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VIBRATORY ANALYSIS OF TILLAGE OPERATION

Energy conservation in agricultural operation is becoming increasingly important
for the viability of the modemn agricultural industry. The endless desire for increased
productivity in agricultural operations is arousing intensive search for more efficient
ways of soil and earth moving process than the conventional tractive methods. Vibratory
tillage operation has been investigated for the possibility to realize more effective soil
cutting.

For the forced oscillatory soil cutting, it has been found that soil cutting resistance
decreases as vibratory amplitude and frequency increase. However, the soil resistance
reduction was achieved at a substantial increase in total power consumption. Two
sources of energy provide the required energy to the forced oscillatory soil cutting
process: the oscillator driver and the tractor drawbar power. An optimum frequency and
amplitude were suggested for the energy conservation in a given circumstance.

For the general soil cutting during agricultural field operation, numerous
investigations have found that the simple tools carry horizontal forces which fluctuate in
a periodic manner. This indicates that the actual soil cutting is a process of vibration.
Since the tillage tool oscillation is caused by the soil resistance, this phenomenon is
called the self-excited vibration.

A tillage tool operating on agricultural soil was considered as a cantilever beam
subjected to the fluctuating soil cutting resistance. A lateral vibration equation was used
to describe the motion of the shank.
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The analytical solution of the above equation for soil-shank system does not exist
as the shank is not uniform and/or the soil resistance is discontinuous. However, the
finite element analysis can be used to solve this problem by using the variational method.

A finite element model was developed to simulate the response of the deflection,
velocity and acceleration of the shank and tillage tool when the soil resistance was
applied at the end of the shank. It was found that the responses of the displacement,
velocity and acceleration of the blade were associated with the natural frequency of the
system and the applied frequency of the soil cutting resistance. The soil cutting
resistance will cause the movement of the shank-tool assembly. In turn the position of
the tillage tool will affect the soil cutting resistance. A transient soil cutting model was
developed to obtain the relationship between the soil cutting resistance and the movement
of the tillage tool. The values of the acceleration of the tillage tool calculated through the
finite element method were compared with the results of the soil bin measurement. There
was a good correlation between the measured data and the model estimation values. The
verification of the model was in good agreement in terms of acceleration for the first few
points of comparison. A higher sampling rate provided a better agreement between the
test data and the model estimations. This analysis provided a guidance for the shank-tool

assembly design in considering the vibration effect.
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ABSTRACT

A forced oscillatory soil cutting model was proposed with
consideration for the energy requirement of the oscillator system and the soil cutting
resistance related to the drawbar power of the tractor. A comparison between energy
consumption in the cutting process for oscillatory and non-oscillatory cases was
presented. Two sources of energy provide the required energy to the oscillatory soil
cutting process: the oscillator driver and the tractor drawbar power. An optimum
frequency was suggested for a given condition to realize a more effective soil cutting

process.

A tillage tool operating on agricultural soil was considered as a
cantilever beam subjected to the fluctuating soil cutting resistance. A finite element
model was developed to simulate the response of the deflection, velocity and acceleration
of the shank and tillage tool when the soil resistance was applied at the end of the shank.
[t was found that the responses of the displacement, velocity and acceleration of the blade
were associated with the natural frequency of the system and the applied frequency of the
soil cutting resistance. It is known that the soil cutting resistance will cause movement of
the tool. In turn, the position of the tillage tool will affect the soil cutting resistance. A
transient soil cutting model was developed to obtain the relationship between the soil
cutting resistance and the movement of the tillage tool. The values of the acceleration of
the tillage tool calculated through the finite element method were compared with the
results of soil bin measurements. There was a good correlation between the measurement

data and the model estimation values. The verification of the model was in good

'agreement in terms of acceleration for the first few points of comparison. A higher

sampling rate provided a better agreement between the test data and the model

estimnations.
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CHAPTER 1
INTRODUCTION AND OBJECTIVES

1.1 Introduction

Tillage is a basic practice in the crop production system. It is a process of
mechanical manipulation of the soil by changing bulk density, soil aggregate size
distribution and other physical properties of the soil. The objectives of proper tillage are
to provide a suitable environment for seed germination, root growth, weed control. soil-

erosion control, and moisture control.

A major portion of the energy consumption in an agricultural operation can be
attributed to the movement of soil by tillage tools. Even though the tool operating depth
seldom exceeds 100 mm, the areas involved are large and the quantity of soil moved each
year is enormous (Kushwaha and Roy 1989). Tillage requires well over half of the engine
power expended on North American farms, and it has been estimated that more than 250

billion tons of soil are moved each year in United States alone (Buckingham 1976).

Tillage operations also result in large friction and wear loss to the implement. A
strategy for tribology in Canada (NRC 1986) states that the total annual losses in the
agricultural sector due to friction and wear amount to $1.26 billion. The share for tillage
operations is estimated to be more than $32 million. Because of the high cost of energy
and significant losses due to friction and wear, energy conservation in agricultural practice
is becoming increasingly important for the viability of the modern agricultural industry.
Any tillage practice which does not return more than its cost by increasing and improving

soil conditions should be eliminated or changed. Contrary to previous beliefs, soil needs



to be worked only enough to assure optimum crop production and weed control. Any

tillage activity beyond that is of questionable value.

An analysis of soil tool interaction reveals that practically all tillage tools consist
of some device for applying pressure to the soil, often by means of inclined planes, or
wedges, or their combination. The soil in the path of these tools is subjected to
compressive stresses which result in shear failure of the soil. Since the soil is strongest in
compression, it becomes obvious that tillage tools have to impart excessive energy to the
soil for altering the soil conditions. A device that will shear by a mode in which the soil is

weakest is yet to be developed and would be welcomed.

The endless desire for increased productivity in agricultural operations is arousing
intensive search for more efficient ways of soil cutting and earth moving processes than
the conventional tractive methods. Among the methods of energy applications being

considered are:

a. Forced vibration of the soil cutting device
b. Rotary cutting techniques

c. High speed soil cutting techniques.

For better operation and economical energy consumption, research efforts in the
development of soil-engaging tools with their prime movers have been conducted in
parallel with the new research area called soil dynamics to meet the challenges of finding
new techniques for efficient energy consumption in cutting and moving soil. Today, the
role of soil dynamics in solving problems and developing technology is recognized as
being important around the world. Soil dynamics is an engineering discipline that is

studied and practiced worldwide.

9



Tool oscillation for soil cutting has been utilized since the beginning of recorded
history. The earliest farmer moved his stick plow back and forth when he encountered a
rough spot in the soil in order to move the plow forward. In oscillating the plow, the
primary goal was to reduce the soil cutting resistance rather than simply to increase the

man power for a unit soil movement.

Conventional tillage implements usually have soil-working tools which do not
move relative to the implement frame. Their draft requirements are comparatively high as
they are always in contact with the soil. The power for operating these implements is
transmitted through the traction of the vehicle. To improve the tractive efficiency the
tractor drive wheels are ballasted with additional weights. However, this practice causes
severe soil compaction, which is detrimental to efficient cropping of plants. Several
investigators have reported that oscillating soil cutting tools have lower draft requirements
and smaller soil aggregates than do other non-oscillating counterparts such as moldboard
plows and cultivator sweeps when working under identical conditions. Therefore, an
oscillating soil cutting tool may reduce the number of operations to prepare an acceptable
seedbed and minimize soil compaction, thus providing a better physical environment for

plant growth.

It is well known that the vibrating action facilitates penetration in certain
conditions of soils. The exact nature of the phenomenon is complex and is not fully
understood. In certain soils, there appears to be a thixotropic transformation during
agitation of soil material (Kezdi 1974). In sand there is a tendency for particles to separate
by agitation, a phenomenon known as liquefaction (Mogami and Kubo 1953). The

vibration environment reduces the skin friction due to some type of fluidization at the



interface. A vibratory shear surface appears due to vibration, which facilitates soil-tool

penetration under the action of the applied loads.

It has been recognized that the average draft of a tillage implement can be reduced
by induced vibration. However, to realize this goal some extra power has to be added to
drive the tillage tool for vibration. Draft power plus the power needed to drive the vibrator
constituted the total power consumption. It is common practice to evaluate the efficiency
of the vibratory soil working process by comparing them with the corresponding quasi
static process. Only a limited amount of experimental data on the total power
consumption has been published (Butson and MacIntyre 1981). The results of
experimental studies of different authors led to contradictory evaluations of the energy
consumption of the cyclic soil working process in comparison with their quasi static
counterparts. So, some investigators came to a conclusion that the total power requirement
was low for vibrating the tillage tool (Gunn and Tramontini 1955; Hendrick and Buchele
1963; Dubrovskii 1968). Others came to a contrary opinion (Smith et al. 1972; Butson
and MaclIntyre 1981), while other investigators found that the energy consumption for
both these processes was identical (Eggenmuller 1958; Verma 1971). They concluded that
the energy required to oscillate the tool is nearly equal to the draft energy reduction.
These contradictions create significant difficulties in development of more sophisticated

soil working machinery.

When a tillage tool operates it carries transverse loads that will induce bending of
the shank. The soil resistance acting on the shank of the tillage tool becomes stored by the
mechanism of deformation known as strain or elastic energy through the entire stressed
volume. Numerous researchers have found that tillage tools acting on agricultural soils
encounter periodic fluctuations. These fluctuations will induce the shank of the tillage

tool to move back and forth relative to the tool implement. This phenomenon indicates



that the actual tillage tool operation is accompanied by a vibration process. Since this

vibration is excited by soil resistance, it is called the self-excited vibratory process.

The self-excited vibration has been reported by a number of researchers
(Dubrouskii 1968; Upadhyaya et al. 1987). However, their research work was only
limited in recognition of this phenomenon. A further investigation of the self-excited
vibration of tillage operation is essential for the better understanding of the soil tool
interaction and for the potential possibility of utilization of these vibratory characteristics
to realize a more efficient soil cutting operation and to reduce tillage energy consumption.
The ultimate goal in tillage system research is the development of scientific knowledge to
the extent that the performance of a tillage tool design, the forces, and the final soil
conditions can be accurately predicted when initial conditions of the soil, operating

conditions, and design parameters of a tillage tool are known.

It can be seen that in general, there is a reduction in the soil resistance for the force
oscillatory operation. However, there are so many contradictions in the energy
requirement for the oscillatory soil cutting operation. The magnitude of the reduction
(increase) of the energy requirement and the effect of the oscillation parameters vary in
such large quantities that only qualitative information should be gained. This study is an
effort to clarify the energy requirement contradictions through the theoretical

investigation.

More attention has been given in the investigation of the self-excited vibration for
the better understanding of the soil tool interaction and for the potential possibility of

utilization of these vibratory characteristics to realize a more efficient soil cutting

operation.

W
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This thesis is organized into eight chapters. The first chapter is an introduction and
objectives. Chapter 2 gives the literature review of the oscillatory soil cutting and self-
excited soil cutting operation. The literature review summarizes the published work to
these subjects. Chapter 3 investigates the soil properties and soil dynamics and how these
characteristics affect the soil failure. The analysis of soil cutting energy consumption in
the oscillatory and non-oscillatory cases are discussed is chapter 4. An oscillatory model
is introduced to study the effect of different parameters on the forces and energy
requirements in soil cutting. Chapter 5 describes the differential equation governing the
motion of the transverse vibratory beam. Finite element model is developed to obtain the
responses of the vibratory shank under the transverse soil cutting resistance in chapter 6.
The parameters affecting the motion of the shank under the soil cutting resistance are also
investigated. Chapter 7 presents the soil bin test and model verification results. Chapter 8

gives summary, conclusions and recommendations for future work.

1.2 Objectives
The overall objective of this project was to study the vibratory phenomenon of
soil-tool interaction. The specific objectives of this study were:
To develop a dynamic model to predict the energy consumption of forced oscillatory

tillage operaticn.

To develop a finite element model to simulate the response of the tillage shank when

the vibrating system is self excited by the soil cutting resistance.

To study the tillage tool parameters that affect soil cutting operation.

To carry out the soil bin test to verify the vibratory response of the tillage tool under

the action of fluctuating soil cutting resistance.
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CHAPTER 2
LITERATURE REVIEW

2.1 Forced Vibratory Soil Cutting

The use of vibration to reduce the force needed to drive piles into the ground was
first reported in 1935 in Russian (Buston and MacIntyre 1981). Since the early 1950s
there has been increasing interest in the application of vibration to soil cutting and tillage
machinery, and research has been carried out in a number of countries. Experimental
work, mainly in soil bins, has concentrated on demonstrating the level of draft reduction

that can be achieved, and relating this to the vibration parameters.

Some basic studies to determine the effects of vibratory load on soil strength were
made by civil engineers in the 1950’s. It was recognized early that there are some changes
in the physical properties of the soil near the zone of vibration due to vibratory loading.
Mogami and Kubo (1953) investigated the effect of vibration on soil strength. They
related the reduction of strength in the presence of vibration to what they called
“liquefaction” from their results on sand and loamy soils. Winterkorn (1954) referred to
this as a macromeritic liquid state (liquid dispersed in macroparticulates). They concluded
that the shearing strength of soil diminishes with an increase in vibration. Cooper and
McCreery (1958) found similar results in clay soil. However, the physical explanation of
the phenomenon was given as a thixotropic effect due to the change of bound water to free
water. The change of bound water into free water was then concluded to be the reason for

rapid decrease in the shearing strength.



An investigation on the feasibility of the application of oscillatory motion to
agricultural machines in North American was conducted by Gunn and Tramontini (1955).
A tractor with a pitman drive providing the appropriate frequency and amplitude to a sub-
soiler was developed and tested. The results indicated that the draft was reduced only
when a dimensionless parameter (wwe) was less than one, where v is the tractor speed, ©
is the pitman angular velocity, and e is the crack eccentricity. A pitman drive was a
positive drive composed of a crack slider mechanism used to transfer the angular motion

to the reciprocating form.

Savchenko (1958) reported that the coefficient of internal friction of sand
decreased with an increase in amplitude and/or frequency of vibration. Tests on clay soils
indicated greater reduction of shear strength by increasing the frequency and amplitude,

but very little reduction was observed at amplitudes greater than 0.6 mm.

Eggenmuller (1958) performed a series of tests in which the basic objective was to
reduce draft by throwing soil upward so that the tool moved forward into the uncut soil
free of friction without lifting any soil during this forward motion. Results indicated that
relatively smail amplitudes of movement resulted in a considerable reduction in draft. A
draft reduction of up to 40% to 50% was obtained with the same total power input. A

maximum draft reduction of 75% was reported.

Shkurenko (1960) studied the effect of oscillation on the cutting resistance of soil.
His results showed that at fairly high speeds of oscillation, there was a considerable
reduction in the cutting resistance in the range of 50% to 60% and the effect of forward

speed was found to be relatively small.



Kondner (1960), in a study on vibratory, unconfined compression tests on clay soil,
found that the maximum stress required to cause failure was 20 - 50% of that obtained by
non-vibratory, unconfined compression tests. The variation was dependent upon the
moisture content of the clay soil. He explained that in the non-vibrating, unconfined
compression test there is sufficient time for the clay particles and their diffuse double
layers of bound water to reorient themselves within the free water phase into more stable
arrangements. But there is not sufficient time for a complete distortion of very viscous
water. Under the vibratory loading, the vibratory energy is a form of activation energy
which must reach a certain value before it sufficiently energizes the layers of very viscous,
bound water in order to cause their breakdown. When this energy state is reached. the

effective viscosity of the bound water is greatly reduced and yield or failure takes place.

Panagiotopoulos (1962) investigated the effect of oscillation on bulldozer blades
by testing two sizes of blades under frequencies of 18 and 46 Hz. Three cutting angles of
blades, 45, 60, 68 degrees were selected. It was found that the maximum reduction of the
cutting resistance was obtained when the cutting angle was 45 degrees and the frequency
was very close to the natural frequency. The power was reduced by 43% at a frequency of

42 Hz and amplitude of 5 mm.

Mackson (1962) tried to reduce the soil - metal friction by utilizing electro-osmosis
lubrication. Mink et al. (1964) tried the air lubrication method. The electric potential was
large and the power for air compression was too high. Both methods have been shown to

be completely uneconomical.

Encouraged by the successful application of vibrations to the reduction of soil
cutting resistance, researchers at Bell Telephone Laboratories started active research for

developing vibratory cable plows (Boyd and Nalezny 1967). The immediate goal was to
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produce a light weight vibratory plow that can bury short distance service cables
economically. Conventional cable plows cannot be used to bury service cables
economically because of their size and time required for set up. Plowing for burying
telephone cables at about 0.5 to 0.6 meters deep by lightweight low traction vehicles led to
the development of commercial vibrating plows utilizing harmonic oscillation.
Reasonable penetration rates and drawbar forces were obtained with blade vibration in the
direction of penetration. A mathematical model was presented by Boyd and Nalezny
(1967) for vibratory soil cutting. They considered a lumped parameter model which
consisted of a spring and Coulomb friction to simulate soil cutting by plow blades
vibrating horizontally. The spring represented blade and soil elasticity, the Coulomb
friction represented the soil strength. The model neglected the mass of the blade-soil
combination and neglected angular velocity effects on soil cutting resistance. The results
indicated that the average force can be reduced by increasing the frequency, amplitude and
system stiffness for a sinusoidal oscillating blade in a compacted sand at a given cutting
speed. For practical design values of these parameters, the force can be reduced to 25% of
the non-vibrating cutting force. They attributed the force reductions to the small portion

of the cycle time at which the blade is in contact with the soil.

Senator (1967) proposed a model of flexible soil penetrator composed of two
masses joined by an elastic member with a light damper. Coulomb friction was used to

characterize the soil resistance. He concluded that this penetrator had the advantage over a

rigid penetrator of equal mass.

Considerable research efforts have been reported in developing vibrating plows in
the USSR. Dubrovskii (1968) reported the first vibratory plow actuated by an electro-
magnetic drive. The plow operated at a speed of 4.95 km/h at vibrating frequency of 50

Hz and 2 to 3 mm amplitude. A reduction of 29% in draft was obtained. The reduction in



draft constituted 24.7% when the implement was driven at the speed 2.14 km/h. By
increasing the frequency to 100 Hz, no reduction in draft was observed which may be
interpreted as moving further from the natural frequency of the soil tool system. By
studying the vibration of cultivator, the study also showed that the vibration lead to a
significant reduction in draft (up to 60%) at 40% reduction of total energy consumption.
The vibratory working implements were less adhesive to soil and less jammed up with
weedy vegetation. Besides, the wearing and blunting of vibratory tool edges were also

less than that of non-vibratory tools.

Senator and Warren (1971) investigated the penetration rates for harmonically
forced fore-aft vibrating plows. The soil resistance was represented by two parameters,
namely unpenetrated and penetrated soil resistance. The result was a quantitative
prediction of penetration rates as a function of harmonic force amplitude and static bias

force.

Sulatisky and Ukrainetz (1972) reported that draft force reductions as high as 80%
were achieved when the blade was vibrated at frequencies up to 30 Hz and amplitudes up
to 12 mm. Percent draft reduction increased with the amount of power available at the
vibration actuator. Generally, the overall power required to vibrate and pull the blade
through the soil was greater than that required to pull a static blade under the same

conditions.

Choa and Chancellor (1973) introduced combined Coulomb friction and viscous
damping to present the soil resistance to blade penetration. They determined the
coefficient of viscous damping of soil by drawing a sub-soiler into the soil several times at

a depth of 250 mm without vibration and varying forward speed.



Brown (1978) presented theoretical and experimental analysis on a bulldozer and

reported that the tractive force was reduced by 20% to 30% in the presence of oscillation.

Buston and Maclntyre (1981) described a series of soil bin experiments in which
the draft and total power requirements of a soil-cutting blade system were measured.
Sinusoidal excitation at frequencies up to S0 Hz and amplitudes up to 8 mm was applied
with forward speeds from 0.54 km/h to 1.98 km/h. A draft reduction of more than 50%
was reported but only achieved at a substantial increase in total power consumption. Draft
power plus the power needed to drive the vibrator constituted the total power
consumption. Only a limited amount of experimental data on the total power consumption
have been published, but this may indicate that there is often a substantial increase in the

overall power consumption when vibration is applied.

Garber (1983) and Spektor (1987) presented theoretical analysis of energy
expenditure in cycle-loading versus quasi-static soil processes. They concluded that no
unilateral preference statement can be drawn, thus justifying the contradictions in
experimental results available. They showed that the existence of an optimal cycle-
loading regime, challenging the quasi-static regime, strongly depended on the character of

the loading-unloading curves defining the tool-soil system under consideration.

Gupta and Rajput (1993) studied the effect of amplitudes and frequencies on soil
break up by an oscillating tillage tool. [t was reported that the oscillating tillage tool
produced smaller soil aggregates than non-oscillating tillage operation. At a given
oscillation amplitude, increasing the frequency above the natural frequency of the soil did
not often increase soil break-up. For the range tested, soil break-up increased with
increasing amplitude. They optimized the frequency and oscillation amplitude on the

basis of maximum clod surface produced per unit of energy input. Maximum utilization of



energy occurred at an oscillation frequency close to the natural frequency of soil. At this
frequency of oscillation (i.e. 12.15 Hz), the clod surface produced per unit energy input
was nearly maximum at all oscillation amplitudes. An optimum oscillation amplitude for

the tool was found to be 9.5 mm for Kharagpur soil under the given circumstances.

Szabo et al. (1994) investigated the effectiveness of a vibrating bulldozer on draft
force reduction. As much as 93% draft force reduction was achieved compared with the
conventional quasi static counterparts. The combination of vibratory frequency and
amplitude significantly affected draft force reduction. In the range of 17.4 - 49 for the
velocity ratios, 17.4 was found optimal for combination wet non-cohesive soils while 48
was most effective for dry cohesive soils. In dry soil, the maximum force reduction was
measured at higher frequencies, 60-70 Hz while wet soil had optimal values between 20-
30 Hz. This investigation indicates that the velocity ratios for the optimal draft reduction
are higher than the value suggested by the previous researchers in their tillage oscillating

operation.

2.2 Self-Excited Vibratory Soil Cutting

Numerous researchers have found that simple tools acting on agricultural soils
sustain horizontal forces which fluctuate in a periodic way. This phenomenon indicates
that the actual soil cutting is a process of vibration. This type of soil cutting is widely
used, particularly during the operation in compact soil. The methods describing soil
cutting forces are usually static. They are based on the static equilibrium of the forces at
soil failure. The soil behavior between two subsequent soil failures are not considered. In
reality, soil cutting is a discrete process which is dependent upon the soil clods forming
and the dynamic system of the implements. The soil cutting force is likely a periodic

wave form. The soil cutting force is primarily due to the movement of the tillage



implement. Contrary to the forced vibration, this kind of process is called the self-excited

vibration.

Several researchers have noticed this important phenomenon and consequent

investigation has been carried out in the periodic wave form of soil cutting and its cause.

Siemens et al. (1965) measured the forces on model tools and photographed the
soil cross-section through a glass plate. Draft force for a tillage tool in a soil bin varied
33% of the mean draft value. The horizontal distances between failure planes ranged from

25-50 mm.

Olson and Weber (1966) found that the horizontal distance variation between
failure planes was 32-42 mm, and that the draft force variation was +25% of the mean

value.

Gill and Vanden Berg (1967) noticed that periodic failure planes also occur ahead

of disk tools with the horizontal distance between failure planes approximately 50 mm.

Young et al. (1984) analyzed the power spectra of force variations on triangular-
shaped vertical tines operated in a soil bin at depths ranging from 50 to 150 mm. The
most common horizontal distances between planes of failure at the instant of highest draft
ranged from 100 to 400 mm and increased with depth. In some other cases, the horizontal
distances between planes of failure were usually less than the working depth of the tool.
They concluded that the predominant vibration was not random and corresponded to the

rate of shear plane developed. No frequencies were identified above 10 Hz. The major

frequency was about 2 Hz.
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Summers et al. (1985) performed the auto correlation function and power spectral
density function of the soil force variations for four common types of tillage implements.
They concluded that the draft and vertical force resulting from tillage tool-soil interactions
appeared to be deterministic at frequencies of 1.43 to 9.99 Hz with a superimposed

random component.

Stanford and Young (1986) did a power spectral density analysis of draft variations
of rigid cultivator tines. The type and the predominant frequency of the soil failure were

found by examining the normalized power spectrum.

Upadhyaya et al. (1987) found that soil-tool force varied in a periodic fashion and,
at the extreme, this force variation was in the order of £50% of a mean draft force value.
Available evidence indicated that the physical distance between force peaks wavelength
was in the range of 10-400 mm. An examination of the dynamic nature of the tillage tool
draft indicated that the failure pattern and fracture distance depended on soil type and
condition, and tillage tool speed. They also observed successive failure planes ahead of a

disk plow in the range of 12-35 mm.

Licsko and Harrison (1988) analyzed oscillating soil forces of a half-scaled
experimental plow to find the predominant frequency. They performed the spectral
density analysis of the horizontal and vertical forces signals and concluded that the cyclic

shearing failure of the soil ahead of the tool was less than 10 Hz.

Singh et al. (1991) studied the cyclic variations of the draft of a moldboard plow
and its effect on the draft control system of a tractor. They found two different
predominant frequencies, low and high. The low frequency corresponded to the actual soil

failure frequency, while the high frequency corresponded to the breaking of the soil mass



into sub-blocks at the moldboard surface. They concluded that the fracture length was

approximately 1 £ 0.2 m and remained almost the same at all plowing speeds and depths.

Boccafogli et al. (1992) observed cyclic phenomena of soil cutting forces from the
time domain signals. At low cutting speed, the amplitudes of cycles increased with time.
They used a modified power spectral density analysis to locate the predominant
frequencies. The results showed that rupture distance increased with an increase in

forward speed and reached a stationary value after a few cycles.

Salokhe et al. (1994) performed the power spectral density analysis of the draft and
torque signals of a disk tiller. They concluded that the dominant spatial frequency of the
periodic variation of draft was about 2.5 - 5.5 cycles/m, while the frequency for torque was
3.3 - 4.3 cycles/revolution of the disk. Secondary dominant frequencies were found in the
power spectrum of both draft and torque. A physical explanation was still required for the

amplitude of the power spectrum at frequencies other than the principal one.

Noticing the discontinuous process of soil cutting, Malaguti (1995) tried to employ
auto regressive techniques to describe soil cutting process. It was found that sixth order
auto regressive models fitted in a robust way some harmonics of soil cutting periodicity.
As soil cutting frequency depended on cutting depth and speed, a recursive auto-regressive

technique could be used to build adaptive filtering and control to use in soil cutting

analysis and control in the field.
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CHAPTER3
SOIL PROPERTIES AND SOIL DYNAMICS

The study of soil-tool interaction can be dated back to the last of the 19th century
(Goryachkin 1898) and the early 20th century (Nichols 1925). Since then, many
investigations have been conducted using empirical and analytical methods and a large
number of research papers has been published since 1950. In spite of advances made in
recent years, very little of knowledge about soil mechanics has been applied to design of
equipment and analysis of tool behavior in soil. Most of the technological advances in
soil equipment manipulation have evolved by field experiment and by trial and error. In
most cases the important properties characterizing the soil have not been properly

recorded.

3.1 Classification of Soils
Theoretically three types of soils are well recognized. There are cohesionless,
cohesive and frictional soils.

Shear strength of cohesionless soil is governed by

T = ojtang’ 3.1
where:

T = soil shear strength (kPa),

Gy = normal stress on the sliding plane (kPa), and

¢’ = angle of internal friction of the material (degrees).

17
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Dry sand is usually designated as a purely frictional material, which exhibits little
or no cohesion. The angle of internal friction, ¢’, can have a magnitude varying from 18
to 55 degrees (McKyes 1989), depending on the density of the sand and the properties of

its constituent particles.

Cohesive soils demonstrate negligible friction and have practically constant shear
strength regardless of normal total pressuvre on the failure plane. Undrained saturated fine
grained soils belong to this type. The shear strength can range from nearly zero, for very
wet and loosely consolidated soil, to over 280 kPa for a highly consolidated fine grained

soil. The sliding failure for these soils is governed by

t=c (3.2)

c = cohesion, the part of strength independent of normal pressure (kPa).

Soils, containing a mixture of coarse and fine materials, and which are partially
saturated with water, will possess both frictional and cohesive shear strength properties.

For such soils the maximum shear stress is given by,

t=C+0o,tan¢’ (3.3)

The agricultural soils usually belong to this group. Fig. 3.1 shows the o-t plots

for the three types of soils.
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Figure 3.1 Classification of soils



3.2 Soil Failure Characteristics

Since agricultural soils exhibit elastic, plastic, elastoplastic, viscoelastic, and
viscoplastic characteristics, their failure behaviors are more complex than those of
construction materials. For the oscillatory operation the soil failure is not a continuous
process. The soil distorts corresponding to the cyclic motion of the vibration. Several
mathematical models have been used to describe the failure characteristics of different

types of soils as given in the following section.

3.2.1 Coulomb friction model
Soil will not fail until the stress is greater than the yield stress 6, The stress ¢
does not generate a strain € when the stress of the soil is less than the yield stress o,. The

o, represents the minimum stress under which strain does not occur.

In oscillating operation, the carriage moves at constant velocity ¥, and the tillage
tool oscillates relative to the implement. When the blade moves backward the soil
resistance is zero. Figure 3.2 illustrates this model for both non-oscillating and

oscillating cases.

3.2.2 Elasto-plastic model

In the elasto-plastic model, the soil deforms according to Hooke’s law in the
elasto stress region. The material undergoes plastic deformation when the state of stress
reaches the yield criterion. Figure 3.3 shows the force-time curves for non-oscillating and

oscillating cases.



DN T YQ S

bk it iaig o

D R i A

Stress

Stress

Stress

Figure 3.2 Coulomb frictional model

Strain
non-oscillating
- Tec 2Tc
Time
| oscillating
Tec 27T
Time



Stress

Figure 3.3 Elasto-plastic model

9

/
/
, . o
Strain ¢
A non-oscillating
| //
/
’/
/ Tc 2Tec
{ — E—
Time
A oscillating
_______ —_—— T
// .
/vv ’v
J Te 2T ¢
—— e —
Time



3.2.3 Viscoelastic and viscoplastic model

In many cases, the stress-strain data obtained at quasistatic speeds in laboratory
and field test with agricultural soil are considered to be applicable to traction and tillage
processes at conventional field speeds. However, many researchers have investigated the
effects of time in the stress strain relationships for agricultural soils. Due to the non-
elastic behavior of soils, the soil sometimes presents a visco-elastic performance which
can be represented by an elastic part and a damping part. Although several combinations

of these parts could be used, two theoretical cases are described here.

(a) Bingham model (Fig. 3.4) (Kezdi 1974)

t=C+1 % (3.4
where:

G =c+0c,tand', and

n = viscosity pertaining to shear strain above  (Pa.s).

Saturated cohesive soils may be described as having visco-plastic characteristics,
i.e., they do not deform until a certain level of shear stress is reached. Once the level of
shear stress has been reached, any further increase in shear stress is found to be related to

the time rate of shear strain.

(b) Burger model (Fig. 3.5) (Ji et al. 1986)

£
CP 1 E ..
Z="mtbl—p —(1-e™)+—] (3.5)
VA Ew k ;"\I

Cnm = a constant for a given process,

19
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where:

Py = applied load to the top surface of a semi-infinite body (kN),
A = area on which the pressure is applied (m?),
Ewum, Ek = values related to the stiffness of the respective spring elements (kPa),

Am, Ax = values related to the viscosity of the respective dashpot elements (kPa-s),

t = time (s),

Z =Edepth of impression of the loaded area into the semi-infinite body (m).
Ev=1v

Ee=1 f v

M =

Me=1Ty

\Y = Poisson’s ratio for the soil,

A1, A2 = viscosity of the respective dashpot elements (kPa-s).

friction block

spring

%%—w——/

dashpot

A B N

\

70

Figure 3.4 Representation of a Bingham body

with a viscous element and a Coulomb friction element (Kezdi 1974)



Figure 3.5 Representation of a Burger model

with spring and viscous elements (Ji et al. 1986)

3.3 Non-oscillatory Soil Resistance Models

Failure of soil under the effect of forces exerted by the cutting blades occurs along
a specific failure zone. When the blade force is sufficiently large to overcome the soil
resistance, shear failure occurs and continues with additional blade displacement. The soil

resistance can be predicted by using the general earth pressure equation first proposed by

Reece (1965).
P, =(yd*N, +cdN, + qdN,)B (3.6)
where:
P = force on the tool (kN),



Y = soil gravity (kN/m?),

d = tool operating depth (m),

B = tool width (m),

c = cohesion of the soil (kPa),

q = surcharge on the soil surface (kPa),

Ny  =dimensionless factor due to gravity term,
Ne  =dimensionless factor due to cohesion term,
N,;l = dimensionless factor due to surcharge term.

In Eq. 3.6, soil cutting resistance was contributed by the gravity, cohesion and

surcharge terms.

3.3.1 Simple wedge model

A wide variety of techniques now exist for calculation of soil cutting resistance
based on the different failure zone assumption. Considerable work has been done to
determine all these dimensionless numbers to predict soil cutting resistance. A great

number of soil cutting models was reviewed by Kushwaha et al. (1993).

McKyes and Ali (1977) proposed a model for three dimensional soil cutting
calculation for a narrow tillage tool. In their model (Fig. 3.6) a straight bottom failure
zone was assumed with a failure wedge composed of a center wedge and side crescents.
The surface side failure crescents were assumed to be circular. Using the technique of
mechanics of equilibrium soil resistance can be developed as a function of failure angle f.

soil characteristics and tool parameters as given below:

(e 1+ 2y qd " (1 sinp ) +cd S (145 ) -, d 2B )5
p= 2 d 3w d w sinf w sinat G.7)
' sifo +B +6 +4¢')



Figure 3.6 Failure pattern of the McKyes-Ali model



This equation falls into the universal earth moving Eq. 3.6.

where:
—l—(cota +cot B)(1 + El—,/cot2 B +2coto cot B)sin(B +¢')
N, =2 3w (3.8)
! sin(e +P +8 +¢')
(cota +cotP)(1+ i‘[cot2 B'+2cota cot B)sin(P +¢')
N, = Y (3.9)
sinfe +B +8 +¢')
' d 2
cosd' (1+ —Jcot B+2cotacotf)
N, = s (3.10)
sinfa@ +B +8 +¢')
=P re) G.11)
sinasin(c +B +3 +¢')
s =dyJcot’ & + 2 cota cot B (3.12)
r =d(cota +cotp) (3.13)
where:
o = rake angle of the tool from horizontal (degree),
4 = angle of soil failure zone (degree),
) = angle of soil-metal friction (degree), and
) = internal frictional angle of soil (degree).

The soil resistance can be obtained if the failure angle § can be determined. In the

McKyes-Ali model, the failure angle  was obtained by minimizing the gravity term Ny,

A modified model (Zhang and Kushwaha 1995) for predicting soil cutting forces on

tillage tools was formulated based on passive earth pressure theory and McKyes and Ali
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model. In their modified model, the rupture angle B was identified by minimizing the soil
cutting resistance in the passive movement condition instead of minimizing V,, term.
3.3.2 Two-wedge model

Zhang and Kushwaha (1995) proposed a more accurate approximation by

establishing two simple wedges as shown in Fig 3.7 (a) and (b).

The base of the wedge ABC makes an angle of (180-a-f) with the blade surface.

B was determined by the original prediction of the simple wedge model mentioned above.
The second wedge makes angles of 90-¢' and ' with the soil surface. The plane AC was
treated as an imaginary blade. Therefore, the B’ was obtained by using the simple shape
model in the wedge ACD for the case of 8=¢'. By using the modified model the force A’
and V7’ on the surface AC can be obtained by solving the mechanical equilibrium equation
acting on the wedge ABC. The depth of the blade AC can be estimated from the
following equation:

d= d.sin(a +B)cos¢’ (3.14)
sina cos(f +¢')

The total force acting on the blade can be resolved as follows:

F=P+P +P. +PF, (3.15)
In Eq. 3.15 the total force acting on the tool is consisted of the different terms as

_Vsin(B +¢')+ H cos(B +9') (3.16)

P .
sinfc +pB +6 +4¢')

(3.17)

p - —dd wy sin(B +¢' )cos(a +9¢')
" 2sinocos¢'sin(a + B +8 +¢')
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(b) Two-dimensional schematic diagram of soil failure pattern
for two-wedge model

Figure 3.7 Failure pattern of the Zhang-Kushwaha model



cw[(d—a‘)c?sd)' —d sinB]
_ sinf3 cosd' (3.18)
‘ sin(o + B +8 +¢') '

_ —cdwcos(a +B +¢')

=—2 (3.19)
sinasin(ac + +3 +¢')

ca

where:
p' = force acting on the imaginary blade (kN),
P, = force due to gravity term (kN),
P, = force due to cohesion term (kN),
P..  =force due to adhesion term (kN).
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CHAPTER 4
FORCED OSCILLATION OF SOIL CUTTING PROCESS

4.1 Vibratory Soil Cutting
In the vibratory soil cutting process, an implement is considered to travel at

constant speed and a tillage tool vibrates relative to the implement.

4.1.1 Vibratory seil cutting model

If a tool is vibrated while cutting soil, the tool responds at a frequency equal to
that of the oscillatory forced function. Under ideal operating conditions of forward speed
and soil cutting resistance, the tool would experience periodic displacement, velocity, and
acceleration. The schematic of the model representing tool force relationship is shown in
Fig. 4.1 The diagram represents a Coulomb friction, lightly damped single-degree of
freedom oscillatory system. The dynamic system mass, including the oscillator, is
connected to the carriage frame through the springs. The carriage moves at speed V. and
the soil resistance R(?) acts at the tool tip. The differential equation describing the system

is:

mx+bx+ kx = F, sin(of) + R(f) 4.1)
where:

m = mass (kg),

b = damping coefficient (Ns/m),

k = spring constant (N/m),
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X = displacement of oscillator (m),

R(t) =soil cutting resistance (N),

Fy = driving force (N),
Q = driving force frequency (rad’s),
t = time (s).

Since the soil cutting resistance is mainly overcome by the drawbar power of the
tractor, it is assumed that the driving force Fysinwt is responsible for the vibratory motion
of the tillage tool relative to the implement. Equation 4.1 can be solved by numerical
integration using Runge-Kutta fourth order scheme. The solutions of Eq. 4.1 are shown
in Figs. 4.2, 4.3, 4.4, and 4.5. It can be seen that the system reaches the steady state
oscillatory movement after the initial transient vibration. The analytical solution of the
above equation assumes the steady state response. The oscillatory displacement function

can be represented as

x(t) = Lsin(ot —¢) (4.2)
26 2
¢ = tan™ __%’)._ (4.3)
1-(—)
where:
L = oscillation amplitude (m),
()] = phase angle (degree),
€ = damping ratio,

©n = undamped natural frequency of the system (rad/s).
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Figure 4.3 Velocity response of vibratory system
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Figure 4.4 Acceleration response of vibratory system
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Figure 4.5 Steady state response of vibratory system
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All forces acting on the system are balanced. Figure 4.6 shows the phase diagram

of each force acting on the system, for different frequency of the driving force.

driving force
/ \\_\
\\\ inertia force
v

< | \
‘\.. ! Q)<C0n \\

- spring force

damping force

Figure 4.6 Phasor of each force acting on the system for cases: ® <@a, ©=0n, ® >®n.
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4.2 Tool Vibratory Movement

It is assumed that a carriage is moving with a constant velocity V. relative to the
ground. A soil cutting tool, mounted on the carriage, executes sinusoidal vibration of
amplitude () and angular velocity (o) relative to the carriage and along its line of travel.
The velocity ratio (a) is defined as the ratio of the peak vibration (relative to the carriage)

to the forward speed of the carriage.

a=L2 (4.4)

Considering the case in which the peak vibration velocity is greater than the
forward speed (a>1), such that for each vibration cycle, the tools have a chance to move
backwards. The cycle is assumed to start at the instant at which the tillage tool begins to

move forward through the soil at the end of each retreat phase.

When the oscillator operates, the carriage moves at constant velocity ¥, and the
oscillator vibrates the tool sinusoidally. The response of the tool related to the ground is

given by Eq. 4.5 when it is excited by the driving force Fjsin(w?).

x(t) = V.t + Lsin(ot - ) (4.5)
where:

x(t) = displacement relative to the ground (m).

The instantaneous velocity of the tool relative to the soil, V(7), has a constant

component ¥, and a fluctuating component Locos(w!-¢).

V(t)=V, + Lo cos(ot —b) (4.6)
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where;

V(t) = velocity relative to the ground (m/s).

The absolute displacement of the tool is shown in Fig. 4.7 for different carriage

speeds and the given parameters.
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. frequency =10 Hz
. amplitude =0.01 m
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Figure 4.7 Tool motion relative to the ground
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4.3 Vibration Cycle

The instantaneous velocity of the tool relative to the ground consists of a constant
component ¥, and a sinusoidal component Locos(wz-¢). For a speed ratio less than one,
the absolute velocity of the tillage tool relative to the ground is always greater than zero.
The tillage tool has no chance to move backward. The tool is always in contact with soil
during operation. Figure 4.8 shows the tool velocity with respect to the traveling distance
for the speed ratio equal to one. Figure 4.9 gives the shape of motion for the speed ratio
greater than one. A negative velocity of the tillage tool indicates that the tool travels
backward. The traveling locus suggests that the tool moves through the unfailed soil then
it retreats. As the tool repeats the forward routine it first goes through the failed soil then

it meets the unfailed soil again.

Figure 4.10 indicates two vibration cycles of the tool movement with respect to
time. For a>1, the vibration cycle starts at t= t; with the tool stationary and about to
move forward. The tool meets the unfailed soil from ¢, to #,. It begins to move backward

from ¢, to £;. It can be shown that

V(ito)=V. + Lo cos(oty, —¢) =0

Solving above equation the ¢, can be obtained as:

P 4.7)
o)
where:
0 = cos™ —= (4.8)
Lo
[ =2n+0+0 (4.9)
: o
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Figure 4.8 Tool velocity with respect to traveling distance for Lo=V
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Figure 4.9 Tool velocity with respect to traveling distance for Lo>V¢
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Figure 4.10 Displacement (a) and velocity (b) with respect to time
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so that
L .
x(t,)=—2n +0 +¢)+ Lsin® 4.11)
a
and
x(t3)=£(41t -0 +¢) - Lsin® (4.12)
a
where:
to = time the tool begins to move forward (s),
t = time the tool begins to move backward (s),
t3 = time the tool begins to move forward again (s);

x(t;) =displacement at the time ¢, (m),

x(t3) = displacement at the time ¢; (m).

It follows that from ¢, to ¢, the tool has retreated for a distance x, through soil that
has already been failed, where

% =L£(20 —2m)+2Lsin6 (4.13)
a

where:

X; = retreated distance (m).

At the time ¢; the tool begins to move forward again. It is also the start of a new

cycle.

From the start of the cycle, the tool will thus advance through previously failed
soil for the same distance x, until it reaches the interface with unfailed soil. As x(t))-

X(ty)=X,, time the tool begins to meet untilled soil, 7, may be obtained by solving
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%(:, —t,)+sin(ot, — ) —sin(ot, — ) - ~2sin6=0 (4.14)

where:

t = time the tool begins to meet the untilled soil (s).

[f the speed ratio a is less than one, the tool remains in contact with the soil all the

time with an average speed V. The vibration cycle period is 2/.

4.4 Soil Cutting Resistance

The draft needed to pull a tillage tool through soil depends upon the dynamics of
the tool movement, including the direction of travel and velocity, and on whether it
moves through failed or unfailed soil. For a tool moving at a constant low speed V.
through unfailed soil, the draft can be estimated by the non-oscillatory soil cutting model.
For the vibration soil cutting process, the tool is in contact with the soil as the tool starts
to move forward at time ¢, until it begins to move backwards at time ¢, on each oscillatory
cycle. Blekhman's (1954) simple model assumes that the resistance to the motion of a
tool is only accounted for all times when it is penetrating unfailed soil. However, when it
is penetrating soil that has already been failed the force falls to zero. This means that
when the tool is vibrated the instantaneous force is only acting during that part of the
vibration cycle from ¢, to t,, and any draft reduction arises simply because the average
force over the whole cycle is therefore lower. The draft of the cutting tool also depends
on its forward speed. Gunn and Tramontini (1955) assumed a linear relationship with an

intercept R, and a gradient RyA.

R(t) = R,(1 + AV (1)) (4.15)

where:

47



RREOEEAT

T

R(t) = soil cutting resistance (N).

The draft thus depends on the instantaneous velocity of the tillage tool and
whether it moves through failed or unfailed soil. Figure 4.11 shows the soil resistance
ratio during the period of two vibratory cycle. Here, soil resistance ratio is defined as the
instantaneous soil cutting resistance over an average value of a non-oscillatory soil
cutting resistance with the same speed V.

1.2 -
1.0 .
08 -

06 -

04 .

Soil resistance ratio R(t)/R,

0.2 .

0.0 —— e
0.00 0.02 0.04 0.06 0.08 0.10

Time (s)

Figure 4.11 Soil resistance ratio with respect to time
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4.5 Energy and Power Requirements

Two sources of energy supply provide the required energy to the system, the
oscillator driver and the tractor drawbar power. The major part of supplied energy to the
oscillator is converted to reduce the soil cutting resistance and the other part is consumed

by the oscillator to overcome the frictional energy loss in the oscillator mechanism.

4.5.1 Energy consumption by the oscillator

When a dynamic system vibrates at a frequency o under the effect of an exciting
force Fysin(wt), this system is balanced by the inertia, elastic and damping forces. From
Eq. 4.2, the displacement response of the system is Lsin(ws-¢). The amplitude L is
determined by the design of the oscillator. To obtain such an oscillatory response the

amplitude F, of the driving force is given by

F, = LyJ(k - mo?)? + (bo)? (4.16)

The driving force F, has a minimum value when the forced vibration system is in

resonant condition. The corresponding frequency is given by

where:
& = damping ratio (dimensionless),

o, = resonant frequency (rad/s).

The driving force F(z) acts on the displacement x(t)=Lsin(wt-¢) results in energy

consumption of the oscillator per cycle, E; as:
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E, ={F(r)dx

= .[ F; sin(o?)oL cos(wt — ¢ )dr 4.17)
=nF,Lsin¢
where:
Eqs = energy consumption of oscillator (W),
T = 2n/w (s) (period of the cycle).

Expressing the power as the rate of energy consumption, the required power to

run the oscillator is,

o (4.18)

where:

Pos = power required to drive oscillator (J).

4.5.2 Energy consumption in soil cutting

Because of value of the force R(#) changes through the vibration cycle, an average
value is obtained by integration over a cycle and equated to the average drawbar force F,
supplied by the tractor. Soil cutting resistance R(?) is a variable of speed and also it is
dependent on whether the tool is directly in contact with untilled soil during the vibratory

cycle.

F, = L 4 R(1)dt (4.19)
t (4
where:

Fge = average drawbar force (N).
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And consequently the drawbar power P, is,

P, =FJV, (4.20)

Py = drawbar power (W).
The drawbar energy consumed per cycle E,, s,

E,=F,Vr, 4.21)
where:

Eqr = drawbar energy consumption (J).

A comparison to the non-oscillatory soil cutting would be useful to evaluate the
effectiveness of oscillatory cutting process. The energy consumption in a time period
equivalent to the oscillatory cycle period and the power required for soil cutting in non-

oscillatory process is,

E,=RVr, (4.22)

P, =RV, (4.23)
where:

Eq = non-oscillatory energy consumption in a time period (J).

Py = power required for non-oscillatory operation (W).

A comparison between the energy consumed in the cutting process for the
oscillator and non-oscillatory case is presented by the energy ratio (E/E,). The energy
ratio is shown in Fig. 4.12 and Fig. 4.13 for the different value of frequencies and the

amplitudes of the vibration cycle for the cases the speed ratio « is greater than one. A



minimum energy consumption is obtained between the frequency V/L<w<w,. The energy
consumed by the oscillator increased as the vibratory frequency increased. The soil
cutting energy consumption decreased with the increase in the oscillatory frequency. The
energy consumed by the oscillator increased with amplitude while that consumed in soil

cutting decreased exponentially. As a result, the total energy ratio has a minimum value at

a specified amplitude value.
30t
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k = 344386 N/m

25T b=452Ns/m

n
o
I
1

total energy

oscillator energy
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Figure 4.12 Effect of frequency on energy consumption
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Figure 4. 13 Effect of amplitude on energy consumption

53

0.020



S TR e, el T AL N T T TR ER TR

CHAPTER 5
TRANSVERSE VIBRATION OF BEAM

5.1 Equation of Transverse Vibration Beam

When a tillage tool operates in the field, the tool and shank assembly can be
considered as a cantilever beam with lumped mass mounted on the bottom. The soil
cutting resistance acting on the tool is regarded as the transverse load. The fluctuations of
soil resistance will induce the beam to move back and forth. The consequent motion is

called the transverse vibration of the beam.

Assume that the beam has a plane of symmetry and that the vibrations occur in
that plane. To derive the differential equation of motion for the transverse vibration of
beams, consider the forces and moments acting on an element as shown in Fig. 5.1
(Shabana, 1991). M(x, ¢) is the bending moment, V(x, ¢) is the shear force, and f(x, ¢ is

the external force per unit length of the beam.

The force equation of motion in the w direction gives

2

—(V+dV)+ f(x,)dx +V = pA(x)dx‘;%"(x,:) (5.1)

where:
o = mass density (kg/m3),

A(x) = cross-sectional area of the beam (m?2).



M(x, L) +dM(x,t)

A — ~—~——_ R
e \\_‘

A S/(X,t) | | V) HdV(xoL)

: S dx

Figure 5.1 A beam in bending



The moment equation of motion passing through the point o in Fig. 5.1 leads to

(M+dM)-(V+dV)dx+f(x,t)dx‘—t2t——M=O (5.2)

Using the theory of bending of beam (also known as the Euler-Bernoulli or thin

beam theory), the relation between bending moment and deflection can be expressed as

M(x,t) = EI(x) (x t) (5.3)

where:
E = Young's modulus (Pa),

I(x) =moment of inertia of the cross section (m*).

Disgarding terms involving second powers in dx, the equation of motion for the

forced transverse vibration of a non uniform beam can be obtained as:

2 7
9 1EI(x)2 e Dl+p4(x) ,(x 0= f(x1) (5.4)

.‘

For a uniform beam, Eq. 5.4 reduces to

'w (3.5)

Ef(x) (xt)+PA(x) 2(xt) f(x,0)

5.2 Free Vibration

For free vibration, f{x,£)=0, and so the equation of motion becomes

EI(x) 44 (x, :)+pA(x)2—(x £)=0 (5.6)

The free vibration solution can be found using the method of separation of

variables as
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w(x,t) =W(x)T() (5.7)

where W(x) is a space-dependent function and 7(?) is a time-dependent function.
Substituting Eq. 5.7 into Eq. 5.6 and rearranging leads to

El _d'W(x)_ 1 d’T@)

pAW (x) dx* — T(t) dr? %)

Since the left-hand side of this equation depends only on the spatial coordinate x

and the right-hand side depends only on time, one concludes that Eq. 5.8 is satisfied only

if both sides are equal to a constant, that is

where:

where:

where:

El_d'Wx__ 1 &T0_

— = ~—~ =, (5.9)
pAW(x) dx @) ar’
®q = natural frequency of the beam (rad/s).
Equation 5.9 can be written as two equations:
d‘w -
W) =0 (5.10)
d’T(t) 2
+0,T{)=0 5.11a

ar » T(1) ( )

pé  —PAe, (5.11b)

El
The solution of Eq. 5.11 can be expressed as

T(t) = Acosw,t + Bsinw,t



where:

A, B = constants,

They can be found from the initial conditions.
We assume

W(x)=Ce”™

The solution of the Eq. 5.10 can be expressed as

W(x)=Ce™ +Ce™ +Cie™ +C,e™ (5.12)

C..G,, G, C,= constants.

Equation 5.12 also can be expressed as

W(x) =C, cosPBx +C, sinfx + C; coshfx + C, sinh fx (3.13)

The constants C,,C,,C;,C, can be found from the boundary conditions.

The natural frequencies of the beam are calculated from Eq. 5.11b as

. |ET , | EI
= T —_—= [
O‘)n B pA (B) pA14

(5.14)

For the tillage shank, the top of the beam is fixed to the frame and the bottom end

is free for movement.

The boundary conditions can be stated as

W(0)=0 (5.15)
W 0y=0 (5.16)
ox
’w
EI=——()=0 (5.17)
ax-
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15 w
— = 5.18
pw (EI pwe YH)=0 (5.18)

Substituting the above boundary conditions into Eq. 5.13
condition W(0)=0 leads to

G+CG =0

Condition %V(O) =0 leadsto

B(C,+C,)=0
Thus Eq. 5.13 becomes

W(x) = C,(cosPx — coshBx) + C, (sinfx — sinhfx) (5.19)

Applying the condition of Egs. 5.17 and 5.18 into Eq. 5.19 yields

—C,(cos Pl +coshpl)—C,(sinpl/ +sinh f/) =0 (5.20)
C,(sin B/ —sinh /) — C,(cos B/ +coshpl) =0 (5.21)

For the nontrivial solution of C, and C, the determinant of their coefficients must

be zero. We have

—(cosBl +coshPl) —(sinP/+sinhfl)| 0 (5.22)
(sinpl—sinhBl)  —(cospl+coshpl) o

Expanding the determinant gives the following relation

cosPlcoshPl=-1 (5.23)
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The following values of P/ satisfy Eq. 5.23.
B,/ =1.875104

B,l =4.694091

B,/ =7.854757

B,/ =10.995541

The roots of Eq. 5.23, B,/, give the natural frequencies of vibration:

EI

e n=1,2,34.. (5.24)
p.

(D" = (Blll)2

If the value of C,corresponding to By, is denoted as C,,, C,, can be expressed in

in?

terms of C,, from Eq. 5.20.
c, =-C, c?sBl +c?shBl (5.25)
- sinf3/ + sinh 3/

Hence the Eq. 5.19 can be written as

cosP,/+coshP,/., . .
. “)(sinf,x —sinhf3,x 5.26)
sinp /- sinhp,; P ~siohB,x)] (

u/;t (x) = Cln[(coanx —cosh an) _(
The normal modes of vibration can be obtained by the use of Eq. 5.7:

w,(x,t) =W, (x)(Acosa t + Bsinw ) (5.27)

The general solution of the vibratory beam can be expressed by the sum of the

normal modes:
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w(x,t) = i w,(x,¢) (5.28)
n={

5.3 Mode Shapes
Mode shapes are the eigenvectors associated with each characteristic value of
natural frequencies of vibrating system. The first three mode shapes of beam vibration, in

the case in which one end is fixed and other is free, are shown in Fig. 5.2.

5.4 Effect of Axial Force

When an axial tensile or compressive load acts on a beam, the natural frequencies
are different from those for the same beam without such load. To find the effect of an
axial force P(x,t) on the bending vibrations of a beam, consider the equation of motion of

an element, as shown in Fig. 5.3. For the vertical motion, we have

-V+dV)+ fdx+ V + (P +dP)sin(® +dB) — Psin0 = pAdx% (5.29)

and for the rotational motion about o,
dx < A

(M+dM)—(V+dV)dx+fdx-5——M=O (5.30)

for small deflection,
2
sin(9+d9)29+d9=6+@dx=@-+2—‘,vdx (5.31)
ox Ox Ox°

Equations 5.29, 5.30, and 5.31 can be combined to obtain a single differential equation of

motion:
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Figure 5.2. First three mode shapes of a cantilever beam



9 0w 0w o*w
(EIS D+ pAZ - P = f(x,t 5.32
ax-[ ax,]+p P v S(x, 1) (5.32)

For the vibration of a uniform beam, Eq. 5.32 reduces to

4 2 2
oW 0al¥ Pa—‘;—’=f(x,:) (5.33)

ET —_— -
o or Ox

For the free vibration of a uniform beam, Eq. 5.33 reduces to

0w 0w d’w "

EI?"FPA 612 —P6x2 =0 (5.34)
? The solution of Eq. 5.34 can be obtained using the method of separation of
variables as

w(x,t) = W(x)(Acoso t + Bsinw ,f)

(5.35)

Substitution of Eq. 5.35 into Eq. 5.34 gives

4 2
4V _pa¥ ot =0 (5.36)

E122 ——
dx dx’?

By assuming the solution W(x) to be

W(x) = Ce" (5.37)



Teay TAR T TR e

st l .
f(x.t)
M(x,t) . 4 M(x,t) +dM(x,t)
. ' N
/'7”””""_ ~N
' P+dP
e ‘ 0 /
o — 9 +d@
V(x,t) Tv(x,t) FaV(x.t)
——
— -— —— dx

Figure 5.3 A beam under axial load
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The auxiliary equation can be obtained:

The roots of Eq. 5.38 are

3 2 P P2 pA(Dz
25?2 + ; 5.39
Sio%2 2E] J4E212 El ( 7 )

The solution can be expressed as

W(x) = C, coss,x +C, sins,;x + C; cosh s,x + C, sinh s, x (5.40)

By applying boundary conditions to the Eq. 5.40 and getting rid of the constant,

the equation becomes

5} +5,° +(5,5,° —5,°s,)sinh(s,/)sin(s,/) + 2s,%s,* cosh(s,/)cos(s,/) = 0

(5.41)

By solving Egs. 5.39 and 5.41, we can find the natural frequencies of vibration

beam subjected to an axial force.

Equation 5.41 can only be solved numerically. Figure 5.4 shows the fundamental

natural frequency of the vibratory beam with respect to the axial force.
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Figure 5.4 Natural frequency affected by the axial force
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5.5 Effects of Rotary Inertia and Shear Deformation

If the cross-sectional dimensions are not small compared to the length of the
beam, the effects of rotary inertia and shear deformation should be considered. The
procedure, first presented by Timoshenko (1921), is known as the Timoshenko beam
theory and the vibrating beam is called a Timoshenko beam. The free-body diagram and
the geometry for the beam element are shown in Fig. 5.5. If the shear deformation is
zero, the center line of the beam element will coincide with a line perpendicular to the
face of the cross section. Due to shear, the rectangular element tends to go into a
diamond shape without rotation of the face, and the slope of the center line is diminished

by the shear angle (y-dw/dx). Equation 5.42 then can be obtained:

dw
=y - — 5.42
Y =y , ( )

where y denotes the slope of the deflection curve due to bending deformation alone.
dw/dx is the slope of the center line of the beam. ¥’ is the loss of slope which is equal to
the shear angle.

There are two elastic equations for the beam:

M=%y (5.43)
dx
V =k, AGy' = KAG(y - if-ix!”-) (5.44)

where G denotes the shear modulus, r is a constant, also known as Timoshenko's shear
coefficient, which depends on the shape of the cross section. For a rectangular section the

value of k is 5/6; for a circular section it is 9/10 (Cowper, 1966).
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The equations of motion for the element shown in Fig. 5.5 can be derived as

—[V(x, ) + dV(x,0)]+ f(x,0dx + V(x,t) = pA(x)dx —T Y (x,0) (5.45)

For the rotation about a line passing through point O":

3

[M(x,t) + dM(x, 1)] - [V(x, ) + dV (x, ))dx + f(x, :)— — M(x.t) = pl(x)dx 22

—r (546)

along with Eqs. 5.43 and 5.44 and disgarding terms involving second powers in dx, Egs.
5.45 and 5.46 can be expressed as

dw d2

d (5.47)

d*y
- =pl—- 548
) " (5.48)

E

By solving Eq. 5.47 for dy/dx and substituting the result in Eq. 5.48 the desired

equation of motion for the forced vibration of a uniform beam can be obtained as:

4 4 4 2 al
6w+pA8w ol(1+ E)aw pil d*w +EI of ol f

EI ;
o’ or* k.G ox*or’ k G at*  kAG &x* ki AG or

=f (549)

69



CHAPTER 6
VIBRATORY ANALYSIS OF TILLAGE SHANK MOVEMENT

When a tillage tool operates in the field, it carries transverse loads that induce
bending of the tillage shank. The soil resistance acting on the shank of the tillage tool
becomes stored by the mechanism of deformation known as strain or elastic energy
through the entire stressed volume. The stored energy is released as soon as the soil
resistance begins to decrease. The released energy causes the shank of the tillage tool to
move forward relative to the implement. Soil cutting is a discrete process which is
dependent upon the soil clods forming and the dynamic system of the implements.
Generally, the soil resistance fluctuates during the tillage operation. The soil resistance
fluctuation induces the shank of the tillage tool to move back and forward relative to the
tool implement corresponding to the dynamic characteristics of the system. This
phenomenon dictates that the actual tillage tool operation be an oscillatory process in

practice.

6.1 System Equation

When a tillage implement operates in the field, the soil cutting resistance acting
on the tillage tool is conveyed to the shank. The soil resistance can be regarded as a point
transverse load acting on the end of shank. Thus, the shank of the implement can be
considered as a cantilever beam subjected to the point transverse load on the end of the
beam. Figure 6.1 shows the free body diagram of the shank of a tillage tool subjected to a

transverse soil resistance.

70



e MR T At = bt i dehed

(P. A LE) 1

Figure 6.1 Shank of tillage tool subject to transverse soil resistance

The general differential equation of motion for the transverse vibration of a beam

has been discussed in Chapter 5. Assuming the tractor as well as the implement travels at

a constant speed V. the general differential Eq. 5.35 can be used to describe the motion of

the shank of the tillage tool relative to the implement. [t has the form:

2

v [Ef(x) (x t)]+PA(t) (a0 - P—-(x 1y=f(x.1) (5.32)

where f{x, 1), given function of x and f, denotes the transversely distributed load. P is the
axial force, and w is the transverse deflection of the beam.
For a uniform beam, Eq. 5.32 can be reduced to

4

El(x) (t D+ pA(x)

|9 {1
(98]
(95 )
S’

= f(x,1) (.
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The governing differential equation contains fourth order derivatives and a second
order time dependent problem. The analytical solution of w in the Eq. 5.32 does not exist
as the beam is not uniform and/or the transverse load is discontinuous. However, the
finite element method can be employed to solve this problem by using the variational
method to reduce the continuity requirement of the solution. The soil resistance is

concentrated on the free end of beam and is a discrete variable with respect to time.

6.2 Finite Element Formulation

The semidiscrete variational formulation of the general Eq. 5.32 can be
constructed as follows (Reddy 1984).
(1) Multiplying by a test function v(x) and integrating the domain of the problem and

setting the integral to zero.

62 a’w azw

—EI pA 6.1
-Ev[ i o Do ©.1)

(2) Integrating by parts yields

I 2 2
ovd . 0w 0w _ovow 3w ow

- — E[—+pAv——+P — — —vf]dx +[v— P—1, =0 6.2
I[Gxax al TP P e Y] [v ot ok ©-2)

0

Since the equation contains a fourth order derivative, it is necessary to integrate it
twice to distribute the derivatives equally between the dependent variable w and the test

function v:

J-[ azw ov ow *w 6w v 0w, 6.3)
a: ax éx ar o’ & & &’ '
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the following notations are defind

ow 0O Fw
=[-PE+ L1 2Y
o =[- =3 5 —lr-0

w
Q, =[EI ax_zl""

ow 0O w
—[-PX+ L 2Y
O, =[-P 3 az],=:

aZ
0, = [Elg‘;—']n,

With these notations, the variational form becomes.

azw avaw
axz at ax'

va vl —OH0) + QD) + G, =

20 o 20

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

The test function v is twice differentiable and satisfies the boundary conditions. It

is regarded as a variation in w, consistent with the boundary conditions. By formulating

the problem variationally, the continuity requirement of the solution is reduced. Now w

needs to be differentiable only twice.

6.2.1 Boundary conditions

Considering the boundary conditions for the beam, at the top end, the beam is

fixed. As the essential boundary condition it gives:

deflection equal zero

slope equal zero

)
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form

g = [5 EI gx—f]uo = F, (6.9)
0w
O, = [Elax—gluo =M, (6.10)

At the bottom end, it is subjected to the point load F and axial force P.

(0 .0 2w . . . .
F= [g EI Ez—]ﬂ, soil resistance acting as point load
ow
o, =[P " + F],.,
ow .
0, =[£I f]"’ =0 bending moment equal zero

The beam is subjected to a point load F, and a moment M, at the fixed end; (Fig.

Using the method of variable separation, w is interpolated by an expression of the

w=ZI:Uj(t)<Dj(x) (6.11)
iz

Where U, (t) is the value of w at time ¢, at the jth node of the element. @, (¢) is the

shape function at jth node of element.

Equation 6.11 implies that at any arbitrarily fixed time t>0, the function w can be

approximated by a linear combination of ®, and U,. By substituting v = ®, (x) into Eq.

6.8 it becomes

L FBL, PO AdE ab  FU
0= I [Hg;' 2 ,gw—; : 2 5+ G O~k FA0 -+

o _
-0 (©.12)
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It can also be written in matrix form

[MI[U]+[KU]=[F]

where:

[M]= [pA®,®,dx

d’d, 0°®, oD, 0D,
(K]= [ E15— dx+£P? L
(F1= [0, + 000 - 2, 2D+ 0,00

where @ is a test function that should be differentiable twice with respect to x.

(6.13)

(6.14)

(6.15)

(6.16)

The

essential boundary conditions involve the specification of w and dw/dx, and the natural

boundary conditions contain the specification of Q; and Q, at the endpoint of the

element.

The variational form requires that the interpolating functions be continuous with

continuous derivatives up to order three, so that the boundary condition exists. In the

effort to satisfy the end conditions, the continuity conditions are automatically satisfied

Since there is a total of four boundary conditions in an element, a four-parameter

polynomial must be selected for w:

w(x)=C, + Cyx +Cyx* +Cyx*

(6.17)



The continuity conditions are automatically met since C, # 0.

The interpolating form is given by

w(x)=® U, +O,U, +O,;U; + D, U,

where:
Ui =w
U, =‘£11=9|
dx
Us =w,
U, ="ﬂ=92
dx

The shape functions are given by
O, =1- 3(%)2 +2(%)3

®, =—x(1- 3;;)2

®, =3(3) -26)’

®, ==x{() -]

atx =0, &, =1, —& =1, other values are zero.

atx=h, @, =1, - d:;;“ =1, other values are zero.
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(6.21)
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For the given parameters, the three components of the element matrix can been
obtained as:

The mass matrix can be written as

156 -22h 54 13k

pdh|-22h 4h* -13n -3K°

= 23
(M="01 sa 13 156 224 (6.23)

13h =3h* 22h 4Rn?

The stiffness matrix is given by

16 -1 -6 -l
34 -6 - 152 10 15k 10
gh 23: 32 h32h L
_ 2EI- 10 15 10 30
KI=5516 sn 6 sn|"f-16 T 16 1 6.24)
_ 2 2| |15h 10 15h 10
3h h* 3k 2h e
10 30 10 15
The force matrix can be given as
6| |Q
~h O .
[F]:ll’;_- . +Q2 (6.25)
3
h| |0,

6.3 Assembly of Element Equations

In a continuum problem, the variable possesses infinitely many values because it
is a function of each generic point in the whole region. Consequently, the problem is one
with an infinite number of unknowns. The finite element discretization procedures

reduce the problem to one of a finite number of unknowns by dividing the solution region
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into elements and by expressing the unknowns in terms of assumed an approximating
function within each element. The nodal values of the field variable and the test function
for the elements completely define the behavior of the represented problem within the
element. At the nodes where elements are connected, the values of the unknown nodes

are the same for all the elements joining at that node.

Figure 6.2 indicates the one dimensional element. Each element has two nodes.
The domain of the problem, (Q2=0, L) is divided into eight elements of equal length h.
Although an increase in the number of elements generally means more accurate results,
for the problem at hand, the accuracy could not be improved significantly as the element
number increased to six. Since these elements are connected at each local node and U is
continuous, the values of U for the connected nodes should be the same. The
correspondence between the local nodes and the global nodes can be expressed through
the connectivity matrix. A concentrated force, representing the soil resistance, is

considered to act on the right side of the last element.

b Ay

bow A ow

61A 1 2/\ 2
VRN /
node 1 (P.ALE ) node 2

Figure 6.2 Shape of element

78



S TS TIVVRTRITR TIREL YR Y

So far a uniform beam has been considered. When the tillage tool operates in the
field a sweep or other soil cutting tool is attached at the bottom of the shank. Figure 6.3
shows the assembly where the tillage tool is represented by a lumped mass attached to the

end of the beam. The properties of the tillage shank are given in Table 6.1.

A f, | fy ‘f}
| |
|
W Aw
) .‘ 1 "wz 63 3
)/-A\ 62 /_1\\ ,/"\
| / P
_L * B s
& node 1 (P. A LE ) node2 node3
[ Mass

Figure 6.3 Assembly of the beam elements
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Table 6.1 Physical properties of tillage shank

Terms Value

density (p) 7800 kg/m?
Young’s modulus (E) 210 GPa
moment of inertia of the cross section (I) 69.37x107° m*
length of shank (L) 0.65m

cross section area of the beam (A) 0.00129 m?
lumped mass (m) 45kg

6.4 Transient Solution of Finite Element Analysis
The sequential solution of the differential equation of motion can be obtained by
using the Newmark method (Newmark 1959). The Newmark direct integration method

identities are written as:

Ui =U, + M=) U+ U ] (6.26)
U,., =U,+At(}j+(At)2[(%-B)f}/+Bi}m] 6.27)

The Newmark integration method is based on the assumption that the acceleration
varies linearly between two instants of time. The parameters y and B indicate how much
the acceleration at the end of the interval enters the velocity and displacement equations
at the end of the interval Ar. By using this method, it is not intended to satisfy the
governing differential equation at all times, but only at discrete time intervals Ar apart. A

suitable type of variation of the displacement U, velocity U , and acceleration U is

assumed within each time interval At.
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Equation 6.13 is valid at times Ligst; and ¢; , thus give

MU, a+KU,, =F,, (6.28)
MU,+KU, =F, (6.29)
MU+KU,, =F, (6.30)

The Newmark integration method identities can also be written as

U;=U i+ A[(1=7)U ja+yU;] 6.31)
U, =U,, + AU+ (A8 [(% ~B)YU,+BU;] (6.32)

In Eqs 6.26 to 6.32, the unknowns are the three displacements, three velocities

and three accelerations at the time ¢ t; and ¢, respectively. From the initial

=1 0y
conditions the values of U, and U, are known, leaving seven equations and seven

unknowns. Solving the above equations (Eq. 6.26 to Eq. 6.32) the expression of U ,, in

terms of U, and U,_; can be obtained at each time step At as follows:

AU,,=BU,+CU,_ +F (6.33)
where:

A= M+p(AHK

B=2M—(A:2)(-21--2B+y)1<

St
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C=—M-(Atl)(%+B—Y)K

F = (A™)[BF,, +(%-2B+7)F,+(%+B-Y)F-.]

where y and B are parameters that can be determined depending on the desired accuracy

and stability. Newmark suggested a value of y=1/2 to avoid artificial damping. The

value of B depends on the way in which the acceleration is assumed to vary during the

time interval t and t+At.

6.4.1 Initial conditions

Equation 6.33 requires a special starting procedure to obtain the displacement U,

at time At based on the initial value U, and Uo. The displacement U, at time ¢, is

obtained from the Egs 6.34, 6.35, 6.36.
MU+ KU, = F,
MU\+KU, =F,

U, =Uo+AtC./'o+(At)2[(%—B)l.}o+Bl.}|]

Substituting for U e and U 1 in Eq. 6.36 from Eqgs. 6.34 and 6.35 gives

[M+P(AY K, =[M—(%—B)(At)z KIU, + M Dot (' 1R B8

For the problem at hand the initial conditions are

U, =0

Uo =0

(6.34)

(6.35)

(6.37)
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Solving the Eq. 6.37, the expression of U, in terms of the initial condition U, and
U o can be obtained. As the value of U, and U, is known the displacement solution at

other time sequences can be obtained by using Eq. 6.33 iteratively.

Acceleration of the system equation can be solved by using Eq. 6.28 at different
time intervals for the given value of the displacement. The velocity of the system
equation can be obtained by using Eq. 6.31 after acquiring the acceleration term at the

time sequence.

6.5 Stability of Finite Element Calculation

When the stability is examed, it is sufficient to consider the homogenous form of
the equation of motion obtained by taking the external force equal to zero. The idea is
that if a solution procedure is stable with no external loading, then it will also be stable if

an external force is non zero but bounded.

The maximum value of At for which the solution is numerically stable can be

obtained by applying Eq. 6.33 to free vibration of an undamped system. This gives

[M+ BV KIU,, +[(%-2B YXAPK-2MU, +[MA G 4B~y XAFKIU, =0 (638)

Dividing by M and rearranging the terms gives

[1+ B0, A1, +[(%—zrs VYoo =200, +1+ G +B -0 1, =0 (639)

Assuming the solution of Eq. 6.39 is of the form

U, =XU, and
U =AU,
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Dividing by U,_, Eq. 6.39 can be written as

[1+B(0,A0)" N +[(%-2l3 ~¥ )@, 80" =2JA +[1 +(%+ B-7)@,40°]=0 (6.40)

Equation 6.40 is a quadratic equation in A , the solution of which is

G2 NN 1240 BN 07 TP AP+ -1 X0

ha= 2+BloY] e
The general solution of Eq. 6.38 is of the form
U, =CN +GN, (6.42)
where:
A, =" and A, =e"¥ (6.43)

in which p, and p, (and hence A and A,) are generally complex numbers. Constants C,
and C, can be determined from initial conditions.
Equation 6.42 will represent an oscillation motion provided A,and A, are complex

conjugates. This will be the case if

s ) 1 2
[(%-2[3 +Y) (@A) 2T ~4[1+B(@,A1)* J1+ (5 +B - A)(@,40)"] <O (6.44)
By simplifying, Eq 6.45 can be ohtained

2
Al

vy A< (6.45)
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The solution is unconditionally stable provided

11, 1
2—(=+ d y2- 6.46
B27C+y) and y23 (6.46)

The method is unstable for y <—;—, where there is an artificial spurious negative

damping introduced. This means that oscillations will increase in amplitude. If y > % a

positive damping is introduced. This reduces the magnitude of response even without
real damping in the problem. It also reduces the accuracy of Newmark method to first

order (Newmark 1959).

The solution is conditionally stable when

2 (%+‘Y)2_4B 1 11
Arc— ) ,y23 and B<o(o+) (6.47)

0l 1) 4] 472

6.6 Finite Element Results and Discussions

In the dynamic system of the finite element analysis, the tillage assembly was
considered as a uniform cantilever beam affixed by a lumped mass on the bottom. The
response of the vibratory system was obtained from the finite element analysis
considering a transverse load acting on the end of the beam. The solution includes the
deflection, slope, velocity and acceleration of the shank with respect to time at each node
relative to the implement frame. Soil resistance acting on the sweep was considered as a

point transverse load on the end of the shank.
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6.6.1 Tillage tool subjected to constant load

A constant transverse load is first considered acting on the tillage tool although
the soil cutting resistance fluctuates during the tillage operation. A concentrated constant
load of S00 N was assumed at the first step of the finite element analysis. The finite
element analysis calculated the responses at each node of the shank assuming a constant
transverse load is suddenly supplied to the shank. Figure 6.4 shows the finite element
solution of deflection with respect to length of shank at a specific time t=1.0 second. The
value at the end node of the shank was equivalent to the movement of sweep. Hence, the

values at the end of the shank were employed throughout the chapter in the discussion.

(<] ~ ]

R B e

(3]

=
==
= e
= ]
% ‘= 4 - //
: st 7
Sa- g
g —
Z 2+ e
' .//4
1 - ./
] 0 0.1 0.2 03 0.4 05 0s 07
‘} Length of shank (m)

Figure 6.4 Deflection of shank

with respect to length at specific time t=1 s
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Figures 6.5 indicates the transient response in deflection of the shank with respect
to time relative to the implement. Figures 6.6 and 6.7 give the transient response in
velocity and acceleration of the shank with respect to time relative to the carriage. It can
be seen that a fundamental frequency of 14 Hz was associated with the movement of the

tillage shank with the properties of Table 6.1.

Deflection of shank (mm)
W

0i0 0.2 0.4 0.6 0.8 1.0
AL
Time (s)

Figure 6.5 Transient deflection response of shank under constant transverse load
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Figure 6.6 Transient velocity response of shank under constant transverse load

Time (s)
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Figure 6.7 Transient acceleration response of shank under constant transverse load
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6.6.2 Tillage tool subjected to a sinusoidal load

The soil cutting resistance fluctuated during the tillage operation. The cutting
resistance depends upon the properties of the soil, tool shape and the manner of traveling.
It was a time dependent variable. A primary test has been conducted to measure the soil
cutting force variations on a sweep operated in a soil bin. The Fast Fourier transform
analysis technique was used to analyze the soil bin test results of the cutting resistance. [t
was found that the dominant frequency of the soil cutting resistance was approximately
one Hz with the average value of 500 N. Hence, a concentrated harmonic load,
500(1+sinw?), which represented the soil resistance, was considered as the transverse load

acting on the bottom of shank.

Finite element method was used to calculate the corresponding movement of the
shank. The sweep was considered as a lumped mass attached on the bottom. Figures 6.8
and 6.9 indicate the displacement and slope at the end of shank for the time intervals.
Figures 6.10 and 6.11 give the velocity and acceleration of the shank related to the
implement with respect to time. It can be seen that two dominated frequencies were
associated with the curves of deflection, slope, velocity and acceleration. One was the
frequency of the applied soil resistance, and other was the natural frequency of the
system. The complete motion was expressed as the sum of the harmonic curves of the
different frequency. When the forcing frequency o is smaller than the natural frequency

the high frequency curve is added to the low frequencies curve.
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Figure 6.8 Deflection of shank under 1 Hz sinusoidal transverse load
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Figure 6.9 Slope of shank under | Hz sinusoidal transverse load
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Figure 6.10 Velocity of shank under 1 Hz sinusoidal transverse load
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Figure 6.11 Acceleration of shank under 1 Hz sinusoidal transverse load
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If only the shank of tillage tool was considered, no lumped mass added on the
bottom of the shank, the solution of the displacement, velocity and acceleration related to
the implement was obtained by using finite element analysis while the tillage tool was
excited by the harmonic soil resistance. Figure 6.12 shows the deflection of the tillage
tool with respect to time when the mass of tillage tool is not added. It can be seen that the
displacement curve has a high frequency and almost the same amplitude when compared
with the system with the tillage tool mass added. It is obvious that the dynamic response
of the shank under the action of the soil cutting resistance is associated with some
frequencies that are dependent on the characteristics of the tocl implement and the soil
cutting resistance. The Fourier transform theory can be used for the frequency domain

analysis.

6.6.3 Effect of the axial force

When an axial tensile or compressive load adds on the tillage shank the rigidity of
the beam will be changed. Hence the response of the beam will be affected although the
axial force does not directly cause the bending of the shank. As it is discussed in Chapter
6, the fundamental frequency of the shank increases with an increase of the tensile load

while the compressive load reduces the natural frequency of the vibrating system.

Figure 6.13 shows the deflection of the shank for different axial forces. It can be
seen that the tensile axial force tends to decrease the amplitude of the deflection and to
increase the oscillatory frequency of the system, vice verse for the compressive axial
load. The effect of the axial load on the motion of the vibrating system is very small

comparing the values of the axial force of 10000 N and the transverse load of 500 N.
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Figure 6.12. Detlection of shank under 1 Hz sinusoidal transverse load
for the shank no sweep attached
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Figure 6.13 Deflection of the shank under different axial loads
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6.6.4 Fourier transfer analysis of finite element results

Fourier’s theorem states that any single valued periodic function can be
represented by an infinite series of sine and cosine that are harmonics of the fundamental
repetition interval. The discrete Fourier transform was used to approximate the Fourier

transform of a discrete signal. The discrete Fourier transform (DFT) is defined as

- fj2xnk

x(f)= fx(k)e N (6.48)
k=0

The expression is used to transfer a time series of samples to a series of frequency
domain samples. The finite element results and experimental data were analyzed using a
Fast Fourier Transform (FFT) technique to locate the dominant frequency. This
information was used to fit the data into a Fourier series using a harmonic analysis

technique. The regression equation had the following form:

x(t)=A, + i[A,, cos(2nnft) + B, sin(2rnft)] (6.49)

n=1

Figure 6.14 shows FFT analysis of deflection output in the frequency domain.
The FFT analysis of acceleration and velocity output in frequency domain are presented
in Figs. 6.15 and 6.16. The fundamental frequency of the dynamic system is about 14.20
Hz. In Fig 6.14 the two peak amplitudes correspond to the frequency of applied
transverse load of 1 Hz and the natural frequency of the system of 14.20 Hz. Note that
the amplitudes increase in the high frequencies for the velocity and acceleration output
since their output are proportional to the ® and o’ respectively. The frequency was high

for the shank without lumped mass attached.
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Figure 6.14 FFT analysis of deflection

under 1 Hz sinusoidal transverse load
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Figure 6.15 FFT analysis of velocity under 1 Hz sinusoidal transverse load

100

100



e AR e

oo aparind. po

AP & the it ol e gt

Acceleration output (m/s?)

Figure 6.16
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FFT analysis of acceleration under 1 Hz sinusoidal transverse load
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6.6.4 Resonant vibration of tillage tool

The natural frequency is depended upon the characteristics of the implement. By
changing the parameters of the beam, such as material, rotary inertia, and length, the
natural frequency of the implement can be changed. The frequency of the transverse load
represents the variation of the soil resistance. The frequency of the soil resistance could
be decided through the field test although we assumed one Hz for the preliminary

investigation by the finite element analysis.

It is possible to turn the tillage tool so that its resonant frequency is synchronized
to the pattern of the soil cutting resistance. The vibration of the tool at its resonant
frequency may result in large amplitudes. To simulate this condition, a soil cutting
resistance with frequency of 14 Hz was assumed for the vibratory system. The responses
of the dynamic system were obtained by using the finite element model. Figure 6.17
gives the deflection of the sweep assembly with respect to time under the action of 14 Hz
transverse load. Similar curves for the velocity and acceleration can be obtained. This

condition may induce the resonance vibration causing damage to the implement.
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Figure 6.17 Deflection of shank under 14 Hz sinusoidal transverse load
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6.7 Parametric Sensitivity Analysis

In general, the dynamic behavior of a tillage tool is influenced by a number of
factors, such as the material characteristics, length of shank, soil resistance pattern, etc. A
better understanding of these factors is achieved through a parametric study of the model.
The parametric study results indicate a trend in the effect of various parameters on the

response and provide a basis for selecting the parameters that yield optimal operation.

The responses of the dynamic system varied corresponding to the applied
transverse load and its characteristics during operation. The output varied in the positive
and negative region for different intervals. The peak value of the output was used to
compare the results for the different parameters. Figure 6.18 indicates the peak values of
deflection and velocity for the different length of shank under the action of the same soil
cutting resistance. It can be seen that the peak values of deflection and velocity were
proportional to the length of shank. Figure 6.19 shows the peak values of acceleration for
the different shank lengths. Contrary to the deflection and velocity curves the
acceleration generally has a tendency to decrease as the length of shank increases
although the difference in the acceleration value is not very great. In other words, the
values of acceleration are not very sensitive to the length of shank. The results obtained
from the finite element analysis are discrete curves for the time intervals. The results of
the calculation also depend on the time step that has been used in the model. This is why
there is a little inconsistency for some points in the curve in Fig. 6.19. For the various
materials, the elasticity modulus are different. The moment of inertia could be different
although the cross section is the same. The product of elasticity modulus and the moment
of inertia is known as the flexural rigidity that plays a key role in determining the motion
of the dynamic system. Figure 6.20 gives the peak values of deflection and velocity as

the flexural rigidity changes. The corresponding deflection and velocity of the beam
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decrease with an increase of flexural rigidity of the shank. There is no apparent variation

in the acceleration as the flexural rigidity changes.
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Figure 6.18 Peak values of deflection and velocity for the different length of shank
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Figure 6.19 Peak values of acceleration for the different length of shank
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Figure 6.20 Deflection and velocity vs. flexural rigidity of shank
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6.8 Soil Resistance Fluctuation Prediction

Soil cutting resistance depends upon tool geometry, soil properties and traveling
manner. During tillage operation, the soil resistance generally fluctuates since the soil is
consisted of discrete clods. If a tool is excited to vibrate by the soil cutting resistance, the
tool will respond corresponding to the fluctuating soil resistance function. Under ideal
operating conditions of forward speed, the tool would experience periodic displacement.
velocity, acceleration, and force characteristics. It was decided that a linear regression of
static soil cutting resistance and forward speed would give a suitable working model for

the soil-tool interaction (Gunn and Tramontini 1955). This equation is given as

R(t) = R, (1+ AV (D)) (4.15)

For the dynamic system of vibratory soil cutting

Viny=Vv.+V,
where:
V. = constant forward speed of vehicle (m/s),
V, = velocity of tool relative to the vehicle (m/s).

The static soil cutting resistance could be obtained through field test or by using
the soil cutting prediction model. The dynamic soil resistance thus can be obtained if the
absolute traveling velocity of the tool can be determined. Considering the tillage
implement traveling at a constant speed of 1.6 km/h, the relationship between the soil
cutting resistance and the motion of the dynamic systém can be obtained by applying the
soil resistance, which is a function of the speed, into the system equation, Eq. 6.13, as the
transverse load acting on the beam. The soil resistance is a function of speed V(). The

velocity of the tool relative to the implement is also dependent upon the soil resistance
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acting on the vibratory system. By applying these conditions to the Eq 6.13, a new

expression of the system equation can be obtained as:

[MI[T]+[KI[U] = [, ]+ MUTLF] (6.50)

The solution of the system equation should meet the requirement of the
relationship of the soil cutting force and traveling velocity. The soil resistance and
appropriate velocity of the tool was determined by using the intensive search method.
Figure 6.21 presents the soil resistance for the time intervals assuming the soil resistance
is dependent on the forward speed. If the velocity relative to the ground V(t) <0, the soil
resistance will be zero since there is no soil tool interaction. However, while the absolute
velocity is close to zero, the soil cutting resistance will decrease accordingly, in turn the
potential energy will be released to move the tool forward until a new equilibrium state is
reached. According to the calculation the velocity relative to the ground is always greater
than zero and no zero soil resistance is found although the soil resistance is very small
when it is in the critical state. It would also explain the sudden reduction of the soil
resistance as shown in Fig. 6.21. Figure 6.22 shows the deflection of the tool related to
the implement with respect to time. Figures 6.23 and 6.24 give the velocity and
acceleration curves of the tool relative to the implement with respect to time, assuming
the homogeneous soil and cutting resistance is linearly proportional to velocity. It can be
seen from the figures that the motion of the system gradually stabilizes as the
homogeneous material tends to restrict the motion of the tool. However, the stable
motion of the dynamic system is realized under the assumption that soil is a homogenous
material and the cutting resistance is linearly dependent upon the velocity. In reality. soil
cutting resistance fluctuates due to the nonhomogenous characteristics of the soil. The
sudden change of the soil cutting resistance will cause the vibration to be an inevitable

phenomenon associated with the soil cutting operation.
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Figure 6.21 Predicted tillage resistance

assuming soil is homogeneous and draft is linearly dependent on velocity
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Figure 6.22 Predicted deflection of shank relative to the implement

assuming soil is homogenous and draft is linearly dependent on velocity
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Figure 6.23 Predicted velocity of shank relative to the implement

assuming soil is homogenous and draft is linearly dependent on velocity
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Figure 6.24 Predicted acceleration of shank relative to the implement

assuming soil is homogenous and draft is linearly dependent on velocity
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CHAPTER 7
SOIL BIN TEST VERIFICATION AND DISCUSSIONS

Laboratory tests were conducted to compare the results of the finite element
analysis with experimental test results. Tests were carried out in an indoor soil bin for a
shank and sweep assembly at travel speeds of 1.6 km/h and 3.2 km/h. Figure 7.1 shows
the shank and sweep assembly mounted on the carriage tool-bar. Tests were conducted to

measure the draft and acceleration of tillage tool related to the carriage frame.

The soil used in the soil bin is a clay loam. The average moisture content of the
soil was 12% in the soil bin during the test runs. The physical properties of soil are given
in Table 7.1. The soil conditions were carefully controlled during the tests to provide

relatively uniform conditions throughout all test runs.

7.1 Soil Bin Test Procedure

At the beginning of the soil preparation, water was sprayed uniformly on the soil.
Then the soil was covered with a plastic sheet for 18 hours to allow the moisture to
infiltrate from the soil surface down to the sub-surface. The soil was then rototilled into
fine particies (Fig. 7.2), leveled and packed. Two different packers were used to
compress the soil. The soil was first packed with a sheep-foot packer (Fig. 7.3), five
times forward and back, which compacted the sub-surface soil. Finally a smooth roller
(Fig. 7.4) was used to pack the surface soil twice forward and back. Figure 7.5 shows a

prepared soil bin site.
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Table 7.1 Engineering classification of soil (Adams 1996)

Parameter Value
Particle analysis
Sand 48.1%
Silt 23.6%
Clay 28.3%
Specific gravity 2.65
Atterberg consistency limits
Liquid limit, water content 32.9%
Plastic limit, water content 18.8%
Plasticity index 14.1%

Optimum compaction state
Water content 18%

Dry bulk density (Mg/m?) 1.65

;
}
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Figure 7.1 Tillage shank mounted on the carriage frame
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Figure 7.3 Sheep foot packer
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Figure 7.4 Surface packer
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Figure 7.5 Prepared soil bin
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7.2 Acceleration of Tillage Shank and Tool

Two accelerometers, model JTF/3629-05 (Sensotec), were used for acceleration
measurements. One was mounted on the bottom of the shank to measure the acceleration
of tillage tool. Another was mounted on the traveling frame to check the significance of
background acceleration. The accelerometers had good sensitivity characteristics and a
wide useful frequency ranges up to 350 Hz. With a small size and light weight, the
accelerometers were able to measure the vibration of the dynamic system without loading
the shank. The accelerometer generated a voltage output signal that was proportional to

the acceleration of the vibrating system by using a low impedance strain gauge bridge.

The cable of the accelerometer was taped to the vibrating shank, and the other end
of the cable, which was connected to the amplifier, was kept away from the vibrating
shank. This procedure was done to eliminate or at least minimize cable noise caused by

dynamic bending, compression, or tension in the cable.

The background noise was checked by comparing the relative magnitudes of the
acceleration of the frame and the vibrating shank. Figure 7.6 indicates the acceleration
magnitudes of the vibrating shank and carriage frame with respect to time. The induced
vibration caused by the background noise was less than one-third of the value obtained on
the vibrating system under test as suggested by Irwin and Graf (1979) for reasonably

accurate results.

The differences in acceleration values between the tillage tool and frame were
considered as the measured data since the frame was regarded as the reference of the

dynamic system. The motion of the dynamic system was relative to the frame.
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A low pass filter with cut off frequency 200 Hz was used in the data acquisition

system to eliminate high frequency noise.
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—o—acceleration of frame
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Figure 7.6 Measured acceleration with respect to time at speed 1.6 km/h



7.3 Draft of Tillage Tool

The draft of the tillage tool was obtained by measuring the strain change on the
shank of the sweep. The shank of the tillage tool operating in the soil bin was rigidly
clamped to the horizontal beam of the carriage frame. The sweep was bolted at the end of
the shank. The soil resistance acting on the sweep could be represented as a transverse
force acting on a vertical cantilever beam. A four arm bridge circuit transducer, with two
tension arms and two compression arms on opposite sides, was used to measure the draft
of the tillage tool. To increase the sensitivity of measurement, the transducer was
installed on the top part of the shank with h=500 mm from the acting point of the soil
resistance to the transducer. Four 350 Q (KFC-5-350-c1-11) strain gauges were used in
the bridge circuit. The gauges were mounted on the shank of the tillage tool according to
the direction of the strain gauge installation. After the adhesive was cured, M coating and

then plastic sponge was applied to the surface to protect the strain gauge.

The strain gauge transducer mounted on the shank was sensitive to the stress

change of the beam. The stress is directly related to the bending moment generated as.

c

£E=— 7.1)
£ (
o= Me (7.2)
1

where:
£ = strain (mm/mm),
o = stress (Pa),
M = bending moment applied on the strain gauge (Nm),

I = moment of inertia of the beam (m*),



c = half thickness of shank (m).

For the static problem, the bending moment is caused by the transverse load on
the beam. The transverse load on the beam can be obtained by the proper calibration
through the measurement of strain. However, for the dynamic system, the acceleration of
the mass also adds a bending moment on the beam which affects the strain of the

measurement. Figure 7.7 shows the free body diagram of the dynamic system.
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Figure 7.7 Free body diagram of tillage assembly
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The bending moment of the beam is mainly caused by the transverse load F and

term. If the inertia term at the other point of the beam is not considered, the

component force acting on point n can be obtained by reading the strain at the point 0-0’

of the transducer.

where:

where:

Let P=F+m,x,

The deflection and the slope of beam at each point x, can then be obtained as:

U, = %(nxj -x’) n=135,.. (7.3)

U, = deflection of beam at node n (m),

P = component load acting on the end of shank (N),

L = length of shank (m).

U—L(x2—2Lx) n=24,6 (7.4)
n 2E[ n n 3 TeMgeee .

U, = slope of bending beam at node n (rad).

The differential equation of motion for the lateral vibration of beam can be

represented in matrix form by using the finite difference method:

[MI[U]+[KI[U] = [F] (6.13)

In Eq. 6.13, [U] is known at each point. [f},,_x] is the acceleration at the end point

of the beam which was measured by the accelerometer.
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For the force matrix, there is only one point load F acting on the beam
0

0

[F]

(=]

Substituting [U], [Us-i1, and [F] into Eq. 7.13, we obtain

m, ity Us .4, Ui, U =k Y~k U=. 4, U~k
m, &""’h zé*"*‘”h»—; (.j"-*'*’”'zn U =—k U -k U= o, U ~R, U,

m Utm, , U +.m,, Utm, U =F=k U -k _U~.%_, U~k 0,
Mg Ut Uit T, T = U~k o Uy~ U,

. We have:

(7.5)

(7.6)

Rearranging the matrix equation, substituting the [F] for [i.f,,-x] we get:

om0 m ] | AURU~ALL A T
momo. 0omoy Y-kl U, -k -m,, U,

My Mo - - - Mo || F -kn-ll(‘(—krlzq—'"_krh-ll;jr-l —kw.q—mwn (Z—l
mom 0 m T | 4 Uk U U U -m U,

1 mn

- -

(7.7)

By solving Eq. 7.7, the transverse soil cutting resistance F acting on the point n-1

and the acceleration value at the other points on the shank can be obtained. Thus. by
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measuring the strain change of the beam, the soil cutting resistance can be obtained at

each time interval. Figure 7.8 shows the soil cutting resistance with respect to time.
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Figure 7.8 Measured soil cutting resistance at 1.6 km/h speed



R AEh b A

B LR

7.4 Model Verification and Discussion

Theoretical analysis of the shank vibration has been given in Chapter 6 by using
the finite element model to simulate the motion of the shank under the assumed harmonic
soil cutting resistance. The parameters that affected the vibration of the shank also have
been analyzed. However, the measured draft was different from the harmonic
assumption. The draft is not an independent parameter as the previous analysis
suggested. It is dependent upon the soil properties, tool geometry and the relative
movement between the sweep and soil. The soil resistance applied on the blades arises
from the relative motion between the blade and the soil. The soil bin tests were carried

out for the purpose of verifying the finite element model.

The soil cutting resistance was obtained by solving the dynamic equations
governing the lateral motion of the beam through the measurement of the strain change
on the beam. By doing so, the inertial effect on the bending of the shank was eliminated.
Then, the soil cutting resistance acting on the shank thus obtained, was applied in the
finite element analysis. The soil cutting resistance was measured after the tillage tool
traveled some distance in the soil bin. The soil resistance applied on the blade tended to
produce restrained deflection and velocity. With restrained deflection and velocity, after
a sufficiently large number of impacts and force cycles, both the soil cutting force and the
rebound velocity are close to their values at some previous impact time as detected
experimentally. From this time on, the motion was more likely as the practical operation.
Thus, the measured value of deflection of the beam at that time was introduced as the
initial condition of the finite element model. The sampling rate was 220 Hz for the test at

the traveling speed of 1.6 km/h.

Figure 7.9 shows the finite element solution of deflection of the shank under the

action of the measured soil cutting resistance at the traveling speed of 1.6 km/h. Figure
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7.10 illustrates the finite element solution for the acceleration of the shank under the
action of the measured soil cutting resistance. Figure 7. 11 gives the finite element

solution of the velocity of the shank for the carriage speed of 1.6 km/h.
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Figure 7.9 Finite element solution of the deflection of shank

under measured soil resistance at speed 1.6 km/h
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Figure 7.11 Finite element solution of the velocity of shank

under measured soil resistance at speed 1.6 km/h



The solutions of the finite element model were compared with the data from the
soil bin test. Figure 7.12 presents the direct comparison between static solution and
simulated deflection traces for the test implement at traveling speed of 1.6 km/h, at the
different time intervals. Figure 7.13 shows the comparison between the measured and
predicted acceleration response. It can be seen that there is a correlation between
predicted and measured data. The comparison exhibits generally good agreement in
terms of the deflection and acceleration at the first few points. Beyond the first few data

points, the predicted data have a higher fluctuation.
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Figure 7.12 Comparison of the finite element solution of deflection

with the static solution under measured soil resistance at speed 1.6 km/h
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Figure 7.13 Comparison of the finite element solution of acceleration

with the measured value under soil bin resistance at speed 1.6 km/h
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The soil bin test also was conducted for a carriage speed of 3.2 km/h. The soil
cutting resistance and the acceleration of the shank was measured at the sampling rate of
440 Hz. The measured soil cutting resistance was applied to the finite element model to
simulate the response motion of the shank at each time interval. Figure 7.14 shows the
finite element solution of deflection of the shank under the action of the measured soil
cutting resistance at the traveling speed 3.2 km/h. Figure 7.15 illustrates the finite
element solution of acceleration of the shank under the action of the measured soil cutting
resistance. Figure 7.16 gives the finite element solution of the velocity while the
measured soil resistance was applied to the model. The solutions of the finite element
model were compared with the data from the soil bin test. Figure 7.17 shows the direct
comparison between the static solution and the simulated deflection traces for the test
implement at traveling speed 3.2 km/h with respect to time. Figure 7.18 shows the
comparison between the measured and predicted acceleration curves. Comparing the
finite element solution for different speeds, the estimated acceleration at speed 3.2 km/h
was closer to the measured value. The high sampling rate might have contributed to the
better simulation results since at a high sampling rate, a smaller At was used in the finite

element analysis.
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Figure 7.14 Finite element solution of deflection

under soil bin cutting resistance at speed 3.2 km/h
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Figure 7.15 Finite element solution of acceleration

under soil bin cutting resistance at speed 3.2 km/h
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Figure 7.16 Finite element solution of velocity

under soil bin cutting resistance at speed 3.2 km/h
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Figure 7.17 Comparison of the finite element solution of deflection

with the static solution under soil resistance at speed 3.2 km/h
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As the soil resistance increases, the deflection of the shank increases, and more
elastic energy is stored in the stressed beam until the dynamic system is balanced. The
energy stored in the beam tends to be released as long as the soil resistance decreases and
the shank begins to move forward relative to the frame, while the dynamic system reaches
a new equilibrium state. The vibration of the system involves the transfer of its potential
energy to kinetic energy and kinetic energy to potential energy, alternately. When the
tool operates in the field, the soil resistance is passively applied to the tool. It is due to
the movement of the tillage tool which encounters soil resistance. Hence, the soil cutting
resistance is determined by the movement of the tillage tool. When the shank moves
forward relative to the implement, the soil resistance tends to increase to restrict its
movement. When the shank moves backward relative to the implement, the soil
resistance tends to decrease so the stored elastic energy in the stressed beam is released to
confine its movement. This kind of confinement created by the soil cutting resistance
corresponding to the movement of the shank keeps the system relatively stable. For the
finite element model prediction, although the measured soil cutting resistance was
applied, the draft does not correspond to the predicted movement of the shank. It is an
independent time sequential observation for the prediction model. The finite element
model gives a good agreement for the deflection and acceleration at the first few points of
prediction shown in Fig 7.19. Beyond the first few estimations of the finite element
model, the difference between the simulation and field test gradually increases. The
vibration system detects a higher fluctuation in deflection and acceleration compared with
the observed values as shown in Figs. 7.12, 7.13, 7.17, and 7.18 as the shift of the
prediction accumulated. Some of the parameters, including the mass variation of the
system, measurement error of soil cutting resistance, and natural frequency shift of the
system, will cause the shift and error in the finite element calculation. A change in
amount of soil, adhered to the tool during the tillage operation, will affect the inertia force

of the system and also alter the system natural frequency.

140



Acceleration of shank (m/s?)

10 -

0.06 0.08 .10

—o— estimated

-10 * —g— Measured

15 _
Time (s)

Figure 7.19 Comparison of the finite element solution of acceleration

with measured value at first few points at speed 1.6 km/h
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7.5 Data Analysis

Data analysis was necessary to provide the useful information and to confirm that

the measurement procedure was not contaminated.

7.5.1 Fourier transfer analysis of finite element estimation
The dynamic responses of the tillage shank under the action of the soil cutting
resistance were associated with some frequencies which are dependent on the

characteristics of the tool implement and the type of soil.

Figure 7.20 shows the finite element solution of deflection output in the frequency
domain. The FFT analysis of acceleration and velocity output in the frequency domain is
presented in Figs 7.21 and 7.22, respectively. The dominant frequency is seen to be
about 14 Hz. Note that the amplitude increases in the high frequencies for the velocity

and acceleration output since their outputs are proportional to @ and @?, respectively.
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Figure 7. 20 FFT analysis of finite element solution of deflection

under soil bin cutting resistance at speed 1.6 km/h
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Acceleration output (m/s?)
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Figure 7.21 FFT analysis of finite element solution of acceleration

under soil bin cutting resistance at speed 1.6 km/h.
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Figure 7.22 FFT analysis of finite element solution of velocity

under soil bin cutting resistance at speed 1.6 km/h.
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7.5.2 Aliasing analysis

Before any series of data can undergo digital signal processing, the data must be
windowed and sampled. The rate at which the data is sampled determines how well it is
defined and how close the discrete representation is to the analog original. The rule
governing proper sampling is referred to as the Nyquist theorem (Bendat and Piersol
1986), which states that the sampling rate must be at least twice the frequency of the
highest frequency component in the waveform being sampled. In other words, there must
be at least two samples per cycle for any frequency component to be defined. If the
sampling rate is less than twice the highest frequency component aliasing occurs. If the
curve frequency is greater than the 1/2 of the sampling rate, the components fold around
the edges of the FFT magnitude display and move back to a lower frequency area. It is

the representation of a high frequency component by a low frequency component.

Figures 7.23 and 7.24 present the FFT analysis output of the soil cutting resistance
on the frequency domain at speeds 1.6 and 3.2 km/h, respectively. It can be seen that the
sampled signal drops to an insignificant level at high frequency, which indicates that
there is no aliasing existing for the test data. Also the signals beyond 200 Hz were

filtered using a low pass filter.
It is not possible to have a sampling rate that ensures two samples per cycle for all

frequencies in the data series. This causes a considerable number of frequencies with

insignificant magnitude which could exist in the high frequency area.
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Figure 7.23 FFT analysis of soil bin cutting resistance at speed 1.6 km/h
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Figure 7.24 FFT analysis of soil bin cutting resistance at speed 3.2 kmvh
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CHAPTER 8
SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FUTURE WORK

8.1 Summary

A theoretical investigation for soil cutting by forced oscillation and self-excited
oscillation was presented. A model was developed to predict energy consumption of the
forced oscillatory operation. A finite element model was developed to simulate the
responses of the shank and tool under the transverse soil cutting resistance for the self-

excited oscillation. The model was verified from experiments in an indoor soil bin.

For the forced oscillatory soil cutting, a model was developed to represent the
force relationship of the vibrating system. The energy consumption model was suggested
considering the oscillator driver and the tractor drawbar power. Utilizing the phenomena
of soil resistance change by the effect of vibration velocity, the total energy consumption
was obtained by using the numerical integration over the vibratory cycle. A comparison
in energy consumption between the oscillatory and non-oscillatory case was presented
with respect to the change of frequency and amplitude of the oscillatory system. An
optimum frequency and amplitude were suggested to minimize the total energy

consumption for the given parameters of the vibratory system.

Draft power plus the power needed to drive the vibrator constituted the total
power consumption. Oscillatory operation generally resulted in a reduction of average

soil cutting resistance. However, the draft reduction was achieved at a substantial

increase of the overall power requirement.
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The energy consumption for the soil cutting portion decreased as the vibratory
frequency and amplitude increased. The energy needed to drive the vibrator increased
with the increase of the vibratory frequency and amplitude. As a result, the total energy
consumption was found to increase in the forced oscillatory operation. A nearly unit
energy consumption ratio (the energy consumption of forced oscillation over the non-

oscillatory operation) can be realized by optimizing the vibratory system.

For the self-excited soil cutting operation in the field, the tillage tool encounters
periodic fluctuations of cutting resistance owing to the nonhomogeneous characteristics
of soil. The fluctuations cause the shank of the tillage tool to move backward and
forward relative to the implement. This phenomenon indicates that the actual tillage tool
operation is a vibration process. Contrary to the forced vibration, this kind of process is

called self-excited vibration.

Fast Fourier analysis of the measured soil resistance indicated that the draft
fluctuated in a periodic manner with the associated frequencies up to 5 Hz. The dominant
frequency was found at about 1 Hz. Draft forces for a sweep in the soil bin varied

typically £30% of the mean value.

The general differential equation of motion for the transverse vibration of the
beam was used to describe the movement of the shank and tool relative to the frame. A
sweep bolted at the end of shank was considered as a lumped mass attached to the beam

(shank).

A finite element model was developed based on the fourth differential equation of
the lateral vibration of the beam. The tillage tool was considered as a cantilever beam

with lumped mass subjected to a transverse load acting on the tool. The results from the
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finite element analysis included the deflection, slope, velocity, and acceleration of the
shank at each node at various time intervals. The Newmark direct integration method
was employed in the finite element model to obtain the transient values of the time

intervals.

A constant soil cutting force was first considered as transverse load acting on the
tool in the finite element analysis. The results of the finite element calculation indicated
that the movement of the tillage tool was determined by its own characteristics and the
applied transverse soil resistance. A sinusoidal load with I Hz frequency was then
considered in the finite element analysis. The responding movement of the dynamic
system was related to the frequency of the applied soil resistance. The results indicated
that two dominant frequencies were associated with the curves of deflection, slope,
velocity, and acceleration. One was the frequency of the applied soil resistance and the
other was the fundamental frequency of the system. The resonant vibration occurred as

the frequency of applied soil resistance was close to the natural frequency of the system.

A parametric sensitivity analysis was carried out to provide the basis for selecting
the parameters that determine the performance of the vibration system. The deflection
and velocity of the system were proportional to the length of the shank while the
acceleration value decreased slightly as the length of the shank increased. The deflection
and velocity decreased with an increase in flexural rigidity of the shank. There was no
apparent change in the acceleration as the flexural rigidity are varied. The tillage tool
was considered as the lumped mass attached on the shank. The attached mass tended to

reduce the natural frequency of the vibration system.

Soil bin tests were carried out to verify the calculation of the finite element model

by comparing the acceleration between measured and estimated data under the same soil
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cutting resistance. Soil cutting resistance was obtained by measuring the strain change on
the shank. The strain is directly related to the bending moment generated there. For the
static problem, the bending moment is induced by the transverse load on the shank. The
transverse load on the shank can be obtained by proper calibration through the
measurement of the strain. For the dynamic system, the acceleration of the mass also
added a bending moment component to the shank. Hence, the soil cutting resistance was
obtained by solving the dynamic equation governing the lateral motion of the beam
considering the effect of the inertia term. The soil cutting resistance obtained by this
procedure was used for the dynamic analysis and evaluation of the finite element model

of the tillage shank operation.

Comparing the acceleration between measured and estimated data, there was an
apparent correlation between the finite element model estimations and the test results. In
general, a good agreement was achieved in terms of acceleration at the first few points of
the calculation. Beyond the first few points, the predicted data had a high fluctuation at a
speed of 1.6 km/h. However, a close prediction was obtained in terms of acceleration at a
travel speed 3.2 km/h. The better prediction was attributed to a small At used in the finite
element analysis due to the high sampling rate of 440 Hz. Differences in the results from
finite element method and the test results could be attributed to the error accumulation

and shift of the estimation.

The finite element model was also used to predict the fluctuation of movement of
the dynamic system assuming soil was homogenous and cutting resistance was linearly
dependent on velocity. The results indicated that the fluctuation of the dynamic system
gradually stabilized since the soil acted as a damping media to restrict the movement of

the tillage tool. However, under the field conditions, the variations in soil resistance
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would induce the vibration of the system although the vibration was restrained in both the

soil bin tests and the finite element analysis.

8.2 Conclusions

1.

)

A dynamic model was successfully used to predict the total energy consumption
by considering the energy required for the soil cutting and for driving the

oscillator.

a) A forced oscillatory operation resulted in a decrease in the average soil cutting
resistance. However, the draft reduction was achieved with additional power
required for driving the oscillator. The overall total energy consumption was

found to increase with the oscillator operation.

b) The soil cutting energy consumption decreased as the amplitude and
frequency increased while the energy consumption of the oscillator increased

with increase of the amplitude and frequency of the system.

¢) The total energy consumption can be minimized by selecting a proper

frequency and amplitude of the oscillatory system.

A finite element model was successfully used to simulate the responses of the
tillage shank and tool under the transverse soil cutting resistance. The results
from the finite element model included the deflection, slope, velocity. and

acceleration of the shank at each node in the time intervals.

a) The Fast Fourier analysis of the results of the finite element calculation

indicated that the movement of tillage tool corresponded to the applied
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b)

transverse soil resistance. Two dominant frequencies were associated with the
curves of deflection, slope, velocity, and acceleration. One was the frequency
of the applied soil resistance and the other was the fundamental frequency of

the system.

Resonant vibration will occur if the frequency of the soil resistance is close to

the natural frequency of the dynamic system.

The corresponding motion of the tillage shank was determined by the properties

of the beam and the applied soil resistance.

a)

b)

c)

The deflection and velocity of the system were proportional to the length of
the shank while the acceleration value decreased slightly as the length of the

shank increased.

The deflection and velocity decreased with an increase in flexural rigidity of
the shank. These resuits indicated that the length of the shank was the most

sensitive parameter in determining the response of the shank movement.

The mass of the tillage tool tends to decrease the frequency of the vibrating

system.

The verification of the model was in good agreement in terms of the acceleration

for the first few points of comparison. A higher sampling rate provided a better

agreement between the test data and the model estimations.



a) Both of the finite element results and soil bin test indicated that the soil media
had the tendency to restrict the movement of the tillage tool. The movement

of the self-excited vibratory operation was confined.

b) Draft forces for a sweep in the soil bin varied +30% of the mean value with

the associated frequencies up to 5 Hz.

8.3 Suggestions for Future Work

For the forced oscillatory soil cutting, a further experiment should be conducted to
verify the energy consumption model considering the optimum frequency and amplitude.
To match the frequency and amplitude for minimum energy consumption, a variable

amplitude and stiffness spring system are suggested.

The finite element model has been developed based on the differential equation
governing the motion of transverse vibration beam subjected to a point load on the end of
the shank. In real tillage operation, different kinds of assembly other than the simple
beam construction are used. A curved shank with a suspension spring connection is a
common configuration. A more sophisticated two dimensional equation should be

considered to describe the motion of the curved tillage assembly.

The work reported in this research project is still in a preliminary stage. To
provide information for the optimum design of tillage assembly, more tests should be
conducted under different conditions, such as various field conditions, different
configurations of the tillage assembly, different travel speeds, etc. The best combination
can be selected to provide a satisfactory soil structure for seed emergence and crop

growth with a minimum of energy input.



The oscillatory tillage tool produces smaller soil aggregates than a rigid one. For
self-excited oscillatory operation, further investigations are needed to considering the

effects of amplitude and frequency on the aggregate size of soil.
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