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ABSTRACT

Wavelets form a relatively new topic in mathematics. Multiresolution analysis(MRA) is
an important mathematical tool because it provides a natural framework for understanding
and constructing wavelets. In this thesis, we extend MRA to the setting of non-abelian
locally compact groups. The main contributions of the thesis are the following:

e We create a new term, scalable, for a special class of groups. MRA can only be set up
for the class of scalable groups. We approximately identify the class of scalable groups out
of second countable, type I. unimodular locally compact groups.

e For a scalable group G. we formulate the definition of MRA for L?(G) by using
the information exposed from the MRA of L?(R?). There are three things in MRA that
mainly concerned us; that is, the density of the union, the triviality of the intersection
of the nested sequence of closed subspaces and the existence of refinable functions. The
intersection triviality property is derived from the other conditions of MRA. To get the
union density property, we have to generalize the concept of the support of the Fourier
transform. The new concepts, such as “strongly supported”, left nonzero divisor in L?(G),
and automorphism-absorbing subset of G, arise in this generalization. As to refinability,
it depends very much on the individual function ¢. We prove that refinable functions are
present for general scalable groups as long as self-similar tiles are present.

e We provide a very interesting concrete example for our theory using Heisenberg groups.
We prove the existence of scaling functions for the Heisenberg groups. These scaling func-
tions are related to certain self-similar tilings of H®. The corresponding scaling functions are
characteristic functions of appropriate sets. We generalize the construction of Strichartz’s
self-similar tiles to a more general case. We also obtain a theorem which says that there

are 2(2d+2)_1 orthonormal wavelets for Heisenberg groups.
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Chapter 1

Overview of the thesis

Wavelet analysis is one of the rapidly developing areas in the mathematical sciences. The
main aim of the theory is to find nice ways to break down a given function into elemen-
tary building blocks. Historically, the Haar basis, constructed in 1910 long before the term
“wavelet” was created, was the first orthonormal wavelet basis in Lz(R). But it was only
recently discovered that the construction works because of an underlying multiresolution
analysis structure. In the early 80's, Stromberg [Stro] discovered the first continuous or-
thogonal wavelets. His wavelets had exponential decay and were in C* (k arbitrary but
finite). The next construction, independent of Strémberg, was of the Meyer wavelets [Mel].
The images of the Meyer wavelets under the Fourier transform were compactly supported
and were in C* (k arbitrary, may be oc). Then Battle [Ba] and Lemarié [Le] used very
different methods to comstruct their own orthonormal wavelet bases with exponentially
decaying properties. With the notion of multiresolution analysis, introduced by Mallat
[Mal2] and Meyer [Me2], a systematic framework for understanding these orthogonal ex-
pansions was developed, see [Mall], [Mal2], [Mal3] and [Me2] for details. This framework
gave a satisfactory explanation for all these constructions, and provided a tool for the
construction of other bases. Thus, multiresolution analysis is an important mathematical
tool to understand and construct a wavelet basis of L?2(R?), i.e., a basis that consists of

the scaled and integer translated versions of a finite number of functions. In recent years,



multiresolution analysis for the Euclidean group R? has received extensive investigation;
see [BD],[Dau},[JS],[Ma],[Mal2],[Me2] and [St] for example. Dahike [Da] extended multires-
olution analysis to abelian locally compact groups. Baggett, et al. [BC] considered the
existence of wavelets in general Hilbert space based on the formulation of multiresolution
analysis by using an abstract approach.

In this thesis, we plan on extending multiresolution analysis to the setting of non-abelian
locally compact groups. Our motivation for the development of multiresolution analysis for
non-abelian groups comes from Heisenberg groups. The function space L2(R24+1) cap be
identified with L2(H9), where H? is the 2d + 1-dimensional Heisenberg group. The group
product of H? leads to an alternative, but still natural “translation” on L?(R%#+1), This
thesis can be seen zs an initial step towards wavelet theory of non-abelian groups. The
main contributions of the thesis are the following:

(i) We create a new term, called scalable groups, for a special class of groups. Mul-
tiresolution analysis can only be set up for the class of scalable groups. We approximately
identify the class of scalable groups out of second countable, type I, unimodular locally
compact groups.

(ii) For a scalable group G, we formulate the definition of multiresolution analysis for
L?*(G) by using the information exposed from the multiresolution analysis of L%(R%). Gen-
erally speaking, there are two things in multiresolution analysis that mainly concerned us,
that is. the density of the union and the triviality of the intersection of the nested sequence
of closed subspaces. We set up the union density and intersection triviality theorems and
other related things. We answer the basic question: under what conditions does a function
@ generate a multiresolution analysis for L%(G).

(iii) A multiresolution analysis on Heisenberg groups is set up. We investigate the ex-
istence of scaling functions for the Heisenberg groups. These scaling functions are related
to certain self-similar tilings of H9, that is, the corresponding scaling functions are charac-
teristic functions of appropriate sets. We also obtain a theorem which says that there are

2(2¢+2)1 orthonormal wavelets for Heisenberg groups.



This thesis is organized into five chapters and one appendix.

In chapter 2, we describe the notions from wavelets and multiresolution analysis that
are needed to understand the remainder of this thesis. We start from introducing the Haar
basis of L2(R). The reason that we choose the Haar basis for illustration is its simplicity
and there is a beautiful pattern of multiresolution analysis hidden in it. The properties
obtained through analyzing the Haar basis for L2(R) leads us to formulate the definition
of multiresolution analysis for the more general space L2(R?), where R? is d-dimensional
Euclidean space.

In chapter 3, we provide some background for the analysis to be presented in subsequent
chapters. The key information for later use is the abstract Fourier transform on the class of
second countable, type I, unimodular locally compact groups. We quickly go through the
basic concepts and results centered around abstract Fourier analysis on second countable,
type I. unimodular locally compact groups. This material is, for the most part, available
from Folland’s book [Fol]. This chapter also serves to establish our main notations.

In chapter 4, we address two main topics. The first topic concerns how the definition of
multiresolution analysis of L?(R?) can be generalized to L2(G), where G is a suitable second
countable. type I. unimodular locally compact group. The second topic is to answer the
basic question, that is, how can a function ¢ produce a multiresolution analysis of L?(G).
We shall consider two basic issues: the union density and intersection triviality properties.
Normally, the intersection triviality is less important because it is the consequence of the
other conditions. We shall give a necessary and sufficient condition under which the nested
sequence of subspaces generated by ¢ satisfies the union density. Also, we develop a number
of conditions on a refinable function ¢ that are sufficient for the union of the associated
nested sequence of subspaces to be dense in L%(G).

Let us describe the results in this thesis in more detail.

We start by first investigating the definition of multiresolution analysis of L?(RY) and
finding some key points in the definition by properly interpreting it with a more general

point of view. The definition of multiresolution analysis of L2(R4) is as follows:



Definition. A multiresolution analysis of L?(R?) consists of a sequence of closed linear
subspaces Vj, jEZ, of L*(RY) with the following properties:

(i) ViCVj1, jEZ;

(i) UjezV; = LARA);

(iii) N;ezVi = {0};

() feV; <= Upf€V;j;1. In other words, V; = Up’Vq, j€Z, where D is the dilation
matriz;

(v) Vo is assumed to be shift-invariant, that is, if fEV, then so is Tif for all k in 29,

where

T:f(-) := f(- — z), VfEL*(RY);

(vt) there is a function ¢€Vy, called the scaling function, or the generator of the multires-
olution analysis, such that the collection {Tvo | k€Z? } is a orthonormal basis of V.
In this definition, D is a matrix with integer entries, called a dilation matrix, it satisfies

the following conditions:

e D leaves Z¢ invariant. In other words, DZ%CZ¢, where
DZd={y|y=Dzand:z:€Zd}
e All the eigenvalues, \;, of D satisfy |\;| > 1

Such a D induces a unitary operator Up : f—Up f on L2(R%), defined by
Upf() =85’ f(D-),

where dp = |det(D)|.

Notice that Z¢ is a lattice subgroup of R? and R?/Z¢=~T4, where T is the d-torus. The
shift-invariance of V; can be interpreted as an invariant property with respect to the action
of the discrete lattice subgroup Z4 of R?. The scaling matrix D can be viewed as the action
of some group automorphism of R?, with the property DZ4cZd and 1 < [Z¢ DZ9) < .
Also. we have to observe one very special thing that the lattices D=7Z9 in R form a nested

sequence whose union J;ezD72% is dense in R?. Actually, “approximation to L?(R9)
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by the nested sequence of closed subspaces { V; };cz imitates and reflects the geometric
approximation to R? by the nested sequence of lattices 2~7Zd4” (see p.69 [Me2] for details).
Furthermore, we have to note the roles played by the dilation operator D and the translation
operator 7.

With this in mind, we extend the multiresolution analysis for L2(R%) to the multiresolu-
tion analysis for L?(G), where G is a second countable, type I, unimodular locally compact
group. (a) First, we shall suppose that G contains a discrete subgroup I such that the
quotient G/I' is compact, where I is discrete means that the topology on I' induced from
G is the discrete topology. It is worthwhile noting that for connected nilpotent Lie groups,
such a discrete lattice subgroup I of G often exists, see [Ra] for details. This I" will play the
same role in G as Z? in R?. (b) Furthermore, we shall assume that there exists a dilative
topological automorphism a (hence a™! is contractive) of G onto G such that al’'cT and
1 <[I': al] < oo, where a is a topological automorphism means that a is an automorphism
and a homeomorphism and a™! is contractive means that for any fixed compact subset K
of G and for any neighborhood U of the identity e, there is a positive integer NV, depending
on K and U, such that

a™’KcU, ¥j > N.

A second countable, type I, unimodular locally compact group G with such a lattice I’ and
compatible dilative automorphism « will be called a scalable group. The most important
consequence of the above assumptions is that the union Ujez a~ 7T is dense in G. This is
Proposition 4.6 in this thesis:
Proposition 4.6 Let G be a locally compact group. Suppose that G contains a discrete
countable subgroup T' such that the quotient G/T is compact and that there erists a dilative
topological automorphism a of G onto G such that aT'CT and 1 < [l : al'] < 0co. Then the
union Jjcz a™T is dense in G.

We observe that the image under the Fourier transform of either a left shift-invariant
subspace generated by ¢ or a left and right shift-invariant subspace generated by the same

@ is both supported on the same subset suppF(¢) in G. This fact suggests that we may



consider only one-sided translations for the definition of multiresolution analysis, either left
translations or right translations. Let’s fix left ones without loss of generality.
Now we can give a definition of multiresolution analysis for L2(G).
Definition 4.8 Let G be a scalable group. We say that a sequence of closed subspaces
{Vi}iez of L¥(G) forms a multiresolution of L*(G) if the following conditions are satisfied:
(i) V;CVis1, JEZ;
(i) UyezV; = LA(G);
(1) NjezV; = {0};
(iv) fEV; <= of€Vj41. In other words, V; = o’Vp, jEZ;
(v) Vo is left shift-invariant, that is, if f€V, then so is L.f forally inT;
(vi) there is a function ¢€Vp, called the scaling function, or generator of the multiresolu-
tion analysis, such that the collecticn {L.¢ | YET } is a orthonormal basis for Vg
In the definition above, the dilation operator o is defined by

of(x) := 6% f(az), VfEL?*(G), z€G,

where &, is a proper positive constant depending on a such that the operator o becomes a
unitary operator. And L; is the left translation operator given by L-f(y) = f(z™ly).

Since we only use left side translations in the definition of multiresolution analysis, to
get the results similar to abelian cases, we have to put an extra condition on the scaling
function ¢. It is found that this extra requirement on ¢ is very natural from the explanation
given in section 4 of chapter 4.

We say that ¢ is strongly supported on QCG if it satisfies the following condition: for
any FeH?(Q),

7(z)¢(x) F(w) = 0 for all z€G and almost all 7€G implies F = 0,

where H?(Q) stands for a Hilbert space that is introduced in chapter 3. Or equivalently,
@ is strongly supported on Q if, for any FEH?(Q), < £¢|F >= 0, for all zeG implies
F = 0. This is equivalent to saying that the image under the Fourier transform of the left

translation invariant subspace generated by ¢ is dense in H2(Q). Similarly, we can define
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the term “strongly supported " for a sequence of functions. We say that {¢;}ics is strongly
supported on Q if, for any FEH?(Q), < £¢;|F >=0, for all z€G and i€l implies F = 0.

To help understand the idea, let’s consider one particular case where G = R (hence G
can be identified with R as well) and supp(¢)=R. For convenience, assume that #€L}(R).
So ¢ is a continuous function. Then ¢ is strongly supported on any non-null subset of
R. The fact that supp(¢) fills out R implies that the translation invariant closed subspace
generated by ¢ must be the whole space L2(R). Or in other words, {e;¢ : tcR} is a total
set in L2(R), where €,(7) = €27 for v€R, tcR.

Notice that the strong support concept is defined from the image of ¢ under the Fourier
transform. Now if we interpret this fact from the other side without using the Fourier
transform, then we find that: ¢ is strongly supported on the whole dual space G if and
only if, for any f€L?(G), ¢xf = 0 implies f = 0. This can be easily checked by using the
Fourier transform and the identity (f*g)"(7) = f(7)g(r).

For a family {¢:}ics of functions in L?(G), we say that {#i}ier is a left nonzero divisor
in L*(G) if, for any f€L?(G), ¢;+f=0, for all i€/, implies f = 0.

After introducing this term, we obtain the following theorems on the triviality of inter-
section and the density of the union.

Theorem 4.9(triviality of intersection). Let ¢ be a refinable element of L?(G) and define
Vo = V(¢) and V; = o7V, for jEZ. Suppose that left shifts of ¢, that is, {L,¢ | v€l },
constitutes a frame for Vj, then NjezV; = {0}

Theorem 4.11(density of union). Let V; = V(@) be the left shift-invariant subspace gen-
erated by a refinable function ¢€L?(G), and let V; be the o7 -dilate of Vy for j€Z. Define
#;(:) := dIp(-) = 8,7%2¢p(al-). Then the following are eguivalent:

(¢) UjezV; = L*(G)

(b) {¢j}jcz is a left nonzero divisor in L?(G)

(c) {#j}jez is strongly supported on all of@

We also give some easily verified conditions on ¢ that imply {#;},ez is a left nonzero

divisor in L?(G) or is strongly supported on G. A measurable subset Q of G is called



a-absorbing if u(@\Ujezaj(Q)) =0.

We have a theorem as follows.

Theorem 4.19. Let ¢ be a refinable function in L%(G). Let ¢; = ol¢. Similarly, let
Vo = V(¢) and V; = 07V,. If ¢ satisfies either of the following conditions

(i) ¢ is strongly supported on an a-absorbing subset Q of G and <f>(1r) = 0, for almost
all 1eG\Q,

(i) ¢ has compact support in G, $>0 and $#0,
then Ujez Vi = L*(G).

In addition, we obtain the following density of union result with respect to a special

case where the scaling function ¢ is a characteristic function of some self-similar tile for
the group G and discrete subgroup I'. As for the notion of self-similar tiling, see details in
chapter 4.
Theorem 4.20(density of union for a special case) Let @ be a scaling function which is the
characteristic function of some self-similar tile T. Let ¢ = |T—|II/TXT’ where |T| is the Haar
measure of T. Finally, let { V; } jez be as above with ¢. Then ¢ generates a multiresolution
analysis for L*(G).

In chapter 5, we have some interesting topics. This chapter can serve as a concrete
example of our theory. Our main contributions are: (i) For the Heisenberg group H¢,
we set up a multiresolution analysis on H? by applying the theory developed in Chapter
4. (ii) We also investigate the existence of scaling functions for the Heisenberg groups.
These scaling functions are related to certain self-similar tilings of HY. We extend the
result obtained by Strichartz to a more general case. In addition, we obtain a theorem on
Heisenberg groups which says that there exists 2(24+2).1 orthonormal wavelets for L2(H¢).
This means that we have an orthonormal basis for L2(HY) that consists of the dilated and
translated versions of 2(24+2)_1 functions.

Checking the definition of multiresolution analysis for L?(G) in section 3 of chapter 4,
to build a multiresolution analysis on H? we have to find those objects such as a lattice

subgroup. left translation operators and dilation operator. In analogy with the role of Z¢



in the multiresolution analysis of L?(R9), we choose the following lattice subgroup I" of H?

which plays the same role in H? as Z9 plays in R:

F'={(/2,m,n) | I€Z, m, neZ?}.

—_—1

It is easy to check that I' forms a subgroup. Similarly, for hcHY, we define the left trans-
lation operators Ly from L?(H?) to L>(H?). We also have the following similar terms such
as left shift-invariant subspace and so on. It is easy to check that the map a from HY to
HY given by

a(t.q.p) == (2%t.2q.2p)
is an topological automorphism of H? and a~! satisfies the contractive property. Also,
Ujeza™ T is dense in HY. With this a, we form the following unitary operator from
L?(H?) to L2(HY)

o: L*(HY)— L*(HY),
which is given explicitly by

af(t.q,p) == 27" f(a(t, g, p)) == 2%+ £(2%,2q. 2p).

We say that V is refinable if, for any feV, o~!f is also in V. It is straightforward to
verify that L?(H®) is left shift-invariant and refinable. For ¢€L?(H?), we denote V(g) to
be the smallest closed left shift-invariant subspace of L?(HY) containing ¢. We say that é
is refinable if V(¢) is.

Let Vo = V(¢) and V;=07V} for jeZ. If ¢ is refinable, then{V;|j€Z} forms a nested
sequence of closed subspaces of L?(H?). Since U;cza T is dense in H?, V = UjezVj isa
closed left translation invariant subspace. By theorem 4.11 in chapter 4, m = L%(H9)
if and only if {¢;},cz is strongly supported on HA. If, in addition, the left shifts of ¢, that
is. {L,¢ | v€T }, constitutes a orthonormal basis for Vp, then by the intersection triviality
theorem 4.9. we have (;czV; = {0}. Therefore, {Vj}jez forms a multiresolution analysis
of L2(HA).

The following is a very simple sufficient condition for m = L?(H?).

Theorem 5.1. Let ¢ be a function in L2(H?), let V; be the o7-dilate of V(¢). Assume that

9



{Vj}jez is nested. Then m = L?(H?) if there ezists a neighborhood E of 0 in R such
that ¢ is strongly supported on E and $()\) =0 for a.e. A not in E.

As we know that the starting point of constructing a multiresolution analysis is the
scaling function ¢. With this scaling function ¢, we form Vo by applying the left shift
operator and then generate V; by the dilation operator. We investigate some special scaling
functions which are related to certain self-similar tilings of HY, that is, the corresponding
scaling functions are characteristic functions of appropriate sets. Let's first consider the
standard tiling of Euclidean space R? by unit cubes. Each tile is a translate of a single tile
by an element of the lattice subgroup Z¢. If we dilate a tile by a factor 2, then the enlarged
tile consists of 2¢ original tiles. The generalization of the above leads in many cases to
interesting self-similar tilings with fractal boundaries. For example, for two dimensions,
the fractal twin dragon tiles are constructed in Gréchenig and W.R.Madych [GM]. As for
Heisenberg groups, which have both dilations and lattice groups, in order to construct the
analogue of the cubic-like tiling, it seems that the tiles with fractal boundaries are the only
choice. Such self-similar tilings are present for the Heisenberg groups from the work by
Strichartz [Str].

Based on the above notations, we can state the foliowing theorem, which is a generalized
version of Strichartz’s theorem. For further information, please see §5.4.

Theorem 5.3. For a properly chosen finite subset g, there erists a unique self-similar
stacked tiling UserT for H®. The function F(z) is given ezplicitly by

Fl@) = 3 = S(Di@)]amod (Da(22)), < D2(g) >4)

n=1'a
where a lattice point k mod (D, (22?)) equals the representative of the coset which contains
element k.
We show, in §5.4, that the existence of self-similar tilings for Heisenberg groups implies
the existence of scaling functions. Thus, we can form a multiresolution analysis for L2(HY)
by using these self-similar scaling functions. On the other hand, Baggatt and et al. [BC]

studied the relationship between the existence of an orthonormal wavelet and the existence
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of a multiresolution analysis for general Hilbert space based on the formulation of multires-
olution analysis by using methods from noncommutative harmonic analysis. They obtained
four theorems. Their first theorem Theorem 1 guaranteed the existence of an orthonormal
wavelet once a multiresolution analysis was built on the space. One of the interesting con-
nections between the existence of self-similar tilings for Heisenberg groups and the work by
[BC] is the following theorem on the existence of orthonormal wavelets on Heisenberg groups.
Theorem 5.6 There ezists a wavelet set { 1,42, - - -, Yazas1y_, } for the system (L2(H9),T, o).
An appendix to the thesis is devoted to approximate identification of the class of scalable
groups. The second countable, type I, unimodular locally compact groups form a very large
class of groups. It includes all connected nilpotent Lie groups and all connected semisimple
Lie groups. Unfortunately, some intrinsic properties in defining multiresolution analysis
prevent some groups from becoming the groups fit for multiresolution analysis. Let us

restate these essential properties as follows:

* There exists a discrete subgroup I' in G such that G/T" is compact
¢ There exists a topological automorphisma of G such that (*)
a(I')CT and U;eza™'T is dense in G

This key information leads us to the following definition:
Definition A.1. Suppose G is a second countable, type I, unimodular locally compact
group. If there is a discrete subgroup T in G such that G /T is compact and a topological
automorphism of G such that the conditions above are satisfied, then we call G a scalable
group

Generally speaking, only those groups which are close to being abelian are scalable
groups. We have the following results:
Theorem (see section 3 in the Appendix). At most countably many solvable Lie groups
are scalable groups. That is, at most countably many solvable Lie groups are suitable for
butlding multiresolution analysis.
Theorem (see section 4 in the Appendix). A semisimple Lie group is not scalable. Thus,

there is no multiresolution analysis in the sense of this thesis on L? (G) if G is a semisimple
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Lie group.

At the end of the thesis, a discussion of possible future research is included.
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Chapter 2

Multiresolution Analysis on R?

1 Introduction

The goal for this chapter is to describe the theory of multiresolution analysis for L2(R)
which will be abbreviated to “MRA”. The idea of MRA was first introduced by Mallat [Ma]
and [Me2] in the fall of 1986. It has become an important mathematical tool and provided
a framework for the understanding and the construction of wavelet bases.

To introduce MRA, we have to start from wavelets. The name wavelets comes from the
admissibility requirement that they should integrate to zero. This forces them “wave” up
and down around the z-axis. Wavelets have generated tremendous interest in both theoret-
ical and applied areas because they have powerful properties which make them superior to
Fourier methods in some situations. Some of their properties are localization in time and
frequency, and a basis generated by one single function through translations and dilations
and so on.

For the convenience of the reader we provide, in section 2.2, the simple notations and
definitions used in this thesis. More will be introduced as the thesis advances on.

Historically, the Haar basis, constructed in 1910 long before the term “wavelet” was
created, was the first orthonormal wavelet basis in L2(R). In section 2.3, we introduce the

Haar basis for L?(R). In the 1980’s, people tried to construct several orthonormal wavelet
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bases for L?(R) by using different techniques. See [Dauj §4.2 for details. This situation has
changed with the arrival of the MRA formulated by Mallat and Meyer. The concept of MRA
is hidden in the Haar basis. In section 2.4, we unveil this beautiful pattern by introducing
the scaling function and scaling identity. This leads to the definition of multiresolution

analysis for the more general space L2(RY).

2 General

Throughout this thesis, we use the standard notation N, Z, R and C for the sets of
natural, integer, real and complex numbers, respectively. As usual, R¢ denotes the d-
dimensional Euclidean space. On R? we use the Lebesgue measure. Let [ ---.dz denote
the Lebesgue integral and let C.(R?) denote the function space consisting of continuous
compactly supported complex-valued functions on RY. It is easily seen that C.(R%) forms a
linear space with respect to ordinary addition of functions and multiplication by constants.
For feC.(R9), let
1£llo = ([ 1£(2)Pdz)!7?, for 1<p < co.

We denote the completion of the normed linear space (C(RY), || - llp), for 1<p < oo, by
LP(RY). As usual, we treat the elements in LP(RY) as Lebesgue measurable functions.
The most important space for us is L2(R%) which becomes a Hilbert space when the

inner product of two functions f and g in L2(RY) is defined as
<fg>= [ @)@,

If E is a subset of R?, let L?(E) denote the closed subspace of L?(RY) consisting of

elements supported on E.

For feL'(R®), the Fourier transform of f is the function f defined by
7 — 2niC-x
€= [ @ d,

for all CeRY.
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If feLY(R*)NL%(R?), we have the following relation:

I£ll2 = 11 £l2.

This result asserts that the Fourier transform is a bounded linear operator defined
on the dense subset L!(RY)NL%(R?) of L2(RY). Therefore, there exists a unique bounded
extension of this operator to all of L?(R?), we denote this bounded operator by F. Actually,
F is a unitary operator from L?(R?) onto L2(R%). F is called the Fourier transform on
L*(R%). We shall also use the notation f = Ff whenever fEL?(RY).

For each p€[l. 00), let [P(Z?) be the Banach space of functions z on Z¢ such that

lizllp == ( Y. IzalP)/P < 0.

neZd

We also denote by I.(Z?) the linear space of all finitely supported sequences on Z¢9.

A shift-invariant subspace is another notion often used. Suppose V is a linear subspace
of complex-valued functions in LP(R?), we say that V is shift-invariant if, for any feV and
n€Z?, the shift f(- —n) of f is also in V. V is said to be refinable if, for any fevV, its
dyadic dilate f(-/2) is also in V. For #€L?(R%), we define V(¢) to be the smallest closed
shift-invariant subspace of LP(RY) containing ¢. The function ¢ is said to be refinable if
V(¢) is refinable. A refinable function ¢ is also called a scaling function.

We denote the set of all square summable functions from Z¢ into the complex numbers
by (3(29). 1?(Z%) is a Hilbert space with the inner product for {Tn},cze and {yn}ncza
defined by

<z, y>= E Zn¥n.
ne2d

Suppose H is a separable Hilbert space. A countable subset {en} of H is said to be a

Riesz basis if

e Every element f of # can be written uniquely as f = > nGnén;

e There exists positive constants a and 3 such that

o fI’P<Tnez | < fren > P<BIIfI2
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We also need to know the concept of a frame which is a generalization of Riesz basis. A
countable subset {en} of # is said to be a frame if there exist two positive numbers o and

[ so that, for any f in H,
allfIP<Y 1 < f.en > [P<BIIfII2

We call a and S the frame bounds. If the two frame bounds are equal, a=03, then we call
the frame a tight frame. Frames were introduced by Duffin and Schaeffer [DS] in 1952.
Every f€H can be written f = 3, ane,. But we should know that this representation is
not unique in general. For more information, see [Dau] or [DS]. An advantage of frames
is that we do not require {en} to be orthogonal nor the coefficients @, to be unique. This

often allows us the freedom to impose extra conditions we would like.

3 The Haar Basis for L?(R)

In order to motivate the concept of MRA, let’s first introduce the Haar basis of L*(R)
which was invented by Haar in 1910 [Ha]. The reason that we choose the Haar basis for
illustration is its simplicity and there is a beautiful pattern of MRA hidden in it. We first
quickly prove that the Haar family constitutes an orthonormal basis for L2(R). Then using
the approximation approach and introducing a scaling function and the scaling identity, we
uncover the model of MRA.

The Haar function y(z) is defined by

1, 0<z < %
Y(z) = -1, %5:1: <1
0, elsewhere.

We will write

VI, Fhss< P

Yin(z) = 27292z —n) = VI, il 2n+2

1.:n - - - 212 27+1 Sr< 27 +1
0, otherwise
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Observe that supp(¥;,) = [277n,277(n + 1)]. When j gets larger, supp(¥;,) becomes
narrower. Denote {¥;.};,cz by ¥. We claim that
Theorem 2.1 The set ¥ constitutes an orthonormal basis for L2(R).
proof In order to prove this, we need to show two things:

(i) ¥ is orthonormal.

(if) ¥ is complete. That is, given any fEL?(R), f can be written as 2 ineZ 8jnWin.
(i) is easy to check. In fact. two different elements with the same J never overlap, it means
that < ¥;n,.¥jn, >= 0n,.n,, where dn,.n; €quals 1 when n, = n, and 0 when ny#nq. If
two functions ¢;, n, and v¥j, n, with different first indexes, say, j1 < j2, have overlapping
support, then supp(¥;, n,) is completely contained in a subinterval of supp(¥;, n,) where
(¥j, n,) is constant. It follows that

na+1
272
< Y501y Yja.n, >= constant ng Vi na (T)dz
272

= constant[V252 /2721 _ /952 /272+1] = .

The completeness of the span of the 1, , follows from the fact that the dyadic step

functions are dense in L2(R), where a dyadic step function is a function of the form
f(2) =" eaxra(z)
neZ

where Xy, is the function which is one on the interval I, and zero elsewhere and I, is an
interval of the form (3%, Z%!]. For details, please see [Dau, Chapter 1].

In the following section, we will define a ladder of closed subspaces {Vj| F€Z} of L2(R),
and use V; to approximate general functions in L?(R). By doing this, a beautiful hidden
pattern, called MRA, will be exposed to us.

4 Multiresolution analysis hidden in the Haar Basis

In this section, we try to expose the concept MRA by analyzing the Haar basis. We begin

with one of the simplest functions we can imagine, that is, the characteristic function of the
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unit interval [0,1] which is one on the interval [0,1] and zero elsewhere. Let’s denote this

function by ¢. As before, we write
Bin(z) = 292¢(27z — n), J,neZ.
Let Vj be the collection of functions of the form
f= Zzand;o'n, where {a,}€l*(2Z).
ne

One can see that Vg is naturally isomorphic to {2(Z) by means of the mapping f—s{an}.

Thus V} is a closed subspace of L2(R), and
{#0.n}nez is an orthonormal basis for V;. (2.1)

It’s obvious that Vp is not all of L2(R), it is the subspace of piecewise constant functions

with jump discontinuities at Z. V; is invariant under integer transforms:
if feVy, then f(- — n)eV, for all neZ. (2.2)
Next let V; denote the collection of functions of the form
f=3 andin, with {an}el(2Z).
neZ
Again, V; is a closed subspace of L?(R) and {¢1,n}ncz is an orthonormal basis for V;. It is

the subspace of piecewise constant functions with Jump discontinuities at %Z,

The most important thing is that
#(z) = do,0(z) = d1.0(z) + ¢1.1(z). (2.3)

(2.3) is often called a two-scale dilation equation, or simply the scaling identity. ¢ is called
the scaling function. The meaning of (2.3) is that the dilates of ¢ are self-similar to ¢. (2.3)
implies that each ¢p,» can be written as a sum of ¢1 2 and ¢ op41- {#0,n}nez is an orthonor-
mal basis for Vj implies that VoCV;. It is easy to see that f(z)€V; if and only if f(2z)eV;.
Or equivalently,

Vi = {feL*(R)] £(3)eV0},
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that is, V] is a scaled version of the V.
By continuing in this manner, we define V, to be the closed subspace of piecewise

constant functions with jump discontinuities at %Z, which is
V2 = {feL*(R)| f(5)eVi}, and iC5.

Similarly, one can define subspaces V3CV;C. ... On the other hand one may define negatively
indexed subspaces. For example, we let V_; be the space consisting of the functions in L2(R)

which are piecewise constant with jump discontinuities at 2Z, that is,
V_1 = {feL*(R)| f(2z)eVo},
which is contained in Vj. Again, one may continue in this way to construct
- CQV 3GV ,CV_,.

What we have then is a sequence of closed subspaces of L2(R) which are scaled versions of

the central space Vj such that
- EV SV CWCEVICVLC. --

where V; consists of the piecewise constant L? functions with jump discontinuities at 2~7Z.
The functions {@;n},cz form an orthogonal basis for V;. We can pass up and down among

the spaces V; by scaling:
f(z)€V; if and only if f(2¥~7z)eV;. (2.4)

There are two properties satisfied by this sequence of subspaces which we will wish to

generalize.

The union of V]'s is dense in L*(R) : |J V; = L*(R). (2.5)
JEZ

The intersection of V}s is trivial: 1) V; = {0}. (2.6)
jeZ
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We only sketch the proofs. One first notes that C.(R) is dense in L2(R), so it suffices
to show that we can approximate functions in C.(R) by dyadic step functions on L2-norm.
What one does then is very similar to taking a Riemann sum approximation over a dyadic
partition of an interval containing the support of a function in C:(R). Too see (2.6), suppose
f€Njez V;, then f must be constant on intervals of length 27 for all integers j. This is the
same as saying that f is a constant function. But the only constant function in L?(R) is 0.
In view of (2.1), it is natural to try to obtain one orthonormal basis for L?(R) by combining
all the orthonormal bases {¢; | n€EZ} of Vj. But although V;CVj.,, the orthonormal basis
for V; is not contained in the orthonormal basis {¢;+1 .| n€Z} for Vigr.

To find an orthonormal basis for L2(R), we use the following way. For every j€Z, use
W; to denote the orthogonal complement of V; in Vjyi, i.e., Vis1 = V;@W;, where the
symbol & stands for orthogonal direct sum. So we can decompose L?(R) into mutually
orthogonal closed subspaces, L?(R) = ®;ezW; by (2.5) and (2.6).

The most important thing remaining unchanged is that, the spaces W, JEZ, still keep

the scaling property from Vj:
f(2)eWje= f(2kTz)eW,. (2.7)

Our goal is reduced to finding an orthonormal basis for Wy. If we can find such an orthonor-
mal basis for Wy, then by the scaling property (2.7), we can easily find an orthonormal basis
for the whole space L?(R). Now we use the following little trick. Set

¥(z) = d10(z) — ¢1,1(z).

Then {9(- — n)| n€Z} forms an orthonormal basis for W;. If we write Yim = 2/24p(2z —
n). then {y;n|n€Z} is a orthonormal basis for W;. Therefore {¥jnlj,n€Z} forms an
orthonormal basis for L2(R), where we put the factor 27/2 in front to normalize Y(2z—n).

The properties revealed above through analyzing the Haar basis for L2(R) leads us to
formulate the definition of MRA for the more general space L2(R%), where R? is the d-
dimension Euclidean space. To get a general definition of MRA for L2(R¢), we follow one

particularly interesting generalization given by K.Gréchenig and W.R.Madych [GM]. Their
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dilation operator is a matrix D with integer entries such that

e D leaves Z¢ invariant. In other words, DZ¢CZ9, where
DZ%={y|y= Dz and ze2?} (2.8)
e All the eigenvalues, A;, of D satisfy |\;| > 1

We substitute the number 2 in (2.4) by a matrix D, called dilation matrix, The second
condition in (2.8) implies that D is a strict dilation in all directions, or D! contracts in

all directions. Such a D induces a unitary operator Up : f—sUpf on L?(RY), defined by
Upf(-) = 6p'*f(D™"),

where ép = [det(D))|.
Definition 2.2 A multiresolution analysis(MRA) of L2(R?%) consists of a sequence of
closed linear subspaces V;, jEZ, of L*(R?) with the following properties:

(i) ViCVj.1, JEZ;

(1) UjezV; = L*(RY);

(iii) N;ezV; = {0};

(iv) f€V; <= Upf€Vji1. In other words, V; = Up'V,, j€Z. where D is the dilation
matriz;

(v) Vo is assumed to be shift-invariant, that is, if fEV, then so is Tif for all k in 29,
where

T:f()) == f(- — z), YfEL*(RY),

we refer to T, (x€R?) as translations;
(vi) There is a function ¢€Vj, called the scaling function, or the generator of the MRA,
such that the collection {Ti¢ | k€EZ®} is a orthonormal basis of Vj.

Note . (1) Observe that (iv) in the definition 2.2 implies that feVjifand only if f(D7-)
is in Vp. It follows that an MRA is essentially completely determined by the closed subspace
Vo. But from (vi) and (v), Vj is the closure of the linear span of the Z¢ translates of the
scaling function ¢. In other words, the whole MRA may be regarded as being generated by

the scaling function ¢. Thus the starting point of the construction of MRA is the existence
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of the scaling function ¢. Therefore, it is especially important for us to give some conditions
under which an initial function ¢ generates an MRA.

(2) If in (iv), the dilation matrix D = 2I , where I is the identity matrix, the MRA is
often referred to as a dyadic MRA. This is the case to which most of the current work is

devoted and is representative of the general case.
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Chapter 3

Notations and Preliminaries

1 Introduction

Our goal is to extend MRA on R? to MRA on G for more general non-abelian groups G.
The purpose of this chapter is to provide some background for the analysis to be presented in
subsequent chapters. The proofs of many theorems in this chapter are lengthy and technical
and involve ideas beyond the scope of our requirement. Hence, to a large extent we shall
content ourselves with providing definitions and statements of the theorems.

Although wavelet analysis has some good points not available in Fourier analysis, they
can not entirely replace Fourier analysis. Indeed, Fourier analysis is used in constructing
the wavelets and forming a theoretical basis for wavelets. To extend MRA to more general
groups. we restrict our attention to the class of second countable, type I, unimodular locally
compact groups. The reason for this restriction is that abstract Fourier analysis on such
groups is available, (see [Fol] for details). We shall see that not all the groups in this class
are suitable for building an MRA on them. Roughly speaking, only those groups which are
close to being vector groups are suitable for building MRA.

In this chapter. the basic concepts and results centered around abstract Fourier anal-
ysis on second countable, type I, unimodular locally compact groups are presented. At

the same time, we establish our notations. We quickly go through preliminaries such as
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locally compact groups and Lie groups, group representations, Hilbert-Schmidt operators
and trace-class operators, tensor products of Hilbert spaces, and direct integrals of Hilbert
spaces. In the last section, we provide the abstract Fourier analysis for the class of sec-
ond countable, type I, unimodular locally compact groups including the most important
Plancherel Theorem. This material may, for the most part, be found in [Fol], and will be
directly applied in the sequel without additional explanation.

2 Locally compact groups and Lie groups

A topological group G is a group equipped with a topology with the following properties:

(i) The mapping (z,y)—zy of GxG into G is continuous,

(ii) The mapping z——z~! of G into G is continuous.

Thus G has two structures defined on it, one algebraic and one topological, and they
are connected by the above two properties. If the topology on G is locally compact and
Hausdorff we call G a locally compact group.

A Lie group is a group which is an analytic manifold and the mappings in (i) and (ii)
are analytic.

For two subgroups H;, H» of a group G, (H1, H2] denotes the subgroup generated by
{aba~'b~!|a€Hy,beH,}. The derived series of G is the descending sequence of normal sub-
groups D*G defined inductively by setting D°G = G, D*G = [D¥-1G, D*-'G). Similarly,
the sequence C°G = G, C*G = [G,C*~1G] is called the descending central series of G. A
group is nilpotent if CFG = {e} for all large k. G is called solvable if D*G = {e} for all
large k. Since D*GCC*G, a nilpotent group must be a solvable group.

Let G be a locally compact group. A positive measure A on G is called a left Haar
measure if: (i) A is a nonzero Radon measure on G, (ii) AMzE) = A(E) for any zeG,
and any Borel subset ECG. p is called right Haar measure if (ii) is replaced by: (ii)’
p(Ez) = p(E), VZ€G and V Borel subsets ECG. One of the fundamental results in harmonic
analysis is that every locally compact group G has a left Haar measure which is unique up

to multiplication by a constant. For the proof of this, see [Fo §2.2] for details. Let’s
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recall the definition the modular function. For z€G , we define Az(E) := MEz). Then
Az(yE) = MyEz) = Ay(Ez)). Since A is left Haar measure, AMy(Ez)) = MEz) = A (E).
Thus A; is again a left Haar measure. By the uniqueness of left Haar measure (up to
constant multiplications), there is a number A(z) > 0 such that A\; = A(z)) and A(z) is
independent of the original choice of A. The function A : G—R™* thus defined is called
the modular function of G, where R* is the multiplicative group of positive real numbers.
Actually, A is a continuous homomorphism from G to R*. G is called unimodular if left
Haar measure is also right Haar measure, or in other words, G is unimodular if A(z) =1
for any z€G.

Unimodularity is a useful property that makes the situation simpler in a number of
respects. Obviously, Abelian groups and discrete groups are unimodular, but many others
are too. For instant, every connected semi-simple Lie group is unimodular and also every
connected nilpotent Lie group is unimodular [Fo §2.4]. But we should point out that not
every connected solvable Lie group which is not nilpotent is unimodular. To see this,

consider the affine group of R:
G = {(b,a)[beR, acR"}, where R® = R\{0}.
with the following group law:
(b1:a1)(b2, a2) = (b1 + a1b2,a;1a2).
Then G is solvable but not nilpotent because
D'G = {(r,1)|reR}, DG = {e}

and C'G = D'G, C*G = C'G for any k > 1. It is easy to compute that razdadb is the left
Haar measure of G and T%Tdadb is the right Haar measure of G. Thus G is not unimodular.

Let G be a locally compact group with a fixed left Haar measure \. We shall generally
write dz for dA(z). Let C.(G) denote the function space consisting of continuous compactly

supported complex-valued functions on G. For feC.(G), let fllp = (Jg | f(z)|Pdz)!/P for
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1<p < oo. Let LP(G) denote the completion of the normed linear space (Ce(G) 1 - llp). for
1<p < co. We are most interested in L'(G) and L?(G).
If f, g€L'(G), the convolution of f and g is the function defined by

fro@) = [ fwetyiz)dy.
If feL'(G), the involution is defined by the relation
[i(z) = f(z7h).

If f is a function on the topological group G and y€G, we define the left and right transla-

tions of f through y by
Lyf(z) = f(y~'z), Ryf(z) = f(zy).

The reason for using y~! in Ly and y in Ry is to make the maps y— L, and y— R, group

homomorphisms:
Ly.=LyL., R,: = RyR..

3 Group representations

Let G be a locally compact group. A continuous unitary representation of G is a pair
(w,Hz). where H, is a Hilbert space and 7 is a homomorphism from G into the group
U(H;) of unitary operators that is continuous with respect to the strong operator topology.
More exactly, m: G—U(H,) satisfies m(zy) = n(z)n(y) and n(z7l) = n(z)"! = n(z)*,
and for which z—w(z)¢ is continuous from G to #H. for any E€EH,. Hr is called the
representation space of «.

Suppose K is a closed subspace of H,. K is called an invariant subspace for 7 if 7(z)CCK
for all zeG. If K is invariant and #{0}, the restriction of 7 to K, & (z) := m(z)|x, defines a
representation of G on K, called a subrepresentation of . If # admits an invariant subspace
of H. that is nontrivial, then = is called reducible, otherwise = is called irreducible.

If (. H~) and (o, H,) are two representations of G and T€B(Hr, H, ), where B(Hr, He)
denotes all bounded linear operators from . to H,, satisfies Tn(g) = 0(9)T, VgeG, then T
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is said to be an intertwining operator for 7 and . If there exists a unitary map U: H,—H,
which intertwines 7 and o, then we say that r is equivalent to o and write @ ~ o. Let
IRR(G) = { irreducible representation of G } and G = IRR(G)/ ~. For m€IRR(G), we
still use m to denote its equivalent class. The dual space G of G is the set of equivalence
classes of irreducible unitary representations of G endowed with the Fell topology. See [Fo
§7.1 and §7.2] for a discussion of this topology on G.

The space of all intertwining operators for  and o is denoted by Hom(x, o). Irreducibil-
ity of 7 is related to the structure of Hom(w, 7) by a fundamental result:

Schur’s Lemma:A unitary representation ™ on M, is irreducible if and only if Hom(w, )
contains only scalar multiples of the identity.
For the proof of this result, see [Fo §3.1].

A unitary representation 7 of G is called primary if the center of Hom(, ) is trivial, i.e.,
consists of scalar multiples of the identity operator I. By Schur’s lemma, every irreducible
representation is primary. More generally, if 7 is a direct sum of irreducible representations,
7 is primary if and only if all its irreducible subrepresentations are unitarily equivalent. The
group G is said to be type I if every primary representation of G is a direct sum of copies

of some irreducible representation.

4 Hilbert-Schmidt and trace-class operators

Let us start by recalling the definition of the Hilbert-Schmidt norm of an operator in a
finite dimensional Hilbert space . Let TeB(H) be any endomorphism in . Take any
orthonormal basis {ex}¢_, of H, where d = dim(%*), and assume that T is replaced by the
matrix (t) in the basis {e},. Obviously
I1Tl2 = (3 ltwl®)/? (3.1)
kJ

defines a norm on B(H). It is called the Hilbert-Schmidt norm of T. If S is another endo-

morphism. represented by the matrix (si) with respect to the same basis, a computation
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shows that
Tx(S°T) = 3 tes5%y.
k.l

This shows that the Hilbert-Schmidt norm (3.1) is derived from the following inner product

<T.S>=) 551 = Te(S°T) (3.2)
kl

on B(#). We can show that |[T'||; and < T, S > are independent of the choice of orthonormal
basis {ex}i of V.

Now we need some analogous results in arbitrary Hilbert space. Let # be a separable
Hilbert space and TeB(H) be a continuous linear operator on #. Let us take an orthonormal
basis {ex}r of H. Then ¥, |[Te||? is independent of the choice of orthonormal basis {ex}x
of #. In fact, suppose {e;}; is another orthonormal basis of #, then with the Parseval’s

identity. we have
D ITexl? =3 | <ef,Tex > =3 | < T e},ex > 2 = 3 [T €12 (3.3)
k k1 k! l

The last series is obviously independent from the choice of {e}r. As a result of (3.3), we

see that the following non-negative sequences
{ITex®te  {IT°€llPH {I < Tex, €} > [*}iy

are simultaneously summable or not, whenever they are summable, their sum is the same
independent of {ex} and {e]}.

An operator T€B(H) is called a Hilbert-Schmidt operator if for one, hence for any,
orthonormal basis {ec}x of H, 3 [|Terl|? < oc. By the preceding argument, this is well-
defined. We use HS(H) to denote the set of all Hilbert-Schmidt operators on H. For
TeHS(H), define norm of T as

ITll2 = (3 1Texll®)/>. (3.4)
k

We have the following properties: If T is a Hilbert-Schmidt operator, so is T*. If T and

S are Hilbert-Schmidt operators, so is aT + 3S, for any constants a,3. So we see that
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all the Hilbert-Schmidt operators on # form a linear space with respect to addition and
scalar multiplication. Moreover, for any TeHS(H) and Se€B(H), TS and ST are both in
HS(#). Thus HS(#H) is also an ideal in B(#). We shall see very shortly that if T and S
are in HS(?) and {e;}, is any orthonormal basis of . then an inner product of these two

operators can be defined by
<T,S$>=3) <Te,Se >=Tr(S'T). (3.5)
k

This (3.5) corresponds to (3.2). With the inner product defined as in (3.5), HS(#) is a

Hilbert space; the norm is given by

IT|l2 = /Tr(T*T).

From the above, we know that the product of two bounded operators, of which at least
one is in HS(#), is also in HS(#). Now we shall consider products of operators both of
which are in HS(#).

Let T be the product of two operators in HS(#) and let {ex}; be a given basis. Then
the sequence {| < Tex,e; > |} is summable. Consequently, {< T'ei,ex >} is also summable
and its sum is independent of {e;}r. Indeed, since K €HS(H) if and only if K*€HS(H),
we may assume without loss of generality that 7' = K*L with both K and L in HS(H).

Clearly,
1
| < Tex,ex > | =| < Lex, Key > ISE(IILekII2 + | Kex|?)

and therefore
SoI<Tewer > 1= 31 < Lew Kex > IS5 (LIS + K.
By the polarization identity, we have
Re < Lex, Kex >= 1(I(L + K)exl® - (L — K)exll®).

So we get
1
Red_ < Le Kex >= Z(I(L + K)IIf ~ (L - K)II3).
k
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The right hand side is clearly independent of {ex}x- Replacing L by iL, we see that
Im < Lex,Ke; >= —'Rez < tlei,Ke; >
k

is also independent of {e}«. Therefore Yk < Tex,ex > is independent of the choice of
{ex}i-
We call a product of two operators in HS(H) a trace-class operator. By the preceding

argument. if T is trace-class operator and {e;}, is any orthonormal basis for H, then
Te(T) := Y < Teg.ex >
k

is well-defined and it is independent of {e;}x. We have the following properties for trace-
class operators: every trace-class operator is a Hilbert-Schmidt operator and T is a Hilbert-
Schmidt operator if and only if T*T is a trace-class operator. The product of two Hilbert-
Schmidt operators is a trace-class operator and any trace-class operator can be resolved
into the product of two Hilbert-Schmidt operators. T is a trace-class operator if and only
if T* is a trace-class operator. If T and S are trace-class operators, so is aT + 38, for any
constants @ and 8. So with the obvious definition of addition and scalar multiplication,
the set of all trace-class operators forms a linear space. Furthermore, if T is trace-class
operator and SEB(H), then TS and ST are both trace-class operators. Thus the set of all
trace-class operators is a two-sided ideal in B(#).

For more about Hilbert-Schmidt operators and trace-class operators, see [Fo Appendix

2] and [Sc §2 and §3].

5 Tensor products of Hilbert spaces

Let H; and #; be Hilbert spaces, we use H3 to denote the conjugate Hilbert space. That

is. as a set. {3 = Ho2, but H3 has the different algebraic structure and inner product:
(& mM—§ + 11 HoxHa—Ho,
(a,&)—ra7f : CxHo—rHo,
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(61 7’)'_) < Ev” > H2XH2F—)C,

where

af{=afand <{n>"=<nE>.

Obviously, the conjugate Hilbert space of 3 is H2 and a bounded linear operator from H3
into H; is just a bounded antilinear operator from #; into H;.

We define the tensor product of #{; and H2 to be the set H;@H, of all antilinear
operators T : Hao——H; such that 37, [|Te||2 < oo for some, hence any, orthonormal basis
{ex} for H,. If we set

ITl2 = (g ITex]1?)'/2,

then H;@%H, is a Hilbert space with the norm | - ll2 and associated inner product

<T,5>=)" <Te,Se; >, (3.6)
k

where {e;} is any orthonormal basis of #s.

Also, Hi®H2 can be constructed by an algebraic method. First, we treat both H,
and H3 as vector spaces. The tensor product of the vector spaces of #; and Hs is usually
defined abstractly as a vector space Mg such that any bilinear map from the Cartesian

product H; x?#, into another vector space factors uniquely through Ho. More precisely, if
L : H)_ XHz-—)K

is a bilinear mapping from #, x#, into another vector space K, then L has a unique
factorization L = Tp, with p a bilinear mapping from H;xH; into Ho and T a linear
mapping from Hg into K. Ho can be identified with the quotient of the linear space of all
linear combinations of simple tensors: §®n for any £€H, and any neH,, by the subspace
consisting of these finite sums that must vanish if p is to be bilinear. We can identify
H1@H2 with the completion of its everywhere dense subspace Ho.

In particular, H@%H"* is just the set of Hilbert Schmidt operators on H and it is a Hilbert
space with respect to the inner product (3.6).

For more information, see [Fo §7.3] or [KR §2.6] for details.
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6 Direct integrals of Hilbert spaces

In the following, we outline some notations and results of direct integrals. For further
information on direct integrals, we refer the reader to {Fo §7.4].

A Borel structure on a set A is a o-algebra of subsets of A, i.e., a family of subsets of
A containing A itself and closed under complements and countable unions. A measurable
space is a pair (A, M) consisting of a set A and a Borel structure M on A. A family
{Ha}aca of nonzero separable Hilbert spaces indexed by A will be called a field of Hilbert
spaces over A. A map f on A such that f(a)eH, for each a will be called a vector field
on A. We denote the inner product and norm on #, by <-.- >4 and || - ||a. A measurable
field of Hilbert spaces over A is a field of Hilbert spaces {Ha}aca together with a countable
set {e;}3° of vector fields with the following properties:

(i) the functions a— < ej(a),ex(a) >, are measurable for all 7, k.

(ii) the linear span of {e;(a)}$° is dense in H, for each a.

Thus when we mention a measurable field of Hilbert spaces over A, there are two things
involved: {#Ha}ac4 and {e;(a)}$°. A constant field of Hilbert spaces over A is a measurable
field of Hilbert spaces {Hq }ac 4 over 4 such that Ho = H for all a€ A, where H is a separable
Hilbert space.

Given a measurable field of Hilbert spaces {Ha}aca, {ej(a)}° on A, a vector field f on
A will be called measurable if < f (a),ej(a) >, is measurable function on A for each j-

Finally, we are ready to define direct integrals. Suppose {Ha}laca, {€j(a)}$° is a mea-
surable field of Hilbert spaces over A, and suppose g is a measure on 4. The direct integral

of the spaces {#Hqa}ae4 With respect to 4 is denoted by
&
/ Hadu(a).

This is the space of measurable vector fields f on A such that

1£17 = [ 1f (@2du(a) < oo.
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Then it easily follows that [ D Hadu(a) is a Hilbert space with the inner product
<fi9>= [ < f().9(@) >a dula).
In case of a constant field, that is, H, = H for all a€A, f@ Hodu(a) = L2(A,u,H), all

the measurable functions f : A—# defined on a measurable space (A, u) with values in a

Hilbert space # such that

I£1I2 = /,, 1£(2)2dp(z) < oo.

7 Abstract Fourier Analysis on second countable, type I,

unimodular locally compact groups

This section contains a brief review of Fourier analysis on a second countable, type I,
unimedular locally compact group, that will be needed in the next chapter, including the
most important Plancherel Theorem. For details, we refer the reader to [Fo §7.5] and
[Li]. Throughout this section, G will denote a second countable, type I, unimodular locally
compact group.

There is a measure u on G, called Plancherel measure, uniquely determined once the
Haar measure on G is fixed. The family { HS(,) }ze& of Hilbert spaces indexed by G
is a field of Hilbert spaces over G. The direct integral of the spaces { HS(# ) b & With
respect to u, denoted by | g’ HS(#r)dp(n), is the space of measurable vector fields F on G
such that

IFIZ = f1F(n)|du(r) < oo.
For convenience, we denote |. (’,? HS(Hx)du(m) by #2(G). Given a u-measurable subset QCaG,
we write H?(Q) instead of [¥ HS(H.)du(r). In other words,

H*(Q) = { FEH*(G) | F(n) =0 for u — a.e. TeG\Q }.
For F. H in H?(Q), define

< F,H >q:= /Q tr[H (r)* F(r)]du(x),
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then (#*(2),< -,- >q) becomes a Hilbert space.
For 1<p < oo, we define

HP(G) := { F : F is a measurable field of bounded operators on G such that

I|F(m)ll, < oo, u almost all 7€G and /6 IF(m)12dpu(r) < oo },

where for bounded operators T, ||T||, = (¢r|TIP)!/?, 1<p < oo, |T| = (T*T)2. If we
identify any two elements whenever they agree on G except for a p-null subset, then #P(G)

becomes a Banach space with respect to the following norm
1l = ([ 1P () Zdu(m) .

When p = 2, we recover the definition of the Hilbert space H2(G ).

For a measurable subset  of (?:', we write
HP(Q) := { FEHP(G) | F(w) =0 for u — a.e. TeG\R }.
For p = oc, set
H°°(C7) := { F : F is a measurable field of bounded operators on G such that

IFlloo = esssup__zll F(m)lloo < o0, },

where ||T||c=the operator norm of T. Again, #*(G) is a Banach space under the norm

- lloc- Also, %#*(G) is a Banach s-algebra under the product
(F-H)(rm) = F(n)H(r) and involution F*(x) = F(m)®.

Note that, if G is non-abelian, then H*°(G) is non-abelian.

Similarly. for a measurable subset Q of G, we write
H®(Q) := { FEH™(G) | F(r) =0 for 4 — a.e. 7eG\Q }.

If f € L(G), we define the Fourier transform of S to be the measurable field of operators

over G given by

Ff(m) = fx) = /G f(z)n(z)dz. (3.7)

34



Let J! := LY(G)NL*(G) and J? :=linear span of {f+g| f, g€ J'}. So the elements

of J? are finite linear combinations of convolutions of elements of J!. By the property
of convolution in harmonic analysis, J2CCy(G), where Co(G) is the space of all complex-
valued continuous functions f on G such that for every € > 0, there exists a compact subset
K of G (depending upon f and €) such that |f(z)| < e for all z€G\K. Thus, J? is a vector
space of well-behaved functions which can be shown to be dense in both L!(G) and L%(G).
With the notations set as above, we have the following abstract Plancherel theorem. This
theorem is due to Segal [Se2] and [Se3] and Mautner [Mau]; the proof may be found in
Dixmier [Di §18.8].
Plancherel Theorem. Suppose G is a second countable, type I, unimodular locally compact
group. There is a measure u on G, uniquely determined once the Haar measure on G is
fized, with the following properties. The Fourier transform f— f maps J! into ’Hz(@),
and it eztends to a unitary map from L2(G) onto H2(G). For f, g€J" one has the Parseval
Jormula

/G f(z)a(@)dz = /atr[é(w)‘f(fr)]du(ﬂ- (3.8)

and for he 72 one has the Fourier inversion formula

h(z) = Flh(z) = étr[w(x)'ﬁ(w)]du(x). (3.9)

Remark. The Plancherel theorem states that the Fourier transform maps J! into
#2(G). This means that, when feT*, f(x) is Hilbert-Schmidt for u-almost every 7 and its
Hilbert-Schmidt norm is square-integrable on G. From section 4, we know that, if f, ge J!,
then f*\g(w) = f(r)g(x) is trace-class for u-almost every 7 and its trace is integrable on G.

The inversion formula (3.9) still holds for a large class of more general functions. This
was established by Lipsman in [Li]. For easy reference, we quote the Fourier Inversion
Theorem from [Li] in the following.

Fourier Inversion Theorem: (i) Let Fe#H'(G) and suppose that

f(z) = (F'F)(z) = /a trir(z)" F(m)]du(r), z€G
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isin LY(G). Then f = F p-a.e..
(i1) Let fEL'(G) be continuous. If F = f is in HY(G), then

flz) = /6 trir(z)* F(r)]du(z), z€G.

Finally, recall that the involution f— f* is defined by the relation
f*(z) = f(z™!) forfEL!(G).

Since J! is dense in L*(G) and |[f*||s = ||f[l2 for fET, the involution on J' extends to
an involution on L2(G), which we will also denote by +. Simple computations show that

the basic properties of the Fourier transform remain valid:

(af +bg)"(x) = af(m) + bg(m) (3.10)
(f+9)" (7) = f(m)§(m) (3.11)
(Lzf)N(m) = m(z) f(x) (3.12)

(f)N(w) = f(m) (3.13)

where, f(r)" is the adjoint operator of f(r).

To summarize, if G is a second countable, type I, unimodular locally compact group,
then many of the tools of abelian Fourier analysis are still available. It must be remembered
that, for feLY(G), f () is not a complex number, but an operator on the Hilbert space

H. for each meg.
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Chapter 4

Extension of Multiresolution
Analysis in L2(R9) to
Multiresolution Analysis in L2(G)

1 Introduction

This chapter is devoted to three topics. The first topic concerns the definition of MRA of
L?(G), where G is a suitable second countable, type I, unimodular locally compact group.
The second topic deals with some properties of an MRA generated by the scaling function ¢.
This includes two main things: intersection triviality and union density of the nested closed
subspaces. The third topic is devoted to the conditions under which the given function ¢
becomes a father wavelet, that is, ¢ generates an MRA for L2 (@).

In section 2, we summarize the developments on the question: under what conditions
does an initial function ¢ generate an MRA of L?(RY). Also, we give a outline of the results
by de Boor, Devore, and Ron.

In section 3, we first investigate the definition of MRA of L2(R?) and find some key
points in defining the MRA of L?(R?) by properly interpreting it with a more general point

of view. Then we formulate the definition for L%(G) by using the information exposed from
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the MRA of L?(R%). Notice that we are dealing with nonabelian groups, so we have two
types of translations available: left and right translations. We know that the image under
the Fourier transform of either a left siift-invariant subspace generated by ¢ or a left and
right shift-invariant subspace generated by the same ¢ is supported on the same subset
suppF(¢). This fact suggests that we may only pay attention to the one-sided translations
without considering the other ones. But in order to do so, we introduce the concept of
“strongly supported” for a function ¢. This term arises in a very natural manner once one
connects non-abelian cases to abelian cases.

As we mentioned after definition 2.2, the starting point of constructing an MRA is the
scaling function ¢. With this scaling function ¢, we form V, by applying the shift operators
and then generate V; by the dilation operator. Generally speaking, there are three things
in MRA that mainly concern us; that is, the refinability of ¢, the density of the union
and the triviality of the intersection of the nested sequence of closed subspaces. Since
the intersection triviality property is a direct consequence of the other conditions of the
definition of an MRA, we prove this property immediately after we give the definition. The
importance of this theorem (intersection triviality) is that it is not necessary to assume the
intersection triviality property in the definition.

Thus, essentially two basic questions remain: How can we check that union density
property holds? And how do we find a refinable function with orthonormal shifts? Section
4 mainly contributes to the union density theorem. This theorem characterizes the union
density property. Most of the work in this chapter is on the first question. The second
question remains a focus of much of the basic research for G = R? and we will be satisfied
with the construction of explicit examples for the Heisenberg group. The significance of
refinability of ¢ is to have a sequence of closed subspaces nested. The refinability depends
very much on the individual function ¢. We will discuss this issue for an example on the
Heisenberg group in chapter 5.

In section 5, several sufficient conditions on ¢ are given that can be used to check that

union density holds. We will answer the basic question: under what conditions does ¢
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generate an MRA of L?(G) provided ¢ satisfies the refinability property.

2 Outline of the results by de Boor, DeVore, and Ron

Remember that our final aim is to set up an MRA on more general groups. If we look back
carefully into definition 2.2 in chapter 2, please keeping in mind that we are now still in the
space L?*(R9), we find that to build an MRA on RY, one can try to start the construction
from an appropriate choice for the scaling function ¢. Then generate a shift-invariant
subspace V(¢) by ¢ and take V(¢) as Vp (this is step (v) in the definition 2.2). Following
that, one can use the dilation operator D to construct Vj = DV, by (iv). If, in addition, ¢
is refinable, that is, D~!V,CVjp, then we get a sequence of closed nested subspaces {V;} ez
which satisfy (i).(iv),(v) and (vi) of the definition 2.2. We shall see later that (iii) is a direct
consequence of (iv) and (vi). Thus, in order to make an MRA in L?(R%), we have to answer

the following question:

Accepting the refinable requirement for the starting ¢,
under what other conditions does an initial function ¢ (4.1)

generate an MRA of L?(R9) (i.e., satisfy the condition (ii))?

We summarize the developments on the above question in the following.
First it is shown in [Mel], chapter 2, that V(¢#) generates an MRA of L2(R9) provided
that:
i) ¢ is refinable;

ii) ¢ has stable shifts, that is, there exist two positive constants a and 3 such that

allallz<ll Y #(- — n)a(n)l2<Bllallz, for all acly(Z%);
neZd

iii) ¢ satisfies the regularity conditions

[#(2)|<Cm(l + ||z|})™ for all meN and zeR?
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where [|z|| denotes the Euclidean norm of z, and C,, are positive constants.
Then in (JM], the regularity conditions iii) above were relaxed so that ¢ is only required
to satisfy
2 18- —n)leL?([0, 1]%).

neZd
A few improvements to the above results were made in [Ma] and [St]. In {Ma], Madych

verified that the function ¢ generates an MRA of L2(RY) if ¢ satisfies that

1

S — 2dz =1 .
[(D*)77Q| (D-)‘Jc?kb(z)I B *.2)

umj—»oo

for every cube @ of finite diameter in RY, where D is the dilation matrix used in the
definition 2.2. Madych also gave some other conditions under which $€L?(R?) generated
an MRA. We should note that the condition (4.2) is related to the dilation matrix, and
so are the other conditions given in [Ma]. Stdckler [St] found another criterion for the
denseness condition in (ii) of Definition 2.2 by introducing two symbol functions.

But the ultimate solution to the question (4.1) concerning MRA was obtained by de
Boor.DeVore, and Ron in [BD] by using a characterization of the closed translation invariant
subspaces of L2(R?%).

The definition of MRA put forward by de Boor, DeVore, and Ron in [BD] was a gener-
alization of the definition formulated by Mallat [Ma] and Meyer [Mel]. It goes as follows.
Definition 4.1. Let ¢cL?(R%). Let Vg be the closed shift-invariant subspace V(¢) of
L*(RY). For jeZ, let V; be the 27 -dilate of Vy:

Vi={f(2")|feW }.

We say that {V;} forms an MRA of L?(R?) if the following three conditions are satisfied:
i) ViCVjs1, JEZ;
1) m = L*(R%); ( Union density )
iti) Njez Vi = {0}. ( Intersection triviality )
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It is obvious that the condition i) is equivalent to saying that V} is refinable, or equally,
saying that ¢ is refinable.

Under this definition, [BD] analyzed the conditions (ii) and (iii) above. They completely
characterized the density property of (arbitrary) shift-invariant subspaces of L?(R9). First
they proved that J;cz V; is a closed translation invariant subspace of L2 (RY) then they
furnished a more general answer for this question.

Their results can be stated as follows.

Theorem 4.2(de Boor, Devore, and Ron). Let Vo = V(@) be the shift-invariant subspace
generated by a function ¢€L?(R%), and let V; be the 27-dilate of Vy for jEZ. If Vo is
refinable, then m = L?(RY) if and only if Ujezsurp(F¢;) = R? modulo a null-set,
where ¢;(-) := Dig(-) = 29/24(27-) and supp(F¢;) := {E€R? | F;(£)£0 }.

Theorem 4.3(de Boor, Devore, and Ron). Let Vo = V(¢) for some function pcL?(RY).
Then NjezV; = {0}.

The following theorem gives a very simple sufficient condition for (ii) in the definition
4.1.

Theorem 4.4(de Boor, Devore, and Ron). Let {Viljez be as in the theorem 4.2, then
m = L?(R%) if F¢ is nonzero a.e. in some neighborhood of the origin.

Remark. (i) Let R? be the dual group of RY. It is a basic result in harmonic analysis that
R can be identified with R%. So the condition “Ujezsupp(F¢;) = RY modulo a null-set”
in the theorem 4.3 can be replaced by “Ujezsupp(Fo;) = R? modulo a null-set”.

(ii) In theorem 4.2, de Boor, Devore, and Ron completely characterized the density
property of (arbitrary) shift-invariant subspaces of L2(R?). First they proved that Ujez Vs
is a closed translation invariant subspace of L?(R%) then they furnished a more general
answer for this question based on the following well-known theorem on the characterization
of the closed translation invariant subspaces of L?(R%). It's proof can be found in [Ru]
Chapter 9.

Theorem 4.5. A subspace MCL?*(R?) is closed and translation invariant if and only if
F(M) = L*(Q) for some QCR?, where F(M) := {FflfeM}.
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Our purpose in the next two sections is to formulate a definition of MRA for spaces of

the form L?(G) and establish similar results to Theorem 4.2 and Theorem 4.3.

3 Extension of multiresolution analysis to L?(G) and inter-

section triviality

On the basis of the content of the above, now we can adapt the definition of MRA for L?(R¢)
to one for L?(G), where G is in a certain class of groups to be approximately identified in
the appendix out of second countable, type I, unimodular locally compact groups. Since
the intersection triviality property is a direct consequence of the other conditions of the
definition of an MRA, we prove this property immediately after we give the difinition of an
MRA.

First let us keep in mind definition 2.2 in chapter 2.

We begin by properly interpreting MRA of L2(R9). It is obvious that Z? is a lattice
subgroup of R? and R¥/Z%~T¢, where T¢ is the d-torus. The shift-invariance of V; in (v)
of definition 2.2 can be interpreted as an invariance property with respect to the action of
the discrete lattice subgroup Z? of R¢. The scaling matrix D can be viewed as the action
of some group automorphism of R¢, with the property DZ?CZ29 and 1 < [Z¢ : DZ2¢] < co.
Also, we have to observe one very special thing that the lattices 277Z2¢ in R? form a nested
sequence whose union Ujez2—j Z4 is dense in R%. According to Yves Meyer, “approximation
to L?(R?) by the nested sequence of closed subspaces { V; };cz imitates and reflects the
geometric approximation to R? by the nested sequence of lattices 277Z9” (see p.69 [Me]
for details). Furthermore, we have to note that the roles played by the dilation operator D
and the translation operator T;.

With this in mind, it is not difficult to conjecture the correct generalization of MRA to
second countable, type I, unimodular locally compact groups. Indeed, suppose G is such
a group. (a) First, we shall suppose that G contains a discrete subgroup I' such that the

quotient G/T' is compact, where I is discrete means that the topology on I' induced from
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G is the discrete topology. It is worthwhile noting that for connected nilpotent Lie groups,
such a discrete lattice subgroup I' of G often exists, see [Ra] for details. This I’ will play the
same role in G as Z¢ in RY. (b) Furthermore, we shall assume that there exists a dilative
topological automorphism « (hence a~! is contractive) of G onto G such that al’'CI" and
1 < [T : al'] < oc, where a is a topological automorphism means that a is an automorphism
and a homeomorphism and a—! is contractive means that for any fixed compact subset K
of G and for any neighborhood U of the identity e, there is a positive integer N, depending
on XK and U, such that
a’KcU, ¥j > N.

The most important consequence of the above assumptions is that the union {Jcz a T is
dense in G:
Proposition 4.6. Let G be a locally compact group. Suppose that G contains a discrete
subgroup T such that the quotient G /T" is compact and that there ezxists a dilative topological
automorphism a of G onto G such that aI’'CT and 1 < [T : al'] < oo. Then the union
Ujez @™'T is dense in G.
proof. From the assumption (a), we can write G = U, ¢r 47K, where K is some compact
subset of G. For any £€G, given any neighborhood U of z, we have z~'U is a neighborhood
of the identity e. By one of the basic properties of topological groups, there is a symmetric
neighborhood V of e such that VCz~!U. So we have zV CU. By the assumption (b), for
V. there exists an integer k€Z such that o *(K)cV. So G = Uqer v~ 'K implies that
G =a%G) = Uyer a ¥y "Ha*(K)c Uer ak(y~1)V = G. Hence there exists some
v€l such that zea ™ (y"1)V. So z = a~%(y~!)v for some v€V. But then a~*(v~1) =
zv~'ezV~! = zVCU. This means that intersection of UJ;cz a™’T and U is not empty.
Therefore, ;cz o' is dense in G. This finishes the proof of proposition 4.6.

We note that this a will act as the dilation in G similar to D in R?. (c) Finally, we have
to generalize two operators, that is, the dilation operator and translation operator. For the

former. we can define the dilation operator o as
of(z) := 6/ f(az), VfeL?*(G), z€G. (4.3)
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where 4, is a proper positive constant depending on a such that the operator ¢ becomes a
unitary operator.

As to the latter, we need to explain more. Remember that we are now dealing with
non-abelian groups. So talking about the translation operator, there are two kinds of
translations: left translation L. and right translation R;. But the following proposition
suggests that we may only pay attention to the one sided translations without considering
the other ones.

Proposition 4.7. Given a function ¢, let V' be the closed subspace generated by the left
shifts of ¢, that is, {L,@|Y€ET}, V' the closed subspace generated by the right shifts of ¢.
Then the images under the Fourier transform of V! and V"™ are both supported on the same
subset suppF(P)-

Proof. By the definition of V!, we have

f(z) =Y a(v) L d(z)

v€l
where {a(v)},er€l?(T).

So we have

(Ff)(m) = /G S a(v) Ly(z)(z)dz

v€r

=S a(v) /G $(v~'z)m(z)dz

vl

The substitution y = v~ !-z gives
(Ff)(m)
=X at) [ s@im(rv)dy

yerl

=3 a()n(y) /G d(y)m(y)dy

v€lr

=Y a(Mr(M)(F¢)().

vel
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Similarly, for feVT", we have

(Ff)(m) = /G S b(v) Ry ¢(z)m(z)dz

Y€l
=2 _b(v) [ #(zv)n(z)dz
.;se:; 04 /G zvy)m(z

= 3 b (Fe)(m)m(y).

vyer
The proposition is proved.

After this preparation. we can give a definition of MRA for L%(G).

Definition 4.8. We say that a sequence of closed subspaces {Vi}liez of L*G) forms a
multiresolution of L?(G) if the following conditions are satisfied:

(i) ViCVip1, jEZ;

(i) UsezV; = L*(G);

(iti) N;ezV; = {O}:

(iv) fEV; «=> o f€V 1. In other words, V; = 07Vp, jEZ, where o is defined by (4.3):

(v) Vo is left shift-invariant, that is, if f€V, then so is L. f for ally in T;

(vi) there is a function ¢€V,, called the scaling function, or generator of the MRA, such
that the collection {L¢ | Y€I } is an orthonormal basis for V.

Remarks. (1) For the scaling function, some people, e.g., Meyer [Me], impose regularity
and decay conditions on ¢. In our case, to make the argument simple and general, we
generally require only that ¢€L?(G).

(2) In analogy with L2(R?), we say that V is refinable if, for any feV, o fisalsoin V.
Thus the condition (i) is equivalent to saying that Vj is refinable. Like the Euclidean case,
for € L?(G), we denote V(¢) to be the smallest closed left shift-invariant subspace of L?(G)
containing ¢. We say that ¢ is refinable if V(¢) is. Thus, the basic question concerning
MRA is whether the scaling function exists. We will see that for Heisenberg groups, such
scaling functions do exist. We will enter into details in Chapter 5 for this special case. As
for general groups, no existing argument is available. This would seem to be a reasonable

next goal.
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(3) Like in [Me], we call the function ¢ the father wavelet. The basic rule of father
wavelet is to generate an MRA for the space L2(G). Thus, the father wavelet ¢ must be
a refinable function in order to have a sequence of nested closed subspaces. As we know
from the results by de Boor, Devore and Ron, the refinability of ¢ is not enough for ¢ to
generate an MRA; we need other requirements for ¢. We will consider this in detail in the
next section.

Generally speaking, the way to construct an MRA is to start with a refinable function ¢
such that {L,@|Y€l} is an orthonormal set. Let V; be the closed linear span of {L,¢lyel}
and V; = o7V}, for j€Z. Then conditions (i),(iv),(v) and (vi) are automatically satisfied.

In closing this section. we prove the following intersection triviality theorem. This
theorem shows that condition (iii) (intersection triviality) actually follows from (iv) and
(vi).

Theorem 4.9(triviality of intersection). Let ¢ be a refinable element of L?*(G) and define
Vo = V(@) and V; = o7Vp for jEZ. Suppose that left shifts of ¢, that is, {L,¢ | v€T },
constitutes a frame for Vy, then N,ezV; = {0}
Note: The concept of a frame is a generalization of orthonormal basis. A countable subset
{en} of # is said to be a frame if there exist two positive numbers a and f so that, for any
fin#H,
allfI’P< 31 < f.en > [P<BIfI.

We call a and 3 the frame bounds. Ifnthe two frame bounds are equal, a=g, then we call
the frame a tight frame. Frames were introduced by Duffin and Schaeffer [DS] in 1952.
Proof of Theorem 4.9. We know that { L.,¢ | v€l' } constitutes a frame for V. This
means that, there exist constants A > 0 and B > 0, such that for all feV,

Al fI2(6) < Zr| < f,L1(¢) > P<BIifI32q- (4.4)

v€

Now we know that o is an unitary operator from L2(G)—L?(G) and V; = 07V}. Replacing
f and L,¢ by 07 f and 07 L,¢ in (4.4), respectively, we get that, for all feV;,

Alfliz2)S D1 < f,07Ly(¢) > [P<BIIf[122c).- (4.5)
138
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Now let f €NjezV;- Since C.(G) ( all compactly supported and continuous functions on
G ) is dense in L?(G), for any € > 0, there exists a f1€C(G) such that ||f — fxlle(G)Se-
Recall that P; is the orthogonal projection from L*(G) onto V;. Then ||f — Pifillzg) =

IP;(f — fllley<If — fill2(gy<e. Hence

Ifllz2(Gy<e + IP;fillL2(c). for all jeZ. (4.6)

Now we estimate 1P fillz2(c)- By (4.5), we have

Ilpjfll[L2(G)SA~%[Z | < pjflejL7¢ S [2]%
Y€l

=AY (< fr07Ly¢ > [}
~€r

3 /G @) F a7 (2))dz|?]

ver

(X1

= A"

<A HE ([ @ HT T @ ide)?)

yer
Choose a compact subset K of G so that supp(f1)CK. Hence,

1P fill L2y
SQ/ZA_%”fl"Lw(G)[Z(/ lp(v~!-a (z))]dz)?)2
ver 7K
By the Cauchy-Schwartz inequality, we have
1P; fillL2a)
<6YPA il K1Y [ 160y~ o (2))Paa .

v€r
where | K| denotes the measure of K. For j < 0, |j| sufficiently large, we get

1P fillL2(a)

1
SA-zuflan(c)lKl‘/?[/E l6(z")[2dz']2,
3
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where
e -1 3
E; :=J, 7 el (K).
Thus,
1P fillL2(c)

<A™ fill ooy | KT V2] /G Xk, (2)|6(z) [2dz] /2 (4.7)

where x g is the indicator function of E, i.e.. xe(z) =1 if z€E, xg(z) = 0 if £ is not in
E. By the contractive property of a~!, for z not in I, we have XE,(z)—0 as j—+—oo. It
therefore follows from the Lebesgue dominated convergence theorem that (4.7) tends to O
as j——oc. So (4.6) says that || f|| t2(G)<e. This yields f = 0. This concludes the proof.
The importance of theorem 4.9 is that it is not necessary to verify the intersection
triviality property in the definition of an MRA. As for the density property, we consider

this topic in the next section.

4 Union Density

This section is devoted tc the theorem on the density of the union with respect to the
definition 4.8. In the proof of proposition 4.7, we found that the image under the Fourier
transform of either a left shift-invariant subspace generated by ¢ or a left and right shift-
invariant subspace generated by the same ¢ is both supported on the same subset suppF(¢).
Now since we only use left side translations, to get the proof of the union density theorem
for a left MRA, we have to put an extra condition on the scaling function ¢. This condition
involves a generalization of the concept of the support of the Fourier transform. It is
found that this extra requirement on ¢ is very natural from the explanation given below.
The result to be established will answer the basic question: under what conditions does a
function ¢ produce an MRA of L?(G) provided that ¢ is a refinable function? Or equally,
what are the requirements for a refinable function ¢ to be a father wavelet?

Let Q be a non-null measurable subset of G. Recall that #2(Q) is the subspace of
H2(G) consisting of all FEH?(G) such that F =0 a.e. on G\Q. Let {9i}ies be a family of
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elements of L?(G). We say that {g;}ic; is strongly supported on Q if, for any FeH?(f),
< £Gi|F >=0, for all z€G and i€l implies F = 0.

To help understand the concept of “strongly supported” consider the case of G = R.
Then G can be identified with R as well. For QCR and a family {g;}ics in L2(G), {gi}ier
is strongly supported on  if {e.g; : t€R, i€} is a total set in L2(), where e(y) = e2 ity
for yeR. teR. More particularly, consider a single function g€ L'(R)NL2(R) so § is a
continuous function. Then g is strongly supported on any non-null subset of {~r€R : §(v)#0}
and is not strongly supported on any subset of {veR : g(v) = 0}.

We need to introduce some other concepts for a family {gi}ier of functions in L%(G).
We say that {gi}ics is a left nonzero divisor in L*(G) if, for any f€L*(G), g;*f=0, for all
i€/, implies f = 0. Note that g, f€L?(G) implies g*f€Cy(G), the space of continuous
functions vanishing at infinity on G.

Let V({gi}ics) denote the smallest closed left translation invariant subspace of L%(G)

containing {g; : ¢€I}. That is,

V({gitier) = < {L:g: : z€G, i€l} >
= ({L.g: : z€G,icl}*+)*.

Let
FV({giticr) = {g: 96V ({gi}ier)}

= < {Lg; : z€G,iel} >
= ({&4; : z€G,iel}*)*.
The following proposition brings these concepts together.
Proposition 4.10. Let {g;}:cs be a family of functions in L¥*(G). The following conditions
are equivalent.
(a) V{{g:}ier) = L*(G)
(b) FV({gi}ier) = HX(G)

(c) {gi}ier is a left nonzero divisor in L2(G)
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(d) {gi}ics is strongly supported on G
Proof. (a) <= (b) is clear since F is a unitary map onto H2(G).
(a) <= (c). For g, feL?*(G).

g+f(z) = /G o) f(y~'z)dy

= [ 9 F G vy
G
= [ 9@ F )y
G

=< L,_.-xglf‘ >.

Suppose g;*f =0, for alli€l. Then f* LL_-.g;, for all z€G, i€ which implies f* LV ({gi }ier)-
If V({gi}ier) = L*(G), then we must have f* = 0 and, hence, f =0. Thus, (a) implies (c).
Conversely, suppose (c) holds and f LV ({g;}ic;). Then < L.-:9i|f >= 0, for all z&G and
t€l. Therefore, by the above computation again, g;+f* = 0, for all icI. By (c). this implies
f*=0:s0 f =0. Thus V({g:}icr) = L*(G).

(b) <= (d) follows easily from the definition of strongly supported.

Recall that G has a fixed discrete subgroup I' and a subspace X of L2 (G) is called left
shift invariant if L,XCX, for all v€I. For ¢€L?(G), V(¢) denotes the smallest left shift

invariant closed subspace of L?(G) containing ¢. So

V(¢) = <{L,¢:1el} >

= ({Ly¢:yel'}H)*.
Define V; = 07V(¢), for all jEZ. Recall that ¢ is refinable if VoCV; (then V;CVi4, for all

JE€2Z). Define
¢i(z) = 6{;/2¢(aj(:c)), for any zeG, j€Z.

Theorem 4.11 (Density of the union). Let ¢ be a refinable function in L?(G) and Vi, j€Z
defined as above. Then the following are equivalent:

(a) UjezV; = L*(G)
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(b) {#;};jez is a left nonzero divisor in L*(G)
(c) {9j}jez is strongly supported on all of G.
Before proving Theorem 4.11, we present two preliminary propositions.

Proposition 4.12. Witk ¢, ¢;, V;, for j€Z as in Theorem 4.11, we have

Vi = < {Lx¢; : \éa~IT'} > and, hence, V; is invariant under shifts from the discrete sub-
group a=JT.

Proof. The map o : L*(G)— L*(G) given by og(z) = 6s/*g(a(z)) for z€G, gcL*(G) is a
unitary operator. For any j€Z , v€I’ and z€G,

0 Ly¢(z) = 82/2L¢(c (z))
=82 p(v ' (z))
=82¢(cd (@ (v })z))
= La-1(+)%5(2).

Thus, the unitary ¢/ maps V; onto V; and the generating set {L,¢ : v€I'} onto {Lrgj :
A€a~IT}. This proves the proposition.

Proposition 4.13. Let V;, jEZ be the nested sequence of closed subspace of L?(G) as in
Theorem 4.11. Then 016_2‘7] is a left translation invariant subspace of L?(G).

Proof. Let X := UjezVj- Then, for any j and A€a~’T, we have that A€a—*T for all
k>j. By Proposition 4.12, V; is invariant under Ly and V; is invariant under L,, for all
k>j. Since the union is nested ( V,CV,.; ), X is invariant under L. Thus, X and X are
invariant under Ly for any A€U,cza™T.

For any feX, LyfeX, for all /\eujeza“j I'. By continuity of the left regular represe-
tation in the strong operator topology and denseness of Ujeza™ T, Lo f€X, for all z€G.
Thus. X is left translation invariant.

Proof of Theorem 4.11. Proposition 4.12 and 4.13 imply that m = V({¢j}jez)-
Thus. Theorem 4.11 follows directly from Proposition 4.10.
Continuing with the set up of Theorem 4.11, let P; denote the orthogonal projection of

L?*(G) onto V. If j<k, then P;P; = PyP; = P;. We have the following corollary of 4.11.
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Corollary 4.14. If {¢;};cz is o left nonzero divisor in L*(G), then for all FEL*(G),
limj o [[P;f — fll = 0. That is, the Pj converge to the identity operator in the strong
operator topology in L*(G).

5 Sufficient conditions of the density property

In this section, we develop a number of conditions on a refinable function ¢ that are sufficient
for the union of the associated nested sequence of subspaces, UjezV;. to be dense in L*(G).
By Theorem 4.11, we have two conditions, (b) and (c) of 4.11, to work with. We are looking
for easily verified conditions on ¢ that imply {¢;} jez is a left nonzero divisor in L?(G) or
is strongly supported on G. We will develop these sufficient conditions one by one and then
gather them into a single summary theorem.

We begin by seeing how the automorphism a moves sets in G. For any represetation 7
of G, let #® = moa. That is, 7®(z) = n(a(z)), for all zeG. Likewise, 77 = moa~!. It is
easily checked that 7 and 7' are (strongly continuous unitary) represetations of G and
that the following properties hold:

(i) (@)™ = (o) =

(ii) #¢ = n& if and only if m;~m»

(iii) 7@ is irreducible if and only if 7 is irreducible.

Then (i), (ii) and (iii) imply that there is a well-defined bijection, also denoted w— 7, of
G onto G. For Type I unimodular second countable groups such as G, the o-algebra of the
Plancherel measure x can be taken to be the Borel subsets related to the Fell topology (see
[Fol}, Chapter 7 for these concepts). What we need about this topology here is that a net
{m} in G converges to 7€G if and only if, for any £€H,, there exist €M i =1, --,n.,
for each t such that n

Zl < m(z) 1€ > — < m(z)ElE >

i=

uniformly on compact subsets of G. From this it follows that m,—= if and only if ngf—7=.

Thus, 7—7° is a homeomorphism of G. All we need in this thesis is that this map is a
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.. . . . -1
measurable bijection with inverse r—n2™'.

For a subset ECG, let a(E) = {xo"" : mE€E}. Define a new measure u, on G by
ba(E) = u(a(E)), for any measurable ECG.

So for any integrable function F on G,

JFa®)du(r) = [ F(mdpalm).
G G

Proposition 4.15. If u is the fired Plancherel measure on G, then

l‘a=5¢;lﬂ~

Proof. The Plancherel Theorem, listed in Section 3.7, says that, for f, geL3(G)NLY(G),
| 1@5@ dz = [ erlatn)* f(o)] dust)

and this uniquely determines the measure u. In order to track the effect of a, define for

fEL?*(G),
af(z) = fla™(z)), for all zeG.

Then. for feL?(G)NLY(G),
&f(m) = /G &f(z)r(z) dr

=/;f(a'1(:z:))1r(a:)d:z:
=t [ f@)m(a(2) do
=t [ f@)7() do
= af(”a)-
For f, g€ L*(G)NL'(G), we then have

/ af(z)ag(z) dz = ﬁtr[@(w)‘@(w)] dy()
G G
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I
S~

82 5tr[§(7r°)‘f(1r°)] du(r)

82 [ trlo(m* fm)] disa(m).

On the other hand,
[ a1@F5() dz = [ @ @)7(e (@) da
G G

= & /G f(2)5(z) dz.

So
/6 tr{g(m)* ()] diga(r) = 651 fG £(2)3(z) dz

= 57! /Eitr[g(wrf(wn dy ().

This implies that u, is the Plancherel measure associated with a new Haar measure on G
(6z' times the original Haar measure) and that uo = 654

From Proposition 4.15, we get the change of variable formula for integrable functions F
on G,

JLF(x®) du(x) = 65 JF () du(m).
G G

Proposition 4.16. Let feL?(G) and Q be a measurable subset of G. Then [ is strongly
supported on Q if and only if af is strongly supported on a(Q).
Proof. For FEH2(G), let a1 F(r) = F(x°™"), for all 7€G. Note that FeH2(a(f)) if and
only if a~1 FEH2(Q).

Now suppose f is strongly supported on Q. Let FEH2(a(R)) be such that

< 2&f|F >=0, for all z€G.

That is,
0= ﬁtr[F(w)'f:(n)Ef(w)] du(m)
G

= 8 [ rlF(n)"n(z) f(x®)] dus()
G

o4



=/atr[F(w"'l)‘n"-l(z)f(?r)] du(m)

= étr[FF(w)'aWz)(w)f(nn dy(r)
=< a:l\(:z:)flc;:‘F >, for all zeG.

Since a~!(z) runs through G as z runs through G and f is strongly supported on ,
a-1F = 0 which implies F = 0. Thus, &f is strongly supported on a(Q). The converse
follows from the same argument applied to a~!.

A measurable subset Q of G is called a-absorbing if 4(G\U,cza’ () =0.
Proposition 4.17. Let ¢€L?(G) and suppose Q is an a- absorbing subset of G such that
the following two conditions are satisfied:

(i) ¢ is strongly supported on Q.

(i) (m) = 0, for a.e., TeG\Q.
Then {¢;},cz is strongly supported on G.
Proof. Because of (ii), pcM?(2). Using the fact that ¢; = 67/2=1¢, we see that @j is
strongly supported on a~7(f2) and ¢;€H2(a?(2)), for any jEZ. Let P; denote the projection
of ?{2(@) onto H?(a’(2)). Since Q is a-absorbing, V,czP; is the identity operator on 7-[2(6’).
Also ’Pj:id;j = .i:qgj, for any z€G and jeZ.

Now suppose FEH*(G) and < £¢;|F >=0, for all z€G, jEZ. Then, for each j€Z,

< iéjl'ij >=< 'Pj:izd;le >
=< £¢;|F >
=0,

for any z€G. jEZ. Since ¢; is strongly supported on o (), P;F = 0, for each j€Z. Since
VjezPj is the identity operator, this implies F = 0. Thus, {¢; };ez is strongly supported
on G.

Proposition 4.17 gives conditions (i) and (ii) that, when combined with refinability of
a function ¢, is sufficient for ¢ to generate a multiresolution analysis. However, checking

that (i) and (ii) hold requires very detailed knowledge of G and H%(G). If G is abelian, we
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have enough knowledge (in fact, (i) and (ii) can be combined to something like supp(@)=9
in the abelian case). Let us turn to properties that imply condition (b) of Theorem 4.11.
Recall that if g€L'(G) and feL?(G), then g*f€L*(G) and |lgef|2</igl1/lfll. A se-
quence {gn :n =1,2,3,---} in L'(G) is called a left approximate identity for L2(G) if
lim |lgn*f — fll2 =0, for all fEL?(G).

n-—+00

Note that left approximate identities for L2(G) exist in great abundance as the following
proposition shows.
Proposition 4.18. Let g€ L'(G) such that the support of g is compact, 920 and [ g(z) dz =
1. Define gn(z) = dgg(a™(z)), for z€G, nEN. Then {gr:n=1,n=2,n=3, .. -} is a left
approrimate identity for L*(G).
Proof. Since [; gn(z) dz =1, for any f€L?(G),

gn*f(y) ~ f(y) = ﬁ 9n(z)f(z~'y) dz — / 9n(2)f(y) dz
G G

= /;gn(:z:)[f(.’l:-ly) - f(y)] dz
- /G 9n(2)[Lzf(y) — f(y)] dz.

There is a generalization of Minkowski’s inequality that applies to integrals (see Dunford
and Schwartz, VI.11.13). Applied here, it says

lgnsf — fila = { /G lgnf (¥) — F(0)[? dy}/?

={ /G l /G [Lef(y) — f(W)]gn(2) da|? dy}*/2
< /G { /G ILzf(y) — fW)? dy}ga(z) d=
= /G ILzf = fll2gn(z) dz.

Let K be a compact set so that g(z) = 0 for a.e., z€G\K. For any ¢ > 0, there is a

neighbourhood U of e in G such that
Lz f — fll2 < e, for all zeU.
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This is simply the strong operator continuity of the left regular representation. Since o™}
is a contractive automorphism of G, there exists an ng€N such that a "(K)CU for n>ng.
But the support of g, is contained in a™™(K) so n>ng and gn(z)5#0 implies || L. f — flla < €

for a.e., z. Therefore, n>ng implies

lgn>f — fll2< /G ULz f = flizgn(z) dz

Sefcgn(Z) dr = ¢.

Thus, {gn : n =1,n=2,n=3,---} is a left approximate identity for L?(G).
Now suppose ¢€L'(G)NL?(G) is a refinable function, we have ¢;(z) = §2/2¢(a’(z)), for
z€G and all j€Z. Let’s take the forward half of this sequence and renormalize it to have

constant L!-norm. Let

n/2
gn = (—a.—.)¢n, forn = 1,71:2’11 =3’....

il

If {gn:n=1,n=2,n=3,---} happens to form a left approximate identity for L2(G), then
{®;}jez is a left nonzero divisor in L2(G). To see this, suppose f€L?(G) and ¢j*f =0, for
all jeZ. Then

n/2

n"‘ —4 —Q—- n =0, =1, =2’ =J,---.
gn*f (”¢“1)¢ «f=0, forn=1,n n=3

But g,+f—f in L?(G), so this forces f = 0.

We have established two distint kinds of sufficient conditions for a refinable function ¢
to generate a nest of subspaces whose union is dense in L?(G) and we formally put these
conditions in a theorem.

Theorem 4.19. Let ¢ be a refinable function in L2(G). Let V(¢) = < {L,¢:~v€l'} >
and V; = o/V(¢), for j€Z. Let ¢; = 0l for jeZ. If ¢ satisfies either of the following

conditions

(i) @ is strongly supported on an a-absorbing subset Q of G and é(r) = 0, for almost
all 7eG\Q,

or
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(11) ¢ has compact support in G, $>0 and ¢#0,
then m = L%(G).
Proof. (i) implies U,cz V; = L?(G) by Proposition 4.17 and (ii) implies Ujez Vi = L*(G)
by Proposition 4.18 and the discussion following its proof.

To illustrate how condition (ii) in Theorem 4.19 might be useful, we consider the possi-
bility of the system (G.TI'.a) having a self-similar tiling.

For the Euclidean group R? with lattice Z¢ and a being dilation by 2, the standard tiling
by unit cubes is self-similar in the following sense. If T = [0, 1), then R? = (J,cz4(T + n),

a disjoint union and
2T = UuEF(T -+ n),

where F is a certain finite subset of 2¢9.

In our general situation. a measurable subset T of G will be called a tile for (G,T) if T
is compact and G = |J,¢r 77T, a disjoint union . If T is tile for (G,T") and there is a finite
subset F’ of I" such that

o(T) = | T,
YEF

then T will be called a self-similar tile for (G,T, a).

Theorem 4.20. Suppose T is a self-similar tile for (G,T,a) and let ¢ = ﬁ.l%ﬁxp where
|T| is the Haar measure of T. Then ¢ generates a multiresolution analysis for L2(G).
Proof. As usual V(¢) = {L,¢:v€l} and V; = o7V(¢), for j€Z. We check that the
{V;},cz satisfy all the conditions of Definition 4.8.

Since
ol (z) = 65 2¢(a"(z))
1 -1
= WXT(G (z))

_ 1
8%\ T|1/2

1
= — T(z
8a/*|T |12 2 erXo(@)

Xa(T)(Z)
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1 -1
= —_—m——— A
ST 2 pxr(r7'a)

= 5;1/2Z7GFL7¢(I)’

we have. by applying the unitary operator o,
— 5172
=053 Lo(Ls9).

Thus, VoCVi and V; = 07VpCo?V; = V4, for all j€Z. This verifies condition (i), in other
words ¢ is refinable, of 4.8.

Condition (iv) and (v) of 4.8 are immediate and condition (vi) holds because T is a
tile for (G,T’). Condition (iii), iutersection triviality follows from (i),(iv),(v) and (vi) by
Theorem 4.9. Finally, condition (ii), union density follows from Theorem 4.19 (ii).

Using some work of Strichartz [Str], we will see in the next chapter a concrete construc-

tion of a self-similar tile in the Heisenberg groups.
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Chapter 5

Multiresolution Analysis on

Heisenberg Groups

1 Introduction

In the present chapter, we shall consider the concrete example of building a left MRA on the
Heisenberg group HY. This is a simply connected nilpotent Lie group whose irreducible rep-
resentations are classified by the Stone-von Neumann Theorem. More precisely, up to uni-
tary equivalence it has two kinds of irreducible representations: (i) infinite-dimensional irre-
ducible representations which can be parameterized by one-parameter: (ii) one-dimensional
irreducible representations. We shall see shortly that the one-dimensional representations
have no contribution to the Plancherel formula and Fourier inversion transform because
they form a set of representations that has zero Plancherel measure.

This chapter can serve as a concrete example of our theory. Our main contributions are:
(i) For the Heisenberg group HY, we set up a multiresolution analysis on H? by applying
the theory developed in Chapter 4. (ii) We also investigate the existence of scaling functions
for the Heisenberg groups. These scaling functions are related to certain self-similar tilings
of HY. We obtain a theorem on Heisenberg groups which says that there exist orthonormal

wavelets for the space L2(H?).
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In §5.2 we summarize the Fourier analysis on H? for the convenience of the reader. For
further information, see [Ge] and [Ta]. In §5.3 we build an MRA on HY by directly applying
the theory built in Chapter 4. In §5.4, we investigate the existence of scaling functions for
the Heisenberg groups. These scaling functions are related to certain self-similar tilings of
H¢, that is, the corresponding scaling functions are characteristic functions of appropriate
sets. We generalize the construction of Strichartz’s self-similar tiles for Heisenberg groups
to a more general case. In §5.5, we consider the existence of orthonormal wavelets for

Heisenberg groups H?. We show that the orthonormal wavelets do exist in space L?(H¢).

2 Fourier analysis on a Heisenberg group H¢

The Heisenberg group H? is a Lie group with underlying manifold R24+!. We denote points
in HY by (ti.qi, pi) with t;€R, i, EGR", and define the group operation by

1
(t1.q1,p1) (82,92, p2) = (1 + t2 + 5(&-q_2—&-q_1),q_x+q_2,gx_+&)- (5.1)

It is straightforward to verify that this is a group operation. with the origin 0=(0,0,0) as
the identity element. Note that the inverse of (¢, ¢,p) is given by (—t, —¢,—p). It is also
easy to show that Lebesgue measure on R?¥*! = H¢ is left invariant and right invariant
under the group action defined by (5.1). Thus Lebesgue measure on R24+! gives the Haar
measure on HY, and this group is unimodular.

We define the following map
m1(t, g, p)f(z) = eHIZHIR/D £ (1 4 p), VfEL?(RY).

Then it is proved that = is a group homomorphism and a irreducible unitary representation
of H?. For details, see [Ta, Theorem2.1, chapter 1].
Now we construct other irreducible representations of H? on L2(R?) by using , (Z, q.p).

The first observation is that, for any A > 0,

5.y HE—HY

61



defined by
d:a(t, g, p) = (At, £|A[Y3g, |A]/?p),

or equivalently,
dr(t.q,p) = (A, [A|Y2signag, [A|'/?p),

is an automorphism of HY. It follows that, for each such A\#0,
mA(h) 1= m (61h), VhecH?

defines a representation of H? on L?(RY). Since for each A#0, the set {mA(h) | heH? }
coincides with the set {m;(h) | h€H? }, it is clear that each representation ) is irreducible.

Observe that
ma(t, g, p) = el(tA+IAI/Zsignag-X+1A]'/?p-D)

is given explicitly on L2(R9) by
mA(t, @, p)f (z) = e+ EsimAg z4Ag /) £ (5 4 312, (52)

Except for the infinite-dimensional irreducible representations above, there are also the

following one-dimensional irreducible representations of H9:
mem (¢ g p) = " ETTID), (53)

It follows from the Stone-von Neumann theorem and Kirillov theory [see [CG] §2.2 for
details| that the representations given by (5.2) and (5.3) exhaust the irreducible represen-
tations of H?. On the other side, no two different representations of H? given by (5.2) and
(5.3) are unitarily equivalent. In fact, suppose that there exists a unitary operator u such

that
umy, (h)u™! = my,(h), YheHY, (54)

for A;#A2. Let h = (¢,0,0), we see that (5.4) implies

ue iyl = g2t wicR,
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and since e** is scalar, this implies ei*1t = ei*2¢ for all t€R. Hence Al = A2. Therefore, we
can write H? as {m | AeR\{0} }U { m(e.p | (£, m)ER?xR }.

Let LP(H?) be the space consisting o; ;ll the measurable complex valued functions on HY
with [ya [f(R)[Pdh < co, where dh represents the Haar measure on HY. When p =2, L2(HY)
becomes a Hilbert space with inner product defined by < fi.f2>= [ga N1 (k) f2(R)dh for

f1. f26L*(H?). We associate to a function f in L2(H4)L!(H%) a “Fourier transform”
F(mem) = / / /H f(t. g, p)e’€ T 1V dtdgdp, V(€ n)eR?xR?

and
Ff(my) = /H f(h)ma(h)dh, YAER\{0}. (5.5)
For short, we write F f(A) instead of F f(x,). Then we have:
o P ®Fdh =g [T IF £ rsIAar. (56)
He df HS

This is called the Plancherel theorem for the Heisenberg group. [Ta] gives a proof of this
formula, see [Ta, Theorem 2.6, Chapter 1]. But the author did not say what c4 is there.
The following computation shows that c; must be (27)~(4+1). We shall see shortly that
the Euclidean Fourier transform plays a decisive role in this computation. Let’s briefly go

through the definition of the Euclidean Fourier transform. The Euclidean Fourier transform

is defined by
f@ =@m 2 [ f()e=tdz, for feL*(RY).

Its Fourier inversion formula is
f@) = @my [ f©e 2, for feL*(RY).
The Plancherel theorem for Euclidean space is
27 FoeVI242
Joe F@NPdz = [ 1@z,

Let’s denote the Euclidean Fourier transform of a function f on RxRYxR? with respect

to its first. second, and third arguments by F, f, F, f, and F3f respectively. Thus, we have

Fa2f(t, €, p) = (2m) /2 /R , f(t.q,p)e€dg, etc.
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We know that Ff()) is an operator on L2(R%) given by
[ff(,\)u](g) = /;1/;{4 - f(t,g, E)e"("“"/WSign'\gi*\/m’!Q)u(g)dtdgdg,

where u(z)eL?(R%).
Hence, by (5.2), we have
[F£(N)u](z)

=/ /R | f(tgp)eOes VINSIERA G0/ (¢ 4\ [N |p)dtdgdp
s a.p p)dtdgdp
= (2m)'/? /R ) /R T g, p)eVINSIER D 0022y (¢ +  /{Xip)dgdp
1
— 1/2 -
02 [ foFIOg = -2)
ei(\ﬁ,\—lsign,\g-g ei(g\/msigmg-(;_,—g) ) [A|=9/2y (v)dqdy

1 (1 i
— -d/2 1/2 I AP i(3/|Alsignag-(y+z))
A2 [ fo PO Ty = )Y u(y)dgdy

= lAl_d/2(27f)(d+l)/2 /;ld FiFaf (A, %\/i/\_lsign/\(g +y), ﬁ(g - g))u(g)dg.

Now. since the squared Hilbert-Schmidt norm of an operator
Au(z) = /R LAz, y)uly)dy, for ueLX(RY)

is
/ / [A(z, y)|°dzdy.
R¢ JR¢

u = /[XsignA(z +y)
v= 75—z

together with the Euclidean Plancherel theorem gives

Then the substitution

IFF Nlls
= N~em @ [ [ IRRfO 3/ NsigaAz + ) T~ 2)ldady
=@n@ [ [ 1FF Sy ) Pdude
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=Aem @ [ [ 170, p)*dgdp

Multiplying both sides by the factor |A]¢ and applying the Euclidean Plancherel theorem

again, we obtain the Plancherel theorem for the Heisenberg group:

[ IFF O siaar

=eme [ [ Jfou 1A g, p)Pdrdadp

= @m) @D [ |f(h)Pdh.

Therefore, cq = (2r)~(d+1),

(5.6) enables one to extend the Fourier transform to L?(H%). Note that polarization of

(5.6) gives
Joge TR = @m) 4D [ el(F 1y () F AN (5.7)

Let { O, | neN } be a neighborhood base at a element k in HY. F-. each n, let ¥, be a
function such that supp(yy) is compact and contained in On, %20 and [ ¢, = 1. Suppose

f in (5.5) is the sequence { ¥, | nEN } and pass to the limit, we have
Fon(ma) = ma(h),

where 4y, is the point mass at A. Similarly, let f, in (5.7) be ¥, and pass to the limit, we

get the following Fourier inversion formula for the Heisenberg group:
+0o0o

F(k) = (@m) =D [ eri(my(h)* FF(N]IAIaA.
—o0

where the integral converges absolutely and uniformly for heHY. See [Ge] for the proof.

If f1 and f; are two functions in L!(H?), the convolution fi1=f2 is defined by
— -1
hefao) = [ filWfa(h~g)dh.
It is easy to check that
F(f1xf2)(A) = FA(A)F fo(A), YAER\{0}.
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We remark that the representations (5.3) have no contribution to the Plancherel for-
mula and Fourier inversion transform because this set of representations has zero Plancherel
measure. In other words, Plancherel measure g on H? is given by du(my) = [A|%dX,
dp(me,q) = 0. That is, (2x)~(4*D|A|? on R\{0} is the Plancherel measure on the set

of equivalence classes of irreducible unitary representations of HY.

3 Multiresclution analysis on the Heisenberg group

In this section, we build an MRA on H? by applying the theory developed in Chapter
4. From the definition of an MRA, it is clear that an MRA is determined by the scaling
function ¢. One fundamental question concerning an MRA on H¢ is whether there exist

scaling functions. We are going to see that the answer to this question is in the affirmative

in the next section.
In analogy with the role of Z¢ in the multiresolution analysis of L2(R?), we choose the

following lattice subgroup I' of H? which plays the role in H? that Z94 plays in R%:
F'={(/2,m,n)|l€Z, m, neZ?}.

It is easy to check that I forms a group under the group operation (5.1). Similarly, for
h€H?, we define the left translation operators Lj from L?(H%) to L?(HY). We also have
the following similar terms such as left shift-invariant subspace and so on. It is easy to

check that the map a from H? to HY given by
a(t,q,p) := (2%¢,2q.2p)

is a topological automorphism of H? and o~! satisfies the contractive property. Also,
UJEza‘jI‘ is dense in HY. With this a, we form the following unitary operator from
L2(H?) to L*(HY)

o: L}*H%)— L*(HY),

which is given explicitly by
o f(t.q.p) :=2%*'f(a(t.q, p)) = 2%+l (2% 2q. 2p).
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For ¢€L?(H?), we denote V(¢) to be the smallest closed left shift-invariant subspace of
L?(HY) containing ¢. We say that ¢ is refinable if V(¢) is. We say that V is refinable if, for
any feV,o ! fisalsoin V. It is straightforward to verify that L2(HY) is left shift-invariant
and refinable.

Let Vo = V(¢) and V;=07V; for j€Z. If ¢ is refinable, then{V;|j€Z} forms a nested
sequence of closed subspaces of L?(HY). Since U;cza 7T is dense in HY, V = UjezV; isa
closed left translation invariant subspace. By theorem 4.11 in chapter 4, UjezV; = L2(HY)
if and only if {¢;} ¢z is strongly supported on R. If in addition, the the left shifts of ¢, that
is, {L,¢ | v€T }, constitutes a orthonormal basis for Vo, then by the intersection triviality
theorem 4.9, we have ;.zV; = {0}. Therefore, {V;}jez forms a multiresolution analysis
of L2(HY).

Recall that ¢;(-) := o7¢(-). We have the following statement: F ¢;(A) =
Fo(2727A). It is easily checked.

The following is a very simple sufficient condition for m = L?(HY) to be true.
Theorem 5.1. Let ¢ be a function in L2(H9), let V; be the o’ -dilate of V(¢). Assume that
{Vi},ez is nested. Then m = L?(H?) if there ezists a neighborhood E of 0 in R such
that the function ¢ is strongly supported on E and #(A) =0 for a.e. A not in E.

Proof. Since ¢; = a¢(-),

F6i0) = sy Pl
Suppose E is some neighborhood of the origin and ¢ is strongly supported on E. Then by
the above computation, ¢; is strongly supported on 2-2/ E. Hence we obtain that {¢i}jez
is strongly supported on R*, since U,;cz2 % E = R*. By theorem 4.11, UjezV; = L2(H?)
holds. This yields the result.

4 The existence of scaling functions for the Heisenberg groups

In the last section, we built an MRA on HY under the assumption that scaling functions
are present in L2(H?) by using the theory established in the previous chapter. This section

is concerned with the existence of scaling functions for the Heisenberg groups H%. Looking
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at the definition of an MRA, we see that the scaling function for an MRA is the starting
point for constructing an MRA. With a scaling function ¢, we first form V5 = V(¢) using
left translations, then form V; = 07Vy, j€Z using the dilation operator. Thus, the first
question we have to answer is whether there exists scaling functions for H?. In this section,
we are going to show that the scaling functions for H? do exist. These scaling functions
are related to certain self-similar tilings of HY, that is, the corresponding scaling functions
are characteristic functions of appropriate sets and the dilated tile consists of finitely many
translates of the original tile.

We recall the notion of self-similar tiling. We have the standard tiling of Euclidean
space R? by unit cubes. Each tile is a translate of a single tile by an element of the lattice
subgroup Z9. If we dilate a tile by a factor 2, then the enlarged tile consists of 2¢ original
tiles. The generalization of the above leads in many cases to interesting self-similar tilings
with fractal boundaries. For example, for two dimensions, the fractal twin dragon tiles
are constructed in Gréchenig and W.R.Madych [GM]. As for Heisenberg groups, which
have both dilations and lattice groups, in order to construct the analogue of the cubic-like
tiling, it seems that the tiles with fractal boundaries are the only choice. Such self-similar
tilings are present for a class of nilpotent Lie groups from the work by Strichartz [Str]. In
the following, we generalize the construction of Strichartz’s self similar tiles for Heisenberg
groups to a more general case and then prove that the existence of self-similar tilings for
Heisenberg groups implies the existence of scaling functions.

We restrict ourself to constructing special self similar tiles named stacked self similar
tiles. The fundamental idea to construct such self similar tiles for H is the following. Since
HY~R xR, we first obtain self similar tiles A for the subspace R?¢. Then over A, we build
self similar tiles in the central direction R. This means that we can decompose the process
of constructing self similar tiles for H? into two steps: first constructing in the direction
R?¢ then in the direction R. From the work by [GM], we knew that there are an abundance
of self similar tiles in R??. Question is, given a self similar tile in R2?, can we construct a

self similar tile for H? in this way. In the following, we are going to see that, under certain
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conditions, whenever we got a self similar tile for R?? we can always build a self similar
tile for H?. These special self similar tiles are called stacked self similar tiles because the
whole space HY is tiled by infinite many stacks of tiles on R29.

Let ' = { ({/2,m,n) | €2, m, neZ? }. It is a lattice subgroup in HY. We say that a
automorphism a of H? is dilative for I if a(T)cT, [T : o(I')] < oo and a dilates in all
directions. Bring back in mind that dilativeness of a (or contractiveness of a~1) is a basic
requirement in defining an MRA. From the book [Fo2] , we know that every automorphism
a of H? can be uniquely decomposed as a product of four factors ajmazay, with a; €G;,
where G; is defined as follows: G, denotes the symplectic group sp(d,R); G» consists of

inner automorphisms:
(c.a.b)(t,g,p)(c,a,b)"" = (c+ap-bg,q.p)
G3 consists of dilations 6{r] defined by
é[r] (¢, q, 2) = (r2t, rg, rg_));
and G consists of two elements, the identity and the automorphism i defined by
i(t.0:p) = (~¢.p, @)

Since we confine ourselves to building stacked self similar tiles for H associated with I and

a. such a a can be written as a;a3ay. That is,
C!(t, g:g) = (T'at, Da(_Q_vB))’ (5'8)

where r, is some integer and D, is a dilation operator from R?¢ to R24.

For simple notation reasons, let’s use (¢, z) to denote the element (t.q,p) in the Heisen-
berg group, that is, £ = (¢,p)€R?? and use (I/2,a) to stand for (/2,m,n)el. Then the
group law becomes

(t.z)(t', ) = (t+t + S(z.Z),z + L)

where S(z,z') = ((¢.p). (¢ P)) =1/2(p-¢ — g-p’) is a skew-symmetric bilinear form from
R??xR% to R.
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Suppose that there exists a tile A in R?9, that is, A is measurable and

A(Y(k+ 4) =0 for k#0, k€Z* and | J, ., (k + A) = R*.

EeZ'.’d

Thus, the Lebegue measure of 4 must be 1, see lemma 1 in [GM]. Also suppose that A is

a self similar tile corresponding to the dilation D,, that is,
3 - - -
Dy(A) = Ui=1(1—c—‘ + A) disjoint union,

where k;, k;, ---, kg are lattice points that are representatives of distinct cosets in
Z24/D,(Z%).

Now, we are going to construct a self similar tile for HI=RxR?? associated with a
based on the given self similar tile 4 related to D,. Before we do this, first we introduce
some useful notations. Since the measure of A is 1 and the disjoint union Ukezz24 (kK + A) fill
out the whole space R?¢, we could arrange a one to one correspondence between the lattice
points in Z?? and the tiles. Or simply speaking, without loss of generality, we can assume
that each tile only contains one lattice point. For zeR2?4, we use [z]1 to denote the lattice
point that corresponds to the tile which contains z. Let <z > =z - [z]4€A.

Let F be a bounded measurable real-valued function defined first on A and then extended
periodically to the whole space R24. Thus, we have F(z) = F(< £ >4). We are going to
produce a tile, denoted by T, for the Heisenberg group H? as follows:

T={(t,z)eH" | z€A,0<t - F(z) < 1/2 },

where F is to be determined later. To get a geometric picture for T, we can view F(z) as
a piece of surface over A. So we can think of T as a solid over A bounded between two
surfaces F(z) and F(z) +1/2. Thus the volume of T is equal to 1/2. So in some sense, we
can think of the “thickness” (in the direction of t-axis) of tile T as 1/2.
For an element v = (I/2,a)€T, the image of T under the left translation by < is given
by
1T = { (t,z)€H? |z — a€A,0<t — /2~ S(a,z —a) - F(z) < 1/2 }.
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To show that (U, T is a tiling of H?, we need to check two things. (a) U,erT is a disjoint
union. (b) U,r T fills out the whole space H?. For (a), if a#d’, then (1/2,a)TN(1/2, a\T =
0 since the image (I/2,a)T of T is in a stack of tiles lying over the tile (0,e)T. Ifl and ! are
different integers, then (I/2,a)T and (I'/2,a)T are two different tiles in one stack located
at tile (0,a)T, but (I/2,a)TN(!"/2,a)T = 0 since the thickness for each tile is 1/2. As for
(b), for any (t,z)eH?9, there exists a unique element a€2Z?? such that £ — acA. And also

there exist a unique element /€Z with the property
0<t—-1/2—-S(a,z-a) — F(z—a) <1/2.

A stacked tiling is called self-similar if there exists a finite subset [y of " such that

aT = Uvero7T

or equivalently
_ -1
T =| l_yeroa (~T).

Here. Iy is 2 finite subset of lattice points.
Now. we can start constructing a self-similar stacked tiling related to the given tile 4 in
R From the explanation above, we know that the key point is to determine the surface

described by the equation t = F(z) on A. We start by choosing
FO = { (C’LC‘_-) I‘L= 1729“'731 and c = 0,1/2,1,3/2,---,(7'0 - 1)/2 }'

Then we have
Lemma 5.2. U, T is a self-similar stacked tiling for H? with the above choice of the
finite set T'g if and only if the function F(z) on A satisfies

F(z) = %F(< Da(z) >.) + %SGDQ(Q)JA, < Da(z) >4).

Proof. By the choice of I'y, we have

U_yero'yT (disjoint finite union)
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= {(t:2) 1 2€Da(4) = UL, (ks + 4) and 0<t ~ S([zla, < 2>4) - F(<z>4) < 2

= {(0:2) | 2€Da(4) = J_,(ku+4) and 0t~ —S(fzla, < 2 >a)~ - F(<z>4) < 5 }

Geometrically speaking, there are s stacks of tiles in Uyer,?T. For each stack there are o
tiles with “thickness” for each tile 1 /2, so the “thickness” for each stack is Tax1/2. On the
other side,

oT = of (t,z)eH? | z€A,0<t ~ F(z) < 1/2 }

= { (rat, Da(z))€H" | z€A.0<t - F(z) < 1/2 }

= { (t.z)eH? | Do~ (z)€A, Os% - F(DZ'(z)) < 1/2 }
= { (L)€ | zeDa(4) = UL, (ks + 4) and 0= - F(D7'()) < 1/2}.
These two sets are equal if and only if
FD7!(&)) = —F(< £.>4) + —8(izla, < 2 >).
Or equivalently
F(z) = —-F(< Da(z) >a) + —S([Da(@)ls, < Dalz) >.).

This lemma yields the technical theorem below.
Theorem 5.3. For the choice of Ty given above, there ezists a unique self-similar stacked
tiling U, YT for HY. The function Fy(z) is given ezplicitly by

Folz) = 3 ZS(D(@).amod (Da(Z)), < Di(z) >.)
n=l "«

where a lattice point k mod (D, (Z2?)) equals the representative of the coset which contains

element k.

Proof. Define a mapping M from L™(A) to L®(A) by

Mf(z) = =f(< Dal@) >4) + ~S([Da(z)]amod (Da(2%)), < Daz) >4),
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where L°°(A) is a Banach space with the supermum norm. Given f, geL*(4), we have

1M = Mgllzm = | /(< Da(z) >4) = 7-9(< Da() >llzmea

1
S—lf —gllLe(a)-
Ta
So M is a contractive mapping. The completeness of L™(A) guarantees the existence of the
fixed point of M and the contractiveness of M guarantees the uniqueness of such fixed point.

The fixed point, denoted by Fy(z). is given by limp_,co M™ f for any f€L>™(A). Especially,

we have
Fo = Iimn_*ooM"O.
Thus,
0o
L n
Fo(z) = 3_ = S((D3(z)]lamed (Da(Z%)), < Di(z) >.).
n=] "«

This finishes the proof of theorem 5.3.

Examples 1: Our first example produces the Strichartz like self similar tile for HY, see
[Str].

Taking o from H? to H? defined by

a(t,g,p) := (2%¢, 2q,2p). (5.9)

We know that a is an automorphism and it dilates strictly in all directions and o(T)cT’
and [[' : a(T')] < oo, where I' = { (I/2,m,n) | I€Z, m, n€Z? }. The given a comes from

the group G3. Comparing (5.8) with (5.9), we see that
a(t,q,p) = (rat, Dalg,p)) = (4t,2(q,p))-

Thus. 7o = 4 and D, is the dilation operator which dilates by a factor 2. Let 4 =
{ zeR?*! | 0<z; < 1,j = 1,2,---,2d } denote the “half open and half closed standard tile
in the Euclidean space R?4, where z; denotes the jth component of z. Then it is obvious
that (Jsez2¢(A +a) (disjoint union) fills out the whole space R2?. Clearly, A is a self similar

tile. If we choose
Fo={(b,a) [a; =00r1,1<j<2d,b=0,1/2,1 or 3/2 }.
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Then by theorem 5.3, we have the result:
T ={(t,z)eH | z€A,0<t - F(z) < 1/2}

is a self similar tile for H? associated with o defined in (5.9) and the lattice group I, where

F(z) = Y 1=S(D3()]amod (DE(Z™)), < Di(z) >
n=1

F@) =% %S([T‘;]mod 2, < 2"z >)

here, {2"z]mod 2 means ([2"z}mod 2, [2"z2]mod 2, - - -, 2" z,4]mod 2).
Examples 2: Another example is not the Strichartz like self similar tile for H?. This

example is related to the automorphism a given by
a(t, q.p) := (6t, 2q,3p). (5.10)

This a can be decomposed as a = a;a3, where

ai(t,g,p) := (t. \/g_, \/gg)

as(t,q,p) := ((V6)2t, \/gg_, \/-6_2) = (6¢, \/f_ig, \/62).

and

We can rewrite (5.10) as

a(t.q.p) = (6t, Da(g. p)),
where D, is a dilation from R?? to R? defined by Da(g,p) == (24,3p). Comparing with
(5.8), we have ro = 6. Still using the same I' as in the previous example, we choose Iy as

the following

S
[y = {(c.a)|laj =0 or 1 for 1<j<d,a;j = 0,1 0r 2 for d<j<2d and ¢ =0,1/2,1, - - -, 5}.

We still use the set A in the example 1 as a tile for R2¢ related to the lattice group Z%.
Thus the dilated tile by D, consists of 6 original tiles. With this self similar tile in R?¢, by

theorem 5.3 we obtain another self-similar tile in H9:
T = { (t,.z)eH? | z€A,0<t — F(z) < 1/2 }

74



with F'(z) constructed by

o0

F(2) = Y o S([Da"zlamod (Da(Z%)), < Da™z >.),

where [DZz]amod (D, (Z29)) means [2"z;]mod 2, [2"z;]mod 2, - - -, [2"z4jmod 2 and
[B"zg41]mod 3,[3"z4.o]mod 3,---, [3"z24]mod 3.

Generally speaking, whenever an automorphism a from H29 to H2? can be decomposed

a(t'gyg) = (rata DO(Q’B))

and there exists a seif similar tile A in R®? associated with D,, then with this A, we can
always construct a self similar tile in H? associated with a.
The theorem 5.3 guarantees the existence of self-similar tiling for the system (HY,I',a).

Suppose T is such a self-similar tile for (H%,I',a). Let

1
¢ = [Tz XT

where xr is the characteristic function of T'. By Theorem 4.20, the characteristic function
of any self-similar tile for (H%,I',a) guarantees a multiresoluion analysis for L2(H¢). Thus,
we have proven the following theorem.

Theorem 5.4. There ezists a function ¢€L?(H?) such that, if Vo := V(@) = the smallest
closed left '-shift-invariant subspace of L?(H?) containing ¢ and Vj := 07(V), then {V;},cz

forms a multiresolution analysis for L2(HY).

5 The existence of orthonormal wavelets for Heisenberg
groups

This section is devoted to a study of the existence of orthonormal wavelets for Heisenberg
groups HY.
In the last section, we showed that self-similar tilings are present for the Heisenberg

groups from the work by Strichartz [Str]. Such self-similar tilings provide us with scaling
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functions for Heisenberg groups if we consider the characteristic functions of the tilings.
Thus, we can form a multiresolution analysis for L2(H?) by using these self-similar scaling
functions. On the other hand, Baggett and et al. [BC] studied the relationship between
the existence of an orthonormal wavelet and the existence of an MRA for general Hilbert
space based on the formulation of MRA by using methods from noncommutative harmonic
analysis. They obtained four theorems. Their first theorem Theorem 1 guaranteed the
existence of an orthonormal wavelet once an MRA was built on the space. One of the
interesting connections between the last section and the work by [BC] is that an MRA for
L?(H9) in the sense of [BC] can be set up by taking only left translations on H? and the
unitary operator o defined in the last section. Then theorem 1 [BC] concludes that there
exists an orthonormal wavelet for L2(H9).

In the following, we first outline the definition of an MRA and theorem 1 in [BC]. Then
we build an MRA for the space L?(HY). Finally the theorem 1 in [BC] proves that an
orthonormal wavelet exists for L2(H4).

Let H be a separable Hilbert space. Let IT be a group of unitary operators on H and
¢ another unitary operator on H for which o~ !7o is an element of II for every well. It is
easy to check that 0~'IIo is a subgroup of II. Assume that n = [[I,0"'lo] < co. We call
the pair (I, o) an affine structure on H. A (II, o)-wavelet relative to this affine structure is
a finite set { ¥y,---,%, } of vectors in H such that the collection {di(n(:)) ]| —0o<j <
oc. w€ll, 1<i<n } forms an orthonormal basis of H.

The definition of multiresolution analysis of H is as follows:

Definition 5.5. Let (Il,0) be an affine structure on H. An MRA of H consists of a
sequence of closed linear subspaces V;, j€Z, of H with the following properties:

(i) V;CViqy, for all j€Z;

(it) UjezV; = H:

(4ii) N;ezV; = {0}

(iv) Vy is invariant under each well;

(v) V; = o0l Vy;
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(vi) there is a scaling function ¢€V; such that the collection {7¢ | €Il } is a orthonormal
basis of Vj.
Remarks. Comparing between this definition and the definition 4.8, we refer to the
elements 7 of I as translations, refer to the operator ¢ as a dilation.
Theorem 5.6(Baggett and et al.). Let (I1,0) be an affine structure of H and n the finite
indez of I} := o~ !Ilo in [1. Suppose { V; };cz is an MRA of H in the sense of definition
5.5. Then n must be greater than 1 and there erists a (I1, ) -wavelet ¥y,v2,-- -, tpn_1 for

H.
Next, we build an MRA for L?(H?). Let’s start by recalling some notations used in

previous sections. The dilation operator o is defined by
of(t.q,p) := 2%*! f(a(t.q,p))
for any feL?(HY), where a is the topological automorphism of H? given by
a(t.q,p) = (2%, 2q,2p).

The set

L= {(/2,m,n) | l€Z, m, ncZ?}

forms a group under the group law (5.1).
We define the group of unitary operators on L2(HY) as

I:={ Ly | el }.

Let I := 0~ 'llo. Then IT; is a subgroup of I1. The identity 6~ 'L o = L,(») is proved

by the following computation:
o~ Lyof(z) = 27 (Lo f) (o (2))
=27 (o f) (A a" (z))
= 27 @Dl f(a(A7!)-(2))
Fl(@(A) )
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= (Lo f)(z),

for any feL?(HY).
Thus o~ 'HTo = { La(x) | A€T } is a proper subgroup of I and the index of the subgroup
IT, in M is equal to 24+9+2 = 22(d+1)_ o (I1,4) is an affine structure on L2(HY).

Now. let Vj be a closed linear subspace of L2(HY) defined by
Vo ={Lyx¢| AeT' },

where ¢ is the ¢(z) = IT,—I/sz(z‘) with T as a self-similar tile of H?. In other words,
{ Lx¢ | A€l } is an orthonormal basis for Vy. Let V; := 07V;. Then {Vi}jez forms an
MRA for L?2(H?) with ¢ as a scaling function, by Theorem 5.4.

Therefore, by theorem 5.6, we finally have
Theorem 5.7 There ezists a (I, 0)-wavelet Y1,%2,- -, ¥92w+1y_; for the Hilbert space
L2(HY).
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Appendix A

Groups Suitable for Building

Multiresolution Analysis on Them

1 Introduction

In this appendix, we are going to describe some groups on which an MRA can be con-
structed. We know that the class of second countable, type I, unimodular locally compact
groups contains all connected semisimple Lie groups and also all connected nilpotent Lie
groups. However, the conditions of having a lattice subgroup I' and a compatible dilation o
impose strong restrictions. We shall find out that connected semisimple Lie groups are not
suitable for building MRA on them. For connected nilpotent Lie groups, only countable
many are suitable for building MRA on them. Roughly speaking, only those groups which
are close to being vector groups admit the properties for building MRA on them. For the
purpose of this initial study, we restrict our attention to connected groups.

We would like to make it clear that our theory established in Chapter 4 is applicable
to all second countable, type I, unimodular locally compact groups. Unfortunately, some

intrinsic properties in defining MRA prevent some groups from becoming the groups fit for
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MRA. Let us state these essential properties as follows:

e There exists a discrete subgroup I' in G such that G /T is compact,
e There exists a topological automorphisma of G such that (A1)
a(T')CT and U;eza™ T is dense in G.

Recall that a uniform subgroup of G is a subgroup I" of G such that:

(1) T is discrete,

(ii) G/T is compact.

And a lattice subgroup of G is a subgroup " of G such that:

(i) T is discrete,

(ii) G/T has a finite G-invariant measure on it.

But for nilpotent Lie groups and solvable Lie groups, G/T is compact if and only if G/T
carries a G-invariant finite measure. For details, see [Ra, Theorem 2.1 and Theorem 3.1].
Thus. for nilpotent Lie groups and solvable Lie groups, the first condition in (A.1) can be
simplified as “there exists a lattice subgroup I" in G.

We use this key information to give the following definition
Definition A.1 Suppose G is a connected second countable, type I, unimodular locally
compact group. If there is a subgroup ' in G and a topological automorphism of G such
that the conditions in (A.1) above are satisfied, then we call G a scalable group

In this appendix, we shall roughly determine how large this class of scalable groups is.

The requirement of existence of uniform subgroup naturally leads us to restrict our
attention to the class of solvable and semisimple Lie groups because a detailed account of
theory of lattice subgroups of solvable Lie groups and semisimple Lie groups has been laid
out. It turns out that a lattice subgroup often exists for solvable Lie groups and semisimple
Lie groups. See [Ra] for details. But then, one will naturally ask whether solvable Lie
groups or semisimple Lie groups satisfy the second condition in (A.1).

This appendix is organized in the following way. Section 2 contains definitions and
some basic facts about linear algebraic groups, most of which are from [Bo]. Based on the

knowledge of section 2, in section 3, we rule out the possibility for those solvable Lie groups
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which are not nilpotent Lie groups to become scalable groups. Then quoting a well-known
theorem from [Ra], we conclude that, for connected solvable Lie groups, at most countably
many nilpotent Lie groups are scalable groups. In section 4, we exclude all connected

semisimple Lie groups from the scalable group class.

2 Terminologies and Basic facts about linear algebraic groups

The purpose of this section is to establish the language, conventions and some basic results

of linear algebraic groups. We shall not give any proofs for the results. We refer the reader

to the general references [Bo],[Hu] or any other standard textbook on algebraic groups.
Let K be an algebraic closed field of arbitrary characteristic.

Definition A.2 The set K? := KxKx---xK will be called affine d—space over K and

denoted by A®. An algebraic variety in A% or an embedded affine algebraic variety is a

subset in A9 defined by a system of equations:
f(X1,X2,---,X4) =0 (f€S),

where S is a finite collection of polynomials.

Let K[X] := K[X), X2,---, X4] be the polynomial ring in d-indeterminates. Then the
ideal in K[X] generated by a set of polynomials {f,(X)} has precisely the same common
zeros as {fa(X)}. Moreover, since K[X] is noetherian, each ideal in K[X] has a finite set
of generators, so every ideal corresponds to an algebraic variety.

There are two operators: (1) to each ideal I in K[X] we assign the set V(I) of its common
zeros in A%. (2) to each subset SCA4 assign the collection J(S) of all polynomials vanishing
on S.

The following idea of topologizing affine d-space A? turns out to be very fruitful.
Definition A.3 A subset of A? is called Zariski closed if it is an algebraic variety. The
topology on A defined in this way is called Zariski topology.

Naturally, it has to be checked that the axioms for a topology are satisfied: (1) A? and
the empty set are closed as the respective zero sets of the ideals {0} and K[X]. (2) If I, J
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are two ideals, then clearly

vnhyvcvuJa).

To establish the reverse inclusion, suppose z is a zero of I(J, but not of I or J. Suppose
fel, geJ with f(z)#0 and g(z)#0. Siuce fgelINJ, we must have f(z)g(z) = 0, which is
contradiction to the assumption. This shows that finite union of closed sets is closed. (3)
Let I, be an arbitrary collection of ideals, so 3°, I, is the ideal generated by this collection.
Then it is clear that N, V(I,) = V(I, L), i.e., arbitrary intersections of closed sets are
closed.

To have an idea how Zariski topology A looks, let us illustrate a couple of facts. Points
are closed, since z = (z,,z5,---,14) is the only common zero of polynomials X; — z;, X, —
z2.--+.Xq — 4. From the measure theory point of view, all nonempty open sets in A¢ are
very “large”, since it is the complement of a very small “curve”. For example, GL4(K),
the group of all invertible nxn matrices over K, is an open set in A™ defined by the
nonvanishing of det(X; ;). Also notice that the Zariski topology on A™*+™ does not coincide
with the direct product topology on A"xA™. For example, the set in A2 determined by
the equation X; = Xj is closed but it is not closed in A!xAl.

Definition A.4 For an ideal I, the radical VI of I is {feK[X]|fT€l for some o<r}. VI
is eastly seen to be an ideal, it includes I. An ideal is called a radical ideal in K[X] if it is
equal to its radical.

Theorem A.5 (Hilbert’s Nullstellensatz)If I is any ideal in K[X], then VI=J(V(I)).

The Nulistellensatz theorem implies that the operators V and J set up 1-1 correspon-
dence between the collection of all radicals in K[X] and the collection of all algebraic
varieties in A9. We mentioned that every ideal in K[X] corresponds to a algebraic variety
in A?. But note that this correspondence is not 1-1. For example, the ideals generated by
X and X? are distinct, but have the same zero set {0} in Al.

Definition A.6 A morphism of an algebraic variety MCA" into an algebraic variety
NCA™ is any polynomial map ¢: M— N, i.e., a map that can be determined by polyno-
mials. More precisely, it means that there are polynomials ¢, ,b2, - Pm€K[X1, Xa, -+, Xp]
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such that the map ¢ transforms a point €M into the point of the variety N with coordinates
¢(z) = (¢1(z), $2(z), - -, om(z)).
Given a morphism ¢: M—N. We can induce a homomorphism of algebras of functions
defined by the formula
(¢%9)(z) = g(&(z)),

where g is a function on N, zeM. The definition of the morphism clearly implies that if
g is a polynomial on N, then ¢*g is a polynomial on M. So we get a homomorphism of
algebras ¢*: K[N]—K|[M].

Theorem A.7 (1) Morphisms of algebraic varieties are continuous in Zariski topology.
(2) For any algebra homomorphism ¢ : K[N]—K[M] there ezists a unique morphism
f: M—N such that f* = ¢.

Thus. to define a morphism of embedded affine algebraic varieties is the same as to define
a homomorphism of the algebras of polynomials on these varieties. Clearly, the product gf
of morphisms f: M—N and g : N—P is a morphism and (gf)* = f*¢". A morphism
f: M—N is called an isomorphism if there exists an inverse morphism f~!: N—M,
Le.. if f is bijective and the inverse map is also a polynomial map. This is equivalent to the
fact that f* is an isomorphism of algebras.

The class of isomorphic embedded affine algebraic varieties is called, in an abstract sense,
an affine algebraic variety, or, in short, affine variety. And its representatives will called
embeddings of this variety into the affine space, practically, an affine variety is identified
with one of its embeddings.

Definition A.8 An algebraic group is a group endowed with the structure of an affine

algebraic variety so that the maps:

b GxG—G, (z,y)—zy

l: G—G, z—z7!

are morphisms of algebraic varieties.

Remarks. (1) The definition of an algebraic group is similar to that of a Lie group, except
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that differentiable manifolds are replaced by a algebraic varieties and differentiable maps
by morphisms of algebraic varieties. (2) A morphism of algebraic groups is a morphism
of varieties which is also a homomorphism of groups. (3) The most important example of
an algebraic group is the general linear group, i.e., GL4(K), all dxd invertible matrices
with entries in K, this is a group under multiplication. GL4(K) may be embedded in A¥.
Thus GL4(K) can be identified with the open subset defined by the nonvanishing of the
polynomial det. Hence GLy4(K) is an affine variety and has its algebra of polynomial func-
tions generated by the d? coordinate functions X; o along with 1/det(X; ;). The formulas
for matrix multiplication and inversion make it clear that GL4(K) is an algebraic group.

An algebraic subgroup of a general linear group is called an algebraic linear group. We
have the following:
Theorem A.9 Any algebraic group is isomorphic to an algebraic linear group.

Thus, with this theorem, by an algebraic group we will always mean a subgroup GCGL4(K)
Definition A.10 An element A of an algebraic group G is called unipotent f(A-I™ =0

for some m, where I is the identity matriz.

3 At most countably many solvable Lie groups are suitable

for building multiresolution analysis

In this section, we are going to conclude that at most countably many solvable Lie groups
are suitable for building multiresolution analysis on them. We reach this conclusion by
first showing that connected non-nilpotent solvable Lie groups fail to satisfy the second
condition of (A.1) and then citing a well-known theorem from [Ra]. Its proof requires some
knowledge of the basic theory of solvable algebraic groups. In the following, we first collect
the theorems we need on algebraic groups. For detailed information, see [Bo] and [BM].
Lemma A.11[Bo,Theorem 10.6, pp.137-138] Let G be a connected, solvable algebraic group.
Then

(i) The set U of all unipotent elements of G is a normal subgroup, which is
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called the unipotent radical of G;
(i1) G/U is abelian.

Let G° denote the connected component of the identity e in an algebraic group G. Then
we have
Lemma A.12[Bo,proposition,p.46] Let G be an algebraic group. Then G° is a normal
subgroup of G and also of finite indez in G.

Let G be a connected, simply connected solvable Lie group. Let G be the Lie algebra
of G and let Ad as usual denote the adjoint representation of G on G. The image Ad(G)
is contained in the full automorphism group Aut(G) of G, and the latter is an algebraic
group. Therefore, we can consider the Zariski closure of Ad(G) in the algebraic group
Aut(G)=Aut(G) since G is simply connected. Let Ad(G)* be the Zariski closure of Ad(G).
The group Ad(G)" is connected as an algebraic group and solvable since G is solvable. The
set of unipotent elements in Ad(G)* forms a normal subgroup U* by lemma A.11 above,
this is called the unipotent radical, and Ad(G)*/U* is abelian by lemma A.11, which we
denote by T°*.

We often use G* to denote the Zariski topology closure of G. Sometimes, it is called “al-
gebraic hull” of G. Now let m: G*——T" be the natural homomorphism and let p: G—T*
be the map one gets by composing Ad and . At this place, we can state a fundamental
theorem.

Lemma A.13[BM,Theorem 2.1, pPp-576-577] Let G be a connected, simply connected soly-
able Lie group and ' be a closed cocompact subgroup, that is, G/T' is compact. Then p(T)
ts topologically discrete in T*.

Now, after this preparation, we have the following theorem:

Theorem A.14 Let G be a connected, solvable Lie group and T be a lattice subgroup of
G such that G/T is compact. Suppose the second condition of (A.1) is satisfied, that is,
there is a continuous automorphism a of G such that a(T')CT and Ujezaj(f‘) is dense in
G. Then G is nilpotent.

Proof of the Theorem A.14 Replacing G by its universal cover, we may assume that G
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is simply connected. Thus we can identify Aut(G) with Aut(G) since G is simply connected.
Let < a > be the subgroup of Aut(G)=Aut(G) generated by a. Let G* be the identity
component of the Zariski closure (Aut(G) < a >)* of Aut(G) < a > in the algebraic group
Aut(G)=Aut(G). Let U* be the set of all unipotent elements in G*, and let T° = G*/U".
Then by the lemma above, T* is abelian.

Now since the identity component of an algebraic group always has finite index , so we
have a"€G" for some n€Z*. In fact, all the left cosets { a®G* | nEN } can not be distinct
from each other. So since G* has finite index, there must exist two distinct positive integers

n; and n,, say ny > n;, such that
a™G* = a"'G*, then o™ ™G = G*,

that is, ™2™ eG".

Now let m: G*——T~ be the natural homomorphism. Since Aut(G)* is connected,
the image Aut(G) is contained in G*. Thus, p : G~—T*, defined by the composition
of Ad and , is well-defined. Since a”€G*, n(a™)€T*. Because T* is abelian by the
lemma A.11, this means that 7(a”) normalizes p(T'). Therefore, we have p(a™(T)) = p(T).
Because ---Ca?(I')Ca(T)CT, this implies that p(a?(T')) = p(I'), for all j€Z. Therefore,
p(U]-ezaj(I‘)) = p(I'). Now using the lemma A.13, we conclude that p(T') is discrete, so
p(Ujeze? (T)) = p(T) is discrete. But then, since we are assuming that Ujeza? () is dense
in G, we deduce that p(G) is discrete.

On the other hand, because G is connected, we know that p(G) is connected. Hence p(G)
must be the trivial group, so image Ad(G) is contained in U*, that is, Ad(G) is unipotent.
Therefore, G is nilpotent. This establishes the theorem.

Theorem A.14 says that in the class of connected solvable Lie groups only nilpotent
Lie groups are possible for constructing MRA on them. Unfortunately, not all nilpotent
Lie groups have lattices. In the simply connected case, only countably many do. For a
more concrete explanation of why not all nilpotent Lie groups have lattices, see Theorem

2.12. P34 and Remark 2.14, P38 of [Ra]. For the convenience of the reader, we quote the
following theorem from [Ra] P32.
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Theorem A.15 Let G be a simply connected nilpotent Lie group and G be its Lie algebra.
Then G admits a lattice if and only if G admits a basis with respect to which the constants
of structure are rational.

Remark. The term of structural constants comes from Lie algebra. Suppose G is a Lie alge-

bra. One simple way to describe the multiplication in G is by choosing a basis X, X2,---, Xy
and expressing the products [X;, X;], (i, = 1,---,d) as linear combinations of these basic
elements:
d
(X X1 = 3 AijeXe (i, =1,---,d).
k=1

The coefficients Ajji (i,7,k = 1,---,d) are called the structural constants of G with respect

to the given basis.

4 Exclusion of semisimple Lie groups

In this section we are going to show that semisimple Lie groups are not scalable. As we
did for nonnilpotent connected solvable Lie groups, we prove this result by illustrating that
they fail to satisfy the second condition of (A4.1).
Theorem A.16 For a connected semisimple Lie group, suppose a is an automorphism of
G and T is a lattice subgroup of G, then the image of I' under a can not be properly inside
r.

Theorem A.16 demonstrates that there does not exist any topological automorphism of
G such that the second condition of (A.1) is satisfied. Hence, semisimple Lie groups are not
scalable groups. The proof of theorem A.16 will be finished by considering the following
lemmas.

We use Aut(G) to denote all automorphisms of G. 1t is obviously a group under com-
position operation. Similarly, the inner automorphism of G denoted by Int(G) constitutes
a subgroup of Aut(G). Actually, Int(G) is a normal subgroup of Aut(G). Indeed, for any

7:€Int(G) (77 : y—zyz~!) and any a€Aut(G), we have
(arza™)(y) = (rza ') (a(y)) = "} (za(y)z™!)
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= o Hz)ya " (z7") = a N (2)ya(z) = Tam1(5)(¥)-

So arza~!€lInt(G). Therefore, the space of cosets Aut(G)/Int(G) has group structure.
Lemma A.17([Gi]) Aut(G)/Int(G) is not only discrete but finite.

Lemma A.18 For a connected semisimple Lie group, all automorphisms are volume pre-
serving.

Proof of Lemma A.18. We know that Int(G) is identical with the component denoted
by Autg(G) of the group Aut(G) which is connected to the identity:

Auty(G) = Int(G).

Furthermore, by the Lemma A.17, the factor group Aut(G)/Int(G)=Aut(G)/Aute(G) is
not only discrete but finite.

Now let’s prove that all automorphisms of semisimple group G are volume preserving.
To show this, we first establish a mapping © from Aut(G) to the multiplicative group R+
of positive real numbers. We note that, for G, the left Haar measure on G is uniquely
determined up to constant multiplication. Let’s denote this Haar measure by A. For any
acAut(G), we define Ao(E) = A(a(E)) for any Borel subset ECG, then A, is again a
left Haar measure . By the uniqueness theorem, there is number O(a) > 0 such that
Aa = G(a)A. We claim that

O : Aut(G)—R*

a—O(a)
is 2 homomorphism. In fact, for any a, f€Aut(G) and ECG,
Aas(E) = B(aB)A(E) = AMaB(E))

= A(a(B(E))) = 6(a)A\(B(E)) = O(a)O(B)A\(E).

For any 7:€Int(G), one can see that 7; is volume preserving because, for any Borel

subset ECG, we have that A(1z(E)) = A(zEz~!) = A(E) by the unimodularity of G. Since
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Int(G) is a normal subgroup of Aut(G) and © is a homomorphism of Aut(G) into R*, we

can define
6 : Aut(G)/Int(G)—R™

by @(alnt(G)) := ©(a). This is well-defined. In fact, suppose a; and a» are two different
representatives, that is, a;Int(G) = aInt(G), so aja;'€Int(G) and hence O(aa;!) =

O(1)O(az™!) = 1. Therefore 8(a;Int(G)) = B(azInt(G)). © is also a homomorphism:
B(a1Int(G)azInt(G)) = B(a1a2Int(G)) = B(a;)O(as)

= 8(a;Int(G))S(azInt(G))

It follow that the image of © is a group of finite numbers from the fact that the quotient
group Aut(G)/Int(G) is finite. But the finite subgroup of R* is only trivial one. Hence we
proved that for any a€Aut(G), a is volume preserving.

Proof of the Theorem. Now we can prove the theorem by using Lemma A.18. Assume
that a(T') is a subgroup of I'. We are going to show that a(l') =T. Let F be a fundamental
domain of I". Then F has finite volume since G/T is compact. We claim that this volume
is the same for all fundamental domains. Indeed, suppose F} and F, are two fundamental
domains of I', then G = UservF1, G = U-er 7F2- Let's denote the Haar measure on G by
dA. Then for any nonnegative measurable function f on G, we have

Lrem@ = [ @

~er 7F1

=3 / . f@)dA)

~yer 77

=3 [ feandraa)

~er 77
=3 / Fyz)dA(z).
~el 7F
Similarly,

L@@ =3 [ fezdra).

~ver J7Fz
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Thus
> [, foni@ =% [ rande). (4.2)

7€l ver71F2
Let f = xr,, where xg is the characteristic function of E. then the left side of (A.2) is

A(Fy). it equals

> [ xrmdne) =3 Ji

~er /1F2 yer’?7

=3 [ xpm-in@dA@)

yerl

X~-1F, (z)dA(z)
Fy

=Y (B[ 'F) = MF).

velr

So since a is an automorphism of G, a(F) will be a fundamental domain for a(T'). Since
@ is volume preserving by the lemma above, a(F) has the same volume as a fundamental
domain for the large group I'. This is impossible unless a(I') = T'. Therefore we establish

that a(I"') can not be set properly inside I".
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Conclusion

Our purpose was to build multiresolution analysis in L?(G), where G is a non-abelian
locally compact group. We proved that within connected solvable Lie groups, at most
countably many nilpotent Lie groups are scalable groups, that is, only countably many
nilpotent Lie groups are candidates for constructing multiresolution analysis. The most
importantly, Heisenberg groups are interesting concrete scalable examples. We also showed
that all connected semisimple Lie groups are not suitable for setting up multiresolution
analysis. This gives us an impression that only those groups which are close to being
abelian are scalable groups. The first question remaining to be done is that how close are
the scalable groups from abelian groups, or is there any scalable groups between nilpotent
and semisimple. How to identify the class of scalable groups?

We gave the necessary and sufficient conditions on scaling function for non-abelian
groups such that the scaling function generates a multiresolution analysis. That is, for
certain non-abelian groups, for example Heisenberg groups, we can build multiresolution
analysis on them. This is the first step towards constructing wavelets for non-abelian groups.
The second question is how to construct concrete wavelets for the given scalable groups by
analyzing the properties of the scaling function and the scaling identity like the case for the
space L?(R9).

Since the dual spaces of Heisenberg groups have a simple one-dimensional structure,
we may probably take this advantage to create the continuous wavelet transforms for the
Heisenberg groups. That is, we represent elements by using translations and dilations of
one fixed function with the translation and dilation parameters varying continuously. Also,
it would be especially important to establish a theory on discrete version of the continuous

wavelet transforms.
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