

Insecticidal Modes of Action

Implications for application, beneficials, and the applicator


Topics

- 1. Commonly used modes of action
- 2. Basis for Selectivity
- 3. Ingestion versus contact
- 4. Systemic versus non-systemic
- 5. Delivery methods

Lepidoptera - Mode of Action Classification by Target Site

Nerve & Muscle Targets

- **1.** Acetylcholinesterase (AChE) inhibitors 1A Carbamates, 1B Organophosphates
- 2. GABA-gated chloride channel antagonists 2A Cyclodiene Organochlorines 2B Phenylpyrazoles
- **3.** Sodium channel modulators *3A Pyrethrins, Pyrethroids*
- 4. Nicotinic acetylcholine receptor (nAChR) agonists 4A Neonicotinoids
- 5. Nicotinic acetylcholine receptor (nAChR) allosteric activators 5 Spinosyns
- 6. Chloride channel activators 6 Avermectins, Milbemycins
- 14. Nicotinic acetylcholine receptor (nAChR) channel blockers 14 Nereistoxin analogues
- 22. Voltage-dependent sodium channel blockers 22A Indoxacarb, 22B Metaflumizone
- **28. Ryanodine receptor modulators** 28 Diamides

Unknown or uncertain MoA Azadirachtin, Pyridalyl

Respiration Targets

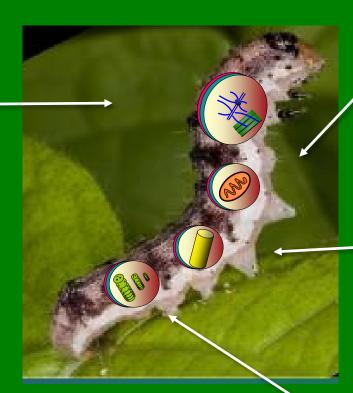
13. Uncouplers of oxidative phosphorylation via disruption of the proton gradient 13 Chlorfenapyr
21. Mitochondrial complex I electron transport inhibitors 21A Tolfenpyrad
Midgut Targets
11. Microbial disruptors of insect midgut

membranes 11A Bacillus thuringiensis, 11B Bacillus sphaericus

Growth & Development Targets

7. Juvenile hormone mimics 7B Juvenile hormone analogues

15. Inhibitors of chitin biosynthesis, Type 0


15 Benzoylureas

18. Ecdysone receptor agonists 18 Diacylhydrazines

Lepidoptera - Mode of Action Classification by Target Site

Nerve & Muscle Targets

- **1.** Acetylcholinesterase (AChE) inhibitors 1A Carbamates, 1B Organophosphates
- 2. GABA-gated chloride channel antagonists 2A Cyclodiene Organochlorines 2B Phenylpyrazoles
- **3.** Sodium channel modulators *3A Pyrethrins, Pyrethroids*
- 4. Nicotinic acetylcholine receptor (nAChR) agonists 4A Neonicotinoids
- 5. Nicotinic acetylcholine receptor (nAChR) allosteric activators 5 Spinosyns
- 6. Chloride channel activators 6 Avermectins, Milbemycins
- 14. Nicotinic acetylcholine receptor (nAChR) channel blockers 14 Nereistoxin analogues
- 22. Voltage-dependent sodium channel blockers 22A Indoxacarb, 22B Metaflumizone
- **28. Ryanodine receptor modulators** 28 Diamides

Unknown or uncertain MoA Azadirachtin, Pyridalyl

Respiration Targets

13. Uncouplers of oxidative phosphorylation via disruption of the proton gradient 13 Chlorfenapyr
21. Mitochondrial complex I electron transport inhibitors 21A Tolfenpyrad
Midgut Targets
11. Microbial disruptors of insect midgut membranes

11A Bacillus thuringiensis, 11B Bacillus sphaericus

Growth & Development Targets

7. Juvenile hormone mimics 7B Juvenile hormone analogues

15. Inhibitors of chitin biosynthesis, Type 0

15 Benzoylureas

18. Ecdysone receptor agonists 18 Diacylhydrazines

Aphids, Whiteflies & Hoppers - Mode of Action Classification by Target Site

Nerve and Muscle Targets

- **1.** Acetylcholinesterase (AChE) inhibitors 1A Carbamates, 1B Organophosphates
- 2. GABA-gated chloride channel antagonists 2A Cyclodiene Organochlorines

2B Phenylpyrazoles

- **3.** Sodium channel modulators *3A Pyrethrins, Pyrethroids*
- 4. Nicotinic acetylcholine receptor (nAChR) agonists 4A Neonicotinoids, 4C Sulfoxaflor, 4D Flupyradifurone
- **9. Modulators of Chordotonal Organs** 9B Pymetrozine 9C Flonicamid
- 22. Voltage-dependent sodium channel blockers 22A Indoxacarb

28. Ryanodine receptor modulators 28 Cyantraniliprole

			VER BAN
		10	Terrer
MoA Grou p	Aphids	Whiteflie s	Hoppers
1A	Х	Х	Х
1B	Х	Х	Х
2A	Х	Х	Х
2B			Х
3A	Х	Х	Х
4A	Х	Х	Х
4C	Х	Х	Х
4D	Х	Х	Х

Χ

Χ

Χ

Χ

Х

Х

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Х

Х

Χ

Χ

Χ

Χ

Χ

Χ

Χ

7A

7**C**

9B

9C

12A

15

16

21A

22A

23

28

UN *

Respiration Targets

- **12. Inhibitors of mitochondrial ATP synthase** *12A Diafenthiuron*
- 21. Mitochondrial complex I electron transport inhibitors 21A Tolfenpyrad, Pyridaben

Growth and Development Targets

- 7. Juvenile hormone mimics 7A Kinoprene, 7C Pyriproxyfen
- 15. Inhibitors of chitin biosynthesis, Type 0 15 Benzoylureas
- **16. Inhibitors of chitin biosynthesis, Type 1** *16 Buprofezin*
- **23. Inhibitors of lipid synthesis** 23 Tetronic & Tetramic acid derivatives

Unknown or uncertain MoA UN Pyrifluguinazon *

The table above lists the main mode of action groups for the control of aphids, whiteflies and hoppers. However, the availability may differ regionally due to registration status.

Aphids, Whiteflies & Hoppers - Mode of Action Classification by Target Site

Nerve and Muscle Targets

- **1.** Acetylcholinesterase (AChE) inhibitors 1A Carbamates, 1B Organophosphates
- 2. GABA-gated chloride channel antagonists 2A Cyclodiene Organochlorines 2B Phenylpyrazoles
- **3. Sodium channel modulators** *3A Pyrethrins, Pyrethroids*
- 4. Nicotinic acetylcholine receptor (nAChR) agonists
 4A Neonicotinoids, 4C Sulfoxaflor, 4D Flupyradifurone
- **9. Modulators of Chordotonal Organs** 9B Pymetrozine 9C Flonicamid
- 22. Voltage-dependent sodium channel blockers

22A Indoxacarb

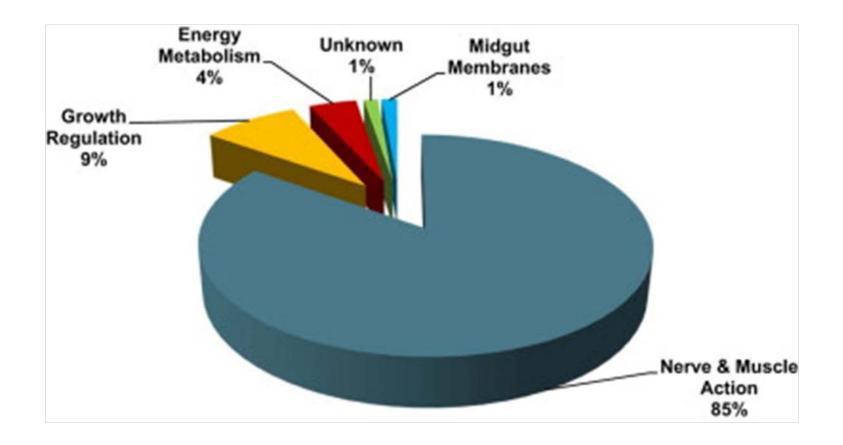
28. Ryanodine receptor modulators 28 Cyantraniliprole

MoA Grou p	Aphids	Whiteflie s	Hoppers
1A	Х	Х	Х
1B	Х	Х	Х
2A	Х	Х	Х
2B			Х
3A	Х	Х	Х
4A	Х	Х	Х
4C	Х	Х	Х
4D	Х	Х	Х
7A	Х	Х	
7C		Х	
9B	Х	Х	Х
9C	Х	Х	Х
12A	Х	Х	
15		Х	
16		Х	Х
21A		Х	
22A			Х
23	Х	Х	
28	Х	Х	Х
UN *	Х	Х	

Respiration Targets

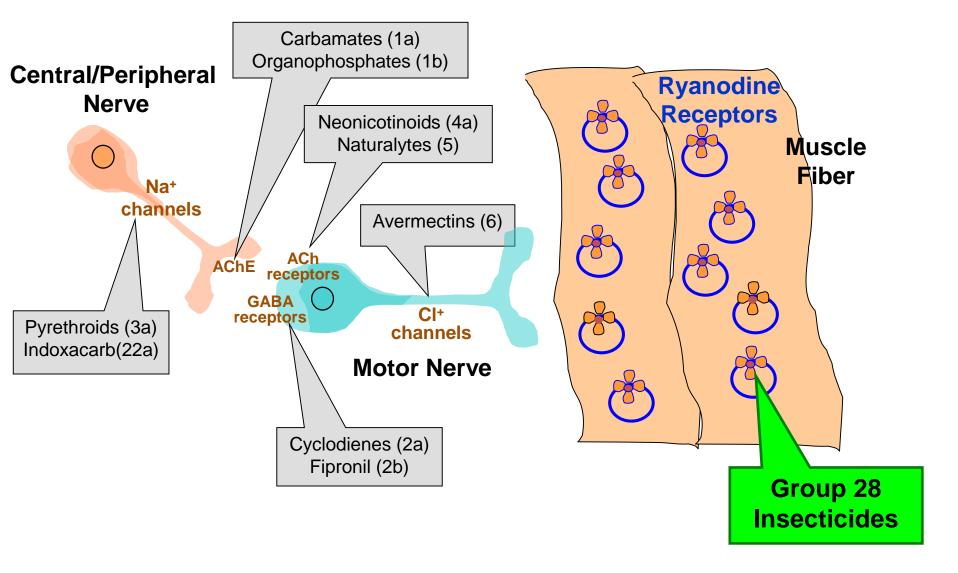
- **12. Inhibitors of mitochondrial ATP synthase** *12A Diafenthiuron*
- 21. Mitochondrial complex I electron transport inhibitors 21A Tolfenpyrad, Pyridaben

Growth and Development Targets

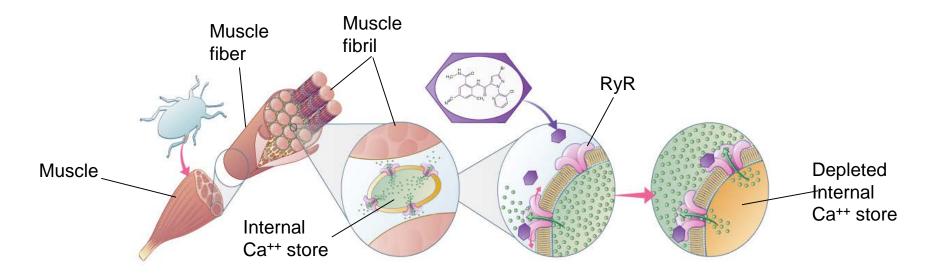

- 7. Juvenile hormone mimics 7A Kinoprene, 7C Pyriproxyfen
- 15. Inhibitors of chitin biosynthesis, Type 0 15 Benzoylureas
- 16. Inhibitors of chitin biosynthesis, Type 1 16 Buprofezin
- **23. Inhibitors of lipid synthesis** 23 Tetronic & Tetramic acid derivatives

Unknown or uncertain MoA UN Pyrifluguinazon *

The table above lists the main mode of action groups for the control of aphids, whiteflies and hoppers. However, the availability may differ regionally due to registration status.


Distribution of total insecticide sales (percent of total value) by broad mode of action (2103)

Thomas C. Sparks, Ralf Nauen. **IRAC: Mode of action classification and insecticide resistance management.** Pesticide Biochemistry and Physiology, Volume 121, 2015, 122–128


Group 28 Insecticides - Unique Biochemical Target

QUPON)

Mode of Action of Diamides (GR 28):

The basis for rapid feeding cessation and plant protection

Impacts insect behavior by impairing muscle function (release of Ca++), which causes muscle paralysis & death

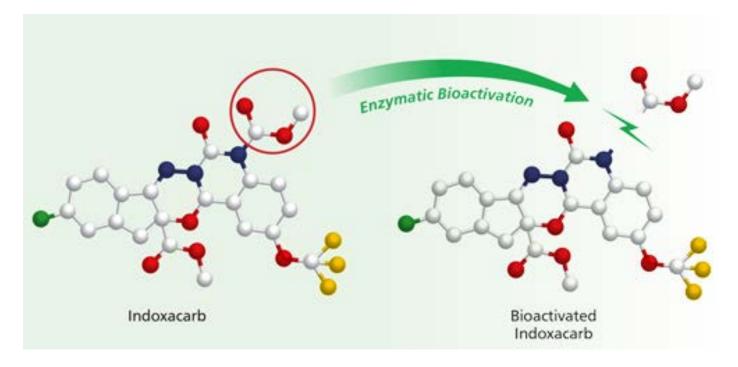
Basis for Selectivity

- In order to have a toxic effect, the product must:
 - Reach the insect
 - Be absorbed into the insect (contact or gut)
 - Reach the target site in sufficient concentrations
 - Not detoxified/metabolized/excreted
 - Be in its active form, e.g. conversion from pro-insecticide
 - Be able to bind to the target site (receptor)

Basis for Pyrethroid Selectivity Between Insects and Mammals

Table 1

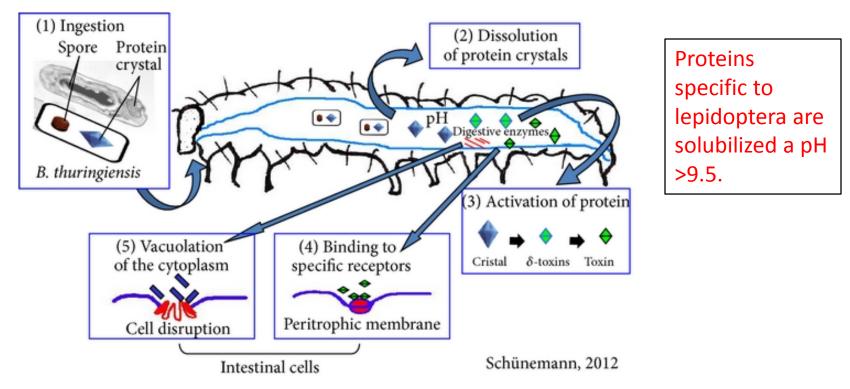
Mechanism of selective toxicity of pyrethroids


Selectivity factors	Mammals	Insects	Estimated differences
Potency on nerve Na ⁺ channels			
Due to temperature dependence	Low (37°C)	High (25°C)	5
Due to intrinsic sensitivity	Low	High	1000
Detoxication rate	High	Low	3
Overall difference = 15 000			

T Narahashi,* X Zhao, T Ikeda, K Nagata, and JZ Yeh. Differential actions of insecticides on target sites: basis for selective toxicity. Hum Exp Toxicol. 2007 Apr; 26(4): 361–366.

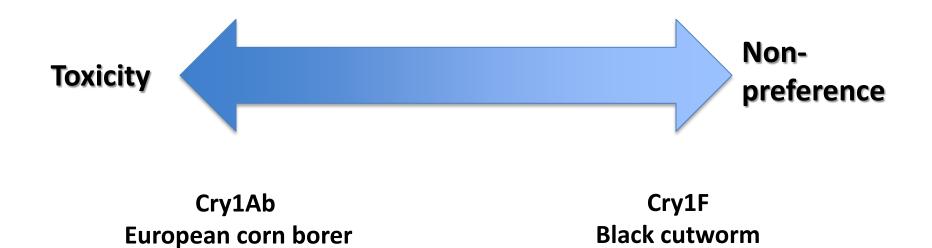
Example of a Pro-Insecticide

Insect specific enzymes/conditions activate the insecticide



http://www.merck-animal-health-usa.com/

Bt Activation in the Midgut is highly pH Dependent


Bacillus thuringiensis (*Bt*) is a natural bacteria that produces insect control proteins called "Cry".

Rogério Schünemann, Neiva Knaak, and Lidia Mariana Fiuza, "Mode of Action and Specificity of *Bacillus thuringiensis* Toxins in the Control of Caterpillars and Stink Bugs in Soybean Culture," *ISRN Microbiology*, vol. 2014, Article ID 135675, 12 pages, 2014. doi:10.1155/2014/135675

Bt Plant Protection Mechanisms

Growers can realize tremendous value without a product being highly toxic or providing a "High Dose"

Basis for Diamide Selectivity to Beneficials

- 1. Potent via ingestion
 - a) Effective on chewing pests that consume treated foliage
 - b) Most beneficials are carnivores
- 2. Moderately soluble, xylem systemic
- 3. Differences in susceptibility?

Little to no exposure at the target site.

Rynaxypyr® selectivity to Beneficial Arthropods

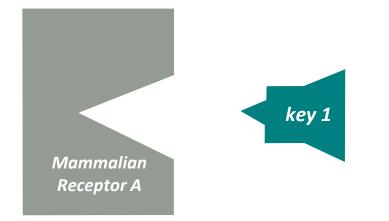
Evaluation of Rynaxypyr [®] on Key <u>Predators</u>					
GROUP	ORDER	FAMILY	SPECIES	RESULT	
Predators	Neuroptera	Chrysopidae	Chrysoperla carnea	•	
1	Lacewings		Mallada signatus	•	
	Coleoptera	Coccinellidae	Hippodamia converge	ens 😑	
- Alexandre	Ladybird beetles		Hippodamia variegatta Harmonia axyridis	a –	
	Hemiptera	Nabidae	Nabis kinbergii	•	
1 Street	Predatory bugs	Anthrocoridae	Orius insidiosus	•	
1. 163			Anthocoris nemoralis	•	
		Miridae Lygaeidae	Deraeocoris brevis Geocoris punctipes		
1900	Acari	Phytoseiidae	Amblyseius herbicolus	s –	
	Predatory mites		Amblyseius anderson	i 😐	
	-		Kampimodromus abe	rrans	
🛑 no impact, (0-30% mortality).			Euseius citrifolius		
Rating acco Hassan et a	ording to IOBC/ WPR	S Working Group,	Iphiseiodes zulugai		
Hassan et al. 1900.			Typhlodromus occideı Typhlodromus pyri	ntalis	

Rynaxypyr® has excellent selectivity to Beneficial Arthropods & Pollinators

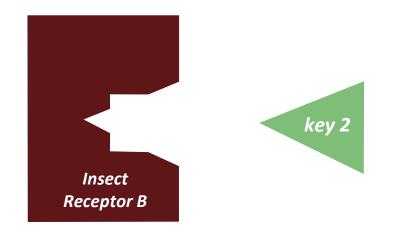
Evaluation of Rynaxypyr[®] on Key Parasitoids and Pollinators

GROUP	ORDER	FAMILY	SPECIES	RESULT
Parasitoids	Hymenoptera	Trichogrammatidae	Trichogramma pretiosum	•
-	Parasitic wasps		Trichogramma chilonis	•
-MARC		Braconidae	Aphidius rhopalosiphi	٠
			Bracon hebetor	•
			Dolichogenidea tasmanica	•
		Encyrtidae	Ageniaspis citricola	•
		Aphelinidae	Aphelinus mali	•
Pollinators	Hymenoptera	Apidae	Apis mellifera	٠
Ser and	Honey bees			

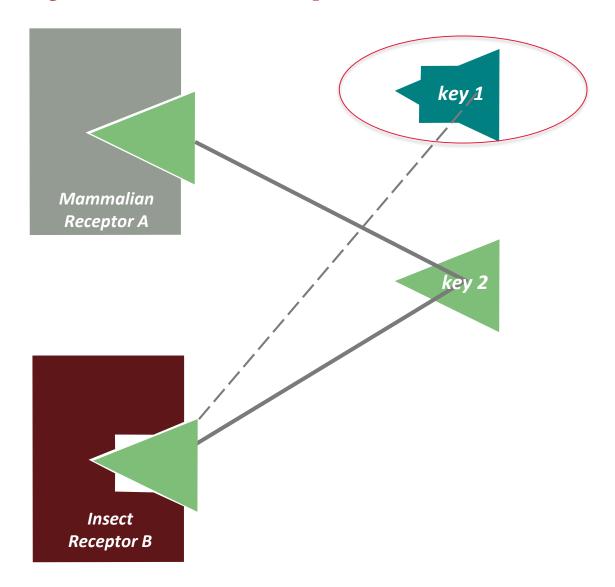
no impact, (0-30% mortality). Rating according to IOBC/ WPRS Working Group, Hassan et al. 1988.


Basis for Diamide Selectivity to Mammals

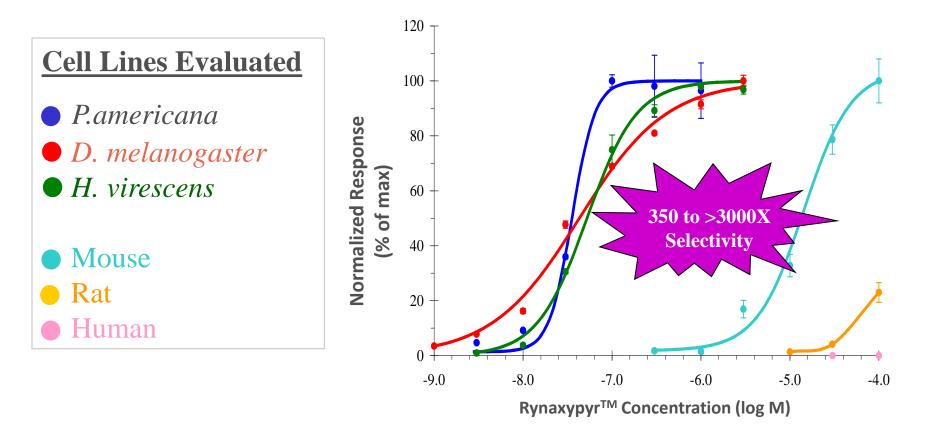
- 1. Target site differences at the Ryanodine receptor
 - a) The basis for the remarkable mammalian selectivity is a structural difference between insect and mammalian ryanodine receptors (RyRs).
 - b) Homology of nucleic sequence is < 40%, coding for distinct proteins, with distinct tri-dimensional shape
 - c) Rynaxypyr® is 400-3000 times more effective in activating RyRs from insects than from mammals.


Rynaxypyr[®] fits into insect but not mammalian ryanodine receptors.

Selectivity at the Receptor



Which active is selective between Receptor A and B?



Selectivity at the Receptor

DuPont Rynaxypyr® Selectivity to Mammals

Mammalian Toxicology – Rynaxypyr®

REPRESENTATIVE TEST

RESULT

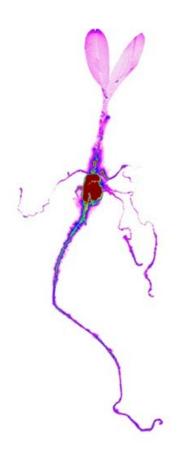
QUPONT

Acute oral toxicity, rat LC ₅₀ :	> 5,000 mg/ kg			
Acute dermal toxicity, rat LD ₅₀ :> 5,000 mg/ kg				
Sub-acute and subchronic toxicity (mouse, rat, dog):No adverse effects				
Inhalation, rat LC ₅₀ :	> 5.1 mg/ L			
Dermal irritation:	Not irritant			
Eye irritation:	Slight, clearing in 72 hours			
Dermal sensitization:	Not a sensitizer			
Mutagenicity:	Not mutagenic			
Carcinogenicity:	Not carcinogenic			
Neurotoxicity:	Not neurotoxic			
Immunotoxicity:	Not immunotoxic			
Developmental toxicity:	No adverse effects			
Reproductive toxicity:	No adverse effects			

Selectivity Allows for Greater Flexibility

- Broad crop labels
- Multiple applications
- Short PHIs
- Short re-entry intervals

Ingestion and/or Contact Activity?


	Ingestion	Contact
Life stage controlled	Actively feeding life stages	Life stages present at application
Length of control	Longer, dependent on breakdown	Short
Pest spectrum	Limited to pests feeding on foliage	Broad
Insect selectivity	More selective	Less selective
Timing	More flexibility	Pest must be present

In reality, most products act in some combination of ingestion and contact, but usually one is predominant

Systemic Movement – Factors to Consider

- 1. Xylem only, xylem and phloem
- 2. Uptake from soil
- 3. Translocation after foliar application
- 4. Protection of existing growth vs. new growth
- 5. Movement to reproductive parts of the plant, which are fed via phloem

Delivery Methods

The site and method of delivery significantly affects potential for applicator and non-target exposure, e.g.

- Foliar
- Seed
- Soil drench, in-furrow
- Transplant
- Genetics
- Bait

What Does The Future of Insecticides Look Like?

- Highly selective, conserving beneficials
- Ingestion
- Plant protection vs. "knock-down"
- Low use rate
- Not highly soluble
- Chemical + Genetic + Biological

The Future of Insect Trait Development

Novel mode of action

- Broad spectrum on targets
- No toxicity to non-targets

Durability

- Activity (dose) against targets
 - Pest susceptibility (toxicity)
 - Plant expression (exposure)

Conclusions

When we understand a product's:

- Mode of action
- Behavior in plants and insects
- The basis for its selectivity

Then we can make better and more informed decisions, to ensure we get the right product on the right acre, at the right timing.