov chain of configurations

behaves like a thermodynamic system, in which equilibrium is established at the

desired probability distribution. The equilibrium distribution is given by

peq(φ) =
e−S(φ)

Z
, (2.10)
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which means the configurations for calculating expectation values in Eq. (2.9) must

be from the equilibrium ensemble. A natural condition for equilibrium is that the

configurations stay in equilibrium,

peq(φnew) =

∫

Dφ P (φ → φnew)peq(φ) . (2.11)

This says that the equilibrium distribution is an eigenvector of the updating pro-

cess. While any initial field configuration can be chosen, the system will eventually

reach an equilibrium distribution if the updating algorithm satisifies Eq. (2.11) and

ergodicity P (φ → φnew) > 0. Ergodicity ensures that any new configuration can be

obtained from any old one, which can be achieved in one update, several sequential

updates, and also by updating parts of the lattice individually. A sufficient (though

not necessary) condition that ensures the equilibrium distribution is an eigenvalue

of the updating algorithm is that the algorithm satisfies detailed balance

e−S(φ)P (φ → φnew) = e−S(φnew)P (φnew → φ) . (2.12)

Integrating over φ and using
∫

Dφ P (φnew → φ) = 1 (assuming that a new config-

uration will always be accepted), Eq. (2.11) is recovered from the detailed balance

condition.

The local Metropolis algorithm [13] implements detailed balance by generating a

random field variable φnew
x and accepting it if the action is lowered [S(φnew

x ) ≤ S(φx)]

and accepting it with a conditional probability exp[S(φx) − S(φnew
x )] if the action

is raised [S(φnew
x ) > S(φx)]. The new configuration is generated with a probability

distribution PG(φ → φnew), which depends on how the generator is implented, and

accepted with probability

PA(φ → φnew) =







1 if S(φnew
x ) ≤ S(φx)

exp[S(φx) − S(φnew
x )] if S(φnew

x ) > S(φx)
. (2.13)

The total probability of generating φnew from φ is given by the production P (φ →
φnew) = PG(φ → φnew)PA(φ → φnew). If the probability distribution for the generator

is reversible, i.e. PG(φ → φnew) = PG(φnew → φ), then the detailed balance condition

is satisfied. The field variables are updated one at a time because the acceptance
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probability would be far too small for practical purposes if the lattice was updated all

at once. The update satisfies the local detailed balance condition and local ergodicity.

Performing the local update on every field variable on the lattice satisfies detailed

balance and ergodicity for the whole system.

The Metropolis method demostrates how configurations that minimize the ac-

tion are favoured, and quantum contributions are implemented with an acceptance

probability for random changes that increase the action. Also, if the random changes

were all accepted, the system would maximize its entropy and the dynamics of the

action would not be introduced. The acceptance probability for random changes

provides a balance between the high density of states [favours large S(φ)] and the

exponential suppression of the Boltzmann factor [favours small S(φ)]. The actual

expectation value for S should lay somewhere in the middle ground.

The local heatbath algorithm (see, e.g. [9, 14]) generates a field variable φnew
x

directly with probability

P (φx → φnew
x ) =

e−S(φnew
x )

Z
, (2.14)

which satisfies local detailed balance condition and local ergodicity. It is also easy to

see that the local version of the equilibrium condition, Eq. (2.11), is automatically

satisfied. The heatbath method generates a field variable that is in equilibrium with

its neighbours, whereas the Metropolis method requires a large number of updates or

‘hits’ on a single field variable before it reaches equilibrium. That is, as the number

of Metropolis hits approaches infinity, it becomes equivalent to one heatbath update.

The heatbath method has the advantage that is more efficient, while the Metropolis

method is much easier to implement. For SU(2)-gauge theory the heatbath algorithm

is simple enough to implement for practical applications.

2.2.1 Heatbath Algorithm for SU(2)-Gauge Theory

For the SU(2)-gauge heatbath [9, 14], a new link element Uxµ is generated according

to the probability distribution

dp(Uxµ) ∼ e−S(Uxµ)dUxµ , (2.15)
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where the pure-gauge lattice action is given by the sum of all plaquettes,

S =
∑

x

∑

µ>ν

β
[

1 − 1
2
Tr
(

UxµUx+µ̂νU
†
x+ν̂µU

†
xν

)]

, (2.16)

and where the links are SU(2) matrices that can be represented by four real numbers

on a 4-dimensional unit sphere,

U = a0I + i~a · ~σ =





a0 + ia3 a2 + ia1

−a2 + ia1 a0 − ia3



 , (2.17)

a2 = a2
0 + a2

1 + a2
2 + a2

3 = 1 . (2.18)

It follows that the trace of an SU(2) matrix is automatically real. The Haar measure

dUxµ is invariant under SU(2) transformations and is given by

dU = π−2d4a δ(a2 − 1) . (2.19)

Each link belongs to only 6 plaquettes, so we can ignore the parts of the action that

do not contain Uxµ. The probability distribution for the new link Uxµ becomes

dp(Uxµ) ∼ exp
(

1
2
β Tr (UxµVxµ)

)

dUxµ , (2.20)

where Vxµ is the sum of the link variables that form a plaquette with Uxµ, which are

also called staples because they look like incomplete plaquettes (⊓),

Vxµ =
∑

ν 6=µ

(

Ux+µ̂νU
†
x+ν̂µU

†
xν + U

†
x+µ̂−ν̂νU

†
x−ν̂µUx−ν̂ν

)

=
6
∑

⊓=1

U⊓ . (2.21)

Using the property that a sum of SU(2) matrices is proportional to an SU(2) matrix,

the sum of staples may be written as,

V =
√

det V V0 , V0 ∈ SU(2) . (2.22)

The invariant group measure allows us to simplify dp(U) by performing the change

of variables

U = V
†
0 u . (2.23)
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The group measure remains unchanged [d(V †
0 u) = du] and the probability distribu-

tion becomes

dp(U) ∼ exp
(

1
2
β
√

det V Tr(u)
)

du

∼ exp
(

β
√

det V a0

)

δ(a2
0 + ~a2 − 1) da0 d3~a (2.24)

∼ exp (αa0) (1 − a2
0)

1
2 da0 d2Ω ,

where α = β
√

det V , and d2Ω is the solid angle of the vector ~a, which has a length

of
√

1 − a2
0 .

The new link U may now be generated as follows: randomly generate a number

a0 ∈ [−1, 1] with a probability distribution

dp(a0) ∼ (1 − a2
0)

1
2 exp (αa0) da0 , (2.25)

and then generate a 3-vector ~a with a totally random direction and length
√

1 − a2
0.

These four random numbers form the random SU(2) matrix

u =





a0 + ia3 a2 + ia1

−a2 + ia1 a0 − ia3



 . (2.26)

The new link is finally given by the matrix multiplication U = V
†
0 u .

The real trick is how to generate the random numbers a0 and ~a according to

the probability distribution dp(U). Assuming we have a pseudo-random number

generator, we can obtain numbers in any interval with a uniform distribution. To

obtain a random number x with a distribution f(x), where f(x) ≥ 0, an accept/reject

procedure can be used. Use the random-number generator to create a trial x (xmin ≤
x ≤ xmax), calculate f(x) and then create a second random number y (0 ≤ y ≤ fmax).

If y < f(x) then accept the trial x. Reject the trial x if y > f(x) and repeat the

procedure until a number is accepted. The probability of accepting x is proportional

to f(x), so the accepted x’s will have the correct statistical weighting. The number a0

may be created in this way, according to the probability function in Eq. (2.25). The

vector ~a can be thought of as a totally random point on a sphere of radius
√

1 − a2
0 ,

which can easily be created by generating three random numbers, −1 ≤ a1, a2, a3 ≤ 1,

and scaling them so that |~a| =
√

1 − a2
0 .
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While using Eq. (2.25) directly in an accept/reject procedure will generate the

correct distribution, the function is very strongly peaked because of the exponential,

and the acceptance rate will be very low, especially for large α. Since Monte Carlo

simulations can be very time consuming, we want to be as efficient as possible.

Therefore, an algorithm with a high acceptance rate is desirable, as to minimize

the number of computer calculations. The Creutz method [9, 14] is to perform a

change of variables which takes the exponential term into account separate from the

accept/reject step,

z = exp(αa0) (2.27)

dp(z) ∼
[

1 −
(

log z

α

)2
]

1
2

dz . (2.28)

A trial z is created in the interval e−α ≤ z ≤ eα, accepted with probability (2.28),

and then a logarithm is taken to recover a0,

a0 =
log z

α
. (2.29)

The probability function in Eq. (2.28) is much more flat and thus offers a better

acceptance rate.

The Creutz method offers a huge improvement in the acceptance rate. However,

as α → ∞ the acceptance rate goes to zero by
√

π
2α

. To overcome this, Kennedy and

Pendleton [15] devised an algorithm that has an acceptance rate that goes to one as

α → ∞. However, as α → 0 the acceptance rate of the Kennedy-Pendelton method

goes to zero by
√

πα3

2
. The new method is very efficient for large α where Creutz’s

technique slows down, but it also has a very low acceptance rate for small α where

the Creutz method works well. The relative acceptance rates of the two algorithms

is given by

RKP

RC

=

√

2α

π
[1 − exp(−2α)] , (2.30)

and is equal to one when α ≈ 1.6849. However, due to the greater computional

complexity of the Kennedy-Pendleton method, the two algorithms have the same
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computation time at about α ≈ 8, as tested on the Fortran 90 compiler. Therefore,

to optimize the efficiency of the updater, the Creutz method is used for α < 8 and

the Kennedy-Pendleton method is used for α > 8.

The Kennedy-Pendleton method is significantly more complicated, so only a

recipe will be given [15]: generate four random numbers, x1, x2, x3, y ∈ [0, 1], calcu-

late

δ = − 1

α

(

log x1 + cos2(2πx2) log x3

)

, (2.31)

and accept δ if

y2 ≤ 1 − 1
2
δ . (2.32)

If δ is accepted, then

a0 = 1 − δ . (2.33)

2.2.2 Simulation Results and Benchmarks for SU(2)-Gauge

Theory

To simulate on the lattice, an ensemble of field configurations must be generated

using the Monte Carlo updater. Each configuration is generated by updating the

previous configuration one element at a time, until the entire lattice has been up-

dated. As each field element is updated, the random changes propagate through the

lattice, and the system moves towards equilibrium. However, each configuration is

related to the previous one, and so several lattice updates may be required before

the configurations become statistically uncorrelated. Near a phase transition, a very

large number of updates may be required for the system to reach equilibrium. In par-

ticular for a first-order phase transition, where there may be metastable equilibria,

it will take many updates to move from one phase to the other.

The simplest observable to measure for a pure gauge theory is the average pla-

quette,

P =
1

6V

∑

�

(

1 − 1
2
Tr U�

)

. (2.34)
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where V is the lattice volume (i.e. the total number of lattice sites). The average

plaquette versus the number of Monte Carlo iterations for SU(2)-gauge theory is

shown in Fig. 2.1. Two different initial configurations are used: the ordered (cold)

start in which all the links are set to unity (P = 0), and the random (hot) start in

which the links are totally random (P ≈ 1). After a sufficient number of updates,

the different initial configurations reach the same equilibrium value. These results

agree with those given by Creutz [9, 14].

The gauge coupling β is analogous to an inverse temperature from the partition

function

Z =

∫

DU e−6V βP . (2.35)

It follows that the expectation value of the average plaquette can be interpreted as

the internal energy density of the thermodynamic system,

〈P 〉 =
1

6V

∂

∂β
log Z . (2.36)

The expectation value of the average plaquette can be calculated as a function of β

(recalling that β is a free parameter in the action). For the strong coupling (small

β) and weak coupling (large β) regimes the approximate behaviour of the average

plaquette with respect to β is known analytically and is given by

strong coupling: 〈P 〉 = 1 − β

4
(2.37)

weak coupling: 〈P 〉 =
3

4β
(2.38)

In Fig. 2.2 is a graph of the average plaquette versus β. The β dependence of

the average plaquette from Monte Carlo simulations agrees with the strong and

weak coupling predictions [9, 14]. For each value of β, 10 updates are performed

to thermalize the lattice and then 20 configurations are generated to calculate the

expectation value of P (i.e. 〈P 〉). The simulation begins with a hot start at β =

0, and a “cooling run” is performed in which β is iteratively increased. The last

configuration from the previous β is used as the initial configuration for the next

value of β. The process is then reversed and a “heating run” is done in which β
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is iteratively decreased. For pure SU(2)-gauge theory the heating and cooling runs

agree. This agreement suggests that no phase transition is present. The separation

of the strong and weak coupling regions is characterized by a rapid crossover in

the average plaquette [9, 14]. A rapid crossover (also called a smooth or analytic

crossover) separates two qualitatively different regions in which there is no phase

transition. Some signs of a phase transition are metastable states, a hysteresis curve

resulting from heating cycles, and very slow convergence at the transition point.
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Figure 2.1: The Monte Carlo evolution of the average plaquette at
β=2.3 for hot and cold starts on different size lattices.
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Chapter 3

Higgs Model on the Lattice

3.1 SU(2)-Higgs Model

3.1.1 The Higgs and Symmetry Breaking

The Higgs boson is a hypothetical spin-0 particle, introduced as a way of explaining

the origin of mass for all particles in the standard model of fundamental interactions.

The motivation for the Higgs particle is to give particles mass in a way that allows

for a renormalizable electroweak theory. This is done through the Higgs mechanism,

where symmetry-breaking results in a non-zero vacuum expectation value (vev) for

the Higgs, and the vev effectively gives mass to the other particles. Currently, the

Large Hadron Collider in Cern Switzerland is working towards experiments to test

for the existence of the Higgs particle. Even though its existence is still in question,

the standard form of the Higgs Lagrangian is well known and it is given by the

(Euclidean) complex Klein-Gordon Lagrangian plus a 4-point self-interaction,

LH = ∂µΦ† ∂µΦ + µ2
0Φ

†Φ + λ0(Φ
†Φ)2 , (3.1)

where Φ is the Higgs SU(2)-doublet, µ0 is the bare Higgs mass and λ0 is the bare

Higgs self-coupling constant. The interactions with the gauge fields are included in

the gauge-invariant Higgs Lagrangian

L = 1
4
F α

µνF
µν
α + (DµΦ)† DµΦ + µ2

0Φ
†Φ + λ0(Φ

†Φ)2 . (3.2)

The SU(2)-Higgs model corresponds to the scalar-field and SU(2)-gauge field por-

tions of the standard model, that is, all of the fermions and other gauge fields are

absent.
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of the complex field Φ, respectively.

28



In classical field theory, the symmetry of the vacuum state can be spontaneously

broken by the Higgs field.1 The Higgs potential

V (Φ) = µ2
0Φ

†Φ + λ0(Φ
†Φ)2 (3.3)

is invariant under global transformations Φ(x) → gΦ(x), where g is a unitary group

transformation. Fig. 3.1 shows the Higgs potential for the group U(1) where Φ =

Φ1 + iΦ2. The ground state may be found by minimizing the potential V ,

∂V

∂Φ
= µ2

0Φ
† + 2λΦ† (Φ†Φ

)

= 0 . (3.4)

If µ2
0 > 0, there is a single vacuum state 〈Φ〉 = 0 which is symmetric under complex

rotations. For µ2
0 < 0, there are degenerate vacua which are not invariant under

complex rotations, i.e. 〈Φ〉 6=
〈

eiθΦ
〉

, and

|〈Φ〉| = v =

√

−µ2
0

2λ0
(3.5)

where v is the non-zero Higgs vev. When the vacuum symmetry is broken, a partic-

ular choice of the vacuum results in the appearance of massless Goldstone particles.

For example, choosing the vacuum state

〈Φ〉 = v (3.6)

and writing Φ as

Φ = v +
1√
2

(

Φ̃1 + Φ̃2

)

(3.7)

such that

〈

Φ̃1

〉

= 0 ,
〈

Φ̃2

〉

= 0 , (3.8)

results in a massive field Φ̃1 and a massless field Φ̃2. In general, a spontaneously

broken (continuous) symmetry results in a massless Goldstone boson.

The full gauge-Higgs Lagrangian in Eq. (3.2) is invariant under local gauge trans-

formations Φ(x) → g(x)Φ(x). Breaking a gauge symmetry not only results in a

1The following discussion on the Higgs mechanism is adapted from Refs. [7, 8].
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massless Goldstone boson, but the gauge fields also become massive and the Gold-

stone boson disappears, “eaten up” by the gauge fields. Considering spontaneously

broken SU(2)-gauge theory, the Higgs SU(2)-doublet may be expressed in the form

Φ = g(x)





0

v + 1√
2
h(x)



 (3.9)

where g(x) ∈ SU(2) is an arbitrary gauge transformation, and h(x) is a real valued

field with 〈h(x)〉 = 0 that represents the physical Higgs particle. Through the Higgs

interaction with the gauge fields, the Higgs vev gives rise to a mass term for the

SU(2)-gauge fields,

(DµΦ)† DµΦ = 1
4
g2
0

(

0 v

)

σασβ





0

v



Aα
µAµβ + non-quadratic terms

= 1
4
g2
0v

2Aα
µAµα + non-quadratic terms . (3.10)

The three SU(2)-gauge fields acquire equal mass of m = 1√
2
g0v. Even though µ2

0 < 0

is a non-physical mass term, the Higgs field h(x) can still acquire a physical mass,

µ2
0Φ

†Φ + λ0

(

Φ†Φ
)2

= 1
2

(

µ2
0 + 6λ0v

2
)

h(x)2 + non-quadratic terms

= −µ2
0 h(x)2 + non-quadratic terms , (3.11)

where m2
H = −2µ2

0 = 4λ0v
2 is the physical Higgs mass (squared). A value of

v = 246GeV has been experimentally measured, but µ2
0 and λ0 are currently un-

known and thus the Higgs mass mH remains a free parameter. However, experimen-

tal constraints (114GeV < mH < 182GeV) have been placed on the Higgs mass using

direct production searches and precision electroweak measurements which probe vir-

tual Higgs effects within loop corrections [16, 17].

For SU(2) × U(1) gauge theory

Dµ = ∂µ + i1
2
g0A

α
µσα + i1

2
g′
0Bµ , (3.12)

= ∂µ + ig0A
α
µλα + ig1Bµ (3.13)

where Aα
µ and Bµ are the SU(2) and U(1) gauge fields, respectively. The Higgs

mechanism results in two massive W± fields with mW = 1√
2
g0v, one massive Z0 field
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with mZ = 1√
2

√

g2
0 + g′2

0 v, and one massless photon field with mγ = 0. These are

the four force carrying particles of the unified electroweak interaction, and actually

consist of a mix of the SU(2) × U(1) gauge fields. The Higgs mechanism gives the

gauge bosons mass in a way that preserves gauge-invariance and thus the theory is

renormalizable. The W± and Z0 particles have observed masses of 80 GeV and 91

GeV, respectively. In this thesis, consistent with the standard approaches in the

literature (see e.g. [4, 19]), the SU(2)-Higgs model is investigated because the U(1)

coupling constant plays a less significant role than the SU(2) coupling. The coupling

constants g0 and g′
0 are not significantly different, g′

0 ≈ 0.549 g0 [17]. However, the

lattice coupling constants β0 = 4
g2
0
, β1 = 1

g2
1

are related by β1 ≈ 13.3β0, and so the

U(1) gauge fields are frozen to unity compared to the SU(2) gauge fields. Thus, the

SU(2)-Higgs model is a reasonable approximation to full gauge theory.

The Higgs mechanism is also responsible for generating mass for fermions in a

gauge invariant way. The left handed nature of the electroweak interaction makes

massive fermions violate gauge invariance, which can be remedied by a Yukawa

interaction with the Higgs. The fermion mass is given by m = gv, where g is the

fermion-Higgs Yukawa coupling. It is reasonable to exclude the interactions of the

Higgs with fermions on the lattice because the coupling constants are relatively small

(except for the top quark).

In lattice simulations it is possible to see evidence of spontaneous symmetry

breaking in the form of a phase transition. The vev of the Higgs may be thought of

as an order parameter which is zero in the “symmetric phase” and non-zero in the

symmetry breaking “Higgs phase”. However, there is no known order parameter for

the Higgs phase transition than can be calculated on the lattice [18]. From Eq. (3.9),

Φ is gauge dependent and therefore 〈Φ〉 always averages to zero when integrating

over all gauges. Gauge-invariant quantities such as

〈

Φ†Φ
〉

= v2 +
〈

h(x)2
〉

, (3.14)

where 〈h(x)2〉 constitutes non-zero quantum flucuations of the physical Higgs, must

be used instead. The
〈

Φ†Φ
〉

is not an order parameter, but it still offers useful
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information about the Higgs phase transition on the lattice.

The Higgs phase transition is peculiar because of its dependence on the param-

eters of the theory. For some fixed values of the coupling constants, there is a very

strong first order transition separating the two phases, while for other values there is

no phase transition [4, 19, 20]. For a Higgs field in the fundamental representation,

there exists an analytic continuation between the two phases in which one could

smoothly move from one phase to the other without ever crossing a phase transition

[5]. This analytic connection manifests itself on the lattice as a hole in the phase

diagram in which one can move between the symmetric region and Higgs region (by

varying the coupling constants) without ever having crossed a phase transition [19].

For this reason the word “phase” is taken with a grain of salt.

3.1.2 Higgs Lattice Action

To put the SU(2)-Higgs model on the lattice, consider the gauge-Higgs Lagrangian

L = 1
2
Tr
[

FµνF
µν + (Dµφ

c)†Dµφc + µ2
0φ

c†φc + λ0(φ
c†φc)2

]

, (3.15)

where φc is the continuum Higgs field in the fundamental representation. The Higgs

field must be discretized to formulate the gauge-Higgs lattice action [4]. The nearest

neighbour approximation is used to rewrite the partial derivative

∂µφ
c(x) ≈

φc
x+µ̂ − φc

x

a
, (3.16)

and the covariant derivative term in the action becomes

∫

d4x 1
2
Tr
[

(Dµφc)† Dµφc
]

≈ 8a2
∑

x

1
2
Tr(φc†

x φc
x)

− a2
∑

xµ

1
2
Tr
[

φ
c†
x+µ̂(1 − ig0Axµa)φc

x + φc†
x (1 + ig0Axµa)φc

x+µ̂

]

+ O(a4)

≈ 8a2
∑

x

1
2
Tr(φc†

x φc
x) − a2

∑

x,µ

Tr Re(φc†
x Uxµφ

c
x+µ̂) + O(a4) . (3.17)
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The Higgs part of the action is

SH ≈
∑

x

{

a4λ0

[

1
2
Tr(φc†

x φc
x)
]2

+ a2(8 + a2µ2
0)

1
2
Tr(φc†

x φc
x) (3.18)

−a2
∑

µ

Tr Re(φc†
x Uxµφc

x+µ̂) + O(a4φc2)

}

,

which can be rewritten using the change of variables

φc
x =

√
κ

a
φx (3.19)

λ0 =
λ

κ2
(3.20)

µ2
0 =

1 − 2λ − 8κ

κa2
, (3.21)

where φx is the lattice Higgs field, λ is the lattice Higgs (quartic) self-coupling con-

stant, and κ (hopping parameter) is the gauge-Higgs coupling constant. The full

SU(2)-Higgs lattice action, up to an irrelevant constant, is given by

S =
∑

�

β
[

1 − 1
2
Tr U�

]

(3.22)

+
∑

x

{

λ
[

1
2
Tr(φ†

xφx) − 1
]2

+ 1
2
Tr(φ†

xφx) − κ
∑

µ

Tr(φ†
xUxµφx+µ̂)

}

.

The lattice Higgs field is a 2 × 2 matrix satisfying

φ† = σ2φ
T σ2 , (3.23)

φ =





φ0 + iφ3 φ2 + iφ1

−φ2 + iφ1 φ0 − iφ3



 = ρα , (3.24)

where φm ∈ R (m = 0, 1, 2, 3) are the four real components of the Higgs field, ρ > 0

is the Higgs “length”,

ρ2 = 1
2
Tr
(

φ†φ
)

= det(φ) = φ2
0 + φ2

1 + φ2
2 + φ2

3 , (3.25)

and α ∈ SU(2) is the SU(2) “angular” component of the Higgs field.
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3.2 Monte Carlo Simulation

Field configurations for the combined gauge-Higgs system are generated using the

heatbath method, because it is more computationally efficient than the Metropolis

method, and simple enough for practical use. However, despite its greater efficiency,

the Higgs heatbath method still experiences slow convergence to equilibrium and

large autocorrelation (statistical dependence of subsequent configurations), especially

near a phase transition [21]. This is due, in large part, to the extra radial Higgs

degree of freedom ρ, which tends to evolve much more slowly. To overcome this

inefficiency an additional update called overrelaxation is implemented in concert

with the heatbath.

The idea behind overrelation is to move a field variable to a far different location

in phase space while resulting in a minimal change in the action, thus creating as large

of a change as possible with a very high acceptance rate [22]. The overrelaxation

update is often chosen to be deterministic (non-ergodic) and to leave the action

invariant (microcanonical). While the equilibrium condition Eq. (2.11) is satisified,

ergodic, canonical updates such as heatbath and Metropolis must be used for the

system to converge to equilibrium.

In the deterministic limit, the probability distribution for generating a new field

variable φnew from an old one φ is

PG(φ → φnew) = δ (φnew − f(φ)) , (3.26)

where f(φ) is the proposed update [21]. Inserting this into Eq. (2.11) gives the

expression

∫

dφ δ
(

φ − f−1(φnew)
) 1
∣

∣

∣

df(φ)
dφ

∣

∣

∣

PA(φ → φnew)eS(φ) = eS(φnew) (3.27)

(note here that φ is treated as a single real variable). The equilibrium condition can

be fulfilled by satisfying the detailed balance condition

δ (φnew − f(φ))PA(φ → φnew)e−S(φ) = δ (φ − f(φnew))PA(φnew → φ)e−S(φnew) (3.28)
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using the acceptance probability

PA(φ → φnew) =







1 if
∣

∣

∣

df(φ)
dφ

∣

∣

∣

e−S(φnew
x )

e−S(φx) ≥ 1
∣

∣

∣

df(φ)
dφ

∣

∣

∣

e−S(φnew
x )

e−S(φx) if
∣

∣

∣

df(φ)
dφ

∣

∣

∣

e−S(φnew
x )

e−S(φx) < 1
. (3.29)

An additional requirement to satisfy the equilibrium equation is that the update be

reversible, i.e. f (f(φ)) = φ, and so the updated variable is a reflection of the old

variable. The acceptance rate is optimized by defining the overrelaxation update as

a reflection that leaves the action invariant

S (f(φ)) = S(φ) . (3.30)

Using this property, the acceptance probability may be rewritten as

PA(φ → φnew) =











1 if
| dS(φ)

dφ |
| dS(f(φ))

df(φ) | ≥ 1

|dS(φ)
dφ |

| dS(f(φ))
df(φ) | if

| dS(φ)
dφ |

| dS(f(φ))
df(φ) | < 1

. (3.31)

3.2.1 Heatbath Algorithm for SU(2)-Higgs

To simulate the combined gauge-Higgs system the gauge and Higgs fields may be

updated separately. The heatbath method for the gauge field requires only a small

modification to include the interaction with the Higgs field. As before, the new gauge

link Uxµ is generated according to the probability distribution

dp(Uxµ) ∼ e−S(Uxµ)dUxµ , (3.32)

where S(Uxµ) is the part of the SU(2)-Higgs lattice action that depends on Uxµ, and

is given by

S(Uxµ) = −1
2
Tr (UxµVxµ) , (3.33)

where Vxµ contains all the neighbouring fields that interact with Uxµ,

Vxµ = 2κφx+µ̂φ
†
x + β

∑

⊓
U⊓ . (3.34)

The gauge link Uxµ may now be updated using the same methods as in the pure

gauge theory.
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The heatbath update for the Higgs field [23, 24] is implemented by generating

the four-real components of φ according to the distribution

dp(φx) ∼ d4φx exp

{

−λ(ρ2
x − 1)2 −

4
∑

m=1

(φxm − Vxm)2

}

, (3.35)

where φx = φxmτm, τm = (I, i~σ), and Vxm is from the nearest neighbour interactions,

Vxm =
κ

2
Tr

4
∑

µ=1

τm(φ†
x+µ̂U

†
xµ + φ

†
x−µ̂Ux−µ̂µ) . (3.36)

The distribution in Eq. (3.35) may be rearranged so that it is expressed in the form

dp(φ) ∼ d4φ exp

{

−λ

[

ρ2 −
(

1 +
ξ − 1

2λ

)]2

−
4
∑

m=1

ξ

(

φm − Vm

ξ

)2
}

, (3.37)

where ξ is an arbitrary parameter that is used to optimize the efficiency of the

updating process. The four real components φm are each generated according to

dp(φm) ∼ dφm exp

{

−ξ

(

φm − Vm

ξ

)2
}

(3.38)

and the total φ is accepted with a conditional probability

PA = exp

{

−λ

[

ρ2 −
(

1 +
ξ − 1

2λ

)]2
}

. (3.39)

The field components φm may be generated according to the distribution in Eq. (3.38)

by borrowing a piece of the Kennedy-Pendleton algorithm [15]. Generate two random

numbers x1, x2 ∈ [0, 1] and calculate

zm =

√

− log x1

ξ
cos (2πx2) . (3.40)

This will generate the distribution

dp(zm) = dzm

√

ξ

π
exp

(

−ξz2
m

)

, (3.41)

and φm is finally given by

φm = zm − Vm

ξ
. (3.42)
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The parameter ξ is set to maximize the acceptance rate

R =

∫ ∞

−∞
d4φ

(

ξ

π

)2

exp

{

4
∑

m=1

ξ

(

φm − Vm

ξ

)2
}

PA , (3.43)

i.e. dR
dξ

= 0, which gives the following equation for ξ

ξ3 + (2λ − 1)ξ2 − 4λξ − 2λ det(V ) = 0 . (3.44)

In cases where λ and det(V ) are small, the approximation scheme ξ = 1 + ǫ, where

ǫ = 2λ(1 + det(V )) < 0.1, may be used to solve Eq. (3.44). If this approximation is

invalid, then the exact positive root of Eq. (3.44) is calculated. Also, given λ > 0

and det(V ) > 0 there is only one positive solution for Eq. (3.44).

3.2.2 Overrelaxation Algorithm for SU(2)-Higgs

The overrelaxation update for the SU(2)-gauge field [21, 22] is very simple and is

given by the reflection

Unew = V
†
0 U †V †

0 , (3.45)

where V0 ∈ SU(2) is the normalized V from Eq. (3.34), which leaves the action

invariant. Since the measure dU is invariant under the reflection, the update is

always accepted, i.e. PA(U → Unew) = 1.

For the overrelaxation of the Higgs field a reflection in φx that leaves the action

invariant is proposed. The part of the action that depends on φx is given by

S(φx) = λ
(

ρ2
x − 1

)2
+ ρ2

x − φm
x V m

x , (3.46)

where V m
x is given by the nearest neighbour interactions

V m
x = κ

∑

µ

Tr
[

τm(φ†
x+µ̂U

†
xµ + φ

†
x−µ̂Ux−µ̂,µ)

]

. (3.47)

One approach to overrelaxation is to update the angular and radial components

of the Higgs field α, ρ separately [21]. However, a computationally simpler and
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more efficient method is to update the “Cartesian” components of φm parallel and

perpendicular to V m [25]

X = φmV m
0 , (3.48)

Y m = φm − XV m
0 , (3.49)

V m
0 =

V m

√
V nV n

=
V m

|V | . (3.50)

The action can be rewritten in a more convenient form

S(φ) = λ
(

X2 + Y 2
)2

+ (1 − 2λ)
(

X2 + Y 2
)

− |V |X . (3.51)

The overrelaxation for the Y m component is simply the reflection

Y m
new = −Y m . (3.52)

This transformation leaves the action invariant, and is always accepted. The update

for the X component is given by the solution to the equation

S(Xnew) = S(X) . (3.53)

The reflection Xnew is the real solution, not equal to X, of the fourth order polynomial

given by Eq. (3.53), which can be reduced to a third order polynomial by factoring

out the known solution Xnew = X. From Eq. (3.31), the probability of accepting

Xnew is given by

PA(X → Xnew) = min







1 ,

∣

∣

∣

dS(X)
dX

∣

∣

∣

∣

∣

∣

dS(Xnew)
dXnew

∣

∣

∣







. (3.54)

If the update is rejected, then Xnew = X. The final value of the Higgs variable

resulting from the overrelaxation is given by

φm
new = Y m

new + XnewV m
0 = (X + Xnew)V m

0 − φm . (3.55)

3.2.3 Special Cases

For some special values of the input parameters β, κ and λ the heatbath and overre-

laxation updates may need to be modified, or simplifications may be made to improve

38



computational efficiency. In the case where β = ∞ the gauge fields are fixed to unity

and no update is needed for gauge fields. If β = κ = 0 then the gauge field heatbath

update simply generates random SU(2)-matrices, and no overrelaxation can be per-

formed. If κ = 0 no overrelaxation is needed for the Higgs field. If λ = ∞ the Higgs

length is fixed to one (φ ∈ SU(2)) and the heatbath and overrelaxation techniques

for the gauge field may be used for the Higgs field.

3.2.4 Benchmark Simulation Results for the SU(2)-Higgs

Model

Simulations of the SU(2)-Higgs model are performed in a very similar way as the pure

gauge theory. The Higgs and gauge fields are initially chosen to be either ordered or

random, although now the magnitude of the Higgs field ρ must also be initialized.

The value of ρ is often initially set to one, although larger values are useful if the

simulation is intended to start in the Higgs phase. The order in which the gauge

and Higgs fields are updated is not important. For these simulations the gauge field

variables for the entire lattice are updated followed by a lattice update for the Higgs

field. The heatbath and overrelaxation lattice updates are also performed separately.

Some useful quantities to calculate for SU(2)-Higgs are the average plaquette P

(note P is defined differently than in Eq. (2.34)), the Higgs length (squared) ρ2, and

the gauge-invariant links Lφ and Lα

P =
1

6V

∑

�

1
2
Tr U� (3.56)

ρ2 =
1

V

∑

x

ρ2
x (3.57)

Lφ =
1

4V

∑

x,µ

1
2
Tr
(

φ†
xUxµφx+µ̂

)

(3.58)

Lα =
1

4V

∑

x,µ

1
2
Tr
(

α†
xUxµαx+µ̂

)

. (3.59)

The gauge-invariant link Lφ is analogous to an internal energy density for the gauge-

Higgs interaction, with κ as a inverse temperature shared by the gauge and Higgs
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fields,

〈Lφ〉 =
1

8V

∂

∂κ
log Z . (3.60)

The gauge-invariant link Lα is defined as the normalized gauge-Higgs coupling, and

later on will be the primary tool for exploring the Higgs phase transition.

Monte Carlo results from hot and cold starts for P , ρ2, Lφ and Lα are shown in

Fig. 3.2 and Fig. 3.3. The results from Fig. 3.2 were obtained with one heatbath

update for each of the gauge and Higgs fields, while Fig. 3.3 was obtained using

one heatbath and one overrelaxation for each of the gauge and Higgs fields. The

overrelaxation update significantly improves the efficiency of the updating process.

The values of λ, β and κ were chosen near a phase transition, so the convergence to

equilibrium is slow. The convergence of ρ2 and Lφ shown in Fig. 3.2 and Fig. 3.3

agree with Ref. [4] which was done on a 84 size lattice (P and Lα where not shown

in Ref. [4]). From here on, one update will consist of one heatbath and one overre-

laxation update for each of the gauge and Higgs fields.

At the point β = 0, λ = 0 the expectation values of the Higgs length ρ2 and the

gauge-Higgs coupling Lφ are analytically solvable [4] and given by

〈

ρ2
〉

=
14

3 + 4
√

1 − 28κ2
, (3.61)

〈Lφ〉 =
〈ρ2〉 − 2

8κ
, (3.62)

Above κ = 1√
28

(for β = λ = 0) the Higgs length diverges. For arbitrary β and small

λ, the large κ behaviour of the Higgs length is given by [4]

〈

ρ2
〉

∼ 4κ

λ
. (3.63)

Fig. 3.4 shows simulations results (dots) of the κ-dependence of 〈ρ2〉 and 〈Lφ〉, plot-

ted with the analytic predictions (solid lines). For each value of κ the lattice is

thermalized with 10 updates and then the expectation value is calculated using the

next 20 updates. The last configuration from the previous κ is used as the initial

configuration for the next value of κ.
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Figure 3.2: Hot and cold starts of P , ρ2, Lφ and Lα using the SU(2)-
Higgs heatbath update for κ = 0.27, β = 2.25 and λ = 0.5 on a 164

lattice.
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Figure 3.3: Hot and cold starts of P , ρ2, Lφ and Lα using the
combined SU(2)-Higgs heatbath-overrelaxation update for κ = 0.27,
β = 2.25 and λ = 0.5 on a 164 lattice.
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Figure 3.6: observables associated with two metastable states result-
ing from hot and cold starts for κ = 0.212, β = 2.0 and λ = 0.1 on a
164 lattice.

The κ-dependence of 〈P 〉, 〈ρ2〉, 〈Lφ〉 and 〈Lα〉 at β = 2.25 and λ = 0.5 is shown

in Fig. 3.5 using a thermal cycle. The thermal cycle involves starting at κ = 0,

thermalizing the lattice with 10 updates and then using the next 20 updates to

calculate the expectation values, iteratively increasing κ by 0.01 (i.e. cooling, since

κ is analogous to an inverse temperature) and then repeating the procedure using

the last configuration of the previous κ for the initial configuration of the new κ.

After a sufficiently large value of κ has been reached the procedure is repeated for

decreasing κ (i.e. heating). A phase transition between the symmetric and Higgs

phase occurs at about κ = 0.27, where a kink in the observables can been seen at

the transition point [4].

At smaller values of λ it is possible to observe two metastable states, indicating

the presence of a strong first order phase transition. Fig. 3.6 shows hot and cold

starts at κ = 0.212, β = 2.0 and λ = 0.1. The opposite initial configurations

converge to different metastable equilibria, which demonstrates that there are two

distinct phases at this point in parameter space in agreement with Ref. [4].
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3.2.5 Mapping the Higgs Phase Transition

There are two qualitatively different regions in the lattice formulation of the SU(2)-

Higgs model which will be referred to as the symmetric phase and the Higgs phase.

There is no gauge-invariant order parameter to distinguish between the two phases,

however, the symmetric phase may be characterized as a random state of the SU(2)-

component of the Higgs field α ∈ SU(2) and the Higgs phase as an ordered state.

The gauge-invariant link 〈Lα〉 gives a quantitative measurement of the state of the

Higgs field. The Higgs phase may also be characterized by large values of the Higgs

length 〈ρ2〉, which is a signal of a non-zero vev.

Many basic properties of the phase structure for a single Higgs field in the fun-

damental representation are well understood, though there is no consensus on a

detailed understanding of the nature of the phase transition (PT) across the en-

tire parameter space. For small λ, the PT is demonstrably of first order [20] but

the PT strength weakens with increasing λ, complicating the classification of the

PT. The most effective approaches used to address this issue are searches for bi-

modal (“two-peaked”) distributions and lattice scaling dependence on the resulting

energy gap [26, 27, 28, 30] or scaling effects within specific heats (susceptibilities)

[27, 28, 30, 29, 31]. For example, Ref. [28] concludes that for λ ∼ 1 the PT is first-

order for β at and slightly above the terminal point of the phase line, but is unable to

ascertain the existence of a tricritical point where the order of the PT would change;

it would be called a critical line in (β, κ, λ) space. Since the PT decreases in strength

with increasing λ, the λ = ∞ case presents the greatest challenge in the classification

of the PT. Early work [26] suggested a weak first-order PT, but a recent study with

large lattices presents evidence for a smooth crossover [31]. Furthermore, the λ = ∞
model augmented with an additional interaction leads to a line of first-order PTs

which decrease in strength as the additional coupling approaches zero [30].

The phase structure of the SU(2)-Higgs theory can be probed by studying the

way quantities such as the Higgs length, gauge-invariant link, and average plaquette

change with respect to the parameters β, κ, and λ. Sudden changes in the behaviour
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(and even discontinuities in the case of first order phase transitions) of these quan-

tities characterize the location and the strength of the phase transition. While a

variety of observables could be used to diagnose the Higgs phase transition (dynam-

ical terms in the action are frequently chosen), the gauge-invariant link Lα will be

used exclusively for two main reasons. First, it has a bounded range, between −1

and 1, which sets a natural scale for comparing the strength of the phase transition

across the entire parameter space of the theory. Second, it is suitable in the extreme

cases where λ → ∞ (where the Higgs length goes to one), and β → ∞ (where the

gauge fields go to unity and the average plaquette becomes fixed). Thus in contrast

to the Higgs length and average plaquette, the gauge-invariant link provides useful

information on the Higgs phase transition for any β and λ.

A typical signature of a phase transition in lattice gauge theories is a hysteresis

curve resulting from a cooling/heating (thermal) cycle. This occurs because flatten-

ing of the probability distribution near a phase transition slows convergence. The

gauge-Higgs coupling constant κ can be thought of as an inverse temperature shared

by the Higgs and gauge fields. By iteratively increasing κ after a number of Monte

Carlo updates, where the field configurations for the previous κ are used for the start

of the new κ, and then iteratively decreasing κ, a hysteresis curve in Lα indicates

the presence of a phase transition. The hysteresis curve can then be used to find

the approximate location of the phase transition. This approach has the advantage

that it is a computationally efficient method to extract information about the phase

transition, because it exploits the fact that the system does not thermalize at a phase

transition with a small number of updates. This allows efficient exploration of a large

region of parameter space for the SU(2)-Higgs model [4, 19], and is also well-suited

to the multiple-Higgs case which is the subject of the next chapter.

For given values of β and λ, the location of the PT is initially located by per-

forming a “fast” thermal cycle, increasing κ from 0 to 1 and then decreasing back to

0 in steps of 0.01, performing one update at each value of κ. Ten updates are used to

thermalize the lattice at the beginning of the cycle, and again at the maximum value

of κ. A hysteresis curve resulting from the thermal cycle is shown in Fig. 3.7. The
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difference between the heating and cooling runs of the gauge-invariant link (a.k.a.

the hysteresis gap)

∆Lα(κ) = Lα(κheating) − Lα(κcooling) (3.64)

is used to calculate the approximate location of the transition (κT ± σT )fast. A

reliable way to extract information about the location of the phase transition is to

simply treat ∆Lα as a distribution and calculate its average and standard deviation

with respect to κ

κT =

∫

dκ κ ∆Lα
∫

dκ ∆Lα

, (3.65)

σT =

∫

dκ (κ − κT )2 ∆Lα
∫

dκ ∆Lα

, (3.66)

so that σT is a measure of the width of the phase transition with respect to κ. The

value of κT is then refined by narrowing in on the region around the phase transition,

κ ∈ [(κT − 2σT )fast, (κT + 2σT )fast], and performing a “slow” thermal cycle with the

same number of updates and steps in κ as before but with correspondingly smaller

intervals. The refined location of the PT and its corresponding uncertainty is then

(κT ± σT )slow. If no signal of a hysteresis is found for the fast cycle, then there is no

phase transition and the slow cycle is not performed.

The quantity ∆Lα inherently contains statistical noise, which can be misinter-

preted as a hysteresis. To eliminate this problem, the average statistical noise δ is

estimated by averaging the absolute difference between subsequent updates

δ =
1

N

N
∑

n=1

|Lα(κn) − Lα(κn+1)| , (3.67)

and all ∆Lα < 3δ are set to zero. This criteria, albeit arbitrary, was found to

be a reliable way of ensuring that statistical fluctuations are not mistaken for a

hysteresis signal. Also, 3δ is chosen so that it overestimates statistical fluctuations,

as shown in Fig. 3.7, and therefore provides a conservative criterion for identifying a

phase transition, i.e. no chance of misidentifying statistical fluctuations as a phase

transition.
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To map the phase transition across parameter space, κT is found for different β

and fixed λ, and then the process is repeated for a different λ. Figs. 3.8 and 3.9 show

a selected set of hystersis runs for different values of β and λ. Fig. 3.10 shows the

phase diagram for the SU(2)-Higgs model, extracted using the fast/slow hysteresis

method, which agrees with Ref. [4]. The error bars in Fig. 3.10 are given by σT

and represent the uncertainty in the location of the phase transition κT due to the

width of the hysteresis. For large λ and small β there is no hysteresis signal and

thus the phase transition becomes an analytic crossover, which is consistent with the

prediction of an analytic connection between the symmetric and Higgs regions [5].

The fast and slow thermal cycles may also be used to extract information about

the strength of the phase transition. For a strong first-order phase transition, a hys-

teresis will be present regardless of the number of updates. However, for a second-

order or weak first-order (were the two phases are very close together) phase transi-

tion, the hysteresis will disappear as the thermal cycle becomes slower. It is therefore

possible to obtain additional information on the nature of the phase transition by

comparing the fast and slow cycles. In Fig. 3.11, the maximum of the hysteresis

gap max(∆Lα) is plotted to demonstrate how the strength of the phase transition

changes with β and λ. At small λ, the phase transition is uniform in strength for all

β. As λ increases, the phase transition generally becomes weaker. It is interesting

to note that (for intermediate λ) the phase transition is strongest around β ≈ 1.7.

For larger β (where the Higgs field is weakly coupled to gauge field) the transition

becomes second-order or weak first-order. For small beta, the transition weakens

and eventually the hysteresis signal disappears (i.e. ∆Lα < 3δ) which indicates that

there is no longer a phase transition.
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Chapter 4

Multi-Higgs Phase Transition

4.1 SU(2)-Multi-Higgs model

It is difficult to place experimental constraints on the number of Higgs particles

in the Standard Model. For example, an arbitrary number of Higgs fields with

conventional quantum numbers (isospin I = 1
2
, hypercharge Y = ±1) is consistent

with the experimental observation that

ρ =

∑NH

i=1

(

Ii(Ii + 1) − 1
4
Y 2

i

)

v2
i

∑NH

i=1
1
2
Y 2

i v2
i

=
M2

W

M2
Z cos2 θw

≈ 1 , (4.1)

where vi is the vacuum expectation value for each Higgs field and θw is the weak

mixing angle. Many-Higgs models can generate mass for other particles through

symmetry breaking in the same way as single-Higgs models do. The inclusion of

multiple Higgs within the Standard Model is the simplest extension of the minimal

Higgs sector. In particular, two-Higgs models are a necessary component of the

minimal supersymmetric Standard Model [3]. Also, multiple Higgs fields may provide

an inexpensive computational laboratory for studying fermions (i.e. scalar quarks),

which are much more difficult to simulate. The analytic work on the Higgs phase

transition, which predicts an analytic connection between the Higgs and symmetric

regions, only applies to the case of one Higgs field [5]. Therefore, it is possible

that the nature of the Higgs phase transition could be different for the multi-Higgs

case. Non-abelian multi-Higgs models have not been studied on the lattice, their

phase structure is largely unknown, and they offer new and interesting areas to

be explored. This chapter represents the original research of this thesis, and is an

extended presentation of [32].
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The simplest extension of the SU(2)-Higgs model to include multiple Higgs is

where the different Higgs fields do not directly interact with each other (i.e. they

interact with each other only through the gauge field). In this case, the Lagrangian

is given by

L = 1
2
Tr

{

FµνF
µν +

NH
∑

n=1

[

(Dµφ
c
n)†Dµφc

n + µ2
0,nφc†

n φc
n + λ0,n(φ

c†
n φc

n)2
]

}

, (4.2)

where NH is the total number of Higgs fields. Additional terms such as 1
2
Tr(φc†

n φc
nφ

c†
mφc

m)

and
[

1
2
Tr(φc†

n φc
m)
]2

(n 6= m) where the different Higgs fields directly interact with

each other could be included, but the Lagrangian in Eq. (4.2) will be used to simplify

the analysis and to observe the effects of simply including additional Higgs fields.

The lattice action for the SU(2)-multi-Higgs model is

S =
∑

x

∑

µ>ν

β
[

1 − 1
2
Tr
(

UxµUx+µ̂νU
†
x+ν̂µU

†
xν

)]

(4.3)

+
∑

x

NH
∑

n=1

[

λn

(

ρ2
x,n − 1

)2
+ ρ2

x,n − κn

∑

µ

Tr
(

φ†
x,nUxµφx+µ̂,n

)

]

.

For simplicity, the lattice quartic couplings are set equal (λn = λ for all n). The

hopping parameters are set equal (κn = κ for all n) to study the symmetric multi-

Higgs case, and then later an asymmetry (κ1 6= κ2) will be introduced for the two-

Higgs case.

The only modification required for the Monte Carlo updating procedure is to sum

over all of the Higgs fields in Eq. (3.34), i.e. Eq. (3.34) becomes

Vxµ =

NH
∑

n=1

2κφx+µ̂,nφ†
x,n + β

∑

⊓
U⊓ . (4.4)

The different Higgs fields must also be updated separately, although the order in

which they are updated does not matter because they are not coupled to each other.
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4.2 Simulation Results

For multiple Higgs fields, quantities such as the Higgs length and gauge-invariant

link may be calculated for each individual Higgs field,

ρ2
n =

1

V

∑

x

1
2
Tr
(

φ†
x,nφx,n

)

(4.5)

Lφ,n =
1

4V

∑

x,µ

1
2
Tr
(

φ†
x,nUxµφx+µ̂,n

)

(4.6)

Lα,n =
1

4V

∑

x,µ

1
2
Tr
(

α†
x,nUxµαx+µ̂,n

)

. (4.7)

Fig. 4.1 demonstrates that for the symmetric multi-Higgs case (κn = κ, λn = λ)

the different Higgs fields are indistinguishable from one another, as expected by the

symmetry of the discretized Lagrangian. Therefore, for the symmetric case, quanti-

ties may be averaged over all Higgs fields, which presumably provides an advantage

in reducing statistical errors,

ρ2 =
1

NH

NH
∑

n=1

ρ2
n (4.8)

Lφ =
1

NH

NH
∑

n=1

Lφ,n (4.9)

Lα =
1

NH

NH
∑

n=1

Lα,n . (4.10)

The effect of additional Higgs on the quantities P , ρ2, Lφ and Lα is shown in

Figs. 4.2 and 4.3. Fig. 4.2 demonstrates that additional Higgs fields have little

effect when the Higgs fields are in the symmetric phase (κ = 0.2) and a significant

effect near the single-Higgs phase transition point (κ = 0.27). Since the Higgs fields

are not directly coupled with one another, this may be understood through their

interactions with the gauge-fields. In the symmetric phase, the Higgs length is small

and the Higgs SU(2)-components disordered, thus the gauge-Higgs interaction is

small and the additional Higgs fields have little impact on the gauge fields. In the

Higgs phase, the Higgs length is large and the Higgs fields ordered (relative to the

symmetric phase) and thus the interaction with the gauge field is more significant.
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Figure 4.1: Dependence of 〈ρn〉 and 〈Lφ,n〉 on κ for each Higgs field
at β = 2.25, λ = 0.5 for NH = 2, 3 Higgs fields on a 164 lattice.

This may be thought of as a cooling of the gauge fields, i.e. an effective larger β.

In Eq. (4.4) additional Higgs fields have an effect similar to a larger effective value

of β. Fig. 4.3 demonstates the cooling of the gauge fields with increasing numbers

of Higgs for κ = 0.4 (Higgs phase). In other words, as more Higgs fields are added

and the system is in the Higgs phase, the system approaches the β = ∞ limit. For

larger value of β, additional Higgs fields have little effect because the gauge fields

are already cold, or equivalently, the continuum coupling g0 between the Higgs and

gauge fields is small.
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4.2.1 Phase Transition for Symmetric Multiple Higgs Fields

The hysteresis method that was used to map the phase transition for the single Higgs

case is also used for the multi-Higgs case. The gauge-invariant link Lα averaged over

all Higgs fields is the quantity used for the hysteresis runs. The most important fea-

ture of the symmetric multi-Higgs phase plots shown in Figs. 4.6, 4.10, 4.12 and 4.14

(NH = 2, 3, 5, 10, respectively) is the continuation of the phase transition line down

to β = 0 for all λ.1 This property is evident from Figs. 4.4, 4.5 (NH = 2), 4.8

and 4.9 (NH = 3) which demonstrate that for NH ≥ 2 a hysteresis loop occurs for

every value of β and λ. Thus, the hole in the single-Higgs phase diagram, where

the Higgs and symmetric phase are analytically connected, does not appear in the

symmetric multi-Higgs model where interactions between different flavour Higgs are

absent.

For increasing numbers of Higgs, the general progression of the phase transition

point is to smaller values of κT for fixed β and λ. This is significant in the small β

region, but not in the large β region. In the large β region the Higgs fields are weakly

coupled to the gauge fields, and thus the indirect interactions between the different

Higgs is small. For β = ∞ (tanh(β

4
) = 1) the Higgs fields are completely decoupled

and thus their behaviour is completely independent of the number of Higgs. The

decrease of κT in the small β region may be attributed to the cooling of the gauge

fields (larger effective β) for increasing numbers of Higgs.

Another interesting effect of multiple Higgs fields is the increasing phase transi-

tion strength in the small β, large λ region, for increasing numbers of Higgs. Figs. 4.7,

4.11, 4.13 and 4.15 (NH = 2, 3, 5, 10 respectively) demonstrate the increase of the hys-

teresis gap, indicating that the region of analytic connection in the single-Higgs case

is replaced by a first-order phase transition for sufficient number of Higgs. Fig. 4.16

demonstrates the increasing phase transition strength for increasing numbers of Higgs

at β = 0 and λ = ∞. Fig. 4.17 demonstates the existence of long-living metastable

1Note: Figs. 4.4, 4.5, 4.6, and 4.7 are NH = 2, Figs. 4.8, 4.9, 4.10, and 4.11 are NH = 3,
Figs. 4.12, and 4.13 are NH = 5, and Figs. 4.14, and 4.15 are NH = 10.
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states at selected transition points, which verifies that a strong first-order phase

transition appears in the small β, large λ region. NH = 3 is the smallest number

of Higgs fields in which metastable coexisting states were observed at β = 0 and

λ = ∞.

A qualitative sketch of the phase structure in the 3-dimensional (β, λ, κ) param-

eter space for NH = 1, 2, 3 is shown in Fig. 4.18. The shaded areas show the regions

where the phase transition is unmistakeably of first-order. The unshaded areas are re-

gions where it is difficult to ascertain the order of the phase transition, i.e. it can not

be distinguished between weak first-order or second-order. The striking qualitative

observation is that the analytic connection between the Higgs and symmetric phases

in the single-Higgs model is not present in the NH ≥ 2 symmetric-Higgs models used

here. Furthermore, there are progressively stronger first-order phase transitions in

the small β, large λ region as NH increases. It is possible that the addition of direct

interactions between the Higgs fields will reveal an analytic connection in a larger

parameter space.
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Figure 4.18: Qualitative sketch of the SU(2)-Higgs phase structure in
(β, λ, κ) parameter space for NH = 1, 2, 3. The shaded area represents
regions of strong first-order phase transition. The unshaded area rep-
resents regions which may be either a weak first-order or second-order
phase transition. Note that the hole in the phase diagram for NH = 1
is not present for NH ≥ 2 and thus the Higgs and symmetric phases
are completely separated.
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4.2.2 Phase Transition for the Asymmetric Two-Higgs Model

The phase transition of the symmetric SU(2)-multi-Higgs model is enhanced for

small β as additional Higgs fields are incorporated into the model. In a study of

the three-dimensional U(1)-multi-Higgs model, this enhancement was explained in

terms of a mutual reinforcement of overlapping phase transitions using asymmetric

hopping parameters [6]. That is, the properties of the phase transition depend on

the asymmetry between the different hopping parameters κn. To explore the possi-

bility that the enhancement of the 4-dimensional SU(2)-multi-Higgs phase transition

originates from overlapping phase transitions, we consider the asymmetric two-Higgs

case where κ1 6= κ2.

The hysteresis method is used to obtain the phase transition for two asymmetric

Higgs fields. The gauge-invariant link Lα,n is different for each of the Higgs fields

when κ1 6= κ2, and so the phase transitions of each Higgs field are considered sep-

arately. Figs. 4.19, 4.20, 4.23 and 4.24 show the fast/slow hysteresis runs of two

Higgs fields with a large (100%) asymmetry κ2 = 2κ1. Figs. 4.21 and 4.25 show the

phase structure for each Higgs field. Both Higgs fields experience enhancement of

their phase transitions, however, the enhancement is weaker for both Higgs fields.

Fig. 4.27 shows that an alignment of the two phase transitions occurs in the small β,

large λ region of parameter space where the phase lines terminate in the single-Higgs

model. Furthermore, in the non-aligned region the lower phase line (corresponding

to Higgs 2 with larger κ) closely resembles the single-Higgs case, while the upper

phase line (corresponding to Higgs 1 with smaller κ) is similar to a large β single-

Higgs system. This behaviour suggests that the first field to enter the Higgs region

does so similar to a single-Higgs, and influences the phase transition of the second

field by cooling the gauge fields. Fig. 4.26 shows the maximum of the hysteresis gap

for Higgs 2, which resembles the single-Higgs case with a small enhancement in the

large λ, small β region. Fig. 4.22 demonstates that the maximum of the hysteresis

gap for Higgs 1 resembles the β = ∞ case for all β. Thus the phase transition for

κ2 = 2κ1 is like a single-Higgs case for Higgs 2, and a large β case for Higgs 1.
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To explore the sensitivity of the enhancement effect on the asymmetry, a moderate

(10%) asymmetry where κ2 = 1.1κ1 and a very large (900%) asymmetry where

κ2 = 10κ1 have been studied. Fig. 4.28 shows the phase structure of each Higgs field

for κ2 = 1.1κ1. At this level of asymmetry the phase lines are much more closely

aligned, and the phase structure is almost the same as the symmetric two-Higgs case.

Figs. 4.29 and 4.30 show the phase structure for κ2 = 10κ1. In this case Higgs 2 is

almost identical to a single-Higgs case, and Higgs 1 is almost identical to the β = ∞
limit.

The interpretation that the enhancement of the Higgs phase transition originates

from overlapping phase transitions is examined using asymmetric hopping param-

eters. For moderate asymmetries, the region in the parameter space of the theory

where the phase transition lines overlap corresponds to the region where the en-

hancement effect occurs. As the asymmetry increases, the phase transition lines are

being pulled apart and the enhancement effect is diminished. For a sufficiently large

asymmetry, the system approaches the single Higgs limit, the overlapping of the

phase transitions disappears and the enhancement effect is completely lost. Thus,

the overlapping appears to reinforce the phase transitions and results in the en-

hancement effect. Fine tuning of the hopping parameters is not required for the

overlapping/enhancement effects to occur, indicating that this is a general phenom-

ena that does not require overly restrictive conditions.
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Figure 4.24: Slow hysteresis runs of Higgs 2 for 2 Higgs fields with
asymmetric hopping parameters κ2 = 2κ1 on a 124 lattice.
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Figure 4.25: Phase diagram of Higgs 2 for 2 Higgs fields with asym-
metric hopping parameters κ2 = 2κ1 on a 124 lattice.
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Figure 4.26: Maximum hysteresis gap of Higgs 2 for 2 Higgs fields
with asymmetric hopping parameters κ2 = 2κ1 on a 124 lattice.
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Figure 4.27: Overlapping of phase diagrams for 2 Higgs fields with
asymmetric hopping parameters κ2 = 2κ1 on a 124 lattice. The upper
phase line corresponds to Higgs 1 and the lower phase line corresponds
to Higgs 2.
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Figure 4.28: Overlapping of phase diagrams for 2 Higgs fields with
asymmetric hopping parameters κ2 = 1.1κ1 on a 124 lattice. The upper
phase line corresponds to Higgs 1 and the lower phase line corresponds
to Higgs 2.
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Figure 4.29: Phase diagram of Higgs 1 for 2 Higgs fields with asym-
metric hopping parameters κ2 = 10κ1 on a 124 lattice.
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Figure 4.30: Phase diagram of Higgs 2 for 2 Higgs fields with asym-
metric hopping parameters κ2 = 10κ1 on a 124 lattice.
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Chapter 5

Conclusion

The number of Higgs fields has interesting effects on the phase structure of the

SU(2)-Higgs model. The region of analytic connection that exists for a single-Higgs

model is not present in the NH ≥ 2 multi-Higgs model where direct interactions

between the different Higgs fields have been omitted. Using lattice simulations, I

have shown that a phase transition completely separates the symmetric and Higgs

phases for two or more Higgs fields, in marked contrast to the case of a single Higgs

fields. For NH ≥ 3, the region of analytic connection is completely replaced by

a strong first-order phase transition (i.e. metastability is demonstrated) which be-

comes progressively stronger as the number of Higgs fields increases. It is possible

that including extra interactions could reveal an analytic connection between the

symmetric and Higgs phases elsewhere in that larger parameter space. That future

exploration will allow for an interesting discussion of symmetry breaking.

The enhancement of the phase transition is attributed to the reinforcement of

overlapping phase transitions by analyzing the two-Higgs model with asymmetric

hopping parameters. A 10% asymmetry of the hopping parameters does not pre-

vent the enhancement effect and the phase transitions overlap in the region of the

enhancement. For a 100% asymmetry the Higgs field with with the larger κ experi-

ences a phase transition similar to the single-Higgs case, while the Higgs field with

the smaller κ experience a phase transition similar to the large β case as a result of

the former Higgs field having a “cooling” effect on the gauge fields. For a sufficiently

large asymmetry, the system approaches the single Higgs limit, the overlapping of

the phase transitions disappears and the enhancement effect is completely lost.

The inclusion of additional Higgs fields, which are clones of the single-Higgs case,
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has revealed non-trivial and unexpected effects on the phase structure of the theory,

indicating the possibility of rich and novel phase structures for more elaborate multi-

Higgs models. Including direct interactions between the Higgs fields may reveal new

phenomena, intricate phase structures, and is left for future work.
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Appendix A

Conventions

Fundamental constants: speed of light, and Planck’s constant

c = ~ = 1 . (A.1)

Minkowski space-time metric:

gµν =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









. (A.2)

Euclidean space-time metric:

gEµν =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









. (A.3)

Four-vector notation for space-time and momentum-energy, respectively,

xµ =
(

x0 x1 x2 x3
)

=
(

t ~x
)

, (A.4)

pµ =
(

p0 p1 p2 p3
)

=
(

E ~p
)

. (A.5)

Summation convention for repeated space-time and group indices, respectively,

AµDµ = AµD
µ = gµνA

µDν =
3
∑

µ=0

3
∑

ν=0

gµνA
µDν , (A.6)

A2 = (Aµ)2 = AµAµ , (A.7)

λασα =
∑

α

λασα . (A.8)
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