

MOVING SOCIAL NETWORKING APPLICATIONS INTO THE

CLOUD

A Thesis Submitted to the College of

Graduate Studies and Research

 In Partial Fulfillment of the Requirements

 For the degree of Masters of Science

 In the Department of Computer Science

 University of Saskatchewan

Saskatoon

By

RADHIKA RAMASAHAYAM

© Copyright Radhika Ramasahayam, September, 2010. All rights reserved.

PERMISSION TO USE

 In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree

from the University of Saskatchewan, I agree that the Libraries of this University may make it

freely available for inspection. I further agree that permission for copying of this thesis in any

manner, in whole or in part, for scholarly purposes may be granted by the professor or professors

who supervised my thesis work or, in their absence, by the Head of the Department or the Dean

of the College in which my thesis work was done. It is understood that any copying or

publication or use of this thesis or parts thereof for financial gain shall not be allowed without

my written permission. It is also understood that due recognition shall be given to me and to the

University of Saskatchewan in any scholarly use which may be made of any material in my

thesis.

 Requests for permission to copy or to make other use of material in this thesis in

whole or part should be addressed to:

Head of the Department of Computer Science

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

ABSTRACT

Social networking applications that are developed using traditional software and

architecture have scalability issues. One way to overcome the high cost of scaling social

applications is to use Cloud Computing (CC). There are various cloud computing platforms

available. One very interesting CC platform is Google App Engine (GAE). This research focuses

on using the “free” GAE as a way to re-implement existing social networking applications.

The research focuses on how to move social applications into the cloud and on the

evaluation of their performance. The thesis investigates the GAE platform, and its features. The

study shows how to re-implement a social networking application using GAE cloud with limited

code approximately 600 lines and evaluates the scalability of the applications.

ii

ACKNOWLEDGMENTS

 I take this opportunity to acknowledge and extend my gratitude to the people who helped

me in successfully completing my Master’s Degree.

First, I would like to sincerely thank my supervisor Dr. Ralph Deters for his excellent guidance,

encouragement, patience, and financial assistance. I thank my committee members Dr. C.

Rangacharyulu, Dr. Ralph, Deters, Dr. Julita Vassileva, Dr. John Cooke, and Dr. Mark Eramian

for their valuable suggestions and comments.

My special thanks to the MADMUC’ers for their friendliness and co-operation. In particular I

want to thank our Graduate Correspondent, Ms. Jan Thompson who has been very helpful

throughout my study here. I am grateful to the technical and office staff, professors and students

of the Computer Science Department for their assistance.

Most importantly, I thank my parents and in-laws for their unconditional love and

encouragement. I especially appreciate my most beloved husband Dr. Laxman Reddy Nadithe

for his support and belief in me.

iii

 CONTENTS
PERMISSION TO USE ... I

ABSTRACT .. II

ACKNOWLEDGMENTS .. III

LIST OF FIGURES .. VI

LIST OF TABLES ... X

LIST OF ABBREVIATIONS .. XI

INTRODUCTION... 1

PROBLEM DEFINITION ... 3

LITERATURE REVIEW .. 6
WEB SERVICES .. 6

SOAP .. 8

REST ... 11

CLOUD COMPUTING ... 15

CLOUD COMPUTING MODELS .. 16

POPULAR CLOUD SERVICE PROVIDERS .. 17

SUMMARY .. 21

GOOGLE APP ENGINE ... 23

FEATURES OF GOOGLE APP ENGINE .. 23

ARCHITECTURE OF THE GOOGLE APP ENGINE ... 26

PYTHON ... 26

JAVA .. 31

BIGTABLE COMPARISON WITH THE SQL DATABASES ... 32

ARCHITECTURE AND IMPLEMENTATION ... 36

THE MODEL VIEW CONTROLLER ARCHITECTURE .. 38

ARCHITECTURE OF THE GAE APPLICATIONS .. 40

EXPERIMENT BASED ON THE GAE ARCHITECTURE .. 41

THE HTML CLIENT WITH PYTHON SERVICES .. 42

THE FLEX CLIENT WITH PYTHON SERVICES ... 47

THE JSP CLIENT WITH JAVA SERVICES .. 49

THE FLEX CLIENT WITH JAVA SERVICES .. 53

iv

THE IPOD CLIENT WITH JAVA SERVICES... 54

APPLICATION TESTING AND EVALUATION .. 57
EVALUATION PLAN .. 57

PHASE1: TEST BED FOR THE EXPERIMENTS IN JAVA AND PYTHON ... 61

TEST BED ... 61

RESULTS OF THE PHASE1 EXPERIMENTS .. 64

TEST BED ... 95

RESULTS OF THE PHASE2 EXPERIMENTS .. 97

SUMMARY .. 103

CONCLUSIONS AND FUTURE WORK .. 105

CONCLUSIONS .. 105

APPENDICES .. 114

v

LIST OF FIGURES

FIGURES PAGE NUMBER
FIGURE 3-1: SERVICE ORIENTED ARCHITECTURE... 7
FIGURE 3-2: SOAP REQUEST.. 9
FIGURE 3-3: SOAP RESPONSE... 9
FIGURE 3-4: GOOGLE DATA CENTERS... 20
FIGURE 4-1: ARCHITECTURE OF GOOGLE APP ENGINE...24
FIGURE 4-2: BIG TABLE ARCHITECTURE APPLICATION DEVELOPMENT
SERVICES...27
FIGURE 4-3: AN EXAMPLE OF SLICE IN A WEBPAGE…...28
FIGURE 4-4: APP.YAML…...31
FIGURE 5-1: MODEL VIEW CONTROLLER ARCHITECTURE..40
FIGURE 5-2: ARCHITECTURE OF THE APPLICATION USING GOOGLE APP ENGINE.........41
FIGURE 5-3: WORKFLOW OF A HTML CLIENT VIEW USING PYTHON SERVICES43
FIGURE 5-4: E-R DIAGRAM OF THE DATA STRUCTURES IN PYTHON45
FIGURE 5-5: DATA STRUCTURES FOR USER INFO IN PYTHON 46
FIGURE 5-6: SAMPLE CODE FOR THE USER ACCOUNTS IN PYTHON............................ 46
FIGURE 5-7: WORKFLOW FOR THE FLEX CLIENT USING PYTHON SERVICES................48
FIGURE 5-8: WORKFLOW OF THE JSP CLIENT USING JAVA SERVICES..........................50
FIGURE 5-9: SAMPLE CODE FOR USER SERVLET USING JAVA.....................................52
FIGURE 5-10: WORKFLOW FOR THE FLEX CLIENT USING JAVA SERVICES.................. 53
FIGURE 5-11: WORKFLOW OF THE IPOD CLIENT USING JAVA SERVICES.....................55
FIGURE 6-1: THREAD GROUP AND ITS PROPERTIES...62
FIGURE 6-2: HTTP REQUEST DEFAULTS AND ITS PROPERTIES....................................62
FIGURE 6-3: HTTP REQUEST AND ITS ATTRIBUTES..63
FIGURE 6-4: VIEW RESULTS IN A TABLE WITH ITS FIELDS...64
FIGURE 6-5: THE PERFORMANCE OF THE PYTHON LOGIN SERVICE WITH WORKLOAD
(10)………………………………………………………………………………..66
FIGURE 6-6: THE PERFORMANCE OF THE PYTHON LOGIN SERVICE WITH WORKLOAD
(50)………………………………………………………………………………..67
FIGURE 6-7: THE PERFORMANCE OF THE PYTHON LOGIN SERVICE WITH WORKLOAD
(100)………………………………………………………………………………67
FIGURE 6-8: DIFFERENCE OF THE TIMES TAKEN (MS) FOR PYTHON LOGIN SERVICE FOR
WORKLOADS……………………………………………………………………....68
FIGURE 6-9: THE PERFORMANCE OF THE PYTHON MAIN SERVICE WITH WORKLOAD
(10)………………………………………………………………………………..69
FIGURE 6-10: THE PERFORMANCE OF THE PYTHON MAIN SERVICE WITH WORKLOAD
(50)………………………………………………………………………………..70

vi

FIGURE 6-11: THE PERFORMANCE OF THE PYTHON MAIN SERVICE WITH WORKLOAD
(100)………………………………………………………………………………71
FIGURE 6-12: DIFFERENCE OF THE TIMES TAKEN (MS) FOR PYTHON MAIN SERVICE FOR
WORKLOADS..……………………………………………………………………..72
FIGURE 6-13: THE PERFORMANCE OF THE PYTHON ACCOUNTS SERVICE WITH

WORKLOAD (10)…………………………………………………………………..73
FIGURE 6-14: THE PERFORMANCE OF THE PYTHON ACCOUNTS SERVICE WITH

WORKLOAD (50)…………………………………………………………………..73
FIGURE 6-15: THE PERFORMANCE OF THE PYTHON ACCOUNTS SERVICE WITH

WORKLOAD (100)………………………………………………………………....74
FIGURE 6-16: DIFFERENCE OF THE TIMES TAKEN (MS) FOR PYTHON ACCOUNTS
SERVICE FOR WORKLOADS………………………………………………………...74
FIGURE 6-17: THE PERFORMANCE OF THE PYTHON POSTING SERVICE WITH WORKLOAD

(10)…………………………………………………………………....................75
FIGURE 6-18: THE PERFORMANCE OF THE PYTHON POSTING SERVICE WITH WORKLOAD

(50)…………………………………………………………………....................76
FIGURE 6-19: THE PERFORMANCE OF THE PYTHON POSTING SERVICE WITH WORKLOAD

(100)…………………………………………………………………..................77
FIGURE 6-20: DIFFERENCE OF THE TIMES TAKEN (MS) FOR PYTHON POSTING SERVICE
FOR WORKLOADS………………………………………………….......................77
FIGURE 6-21: THE PERFORMANCE OF THE PYTHON COMMENTS SERVICE WITH

WORKLOAD (10)……………………………………………………....................78
FIGURE 6-22: THE PERFORMANCE OF THE PYTHON COMMENTS SERVICE WITH

WORKLOAD (50)……………………………………………………....................79
FIGURE 6-23: THE PERFORMANCE OF THE PYTHON COMMENTS SERVICE WITH

WORKLOAD (100)……………………………………………………..................79
FIGURE 6-24: DIFFERENCE OF THE TIMES TAKEN (MS) FOR PYTHON COMMENTS
SERVICE FOR WORKLOADS………………………………………….....................80
FIGURE 6-25: THE PERFORMANCE OF THE JAVA LOGIN SERVICE WITH WORKLOAD

(10)…………………………………………………….......................................81
FIGURE 6-26: THE PERFORMANCE OF THE JAVA LOGIN SERVICE WITH WORKLOAD

(50)…………………………………………………….......................................82
FIGURE 6-27: THE PERFORMANCE OF THE JAVA LOGIN SERVICE WITH WORKLOAD

(100)…………………………………………………….....................................82
FIGURE 6-28: DIFFERENCE OF THE TIMES TAKEN (MS) FOR JAVA LOGIN SERVICE FOR

WORKLOADS………………………………………………………......................83

vii

FIGURE 6-29: THE PERFORMANCE OF THE JAVA POSTING SERVICE WITH WORKLOAD

(10)……………………………………………………..84
FIGURE 6-30: THE PERFORMANCE OF THE JAVA POSTING SERVICE WITH WORKLOAD

(50)……………………………………………………..85
FIGURE 6-31: THE PERFORMANCE OF THE JAVA POSTING SERVICE WITH WORKLOAD

(100)……………………………………………………......................................85
FIGURE 6-32: DIFFERENCE OF THE TIMES TAKEN (MS) FOR JAVA POSTING SERVICE FOR

WORKLOADS……………………………………………………….......................86
FIGURE 6-33: THE PERFORMANCE OF THE JAVA RATING SERVICE WITH WORKLOAD

(10)……………………………………………………..87
FIGURE 6-34: THE PERFORMANCE OF THE JAVA RATING SERVICE WITH WORKLOAD

(50)……………………………………………………..87
FIGURE 6-35: THE PERFORMANCE OF THE JAVA RATING SERVICE WITH WORKLOAD

(100)……………………………………………………......................................88
FIGURE 6-36: DIFFERENCE OF THE TIMES TAKEN (MS) FOR JAVA RATING SERVICE FOR

WORKLOADS……………………………………………………….......................88
FIGURE 6-37: THE PERFORMANCE OF THE JAVA MAIN SERVICE WITH WORKLOAD

(10)……………………………………………………..89
FIGURE 6-38: THE PERFORMANCE OF THE JAVA MAIN SERVICE WITH WORKLOAD

(50)……………………………………………………..90
FIGURE 6-39: THE PERFORMANCE OF THE JAVA MAIN SERVICE WITH WORKLOAD

(100)……………………………………………………......................................90
FIGURE 6-40: DIFFERENCE OF THE TIMES TAKEN (MS) FOR JAVA MAIN SERVICE FOR

WORKLOADS……………………………………………………….......................91
FIGURE 6-41: THE PERFORMANCE OF THE JAVA VIEWING SERVICE WITH WORKLOAD

(10)…………………………………………………….......................................91
FIGURE 6-42: THE PERFORMANCE OF THE JAVA VIEWING SERVICE WITH WORKLOAD

(50)…………………………………………………….......................................92
FIGURE 6-43: THE PERFORMANCE OF THE JAVA VIEWING SERVICE WITH WORKLOAD

(100)…………………………………………………….....................................93
FIGURE 6-44: DIFFERENCE OF THE TIMES TAKEN (MS) FOR JAVA VIEWING SERVICE
FOR WORKLOADS………………………………………………….......................93
FIGURE 6-45: THE HTTP URL RE-WRITING AND ITS PROPERTIES…..........................97
FIGURE 6-46: THE PERFORMANCE OF THE PYTHON WORKFLOW WITH WORKLOAD

(10)…………………………………………………….......................................98

viii

FIGURE 6-47: THE PERFORMANCE OF THE PYTHON WORKFLOW WITH WORKLOAD

(50)……………………………………………………..98
FIGURE 6-48: THE PERFORMANCE OF THE PYTHON WORKFLOW WITH WORKLOAD

(100)……………………………………………………......................................99
FIGURE 6-49: DIFFERENCE OF THE TIMES TAKEN (MS) FOR PYTHON WORKFLOW WITH

WORKLOADS………………………………………………….............................100

FIGURE 6-50: THE PERFORMANCE OF THE JAVA WORKFLOW WITH WORKLOAD

(10)……………………………………………………......................................101
FIGURE 6-51: THE PERFORMANCE OF THE JAVA WORKFLOW WITH WORKLOAD

(50)……………………………………………………......................................101
FIGURE 6-52: THE PERFORMANCE OF THE JAVA WORKFLOW WITH WORKLOAD

(100)……………………………………………………....................................102
FIGURE 6-53: DIFFERENCE OF THE TIMES TAKEN (MS) FOR JAVA WORKFLOW WITH

WORKLOADS………………………………………………….............................103

ix

LIST OF TABLES

TABLE 2-1: TABLE SHOWING REST VERBS AND CORRESPONDING CURD
OPERATIONS..3
TABLE 3-1: ADVANTAGES OF SOAP..10
TABLE 3-2: DISADVANTAGES OF SOAP...10
TABLE 3-3: ADVANTAGES OF REST.. ..13

TABLE 3-4: DISADVANTAGES OF REST...14

TABLE 4-1: LIMITATIONS OF GAE...25

TABLE 4-2: FEATURES OF THE GAE.. 25

TABLE 4-3: TABLE SHOWING FEATURES OF NOSQL AND TRADITIONAL

DATABASES...34

TABLE 5-1: PROBLEMS WITH OUR WISE TALES APPLICATION......................................37

TABLE 5-2: DATASTORE MODELS WITH HTML AND PYTHON SERVICES........................44

TABLE 5-3: DATASTORE MODELS WITH FLEX CLIENT AND PYTHON SERVICE...............49

TABLE 5-4: DATASTORE OBJECTS WITH JSP AND JAVA SERVICES................................ 51

TABLE 5-5: DATASTORE OBJECTS WITH FLEX CLIENT AND JAVA SERVICES................. 53

TABLE 5-6: DATASTORE OBJECTS WITH IPOD CLIENT AND JAVA SERVICES..................55

TABLE 6-1: LIST OF LANGUAGES WITH AND CLIENT INTERFACES............................... 57

TABLE 6-2: LIST OF SERVICES EVALUATED IN PYTHON...65

TABLE 6-3: LIST OF SERVICES EVALUATED IN JAVA... 80

x

LIST OF ABBREVIATIONS

AMI Amazon Machine Image

API Application Programming Interface

AWS Amazon Web Services

CC Cloud Computing

CSS Cascading Style Sheets

CURD Create, Update, Retrieve, Delete

DS Data Store

EC2 Elastic Compute Cloud

GAE Google App Engine

GFS Google File System

GQL Google App Engine Query Language

HaaS Hardware as a Service

HTML Hyper Text Markup Language

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

IDE Integrated Development Environment

IT Information Technology

JDK Java Development Kit

JDO Java Data Objects

JDOQL Java Data Objects Query Language

JPA Java Persistence Interface

JSON JavaScript Object Notations

JSP Java Server Pages

JVM Java Virtual Machine

MVC Model View Controller

MySQL My Structured Query Language

PaaS Platform as a Service

PC Personal Computers

PHP PHP: Hypertext Preprocessor

PMF Persistence Manager Factory

xi

xii

RDBMS Relational Database Query Language

REST Representational State Transfer

RIA Rich Internet Applications

RPC Remote Procedure Calls

SaaS Software as a Service

SDK Software Development Kit

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SOC Service Oriented Computing

SQL Structured Query Language

SSTables Stored String Tables

UDDI Universal Description, Discovery, and Integration

URL Universal Resource Locator

W3C World Wide Web Consortium

WS Web Services

WSDL Web Service Definition Language

XML eXtensible Markup Language

CHAPTER 1
INTRODUCTION

Service Oriented Computing (SOC) is a computing paradigm that utilizes services as

fundamental elements. It supports rapid, low cost and easy composition of distributed

applications in heterogeneous environments [1]. The SOC has evolved from legacy systems (in

enterprises) that are linked together with business processes. Such systems contain code that is

difficult to update and modify. Liu et al. [2] say that with the development of “services”, existing

functionalities of the system can be combined with Web Services (WS) to build services that are

ready to use and can be combined to create new systems without further modification.

As defined by Papazoglou et al. [1], the WS are used to develop applications that can

communicate with each other over the Internet. The Simple Object Access Protocol (SOAP) is

widely used protocol to exchange messages between service providers and users. The

introduction of Web2.0 technology has increased the usage of the RESTful architectural style for

developing services. The Representational State Transfer Protocol (REST) is an architectural

style that guides development of applications based on Hypertext Transfer Protocol (HTTP)

design principles. It is comparatively easy to develop and use applications based on REST. Thus

many computing paradigms are proposing frameworks to develop, deploy, and maintain

applications with minimum effort and better performance. One among them is the Google App

Engine (GAE) that enables users to develop applications and upload them to the Google’s cloud.

Using this framework the applications can be easily developed, deployed and maintained. As the

demand for the application grows the applications can be scalable depending on our

requirements.

The goal of this research is to study how to re-implement existing social networking

applications using a cloud. The research work is organized as follows: Chapter two states the

1

problem description, Chapter three provides the literature review on WS, SOAP, REST, and

popular the Cloud Computing (CC) approaches. Chapter four describes the CC and its features.

Chapter five discusses the architecture and implementation of the experiments. The application

testing and evaluation is described in chapter six. Chapter seven discusses the conclusions and

the future work of this research.

2

CHAPTER 2
PROBLEM DEFINITION

WS were introduced to interact with the applications that are diverse in nature, build new

applications and allow them to communicate with each other over the Internet. Thus the WS

enable rapid application development with low costs based on the principles of SOC [1]. Menace

[3] explained in his work, that SOAP is a widely used protocol to exchange messages in the form

of XML regardless of the operating system or the computing environment. The interaction

between users and WS providers is in the form of XML based SOAP messages which tend to be

long and require parsers on both sides thereby reducing the performance of the applications.

Litoiu [4] discussed about the client server based application model using WS, in which the

server’s performance is affected due to the scalability issue with increase in the number of users.

The introduction of Web2.0 technology and the RESTful architectural style has reduced

the performance and scalability problems. REST is a stateless protocol that can handle

interactions based on the HTTP verbs (PUT, GET, POST, and DELETE). Calcote [8] mentioned,

the HTTP verbs are used to perform (Create, Retrieve, Update, and Delete) (CURD) operations

by the WS designers. The table 2-1 describes REST verbs and its equivalent CURD semantics.

Table 2-1. Table showing REST verbs and corresponding CURD operations

REST
Verbs Function CURD

Operation

PUT Replaces the entire URL with the
content sent Create

GET Lists the URL and other details of it Retrieve

POST Updates the resources on the server
with one or more entries Update

DELETE Deletes the entire content Delete

3

 According to Amazon, 80-85% of WS are REST based and the performance of the

REST based applications is 6 times faster than the SOAP WS and do not require any additional

security and standards [5][6]. Pautasso et al. [7] pointed out the services built using REST are

light-weight, and scalable and that they can be used with an ordinary browser [7].

Traditionally, development of web applications in an organization incurs huge costs due

to development of the applications, maintenance with the need to buy servers hosting their

software, applications to rent servers to improve scalability. Usually this process is time

consuming for the organization to maintain resources thereby producing resultant systems that

are not reliable.

Wikipedia [9] states that “Cloud Computing (CC)” is a mechanism to cut down costs of

hosting, and scaling an application. CC is a mechanism to improve reliability, security,

sustainability, and location independence. CC incorporates three aspects, Infrastructure as a

Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). The SaaS model

focuses on hosting the application by a service provider or vendor and making it available to its

users over the network. SaaS is becoming popular with the support of existing technologies like

the WS and the Service Oriented Architectures (SOA). PaaS delivers a computing platform as a

service. PaaS provides the facilities required for developing the complete life cycle of

applications, starting with building them to delivering web applications [10]. Examples of them

are salesforce.com which provides the platform to build and deploy enterprise based

applications. The Google App Engine (GAE) and Microsoft’s Azure are providing foundations

upon which users can build more scalable, and robust web applications. The GAE provides a

platform to build and host web applications on Google’s infrastructure. It uses multiple servers

depending on the requirements to run applications and store data. It automatically adjusts the

4

number of servers to run the applications, depending on requests [12]. Microsoft’s Azure

provides a specialized operating system called “Windows Azure” that runs applications hosted

on Microsoft’s datacenters by managing resource allocation and storage. Microsoft [13] says that

Azure uses Windows 2008 server and Hyper-V to provide virtualization. The IaaS model

delivers computing environments to run the applications. Examples of the IaaS are Amazon’s

Elastic Compute Cloud (EC2). EC2 is among the list of Amazon’s Web Services (AWS).The

EC2 allows customers to rent computers to run their own applications and provides scalable

deployment of applications with WS interface to create virtual machine instances. EC2 uses Xen

[11] virtualization mechanism to create instances in three different sizes; small, large, and extra-

large.

This research focusses on re-implementing social legacy applications in a way that they

are scalable, and robust.

• This study focuses mainly on how to re-design and move a social networking

application into the cloud

• It investigates possible design architectures within the cloud

• To evaluate in terms of its scalability?

This research focuses on problems with existing social web applications, architecture and

implications of the cloud platforms, design options to enable rapid and easy development of

social web applications within the cloud, and to evaluate the performance of the applications in

the cloud.

5

CHAPTER 3
LITERATURE REVIEW

This chapter presents WS, their importance, types of WS, and various CC approaches.

Web Services

Vinoski [14] states that the underlying strengths of the WS are to integrate with

applications that are diverse and heterogeneous in nature ranging from varied applications,

operating systems, and hardware platforms. According to Gartner [15], “Web Service (WS) is a

loosely coupled remote procedure call that would replace today’s tightly coupled Remote

Procedure Calls (RPCs) which require application and protocol specific Application

Programming Interface (API) connections.”

Features of the WS include platform independent technologies that can ease delivery of

network based services over the intranet or the Internet. They can integrate personal computers

(PCs), hand held devices, databases, and networks into one computing platform via web

browsers so that services are run on web-based servers [15]. Vaughan-Nichols [15] [16] defines

WS as a mechanism to utilize the existing IT infrastructure and allow the organizations to wrap

their existing legacy applications in a standardized, consistent, and reusable format so that the

companies can collaborate with their business partners to connect their internal applications in a

cost effective manner. Dave Spicer of Flamenco Networks [16] says that, “Adoption of XML as

a standard lead to the development of WS”. The Extensible Markup Language (XML) is the

most important WS standard basis for many other WS standards.

6

 Figure 3-1. Service Oriented Architecture

Papazoglou [17] introduces the concept of WS as “A software system available via a

network such as the Internet to complete tasks, solve problems, and conduct transactions on

behalf of users or applications”. To accomplish a task, WS are used for discovering and invoking

network available services rather than building new applications. SOA helps WS framework to

implement publishing, discovering, and binding. According to Curbera et al. [18] the activities

are identified by three different areas, the communication protocols, the service descriptions, and

the service discovery. The Communication protocol (SOAP) enables communication among the

WS, Web Service Description Language (WSDL) provides a description of the WS and the

Universal Description, Discovery, and Integration (UDDI) provides the list of WS in the registry

with their descriptions. SOAP and REST are the communication mechanisms for the WS. SOAP

is a protocol that can be used in different architectures while the REST is an architectural style

[19].

7

SOAP

To solve the problems of proprietary systems running on heterogeneous platforms, the

WS popularized SOAP, an XML based communication protocol used for exchange of messages

between computers regardless of the underlying operating systems, programming environment or

object model framework [17]. SOAP allows programs to communicate using HTTP and XML

documents [15]. SOAP sends an envelope containing address, header, and a body in the form of

an XML document to the service. The services are described in the UDDI registry. WSDL

provides a description of the services in terms of what a service does i.e., its operations, where it

resides, i.e., details of the protocol specific information and how to invoke it, i.e., data format

and the protocols necessary to access the service’s operations in the online XML registry based

on the UDDI protocol. The UDDI protocol allows companies to publicly make available the WS

on the Internet or corporate networks [15] [20].The SOAP based services connect service

providers and requesters through APIs in the WSDL which can also be used for invoking a

component on the remote machine. WSDL separates the interface from the implementation and

the interface must be defined in terms of input and output messages it supports for each

operation. The service is later bound to an implementation at a particular location using a port

and binding [20]. Shi [21] points out that SOAP uses serialization and deserialization of objects

to translate application specific languages to SOAP protocols.

The Figures 3-2 and 3-3 given below are examples of SOAP request and response

messages [22]. The SOAP envelope request consists of a header and the stock name. The price of

that stock is responded back in the response envelope shown in the figure 3-3.

8

Figure 3-2. SOAP Request [22]

Figure 3-3. SOAP Response [22]

9

Table 3-1. Advantages of SOAP

 Advantages of SOAP

1 SOAP is a communication protocol that allows the exchange of information regardless of
the underlying hardware or computing environment [17].

2
The application and data integration is easier as the client needs to know only the
description of the service in WSDL and does not need to know how it is implemented and
how the data is stored.

3 SOAP is versatile in design as a client can combine data from multiple WS and present
the user with updated information without affecting the service.

4 Code reuse is another important feature. A service can be used by multiple clients all of
them employed to serve business functionalities.

5 It allows creating highly customized applications for integrating applications that are
inexpensive.

In spite of the above mentioned advantages of SOAP, it has some drawbacks which led to

the introduction of an architectural style (REST) for developing web applications by R.T

Fielding.

Table 3-2. Disadvantages of SOAP

 Disadvantages of SOAP

1 SOAP based systems are often tightly coupled [20] [25].

2 Introduction of Web2.0 technology has increased the complexity of developing web
applications using XML [23].

3
SOAP does not provide secure environment for delivering messages to their destinations.
However, secure protocols like S-MIME, HTTPS, and Secure Socket Layer (SSL) provide
security to directly interacting parties [2] [6].

10

4 SOAP based protocols do not support adhoc application integration known as “Mash ups”.

5 XML and SOAP are too verbose and thus it affects the performance of the interacting
systems [24].

6 As the number of interfaces increase, the complexity of the systems increases leading to
SOAP-RPC services making them not interoperable [25].

REST

R.T Fielding defines REST in his thesis dissertation [26] as an architectural style to

describe a network of resources that are loosely coupled. According to him the term

Architecture is used to design a system with a set of properties that forms a superset of systems

requirements. The Architecture embodies both functional and non functional components like

arrangement of components, data within a system, reusability of components. Fielding et al. [27]

similarly defines “Styles” as a mechanism to categorize the architectures and defining common

characteristics.

The acronym of REST stands for “Representational State Transfer Protocol”. Fielding

[26] proposed the motivation for using the Representational State Transfer is the design

principles and characteristics of HTTP. HTTP uses a concept of Universal Resource Locator

(URL) to transport data between resources. Xu [28] states that, it treats entities in the world as

resources connected to each other and supports the Resource Oriented Architecture (ROA).

REST uses the “resource identifier” to identify components involved in interactions,

“representation” to capture the current or intended state of a resource and to transfer the

representation between components. REST has different types of connectors for component

11

communication, enhancing simplicity by separation of concerns and hiding the underlying

resources and their communication mechanisms [26]. REST is not a standard, it is a style drawn

from many pre-existing distributed paradigms, communication protocols and software

engineering fields. According to Costello [29], REST is an architectural style that helps in

designing WS based on the standards like HTTP, URL, XML, HTML, GIF, JPEG, text/xml,

text/html, image/gif, image/jpeg, etc. Separation of clients user interface from its data storage

improves the portability of user interface across multiple platforms and increases the scalability

of the applications [26]. The second aspect is stateless communication between client and server.

Each request from a client to server must contain all the information necessary for the interaction

between client and server. Thus it leads to an increased reliability and scalability of applications.

The third aspect that adds to the efficiency of REST is client-cache-stateless-server. If the data is

cached for a particular client request it can be stored on the client side for any equivalent

requests later. Advantages of client cache include reduction of latency, improved efficiency and

scalability due to partial reduction of few interactions. REST’s uniform interface between its

components makes it distinguishable from other network based styles due to its simplicity and

improved visibility of interactions. It is an approach to get information from the website by

reading the information in the form of XML that describes the content. RESTful WS gained

popularity in the development of distributed applications based on HTTP. These services can be

easily integrated in to various applications such as mashups [2] [30] which is complex to create

them using SOAP-RPC style.

Advantages of the REST based style, which allow it to be used widely in enterprise

architecture and business applications are shown below.

12

Table3-3. Advantages of REST

 Advantages of REST

1 REST is simple, minimal use of tools; easy to build, maintain, and extend applications.

2 Requires less time to build a client for RESTful WS and can be tested with a normal web
browser [7] [31].

3
REST allows usage of XHTML/XML formats to allow dynamic communication between
the interacting parties. This increases adaptability and loose-coupling between the
applications [28].

4 REST sends data which represents their state across network using resources [19].

5
Communication between client and server do not require protocol conversions. A business
process represents all resources as URLs. These resources can be manipulated as PUT,
GET, POST, DELETE operations that increases interoperability [28].

6

REST only expands those portions of the architectures that are needed for Internet-based
distributed hypermedia interactions. The existing protocols fail to get the details required
for protocol interaction and currently used semantics can be replaced with an efficient
form without changing the architecture [27].

7
Since each resource has its own representation, scalability is improved by minimizing
network delays and latency. REST based systems provides light weight access to
operations due to its limited number of operations and unified addressing schema [19].

8

REST uses all types of data for representing resources such as HTML, GIF, PDF files. It
recommends usage of standards like URL’s for addressing, HTTP methods for
communication of messages, MIME types, XML, XHTML, HTML and PNG for
representation of data formats. The standards used by REST are all web standards [32].

13

Table3-4. Disadvantages of REST

 Disadvantages of REST

1 There is no common standard accepted for the REST service description [29] [5].

2 REST requests especially GET do not handle URL’s that are lengthy (i.e., above 4KB)[7]
[33].

3 REST style does not cover all WS standards like Transactions, Security, Addressing,
Trust, and Coordination.

4 REST does not have any widely accepted specifications like WSDL. Developers have to
use the XML because there are no tools and IDE’s that generate it [31].

Pautasso et al. [7] compared SOAP and REST and concluded that in spite of the above

mentioned disadvantages; REST is preferred by WS developers for its simplicity in the design of

interfaces and developing resources, scalability, usage of intermediate components to reduce

latency.

Buyya et al. [34] describes that with the rise of SOA, the essential basic computing

services are made available to users depending on their requirements. The consumers can pay

service providers for the utility services they used. The latest computing paradigm that emerged

into the world of computing is the “Cloud Computing” which promises reliable services to be

delivered through data centers, built on virtualized compute storage clouds by using the WS

developed using SOAP or REST.

14

Cloud Computing

Traditionally, the development of web applications in an organization starts at the

infrastructure level at which an organization creates its own websites. Initially, a small group of

people interact with the website. As the demand for applications increases, organizations need to

buy servers hosting their website or rent it to host on other severs to improve its scalability.

Usually at this level organizations spend lots of money, time and resources to host a website and

to keep it running all the time.

Hayes [35] summarizes that technology advancements in the past 50 years have changed

vastly with the human needs. Time-sharing machines which had a central hub and individual

users at the terminals communicated with the central site using telephone lines for computing

and later personal computers appeared which focused on decentralization of data and programs

and gave rise to client server model.

Armbrust et al. [36] states that today computing is offered similar to utility services like

electricity, gas, water, and telephone where users can access the services based on their

requirements. It is available to users with less costs and minimum delay. The users accessing the

services need not know where the servers are located, how the services are delivered, or how to

maintain the servers. Several computing paradigms have promised the vision of delivering utility

computing and these include Cluster Computing, Grid Computing, and CC [34]. Among these

CC has recently emerged where enterprises and users are able to access applications on demand.

CC has developed a mechanism to cut down costs of hosting, scaling an application, improving

reliability, security, sustainability, location independence. Thus the importance of CC is on

developing the software and making it available as a service rather than running it on individual

computers [34].

15

Armstrong et al. [36] and Barnatt [37] explain the term “Cloud Computing” as “the

applications delivered as services over the Internet”. The hardware and software in datacenters

provide services which are called as the SaaS [37]. In this paradigm a client computer on the

internet can communicate with many servers at the same time while some of them are

exchanging information among themselves [35]. The aim of computing in a cloud is to

concentrate computation and storage in the core, where high performance machines are linked by

high-bandwidth connections and all these resources are carefully managed.

Cloud Computing Models

IaaS, PaaS, and SaaS are three forms of CC [9]

1. The SaaS model focuses on hosting the applications by a service provider or vendor and

making it available to its users over a network. The SaaS model is becoming popular with

the support of existing technologies like WS and SOA [38]. It is different from other

software models by avoiding the need to purchase or maintain computer hardware and

infrastructure related to run the application [39]. The SaaS model generally prices the

applications on a per-user basis or per-business basis. The revenues for the software

vendors are initially lower than the traditional software license procedure but it is a

recurring process. It is predicted to be similar to maintenance costs for the licensed

software [39]. Benefits of SaaS include easier administration, limiting the infrastructure

and installation, compatibility of the software among all users, automatic updates, global

accessibility, and allowing easier collaboration with other parties. Examples of SaaS are

the Google’s Gmail which scales to a large measure, and Fortiva’s email archiving

service which addresses the need for email e-discovery [39].

16

2. The PaaS delivers a computing platform as a service. It provides all facilities required for

developing a complete life cycle of applications from building the web application to

delivering application [40]. Using tools developers build applications and deploy them

without the need for specialized administration skills. The benefits of the PaaS model are

the ability to develop, deploy and maintain the web applications oneself by overcoming

problems with traditional development where there is a backend server development,

front end client development and the web site administration [10]. Examples of PaaS

model are force.com from the Sales Force infrastructure, Microsoft Azure, and the GAE

from Google based on Python and Java languages.

3. The IaaS model uses the equipment leased by the service provider to support operations,

storage, hardware, servers and the networking components. In this model, the service

provider owns the equipment and is responsible for maintaining and running it. The

resources can scale up and down based on the requirement and thus users pay for the

services based on the consumption levels [41] [42].The IaaS model is in the form of a

virtualized computing environment in which users can deploy their applications in a

virtual image locally and then execute it within a remote environment without worrying

about the underlying network infrastructure or the server. Examples of IaaS are BlueLock

which is used to configure servers, storage and virtual machines, and EC2 [42].

Popular Cloud Service Providers

Cheow states [43] that, CC draws attention from experts in technology. The research

studies done by the Gartner company in the year 2008 says that CC can be used for both large

and medium scale companies. With the popularity of the CC, “Evans Data” [44] conducted a

survey with over 400 software developers about their perceptions of leading CC vendors and

17

providers. Developers rated them based on completeness of offering, ability to execute, and their

capabilities such as security, scalability, reliability, and cost to value. Among the top list of

companies are EC2, GAE, IBM’s cloud and Microsoft’s Azure.

• Amazon provides a WS called EC2. EC2 allows users to purchase computer processing

power online. It provides a virtualized environment for hosting the instances of servers

and creating new server instances upon requirement.

Amazon defines instance as a predictable amount of dedicated compute capacity

that is charged in instance-hour [11].

Amazon presents the virtual server instances created to the user with the same degree of

access as the administrator would have to their servers [45]. It is flexible because users

can choose the configuration of their instances as small, large, and extra large. Users can

create and destroy multiple virtual server instances upon requirement. Amazon creates

the server instances by launching Amazon Machine Images (AMI) that contains

application, data, and configuration settings that the servers need. The AMI can be

created from scratch or using the pre-configured templates [37]. Servers are hosted on

different geographical areas, if one server goes down another one can be used thereby

making service reliable. Amazon charges its customers based on the instance hours.

Currently it is $0.10 per instance hour. Depending on the amount of data moved in and

out of Amazon’s network, the charges vary between $0.10 to $0.18 per gigabyte [45].

The Amazon Web Services (AWS) [59] also provides a service called the Cloud Front for

content delivery. It delivers the streaming content using the global network of edge

locations. The requests for a particular object are routed to the nearest edge so the content

is delivered with best possible performance. Miller[60] says that Amazon’s data centers

18

(that help in caching of web content) are located in Ashburn (Virginia), Dallas (Fort

Worth), Los Angeles, Miami, Newark (New Jersey), Palo Alto (California), Seattle, St.

Louis, Amsterdam, Dublin, Frankfurt, London, Hong Kong, Singapore, and Tokyo.

• Google provides a platform to build and host web applications to Google’s infrastructure

known as the “Google App Engine”. It uses multiple servers depending on requirements

to run applications and store data. It automatically adjusts the number of servers to run

applications, depending on requests [12]. The GAE provides a software environment

centered on Python, and the Java programming languages using Bigtable for distributed

storage [35]. The features and functionality of the GAE will be provided in chapter 4.

Google’s data centers are distributed geographically across the world to scale the

applications. “Data Center Knowledge” [61] published the locations of the Google’s data

centers throughout the world. Google has 19 data centers in United States including the 3

which are under construction, 12 in Europe, and 1 in Russia. The data centers are in

Mountain View, Pleasanton, San Jose, Los Angeles, Palo Alto in California, Seattle,

Portland, the Dales in Oregon, Atlanta, Reston, Virginia Beach in Virginia, Ashburn,

Houston (Texas), Miami (Florida), and Lenoir (North California). The international

locations where data centers are located are Toronto, Berlin, Frankfurt, Munich, Zurich

etc. Google reports that it spends $600 million dollars for each of the four new data

centers with the expenses from computers to the construction [61].

The “Royal Pingdom” blog [62] writes that Google’s focuses on the following criteria in

choosing the data centers

• Cheap electricity.

• Green energy with its focus on renewable energy resources.

19

• Closeness to rivers and lakes for cooling the data centers.

• Large land areas for its security and privacy.

• Distance to the other Google data centers for its operations, and tax incentives.

The figure 3-4 shows the location of the Google’s world wide data center locations.

Figure 3-4. Google's Data Centers [62]

• Microsoft provides the Azure service platform for its customers to develop, deploy and

manage distributed web applications. It supports existing web technologies like ASP,

Internet Information Service, and Integrated Development Environments (IDEs) to

create, and deploy the applications. It hosts the applications and storage of information

through its datacenters [46]. Applications for Azure are written in .NET libraries and

compiled to common language runtime, which runs on a platform independent

environment. Thus, it can be viewed as an intermediate between frameworks like GAE

and virtual hardware provided by EC2 [36].Google launched a similar service for

20

creating and uploading web applications on Google’s framework which I will discuss in

chapter 4.

Summary

Research on WS has enabled us to develop applications at a faster rate to overcome the

problems with middleware based legacy applications that are crucial for an enterprise. Thus the

introduction of the WS made web applications available on the Internet. Further web applications

on the Internet developed with SOAP based technologies provided quick access to the

applications, allowing applications to be accessed from any platform. But the developed

applications were tightly coupled with each other and verbose. Examples are the services

developed using SOAP. This lead to the development of applications based on the HTTP rules

that govern the Internet. Roy Fielding’s research suggests that RESTful approaches are used for

developing scalable and reliable web applications that will be proved based on the experiments

discussed in chapters 5 and 6.

The RESTful development of WS is currently followed by many organizations and

enterprises because of its loosely coupled nature. It is easy to develop and maintain because it is

based on the Internet based protocol using simple verbs, navigation through the resources is fast.

CC has emerged recently that focuses on reduction of expenses on resources and thus the

application can be developed in a pay as you go manner. Then the web applications can be

uploaded to the cloud and maintained without any issues on the enterprise side. CC on the other

hand has emerged as a solution to cut down the enterprises expenditures but there is a limited

literature about how to use it.

The SOC uses the WS as a model to integrate business applications. With the growing

demand for Internet and the web applications, I predict that RESTful WS are more appropriate

21

for designing applications that are suitable for business transactions. Thus I propose that CC is a

model based on the REST based technologies to design applications that are reliable, scalable

and providing virtualized computing and storage.

Among the CC paradigms I investigated (PaaS, IaaS and SaaS), I choose the PaaS model

as this model provides the support for developing complete life cycle of applications. The PaaS

model provides an environment to develop rich social networking applications that answers my

research goal to move an existing social networking application into the cloud. There are

currently many PaaS models that provide a development environment. GAE provides a “free”

and attractive framework to the users to develop applications that can be uploaded to the cloud.

Also the GAE uses the existing RESTful WS that are compatible to the Internet and use Web2.0

principles. The GAE scales enormously and is available to its client requests from any

geographical area. Thus in chapter 4, I will discuss the GAE platform features, advantages and

the implications of the GAE, its data storage the Bitable that enables scalable development, and

address the key challenges.

22

CHAPTER 4
GOOGLE APP ENGINE

This chapter discusses the GAE. The three cloud models (SaaS, PaaS, and IaaS)

discussed in chapter 3 provide different types of cloud services. Among them, based on the

literature review I choose PaaS. The PaaS services I choose are provided by Google. Amazon

differs from Google in terms of the services it provides.

In this research, I look into how to migrate legacy social networking applications using

the “free” GAE framework. The applications developed using the GAE are scalable and reliable

when compared to the existing social networking applications like “Our Wise Tales” [47] which

is developed using the Content Management System (CMS) Drupal by Zina Sahib and Dr.Julita

Vassileva, The NSERC/Cameco Chair of Women in Science and Engineering at the Prairies.

Features of Google App Engine

Google launched a service known as GAE in April 2008, which allows developers to run

web applications on Google’s infrastructure. The GAE applications are easy to build, maintain

and scale with increased traffic and data storage [48]. GAE provides a new approach without

dealing with web servers and load balancers but instead deploying the application on the GAE

cloud by providing instant access and scalability shown in Figure 4-1. Applications can be

developed using several programming languages. The languages supported are the Java standard

technologies using the Java Virtual Machine (JVM), and the Python run time environment and

libraries. Applications are developed using WS, based on the JVM or the Python libraries using

the GAE Data Store (DS). Further they can be uploaded to the GAE cloud so that users can

access them using a browser as shown in the Figure 4-1.

23

Figure 4-1. Architecture of Google App Engine

The GAE supports Python and Java libraries, and the Python and Java runtime

environment. Users upload their applications and access them by using the free domain

name“appspot.com” or their own domain [46] [48]. Google provides many cloud services like

Gmail, YouTube, Spreadsheet, Word Processing etc.

GAE has some limitations as the applications are run with limited access to the

underlying operating system. The advantages of the GAE are based on its ability to scale the

applications which is mostly dependent on the data storage using the Bigtable. The pros and cons

of using the Bigtable are discussed in the architecture of the GAE.

24

Table 4-1. Limitations of the GAE

 Limitations of GAE

1 If an application receives a web request, a response must be given within 30 seconds. If
the request takes too long, process is terminated and server returns an error to the user.

2
GAE can return a maximum of 1000 query results each time. It can read information from
a file but cannot upload data to the file unless it is specified within the application. It can
only connect to the DS [48].

3
Python as a language supports extensibility but App Engine does not support code written
in C or any other languages. Python environment provides rich APIs for DS, Google
Accounts, and URL fetch and email services [49].

4
These applications can be run only with the Internet connection and using the URLs and
APIs. Other computers can connect to them using HTTP or HTTPS on specified ports.

In spite of the disadvantages, it has many advantages that make it popular and promotes

wide spread usage:

Table 4-2. Advantages of the GAE

 Features of GAE

1 GAE provides efficient and dynamic web application execution even under heavy loads
and high data usage.

2
It provides automatic and on demand traffic and load balancing for the application by
distributing it across multiple servers where each application has its own sandbox
independent of the other applications to reduce resource conflicts [48].

3 GAE makes it easy to build web applications by providing a framework called Web App.

4 It provides a persistent storage system to perform transactions and queries.

5 It provides APIs for authenticating requests and sending emails to Google Accounts.

25

6 It also includes the Django [48] web application framework. Uploading third party
libraries with the application is supported only if they are implemented in Python.

7
The GAE does not cost anything for 500MB of storage and 5 million page views per
month is free [48]. Users can set maximum daily budget and allocate billing for each
resource accordingly.

Architecture of the Google App Engine

The GAE Software Development Kit (SDK) provides Java and Python programming

languages. The languages have their own web server application that contains all GAE services

on a local computer. The web server also simulates a secure sandbox environment. The GAE

SDK has APIs and libraries including the tools to upload applications. The Architecture defines

the structure of applications that run on the GAE. Further the description about the architecture

based on Python and Java languages is given in below sections.

Python

Python was the first one among the languages supported by the GAE. It was released in

1991, by Guido Van Rossum at National Research Institute for Mathematics and Computer

Science (CWI), Netherlands. It is an interpreter based, general purpose programming language

used for developing web applications [46]. Google has been using Python as one among the three

languages used on production servers for system administration tasks along with C and Java.

Python is used by Google for running automated tests, building and packing systems, pushing

code to servers and some applications that are user visible like Google Groups and

code.google.com.

The GAE allows implementation of applications using Python programming language

and running them on its interpreter. The runtime environment for Python supports version 2.5.2.

26

http://en.wikipedia.org/wiki/National_Research_Institute_for_Mathematics_and_Computer_Science
http://en.wikipedia.org/wiki/National_Research_Institute_for_Mathematics_and_Computer_Science

The GAE provides rich APIs and tools for designing web applications, data modeling, managing,

accessing apps data, support for mature libraries and frameworks like Django [48].

The main characteristics of GAE are its Bigtable or DS, configuration file app.yaml and

how it serves an application [46].

Bigtable. The Bigtable is Google’s distributed storage system for managing structured data and

is being used to power search indexes and Google Earth. The Bigtable is a tabular NoSQL

database that is designed to reliably scale to petabytes of data and thousands of machines. It is a

sparse, distributed, persistent, multi dimensional storage map [50]. It is generally referred to as a

“map” indexed with row key, column key and a time stamp.

According to the Wikipedia [64], a map is “an abstract data type composed of collection of keys,

and a collection of values where each key is associated with one value”.

Figure 4-2. Bigtable Architecture and application development services [63]

Figure4-2 shows the Bigtable architecture and how it relates to the application services.

Cuirana [63] defines the Bigtable has a master server that coordinates the large segments of a

logical table called “tablets”. The tablets are split across a row with an optimal size of 200MB

27

per each tablet for optimization purposes. The table contains rows and columns and each cell has

a time stamp. So there can be multiple copies of the cells with different time stamps as shown in

Figure 4.3. Chang et al., describes an example slice of a table for storing web pages in Figure 4-

3. In the figure the row name is revered URL, and the contents column contains page content, the

anchors column contains text of the anchors that referenced the page. The CNN’s home page is

referenced by both the sports illustrated and the MY-look home pages, so the row contains

column names anchor: cnnsi.com, and anchor: my.look.ca. Each cell has one version so the

column has 3 versions with different time stamps t3, t5, and t6.

Figure 4-3. An example of a slice in a Webpage [50]

In order to manage the tables each table is split at a boundary and saved as a tablet.

According to Hitchcock [66], the tablets are of fixed size (200MB) and each machine stores 100

of them in the Google File System (GFS). This setup allows load balancing by distributing the

load to another tablet when one tablet receives lots of requests. It allows faster rebuilding when a

machine goes down other machines take one tablet from the machine that is down so the load on

each machine is very low. Tablets are stored on systems as immutable Sorted String Tables

28

(SSTables). The Google’s SSTables provide a persistent map from keys to values where keys

and values are arbitrary byte strings. It allows looking up the key value pairs by using operations.

The GAE allows usage of the Bigtable in applications through the DSAPI [46]. Batty

mentioned in his blog that Barry Hunter [65] states that, “Bigtable and the GAE DS are not

same”. The DS is built on top of Bigtable which is built on top of GFS. The GAE does not allow

access to any external databases like SQL. The DS is the only database GAE supports for

logging and storing data, including session data. It uses slightly different terminology inherited

from the Bigtable. The Bigtable can be defined as a huge spreadsheet with unlimited number of

columns and in the form of a string.

The DataStore API. The DS is responsible for the scalability of the GAE applications.

The structure of the applications enables them to distribute the requests across the servers which

should be compromised with relational databases. Unlike any relational database the GAE DS

can create an infinite number of rows and columns that scales by adding servers to the clusters.

In the DS, tables are called “models” and are represented in classes. Records are called

“entities” and are instances of the model, columns are called “properties” and are attributes of

models or entities [46]. To access the DS we have to define a model class with some properties,

then create entities and store them in database. Later queries can be run to retrieve the entities.

The model class can be created by sub classing db.model. The GAE provides a variety of

property types from strings and integers to Boolean, date/time objects, list objects, phone

numbers, email addresses, geographic points like latitude, longitude etc.

The GAE allows queries to be made using Bigtable as a database from its services using

the Google App Engine Query Language (GQL) or Java Data Objects Query Language

(JDOQL). All the data is being stored in the cloud which could be at any location on Google’s

29

servers. If data is to be stored on an external data base which is locally installed on our machine

Google imposes strict constraints due to security issues which can be a potential problem if

organizations put their secure data on servers located in remote locations.

Configuration File: app.yaml. The app.yaml file is a platform neutral and human readable file

for representing data. It is created as an alternative to XML to represent structures in

programming languages like lists and dictionaries. “Key: value” syntax represents items in a

dictionary and “-“represents elements in a list.

The file represents a dictionary with 5 key elements. They are application, version, runtime,

api_version and handlers [46]. The structure of the app.yaml file is shown in Figure 4-4.

The first key is application, it can be any name when run on a local server. But if it is uploaded

to the Google’s server, then the key application value must be the Application ID value. The

second key is “version” which is used to specify version number of application. Google uses

“MAJOR.MINOR” format to represent application numbers. MAJOR version is the number user

sets and MINOR version is nth upload of that version. The GAE saves last upload for every

MAJOR version, and one among them can be chosen as the current one. For the third and fourth

keys runtime and api_version are specified as Python. Newer versions of API will be available in

future. Handlers specify mapping of URL patterns. Handlers are different key values which can

be a static file, script file or a static directory.

30

Figure 4-4. App.yaml File

How the App Engine serves applications. Each application has an app.yaml file which tells

how to handle URL requests. GAE provides a simple framework called webapp that helps to

organize code. When a web browser sends a request to the Google’s cloud it chooses a server

near the users location, instantiates the application if it is not running and processes the users

request. Therefore the cloud meets the demands by creating the instances when required and

deletes them when they are not used [46].

Java

The GAE provides tools and APIs required for the development of web applications that

run on the GAE Java run time. The application interacts with the environment using servlets and

web technologies like Java Server Pages (JSPs) which can be developed using Java6. The GAE

environment uses Java SE Runtime JRE platform 6 and libraries [48] which the applications can

access using APIs. Java SDK has implementations for Java Data Objects (JDO) and Java

Persistence (JPA) interfaces. To exchange email messages with GAE, it provides the GAE mail

service through the Java Mail API. Support for other languages like JavaScript, Ruby, or Scala is

also provided by GAE with the use of JVM compatible compilers and interpreters [49].When

31

GAE gets a web request that corresponds to the URL mentioned in the applications deployment

descriptor (i.e., web.xml file in WEB-INF directory) it invokes a servlet corresponding to that

request and uses Java Servlets API to provide requested data and accepts response data.

Bigtable comparison with the SQL databases

Bigtable promises high scalability, and availability of the applications using the Google’s

servers on which the applications are hosted. Some of the important design principles of the

GAE are its scalability and availability of the applications, the storage (i.e. DS) which is built on

top of the Bigtable a distributed storage, and the MVC architecture that it follows for a thin client

interaction(discussed in chapter 5). The special features of the GAE are its ability to provide

“free” and attractive platforms for the development of the applications and that are easily

uploaded into the cloud where the applications run 24x 7’s. These special features make the

GAE attractive so that any kind of web applications could be easily developed and uploaded.

Further, Sarrel [69] points out that the Relational Database Management System

(RDBMS) that was once revolutionary in 1970’s by separating the organization of database from

its physical storage laid the foundation to databases like Ingres, Sybase, MS SQL Server, IBM

DB2, and Oracle. In 1980’s the Structured Query Language (SQL) has become the standard for

its performance, scalability, caching, and replication. The Internet has achieved a tremendous

growth in the past in government, education, military, and in communication media with its

transactional capacities supported by the relational databases. The sites are heavily loaded with

content used by relational databases back ends. But there is a need to scale up the back ends for

concurrent user support. The traditional relational database offers advantages to transactional

data but there is a tremendous difficulty storing and retrieving unstructured data. In the 1980’s

and 90’s the maximum number of entries in a table were 100s with two and three way joins, but

32

now there are thousands of attributes in a table with seven way joins. As a result, searching is

more complex with the arguments and relationships involved. The select operation is acting on

all the attributes causing delay by fetching fields that are not required as there are links between

information stored. Later indexing became popular with the ability to process complex queries

parallel but it took place in vertically scaled RDBMS environment which was unacceptable with

the requirements placed by the high performance applications like Facebook, Twitter, Yahoo,

Google etc.,

The emergence of Web2.0, social networking and user contributed content has moved

RDBMS aside due to the need for scalable databases. Dogan says [71] that a RDBMS has limits

on its performance with its inability to scale to millions of concurrent reads or writes. It is seen

that companies like Yahoo, Google, Amazon, and LinkedIn have observed the problems and

started using NoSQL databases. Unlike traditional databases NoSQL databases are built to

quickly scale horizontally with the support of map reduce algorithms for parallel computations

on multiple server clusters [70]. The table 4-3 lists out the features of NoSQL databases and

relational databases.

But there are some drawbacks about GAE because of its limited support to the data base

and the programming languages available. The DS provides the flexibility of storing user

information in the cloud. But where does the DS information get stored, the GAE adheres to the

US Safe Harbor privacy principles [48].But the information is not available anyone except

Google but it is encrypted. The GAE is still is in early stages of development where it provides

limited support for application development. But the Bigtable DS that Google is using for most

of its applications does not have features that traditional data bases have.

33

Table 4-3: Table showing the features of NoSQL and traditional databases [69]

Data
Store

Use Cases Advantages Disadvantages Key Products

Key- Value In-memory
cache, web
Site analytics,
Log file
analysis

Simple, Small set
of data types,
limited transaction
support

Simple, small set
of data types,
limited
transaction
support

Redis Scalaris Tokyo
Cabinet

Tabular or
Columnar

Data mining
analytics

Rapid data
aggregation
scalable,
versioning,
locking, web
accessible,
schema-less,
distributed

Limited
transaction
support

Google
Bigtable

Hbase or
HyperTable

Cassandra

Document
Store

Document
management
CRM,
Business
continuity

Stores and
retrieves
unstructured
documents,
Map/reduce, web-
accessible,
schema-less,
distributed

Limited
transaction
support

CouchDB MangoDB Riak

Traditional Transaction
processing,
typical
corporate
workloads

Well documented
and supported,
mature code,
widely
implemented in
production

Cost, vertical
scaling, increased
complexity

Oracle Microsoft
SQL Server

MySQL
Cluster

Bigtable’s DS stores data in columns so that it can rapidly fetch the information without

the need for multiple tables with less input and output [69].

 However there are a few limitations of Bigtable

Limitations of the Bigtable

• A query does not return more than 1000 rows.

34

• T

pr

The inequalit

roperty in a

ty filters (<

query []

<,>, <=,>=,!=) operatorss cannot bee applied onn more thann one

• If

so

so

S

or

T

without a

principle

possible

f the query h

ort order for

ort orders on

imilarly, thi

rdering by o

This chapter

any initial co

es and guide

architecture

has inequalit

r the propert

n other prope

s query is no

other propert

showed th

osts using Py

elines that

s that fit GA

ty operators

ty used in in

erties.

ot valid beca

ties

hat GAE all

ython and Ja

suggest a d

AE and under

35

and sort ord

nequality an

ause it does

Summar

lows buildin

ava. But cur

design for i

rstand their p

der comparis

nd the sort o

not order by

son, the quer

order must a

y the filtered

ry must inclu

appear befor

d property b

ry

ng and desi

rrently GAE

its applicati

performance

igning scala

does not pr

ions. I there

es in chapter

ude a

re the

before

able applica

rovide any d

efore invest

r 5 and 6.

ations

design

tigate

CHAPTER 5
ARCHITECTURE AND IMPLEMENTATION

The current generation of Web2.0 applications focuses on rich interfaces, interactive user

support, and user collaboration. These features are seen in Google docs, Del.icio.us, Wikipedia,

Flickr, and MySpace. The common features the above mentioned applications are sharing

stories, searching, tagging which help the users to find efficiently the information. Tagging also

helps in structuring the information in a customized way. In some applications providing user

interaction and collaboration is the final goal of many tools. The web application development

according to the conventions of Web2.0 is quite challenging. A number of languages provide

support for developing the web applications but it is difficult to host and maintain the application

on a web server and ensure key aspects like security and scalability.

The social networking website, “Our Wise Tales” http://www.ourwisetales.com was

developed using the Content Management System (CMS), Drupal [47]. The website Our Wise

Tales main functionality is to develop a community for women in science and engineering that

allows users to share stories related to their experiences, frustrations, and inspirations. The

community aims to bridge across space and generations to build supportive networks. People

who visit the community can register, view stories of others, comment on their stories, tag

stories. The website visualizes interactions between the users who posted stories and comments

made on the stories by other people in the community. The problems with Drupal are that it

cannot strictly maintain the differences between the client, server, and the data structures. It often

leads to tightly coupled interactions with the database and its interface components. As the

website expands due to its popularity, new features will be added to the site to attract the people.

At this point, the complexity increases due to the interactions between the increase in size of the

community, interactions between the interfaces and database increase. It is difficult to track the

36

http://www.ourwisetales.com/

users visit to webpages, and interactions of users with the website. It is difficult to maintain and

update the system. To increase the scalable of the websites so that they could withstand the

growing demand be accessed from different geographical locations, we need to purchase more

storage space and backup the server at regular intervals. This process often complicates the

process and incurs more expenditure. The application itself cannot scale above a certain number

of requests. In spite of the increase in computing space sometimes the application may not be

reliable. To maintain the application it often requires human resources to check with the

available storage resources, upgrading the software, installing the updates on the system, buying

more storage space if the application has to withstand the growing demand, install software on

those machines.

The table shown in 5-1 summarizes the problems with Our Wise Tales application

developed with Drupal CMS.

 Table 5-1. Problems with Our Wise Tales application [47]

Problems with OUR WISE TALES website

Developing applications using Drupal CMS is complex to learn and
implement
Complexity with code as it does not differentiate between the interface,
business logic, and data base interactions

Need to update the software on the computers

With the popularity of the website the scalability has to be increased by
buying server space
Complexity of inserting new code in to the application when there is a need
for additional features

37

All the above mentioned key challenges had to be faced in addition to the development

costs. My research proposes a flexible architecture where scalability, reliability and maintenance

issues will be resolved. The architecture uses the GAE frame work and the database as the DS

built on top of the Google’s database the Bigtable. Using this architecture there is a clear

separation of concerns between the clients interface, services and the database functionalities.

The Figure 5-1 shows clear separation of concerns between the client and server of the GAE.

The Model View Controller Architecture

The Model View Controller (MVC) architecture is a pattern used in software engineering

to separate the domain logic (referred to the application logic of the user) from the input and

presentation permitting independent development, testing, and maintenance [67].

In most of the applications the presentation layer is very rarely designed. It is usually

coded with the business logic of the applications and works for small and medium size web

applications but performs chaoticlly for larger applications. Nowadays, there is an increasing

demand for sophisticated web applications with a need for clients to carry out transactions. This

requires the server to have an idea of client’s state and boundaries which is not possible with the

normal client server architecture where the client state is changed with a couple of forward and

backward moves on the browser.

Anderson [68] describes in his paper that the presentation layer is the server side code of

the user interface. The term presentation layer is used to distinguish between the client’s

interfaces often called the user interface. For most of the web applications the code is generally

written without much thought on design and server side code is written to process HTML pages

with. This prototype is allowed to communicate with the back end with little or no additional

38

design. This works for small and medium scale websites but becomes problematic for large scale

applications where the design documentation has to be maintained. Knowing the state of a user

helps during the transaction processing of an application for logical transactions.

When a client sends a request through its browser to the server, the request may be either

a HTTP GET or POST. The request is usually sent to the server’s presentation layer. At this

point the server has to decide how it has to respond to the client. This process involves

interaction with the business logic of the application. At this stage the business analysis is carried

out at the Model layer where persistence is achieved. In this level the presentation layer interacts

with the problem domain code and persistence code in order to evaluate the HTTP Request. This

interaction is usually carried out in a 3- tiered model which separates it from the traditional

client/server model which is 2-tiered. The server presentation layer is also responsible to send

output messages to the client. Each time it sends a response to the client it has to interact with the

business information layer which in turn talks with persistence storage where a list of outputs are

stored and sent according to the requested information. The Figure 5-1 shows the MVC

architecture diagram with the different layers needed for the communication between the client

and server.

39

Figure 5-1. Model View Controller Architecture

Architecture of the GAE applications

The Figure 5-2 shows the architecture of different clients connecting to the GAE using

the MVC architecture using RESTful WS over the Internet. There is a separation of concerns

between the three interacting parties, the client, the server and the DS as shown in the figure.

Separation of the different components makes the code transparent and can interact with multiple

services.

In the architecture the central part is the server which controls the interactions between

the client and the DS. It is also known as the “Controller”. In Figure 5-2 the controller is located

between the client and the DS and is interacting with the client view and the DS using the HTTP

protocol and the JDOQL/GQL query language. On the client side, different types of clients are

accessing the services present on the server using the HTTP protocol. Here the client acts as a

“View” which presents the information to the users on the screen. The DS shown in the Figure 5-

2 acts as a “Model”. The model fetches information from the DS based on the requested

parameters. The GAE allows development of web applications in the pattern shown in Figure 5-2

40

by exposing its services and also clearly maintains strict separation of concerns using the MVC

architecture.

Figure 5-2. Architecture of the application using the Google App Engine

Experiment based on the GAE Architecture

This section describes the experiments designed for the GAE framework with Python and

Java languages. The primary goals of the experiments are to develop the services using the “free”

GAE framework and MVC architecture. Some of the goals that are to be accomplished based on

the architecture diagram in Figure 5-2 are listed in the section below.

41

Goals of the Experiments

The goals of the experiments are to investigate the GAE cloud architecture and its design

principles.

• Develop the application with the basic services based on the features of Our Wise

Tales website.

• Investigate accessing the applications using different clients.

• To use the MVC architecture guidelines in experiments.

• To evaluate the performance of the applications in Python and Java languages.

The HTML Client with Python services

A Python HTML application is the first among the different clients connecting to the

GAE. To overcome problems related to scalability and for ease of maintenance using traditional

programming languages, we moved to a new approach using the GAE. In this application, a

prototype of the web site is built using the GAE Python2.5.2 framework with limited features

using RESTful WS. The services are exposed as resources and can be accessed as URLs. Figure

5-3 shows the block diagram of the design and the services used in the experiment. The users can

login to the website based on URLs and have the view provided in the form of Hypertext

Markup Language (HTML). The users register with the application using the register service and

they can login. Once logged in they are redirected to the main page which stories the list of

stories already posted by other users and an option to post a story as shown in Figure 5-3.

42

From this screen the users can be redirected to different services. The users can read a

story by clicking on the hyperlink under the story name where they can see the date when it is

posted, author’s name, tags associated with the story, and provide comments to the story using a

service called viewing. The users can post their views about a story by using the comments

service. If the user is not the author of that story he/she will not be able to append any content to

it. If the user is the author they can append the content to the story by using the fields under it.

The service that checks whether a user is an author and enables appending more stories is

“addmorestories”. The users can update stories in many chunks and add tags to them. In this

application apart from posting and viewing stories users can personalize their information. The

users can change their passwords using the “resetpassword” service. Other personal information

of the users like changing the address, phone number, nickname, and images can be done using

information service. The table 5-1 shows the DS models used by the services in Python.

Figure 5-3. Workflow of the HTML client view using Python services

43

Table 5-2. The Data Store models with HTML client and Python services

Data Models Purpose

IDs To assign unique ID to users
Stories List of Stories
Tags List of Tags associated with stories
Users User Information
Comments List of comments associated with stories
Stories Database List of stories updated in chunks

In the Python application the services provided are for user registration, login,

postingstories, commenting, viewing available stories, posting stories in parts, resetting

passwords, loading images and updating account information. This application was built using

Python version 2.5.2. The application can be accessed from any geographical location using

HTTP or HTTPS requests at, https://poststories.appspot.com.The interface is designed using

HTML templates, and the data structures are stored in the GAE DS. The data structures used are

for maintaining user information, creating stories, commenting stories, and tags. Figure 5-3

shows communication between the HTML client and the navigation of the application using

services and the communication between the DS models. This experiment provides a HTML

view for the services with clean and compact code using GAE framework that are easy to

develop using POST, GET verbs which is based on the RESTful design approach.

44

https://poststories.appspot.com/

Figure 5-4. EE-R Diagram

45

m of the dataa structures iin Python

Fi

Figure 5-

igure 5-6. Sa

-5. Data Stru

ample code f

46

ucture for Us

for Useracco

serInfo in Py

ount service

ython

in Python

Unlike Drupal, the GAE uses simple functions to define its services and DS models.

Figures 5-5 and 5-6 provide the sample code for creating a data structure and user account using

Python based services. This application proves that using the reliable GAE applications can be

developed using the MVC architecture for a thin client interaction. Thus this framework helps in

developing reliable and scalable Web2.0 applications within less time. The code clearly shows

separation of concerns where Figure 5-5 is used to store the information to the DS while Figure

5-6 is to fetch the information from client view to controller layer. All the interactions in Python

language are based on MVC architecture with separation of concerns. The maximum length of

each resource in the application is 60 lines. There are approximately 11 files including the

app.yaml and database interactions. The total length of the entire application is collectively

approximately 660 lines.

The Flex Client with Python services

The services developed in Python are based on REST and can be accessed with any client

application platform. For this application I have chosen Flex3.0 due to its rich internet

applications (RIAs), interface layout, layout, and interactive debugging. Adobe labs describe

Flex [55] as a powerful Eclipse based IDE that includes editors for Action Script, MXML, and

Cascading Style Sheets (CSS). It allows previewing user interface layout, appearance, and

behavior using a rich library of built-in components. It allows exchange of data using WS using

HTTP protocol, request XML and responses.

The Flex client application was developed using Flex3.0 to provide client interface, the

GAE with Python services, and the DS of the GAE. The flex client provides rich interface and

47

accesses services using URLs associated with the GAE. The Figure 5-7 describes the navigation

of the application and its available services using a workflow.

When a user registers using the Flex client interface, the request is sent with the

parameters of the users and the GAE service verifies with the available information in the DS

using the login http request service, and hence returns users success or failure back to the client.

If the client request succeeds it proceeds to the next step where client can view the available

stories and can further post a story. The services available with the Flex client are user login,

user registration, posting stories and viewing stories.

Figure 5-7. Workflow of the Flex client view using Python services

The main goal of this application is to connect the Flex interface with Python services

and to provide a rich interface using the Flex development environment. The appendix shows the

client interface screens using the Flex3.0. The raw services and application developed quickly by

the GAE can be connected with the rich Internet applications development environment like Flex

to develop the web applications with clear separation of code between the client applications,

48

and the business logic. The problems described by Anderson [68] about the integration of client

and server code are not encountered using the separation of code features with the GAE

environment. Thus the applications can be developed quickly and easily without wasting the

developer’s time. The Python client with HTML describes the application developed in Python

and has a basic client interface developed using HTML. From this experiment it is evident that

using the GAE users can develop the applications that are user friendly, easy to develop and

provide rich and interactive client interfaces.

Table 5-3. The Data Store models with Flex Client and Python services

Data Models Purpose

UserInfo User Information
Stories List of Stories
Tags List of Tags associated with stories
Comments List of comments associated with stories

 The JSP Client with Java services

The GAE launched Java as the second language next to Python on its framework. Using

Java the applications can be developed using the service oriented approach where URL is used to

navigate through the services. In this thesis, I used Java as a language to create the services and

JSP as a client to provide the view for the services. The servlets are used to create the services

using Java6.0 and access them with JSP client.

The application has been created with Eclipse builder using Google Plug-In for Eclipse.

The access to the DS is provided with the Java Database Objects (JDO) using a query language

49

JDOGQL. The GAE Java applications use Java servlets standard to interact with the web server.

The application files, compiled classes, JAR and static files are arranged in a directory structure

using the WAR layout for Java web applications. The application has HTTP servlet classes that

can process and respond the web requests.

 Figure 5-8. Workflow of JSP client view with Java Services

Servlets can also give output in the form of HTML but it is complicated to maintain

them. It is better to use a template system that provides the functionality separately in files with

place holders to insert data provided by the application. There are many template systems

supported by Java, but I used JSP’s as they are part of the servlets and the GAE compiles JSP

files in the applications WAR automatically and maps them to the URLs. The Figure 5-8 shows

the workflow of Java services using JSP client.

I developed the services using Java servlets API and data is stored using JDO. Using

JDO, instances of the classes are stored in GAE DS and retrieved as objects. Also each request

that uses DS creates a new instance of the Persistence Manager Factory (PMF) Class. As the

50

instance needs time to be created, it can be stored in a static variable to be used in multiple

classes and files. The table 5-3 shows a list of DS objects used with JSP client and Java services.

Table 5-4. The Data Store Objects with JSP client and Java services

Data Objects Purpose

Users User Information
Stories List of Stories
Tags List of Tags associated with stories
Comments List of comments associated with stories

Figure 5-9 shows the code for Java based UserServlet developed using JSPs. The DS

objects used in this experiment are for storing users, tags, stories. Some of the services developed

for the JSP client are user registration, login, viewing stories, posting stories. This code shows

services are re-implemented in Java, with the services rendered in the form of JSP pages. These

services are developed using the RESTful mechanism and users can navigate between the pages

using URL.

This application was developed to evaluate the two development languages that Google is

providing for its GAE framework. Java is a widely used language throughout the world for

application development. The GAE Java provides a JSP servlets and CSS to develop the rich

user web applications. Using the Java environment with the GAE, the applications can be

developed and uploaded easily using the Eclipse builder tool. But the code for the applications in

Java is longer than the code for the applications in Python. The Java servlets are also designed

with GET and POST requests with separation of code for DS interactions. Java application takes

1500 lines of code. The length of the code is due to lengthy DS queries defined by JDOQL. In

Python each service is developed using the GET and the POST methods. The interface can be

51

develope

registered

uploaded

and the

JDOQL q

ed using Djan

d with the a

d to the clou

business log

query langua

ngo or HTM

app.yaml fil

ud with 2 or

gic maintain

age.

ML templates

le in order

3 command

ned on the

s that provid

to on the G

ds. The Java

servlets tha

de user interf

GAE local h

a GAE prov

at interacts w

faces. The se

host. The ap

vides JSPs fo

with the da

ervices shou

pplication ca

or the client

atabase using

uld be

an be

view

g the

Figure 55-9. Sample code for UseerServlet in Java

52

The Flex Client with Java services

To develop a Flex client with the GAE Java, the Flex builder plug-in and the Google

plug- in with Eclipse has to be installed. The services are developed using HTTP Servlet but the

client here is a Flex3.0. It has the entire interface layout and the communication between Flex

client and Java servlets using HTTP service. The client and the server respond to each other

based on URLs provided in the WEB-INF folder. The Figure 5-10 shows the workflow of a Java

services with Flex client.

Figure5-10.Workflow of the Flex client using Java services

The table 5-4 shows the DS objects used with Flex client and Java services.

Table 5-5. The Data Store Objects with Flex client view and Java services

Data Objects Purpose

Users User Information
Stories List of Stories
Tags List of Tags associated with stories

53

The services designed for the Flex client interaction with Java Servlets are user

registration form, login, stories display page and story posting page. The DS tables are user

information, stories, and tags that store the information of the users and stories with their tags.

The services used in this prototype application are used for login, and posting a story. If a user

wants to tag a story they can provide tags separated with commas. The aim of this experiment is

to see how the Flex communicates with the raw services developed in the GAE.

The iPod Client with Java services

The Internet is not only accessed on desktops and laptops it is also accessed by mobile

phones. Serhani et al. [54] states that, the mobile phone companies increased profits as the

proportion of global population using mobile devices has increased in the recent years especially

in developing countries. Internet is extensively used on small screen devices like smart phones.

In April 2009, the iPhone accounted 43 percent of mobile web usage and 65 percent of HTML

usage. It is expected that wireless subscriber rates will reach 2 billion by 2013. Among all smart

phones, the leading competitors are Apple, Android, Black Berry Curve, and Palm Pre. Apple

currently has sold 4 million devices in the second quarter and expects the numbers to increase up

to 5 million units in 3rd quarter, and 7 million units in the 4th quarter.

54

Figure 5-11.Workflow of the IPod client view using Java services

Table 5-6. The Data Store Objects with IPod client view and Java services

Data Objects Purpose

Users User Information

Stories List of Stories

Tags List of Tags associated with stories

Comments Stores list of Comments associated with stories

Ratings List of Ratings provided for the users stories

Originally the application was designed with JSP but I extended the design of the

application to be accessed on mobile clients like IPod touch. In terms of the functionality rather

than posting stories the application has services that can view stories, rate, and comment them.

The Figure 5-11 shows the workflow of the Java services with IPod client view. The table 5-5

shows the DS objects used with Java services for IPod client.

55

The IPod client application has a rich interface developed using CSS that provides an

enhanced view of the application for mobile or smart phone users. In this application there are

REST based services where the clients register and login and they can view the existing stories

and post comments or ratings instead of posting the story itself. Due to the IPod’s limited screen

size it is difficult for a user to post a story using smart phones instead they can read stories and

post comments to it. The IPod client application uses JSP as a client where the CSS are used to

edit the view. The JSP pages interact with the DS using the query language GQL.

56

CHAPTER 6
APPLICATION TESTING AND EVALUATION

This chapter evaluates the performance of the applications with various loads. The

evaluation of applications is based on checking the time taken to process certain number of

requests. I choose to evaluate our applications by checking the performance of services that are

accessed by URLs. The table 6-1 shows the list of languages and their corresponding interfaces.

Table6-1. List of languages and client interfaces

Languages Interface

Python HTML

Java JSP

Evaluation Plan

I used Apache JMeter to run the tests. JMeter is a Java desktop application designed to

load test its functional behavior and measure the performance. It is used to test web applications

for many server types including web requests (HTTP, HTTPS). The experiments are conducted

on a machine with the following configuration 2.66GHz CPU, 3.00GB RAM, 100Mbps network

card running over a 400Mbps Ethernet Hub. The operating system is Microsoft Windows XP

SP3. The languages used are Python and Java with the GAE engine runtime. This chapter

discusses the load tests performed on the application.

The evaluation for testing the Python and Java services is to test the performance of the

applications under different workloads. The attributes like verification, validation that define the

performance of the application are scalability, reliability, and resource usage which demonstrate

57

whether a system meets performance criteria. The load tests are modeled to simulate the

expected number of users accessing the WS concurrently. The stress testing is done to test the

applications performance beyond normal users to determine the stability of the application, and

break the application by overwhelming its resources [56].

For evaluating the performance of the applications developed with Python and Java

languages different test beds are designed that are discussed in sections 6.2 and section 6.3.Each

test plan has to answer the following questions.

• What is the anticipated normal workload?

• What is the anticipated peak number of users?

• What is the good time to load test the application? This may sometimes crash the

servers.

• What is testing intended to achieve?

• What is the sequence for the test?

1. Functional (low –volume of users)?

2. Benchmark (average number of users)?

3. Load test (maximum number of users)?

4. Test destructively (the hard limit)?

The test bed for testing the performance is based on load tests with varying workloads.

The tests are performed for low, normal, and high volume of users. The low and normal users are

for 10, and 50 users. The tests handle a peak load of 100 users concurrently for high volume of

users. The tests were usually performed everyday in the morning for N days (where N=5). The

sequence of the tests is used to handle 3 types of user’s functional users that handle less number

58

of requests. The bench-mark for the users is to test for an average of 50 users, and high flow of

user requests of about 100.

The reasons to carry out the tests with a limit of 10, 50 and 100 users are based on the

limited community of users who concurrently access the application. So the tests are conducted

with those limited values to mimic the real time user scenario. The applications are tested during

Monday to Friday, morning 9am till 12 noon. The N value is chosen as 5 because the tests are

carried during the week days to see the performance of the GAE servers.

The test bed for evaluating Python and Java services is similar. The tests are conducted

using Apache JMeter as a preliminary evaluation mechanism even though it is believed that

results may not be 100% accurate due to minor Java timing errors. However, to test the reliability

of the services and JMeter the tests are repeated for 5 days. The reason for testing on weekdays is

to check the performance of the GAE services when there is traffic on the network to simulate

the requests on the web. The tests are conducted on a university network (University of

Saskatchewan) where it is believed that traffic is shaped. The traffic is shaped due to requests on

the university network where there may be people be watching videos, connecting to heavy

audio and video files during the weekdays. This argument is true but the other networks which

may be used for commercial or networking purposes may also be shaped by the network

providers. Thus I conclude that these results are preliminary tests to check the scalability of the

applications using Python and Java languages.

The Apache JMeter can be used to test applications using the HTTP or File Transfer

Protocol (FTP) that can create the test plan based on the requirements. The JMeter has a web test

plan that has two important components the Test Plan and a Work bench. The Test plan is a

container to perform tests and the Work bench is a container for any test to be performed or a

59

portion of the test to be moved in to the test plan. The test plan has many sub components that

can be added to it. When the test plan is right clicked a context menu appears to add the items to

a test plan.

The test bed for this experiment creates a load on servers and tests the performance of the

services accordingly. A JMeter test creates a loop and a thread group. The loop simulates

sequential requests to the server with a delay and a thread group is designed to simulate

concurrent load. A load test using the JMeter test plan is to execute a sequence of operations.

The important components of a test plan are Thread group, Controllers, Assertions,

Listeners, Timers, and Configuration elements. The “Thread Group” tells the users number of

users to simulate, how often the user requests need to be sent, and how many requests they need

to send. There are two types of “Controllers” samplers and logical controllers. The samplers

tell the JMeter to send a request and wait for the result. There are many samplers like HTTP

Request, FTP Request, and JDBC Request etc. Logic Controller enables to customize the logic

of that JMeter follows. The “Assertion” allows assert whether the results returned from the

server are as according the results that we expected. The “Listeners” provide the information

that JMeter gathers when a test is run. The “Timers” are used to pause between each web

request that JMeter send to the server. By default the timer is off. The “Configuration Element”

is used to add or modify the requests and works with the samplers [58].

Goals of Evaluation

• To evaluate the services by varying number of requests (10, 50, and 100).

• To perform repeated requests for N days and calculate the difference between

them.

60

• To calculate the time taken for each request individually for N days.

• To calculate the time taken by the workflows.

• To test the performance of the services and workflows.

• To study the scalability of services developed in Python and Java.

Phase1: Test Bed for the experiments in Java and Python

The test bed for the services in Python and Java is to evaluate the performance of the

services over a certain time period. In each of the languages, a set of services with Python and

Java experiment are considered for evaluation. Initially each service from both the languages is

evaluated for a fixed period of N days where (N=5). The services are evaluated for varying

number of client requests with a fixed time difference between each request.

As discussed earlier, the phase 1 experimental test bed services developed both in Python

and Java are evaluated with increasing loads for 5 days. Each of the measurements is recorded

everyday in the morning 9 am till 12.

Test Bed

The test bed is a simple HTTP web request using Apache JMeter and defined in 4 steps. In step1

a thread group is created. The thread group tells JMeter the number of users, how often the

requests have to be sent, and how many requests have to be sent. These properties are explained

by the fields number of threads (users), ramp-up period (in seconds), and loop count. The field

number of threads tells the JMeter the number of user simulations to be created, the ramp-up

period in seconds indicates the time delay between each thread. For example if the number of

threads is 6 and ramp-up period is 12 seconds then JMeter would send each request with a delay

of 2 seconds. The number of loops indicates number of times the requests have to be sent. The

Figure 6.1 shows thread and its fields.

61

Figure 6-1. Thread group and its properties

In step2, the tasks to be executed by the JMeter are defined. The thread group is selected

and mouse right click option is chosen to add a config element the “HTTP Request Defaults”.

The Figure 6.2 shows the “HTTP Requests Defaults” page with values.

Figure 6-2. The HTTP Request Defaults and its properties

62

In step3 a HTTP Request is defined by selecting the thread group and choosing a sampler

with the name HTTP Request. In this page the name, path, port, and method filled. The name,

path and port numbers are the same as default “HTTP Request Defaults” but the method is

changed accordingly based on the type of request GET or a POST. The lists of parameters are

sent along with the request depending on the type of request. The HTTP Request is shown in

Figure 6.3 with its attributes.

Figure 6-3. The HTTP Request and its attributes

In step4, the results of the test are viewed by adding a listener to the test plan. This

element is used to store the results of the HTTP request. The listener is added by selecting the

test plan an adding a listener and adding an element to view results in a table. These results show

the number of the requests, the thread group they belong to, time taken in milliseconds, the result

of the request either success or failure.

63

The Figure 6.4 shows results in a table for the login service.

Figure 6-4. The View Results in a table with its fields

Results of the Phase1 Experiments

This section discusses the results for the Python and Java based services that are

evaluated using the test bed in section (described for phase1 experiments). The services are

evaluated for varying number of client requests 10, 50, 100 for 5 days. The tables in the 6.2 and

6.3 shows the services evaluated with varying client requests for Python and Java languages. The

individual services are evaluated for 5 days for the best and worst performances with the

workloads. The graphs for each of services are shown as in the sequence of the tabulated service

names. Also, for the tests on the services in Python and Java, maximum, minimum, and average

values for the time taken in milliseconds are calculated. Based on these values the Delta is

calculated.

64

The Delta is the difference between maximum and minimum values. The graphs display

variance values for each service in Python and Java.

Delta (A) =Maximum (A)-Minimum (A)
Where A is the column in the table

 Results of the Python services. Based on the test plan all the services in Python are

evaluated for different number loads of client requests (10, 50, 100) for N days where (N=5).

The services in python are evaluated for checking the best and worst performance among the

five days with workloads and also for calculating the overall variance. The table 6-2 shows the

services in Python and the graphs for the python services in the same order as tabulated.

 The first part of the evaluation shows the performance of the services for the

workloads 10, 50, and 100 over a period of 5 days the graphs are recorded to calculate the best,

worst, and average time taken. The Figure 6-5, 6-6, and 6-7 show the time taken for login

service for 10, 50, and 100 workloads. In each graph the best and worst time taken is observed

as the best time defines the least time taken to process the workload. The worst time indicates

the maximum time taken to process the workloads.

Table 6-2. Table showing the list of services evaluated in Python

Service name Request Type
Login POST
Main GET
Account GET
Poststories POST
Comments POST

65

Figure 6-5. The performance of Python login service for workload (10)

The Figure 6-5 shows the best performance as the least time taken to process the

workload of 10 requests. Figure 6-6 shows the huge difference between the best performance and

the worst performance. It is understood that the average performance for the services should be

between the best and the worst performance graphs. The Figure 6-7 shows the performance

graph for login service for a workload of 100. In this graph the worst performance is indicated by

the highest time taken line. It is indicated as worst performance because of increase in workload,

the time taken is also increased after 85 requests.

66

 Figure 6

 Figure 6-7

6-6. The perf

7. The perfor

67

formance of

rmance of Py

Python login

ython login s

n service for

service for w

r workload (

50)

workload (1000)

T

average t

differenc

variances

day5 (fro

based on

variances

The second p

time taken a

ce between m

s for the 5 d

om Monday

n the varianc

s as indicate

part of the e

and its Delta

maximum an

days are take

till Friday).

ces. The 3 d

d.

evaluation s

a is calculate

nd minimum

en and graph

The Figure

different line

shows the va

ed. As discus

m time record

h is drawn w

6.8 shows th

es indicate th

ariance of th

ssed earlier,

ded for a day

with the varia

he time take

he time take

he services.

the delta is

y. Similarly

ances record

en for login s

en for varyin

For each da

calculated a

the average

ded from day

service in Py

ng loads wit

ay the

as the

s and

y1 till

ython

th the

Figurre 6-8. Differrence of the times taken (ms) using llogin servicee in Python ffor workloadds

T

service p

example

and grad

The Figure 6

performs a P

for the wor

dually decrea

6.8 shows th

OST operati

kload 100 th

ases with th

he time take

ion. With in

he delta valu

e GAE bala

en for login

ncreased wor

ue of time ta

ancing the lo

n service wit

rkload the de

aken each da

oad by runn

th different

elta value al

ay starting w

ning the appl

workloads.

lso increases

with day1 is

lication on m

This

s. For

 high

many

68

servers. When the load on the servers comes down, time taken for the requests also decreases as

a result the graph shows rise and fall at certain locations.

Similarly the performance graphs for the main service are shown in Figure’s 6-9 till 6-12.

The figure 6-9 shows the performance graph for 10 requests, Figure 6-10 for workload of 50

requests, and Figure 6-11 for workload of 100 requests. It performs a GET operation.

Figure 6-9. The performance of Python main service for workload (10)

69

In

Figure 6

graphs. B

them. A

performa

and maxi

server th

sharing t

shown.

 F

n the Figure

-10 and Fig

But for the w

And for the

ance line sho

imum time t

at runs the a

the load with

Figure 6-10: T

e 6-9, the b

gure 6-11 sh

workload 50,

workload

ows many fl

taken. But th

applications.

h the servers

The perform

best and the

hows the ove

, worst and t

100, the F

luctuations i

he increasing

. The servers

s next to it th

70

mance of Pyth

worst perfo

erlap with a

the best grap

igure 6-11

in the graph

g loads in b

s running th

hus a loweri

hon main se

ormances do

a difference

phs show a m

shows that

h indicated w

oth the figur

e application

ing line indi

rvice for wo

oes not over

in time take

minimum di

t the time

with high vo

res are balan

ns have bala

icating the d

orkload (50)

rlap where

en in each o

fference bet

taken for w

olume of req

nced by the

anced the loa

decreasing lo

as in

of the

tween

worst

quests

GAE

ad by

oad is

 Figgure 6-11. TThe performaance of Pythoon main servvice for workkload (100)

T

50, and 1

is more t

values dr

certain th

During t

processin

fewer bu

The Figure 6-

100).In this f

than the delt

rops each da

hreshold wh

this time th

ng the reque

rdens on the

-12 shows th

figure it is o

ta values for

ay. This is d

here they d

he overall lo

ests reduces.

e server and u

he delta valu

observed that

100 request

due to the G

distribute the

oad on the

. Using this

ultimately th

ues for main

t the delta v

ts. For 100 r

GAE servers

e load to th

available s

approach th

he time is red

service in p

alues for pro

requests wor

automatical

he correspon

servers redu

here is a low

duced.

python for th

ocessing 50

rkload startin

lly balancing

nding server

uces and the

w failure of

he workloads

requests on

ng day3 the

g the load af

rs automatic

e time taken

the requests

s (10,

day4

delta

fter a

cally.

n for

s and

71

 Figure 6-12. DDifference off the times taaken (ms) foor main serviice in Pythonn for worklooads

S

using wo

workload

for the w

with the

imilarly the

orkloads. Th

ds. For the a

workload 100

additional se

Figures 6.1

he Figure 6

ccounts serv

0 shown in 6

ervers which

3, 6.14 and

6.16 shows

vice, the pea

6.15. These

h loads the ap

6.15 show t

the delta v

ks in the gra

loads are im

pplication an

the performa

values for a

aphs are obs

mmediately b

nd scales the

ances of the

accounts ser

erved simila

balanced by

e requests.

accounts se

rvice for al

ar to main se

y sharing the

ervice

ll the

ervice

e load

72

 Figure

Figure 6-1

6-13. The p

14. The perfo

performance

ormance of P

73

of Python a

Python acco

ccounts serv

unts service

vice for work

for workloa

kload (10)

ad (50)

Figure

 Figu

 6-16. Differ

ure 6-15. Th

rence of the

he performan

times taken

74

nce of Pytho

(ms) for acc

on accounts s

counts servic

service for w

ce in Python

workload (10

00)

n for workloaads

The Figure 6-16 shows the delta values for the accounts service. The accounts service

performs a GET request operation. In this graph the delta values show increase in numbers with

increase in workloads but gradually decrease as new servers are fired up to balance the loads.

Similarly the graphs are recorded for poststories service. The poststories service performs POST

operation. The Figures 6-17 till 6-20 are the graphs for poststories service.

 Figure 6-17. The performance of Python poststories service for workload (10)

The Figure 6-17 shows the time taken for the requests in worst line is in the same shape

as the time taken for the best. This indicates that they are taking constant time with the worst

graph taking twice the time of best.

75

 Figuree 6-18. The pperformancee of Python ppoststories sservice for wworkload (50)

76

Figure 6

 Figure

6-20. Differe

e 6-19. The p

ence of the t

performance

times taken (

77

e of Python p

(ms) for post

poststories se

tstories serv

ervice for w

ice in Pytho

orkload (100

0)

n for worklooads

The graphs for the comments service in Python are similar. The comments service is a

POST service. The Figures 6-21 till 6-23 are the graphs indicating the best and worst

performances of the graphs for workloads. The Figure 6-24 indicates the difference between the

performance of the comments service for workloads on each day.

Figure 6-21. The performance of Python comments service for workload (10)

78

Figure 6-22

 Figur

2. The perfo

re 6-23. The

ormance of P

performanc

79

Python comm

e of Python

ments service

comments s

e for worklo

service for w

ad (50)

workload (1000)

Figure

Results o

The Figu

differenc

in Java ex

e 6-24. Diffe

of the Java

ures 6.25 till

ce between th

xperiment in

 Table 6

erence of the

services. Th

Figure 6.44

he maximum

ndicated as D

6-3. Table sh

Service
Login
Posting
Rating
Main
Viewing

e times taken

he evaluatio

4 shows the g

m and minim

Delta values

howing the li

e name

g

80

n (ms) for co

on for Java s

graphs relate

mum values

.

ist of service

 Req
 PO
 PO
 PO
 G
 G

omments serv

ervices is si

ed to perform

of the time t

es evaluated

quest Typ
OST
OST
OST

GET
GET

vice in Pyth

imilar to the

mance of the

taken for 5 d

d using Java

on for worklloads

Python serv

e services an

different ser

vices.

nd the

rvices

pe

The Figures 6.25 through 6.27 shows the performance of the login service for workloads

(10, 50, and 100) in Java. The Figure 6.25 shows huge difference between the worst case

performance and the best performance. The Figure 6.25 shows patterns similar to the graphs in

Python experiments but takes slightly more time than the time taken to process the requests in

Python language.

The login service in Java is a POST operation. For example, the maximum time taken for

the Python login service for 10 requests is 320 milliseconds as shown in Figure 6.5 where as for

the Java login it takes 8010 milliseconds. It is very high when compared to the times taken for

the Python services. From the Figures 6-25 till Figure 6-27 (for login service in Java) the

maximum time taken is above 8000 ms. In comparison with the Python services the Java services

take longer time to process the requests. The delta values of the Java login service with different

workloads is shown in Figure 6-28.

Figure 6-25. The performance of the Java login service for workload (10)

81

Figure

6-26. The performance of Java loginn service forr workload (50)

Figure 66-27. The peerformance oof Java loginn service for workload (1100)

82

A

requests

time take

of the inc

are creat

request it

collector

As discussed

when comp

en for workl

crease in the

ed. These ob

t takes some

.

d above, alm

pared to the

oads 50 and

e load. This

bjects occup

e time to clea

most all the

Python serv

d 100 increas

is because th

py all the G

ar up the exi

e services in

vices. The Fi

ses on Thurs

hat memory

AEs horizon

isting object

n Java take

igure 6-28 s

sday and Frid

y gets occupi

ntal memory

ts with the h

longer tim

shows that d

day (day4 an

ied with the

y storage. So

elp of Java l

e to proces

delta value o

nd day5) bec

Java objects

o for a new

language gar

s the

of the

cause

s that

JDO

rbage

Figu

T

workloa

processi

the sam

ure 6-28. Dif

The Figures

ads (10, 50, a

ing the reque

me operation.

fference of t

6-29 till F

and 100). Th

ests when co

. Oelhman [

the times tak

Figure 6-31

he posting se

ompared to t

[57] states th

83

ken (m-s) for

show the p

ervice is a P

the Python b

hat the perfo

r login servic

performance

POST operat

based poststo

ormance of

ce in Java fo

e of the pos

ion and take

ories service

the GAE is

or workloads

sting servic

es longer tim

e which perf

s decreased w

s

e for

me for

forms

when

processing the Java services when compared with the Python services. The Figure 6-32 shows

the delta values of the workloads from day1 to day5 for workloads.

 Figure 6-29. The performance of the Java posting service with workload (10)

84

 Figur

re 6-30. Thee performancce of the Java posting serrvice for woorkload (50)

 Figure 6-31. TThe performmance of Javaa posting serrvice for worrkload (100))

85

 Figurre 6-32. Diffeference of thee times takenn (ms) for thhe posting seervice in Java for worklooads

S

workload

operation

approxim

that the o

taken by

service.

imilarly, th

ds with ratin

n and main,

mately take tw

overall time

Java service

e Figure 6.

ngs, main, an

 viewing se

wice the tim

e taken for a

es. The Figu

33 till figu

nd viewing

ervices perfo

me when com

all the servic

ure 6-36 sho

ure 6.44 sho

services resp

orm GET o

mpared with

ces in Pytho

ws the delta

ows the gra

pectively. Th

perations on

the services

on is less w

a values for t

aphs for the

he ratings se

n the server

s in Python.

hen compar

the workloa

e time taken

ervice is a P

r. These ser

The graphs

red with the

ds for the ra

n for

POST

rvices

show

time

atings

T

(10, 50, a

below fo

The Figures 6

and 100). Th

r the ratings

6.33 till Figu

he Figure 6.3

 service.

ure 6.35 sho

36 shows the

ow the perfo

e delta value

ormance of r

es for worklo

ratings servi

oads 10, 50 a

ce for work

and 100 as sh

loads

hown

86

 Fig

gure 6-33. TThe performaance of the JJava ratings sservice for wworkload (100)

 FFigure 6-34. The performmance of the Java ratingss service for workload (550)

87

Fig

Figure 6-3

gure 6-36. Di

35. The perfo

ifference of t

ormance of t

the times tak

88

the Java ratin

ken (ms) for

ngs service f

r the ratings s

for workload

service in Ja

d (100)

ava for workkloads

The Figure 6-37 to Figure 6-40 are the graphs for main service. The main service is a GET

service.

 Figure 6-37. The performance of the Java main service for workload (10)

89

 Figur

 F

e 6-38. The

Figure 6-39.

performance

The perform

90

e of the Java

mance of the

a main servic

Java main s

ce for worklo

service for w

oad (50)

workload (1000)

Similarly

in the app

 Figure 6-40

y graphs are

plication. It

 Figure 6-

0. Difference

e recorded fo

is a GET op

-41. The per

e of the time

or the viewin

peration base

rformance of

91

es taken (ms)

ng service. T

ed service.

f the Java vie

) for main se

This is servic

ewing servic

ervice in Jav

e is used to v

ce for worklo

va for worklo

view the sto

oads

ories posted

oad (10)

The figurres show thee time taken for processinng the workloads and thhe delta valuees for worklooads.

Figure 6-442. The perfoormance of tthe Java viewwing servicee for workloaad (50)

92

Figur

Figure 6-43

re 6-44. Diff

3. The perfor

ference of th

rmance of th

he times take

93

he Java view

en (ms) for v

wing service f

viewing serv

for workload

ice in Java f

ds (100)

for workload

ds

 From the Phase1 experiment results it is evident that Java services show the

maximum time for 50 and 100 requests with workloads(10, 50, and 100) for the last request.

 The performance graphs for each of the services show the best, and worst performances.

These graphs indicate the reliability of the GAE services performance over a period of 5 days.

As I mentioned in the evalution part the tests are conducted in the morning for 5 days during 9am

to 12 noon Monday to Friday. The second part of the experiment shows the differences between

the maximum and minimum times taken for each service evaluated in Python and Java for

different days with workloads. It shows the variation of services performance with workloads

(10, 50, and 100) on each day.

The Python services perform best by taking minimum time for processing the requests. The Java

services are scalable for all the workloads but show increase in time in comparison with the

Python services. But in total, the services in both the languages Python and Java are scalable to

the client requests with a variation in time taken.

But there is an interesting question left unanswered, why do Java services take more time

than Python?

It is observed that for all the Java graphs starting Figures 6-25 till Figure 6-44 they show

a chaotic behavior under loads. Java is known as of the best and most widely used mature

platforms for application development showing the worst times taken is surprising. But the GAE

platform it is still very young and it still in its early development stages. Since its launch in 2008

with Python as a platform, there were many development changes incorporated. Most

importantly, Java is introduced with the GAE framework after the Python in 2009. GAE uses its

own compilers for the Java languages due to which the performance of the applications is

affected. The length of the Java code also reduces the performance. The Chapter 5 states that

94

Java code is lengthier than Python. However when comparing Java with Python in the GAE

framework, Java code is verbose. It takes more input and an output statement to process a job

when compared to Python a simple scripting language with few lines of code. The DS

interactions for Python are only a few lines compared with Java JDO class in Java used for DS. It

is also observed that the Java development environment for GAE framework uses Google’s

compilers and interpreters that are affecting the performance of Java applications by filling up

the memory with JDO objects. It creates many objects in memory, and thus filling up the space

on the horizontal Google storage servers. Once the memory is filled, the garbage collector of the

Java starts automatically to clear the unused space of the Java objects thus creating an overhead

in time. Thus the time taken is longer in Java when compared to Python.

In conclusion, it is evident that GAE Java framework has to be improved to reduce the

time taken for processing the requests.

 Phase2: Workflows for the experiments in Java and Python

 The Java and Python experiments aim at the performance of the services as a workflow.

In these experiments a set of services are arranged as a workflow in such a way that users

execute the requests as the path mentioned in the workflow. Each time specified number of

requests are sent to the workflow for N days where N=5. The workflows are run every day in the

morning for N days and graphs are recorded accordingly.

Test Bed

 The test bed for the experiments using Apache JMeter is explained in this section for the

workflows. The workflows are designed separately for the experiments in Java and Python.

95

The workflow is a combination of services in Python and Java. For the test bed we are

discussing the test bed designed in Java. The test bed has a sequence of 5 important steps. The

test bed is same as the test bed for individual services (described for Phase1 experiments) but

with additional simple controllers for session information.

The test bed consists of the thread group which is used to define number of users, ramp-

up time in seconds and the number of loops. The workflows are tested with workloads 10, 50,

and 100. These workloads are tested on everyday for N=5 days. Usually a client logs into the

experiment using “login” service which leads into the main service and the client may post a

story using the “poststories”. Later the client may post a comment and change the account

settings. These operations are defined in the workflow with the requests to different pages. Each

page request is defined by the HTTP Request Defaults and is associated with a HTTP Requests

shown in figure 6.2 and figure 6.3. The HTTP Requests Defaults is having the default values

based on which HTTP Requests is processed.

The simple logic controllers are used in the workflow to organize the samplers and other

logical controllers. The simple logic controllers can be added by right clicking on the thread

group. In the simple logic controllers HTTP URL Re-writing Modifier is added where the

session information is managed using the variable mentioned. The session id is cached if the

option for the cache is checked and can be used for the other services. The results are recorded

using the View Results in a table which is added by right click option on the thread group. The

results panel is shown in Figure 6.4. The figure 6.15 shows the HTTP URL Re-writing Modifier.

96

Figure 6-45. The HTTP URL Re-writing Modifier and its properties

Results of the Phase2 Experiments

This section discusses the results of the workflows using Python and Java that are

evaluated using JMeter. The workflows are evaluated for workloads 10, 50, and 100. The

workloads are recorded for N=5 days as to measure the performance of the GAE services during

the days of a week. The workflow is defined as a sequence of service navigation through an

application. For the Python experiment the workflow is in the order of the services mentioned in

table 6.2. The first set of graphs shown in Figure 6-46 till Figure 6-48 show the best, and worst

performances of the workflow in Python for the workloads (10, 50, and 100).

97

 F

igure 6-46. T

 Figure 6-47

The perform

7. The perfor

98

mance of the

rmance of th

Python work

he Python wo

kflow for wo

orkflow for

orkload (10)

)

workload (550)

 Figure 6-48. The performance of the Pythoon workflow for workloaad (100)

F

workflow

in results

experime

or the wor

ws delta valu

s of the pha

ents are men

rkflows eve

ues calculate

se1). The se

ntioned in the

eryday max

ed as the diff

ervices that

e tables 6.2.

ximum and

fference betw

are used for

minimum

ween maximu

r the workflo

values are

um and min

ows for the

calculated.

nimum (discu

Python and

The

ussed

d Java

99

Figurre 6-49. Diffference of thhe times takeen (ms) for thhe workfloww in Python ffor workloadds

S

services

in the fo

worst va

recorded

Figure 6-

6-50 till

services i

imilarly the

is in the sam

ollowing ord

alues. Then

with the di

-49 shows a

Figure 6-5

in Java.

Java servic

me order as m

der. First the

the delta va

ifference va

verage perfo

2 show the

es are also e

mentioned in

e performan

alues calcula

alues recorde

ormances of

e performanc

evaluated as

n the table 6

nce of the w

ated for the

ed for the w

f the graphs

ce for the w

 a workflow

.3. The grap

workflow is c

workflows

workloads. T

for each day

workloads a

w. The workf

phs for this s

calculated w

every day

Thus the pat

y for worklo

and the delt

flow for the

set of service

with the bes

and the gra

ttern indicat

oads. The Fig

ta values fo

 Java

es are

t and

aph is

ted in

gures

or the

100

 Figu

ure 6-50. Thhe performannce of the Javva workfloww for the worrkload (10)

 Figuure 6-51. Thee performancce of the Javva workflow for workloaads (50)

101

 Fiigure 6-52. TThe performaance of the JJava workfloow for the wworkload (1000)

T

similar

differen

services

from the

The workflow

GET and P

nce in time

s are worse t

e memory.

ws in Pytho

POST reques

taken each

than Python

on and Java

sts. But the

day for dif

services bec

a are design

 Figures 6-4

fferent work

cause of the

ned with sam

46 till Figu

kloads. Thes

JDO object

me number

ure 6-53 sho

se results in

s that take ti

of services

ow a tremen

ndicate that

ime to be cle

s and

ndous

Java

eared

102

FFigure 6-53. Difference oof the times ttaken (ms) ffor the Java sservice for wworkloads

SSummary

In

varying w

based ap

performa

bench ma

to withst

with the w

n summary,

workloads fo

pplications ta

ance of the w

ark users. Th

and the conc

workloads.

as mentione

for Python an

ake less time

web applica

hus the perfo

current requ

ed in the go

nd Java app

e than Java

ation like sc

formance exp

ests for norm

oals for evalu

plications. Fr

based applic

alability and

periments ba

mal and benc

uation, the a

rom the figu

cations and

d reliability

ased on load

chmark user

applications

ures it is evi

the attribute

are fulfilled

ds prove that

rs and is scal

were tested

ident that Py

es that defin

d for norma

t the GAE is

lable and rel

d with

ython

ne the

al and

s able

liable

103

Although the argument “Apache JMeter is not a best tool for testing the scalability of the

applications for concurrent client requests”, it is one of the most popular one. The repeated

experiments prove that the time taken for the services does not change rapidly. As a result, the

Python and Java results indicate the performance is dependent on the length of the code in an

application. As Python applications have a minimum code they take less time than the Java JDO

object libraries that are built on top of the GAE. However, the extensive tests are to be

conducted in an controlled environment without any traffic shaping.

The important conclusion is that, Java is an expensive programming language in regards

to the time taken with the GAE requests. Thus it raises a question about the suitability of object

oriented programming languages for the GAE. Thus there is need for slimmer programming

languages that do not occupy all the memory in horizontal scalable servers and does not use

object oriented programming. The emergence of a new trend to develop the programming

languages that are thin and take less memory is suitable with cloud platforms like PaaS.

104

CHAPTER 7
CONCLUSIONS AND FUTURE WORK

Conclusions

Traditional computing patterns do not support and maintain the growing demand for

rapid application development. In the past introduction of Internet has increased the need for the

applications to interact over the web for business transactions. The WS has played a major role

to enhancing the speed of the communicating parties. The business applications were highly

developed using the RPC SOAP interactions which later had complications due to its

interconnected behavior, complex code in applications. All these overheads lead to the

development of a light weight protocol to establish the communication between the parties. It is

called as the REST architectural style which develops the application based on the rules that

govern the web. Due to all the advantages it can be easily embedded to design very complex

applications with simple code and fewer interactions between the parties without affecting the

behavior of the other parties.

Now the web is governed by the rich Internet applications that use REST based

interactions. Based on these principles a model was proposed to develop applications easily

using the REST principles and also to cut down the development costs incurred. These purposes

are served by the recent developments in computation with which the services are available to

people as models. The CC platforms cut down the costs of the applications and are categorized

into different platforms based on the resources they provide [9]. Among all the platforms we are

mostly concentrating on the platforms that allow development of the applications. Some of these

platforms are the GAE, the Microsoft Azure. The GAE is popular since Google provides the

service for free.

105

This research is based on using the GAE framework.

The contribution of this research includes the following

- Re-design a social networking application in the cloud

The goal of this research is to re-implement an existing social networking

application in the cloud. The MVC architecture enables thin client

interaction with a clear separation of concerns. RESTful WS are suitable

for developing thin resource oriented service that can develop web

applications suitable for the cloud. Applications are designed by choosing

the functionality of an existing social networking application that has

scalability and maintenance issues. The experiments designed in Python

and Java are based on the MVC architecture and multiple clients are used

to present the design of the application (Flex clients with Python and Java,

HTML, JSP, and IPOD client). In addition, Python code is approximately

660 which is limited compared to the Java code that takes 1500 including

design, database interactions, and business logic.

- Design patterns for the cloud

The first chapter introduces the problems with traditional computing and

the need for scalable applications. It was evident from the literature that

PaaS provides a platform where applications can be developed. Among

the PaaS model, GAE provides a free and an attractive environment. GAE

allows application development with 2 languages. Java and Python allows

creating simple, fast, and attractive resources that creates scalable.

- Scalability

106

The CC enables easy applications that are easily developed with less

complexity and are scalable. The social networking application that is re-

implemented is evaluated for performance in Python and Java languages.

Though the GAE Java application’s scale better than traditional

software’s, it stills needs to improve its performance when compared to

Python applications. Java is an object oriented programming language and

is not suitable for the cloud platforms. The PaaS cloud applications need

applications to scale better than the traditional applications for which there

is a need for choosing the languages that are slim and does not scale

horizontally over the Google’s servers. However the GAE is still in its

early phases of development and will require more time and upgrades for

the platform to mature and develop scalable applications in Java language.

Thus, the GAE uses the RESTful architectural style to design services using the

Python and Java languages that are scalable and provide and make them available

with multiple clients with resource oriented approach based on MVC design

principles.

Future work

• To re-implement the applications using the HTTP1.1 protocol.

The HTTP1.0 protocol is used as the most successful protocol. In spite of

its wide usage, it has numerous flaws. HTTP1.1 reuses the socket

connections. It does not break the socket connection once the request and

response is completed so that the next request could be processed on the

107

same instead of additional delay in establishing a new one. HTTP1.0 has a

serious impact on Java’s performance with network connection break up

for every interaction. A system which uses same socket is significantly

better. However even if the network connection improves, the problem

with Java creating too many objects remains the same.

• To test the applications using testing software and do repeated testing on different

operating systems. Also to test the applications within a network where there is no

traffic shaping.

To test the applications on the multiple operating systems like Linux, Mac

OS, to check the performance of the applications as the web applications

performance changes with operating systems. Further, to move the

applications into an uncontrolled environment independent of the

institutional or organizational environment to check the best and worst

case performances on each of them.

• The GAE applications can be cached to see the performance of the applications.

Caching is an important feature of the GAE that provides for high performance

memory objects primarily used for faster access to the results of cached DS queries.

The existing applications are designed without caching to test the worst

case performance of the GAE services. In future, the best performance of

the applications has to be evaluated in the GAE with the help of caching

features.

LIST OF REFERENCES

108

[1] Papazoglou, M.P., Traverso, P., Dustdat, S., and Leymann, F. Service-Oriented
Computing Research Roadmap, Service Oriented Computing (SOC), number 0432 in
Dagstruhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum
fuer Informatik, Schloss Dagstuhl, Germany 2006.

[2] Liu, Y., Wang, Q., Zhuang, M., and Zhu, Y., Reengineering Legacy Systems with
RESTful Web Services, Published in Computer Software and Applications, 2008.
COMPSAC ’08, 32nd Annual IEEE International.

[3] Menasce, A.D., QoS Issues in Web Services, IEEE Internet Computing 2002, vol. 6,
Issue 6, Nov./Dec 2002.

[4] Litoiu, M., Migrating to Web services: a performance engineering approach, Published in
Journal of Software Maintenance and Evolution: Research and Practice, vol. 16, Issue 1-
2, Jan./Apr. 2004.

[5] The hidden battle between web services: REST versus SOAP [Online], 1st July 2010,
Available: http://hinchcliffe.org/archive/2005/02/12/171.aspx.

[6] Palankar, M., Ripeanu, M., Garfinkel, S., Amazon S3 for Science Grids: a Viable
Solution?, InProceedings of the 2008 international Workshop on Data-Aware
Distributed Computing, Boston, MA, USA, June 24 - 24, 2008, DADC '08. ACM, New
York, NY, 55-64.

[7] Pautasso, C., Zimmermann, O., Leymann, F., RESTful Web Services vs.”Big” Web
Services: Making the Right Architectural Decision, Published in WWW 2008, Web
Engineering-Web Service Deployment, April 21-25, 2008, Beijing, China.

[8] Calcote, J., Open Sourcery, Technology, Open source and Identity [Online], 13th July
2010, Available: http://jcalcote.wordpress.com/2008/10/16/put-or-post-the-rest-of-the-
story/.

[9] Cloud Computing [Online], 12th March 2009, Available:
http://en.wikipedia.org/wiki/Cloud_computing.

[10] Platform as a Service [Online], 23rd October 2009, Available:
http://www.keeneview.com/2009/03/what-is-platform-as-service-paas.html.

[11] Amazon Elastic Compute Cloud [Online], 30th March 2009, Available:
http://en.wikipedia.org/wiki/Amazon_Elastic_Compute_Cloud.

[12] Google App Engine [Online], 30th March 2009, Available:
http://en.wikipedia.org/wiki/Google_App_Engine.

[13] Azure [Online], 30th March 2009, Available:
http://en.wikipedia.org/wiki/Microsoft_Azure.

[14] Vinoski, S., Where is Middleware, IEEE Internet Computing 2002, 1089-7801/02,
March- April, 2002.

[15] Vaughan-Nichols, S.J., Web Services: Beyond the Hype, Published in IEEE Computer
Society, Computer, vol. 35, no. 2, pp. 18-21, Feb. 2002, doi:10.1109/2.982908.

[16] Why we need Web Services Networks [Online], Web Services & XML, 2009(21/09),
Available: http://www.ebizq.net/topics/web_services/features/1542.html.

[17] Papazoglou, M. P., Web Services: Principles and Technology, Pearson Education
Limited, London, 2008, pp.120.

109

http://hinchcliffe.org/archive/2005/02/12/171.aspx
http://jcalcote.wordpress.com/2008/10/16/put-or-post-the-rest-of-the-story/
http://jcalcote.wordpress.com/2008/10/16/put-or-post-the-rest-of-the-story/
http://en.wikipedia.org/wiki/Cloud_computing
http://www.keeneview.com/2009/03/what-is-platform-as-service-paas.html
http://en.wikipedia.org/wiki/Amazon_Elastic_Compute_Cloud
http://en.wikipedia.org/wiki/Google_App_Engine
http://en.wikipedia.org/wiki/Microsoft_Azure
http://www.ebizq.net/topics/web_services/features/1542.html

[18] Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S., Unraveling
the Web Services Web: An Introduction to SOAP, WSDL, and UDDI, IEEE Internet
Computing, vol. 6, no.2, pp. 86-93, Mar./Apr. 2002.

[19] Muehlen, M.Z., Nickerson, J.V., Swenson, K.D., Developing Web Services
Choreography Standards-The Case of REST vs. SOAP, Decision Support Systems
37(2004), Elsevier, North Holland (to appear).

[20] Fremantle, P., Weerawarana, S., Khalaf, R., ENTERPRISE SERVICES, Published in the
COMMUNICATIONS OF THE ACM, vol.45,no.10, pp. 77-81, Oct. 2002.

[21] Shi, X., Sharing Service Semantics using SOAP-Based and REST Web Services,
Published in IT Professional, vol. 8, no.2, pp.18-24, Mar./Apr. 2006.

[22] W3schools.com [Online], 18th February 2010, Available:
http://www.w3schools.com/soap/soap_example.asp.

[23] Wilde, E., Open Location-Oriented Services for the Web [Online], Published in Springer
2004, UCB ISchool Report 2008-026, August 2008,
http://dret.net/netdret/publications#wil08o.

[24] Brose, G., Securing Web Services with SOAP Security Proxies, Published in
International Conference Web Services (ICWS’03), 2003.

[25] Gokhale, A., Kumar, B., Sahuguet, A., Reinventing the Wheel? CORBA vs. Web
Services, Published in the Eleventh International World Wide Web (WWW2002), 2002.

[26] Fielding, R. T., Architectural Styles and the Design of Network-based Software
Architectures (Ph.D. Thesis), University of California, Irvin, CA, Information and
Computer Science, 2000.

[27] Fielding, R. T., Taylor, R. N., Principled Design of the Modern Web Architecture,
Published in 2000, ACM, In the Proceedings of the 22nd International Conference on
Software Engineering (ICSE 2000), Irvine.

[28] Xu, X., Zhu, L., Liu, Y., Staples, M., Resource-Oriented Architecture for Business
Processes, Published in Software Engineering Conference, 2008, APSEC’08, 15th Asia-
Pacific.

[29] Costello, R. L., Building Web Services the REST Way [Online], 2007 Available:
http://www.xfront.com/REST-Web-Services.html.

[30] Curbera, F., Duftler, M. J., Khalaf, R., Composing RESTful Services and Collaborative
Workflows: A Lightweight Approach, Published in the IEEE Computer Society, IEEE
Internet Computing 2008, 1089-7801/08, September-October 2008, pp 24-31.

[31] Heaton, R., Sanity Stack, Available: http://sanitystack.blogspot.com/ 2010(01/02)
[32] Maibücher, S., REST Web Services [Online], 14th October 2009, Available:

http://www.predic8.com/rest-webservices.htm.
[33] Jucyte, K., Kevelaitis, K., Park, S. W., Web service implementation with SOAP and

REST, RUC Datalogi, Module2 , Fall 2006.
[34] Buyya, R., Yeo, C. S., Venugopal, S., Market-Oriented Cloud Computing: Vision, Hype,

and Reality for Delivering IT Services as Computing Utilities, In the Proceedings of the

110

http://www.w3schools.com/soap/soap_example.asp
http://dret.net/netdret/publications#wil08o
http://www.xfront.com/REST-Web-Services.html
http://sanitystack.blogspot.com/
http://www.predic8.com/rest-webservices.htm

10th IEEE International Conference on High Performance Computing and
Communications (HPCC-08, IEEE CS Press, Alamitos, CA, USA), Sept. 25-27, 2008,
Dalian, China.

[35] Hayes, B., Cloud Computing, Communications of the ACM, 2008, Volume 51, Issue 7
 (July 2008).

[36] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R.,Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., Zaharia, M., Above the Clouds: A Berkeley View
ofCloud Computing,Technical Report UCB/EECS-2009-28, UCB, Feb. 2009.

[37] Barnatt, C., Explaining Cloud Computing [Online], 10th May 2009, Available:
http://www.explainingcomputers.com./cloud.html.

[38] Software as a Service [Online], 23rd October 2009, Available:
http://searchcloudcomputing.techtarget.com/sDefinition/0,,sid201_gci1170781,00.html

[39] Software as a Service [Online], 23rd October 2009, Available:
http://it.toolbox.com/wiki/index.php/SaaS.

[40] Platform as a Service [Online], 30th March 2009, Available:
http://en.wikipedia.org/wiki/Platform_as_a_service.

[41] Infrastructure as a Service [Online], 23rd October 2009, Available:
http://searchcloudcomputing.techtarget.com/sDefinition/0,,sid201_gci1358983,00.html.

[42] As a Service: The many faces of a cloud [Online], 23rd October 2009, Available:
http://devcentral.f5.com/weblogs/macvittie/archive/2008/11/20/as-a-service-the-many-
faces-of-the-cloud.aspx.

[43] Cheow, C., What is Cloud Computing and how it can help your Business [Online], 14th
July 2010, Available: http://ezinearticles.com/?What-is-Cloud-Computing-and-How-it-
Can-Help-Your-Business?&id=4533382.

[44] Top Cloud Service Providers; Amazon, Google, IBM [Online], 24th October 2009,
Available: http://www.mrwebmarketing.com/web-news/top-cloud-service-providers-
amazon-google-and-ibm.

[45] Weiss, A., COMPUTING IN THE CLOUDS, ACM Networker, Vol. 11, Issue 4, pp 16-
25, December 2007.

[46] Gift, N., Orr, M., Google App Engine in Action,http://www.manning.com/gift/, Manning,
July 2008.

[47] Sahib, Z. H., WISETales: Designing a New Niche Online Community for Women in
Science and Engineering to Share Personal Stories, University of Saskatchewan, 2009.

[48] Google App Engine [Online], 26th October 2009, Available:
http://code.google.com/appengine/docs/whatisgoogleappengine.html.

[49] Google App Engine limitations and how to get around them [Online], 26th October 2009,
Available: http://www.digitalistic.com/2008/09/16/google-app-engine-limitations-and-
how-to-get-around-them/.

[50] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D.A., Burrows, M., Chandra,
T., Fikes, A., Gruber, R. E., “Bigtable: A Distributed Storage System for Structured
Data”, (To appear in OSDI 2006).

[51] Jazayeri, M., Some Trends in Web Application Development, Future of Software
Engineering (FOSE’07),IEEE Computer Society, Washington, DC, USA (2007).

111

http://www.explainingcomputers.com./cloud.htm
http://searchcloudcomputing.techtarget.com/sDefinition/0,,sid201_gci1170781,00.html
http://it.toolbox.com/wiki/index.php/SaaS
http://en.wikipedia.org/wiki/Platform_as_a_service
http://searchcloudcomputing.techtarget.com/sDefinition/0,,sid201_gci1358983,00.html
http://devcentral.f5.com/weblogs/macvittie/archive/2008/11/20/as-a-service-the-many-faces-of-the-cloud.aspx
http://devcentral.f5.com/weblogs/macvittie/archive/2008/11/20/as-a-service-the-many-faces-of-the-cloud.aspx
http://ezinearticles.com/?What-is-Cloud-Computing-and-How-it-Can-Help-Your-Business?&id=4533382
http://ezinearticles.com/?What-is-Cloud-Computing-and-How-it-Can-Help-Your-Business?&id=4533382
http://www.mrwebmarketing.com/web-news/top-cloud-service-providers-amazon-google-and-ibm
http://www.mrwebmarketing.com/web-news/top-cloud-service-providers-amazon-google-and-ibm
http://code.google.com/appengine/docs/whatisgoogleappengine.html
http://www.digitalistic.com/2008/09/16/google-app-engine-limitations-and-how-to-get-around-them/
http://www.digitalistic.com/2008/09/16/google-app-engine-limitations-and-how-to-get-around-them/

[52] Kalil, T., Harnessing the Mobile Revolution, Published in The New Policy Institute, 8th
October, 2008.

[53] GigaOMPro, Quarterly Wrap-up: Second Quarter 2009 in Review: Mobile [Online], 20th
July 2009, Available: http://pro.gigaom.com/2009/07/second-quarter-2009-in-review-2/.

[54] Serhani, M. A., Benharref, A., Dssouli, R., Mizouni, R., Toward an Efficient Framework
for Designing, Developing, and Using Secure Mobile Applications, In the Proceedings of
World Academy of Science, Engineering and Technology, Volume 40 April 2009, ISSN
2070-3740.

[55] Adobe Labs, Flex Builder 3 features [Online], 2nd November 2009, Available:
http://www.adobe.com/products/flex/features/flex_builder/.

[56] Solanki, A., JMeter: A tool for performance testing your webapp [Online], July 3rd 2010,
Available: http://www.slideshare.net/amitkssolanki/jmeter-performance-testing-your-
webapp.

[57] Oehlman, D., Google App Engine—Java vs Python Performance Comparison [Online],
July 02nd 2010, Available: http://distractable.net/coding/google-appengine-java-vs-
python-performance-comparison/.

[58] The Apache Jakarta Project http://jakarta.apache.org [Online], 20th June 2010, Available:
http://jakarta.apache.org/jmeter/usermanual/build-web-test-plan.html.

[59] The Amazon CloudFront [Online], 17th July 2010, Available:
http://aws.amazon.com/cloudfront/.

[60] Miller, R., Where Amazon’s Data Centers are Located [Online], 17th July 2010,
Available: http://www.datacenterknowledge.com/archives/2008/11/18/where-amazons-
data-centers-are-located/.

[61] Miller, R., Google Data Center FAQ [Online], 17th July 2010, Available:
http://www.datacenterknowledge.com/archives/2008/03/27/google-data-center-faq/

[62] Royal Pingdom Blog, Map of all Google Data Center Locations [Online], 17th July 2010,
Available: http://royal.pingdom.com/2008/04/11/map-of-all-google-data-center-
locations/.

[63] Ciurana, E., Developing with Google App Engine, pp: 73-74 (book) Publisher: Apress –
A, 1 edition Feb 2, 2009.

[64] Wilson, J., Understanding HBase and Big Table [Online], 17th July 2010, Available:
http://jimbojw.com/wiki/index.php?title=Understanding_Hbase_and_BigTable.

[65] Batty, P., Google App Engine and the BigTable-VERY interesting! [Online], 17th July
2010, Available:http://geothought.blogspot.com/2009/04/google-app-engine-and-
bigtable-very.html.

[66] Hitchcock, A., Google’s BigTable [Online], 17th July 2010, Available:
http://andrewhitchcock.org/?post=214.

[67] Model-View-Controller [Online], 17th July 2010, Available:
http://en.wikipedia.org/wiki/Model–view–controller.

[68] Anderson, D. J., Using MVC Pattern in Web Interactions [Online], 17th July 2010,
Available: http://www.uidesign.net/Articles/Papers/UsingMVCPatterninWebInter.html,
Published in October 1999.

[69] Sarrel, M. D., NoSQL Databases: Providing Extreme Scale and Flexibility, Gigaompro
Infrastructure [Online], 16thJuly 2010, Available: http://pro.gigaom.com/2010/07/report-
nosql-databases-providing-extreme-scale-and-flexibility/.

112

http://pro.gigaom.com/2009/07/second-quarter-2009-in-review-2/
http://www.adobe.com/products/flex/features/flex_builder/
http://www.slideshare.net/amitkssolanki/jmeter-performance-testing-your-webapp
http://www.slideshare.net/amitkssolanki/jmeter-performance-testing-your-webapp
http://distractable.net/coding/google-appengine-java-vs-python-performance-comparison/
http://distractable.net/coding/google-appengine-java-vs-python-performance-comparison/
http://jakarta.apache.org/
http://jakarta.apache.org/jmeter/usermanual/build-web-test-plan.html
http://aws.amazon.com/cloudfront/
http://www.datacenterknowledge.com/archives/2008/11/18/where-amazons-data-centers-are-located/
http://www.datacenterknowledge.com/archives/2008/11/18/where-amazons-data-centers-are-located/
http://www.datacenterknowledge.com/archives/2008/03/27/google-data-center-faq/
http://royal.pingdom.com/2008/04/11/map-of-all-google-data-center-locations/
http://royal.pingdom.com/2008/04/11/map-of-all-google-data-center-locations/
http://jimbojw.com/wiki/index.php?title=Understanding_Hbase_and_BigTable
http://geothought.blogspot.com/2009/04/google-app-engine-and-bigtable-very.html
http://geothought.blogspot.com/2009/04/google-app-engine-and-bigtable-very.html
http://andrewhitchcock.org/?post=214
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://www.uidesign.net/Articles/Papers/UsingMVCPatterninWebInter.html
http://pro.gigaom.com/2010/07/report-nosql-databases-providing-extreme-scale-and-flexibility/
http://pro.gigaom.com/2010/07/report-nosql-databases-providing-extreme-scale-and-flexibility/

[70] Bhatia, A., Big Table [Online], 17th July 2010,
http://it.toolbox.com/wiki/index.php/BigTable.

[71] Dogan, B., BigTable Concept: Why do the World’s Smartest People Ignore Relational
DB’s? [Online], 17th July 2010, http://blog.burcudogan.com/9/

113

http://it.toolbox.com/wiki/index.php/BigTable
http://blog.burcudogan.com/9/

APPENDICES

Appendix A – Python Flex client screen

114

Appendix B – Java Flex client screen

115

116

	PERMISSION TO USE
	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	PROBLEM DEFINITION
	LITERATURE REVIEW
	Web Services
	SOAP
	REST
	Cloud Computing
	Cloud Computing Models
	Popular Cloud Service Providers
	Summary

	GOOGLE APP ENGINE
	Features of Google App Engine
	Architecture of the Google App Engine
	Python
	Java
	Bigtable comparison with the SQL databases

	ARCHITECTURE AND IMPLEMENTATION
	The Model View Controller Architecture
	Architecture of the GAE applications
	Experiment based on the GAE Architecture
	The HTML Client with Python services
	The Flex Client with Python services
	 The JSP Client with Java services
	The Flex Client with Java services
	The iPod Client with Java services

	APPLICATION TESTING AND EVALUATION
	Evaluation Plan
	Phase1: Test Bed for the experiments in Java and Python
	Test Bed
	Results of the Phase1 Experiments
	Test Bed
	Results of the Phase2 Experiments
	Summary

	CONCLUSIONS AND FUTURE WORK
	Conclusions
	APPENDICES

