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ABSTRACT 

Migratory locusts; Locusta migratoria L. flying in a swarm would encounter 

spatiotemporally complex visual cues such as translating, receding and looming stimuli, 

produced by self-motion as well as object motion in the environment. A rapidly approaching 

conspecific or a predator represents a looming object approaching on a collision course and is 

involved in triggering urgent collision avoidance behaviours. To avoid predators and collision 

with conspecifics, and to navigate through complex environments, locusts must produce 

appropriate collision avoidance manoeuvres. Flying locusts have evolved the ability to not only 

avoid predation but also effectively navigate within the swarm without constantly colliding with 

one another. Collision avoidance and predator evasion in response to looming stimuli are 

important in many animals and in locusts, the key elements in the neuronal pathway underlying 

this behaviour are the lobula giant movement detector (LGMD) and its postsynaptic component, 

the descending contralateral movement detector (DCMD). Previous studies have suggested that 

the LGMD/DCMD pathway allows each locust within a dense swarm to remain sensitive to 

approaches of individual objects including conspecifics and flying predators, approaching 

frequently from many directions or along the same trajectory and to produce appropriate 

collision avoidance behaviours.  

Collision avoidance responses of a rigidly tethered locust presented with a looming 

object have been studied previously. However, behavioural strategies for collision avoidance 

within a group of conspecifics are yet unknown. Avoidance behaviour exhibited by a single 

locust may or may not differ from that of an individual in a group. Further, salient cues produced 

by objects on a collision course (looming) can be influenced by each animal’s position relative 

to the object and/or its position within a group.  
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In my first objective of this thesis, I exposed locusts (L. migratoria L.) to a computer 

generated looming object in the presence of a live and dead conspecific separately. This first 

experiment was done to determine if collision avoidance behaviour of a locust: Locust 1 (L1) or 

Locust 2 (L2), is affected by the presence of a conspecific. As my second objective, the 

responses of a pair of flying locusts placed in differing relative positions in a wind tunnel were 

studied during presentation of the same looming object. This second experiment was done to 

determine if collision avoidance behaviour of a locust is affected by the relative position of a 

conspecific. From the results, I looked at different spatio-temporal characteristics of L1 and L2 

collision avoidance behaviour and their dependency on the presence as well as on different 

relative positions of a conspecific in the vicinity. 

Results from Experiment 1 showed that the types of collision avoidance responses, some 

components of six degrees of freedom of L1 and L2 and also the timing of the onset and duration 

of the initial avoidance response of L2, were affected by the presence of a conspecific. 

According to Experiment 2, the avoidance responses and three translational degrees of freedom 

of L1 and L2 were also affected by the relative position of the conspecific and its own position, 

respectively. Also, I found that the timing of the onset and the duration of the initial avoidance 

response of L2 were affected by its own position in the wind tunnel. Both locusts’ responses to 

the looming stimuli were more robust in the presence of a live conspecific and less pronounced 

in the presence of a dead locust. Thus, results further suggest that locusts use visual cues from 

the looming objects as well as an immediate conspecific to generate appropriate avoidance 

responses. Taken together, the results of my study indicate that a locust’s collision avoidance 

behaviour can be affected by the presence as well as the relative position of a conspecific in the 

vicinity.   
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1. INTRODUCTION AND LITERATURE REVIEW 

 

 

1.1 INTRODUCTION 

The migratory locust, Locusta migratoria L., is 1 of 12 swarm forming acridid 

grasshopper species, native to semi-arid regions of equatorial Africa (Uvarov, 1977). It has 

proven to be an excellent model system in the study of neuroethology (Rind and Simmons, 

1997), which is a relatively new scientific study of the neuronal mechanisms involved in 

adaptive animal behaviours (Zupanc, 2004). Locust swarms may contain up to 10
10

 

individuals that travel great distances at approximately 3 ms
-1

 with neighbours flying in the 

same or different directions, 0.3-9.0 m apart (Uvarov, 1977).  Interestingly, despite the 

apparently random orientation of groups of individuals within the swarm, continuous 

cohesion of individual swarms over distances of hundreds of kilometres, lasting many days, 

has been observed to occur without significant dispersion (Baker et al., 1984; Spork and 

Preiss, 1993). This is because flying locusts have the ability to not only avoid predation but 

also effectively navigate within the swarm without constantly colliding with one another. The 

ability to manoeuvre quickly and appropriately in such a dense swarm is of considerable 

adaptive value (Baker et al., 1981).   

To avoid predators, the collision with conspecifics and to navigate through complex 

environments, appropriate behavioural responses to visual stimuli are essential. The Lobula 

Giant Movement Detector (LGMD), a looming detector inter-neuron in the locust visual 

system, functions as the key element of the neural pathway which is implicated in collision 

avoidance and predator evasion in response to looming stimuli (O’Shea and Williams, 1974; 

Simmons and Rind, 1992; Judge and Rind, 1997; Gabbiani et al., 2001; Gray et al., 2001; 

Gray, 2005). Each right and left LGMD synapses onto a single Descending Contralateral 
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Movement Detector (DCMD) such that 1:1 spiking is maintained via a mixed electrical and 

chemical synapse (Killmann and Schurmann, 1985).  In turn, DCMD conveys information to 

motor centres in the thorax and excites motor neurons and inter-neurons which are involved 

in initiating flight avoidance responses and other escape behaviours. The LGMD/DCMD 

pathway allows each locust within a dense swarm to remain sensitive to approaches of 

individual objects, including conspecifics and flying predators, approaching frequently from 

many directions or along the same trajectory (Burrows and Rowell, 1973; Simmons, 1980; 

Gray, 2005: Guest and Gray, 2006; Santer et al., 2006).  

A locust’s visual environment consists of a complex combination of translating, 

receding, and looming visual stimuli that are produced by self motion as well as by object 

motion (Gray, 2005). In a natural visual scene, a locust will be presented with multiple 

objects traveling through its visual field along various trajectories (Uvarov, 1977). Collision 

avoidance responses to looming stimuli are adaptive behaviours that allow the animal to 

manoeuvre in a complex environment. Preliminary studies with locusts in a wind tunnel have 

linked this adaptive behaviour with the activity of the LGMD/DCMD pathway (Gray et al., 

2001; Santer et al., 2005; Santer et al., 2006; Rind et al., 2008). In these studies, locusts have 

often been rigidly held in place to facilitate behavioural and physiological recordings. 

However, the way that a locust responds to a looming object in the presence of other locusts 

in its visual field when it is free to move in three dimensional (3D) space is unknown. 

Avoidance behaviour of a single locust may or may not differ from that of an individual in a 

group. It is possible that collision avoidance responses elicited by an approaching object can 

be influenced by the presence of a conspecific and each animal’s position relative to the 

looming object and/or its position within the group. As a first step in understanding looming 

responses of a locust in the presence of conspecifics, I used two locusts simultaneously. In 

this way, the present study estimated the collision avoidance behaviour of a locust and the 
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way that a locust’s behaviour depends on the presence as well as different relative positions 

of a conspecific in the vicinity.  

 

1.2 LITERATURE REVIEW  

1.2.1 NEUROETHOLOGY 

The success of an animal in its particular environment is often related to the animal’s 

ability to gather specific information from multiple sources in its surroundings by the sensory 

system, to produce appropriate adaptive responses. Integration of the multi-modal 

information to produce an appropriate behaviour occurs within the animal’s nervous system, 

which integrates environmental inputs and the animal’s internal state to generate appropriate 

motor commands. 

Neuroethology is a relatively young science and arguably became a distinct research 

field in the 1980s. Neuroethology uses evolutionary and comparative approaches to explore 

the neural connection with the animal’s natural behaviour and to uncover the diversity and 

specialization of nerve cells in the underlying mechanistic control by the nervous system 

(Zupanc, 2010). However, to reveal a better understanding about the neural control of the 

behaviour under complex visual contexts, it is necessary to uncover general principles of 

animal behaviour under more realistic natural conditions.  

Neuroethological principles arise from studying various simple, robust, readily 

accessible and ethologically relevant model systems. Examples include prey capture in the 

leopard frog (Rana pipiens) (Cobas and Arbib, 1992), echolocation in bats (Jones, 2005), 

pheromone detection in the Oriental silkworm moth (Bombyx mori) (Kennedy, 1983), and 

collision avoidance in locusts. The latter system is the focus of this study. 
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1.2.2 INSECTS AS NEUROETHOLOGICAL MODELS 

 Through evolution, animal behaviour has become more complex and this is quite 

often related to the complexity of the nervous system. Consequently, neuroethologists are 

challenged with selecting appropriate model systems. Some animal species are well adapted 

to particular aspects of sensory or motor performance and those superior capabilities are 

linked to highly specialized neuronal structures. Examples include recognition of prey and 

predators in toads by neurons in the optic tectum and thalamic pre-tectum, neural systems in 

electric fishes specialized for time coding (Ewert, 1997; Kawasaki, 2009).   

However, some animals have been pressured by natural selection to produce very 

complex behaviours with relatively ‘simple’ nervous systems. Insects are good models to 

study neural mechanisms underlying behaviour since they display many complicated 

behaviours with a relatively tractable nervous system (Zupanc, 2004). For insects flying in 

complex, dynamic visual environments, detection of approaching objects such as predators or 

conspecifics is highly adaptive. Rapid manoeuvrability is essential for individuals traveling at 

speed in a complex environment when the potential hazards in their visual field are also 

traveling at speed in different directions, often on a collision course. In this context, an 

insect’s visual and nervous system must be able to detect the approaching objects and elicit 

appropriate behavioural changes. 

 

1.2.3 LOCUSTS AS A MODEL SYSTEM 

1.2.3.1 General biology and locust swarming  

Locusts (Fig. 1.1) are acridid grasshoppers which display a polymorphic life history 

and phase related behaviour. Locusts have the remarkable ability to change between two 

morphologically, physiologically and behaviourally distinct forms (Uvarov, 1977). 
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The two distinct phases of locusts are solitarious and gregarious, or migratory 

(Lorenz, 2007). The solitary phase is the dominant phase of the species, with the gregarious 

phase being a physiological response to unfavourable fluctuations in the environment (e.g., 

lack of food). Individuals in the solitary phase are cryptic in appearance and behaviour. They 

avoid social contact and generally live at low densities (<3/100 m
2
) (Matheson et al., 2004). 

They are highly camouflaged, move slowly, fly infrequently and are typically nocturnal. 

Locusts in this phase do relatively less harm to agricultural crops. Swarming conditions are a 

result of periods of high rainfall in breeding areas followed by periods of extreme drought. 

After the rains, large locust populations develop which then crowd together on dwindling 

food supplies during the subsequent drought. When food runs short they slowly cluster 

together and enter the gregarious phase, culminating in an aggressive swarm.  Gregarious 

phase nymphs (Locusta migratoria L.) have black and yellow or orange coloration in a fixed 

Fig.1.1: Dorsal view of an adult Locusta migratoria L. (1x1) (Picture 

published here with permission from Dr. Igor Grichanov, 2008: Photo 

© V.V.Neymorovets (VIZR)). 

(http://www.agroatlas.ru/content/pests/Locusta_migratoria/Locusta_m

igratoria.jpg). 
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pattern. They have a high metabolic rate, are active (adults frequently fly during the day time) 

and live at high densities (100,000/100 m
2
, Sword, 2000; Matheson et al., 2004).  

Solitarious to gregarious phase change is triggered by olfactory, visual and 

mechanosensory stimulation provided by the conspecifics in the vicinity. An extremely 

potent stimulus involved in the phase transition is the mechanosensory stimulation of the hind 

legs as locusts jostle each when they are in close proximity (Roessingh et al., 1998; Simpson 

et al., 2001; Anstey et al., 2009). Most of a locust’s integument is covered with touch 

sensitive hairs (trichoid sensilla) (Pflüger et al., 1981) and other mechanoreceptors 

(campaniform sensilla) (Hustert et al., 1981; Pflüger, 1980; Simpson et al., 2001; Rogers et 

al., 2003). Mechanoreceptors play an important role in locust phase transitions. Increased 

tactile stimulation of the hind leg (i.e., several contacts per minute over a 4-hour period), 

under overcrowding condition, increase the release of serotonin in the locust’s thoracic 

ganglia. Consequently, increased levels of serotonin trigger a phase change and formation of 

a swarm (Simpson et al., 2001; Rogers et al., 2003). Swarms may contain up to 10
10

 

individuals that cohesively travel great distances, up to 100 or more kilometres per day for an 

extended period of time, causing devastating crop loss (Uvarov, 1977; Topaz et al., 2008).  

 

1.2.3.2 Swarm dynamics and individual orientation within a swarm.  

Gregarious individuals tend to form swarms in several stages. First grounded, non-

flying juveniles form organized bands that march along the ground. During development this 

marching group becomes a flying group performing short local flights and other movements 

which are uncoordinated with those of their neighbours. In later stages, individuals form a 

common spatial orientation leading to a particular shape of the group. Finally, these groups 

become coordinated with each other and swarm development culminates with a mass 

departure as adults take flight. Within a swarm individuals fly at flight speeds of 3-6 ms
-1
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with neighbours flying in the same or different directions 0.3-9.0 m apart (Waloff, 1972; 

Baker et al., 1981). As the swarm propagates, it forms a rolling structure while maintaining a 

relatively constant shape and size (Uvarov, 1977). Although the internal motions of 

individuals in the swarm are not completely understood, field observations have showed that 

individuals within a swarm cycle through a sequence of behaviours (Fig. 1.2).  

 

 

             

 

 

Individuals fly towards the leading edge of the swarm usually downwind. Locusts at the front 

of the swarm perform a mass landing and rest, feed and oviposit on the ground until 

overtaken by the back or trailing edge of the swarm, at which point they take off upward and 

slightly upwind (i.e., in the direction between 90
°
 to either side of the oncoming wind (Baker 

et al., 1984)). They then make their way to the front of the swarm until the next landing and 

the cycle continues (Keshet et al., 1998).  According to Waloff (1972), rolling swarms are in 

the order of 1 km long and large swarms, with a number of rolling subunits frequently cover 

10-100 km
2
 or more.   

Take off zone 
Settlement 

Interior zone 

Flying 

Wind direction   

Leading 

edge 

Trailing 

edge 

Fig. 1.2: Rolling structure of a typical swarm of the locust Schistocerca according to 

Waloff (1972) and Uvarov (1977). The zone of settlement is roughly 500m long. Rough 

values of the interior zone in which sporadic take-off and landing occurs, and the take off 

zone are respectively, 1900m and 300m long (Modified from Fig. 1 of Topaz et al., 2008).  
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Many studies have used cameras and radar techniques to study individual movement 

within a swarm (Waloff, 1972; Baker et al., 1981). It has been shown that locust flight is 

subjected to random dispersal effects and some external and internal factors such as wind 

speed and direction, position of the sun, the locust’s age and developmental stage. According 

to these studies, the two major factors which have a greater influence on the orientation of 

day-flying locusts are orientation to the visual effects of wind and visual orientation to other 

individuals or to the entire swarm (Waloff et al., 1972; Uvarov, 1977; Preiss and Gewecke, 

1991).  

Laboratory experiments confirmed that the direction and speed of movement of 

individual locusts is guided by optomotor responses to pattern motion in the ventral visual 

field. Thus, flight orientation is related to the actual speed and direction of the wind. 

Optomotor responses play a major role in promoting stability in flying insects. It is a visual 

reflex in which the animals make a compensatory movement in response to visual motion. 

They turn their head or entire body in the direction of motion to keep the eyes stationary with 

respect to the environment and changes in air speed and flight altitude. Orientation to wind is 

mediated by optomotor responses to changes in the velocity of ground images over the 

ventral ommatidia (Kennedy, 1951). This velocity results from a vectorial addition of the 

locust’s own flight manoeuvres and wind-induced motion. Departure from the front to back 

movement of images or from a preferred moderate rate of motion velocity over the retina 

supposedly induces compensatory responses. In these compensatory movements, locusts 

modulate their thrust translation to minimize the retinal velocity of ground images by 

reducing their movement relative to the ground. Retinal image velocity depends not only on 

ground speed but also on flight altitude (Preiss, 1992). Above a particular flight altitude, the 

maximum compensatory height, the background pattern of a locust’s environment is no 

longer clearly detectable by the locust eye (Kennedy, 1951). Movement of resolvable images 
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over the eye becomes too slow to evoke responses. Accordingly, locusts are subjected to 

effective optomotor stimulation within the layer between the ground and maximum 

compensatory height. Below this height the orientation of a locust to wind is related to wind 

speed (Waloff, 1972).  

Swarming locusts are predominantly displaced downwind (Kennedy, 1951). However 

the orientation of locusts in a swarm could be variable and locusts may even fly upwind at 

wind speeds below their flying speed (3-6 ms
-1

) (Chapman, 1959; Waloff, 1972; Baker et al., 

1984). When the wind speed approximates or exceeds flight speed, locusts turn their head and 

body into the wind or change their altitude (Preiss and Gewecke, 1991).  

Despite the apparently random orientation of groups of individuals within the swarm, 

continuous cohesion of individual swarms over distances of hundreds of kilometres lasting 

many days has been observed without significant dispersion (Baker et al., 1984; Spork and 

Preiss, 1993). It is believed that optomotor responses to the relative movements of the images 

of surrounding individuals within a swarm are responsible for the common orientation of a 

group of locusts (Kennedy, 1951; Waloff, 1972). A locust changes its flight speed or 

direction accordingly when the translatory pattern motion in its lateral visual field changes 

(Spork and Preiss, 1993). Thus, individuals or groups which lose immediate contact with the 

swarm change their orientation and quickly head back to the swarm (Farrow, 1990). Also, 

swarming locusts presumably can stabilize their visual surrounding according to stimuli in 

their lateral visual field.  This feature enables flying locusts to maintain their position relative 

to their immediate neighbours at least to some extent (Kennedy, 1951, Preiss, 1992). They 

transfer directional information and rapidly change direction away from an oncoming 

predator or towards a food source which has been detected by only a few members of the 

group. Thus, flying locusts have the ability to not only avoid predation but also effectively 

navigate within the swarm without constantly colliding with one another. The ability to 
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manoeuvre quickly and appropriately in such a dense swarm is of considerable adaptive value 

(Baker et al., 1981).  To avoid predators and collision with conspecifics, and to navigate 

through complex environments, locusts must produce appropriate collision avoidance 

manoeuvres (Gray et al., 2001). Flying locusts rely heavily on vision for detecting obstacles 

in their flight path.  

 

1.2.4 ANATOMY AND PHYSIOLOGY OF THE LOCUST VISUAL SYSTEM  

1.2.4.1 Compound eye and optical reception.   

 An animal’s ability to detect multiple sensory cues from the natural environment is 

crucial for its survival. More often, visual information provides the first cue about the objects 

that the animal encounters in its environment (Gibson, 1979). To generate adaptive 

behaviours for the survival, an animal’s visual system should detect potentially threatening 

cues from contextually variable information in its visual environment (Gray, 2005). 

Locusts are rapid and highly manoeuvrable flyers that can navigate through a massive 

swarm without colliding with one another (Uvarov, 1977). In order to perform such 

manoeuvring and orientation, a good sense of visual perception is important. Light is 

perceived by insects through a number of different receptors. Visual perception occurs via a 

pair of compound eyes and often three single lens eyes called ocelli. Locusts have an 

apposition type of compound eye, which is most common in day flying insects (Chapman, 

1998) and locust vision is quite well understood. These compound eyes are constructed from 

many similar units called ommatidia, which provide visual inputs to the brain (Fig. 1.3). 

However, the arrangement and number of ommatidia differ in different parts of the eye of an 

insect, both within and between species. In locusts, each eye comprises 8,500 ommatidia 

packed in a hexagonal array (Shaw, 1978). Each ommatidium consists of a light gathering 

region, a corneal lens and a second lens called the crystalline cone produced by four cells 



11 

 

called Semper cells, and a sensory component. This sensory component consists of elongate 

neurons known as retinular cells which help in transforming light into electrical energy. 

Generally there are eight retinular cells in each ommatidium of a locust’s compound eye 

(Wilson et al., 1978; Burrows 1996). These retinula cells extend basally as an axon into the 

lamina of the optic lobe through the basal lamina. The margins of each retinular cell are 

differentiated into closely packed microvilli which contain the visual pigment of the eye, 

rhodopsin. These microvilli are arranged in parallel and microvilli of each retinular cell 

collectively form a rhabdomere. Rhabdomeres in turn collectively form the rhabdom of the 

ommatidium. In a fused rhabdom, all the retinular cells within the same ommatidium have the 

same field of view.   

In a locust, the sensory region of the ommatidium is surrounded by 16 secondary 

pigment cells such that each ommatidium is isolated from its neighbours (Wilson et al., 

1978).  The axons of retinular cells from each ommatidium project to the same region of the 

lamina in the optic lobe. The optic lobe is prominent anteriorly and laterally and occupies a 

comparatively large volume of the brain. A series of neuropil layers, the lamina, medulla, 

accessory medulla and lobula in the optic lobes process visual signals from the compound 

eye. In the lamina, the axons from each ommatidium form the cartridge. Most of the axons 

from the retinular cells end in the cartridge and synapse with interneurons.  These 

interneurons receive inputs from cartridges and are known as small field cells if they receive 

input from one cartridge, whereas wide field cells receive inputs from several cartridges. 

Projections of these cells are retained in a series of columns in the medulla and the patterns of 

neuronal signals within the columns correspond to the image on the retina. This preservation 

of the image in neuronal patterns is called retinotopic mapping. There are two types of 

interneurons in the lobula. Wide field neurons receive input from a very large number of 

columns and small field neurons receive input from a small number of columns in the  
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medulla. Wide field neurons are known to be involved in different types of movement 

detection, such as looming stimuli, and provide a cue for impending collision (Simmons and 

Rind, 1992; Gabbiani et al., 2001; Gray et al., 2001). A well known wide field interneuron 

that responds to looming stimuli in locusts is the LGMD (O’Shea and Williams, 1974; Judge 

and Rind, 1997; Gray, 2005).  The fan shaped dendritic tree of LGMD is located in the lobula 

and receives visual inputs from pre-synaptic visual afferents. Each right and left LGMD 

synapses on to a DCMD, an identified motion sensitive neuron in the lateral protocerebrum 

(Fig. 1.4). The synapse between these two is rapid and results in a 1:1 correspondence 

between presynaptic and postsynaptic spiking activity under visual stimulation (O’Shea and 

Williams, 1974). 

 

Fig.1.3: Schematic diagram of the apposition type of compound eye found 

in locusts according to Land and Nilsson, 2002 (Modified from Fig. 7.3, p 

128, Land and Nilsson, 2002). In each ommatidium, the lens and crystalline 

cone form the light gathering apparatus. Eight microvillar photoreceptor 

cells/retinular cells in each ommatidium collectively form the rhabdom, the 

light sensing apparatus. Visual signals from the compound eye are directed 

to the lamina in the optic lobe via receptor axons. 
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Thus, a spike in the LGMD produces a spike in the DCMD at spike frequencies up to 400Hz 

(Rind, 1984). Each DCMD axon projects from the protocerebrum to the thoracic ganglia in 

the ventral nerve cord and in turn excites motor neurons and interneurons which are involved 

in jumping and in flying. This suggests that the DCMD can play a role in triggering urgent 

avoidance reactions in locusts (Burrows and Rowell, 1973; Simmon 1980; Santer et al., 

2006).  

Fig. 1.4: Schematic diagram of LGMD/DCMD pathway in an optic lobe and the brain of 

Locusta migratoria according to Bacon et al. (1995). Visual signals are being processed 

in the lamina, medulla and the lobula, respectively. The lobula giant movement detector 

(LGMD) interneuron receives visual inputs in the lobula and projects into the 

protocerebrum of the brain and synapses with the descending contralateral movement 

detector (DCMD) interneuron. The DCMD axon projects from the protocerebrum to the 

thoracic ganglia in the ventral nerve cord and excites the motor neuron and interneurons 

involved in initiating avoidance responses. Lam: lamina, Med: medulla, Lob: lobula, 

Proto: protocerebrum, Trito: tritocerebrum, Deuto: deutocerebrum, PM4: protocerebral 

medulla 4. This schematic diagram omits the minor branches of these interneurons.     
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1.2.4.2. Adaptations in the visual system involved in collision avoidance in flying locusts 

Effective visually guided collision avoidance behaviours are crucial for the survival of 

locusts flying in a swarm. A locust’s visual system has been successfully adapted to extract 

salient sensory cues related to looming stimuli such as conspecifics or predators (Gray, 2005; 

Guest and Gray, 2006). Findings from recent research have shown that the LGMD/DCMD 

pathway in the locust’s visual system is sensitive to approaches of individual objects within a 

complex visual scene and these recent studies also revealed that the LGMD/DCMD system is 

able to respond to approaches of multiple objects approaching from different trajectories and 

objects approaching on a complex trajectory (Gray, 2005; Guest and Gray, 2006). It is 

believed that habituation in the LGMD/DCMD pathway occurs at the afferent synapses onto 

the LGMD (Matheson et al., 2004; Gray, 2005). Though frequent stimulation can induce 

habituation of looming responses, the DCMD can maintain its responses to looming stimuli 

approaching at a brief inter-stimulus interval e.g., 34 s. Despite that, a habituated DCMD is 

also able to respond to the same object approaching even at 4 s inter-stimulus interval, along 

a new trajectory and a larger object approaching along the same trajectory (Gray, 2005). This 

is because objects approaching from a new trajectory would stimulate a different, non-

habituated, array of ommatidia and thus the LGMD receives inputs through different series of 

afferents. Also, edges of relatively larger looming objects approaching along the same 

trajectory would expand beyond the subtense angle of the original, smaller object and 

stimulate non-habituated local input elements to the LGMD.  Thus, the LGMD/DCMD 

pathway allows locusts within a dense swarm to remain sensitive to approaches of individual 

objects, including conspecifics and flying predators, approaching frequently from many 

directions (Gray, 2005).  

A locust flying in a dense swarm may encounter a complex combination of 

translating, receding and looming stimuli due to the self motion and object motion in the 
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environment. Thus, a flying locust would be subject to a combination of whole-field and 

small-field motion.  In such situations, a locust’s ability to remain sensitive to looming 

stimuli is very important. Whole-field movement when flying in a swarm would saturate and 

fatigue excitatory inputs onto the LGMD and eventually eliminate the system’s ability to 

respond to the small-field looming stimuli. However, it is believed that inhibitory inputs to 

the excitatory afferents by the lateral inhibition network, reduce input to the LGMD and 

prevent global habituation during large-field stimulation (Rowell et al., 1977; Gray, 2005). 

Accordingly, localized habituation of pre-synaptic inputs to the LGMD increases the locust’s 

ability to respond to small-field looming stimuli when flying in a dense swarm. 

Consequently, flying locusts have evolved a high level of sensitivity to looming objects, 

probably as an adaptation to avoid collision.   

The locust DCMD has a wide receptive field and high sensitivity to looming stimuli 

approaching along a broad region of the visual field. This visual field extends from 30 to 150
° 

azimuth and from -15 to 45
°
 elevation (Rogers et al., 2010). Approaches from different 

trajectories would activate different ommatidial arrays and in turn stimulate different pre-

synaptic input onto the LGMD (Guest and Gray, 2006). Thus, neurons are tuned to detect 

objects approaching from a wide range of directions. Interestingly, locusts display phase 

specific changes in their spatiotemporal receptive field and these changes are believed to 

account for behaviourally relevant visual stimuli linked with their life style changes. 

Gregarious locusts show less habituation to repeated stimuli along the eye equator than 

solitarious locusts do. Moreover, compared to the solitarious phase, gregarious locusts’ 

DCMDs show a higher peak firing rate to looming stimuli in the centre of the receptive field 

(Rogers et al., 2007; Rogers et al., 2010). Thus, higher DCMD activity and relative resistance 

to habituation in gregarious locusts may allow for the sensitivity required to avoid colliding 

with other locusts flying in a swarm (Matheson et al., 2004; Rogers et al., 2010).  
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If the approaching object represents a real threat, such as predatory birds that capture 

locusts in flight, the avoidance responses should be executed in a timely manner (Fry et al., 

1992; Santer et al., 2006; Fotowat and Gabbiani, 2011).  A looming object appears to expand 

over the retina of the eye and the rate at which it expands increases as it gets closer to the 

locust.
 
The LGMD responds vigorously to approaching objects with an increasing firing rate 

that decreases as collision becomes imminent (Rind and Simmons, 1992; Gabbiani et al., 

2001). The timing of the peak firing rate varies linearly with the stimulus half size-to-

approaching velocity ratio, occurring earlier relative to collision for larger size-to-speed ratios 

(large or slow looming objects). This linear relationship implies that the peak firing rate 

occurs at a fixed delay after an approaching object subtends a fixed angular threshold size 

between 15
°
 and 40

°
 over the locust’s eye (Gabbiani et al., 1999, Fotowat and Gabbiani, 

2011). The angular threshold is determined by the angular velocity, the rate at which the 

image travels over the retina, and the subtense angle. Thus, LGMD activity is not dependent 

on the object shape or texture but on the object size and its velocity. According to Guest and 

Gray (2006), DCMD peak firing rate, time and duration are affected by object size but are 

relatively insensitive to object shape. This feature in the LGMD/DCMD pathway in the 

locust’s visual system enables locusts to respond relatively early to predators (Gabbiani et al., 

2001; Rogers et al., 2010; Fotowat and Gabbiani, 2011).  

 

1.2.5   LOCUST FLIGHT     

 Locust flight has been intensively studied for many years and the role of the nervous 

system in controlling and changing locust flight has attracted considerable research attention 

since the middle of the twentieth century. Locust flight is achieved by the movement of both 

pairs of wings and usually commences with a jump. Flight can be stimulated by the loss of 
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tarsal contact with the ground and by the stimulation of the aerodynamic organs on the head 

by an air current (Uvarov, 1977). The forewings are narrow, thick and stiff whereas the 

hindwings are broad and have a greater surface area. The hindwings generate 70% of the total 

lift during flight (Burrows, 1996). Each wing is controlled by 10 muscles innervated by about 

80 motor neurons located in the 3 thoracic ganglia. These muscles attach either directly to the 

base of the wing (direct muscles) or indirectly causing the wings to move by distorting the 

shape of the thorax (indirect muscles). Some muscles, called accessory muscles (indirect 

muscles), modify the effects of the other muscles and cause twisting movements of a wing. 

Basic movement of a wing consists of repetitive up (elevation) and down (depression) 

movements with a twisting of the leading edge of the wing upwards (supination) during the 

upstroke and twisting downwards (pronation) during the downstroke. These elevated and 

depressed positions are achieved by contraction of sets of elevator muscles arranged 

vertically in the thorax and contraction of both vertically and horizontally arranged depressor 

muscles (Chapman, 1998).  

 During flight, the two pairs of wings move at the same frequency (~23 beats s
-1

) but 

about 30
° 
out of phase with each other. The hindwings reach their fully elevated position 7 ms 

before the forewings and their fully depressed position 4ms before (Wilson and Weis-Fogh, 

1962). This rhythmic elevation and depression of the hind wings leads equivalent movements 

of the forewings and forms a relatively stereotyped pattern of muscle contraction (Robertson, 

2004). In normal horizontal flight, locusts raise the abdomen and incline the body upwards by 

about 7
°
. Antennae are pointed directly forward, into the wind stream, and all the legs adopt a 

characteristic posture. That is, the front legs are folded tightly against the body, middle legs 

are extended posteriorly, and the hind legs point backward. When flying in a swarm, 

individuals have sufficient space between each other to prevent the direct interference 

between the wing movements of neighbours. However, factors such as turbulence and 
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looming objects can influence their flight direction, stability and manoeuvrability. When a 

locust encounters a looming object in its flight path, it could either fly around it, over it, 

under it or could land on it to prevent a head-on collision. 

 

1.2.5.1 Degrees of freedom of a flying locust: translational and rotational  

            degrees of freedom  

A locust flying in 3D space has six degrees of freedom (Fig. 1.5) which is referred to 

as the freedom to translate forward/backward (thrust), up/down (lift), left/right (sideslip) or 

rotate about the roll, pitch and yaw axes (Taylor, 2001). Maintaining stability in flight is very 

important for flying insects. Instability in flight may involve rotation about any of the three 

major rotational axes passing through the centre of gravity of the body. Numerous sensory 

systems are involved in controlling the direction and stability of locust flight which deviates 

due to variations in external forces such as turbulence. 

Integration of visual information from the compound eye and ocelli with 

mechanosensory feedback on the head and sensory feedback from the wings and the body 

permit stable flight and execution of the aerial manoeuvres (Taylor, 1981; Rowell, 1988; 

Preiss and Spork, 1993). Locusts maintain their stability in the roll plane using information 

from the compound eyes and ocelli, which mediate optomotor reactions (Goodman, 1965). 

Optomotor reactions of flying insects are part of correctional steering associated with 

compensating for an unintentional deviation from the course (Rowell, 1988). Hair sensilla, 

aerodynamic organs on the locust head, play a major role in controlling yaw (Camhi, 1970), 

whereas antennal scolopophores may be involved in controlling pitch (Haskell, 1960). 

According to Rowell (1988), steering is defined as a behaviour which induces rotation around 

one or more spatial axes, thus producing roll, yaw and pitch. 
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Locusts use several mechanisms to initiate a turn during intentional steering in thermal, 

auditory or collision avoidance behaviour. Asymmetric wing movements play a vital role in 

steering torque production in both tethered and free flying locusts (Robertson and Reye, 

1992; Robertson et al., 1996; Dawson et al., 1997; Dawson et al., 2004). Thrust and lift in a 

flying locust are mainly produced during the downstroke (Wakeling and Ellington, 1997). To 

remain airborne, a locust must generate lift forces at least equal to its weight, and to move 

forward, the horizontal thrust vector must exceed the drag of air resisting forward motion. 

During a turning response, locusts increase the pronation of the inside forewing which is 

correlated with early pronation and consequently reduce the thrust and lift on the inside wing. 

However, asymmetric changes in pronation on the outside wing increase lift and thrust on the 

outside of the turn (Robertson and Reye, 1992, Dawson et al., 1997: Taylor, 2001).   

 Asymmetrical production of these two components imposes a torque on the locust and 

initiates a turn (Dudley, 2000). Yaw is elicited by inequality in thrust on both sides, whereas 

roll is generated due to inequalities in lift on either side of the centre of mass. Since, thrust 

Lift 

Side-slip 

Roll 

Yaw 

Pitch 

Pronation 

Thrust 

Drag 

Supination 

Fig. 1.5: Three rotational degrees of freedom (yaw, pitch and roll) and three 

translational degrees of freedom (thrust/drag, sideslip and lift) of a locust.  
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and lift are coupled during the downstroke, roll and yaw are coupled, generating a typical 

banking of a flying locust (Baker, 1979; Taylor, 2001; Berger and Kutsch, 2003). Roll could 

eventually increase the sideslip, as resultant lift forces from all wings are no longer directed 

vertically. Moreover, in tethered locusts, changes in the abdomen deflexion and dorsiflexion 

along with the asymmetrical postures of the mesothoracic and metathoracic legs in intentional 

steering augment the direction of the yaw and roll torques (Rowell, 1988: Santer et al., 2005). 

Similar postural adjustments have also been noted in bush cricket (Tettigonia viridissima) and 

cricket (Teleogryllus oceanicus) during acoustic avoidance responses (Schulze and Schul, 

2001; Miles et al., 1992).  

 

1.2.5.2 Looming evoked collision avoidance behaviour 

Locusts respond to the objects approaching on a collision course with steering 

movements. Complete steering behaviour of a rigidly tethered locust involves coordinate 

responses of the abdomen, hind legs and wings (Robertson and Johnson, 1993a). When 

locusts detect a target, they flick their abdomen either directly upwards or upwards and to one 

side (Robert, 1989; Robertson and Reye, 1992). Abdominal movement has been considered 

to be an effector of steering or at least an indicator of the direction of steering. This 

abdominal movement affects the animal in two ways. Initially, it increases drag on the side to 

which it is moved and it shifts the centre of mass around which the flight forces generated by 

the beating wings act (Robertson and Reye, 1992).   

 A change in forewing asymmetry is the most consistently observed reaction to 

looming stimuli and suggests that a collision avoidance manoeuvre may depend more on this 

reaction (Robertson and Johnson, 1993a). These different wing movements underlying flight 

manoeuvres are controlled by changes in the relative timing and strength of contraction of 

particular wing muscles. In rigidly tethered and in freely flying locusts, the forewing 
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movements on either side are symmetrical during straight flight (Robertson and Reye, 1992; 

Berger and Kutsch, 2003). When the locust is exposed to the stimulus, it tends to respond to 

the approaching object by turning in the opposite direction. The most obvious change in the 

form of the wing beat associated with attempted steering is that during the downstroke the 

forewings become more asymmetrical whereas the hindwings remain relatively symmetrical. 

In addition, forewings on the inside of the turn become markedly more depressed during the 

wing stroke as a result of earlier stroke transition from elevation to depression for that wing 

(Robertson and Reye, 1992; Dawson et al., 1997; Berger and Kutsch, 2003). On the outside 

of the turn, the forewings remain more elevated and separated from the hind wing.  

 Locusts often descend to the ground from their roosts on trees by gliding flight with 

horizontally stretched tegmina and incompletely extended hind wings (Neville, 1965). In free 

flight, gliding behaviour causes the locust to dive. According to Thomas and Taylor (2001), 

gliding posture is aerodynamically stable as the centre of lift is above the centre of gravity. 

However, looming elicited gliding whilst flying is thought to be triggered when an 

approaching object is detected late during the loom. It is interpreted as an emergency 

response displayed by the flying locust to evade fast aerial predators, when other steering 

manoeuvres have failed (Robertson and Johnson, 1993a; Gray et al., 2001; Santer et al., 

2005). In this posture, the hind wings stop moving during the downstroke of the wings (20
°
 

down: from their vertical axis) and at the same time the fore wings stop moving when they 

are at the top of the upstroke. In this way, the wings are elevated symmetrically and held in a 

swept back dihedral position above the body (Santer et al., 2005). Dihedral wing position 

during gliding can overcome the involuntary roll movements that would affect the stability of 

the gliding locust (Thomas and Taylor, 2001). Locusts usually can glide from a few to 300 

ms until flapping flight is resumed (Baker and Cooter, 1979; Burrows, 1996; Santer et al., 

2005). In a tethered locust, flight after a glide is more often followed by an increased wing 



22 

 

beat frequency. In free flight, this wing beat alteration may contribute to regaining flight 

stability or increasing flight speed (Santer et al., 2005). Similar flight posing behaviour has 

also been noted in tethered locusts in response to ultrasonic sound pulses (Dawson et al., 

2004).  

 

1.2.6 OBJECTIVES  

According to previous studies, locusts avoid collision with looming objects by 

triggering different types of avoidance strategies along different trajectories. However, it is 

presently unknown how a pair of locusts responds or interacts with each other in the presence 

of a looming object.  

I hypothesized that collision avoidance behaviour of a locust flying in a group is 

affected by the presence as well as relative position of a conspecific in its visual field.  Based 

on the hypothesis, two main objectives of the present study were to determine: 1) Is collision 

avoidance response influenced by the presence of a conspecific? and, 2) Is collision 

avoidance influenced by the location of a conspecific flying within a group? In this context, 

the first experiment in the current study was designed to determine the effect of the presence 

of a second locust on the first locust’s collision avoidance behaviour. Observations of locusts’ 

responses in Experiment 1 have led to the idea that locusts use visual cues from the looming 

object as well as from conspecifics in the vicinity to generate appropriate avoidance 

behaviour. Accordingly, my second experiment was designed to determine whether different 

relative positions of a conspecific affect the first locust’s collision avoidance behaviour. For 

the two experiments outlined in this thesis, I used a similar recording procedure in each of 

two different experimental setups.  

The behavioural study described here is a new approach and the findings of these two 

experiments are expected to provide information about behavioural interactions between two 
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locusts and the way that the presence and position of a locust in the swarm affects collision 

avoidance behaviour. Results would further allow us to investigate neural mechanisms 

underlying the induction of different avoidance strategies and coordinated and cohesive 

movement between locusts under a dynamic visual condition.  
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2. MATERIALS AND METHODS 

 

2.1 ANIMALS 

Migratory locusts, Locusta migratoria L., were reared under crowded colony 

conditions (25-28 
°
C, 12 h: 12h light: dark) in the Department of Biology at the University of 

Saskatchewan. They were fed with wheat seedlings and an artificial diet: wheat bran and 

locusts ≥ 3 weeks past the imaginal molt were selected for the experiments. All the 

experiments were carried out at room temperature (25 
°
C). Only apparently healthy locusts 

with intact wings and uniform body lengths were chosen for the experiments.  

 

2.2 METHODS 

Since rigid tethering introduces artifacts as the locust is unable to evoke complete 

steering behaviours, intact locusts were loosely tethered via a length of fishing line connected 

to a metal ring containing two vertical and two horizontal marks on the surface (Fig. 2.1A). 

The ring was attached to the dorsal pronotum of the locust using a small amount of low 

melting point beeswax and the free end of the fishing line was attached to the roof of the 

tunnel. Digitization of the x, y and z coordinates of four marks (see below) permitted 

calculation of the locust’s orientation in 3D space. Tethered locusts were positioned at 

assigned coordinates in the wind tunnel (1 m height x 1 m width x 3 m length) and spaced 30 

cm apart within a 3D volume of space (Fig. 2.1B). The mean flight speed of a locust in a 

swarm varies within 3-6 ms
-1

 (Baker et al., 1981).
  
Therefore, the wind speed in the wind 

tunnel was set at 3 ms
-1 

to induce and maintain flight. The length of the tether, 45 cm, 

permitted unrestricted initial collision avoidance and initial freedom of movement in 3D 

space while preventing potential contact and tangling of individuals. Accordingly, loosely 
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tethered locusts consistently oriented upwind, maintaining a relatively fixed position (± 5 cm) 

in the horizontal plane of the air stream. To record avoidance responses accurately, sufficient 

illumination from above was provided using two lamps (LOWELPRO-LIGHT, Mfg, Inc, 

New York, USA). Prior to stimulus presentation in each trial, locusts were allowed to fly for 

approximately 5 min to allow them to adopt a stable flight posture within the tunnel. In stable 

flight, locusts beat their fore and hind wings symmetrically with raised prothoracic legs 

adducted to the pronotum, mesothoracic legs trailing down the sides of the thorax and the 

metathoracic legs flexed and placed below the abdomen. Subsequently, locusts were 

presented with looming stimuli at 2-5 min intervals, to avoid behavioural habituation. If over 

three consecutive trials a locust did not respond to the looming stimulus, it was not used for 

experimentation.  

Flight behaviour was recorded from behind using two high speed video cameras 

(Motion scope, Redlake Camera, Inc. San Diego, USA) with an effective shutter speed of 

1/120 s. The frame rate of the camera was set to 50 frames per second (fps). Two cameras 

were positioned at the same the height as the locusts and 1.5 m downwind. In that position, 

the left camera was angled ~20
°
 to the right while the right camera was ~20

° 
to the left. In this 

way, they were set up to provide two fields of view of the entire volume of space in which the 

locusts were free to manoeuvre.  The relative position of the images of the locusts in these 

two cameras were synchronized and used to track the locusts’ 3D flight position in different 

treatments. Each of the 11 treatments was replicated 20 times for a total of 220 video 

recordings. The duration of each recording was 40 s and the duration of the stimulus in each 

was 4 s (see below).  
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Fig 2.1: A) Image of a loosely tethered locust in the wind tunnel. Four marks i.e. two 

horizontal (left and right) and two vertical marks (top and bottom) on the tether were used to 

digitize the video frames and x, y, z coordinates and thus calculate the locust’s orientation in 

3D space. B) Schematic diagram of the wind tunnel and experimental setup for behavioural 

recording. A computer-generated disc was presented on a rear projection screen. The disc 

expanded along a trajectory perpendicular to the longitudinal axis of two tethered locusts 

positioned 30 cm apart in the wind tunnel. Airflow was produced from a fan fixed at the front 

of the tunnel and arrows indicate the direction of air flow. Three red arrows represent the x, y 

and z axes of the wind tunnel. Images recorded by two cameras at 50 fps were synchronized, 

saved and digitized for offline motion analysis.     
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2.2.1 Visual stimulus 

  In 11 treatments across both experiments, locusts were exposed to the same visual 

stimulus; a computer-generated 7 cm diameter dark disk (7 cd m
-2

) against a white 

background (45.5 cd m
-2

) with a contrast ratio of 0.73, approaching at 3 ms
-1

.  Stimuli were 

created using Vision Egg visual stimulus generation software (Straw, 2008) on a python 

programming platform. Discs were presented as 512 x 512 pixel portable network graphics 

(png) files. The stimulus was scaled in real time at 340 fps and projected onto a rear-

projection screen (96 cm x 63 cm) placed against the right side of the wind tunnel using a 

Sony VPL-PX11 data projector (Fig. 2.1).  Discs were presented at 0
°
 elevation and 90

°
 

azimuth. In this orientation 0
°
, +90

°
 and -90

°
 elevation was directly at the locust eye equator, 

above and below the locust head, respectively. Whereas, 0
° 
azimuth was directly in front of 

the locust head and 180
° 
was directly behind. In this way, looming stimuli expanded along a 

trajectory perpendicular to the locust’s longitudinal body axis. Thus, the centre of the 

looming object loomed directly towards the centre of the right eye of the locusts. Projection 

of the looming stimulus was triggered manually, approximately 30 s after the locust 

maintained stable flight. At its final position, 60 cm and 30 cm from the initial position of L1 

and L2, respectively, the disk subtended 6.5
° 
and 13

° 
of each locust’s visual field of view.  
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2.2.2 Set up for Experiment 1 

The first experiment was designed to determine if the presence of a second locust 

affected collision avoidance behaviour of a locust in the vicinity. For this experiment, I used 

40 adult male locusts. This experiment was divided into five treatments of which the first two 

served as controls (Fig. 2.2). In the controls, locusts were placed alone in two positions: P1 

and P2, at two separate times. In the 3
rd

 and 4
th

 treatments, locusts were placed at their 

assigned positions separately with a dead locust adjacent to them. A dead locust with folded 

legs and outstretched fore and hindwings at 0
° 
elevation angle, was oriented upwind in the 

same horizontal plane as the live locust. The rationale for use of a dead locust was to test 

whether the presence of a conspecific, irrespective of collision avoidance behaviour, would 

influence the first locust’s response. As the final treatment, both live individuals were placed 

at their initial positions simultaneously. 
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       Treatments 

1. L1 at P1 

2. L2 at P2 

3. L1 at P1           DL at P2 

4. L2 at P2           DL at P1 

5. L1 at P1           L2 at P2 

 

 Controls 

Fig. 2.2: Cross section across the wind tunnel and set up for Experiment 1. Locusts were 

loosely tethered and positioned at their assigned positions in the wind tunnel. The distance 

between two locusts within the x-plane is 30 cm. Not drawn to scale (tunnel dimensions, 1 

m height x 1 m width x 3 m length). L1: locust 1, L2: locust 2, DL: dead locust, P1: 

position 1, P2: position 2. 

Stimulus 
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P2 P1 

L1 L2 
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2.2.3 Set up for Experiment 2 

The purpose of the second experiment was to determine whether collision avoidance 

is dependent on the relative position of a conspecific in the vicinity. To address this question 

I used a different group of 40 adult male locusts. Experiment 2 was divided into six 

treatments. In the treatments, L1 alone at P1 and two locusts simultaneously at their assigned 

positions (P1 and P2) were the controls. The other four treatments involved changing the 

position of L2 at four different positions: P3, P4, P5 and P6 while keeping L1 at P1 (Fig. 2.3). 

 

2.3 DATA COLLECTION 

Images recorded by the cameras were saved as an .AVI file and viewed using MiDAS 

2.2 (Xcitex Inc, Cambridge, Massachusetts, USA) acquisition software. Video sequences 

were then analyzed frame by frame using WINanalyze (Mikromak, Berlin, Germany), 3D 

motion analysis software. Digital analysis was performed in order to track the locust’s 

orientation during each treatment. After 3D calibration, flight position data were converted 

into 3D coordinates (x, y and z) for each frame to determine how the position of each locust 

changed during an approach (Fig. 2.4). These coordinate values, over time, were then viewed 

using Dataview 6.3.2 (St Andrews University, Scotland, 1999) analysis software (Fig. 2.4). 

Subsequently, the numerical values from Dataview were used to determine five 

measurements in two experiments separately: 1) types of initial avoidance responses 

exhibited by each locust; 2) the direction of the initial avoidance response and extent of 

deviation along three translational and three rotational degrees of freedom; 3) timing of the 

initial avoidance response relative to projected collision; 4) duration of the initial avoidance 

response (i.e., time from the start to peak of the initial avoidance response); 
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       Treatments 

1. L1 at P1       

2. L1 at P1     L2 at P2 

3. L1 at P1     L2 at P3 

4. L1 at P1     L2 at P4 

5. L1 at P1     L2 at P5 

6. L1 at P1     L2 at P6 

 

 

 

 

 

 

Fig. 2.3: Cross section across the wind tunnel and Set up for Experiment 2. Locusts were 

loosely tethered and positioned at their assigned positions in the wind tunnel. L2 was placed at 

four different positions in Treatments 3, 4, 5 and 6. Position numbers correspond to the 

treatment order and relatively smaller and larger locust images at P3 and P4 represent that in 

Treatments 3 and 4, L2 was in front and behind L1. In the second treatment the distance 

between two locusts within the x-plane was 30 cm. In Treatments 3 and 4, L2 was 20 cm 

ahead and behind P2 in the z-plane. In Treatments 5 and 6, L2 was 20 cm above and below P2 

in the y-plane. Not drawn to scale (tunnel dimensions, 1 m height x 1 m width x 3 m length). 

L1: Locust 1, L2: Locust 2, P1: position 1, P2: position 2, P3: front, P4: back, P5: up, P6: 

down.  

Controls 

Stimulus 
P2 P1 

P5 

P4 

P3 

P6 

L1 L2 
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and 5) direction and distance between each locust at the time of the peak of the initial 

response.  

After carefully studying each video recording, locust behaviour was categorized into 

the most prevalent types, such as active steering, gliding and non-directional startle response. 

The behaviour was categorized as active steering when locusts steered away from the 

looming object and flew in the opposite direction of the oncoming stimulus. Gliding was 

defined as cessation of the wing beat upon symmetrical elevation of the fore and hind wings 

and holding of the wings in an elevated position above the locust’s back. Non-directional 

startle responses were defined as interruption of the wing beat, folding all four wings 

backward and extending the legs. The trials in which a particular type of response was 

viewed were counted and the numbers were used to determine the frequency of occurrence of 

each response separately.  

For measurements of the three translational degrees of freedom, forward, upward and 

right translation were designated as positive values, relative to each locust’s initial position 

whereas backward, downward and left movements were designated as negative values. 

Additionally, for measurements of the three rotational degrees of freedom, for both yaw and 

roll, a positive angle value indicated rotation to the right (clockwise) and upward rotation for 

pitch. The changes in three rotational degrees of freedom in successive frames were 

determined relative to a set of virtual axes centered on the locust body at time 0 s. In 

Experiment 1, changes in three rotational degrees of freedom were assessed using the 

differences between x, y and z coordinates of all four marks: top, bottom, left and right, on 

the tether. However, changes in the three translational degrees of freedom in Experiments 1  
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Fig. 2.4: Analysis of flight position data. A) MiDAS screen shot illustrating the duration of the 

recording (i.e., a + b + a) and the looming stimulus (b). Note that the total duration of the 

recording was 40 s and the stimulus duration was 4 s. B) Top panel: Screen shot taken from 

Winanalyze, showing the synchronized and digitized two video frames taken by left and right 

high speed cameras. Following the digitization, L1 and L2 flight position data were converted 

into 3D coordinates. Bottom panel: illustration showing how the L1 and L2 flight positions 

deviate along the x-axis over 40 s recording period. Greater deviation along x axis indicates the 

steering of L1 and L2 to the left. C)  Digital flight position data of L1 and L2 in Dataview. x, y 

and z coordinates of both locusts have been displayed in one time scale. Thus, it allows 

determination of how the flight position changes along three axes at the same time and timing of 

the responses during recording. L1; locust 1, L2; locust 2.   
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and 2 were assessed by taking the difference between x, y and z coordinates of the top mark 

at the onset and the peak of the initial avoidance response.    

For the 3
rd

 measurement, timing of the initial avoidance response was considered as 

the time of the video frame in which a first indication of an avoidance response, such as 

abdomen deflection, abdomen dorsiflection, hind leg extension and flight cessation, was 

visible. For the 4
th

 measurement, the time spent for the initial response was determined by 

taking the time difference between the onset and the peak of the initial avoidance response, 

the frame in which highest magnitude of the initial response was visible prior to the projected 

collision time.   

Direction and distance between each locust at the time of the peak of the initial 

response was determined in each video recording. In addition, to determine whether the two 

locusts responded to the looming object as a pair or individually, the number of trials in 

which both locusts flew in the same direction (i.e., either to the left or right) at the onset of 

the response was counted. These trials along with the rest of the trials were used to calculate 

the probability of the grouping behaviour.       

 

2.4 DATA ANALYSIS    

To determine the relative response in each treatment, data from measurements 2, 3 

and 4: extent of deviation along six degrees of freedom, time of the initial response and 

duration of the initial response, respectively, were first normalized to those of the control 

treatments for each animal.  In the normalization, relative values in control treatments were 

considered as 1 for measurement 2, and 0 for measurements 3 and 4. For the 2
nd

 

measurement, normalization was carried out by dividing treatment values by the control 

value (1). For the 3
rd

 and 4
th

 measurements, treatment values were subtracted from the control 

(0). SigmaStat 3.5 was used to compare both normalized and non-normalized deviation and 
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timing data between treatments as well as with those of the control and plotted using 

SigmaPlot 10.0 (Systat Software Inc., Richmond, CA, USA). Data were tested for normality 

and equal variance.  Parametric data were compared with a one way ANOVA whereas non-

parametric data were compared with a Kruskal-Wallis one way ANOVA on Ranks. 

Significant differences between treatments were assessed using post-hoc pair-wise multiple 

comparison procedures (Tukey Test or Dunn’s test). Treatments were declared significantly 

different at P < 0.05.  
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3. RESULTS 

 

3.1 EXPERIMENT 1:  

  

3.1.1 Types of initial avoidance responses 

 Locusts responded to the looming disc with a variety of responses, including active 

steering, gliding and non-directional startle responses. Active steering involved coordinated 

responses of the abdomen, hind legs and wings. As the first sign of active steering (22 of 38), 

near the end of the stimulus approach, locusts flicked their abdomen directly upwards and/or 

upwards and to one side (to left or right). Then, locusts oriented towards the approaching 

stimulus and suddenly turned away from (to the left of) the looming object by extending the 

left hind leg to the same side as the left hind wing. Finally, active steering resulted in flying 

away from the stimulus (Fig. 3.1A).  

Another group of locusts (11 of 38) demonstrated gliding behaviour. In this context, 

near the end of stimulus approach, wing beating ceased and the wings were held in a gliding 

posture, elevated above the locust’s back. Gliding lasted for 100-200 ms (Fig. 3.1B). As in 

normal steady flight, both fore and hind wings were symmetrical in the elevated position. 

Immediately after gliding, six locusts resumed the wing beat cycle and the remaining five 

ceased flight by folding their fore and hind wings back over the abdomen. 

  Five locusts exhibited two types of startle responses in addition to active steering and 

gliding behaviour. The first type involved interruption of the wing beat, folding of all four 

wings backward and extending the legs out. In tethered flight, this type of startle response 

ended with a sudden movement towards the forward in the z-plane (Fig. 3.1C). As the second 

type, two locusts responded to the stimulus by deflecting the abdomen and hind  
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2. 

1. 

2. 

3. 

4. 

Fig. 3.1: Single frames demonstrating three types of avoidance responses evoked by a 

looming stimulus from the right. A) Four video frames from Treatment 5, illustrating 

the steps involved in active steering of L2 as viewed from behind, when L1 was alive. 

1. Steady flight. 2. Turning of the whole body towards the direction of the looming 

stimulus 3. Active steering with more depressed left fore wing on the inside of the turn. 

Position of the left forewing is indicated with an arrow head.  4. Resulting movement 

from active steering i.e. to the opposite direction (left) of the looming stimulus. B) 

Gliding posture of a locust viewed from behind: fore and hind wings are maintained in 

an elevated position. C) Three video frames from Treatment 5, illustrating the steps 

involved in Type 1 non-directional startle response of L2. 1. Steady flight of L2 as 

viewed from behind. 2. Folding of all four wings and movement to the forward 

direction. 3. Resumption of flight after 180 ms. Frame A-3 and B are on different 

spatial scales relative to the other frames as they are magnified to highlight the 

responses described in particular. L1: Locust 1; L2: Locust 2.   

C) 

1. 

3. 

L1                                         L2 

2. 

B) A) 

L1                                         L2 
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legs and rapidly flying towards 315
°
 45

°
 (a 90

°
 sector at the front of the locust in the wind 

tunnel) azimuth range in the horizontal plane. In this study, both types of startle responses 

were considered as the non-directional startle response. 

Figures 3.2A and B illustrate the percentage occurrence of three responses of Locust 1 

(L1) and Locust 2 (L2), respectively. L1 and L2 exhibited all three types of behaviours in 

three treatments. However, responses of L1 in these three treatments were not consistent (Fig. 

3.2A). Gliding behaviour was most prominent (53%, n = 10) when L1 was alone in 

control/Treatment 1 and was exhibited with the least (21%, n = 4) and second highest 

frequencies (32%, n = 6) when paired with a live and dead locust (DL) in Treatments 5 and 3, 

respectively. However, when paired with DL (47%, n = 9) and a live locust (42%, n = 8), L1 

responded to the looming stimulus most frequently by steering away from it. Among three 

types of responses, non-directional startle response had the lowest and second highest 

percentage in Treatments 1 (5%, n = 1) and 3 (21%, n = 4) whereas, among three treatments, 

performance of the startle response was highest in Treatment 5 (37%, n = 7).  

As illustrated in Figure 3.2B, the percentage occurrence of the three types of 

responses in L2, followed the same trend in three treatments. Even though L2 was alone in 

control/ Treatment 2 (74%, n = 14) and paired with a dead (58%, n = 11) and a live locust 

(79%, n = 15) in Treatment 4 and 5, the majority of animals avoided the stimulus by actively 

steering away from it. The highest percentage occurred when L2 was paired with a live locust 

in Treatment 5. Gliding behaviour was the second most frequently occurring behaviour in 

three treatments and it was highest when L2 was coupled with a DL in Treatment 4 (32%, n = 

6). In all three treatments, startle responses occurred least often (11%, 11%, 5%, n = 2, 2, 1) 

indicating the least possible type of escape strategy taken by L2 throughout the treatments.  
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B) 

A) 

Fig. 3.2: Percentage of occurrence of three responses; gliding, active 

steering and non-directional startle response of (A) L1 (n=19) and (B) L2 

(n=19) in response to looming stimuli during Experiment 1. Each column 

is the percentage of trials in which particular type of behaviour was 

evident. L1: Locust 1; L2: Locust 2; DL: Dead locust.    
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3.1.2 Direction of initial avoidance responses and extent of deviation along six degrees 

         of freedom.  

 The distribution of L1 and L2 flight paths in different treatments was determined 

using flight position coordinates in successive video frames between the onset and peak of 

the initial avoidance response (Fig. 3.3). As illustrated in (A) and (B), L1 flight tracks in 

Treatments 1, 3 and 5 were confined to a smaller range along the x-axis (± 100 mm). This 

implies a smaller lateral deviation of L1 during collision avoidance. Conversely, L2 flight 

tracks were extended in a wide range along the x- axis (± 250 mm), implying a greater 

movement to the left and right directions in response to looming stimuli. 

 Compared to the lateral deviation, L1 and L2 movement along the z-axis followed a 

similar trend. Both locusts exhibited a greater forward movement (+ 125-150 mm) and a 

relatively smaller backward movement (- 50 mm) along the z-axis in different treatments. 

Overall, L1 showed greater forward movements when it was alone in Treatment 1. In terms 

of L2, greater forward movements occurred when it was alone in Treatment 2 and coupled 

with L1 in Treatment 5. However, compared to the deviation along the x and z axes, upward 

and downward movements of both locusts along the y-axis were relatively small. Regardless 

of the presence or absence of a dead or live locust, L1 demonstrated less movement along the 

y-axis and therefore less deviation in elevation during different trajectories. However, L2 

movement along the y-axis deviated more than the L1 and higher elevations were 

demonstrated when L2 was alone in Treatment 2 and paired with a L1 in Treatment 5. 

3.1.2.1 Three translational degrees of freedom 

Deviation of three translational degrees of freedom (i.e., sideslip, lift and thrust) of 

both locusts was plotted against the three treatment types (Fig. 3.4). The behaviour in each 

treatment was normalized to that of the control to obtain the relative response and compared 
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with that of the related control treatments in which L1 and L2 were alone (Treatments 1 and 

2). Comparisons were done to determine whether collision avoidance behaviour of L1 and L2 

was affected by the presence of a conspecific.   

A Kruskal-Wallis ANOVA on ranks showed that there was a significant effect of the 

treatments (P < 0.05). Figure 3.4A shows how the sideslip translation of L1 and L2 change 

over the 40 s recording period in Treatment 5. As shown in Figure 3.4B, three translational 

degrees of freedom of L1 demonstrated an inconsistent pattern in overall trend throughout the 

experiment. Compared to the control, sideslip translation increased whereas lift decreased. 

Also, the presence of a dead and a live locust evoked a greater fluctuation in L1 thrust 

translation (Fig. 3.4B). Compared to the control, L1 total sideslip movement, which is 

considered as a combination of both left and right movement (Dunn’s Method, n = 19, H2 = 

16.999, P < 0.001) and left movement (Fig. 3.4B) was significantly higher (Dunn’s Method, 

n = 19, H2 = 12.150, P = 0.002) with greater variability when paired with a dead and a live 

locust in Treatments 3 and 5. 
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Fig. 3.3: Summary of the flight paths of L1 (n=19) and L2 (n=19), in response to the laterally 

looming stimuli. A) Top panel: L1 movement along the x-axis against movement along the z 

axis as viewed from above the wind tunnel. Bottom panel: L1 movement along the z-axis 

against movement along the y-axis as viewed from the right side of the wind tunnel. B) Top 

panel: L2 movement along the x- and z-axis as if viewed from above the wind tunnel. Bottom 

panel:  L2 movement along the z- and y-axis as if viewed from the right side of the wind 

tunnel. The inset in each plot clearly demonstrates the direction and average deviation of 

motion of initial collision avoidance response of L1 and L2 in each treatment. Greater average 

deviations in the motions are along the x (- 30) and z (+ 60) axes. Compared to x and z, 

average movements along y-axis is low (+ 8). Relative to the initial position at the start of the 

recording (zero), positive and negative deviations along the x-axis respectively, represent the 

rightward and leftward movements during the initial avoidance response; whereas the positive 

and negative deviations along the z-axis represent forward and backward movements, 

respectively. Upward movements are positive and downward movements are negative along 

the y-axis. L1: Locust 1; L2: Locust 2.  

A) B) 
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Fig. 3.4: A) Example of data from a single trial showing sideslip deviation of L1 and L2 along the x-

axis over a 40 s recording period.  Space between red lines indicates the duration of the looming 

stimulus (4s) and black solid and dashed lines represent the onset and the peak of the initial avoidance 

response respectively. The area marked by double arrow shows the extent of deviation and direction 

of the initial response of L1 and L2 in Treatment 5. Upward and downward deflections represent the 

movement to the right and left, respectively. B) Statistical summary of direction of initial avoidance 

response and normalized extent of deviation of 3 translational degrees of freedom of L1 (n=19) and 

C) L2 (n=19). Error bars represent the standard deviation. Comparisons were made between 

treatments and asterisks indicate significant differences with the control at P < 0.05. L1: Locust 1; L2: 

Locust 2; DL: Dead locust. 
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Also, overall lift including total, upward and downward movements in Treatments 3 and 5 

was lower compared to the control. Statistically, total lift translation, which is the 

combination of upward and downward movement (Dunn’s Method, n = 19, H2 = 10.085, P = 

0.006) and upward movement (Tukey Test, n = 19, H2 = 7.692, P = 0.013) of L1 were 

significantly lower in the presence of a dead and live locust (L2), respectively (Fig. 3.4B). 

There were also significant differences in thrust/ drag of L1 between the treatments (Fig. 

3.4B). Total thrust, which is the combination of forward and backward movements (Tukey 

Test, n = 19, H2 = 21.156, P = < 0.001), and forward movement (Tukey Test, n = 19, H2 = 

17.308, P < 0.001) of L1 was significantly lower and less variable when paired with a dead 

locust and significantly higher and more variable when coupled with a live locust in 

Treatment 5. In both treatments, backward movement of L1 was less pronounced.   

Although there was a decrease in the total and left movement of L2 among treatments 

(Fig. 3.4C), there was no statistical difference in sideslip translation. However, relative to the 

initial response, L2 exhibited a reverse total sideslip and right movement with greater 

variability when coupled with a live locust in Treatment 5. Also, compared to the control, 

both total (Tukey Test, n = 19, H2 = 13.855, P =< 0.001) and downward movement (Tukey 

Test, n = 19, H2 = 9.848, P = 0.007) of L2 along the y-axis was significantly affected by the 

presence of DL and L1 (Fig. 3.4C). L2 downward movement in Treatments 4 and 5 and the 

total lift in Treatment 5 was reversed relative to the initial response in the control.  Compared 

to the control, L2 exhibited more pronounced backward movements when coupled with a 

dead and live locust in Treatments 4 and 5. Total movement of L2 in Treatment 4 differed 

significantly (Tukey Test, n = 19, H2 = 5.793, P = 0.04) from the control (Fig. 3.4C). In 

addition, relative to the initial response in the control, total thrust including forward and 

backward response was reversed in Treatments 4 and 5.   
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C) B) 

Fig. 3.5:  A) Example of data from a single trial showing the roll angle deviation of L1 and L2 

over a 40 s recording period.  Space between red lines indicates the duration of the looming 

stimulus (4 s) and green and blue dashed line represents the onset of the initial avoidance response 

of L1 and L2, respectively. A positive value in the x-axis indicates rotation to the right and a 

negative value represents rotation to the left. B) Statistical summary of direction of initial 

avoidance response and normalized extent of deviation of three rotational degrees of freedom of 

L1 (n=9) and C) L2 (n=9). Error bars represent standard deviation. Comparisons were made 

between treatments and asterisks indicate significant differences with the control at P < 0.05. L1: 

Locust 1; L2: Locust 2; DL: Dead locust. 
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3.1.2.2 Three rotational degrees of freedom 

 Compared to the control, there were significant differences in the roll and yaw 

rotation of Locust 1 (L1) and Locust 2 (L2) in different treatments (Fig. 3.5).  Roll and yaw 

angles of L1 demonstrated significant changes in response to the looming stimulus in 

Treatments 3 and 5 in which L1 was paired with DL and L2 (Fig. 3.5B), whereas the pitch 

angle did not show significant changes throughout the experiment (Fig. 3.5B). Regardless of 

the presence of a dead or a live conspecific in Treatments 3 and 5, overall roll angle 

responses of L1 were reversed relative to that of the control. Compared to that of the control, 

roll angles to the right differed significantly in both treatments (Tukey Test, n = 9, H2 = 

13.022, P = 0.001). Significant differences were also found in total roll rotation (Tukey Test, 

n = 9, H2= 18.595, P < 0.001). Even though there were no significant differences in the L1 

pitch angle, L1 responses were relatively high with greater variability in Treatments 3 and 5. 

On the other hand, the yaw angle was weaker and less variable in Treatments 3 and 5. 

However overall, responses were reversed relative to the control. The presence of a dead 

locust in Treatment 3 evoked a significant difference in the total yaw rotation (Tukey Test, n 

= 9, H2 = 11.013, P = 0.004). Additionally, there were significant differences in Treatment 5 

in terms of total yaw rotation (Tukey Test, n = 9, H2 = 11.013, P = 0.004) and yaw angle to 

the left (Tukey Test, n = 9, H2 = 7.812, P = 0.01) (Fig. 3.5B).  

 As with L1, roll and yaw angles of L2 demonstrated significant changes in 

Treatments 4 and 5 in which L2 was paired with DL and L1 (Fig. 3.5C). Relative to the 

control, overall roll rotation was reversed and roll angle to the right was significantly affected 

by the presence of DL and L1 (Tukey Test, n = 9, H2 = 7.652, P = 0.015). As illustrated in 

Figure 3.5C, the presence of a dead or a live locust did not have a significant effect on L1 

pitch rotation but, relative yaw rotation of L2 decreased in Treatments 4 and 5. When L2 was 

paired with L1, there were differences in the yaw total (Tukey Test, n = 9, H2 = 10.67, P = 



47 

 

0.005) and left turn (Tukey Test, n = 9, H2 = 7.812, P = 0.011) (Fig. 3.5C). Compared to the 

control, this yaw total and left turn in Treatment 5 was significant and reversed. As illustrated 

in Figures 3.4 and 3.5, locusts tended to respond to a looming object more vigorously in the 

presence of a live locust than a dead locust, significantly altering the three translational and 

two of the three rotational degrees of freedom when flying in 3D space. These findings 

suggest that a locust’s initial avoidance response is significantly affected by the presence of a 

conspecific in its vicinity, especially when the conspecifics alive.  

 

3.1.3 Timing of the initial avoidance response relative to projected collision 

Timing of the initial avoidance response of L1 (n = 19) and L2 (n = 19) in each 

treatment was compared to determine if there was an effect of the presence of a conspecific 

on the timing onset of the initial avoidance response. According to Figure 3.6B, the median 

time of L1 response onset in the control was 766 ms before the projected collision time. Also, 

in Treatments 3 and 5 the median time of L1 response onset was 724 and 823 ms, 

respectively, before projected collision time. Even though, compared to the control, L1 

responded 57 ms earlier when paired with a live locust and 42 ms later when paired with a 

dead locust, there was no significant difference in L1 time relative to collision, either between 

treatments and with the control (Fig. 3.6B). L1 responded to the looming object at almost the 

same time in all three treatments indicating that the time of the initial avoidance response of 

L1 was unaffected by the presence of a conspecific in its visual field.   

Conversely, L2 responded earlier when paired with DL and L1 in Treatments 4 and 5, 

respectively. However, when coupled with a live locust (L1 in Treatment 5), L2 responded 

significantly earlier compared to the control (Tukey Test, n = 19, H2 = 6.530, P = 0.038) (Fig.  
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Fig. 3.6: A) Example of actual data from a single trial showing the sideslip deviation of L2 over 

the final 10s of the recording period. Space between red lines indicates the duration of the 

looming stimulus (4s) and black solid and dashed lines represent the onset and peak of the initial 

avoidance response of L2. Time to projected collision, which is indicated by a double arrow, 

was taken as the difference between onset of the response and projected collision time. B) Effect 

of treatment on initial avoidance response time of L1 (n=19) and C) L2 (n=19). The 1
st
 and 2

nd
 

panel indicates the raw time values and normalized time values, respectively. Boxes show the 

25
th
 and 75

th
 percentiles and median value and whiskers show the 5

th
 and 95

th
 percentile level. 

The asterisk indicates significant difference from the reference value (dashed line) at P < 0.05.  

L1: Locust 1; L2: Locust 2; DL: Dead locust.  
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3.6C). This result suggests that the presence of a live conspecific affects the timing of the 

initial response onset of a locust in a group. 

 

3.1.4 Duration of the initial avoidance response  

The duration of the initial avoidance response was measured to determine if it was 

affected by the presence of a conspecific. As illustrated in Figure 3.7B, the duration of the 

initial response of L1 in three treatments was similar and there were no significant differences 

between treatments or with the control.  

Overall, compared to L1 response duration, the L2 response duration in three 

treatments was slightly longer (~ 50 ms), indicating a slower reaction than L1 (Fig 3.7C). 

However, compared to the control treatment in which L2 was alone, response duration 

decreased by 30 and 15 ms (difference between the median of the response duration) when 

L2 was coupled with a dead and live locust in Treatments 4 and 5 (Fig. 3.7C). However, 

these differences were not significant. Regardless of the presence of a dead or a live locust, 

the response durations of both locusts were the same in different treatments. These findings 

imply that the presence of a conspecific does not affect the response duration or reaction 

speed of a locust in a group whether it is nearer or further from the stimulus.  
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Fig. 3.7:  A) Example data from a single trial showing the sideslip deviation of L2 over the 

final 10 s of the recording period. Space between red lines indicates the duration of the 

looming stimulus (4 s). Black solid and dashed line represents the onset and the peak of the 

initial avoidance response respectively. Thus, the double arrow represents the duration of the 

initial avoidance response of L2 in treatment 5. B) Effect of treatment on duration of the initial 

avoidance response time of L1 (n=19) and C) L2 (n=19).  The 2
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 and 3
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 panels indicate the 

raw and normalized time values, respectively. Boxes show the 25
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 and 75
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 percentiles and 

median value and whiskers show the 5
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 and 95
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 percentile level. L1: Locust 1, L2: Locust 2; 

DL: Dead locust.  
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3.1.5 Direction and distance between each locust at the time of the peak response. 

 At the beginning of the Experiment 1, two locusts were kept 30 cm apart from 

each other (in Treatment 5).  However, at the time of the initial avoidance response, the two 

tethered locusts were able to maintain a distance which was closer to 30 cm at the beginning. 

On average (n = 19), the distance between the two at the onset of the initial response was 32 

cm (data not shown). The time of the peak response was measured as the time of the video 

frame in which the highest magnitude of the initial response was visible prior to the projected 

collision time. At the time of the peak avoidance response, the average distance between each 

locust was 30.6 cm (Fig. 3.8). Although this distance was slightly low compared to that of the 

onset of the response and higher than that of the set value, there was no significant difference 

among the distances. 

 To determine whether the two tethered locusts responded to the looming object as 

a pair or individually, the number of trials in which both locusts flew to the same direction 

(i.e., either to the left or right), during the initial response, was counted. Consequently, 68% 

of locust pairs (n = 13) steered the same direction while 32% of locust pairs (n = 6) steered in 

opposite directions (i.e., either towards or away from each other). Results imply that two 

locusts tend to respond to the looming object as a pair and demonstrate some ability to 

maintain the distance from a neighbour during collision avoidance. 
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Fig. 3.8: Position of L1 (n=19) and L2 (n=19) along the x-axis at the time of 

the peak of the initial response at each trial in Treatment 5. Blue and grey 

dashed lines show the average position of L1 and L2 along the x-axis at the 

peak of the initial response, respectively. Thus, distance between the two 

dashed lines represents the average distance between the locusts at the time of 

the peak of the initial avoidance response. L1: Locust 1; L2: Locust 2. 
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3.2 EXPERIMENT 2:  

 

3.2.1 Types of initial avoidance responses 

Looming stimuli triggered three types of avoidance responses including active 

steering, gliding and non-directional startle responses in L1 and L2. Figures 3.9A and B 

illustrate the percentage occurrence of three responses in L1 and L2, respectively. L1 

exhibited all three behaviours in six treatments. Nevertheless, no consistent trend among 

responses was observed. A non-directional startle response was the most prominent type of 

response in all treatments. Percentage occurrence was highest in Treatment 1 in which L1 

was alone (72%, n = 13) and lowest in Treatment 4 (44%, n = 8) when L2 was behind L1 

(Fig. 3.9A). In Treatments 3, 5 and 6, gliding behaviour had the second highest frequency and 

it was followed by active steering, which had the lowest percentage occurrence among three 

response types. Conversely, in Treatments 1 and 4, gliding behaviour showed the lowest 

percentage indicating the lowest occurrence (11% and 17%, n = 2 and n = 3). When L1 was 

parallel to L2 in treatment 2, gliding and active steering occurred at a similar frequency 

(22%, n = 4). 

As illustrated in Figure 3.9B, percentage occurrence of the three responses in L2 did 

not follow the same trend.  In Treatments 2, 3 and 4 in which L2 was parallel, in front and 

behind L1, respectively, the majority of animals avoided the stimulus by actively steering 

away from it. The highest percentage occurred when L2 was paired with a live locust in 

Treatment 2 (72%, n = 13). However, when L2 was below L1, active steering was the least 

frequent type of response (17%, n = 3). When L2 was above L1, both active steering and non-

directional startle responses occurred at similar frequencies and were the most prominent. 

Moreover, a non-directional startle response was the second most frequently  
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Fig. 3.9: Percentage occurrence of three responses; gliding, active steering and non-

directional startle response of (A) L1 (n=18) and (B) L2 (n=18) in response to 

looming stimuli. Each column is the percentage of number of trials in which a 

particular type of behaviour was evident. Two black circles in each treatment are used 

to indicate the locusts’ position. Relatively small and large circles in Treatments 3 and 

4 show that L2 is in front of or behind L1, respectively. L1: Locust 1; L2: Locust 2.    
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occurring behaviour in Treatments 2 and 3, but was the most frequent response type in 

Treatment 6.  However, it had the lowest frequency in Treatment 4 (6%, n = 1).  

Of the three responses, gliding occurred least frequently in Treatment 2 (11%, n = 2), 3 (17%, 

n = 3) and 5 (6%, n = 1) whereas it had the second highest frequency in Treatments 4 and 6. 

These findings suggest that the most common response for L1 was non-directional startle and 

it can depend on the presence or different relative positions of a conspecific in the group.  

Conversely, L2 tended to avoid the stimulus by actively steering away from it, and by non-

directional startle response in Treatment 6.   

 

3.2.2 Direction of initial avoidance responses and extent of deviation along three 

          translational degrees of freedom. 

As illustrated in Figures 3.10A and B, despite the presence and different relative 

positions of L2, L1 flight paths in all the treatments were confined to a narrow range along 

the x-axis (±75 mm). Rather than deviating along the x-axis, the majority of flight paths were 

directed forward. This implies a smaller lateral deviation of L1 during collision avoidance. 

L2 flight paths, compared to that of L1, extended over a wider range along the x- axis (±100 

mm), implying a greater lateral movement to the left and right directions in response to the 

looming stimulus. 

Compared to the lateral deviation, L1 and L2 movement along the z-axis followed a 

similar trend. Both locusts had greater forward movements (+200 mm) and relatively smaller 

backward movements (-50 mm) in different treatments. Overall, L1 showed greater forward 

movements when it was alone in Treatment 1 and above L2 in Treatment 6. Greater forward 

movements were displayed by L2, when it was parallel to, in front of, or below L1 in  
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Fig. 3.10: Summary of the flight paths during initial avoidance responses taken by L1 (n=18) and 

L2 (n=18), in response to the laterally looming stimuli in the wind tunnel. A) Top panel: L1 

deviation of movement along the x-axis vs. deviation along the z-axis as if viewed from above the 

wind tunnel. Bottom panel: L1 deviation of the movement along the z-axis vs. deviation along the 

y-axis as if viewed from the side of the wind tunnel. B) Top panel: L2 deviation of movement 

along x and z axes as if viewed from above the wind tunnel. Bottom panel:  L2 deviation of 

movement along z and y axes as if viewed from side of the wind tunnel. Inset in each plot 

demonstrates the direction and average deviation of initial collision avoidance responses of L1 and 

L2 in each treatment. Greater average deviations in the motions of L1 and L2 are along the z-axis 

(+80). L1 average deviations along x-axis (±15) are low compared to that of L2 (± 60). Compared 

to x and z, average movements of both locusts along y-axis is low (±8). Relative to the initial 

position at the onset of the recording (zero), positive and negative deviations along the x-axis 

respectively, represent the rightward and leftward movements during the initial avoidance 

response. Whereas, the positive and negative deviations along the z-axis represent the forward and 

backward movements. Also, upward movements are positive and downward movements are 

negative along the y-axis. L1: Locust 1; L2: Locust 2.   

A) B) 
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Treatments 2, 3 and 6. In addition, the locusts’ movements along the y-axis displayed a 

similar trend. Overall, despite few instances of backward motion, forward movements along 

the z-axis caused a gradual decrease in the locusts’ elevations in the y-axis. Additionally, 

most of these declines in elevation were followed by slight increments towards the end of the 

initial response. However, compared to the deviation along the x- and z-axes, locusts’ 

movements along the y-axis were relatively low.  

 Three translational degrees of freedom were compared between each treatment 

and with that of the control (Fig. 3.11). Comparisons were done to determine whether 

collision avoidance behaviour of L1 was affected by the relative position of a conspecific. L1 

behaviour in different treatments significantly differed from that of the control. When L2 was 

below L1, significant changes in total sideslip translation (Tukey Test, n = 18, H5 = 12.720, P 

= 0.026) and left movements (Dunn’s Method, n = 18, H5 = 12.218, P = 0.032) were detected 

(Fig. 3.11A). Relative to the control, both responses were reversed and more variable. 

Furthermore, upward movement of L1 was significantly affected when L2 was in front of L1 

(Tukey Test, n = 18, H5 = 13.452, P = 0.019) (Fig. 3.11A). Although, the position of L2 did 

not affect the forward and backward movement of L1, it affected the total thrust translation of 

L1 when L2 was parallel to, in front of, or above L1 (Tukey Test, n = 18, H5 = 15.709, P = 

0.008) (Fig. 3.11A). Relative to the initial response in the control, total thrust translation was 

significantly low. 

 L2 behaviour was compared between each treatment and with that of the 

control. Comparisons were done to determine whether behaviour depended on the position of 

L2 within the pair (Fig. 3.11B). Back, higher and lower positions in Treatments 4, 5 and 6, 

respectively, elicited comparatively weaker responses in sideslip movements (left and right). 

In these treatments, the total movement was significantly lower (Tukey Test, n = 18, H4 = 

15.676, P = 0.003) than that of the control treatment in which L2 was parallel to L1 (Fig. 
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3.11B). Total lift movement of L2 was significantly affected when it was above L1 in 

Treatment 5 (Tukey Test, n = 18, H4 = 9.991, P = 0.04). Also, downward movement of L2 in 

Treatment 6 differed significantly from that of Treatment 5 (Tukey Test, n = 18, H4 = 15.431, 

P = 0.004) (Fig. 3.11B).  

 Front and higher positions of L2 significantly affected its own thrust movement, 

compared to that of the control (Fig. 3.11B). In Treatment 3, total thrust was reversed and 

significantly higher with greater variability. However, it was significantly lower and less 

variable in Treatment 5 (Tukey Test, n = 18, H4 = 14.486, P = 0.006). Compared to the 

control, there was no significant difference in forward movement in the other four treatments, 

but L2 forward movement in Treatment 6 was significantly different from that of Treatments 

3 and 5 (Tukey Test, n = 18, H4 = 13.452, P = 0.009). Significant differences from the control 

were also found in backward movement of L2, when it was in front of and below L1 in 

Treatments 3 and 6 (Tukey Test, n = 18, H4 = 11.328, P = 0.023).  These findings suggest 

that a locust’s three translational degrees of freedom in initial avoidance response are 

significantly affected by the relative position of a conspecific, as well as its own position 

within the group.  
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A) B) 

Fig. 3.11: A) Statistical summary of direction of the initial avoidance response and normalized 

extent of deviation of three translational degrees of freedom of L1 (n=18) and B) L2 (n=18). Two 

black circles in each treatment are used to indicate the locusts’ position in each treatment. 

Relatively small and large circles in Treatments 3 and 4 indicate that L2 is in front of and behind 

L1, respectively. Error bars represent the standard deviation. Comparisons were made between 

treatments and asterisks indicate significant differences with the control at P < 0.05. Treatments 

with similar letters indicate no significant differences. L1: Locust1; L2: Locust 2. 
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3.2.3 Timing of the initial avoidance response relative to projected collision 

Timing of the initial avoidance response of L1 (n = 18) and L2 (n = 18) in each 

treatment was compared to determine if there was an effect of the relative position of a 

conspecific. Figure 3.12A shows that the median time of L1 response onset in the control 

occurred 837 ms before the projected time of collision. Compared to the control, L1 

responded 14, 18, 17, 26 and 9 ms (median time of the response onset) earlier in Treatments 

2-6, respectively. However, there were no statistically significant differences between 

treatments, or compared to the control (Fig. 3.12A). L1 responded to the looming object 

almost at the same time during the six treatments, indicating that the time of the initial 

avoidance response of L1 was unaffected by the relative position of a conspecific in its 

vicinity.  

  The median time of L2 response onset in the control, occurred 849 ms before the 

projected time of collision (Fig. 3.12B). Compared to the control, the median time of L2 

response onset was 86, 105 and 52 ms earlier when it was in front of, above and below L1 in 

Treatments 3, 5 and 6, whereas it was 11 ms later in Treatment 4. In Treatment 5, the initial 

avoidance response onset occurred significantly earlier than that of the control (Tukey Test, n 

= 18, H4 = 13.261, P = 0.01, Fig. 3.12B). Significant differences were also identified between 

Treatments 4 and 5. These results suggest that the presence of a live conspecific at different 

relative positions does not affect the timing of the initial response onset of a locust in a group. 

According to L2 avoidance behaviour, a higher position in the group could evoke avoidance 

responses relatively earlier. This implies that a locust’s own position within a group affects 

timing onset of its collision avoidance behaviour.    
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Fig. 3.12: Effect of treatment on onset of initial avoidance response of A) L1 (n=18) and B) L2 (n 

=18).  Difference between the time of initial response and projected collision indicates the time 

remaining to collision. Thus, a greater difference between treatments indicates earlier response 

onset. The 1
st
 and 2

nd
 panels indicate the raw and normalized time values, respectively. Two 

black circles in each treatment are used to indicate the locusts’ position in each treatment. 

Relatively small and large circles in Treatments 3 and 4 show that L2 was in front and behind L1, 

respectively. Boxes show the 25
th
 and 75

th
 percentiles and median value and whiskers show the 

5
th
 and 95

th
 percentile level. An asterisk indicates the significant difference from the reference 

value (dashed line) at P < 0.05. Treatments with similar letters indicate no significant differences. 

L1: Locust 1; L2: Locust 2. 
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3.2.4 Duration of the initial avoidance response 

The duration of the initial avoidance response was measured to determine if it was 

affected by the relative position of a conspecific. As illustrated in Figure 3.13A, the duration 

of the initial response of L1 in the five treatments was slightly lower than in the control. 

However, there were no significant differences between treatments or compared to the 

control. The lack of significant differences suggests that the relative position of a conspecific 

does not affect the response duration or response speed of a locust in a group.  

 L2 avoidance response duration in five treatments was slightly higher compared to 

that of L1. This suggests a slower reaction of L2 relative to L1 (Fig. 3.13A and B). Compared 

to the L2 behaviour in the control, response duration increased within the range of 58-110 ms 

when L2 was at different relative positions in the group (Fig. 3.13B). However, significant 

differences were not identified between the treatments or compared to the control. Lack of 

significant differences in the avoidance response duration suggest that a locust position 

within the group does not have a significant impact on its own reaction speed. 
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Fig. 3.13: Effect of treatment on initial avoidance response duration of A) L1 (n=18) and 

B) L2 (n =18). A difference between the onset and peak of the initial response was 

considered as the duration of the initial response. The 1
st
 and 2

nd
 panels indicate the raw 

and normalized time values, respectively. Two black circles in each treatment are used 

to indicate the locusts’ position in each treatment. Relatively small and large circle in 

Treatments 3 and 4 shows that L2 is in front and behind L1, respectively.  Boxes show 

the 25
th
 and 75

th
 percentiles and median value and whiskers show the 5

th
 and 95

th
 

percentile level. L1: Locust1; L2: Locust 2.    
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3.2.5 Direction and distance between each locust at the time of the peak response 

 At the beginning of the experiment, the distance between two locusts along the x-

axis was 30 cm. Locusts maintained the distance at the onset of the avoidance response fairly 

close to 30 cm (Table 3.1). Also, there were no significant differences in the L1-L2 distance 

at the onset of the response, between each treatment and compared to the control. Lack of 

significant differences between treatments suggest that, regardless of the presence of a 

conspecific at different relative positions, a locust pair can maintain the distance between 

each other during flight. 

  However, the distance between the pair at the peak of the response differed with 

treatments significantly. The mean distance was least in Treatment 3 and this was 

significantly different from that of Treatment 5. The distance between the two locusts was 

highest (31 cm) in Treatments 5 and 6.     

 

 

      Comparisons made between treatments with similar letters indicating no significant  

      differences at P < 0.05.   

 

Treatment 

number 

Mean distance 

between L1 and 

L2 at the onset 

of the response 

(cm) 

Mean distance 

between L1 and 

L2 at the peak 

of the response 

(cm) 

Number of 

trials in which 

locusts moved 

in the same 

direction (n) 

Probability 

% 

(N=18) 

2 31.8
a 

± 1.8 29.4
ac 

± 3.2 11 61.1 

3 31.3
a
 ± 1.7  27.7

a 
± 3.0  9 50.0 

4 32.3
a
 ± 1.9 30.7

ac
 ± 2.0 10 55.5 

5 31.2
a
 ± 1.5 31.0

bc
 ± 2.3 12 66.7 

6 32.0
a 

± 3.5 31.0
ac

 ± 4.6 12 66.7 

Table 3.1: Effect of relative position of a conspecific in a group on the probability of 

steering to the same direction 
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 As illustrated in Table 3.1, in over 50% of trials, both locusts flew in the same 

direction simultaneously, while others flew in the opposite direction (i.e., either towards or 

from each other) during the initial avoidance response. I observed a higher probability of 

steering to the same direction when conspecifics were at relatively higher and lower positions 

in Treatments 5 and 6. Also, the greater probability resulted in a greater distance between two 

locusts at the peak. These findings suggest that, though the conspecifics remain at different 

relative positions, locusts are able to respond to the looming object as a pair. 
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4. DISCUSSION 

 

Individual locust collision avoidance behaviour in response to looming stimuli has 

been studied previously (Robertson and Reye, 1992; Robertson and Johnson, 1993a, 1993b; 

Gray et al., 2001; Gray, 2005; Santer et al., 2005; Santer et al., 2006; Fotowat and Gabbiani, 

2007; Simmons et al., 2010). However, no studies have investigated the collision avoidance 

behaviour of an insect/locust with a conspecific in the vicinity. This is the first study to test 

collision avoidance behaviour in a pair of flying locusts. The current study hypothesized that 

collision avoidance behaviour of a locust is affected by the presence and relative position of a 

conspecific. The objective of this study was to describe collision avoidance behaviour in a 

pair of flying locusts by examining different spatiotemporal characteristics and their 

dependency on the presence, as well as different relative positions, of a conspecific.  

Supporting the hypotheses, the types of collision avoidance responses and some 

components of six degrees of freedom of L1 and L2 in Experiment 1 were affected by the 

presence of a conspecific in the vicinity. The types of avoidance responses and three 

translational degrees of freedom were also affected by the relative position of the conspecific. 

Also, we found that the timing of the onset and duration of the initial avoidance response of 

L2 were affected by the presence of a conspecific as well as its own position in the wind 

tunnel. Moreover, both locusts’ responses to the looming stimuli were more robust in the 

presence of a live conspecific and less pronounced in the presence of a dead locust. 

According to the results of the current study, a locust’s collision avoidance behaviour can be 

affected by the presence as well as relative position of a conspecific in the vicinity.   
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4.1 Experimental paradigm  

Locusts have been used as a model to study different aspects of collision avoidance 

behaviour. Examples include flight steering (Robertson and Johnson, 1993a; Santer et al., 

2005), wing kinematics (Robertson and Reye, 1992), motor pattern in flight muscles (Santer 

et al., 2005), sensory coding and visual processing during collision avoidance (Judge and 

Rind, 1997; Rogers et al., 2010). However, these studies examined the behaviour of a single 

locust. While Camhi et al. (1995) described wing beat coupling between a pair of rigidly 

tethered locusts, they did not examine collision avoidance. Therefore, the use of two loosely 

tethered locusts in the present study is a new approach to understanding 3D looming-evoked 

behaviour with a conspecific in the vicinity.  

Gregarious locusts aggregate into swarms in the wild. A swarm may contain 10
10

 

individuals that may be flying along the same or different trajectories at different velocities. 

A swarm includes sub-clusters of many individuals flying together (Baker et al., 1984). Thus, 

while studying a pair of locusts may represent only a crude approximation of natural 

conditions, it is a first attempt to study dynamics of conspecific flight behaviour within the 

physical constraints of a controlled experimental set up. In previous studies, locusts have 

often been rigidly held in a wind tunnel to facilitate behavioural and physiological recordings. 

This rigid tethering introduces artefacts since the locust is unable to evoke complete steering 

behaviours (Spork and Preiss, 1993; Santer et al., 2005). Moreover, this can cause steering 

biases in the motor pattern that controls wing beat and results in generation of insufficient lift. 

The use of loose tethers in the present study permits freedom of movement within 3D space 

and thus better reflects the initial natural flight steering responses.     
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4.2 Types of initial avoidance responses 

Visually evoked collision avoidance has been studied across different animal species 

including locusts (Gabbiani et al., 1999; Gray et al., 2001; Santer et al., 2005), crabs (Oliva et 

al., 2007), flies (Sugiura and Dickinson, 2009), frogs (Nakagawa and Hongjian, 2010), 

gerbils (Ellard, 2004), birds (Sun and Frost, 1998; Cao et al., 2004), fish (Preuss et al., 2006) 

and monkeys (Schiff et al., 1962; Maier et al., 2004). The size of the retinal image subtended 

by the approaching object is an important stimulus parameter in triggering visually evoked 

avoidance responses. However, the subtense angle that evokes collision avoidance behaviour, 

can vary among different animal systems: 30-35˚ in fiddler crabs and chicks (Kang and Li, 

2010), 21.1˚ in frogs (Nakagawa and Hongjian, 2010) and ~10˚ in tethered migratory locusts 

(Robertson and Johnson, 1993a). In the present study, at its final position on the screen, the 

looming stimulus subtends 6.5˚ and 13.0˚ of the visual field of view of L1 and L2, 

respectively. Since both L1 and L2 were able to respond to the looming stimulus during its 

approach, the results of this study suggest that the locusts are capable of initiating an 

avoidance reaction when the stimulus subtends less than 10˚ of the visual field. 

The looming evoked collision avoidance responses observed in each locust in the 

present study are consistent with that of previous behavioural studies (Robertson and Reye, 

1992; Robertson and Johnson, 1993a; 1993b; Gray et al., 2001; Santer et al., 2005). Active 

steering was the most prominent type of avoidance response exhibited by L1 and L2 in the 

presence of a dead and a live locust in Experiment 1 (Fig. 3.2). Also, when at different 

relative positions in Experiment 2, L2 responded to the looming stimulus most frequently by 

actively steering away from it (Fig. 3.9). Conversely, L1 displayed a non-directional startle 

response and gliding as the most prominent and second most frequent behaviours, 

respectively, in Experiment 2.   
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The characteristics of active steering seen in this study, namely abdominal flexion and 

hind leg extension into the turn, are consistent with that of previous studies (Robertson and 

Johnson, 1993a; 1993b; Santer et al., 2005). Presentation of different targets towards the head 

of a locust on a collision course triggered steering behaviours which directed the animal 

around an obstacle in its path (Robertson and Reye, 1992). These characteristics were also 

observed in thermal and auditory avoidance behaviours (Robertson et al., 1996; Dawson et 

al., 1997). Consistent with prior observations, characteristics of active steering in locusts in 

the present study can be interpreted as an attempt to move away from the looming stimuli.  

Walk in to the opposite direction during collision avoidance has also been found in crabs 

responding to laterally looming stimuli (Lindemann et al., 2008). A fruit fly (Drosophila) 

exhibits sharp fast turns commonly referred to as saccades, and rapidly expanding objects 

from one direction in a fly’s visual environment trigger a saccade in the opposite direction 

(Frye and Dickinson, 2004). When human infants were presented with approaching objects, 

they tended to move their head back and away from the object (Ball and Tronick, 1971). 

When an animal encounters an approaching object, it will experience an increase in 

retinal image size of the object independent of background motion (Verspui and Gray, 2009). 

Frequent active steering in both locusts irrespective of the presence of a dead or a live 

conspecific suggests that looming stimuli with increasing retinal image size represent more 

acute danger and gain more attention than the stationary dead conspecific or live conspecific 

exhibiting translatory movement in the lateral visual field (Dukas, 2002; Verspui and Gray, 

2009). In schooling fish (e.g., herring), solitary individuals display different, variable, escape 

trajectories compared to members of a group, which display relatively uniform escape 

trajectories (Domenici and Batty, 1997; Domenici et al., 2011). In accordance with this 

previous study, consistency in the type of response in both locusts when they were in close 

proximity in Treatment 5 in Experiment1 suggests that locusts use visual cues from 
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immediate neighbours and that the near presence of a conspecific can affect the collision 

avoidance behaviour of a locust. The lack of consistency in response types between L1 and 

L2 in Experiment 2 cannot, however, be attributed to a conspecific effect. 

Active steering in collision avoidance is triggered when an image of a looming 

stimulus reaches a fixed angular subtends at the eye. If the stimulus is detected late during 

looming, the same stimulus results in gliding behaviour or a non-directional startle response 

(Robertson and Reye, 1992; Gray et al., 2001). Thus, it is likely that gliding and non-

directional startle responses of L1 in Experiment 2 were due to the late detection of the 

looming object. The presence of L2 at different relative positions may have affected L1’s 

visual sensory perception. Moreover, consistency in L1 avoidance response across all 

treatments would further suggest that L1 avoidance behaviour is affected by the presence of a 

conspecific at different relative positions and may not depend on a specific position. As noted 

by Gray et al. (2001), locusts showed startle behaviour in response to a 10 cm diameter 

sphere approaching in converging, offset and diverging trajectories in the frontal field of 

view.  This was interpreted as a late detection of the fast looming stimulus and thus a failure 

to make an effective flight steering response. In addition, gliding behaviour in a tethered 

locust has also been noted previously in response to the late detection of faster approaching 

binocular head-on stimuli (Robertson and Reye, 1992) or a laterally looming disc (Santer et 

al., 2005). According to previous reports, in free flying locusts, looming-elicited gliding 

appears to be an emergency response suited to the evasion of fast aerial predators. Gliding 

and startle responses evolved primarily as an escape mechanism from approaching predators 

in different animal species such as flying squirrels (Paskins et al., 2007), bush crickets 

(Libersat and Hoy, 1991), great and blue tits (Kullberg et al., 1998; Lind et al., 2002) and 

mantis (Maldonado, 1970; Yamawaki and Toh, 2009). However, an increase in gliding 

response frequency by L1 in Experiment 2, compared to that of Experiment 1 suggests that 
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locusts use visual cues from the looming objects as well as from flying neighbours during 

collision avoidance.  

My observations of wing folding after a glide and non-directional startle responses, 

rather than resumption of flight, are consistent with previous findings (Gray et al., 2001; 

Santer et al., 2005). It is believed that flight cessation after these behaviours would be an 

artefact of tethering. Under natural conditions, flight resumption after gliding and non-

directional startle responses are more likely to occur than under experimental conditions. This 

is because the height loss during these behaviours increases air flow over the head and excites 

sensory hairs that trigger wing depressor motor neurons and in turn resumes flight by 

depressor muscle contractions (Pond, 1972; Simmons, 1980). Conceivably, lack of such 

sensory information could eventually cause flight cessation in tethered flight. The results of 

this study suggest that locust collision avoidance can vary in response to the same looming 

stimulus depending on the presence and relative position of a conspecific. Unpredictability in 

escape trajectory may prevent a predator learning a simple escape pattern and result in lower 

vulnerability to attack in the wild.     

 

4.3 Responses within translational and rotational degrees of freedom  

Changes in the translatory pattern of motion in the locust’s lateral visual field 

simulates changes in flight speed (thrust) and flight direction (yaw) (Spork and Preiss 1993).  

Thus, the speed and direction of locust flight in a swarm results from the optomotor 

effectiveness of the pattern image formed by the neighbouring individuals and this feature 

contributes to a common orientation within a group. In contrast, the current study showed that 

L1 generated significant sideslip irrespective of the presence of a live or dead locust. 

However, significant changes in the thrust translation of L1 in Experiment 1 (Fig. 3.4) are 

consistent with the findings of Spork and Preiss (1993). Significantly increased or decreased 
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forward movements when coupled with a live or dead locust, respectively, showed that dead 

or live conspecifics have different effects on a flying neighbour’s collision response. Thus, 

translational degrees of freedom in collision avoidance behaviour of L1 can be affected by 

the presence of a conspecific in the vicinity.  

 Previous studies have shown that in general, an animal’s response to small translating  

objects is less pronounced compared to a response to an approaching object (Nakagawa and 

Hongjian, 2010). Two movement detector neurons in the crab (Chasmagnathus granulates) 

exhibited more robust responses to a black looming stimulus, whereas their responses to 

lateral displacement of a 6 cm black square were comparatively low (Oliva et al., 2007). 

Similarly, collision sensitive neurons in the frog (Rana catesbeiana) also showed a much 

stronger response to looming stimuli than to translating objects in the animal’s visual field 

(Nakagawa and Hongjian, 2010). According to Oliva et al. (2007), crabs display sideslip 

movements in the opposite direction to a laterally expanding stimulus and the escape paths in 

response to lateral stimuli are longer than those of a frontal or dorsal stimulus. Similarly, 

tethered fruit flies (Drosophila) are capable of generating side-slip force and roll away from 

the laterally expanding stimulus in a flight arena and both reactions accelerate the animal 

away from the expanding stimulus (Sugiura and Dickinson, 2009). In accordance with 

previous studies, L2 showed robust responses consisted with frequent active steering and 

greater sideslip movements (Fig. 3.3), and more often flew in the opposite direction to the 

looming stimulus. However, compared to the control, there were no significant deviations in 

L2 sideslip, when paired with a live or a dead locust. This suggests that there is a greater 

looming effect over the conspecific effect on L2’s avoidance behaviour in Experiment 1. 

However, deviations in the three translational degrees of freedom depend on the type of 

avoidance strategy taken by locusts in flight. According to Wilson and Weis-Fogh (1962), 

flying locusts appear to regulate lift independent of thrust and have also been claimed to 
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exhibit constant lift following imposed changes of body angle up to 20
˚
. However, during 

steering, lift is reduced on the side of the yaw turn and this is often accompanied by 

diminution of thrust and increase in sideslip (Baker, 1979). Accordingly, significant 

differences in both locusts’ lift translation in Experiments 1 and 2 can be related to the 

presence of different avoidance responses and thus can be attributed to the presence and 

different relative positions of the conspecific, respectively. Compared to the control, 

significant differences in L2 thrust translation in Experiment1 could also be a result of the 

presence of a conspecific (Fig. 3.4).    

Deviations were also found in L1 and L2 sideslip and thrust translation in Experiment 

2 (Fig. 3.12). Results suggest that translational degrees of freedom of L1 and L2 in 

Experiment 2 are affected by the presence of a conspecific at different positions and its own 

position, respectively. There were significant differences in thrust translation of L2 in 

Treatments 3, 5 and 6 where L2 was in front of, above and below L1 in Experiment 2. 

Compared to the control, significantly low total sideslip translation was also found in 

Treatments 4, 5 and 6. In the current study, looming stimuli expanded along a trajectory 

perpendicular to the longitudinal axis of the locusts. Thus, in the control/Treatment 2, the 

centre of the looming object loomed directly towards the centre of the right eye of the locusts. 

Accordingly, compared to the control, in Treatments 3 to 6, L2 may have experienced the 

looming stimulus across a broad region of the visual field. Thus, significant changes in thrust 

and sideslip translations in different treatments, may be due to stimulation of different regions 

of the locust’s visual field. It has been previously reported that the locust’s peripheral visual 

field is less sensitive in all directions relative to the broad lateral region (Rogers et al., 2010). 

Directional selectivity has also been found in other animal systems: collision sensitive 

neurons in the optic tectum of pigeons (Wylie and Frost, 1999), lobula plate interneurons in 

many fly species (Krapp et al., 1998) and neurons in the optic tectum of frogs (Kang and Li, 
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2010). Collision sensitive neurons in the frog possess smaller receptive fields than those of a 

locust and are activated only when the focus of expansion of a looming retinal image is 

located within the centre of its receptive field (Kang and Li, 2010). The locust visual system 

contains two inter-neurons, the LGMD and its postsynaptic partner, the DCMD, that are 

highly responsive to looming stimuli and thought to be involved in fast escape behaviours 

(Simmons and Rind, 1992, Judge and Rind, 1997). This system, which is involved in 

triggering collision avoidance reactions, has high sensitivity to looming stimuli across a 

broad region of visual field, extending from 30˚
 
to 150˚ azimuth and from -15˚ to 45˚ 

elevation (Rogers et al., 2010). The DCMD is less sensitive to stimuli presented from below 

the eye equator than from above (Rind and Simmons, 1997; Guest and Gray, 2006; Rogers et 

al., 2010). The highest DCMD activity in response to local motion objects was found for 

stimuli presented in the posterior region of the visual field, whereas the presentations in the 

frontal region triggered comparatively less robust responses (Krapp and Gabbiani, 2005). 

Similarly, Guest and Gray (2006) found greater DCMD activity in gregarious locusts during 

individual approaches of a 7 cm diameter disc from 135˚ than approaches from 45˚. 

Apparently, these findings would account for the discrepancy in L2 behaviours in different 

treatments. On the other hand, significant leftward movement in L1 may be due to the higher 

sensitivity for the looming object approaching along the eye equator than the conspecific 

flying below in Treatment 6 (Rogers et al., 2010). Accordingly, decreased total thrust 

translation of L1 in Treatments 2, 3 and 5 can be attributed as the effect of the presence of a 

conspecific within a more sensitive region of the visual field of L1.  

According to Robertson and Johnson (1993a), an obstacle approaching in a flight path 

of a tethered locust triggered steering behaviours associated with changes in yaw torque. 

They observed a maximum yaw torque to the left as an attempt to steer to the left when the 

target was on the right. Tethered Drosophila responded to lateral expansion of an object with 
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a change in both roll and yaw rotations while maintaining nearly constant pitch (Sugiura and 

Dickinson, 2009). Similarly, in the present study locusts changed the direction of their flight 

in response to the looming object by generating yaw torques or roll torques or both, while 

pitch remained nearly constant. In free flying locusts, angular changes during yaw and roll 

movements are closely related and angle values change in parallel almost simultaneously 

(Berger and Kutsch, 2003). However, in our experiments, these angular changes were neither 

consistent nor related. Significant changes in yaw and roll of both locusts (Fig. 3.5) imply 

that rotational degrees of freedom during collision avoidance can be affected by the presence 

of a conspecific. Contradictory patterns in the (reversed) total roll and right rotation 

deviations of L1 and (reversed) right rotation of L2: increased and decreased rotations when 

coupled with a live and dead locust, respectively, are consistent with findings of Spork and 

Preiss (1993) and provide further evidence that locusts use visual cues from the looming 

object as well as from proximal conspecifics.  

 

4.4 Timing onset and duration of the initial avoidance response 

Locust DCMD peak-firing rate and the time and duration of the peak in response to a 

looming object depend on the object size and approach velocity (Guest and Gray, 2006). 

Similar to locust’s DCMD activity, that of looming sensitive neurons in other species, 

notably mantis (Yamawaki and Toh, 2009), and bullfrog (Kang and Li, 2010), is dependent 

on the size and velocity of the looming object. Accordingly, use of the same looming 

stimulus with unvarying properties throughout the experiments may have affected the timing 

of L1 and L2 collision avoidance behaviour equally and independently. According to Spork 

and Preiss (1993), the pattern of motion in the lateral visual field of a locust is able to induce 

changes not only in the amplitude but also in the time course of the response. In the current 

study, the pattern of motion in the locust lateral visual field changed in different treatments. 



76 

 

However, despite the significant differences in type and magnitude of escape behaviours, the 

L1 timing onset of the initial response was remarkably consistent. Though changes in the 

time course of the locusts’ responses were to be expected, lack of significant differences 

emphasizes that the timing onset of L1 depended neither on the presence nor on the relative 

position of a conspecific (Figs. 3.6 and 3.12). However, significantly early response onset of 

L2, when it was coupled with a live locust in Experiment 1 and when placed at a higher 

position in Experiment 2, suggests that L2 response onset is dependent on the presence of a 

conspecific as well as its own position within the pair. On the other hand, lack of significant 

differences in L1 initial avoidance response duration in both experiments implies that 

response duration does not depend on the presence or different relative positions of a 

conspecific (Figs. 3.7 and 3.13). The results further suggest that L2 response duration under 

different treatment conditions is also not dependent on the presence of a conspecific and its 

own position in the pair. Consistency in the response duration in each locust would be due to 

the consistency in the time and duration of DCMD activity in response to the same looming 

stimulus. 

L1 and L2 behaviour, in terms of onset and duration of the initial avoidance response, 

was contradictory between experiments. The LGMD responds to objects approaching on a 

direct collision course and produces its peak firing rate at a fixed delay after the looming 

object reaches a fixed angular size on the retina (Gabbiani et al., 1999; Gabbiani et al., 2002; 

Gray, 2005; Guest and Gray, 2006). Similarly, previous studies have shown that a looming-

triggered jump in locusts and frogs occurs with a fixed delay after the looming stimulus 

reaches a fixed angular threshold size on the retina (Yamamoto et al., 2003; Fotowat and 

Gabbiani, 2007) and looming-elicited escape responses in Drosophila occur 22 ms after the 

looming stimulus reaches a threshold angular size of 47˚ (Fotowat et al., 2009). Another 

behavioural study showed that gerbils use changes in the retinal image size of the target to 
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detect the target distance (Ellard, 2004). Accordingly, gerbils can compute the time to 

collision and adjust their behaviour appropriately, namely, change the speed of movement. 

This study found slower running speeds or earlier braking in response to a larger retinal 

image size and conversely faster running or later braking in response to a smaller retinal 

image size. In the present study, the looming object would have reached a fixed angular size 

on the eye of L2 prior to that of L1, which was further away than L2. This would lead to an 

earlier response onset in L2 and conversely a later response onset in L1. Since very brief 

delays in response onset can have an impact on the speed and accuracy of the movement (Hu 

et al., 1999; Westwood et al., 2001), different response durations can be attributed to the 

discrepancy in the timing of response onset.  

 

4.5 Distance between two locusts 

The current study used gregarious locusts. Gregarious locusts flying in a swarm 

encounter many objects: conspecifics, predators and other flying animals, approaching 

frequently from many directions (Waloff, 1972; Uvarov, 1977; Rind and Santer, 2004; Gray, 

2005). In a dense swarm, the conspecifics could be in different relative positions and may be 

flying along the same or different trajectories at different velocities. Despite the apparently 

random orientation of groups of individuals within the swarm, continuous cohesion of 

individual swarms over distances of hundreds of kilometres lasting many days has been 

observed without significant dispersion (Baker et al., 1984; Spork and Preiss, 1993). Locusts 

have evolved the ability to not only avoid predation, but also effectively navigate within the 

swarm without constantly colliding with one another (Baker et al., 1981). Flying locusts may 

also maintain their position relative to their immediate neighbours to some extent (Kennedy, 

1951, Preiss, 1992). My findings provide evidence that two locusts flying very closely 

together, that is, 30 cm apart, can maintain this distance during flight (Fig. 3.8). Similarly, 
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schooling fish such as cod (Gadus morhua), saith (Pollachius virens) and herrings (Clupea 

harengus), have the ability to maintain the distance between the nearest neighbours within a 

set range (Parrish et al., 2002). According to Imada et al. (2010), when an optomotor 

response is elicited simultaneously in two conspecific puffer fish, they exhibit cohesive 

movement while maintaining a fixed distance.  

Locusts can transfer directional information and rapidly change their flight direction 

appropriately (Baker et al., 1981; Farrow, 1990). Spork and Preiss (1993) suggested that the 

speed and direction of locust flight under free flight conditions are driven from the optomotor 

effectiveness of the image pattern formed by the neighbouring individuals and this eventually 

would contribute to swarm cohesion. In accordance with these findings, we found that in 

more than 50% of trials, locusts responded to the looming object as a pair. Moreover, in 

treatments that showed the higher percentage of pairing behaviour, locusts were able to 

maintain the distance during collision avoidance (Table 3.1). These findings further 

emphasize that regardless of the presence and/or different relative positions of a conspecific, 

locusts can maintain the distance from their neighbour and have the ability to respond to 

potential threats as a group.  

 

4.6 General collision avoidance strategies. 

 In the current study both locusts responded to a looming stimulus with active steering, 

gliding or non-directional startle responses. These avoidance strategies consisted of motion 

away from the stimulus, across multiple trajectories in the horizontal plane. Therefore, under 

natural conditions, a locust’s escape behaviour may not be confined to a single trajectory. 

Rather, a locust may exhibit multiple escape trajectories mostly within an 80-180˚ sector in 

the horizontal plane (Santer et al., 2005; Domenici et al., 2011). Moreover, gliding in free 

flight can result in escape trajectories in the vertical plane. Apparently, high variability in 
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locust escape trajectories across horizontal and vertical plane will make the escape response 

relatively unpredictable, which would counter learning by predators.   

Multiple escape trajectories in response to a looming object have also been found in 

other animal species. Drosophila uses visual information to trigger a jump in a direction 

away from a looming threat (Card and Dickinson, 2008). Looming stimuli presented to the 

dorsal visual field of the crab (Chasmagnathus granulates) triggered escape trajectories 

toward the left or right and escape in a single direction away from a stimulus when presented 

in the horizontal plane (Oliva et al., 2007). When stimulated at 45˚ above the horizontal 

plane, cryptic frogs (Craugstor) escaped away from the stimulus at various angles relative to 

their body axis (Cooper et al., 2008). Among fish, guppies (Poecilia reticulata, Walker et al., 

2005), and cowtail stingrays (Pastinachus sephens, Semeniuk and Dill, 2005) exhibit variable 

escape trajectories mostly within a 90-180˚ sector. Similarly, birds show a variety of escape 

trajectories, both in the horizontal and vertical planes. Based on the predator attack speed, 

some birds take off initially away from the predator and then climb back over the predator in 

vertical plane (e.g., great tits, Parus major; Kullberg et al., 1998, and blue tits, Parus 

caerules; Lind et al., 2002) or dart sideways approximately 90˚
 
from the predator’s line of 

attack (sedge warbler, Acrocephalus schoenobenus; Kullberg et al., 2000). High variability in 

escape trajectories observed in different species may provide greater unpredictability in 

escape response and lower vulnerability to predator attack than does escaping at fixed angles. 

Many escape strategies exhibited by other animal models are similar to those of a locust. 

Thus, understanding the locust’s avoidance behaviour under the present experimental context 

will provide insight into general avoidance strategies employed across species.  

The results of the present study support the hypotheses that collision avoidance 

behaviour of a locust is affected by the presence as well as different relative position of a 

conspecific. Results further emphasize that locusts use visual cues from the looming object as 
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well as from an adjacent conspecific. Locust responses to looming stimuli were more robust 

in the presence of a live conspecific and less pronounced in the presence of a dead locust. The 

presence of a conspecific, irrespective of collision avoidance behaviour, may also influence 

the response of the first locust in the vicinity. 

This behavioural study provides insights into collision avoidance behaviour in a pair 

of flying locusts in a swarm. Since I used only two locusts, further experimentation with a 

greater number of individuals will be required to extend these findings to more natural 

conditions. Also, studying general and specific interactions between flying locusts during 

collision avoidance behaviour will be crucial to understanding the physiological mechanisms 

of behaviour under more realistic natural conditions. Experiments using concurrent 

behavioural and neurophysiological techniques are required to understand the neural 

correlates underling collision avoidance behaviour in pair of flying locusts. Thus, future 

investigations should incorporate studies of general behaviour, wing kinematics, sensory 

coding and transformations to motor output to better understand the underlying neural 

mechanisms and coordinated and cohesive movement between individuals during the 

production of natural behaviour.  
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