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Abstract 

DL-Methionine (DL-Met) and its corresponding hydroxy analogue (DL-MHA) have been 

increasingly used in animal feeds. In mammalian and avian species, DL-Met is known to be 

transported by amino acid transporters, while DL-MHA is transported by monocarboxylate 

transporters. However, the characterization of transporters responsible for transport of these Met 

products in the fish intestine has not been studied. Therefore, this thesis focuses on understanding 

the transport mechanism of DL-Met and DL-MHA in different intestinal segments of rainbow trout 

(Oncorhynchus mykiss) using radiolabeled substrates and gene expression.  

Firstly, both sodium-dependent and independent DL-Met transport were characterized in 

Ussing chambers at low (µM) and high concentrations (mM) in triploid and diploid trout intestine 

at pyloric caeca (PC), midgut (MG), and hindgut (HG) regions. DL-[14C]Met radiolabeled isotope 

fluxes demonstrated a Na+-dependent high-affinity (Km in µM ranges) and low-affinity (Km in mM 

ranges) transport mechanism across the intestine, associated with apical ASCT2 and B0AT1-like 

transporters at low and high concentrations, respectively. Gene expression detected the presence 

of transporters y+LAT1 and LAT4, which might play a role in facilitating re-influx/efflux Met 

from the basolateral side of intestinal epithelial cells. Secondly, the dependence of DL-MHA 

transport was investigated in both sodium and proton conditions. The results indicated that there 

was intestinal segmental segregation of DL-[14C]MHA flux, revealing different transport 

mechanisms along trout intestine. Specifically, the apical DL-MHA influx was mediated by 

sodium-requiring systems in all regions, which associated with SMCTs. Basolateral efflux in PC 

and MG regions seemed to be proton-independent, but basolateral efflux in HG tended to be 

proton-dependent, which associated with MCT9 and MCT1, respectively. Thirdly, the transport 

rates of radioisotopic DL-Met and DL-MHA were compared to partially explain the effectiveness 
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of the use of these Met sources in animal feeds. The comparison showed that DL-Met flux rates 

were significantly higher than DL-MHA throughout the intestinal segments at both low and high 

concentrations in physiological conditions. This probably has economic implications in selecting 

a suitable Met form to supplement in fish diets.  

Overall, DL-Met and DL-MHA transport in trout intestine followed different pathways 

along the intestinal tract. Similar to mammals, the transport of both Met substrates were dependent 

on sodium. In addition, DL-Met transport was more efficient than DL-MHA. These findings are 

of importance from both a physiological and nutritional perspective. 
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CHAPTER I 

INTRODUCTION 

1.1. Rationale 

Fisheries and aquaculture are important components of food security. Since the 1980s, wild 

capture fisheries production has remained relatively steady, while aquaculture production has 

increased tremendously over the past few decades contributing more than half of the global seafood 

supply (109). Commercial feed plays a critical role in the success of modern aquaculture. 

Traditionally, the fish feed industry heavily relies on fish meal as the major protein source, an 

expensive and not sustainable protein ingredient. Thus, terrestrial plant-derived ingredients have 

been increasingly used in aquafeeds to reduce the aquaculture industry’s reliance on fishmeal. The 

challenge of this approach is that plant-based proteins typically do not have a balanced amino acid 

profile. As one of the first limiting essential amino acids (EAAs) in plant-based diets, methionine 

(Met) is often supplemented to ensure the adequate nutritional requirement of fish. Met 

supplementation is typically achieved using DL-Methionine (DL-Met) or DL-Methionine 

Hydroxy Analogue (DL-MHA). The relative bioefficacy between these two Met sources has been 

compared in a wide range of species. In vivo studies in poultry (99, 172, 209, 300, 390), pigs (113, 

194, 288, 448) and fish (192, 319, 332) have demonstrated that bioefficacy of DL-Met is 

considerably higher than that of DL-MHA. However, there are several studies indicating that DL-

MHA is as effective as DL-Met (136, 201, 325). A possible reason for the varying results in 

effectiveness between DL-Met and DL-MHA is that each species may have different transport 

pathways associated with these Met sources in the gastrointestinal (GI) tract, which may be altered 

under different experimental conditions. In mammals, it has been reported that DL-Met transport 

in the GI tract could be facilitated by both sodium-dependent and sodium-independent transport 
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systems, which involves multiple transporters (39, 367, 393, 445). However, a proton-dependent 

monocarboxylate transporter (MCT) is predicted to be responsible for DL-MHA absorption since 

the chemical structure of DL-MHA is relatively similar to monocarboxylate compounds or short-

chain fatty acids (SCFAs) (245, 445). Such understandings in fish are largely lacking. Therefore, 

understanding the mechanism behind the intestinal transport of DL-Met and DL-MHA in fish will 

likely make it possible to explain the differences in bioefficacy between two products, which also 

contributes to the current knowledge in fish nutrition and physiology. The overall objective of this 

thesis is to characterize the transport pathways of DL-Met and DL-MHA in rainbow trout intestine 

using radioactive isotopes under ex-vivo conditions.  

1.2. Objectives 

1. Characterize sodium-dependent DL-Met transport in the intestinal tract of rainbow trout 

using Ussing chamber and gene expression analysis.  

2. Characterize proton-dependent DL-MHA transport in the intestinal tract of rainbow trout 

using Ussing chamber and gene expression analysis.  

3. Compare the transport kinetics between DL-Met and DL-MHA by reanalyzing data 

obtained from the mentioned objectives. 

1.3. Hypotheses 

1. DL-Met transport is sodium-dependent, and there are segmental differences in DL-Met 

transport along the intestinal tract of rainbow trout.  

2. DL-MHA transport is proton-dependent, and there are segmental differences in DL-MHA 

transport along the intestinal tract of rainbow trout. 

3. DL-Met is transported with higher affinity and rate than DL-MHA in rainbow trout 

intestine.  
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CHAPTER II 

LITERATURE REVIEW 

2.1. Aquaculture and methionine supplementation in plant-based diets 

2.1.1. Aquaculture and the use of plant-based diets 

 Aquaculture is one of the most rapidly growing sectors of the food industry. FAO (107, 

108) estimates that global food fish aquaculture production increased from 32.4 million tons in 

2000 to 80 million tonnes in 2016. The rapid increase of fish production is mainly due to the 

expansion of intensive farming systems in which commercial feeds are fed as the major nutrient 

source for cultured animals. High dependence on commercially formulated feed in intensive 

farming models generates economic and environmental concerns. Economically, feed typically 

accounts for more than 50% of the total production cost, which is the primary factor in determining 

the profitability of farm operation. Environmentally, aquaculture is often criticized due to the 

inefficient uses of fishmeal. Therefore, a cost-effective and sustainable aquaculture industry is 

highly desirable. In order to reduce the cost per protein unit, studies have focused on substituting 

fishmeal with alternative protein sources. Plant-origin protein sources such as soybean meal 

(SBM) have feasibly shown to replacing the inclusion of fishmeal to great extents. However, the 

deficiency of essential amino acids (EAAs) and the presence of anti-nutritional factors are the 

major constraints that limit the full replacement of plant-based protein ingredients in practical 

diets. The adverse influences of high dietary inclusion of SBM have been reported in several 

studies: increasing mortality and reducing growth performance (335); lower feed intake, weight 

gain and protein efficiency ratio (447); decreasing nutrient digestibility and AA uptakes due to 

shorter microvilli of the brush border membrane (8, 53) and reduction in digestive enzymes, 

carrier-mediated transporters and ability to reabsorb the endogenous digestive secretion (81, 204, 
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281). These may imply that although dietary changes could be adapted over time, carnivorous fish 

are still inherently more capable of digesting protein and absorbing AAs than digesting 

carbohydrate and absorbing glucose. Thus, supplementation of synthetic AAs in plant-based diets 

is widely practiced to ensure nutrient balance when shifting from animal-based diets to plant-based 

diets in carnivorous fish. 

2.1.2. Supplementation of different types of methionine sources in plant-based diets 

 Methionine (Met) is an essential amino acid (EAAs) that donates a methyl group for 

numerous activities of cellular metabolism and protein synthesis, which ensures normal growth 

and physiological functions (50, 223, 258). It is also one of the first limiting EAAs in plant-based 

protein ingredients (11, 23, 319). The dietary Met requirement for rainbow trout is about 0.59-

0.67% (7), or between 0.8-1.1% of diets when expressed as total sulfur amino acid (TSAA: 

methionine + cysteine) (283). The formation of cataracts is one of the unique indicators in rainbow 

trout fed Met-deficient diets (318, 421). Imbalance of dietary Met has been shown to influence 

feed intake, transcriptional gene regulation, protein turnover, growth performance and mortality 

in several fish species (20, 79, 103, 260, 360, 397). Thus, Met is often supplemented in plant-based 

diets to ensure the normal development of fish. Commercially, dietary Met supplementation is 

commonly obtained using chemically synthesized DL-methionine (DL-Met) or DL- 2-Hydroxy-

4-methylthiobutanoic acid (DL-MHA) in which an amino group (NH2) is replaced with a hydroxyl 

group (OH) (10). A large number of studies have compared the bioefficacy between the two 

products. However, disagreements still remain within and among species. For instance, the 

bioefficacy of DL-MHA was reported to be only about 57-69% on the product-product (wt/wt) 

basis (83, 172, 236, 300, 405) in poultry, and 64-71% in swine (194, 288, 358) in comparison to 

DL-Met. Similar conclusions were also made in different fish species (191, 192, 317, 319, 331). 
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Conversely a few studies indicate that DL-MHA could equally support animal growth (136, 201, 

325), causing controversy. The differences in bioefficacy between DL-Met and DL-MHA could 

be due to the dissimilarity in metabolism pathway and transport system involved in these two Met 

sources.  

2.2. General background of methionine 

2.2.1. Methionine metabolism pathways 

 Methionine (Met) is a non-polar, sulfur-containing AA (CH3-S-CH2-CH2-CH(NH2)-

COOH) that was originally discovered from casein in 1922 by Mueller (416); its chemical formula 

was described as ɤ-methylthiol-α-aminobutyric acid in 1928 by Barger and Coyne (416).  Despite 

its late discovery, Met has received great attention since it serves as the initiating AA for nearly 

all eukaryotic protein synthesis (44, 370). This EAA participates in several fundamental biological 

processes, including protein biosynthesis, methyl donor, formation of polyamines, cysteine 

synthesis and other important metabolites (116).  

Met metabolism (Figure 2.1) is a complex process that involves several metabolic and 

synthetic pathways of Met and its intermediate metabolites. The Met metabolism cycle includes 

four main steps, which are briefly described as follows: (I) Met metabolism begins with the 

conversion of L-Met into S-adenosylmethionine (SAM, aka AdoMet and SAMe) by using ATP 

and methionine adenosyltransferase (MAT) enzymes, creating a high energy molecule which 

energetically favors the transfer of a methyl group on to other molecules. Three separate forms of 

MAT (MAT-I, MAT-II, MAT-III) have been identified in mammalians, which differ in kinetic 

properties and tissues distribution although all forms could catalyze the same reaction (116). MAT-

III (high Km isoenzyme) is exclusively found in the liver which may allow this organ to adapt 

rapidly to excess Met supply (116). In transmethylation, SAM donates a methyl group for a wide 
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range of receptors such as nucleic acids, phospholipids, and protein; subsequently used for over 

100 methylation reactions (248). For example, SAM offers the methyl group not only in the 

production of essential bio-molecules such as carnitine (fatty acid oxidation), epinephrine 

(neurotransmitter and hormone), melatonin (circadian rhythm regulator), phosphatidylcholine 

(membrane function); but also in epigenetic modulations of DNA methylation and gene expression 

(361, 438, 443). Additionally, SAM is also involved in the biosynthesis of polyamines. The 

synthesis process is achieved by converting SAM into decarboxylated S-adenosylmethionine (dc-

SAM) by SAM decarboxylase. The aminopropyl groups of dc-SAM is then catalyzed to form 

polyamines such as spermine and spermidine which play an essential role in the activity of ion 

channels, the structure of nucleic acids and cell proliferation (301, 302). The concentration of dc-

SAM in mammalian tissues is about 1-5% of the total available SAM (168, 248). (II) SAM is then 

converted into S-adenosylhomocysteine (SAH) via methyltransferase reactions. (III) S-

adenosylhomocysteine hydrolase (SAHH, aka AHCY) enzyme hydrolyzes SAH into 

homocysteine. (IV) At this point, homocysteine can be then either remethylated to form Met or 

entered transsulfuration pathway to form cystathionine. 

In the remethylation cycle, homocysteine could be converted back to Met using methionine 

synthase (MS, also called methylfolate-homocysteine methyltransferase (MFMT)) and betaine-

homocysteine methyltransferase (BHMT). The MS enzyme uses N5-methyl-Tetrahydrofolate (N5-

methyl-THF) as the methyl donor and requires vitamin B12 (in the form of methylcobalamin) as 

a cofactor, which occurs in all mammalian tissues; whereas BHMT enzyme employs betaine as 

the methyl donor and is mainly present in the liver (117, 118). In case of B12 deficiency or 

starvation, folate will become “trapped” at N5-methyl-THF. The level of N5-N10 methylene-THF 

is reduced, which causes hyperhomocysteinemia and decreases nucleic acid synthesis since Met is 
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preserved for methyl transfers of essential metabolic molecules to maintain life (9, 173). For 

transsulfuration, homocysteine is metabolized to form cystathionine using cystathionine β-

synthase (CBS) enzyme and in the presence of vitamin B6 as an obligate cofactor and serine. 

Cystathionine, in turn, is converted to α-ketobutyrate and cysteine by cystathionine-ɤ-lase enzyme 

(CGL) (118, 248). Once α-ketobutyrate enters the mitochondrial matrix,  branched-chain alpha-

keto acid dehydrogenase complex (BCKDC) transforms α-ketobutyrate to propionyl-CoA which 

is catalyzed into methylmalonyl-CoA through carboxylation by propionyl-CoA carboxylase 

(PCC) (49, 430). Through methylmalonic acid production using methylmalonyl-CoA mutase 

(MCM-a vitamin B12-dependent enzyme), methylmalonyl-CoA is then transformed to succinyl-

CoA to be further used in the TCA cycle producing energy and AAs (381, 433). Finally, cysteine 

can be used for protein synthesis. It is also an important precursor for synthesizing other AAs and 

metabolites such as taurine, glutathione and inorganic sulfates (329, 346)

https://en.wikipedia.org/wiki/Methylmalonyl-CoA
https://en.wikipedia.org/wiki/Propionyl-CoA_carboxylase
https://en.wikipedia.org/wiki/Succinyl-CoA
https://en.wikipedia.org/wiki/Succinyl-CoA
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Figure 2.1. General metabolism pathways of methionine. 
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2.2.2. Metabolism pathways of DL-Met and DL-MHA and intestinal microbial metabolism 

Once absorbed,  the active form L-Met can be directly incorporated into protein, while D-

Met or DL-MHA needs to be converted into L-Met in a two-step process with different enzymes 

required (90) (Figure 2.2). The first step involves in the conversion of D-Met or DL-MHA into 2-

keto 4-methylthiobutanoic acid (KMB): D-amino acid oxidase (D-AAOX) is needed for D-Met, 

while D-2 hydroxy acid dehydrogenase (D-HADH) and L-2 hydroxy acid oxidase (L-HAOX) are 

needed for D- and L- MHA, respectively. The second step is the attachment of an amine group to 

form L-Met via transamination.  

Microflora is made of a diverse and large number of microbial species in the GI tract of 

animals. The composition and metabolic activities of intestinal microflora have been increasingly 

studied because of its important influences on nutrient metabolism and immune functions of host 

animals (66, 120, 175). Although gut microbes may support digestion and benefit the immune 

system, they may compete with the hosts for nutrients and/or potentially convert nutrients into 

non-absorbable products. The level of crude protein, protein sources and AA composition of 

protein sources are essential elements in determining the quantity and quality of the intestinal 

microbial community by providing preferential substrates for microflora (94, 170). Several studies 

have shown that Met could be used by microbes which tend to prefer DL-MHA to L-Met and DL-

Met. For example, Yokota and Coates (439) reported that the absorption of L-[3H]-Met per gram 

intestinal tissue was higher in germ-free than in conventional and monoassociated chicks. Malik 

(234) found that the lactobacilli population was significantly greater in digesta for the pigs fed DL-

MHA (6.22 CFU/g) compared to the DL-Met group (5.63 CFU/g). This means the longer DL-

MHA remains in the intestinal tract, the more it is exposed to microbial degradation and/or being 

converted into non-absorbable compounds. Maenz and Engele-Schaan (231) showed that about 
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12% of DL-MHA was converted into non-absorbable by-products in the chicken intestine, which 

was likely attributed to microbial activity. Likewise, Drew and co-workers (95) demonstrated that 

the residual 3H-labeled-DL-MHA activity remained in the distal ileum of conventional broilers 

(10.2%) was greater than that of germ-free broilers (4.7%), whereas no significant difference in 

3H-labeled-L-Met between germ-free and conventional broilers.  
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Figure 2.2. Metabolism pathways of DL-Met and DL-MHA 

A) Two-step conversion of D-Met and D- or L-MHA to L-Met and B) their chemical structures.
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2.3. Common in vitro/in situ/ex vivo methods to study nutrient transport 

2.3.1. In vitro methods 

Using in vitro techniques to study intestinal transport has some advantages such as less 

expensive, less labor-intensive, no animal ethical concern and more controllable environment than 

in vivo techniques. The common limitation of in vitro methods is that physiological factors such 

as blood vessels, enzymes, pH, and intestinal transit rates are not included in data interpretation.   

2.3.1.1. Xenopus laevis oocyte 

Oocytes are widely used as a tool for injecting genetic material and defining the functional 

transport properties of expressed proteins. It is considered a standard method to study the kinetic 

functions of a transporter. The general protocol includes: (i) isolating mRNA, (ii) generating 

cDNA library, (iii) converting cDNA pools into cRNA pools, (iv) injecting cRNA pools into 

oocyte cytoplasm for translating into protein, (v) confirming expression of the protein with 

immunofluorescence microscopy, and (vi) studying functional transport of proteins by measuring 

the activity of radioactive isotopes, or electrophysiological changes (242, 261). Detail of 

measuring transport of radiolabeled substrates using oocytes are described by Baltz et al. (15). In 

brief, oocytes are incubated with media containing the radiolabeled compounds that are substrates 

for transmembrane transporters for a precise period. The labelled compound outside of the cell is 

carefully washed out. The intracellular amount of the labelled compound is quantified using 

scintillation counting, followed by determining transport kinetics and characteristics. To study 

electrophysiological properties, oocytes membrane potential induced by ionic movements could 

be observed using several techniques such as single electrode recording, whole-cell voltage 

clamping with two electrodes, and macro-patch recording (46, 137).  
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2.3.1.2. Cellular model 

Human-derived intestinal cell lines are valuable tools to examine nutrient absorption and 

pharmacokinetics. Similar to intestinal columnar absorptive cells, human colon adenocarcinoma 

cells (Caco-2) are widely used as an in vitro model to define the transport characteristics of 

substances since it possesses several valuable morphological and functional properties including 

tight junctions, presence of brush border enzymes and nutrient transporters (169, 314). In general, 

Caco-2 cells are cultured in Transwell filter insert (polycarbonate membrane) for about 20 days 

(259). After reaching confluence, the mature enterocytes form a distinct apical and basolateral 

membrane and tight junctions. Before performing a transport study, transepithelial electrical 

resistance (TEER) is measured to ensure the formation of tight junctions and the integrity of cell 

monolayers. The Transwell inserts are then placed into the transport medium. The transport studies 

are initiated by replacing the transport medium in the apical (or basal) side with the radioactively-

labelled substrate dissolved in the identical transport medium. Samples are withdrawn from the 

basal (or apical) side. The absence of mucus is one of the limitations of the Caco-2 monolayer 

model. Therefore, co-cultures of Caco-2 with mucus-secreting cells HT29-MTX have been 

developed. Caco-2 and HT29-MTX cells are mixed and cultured with a specific ratio. The culture 

conditions and permeability study performed are similar to Caco-2 cell monolayers.  

2.3.1.3. Brush border membrane vesicles (BBMV) 

The epithelial cells are made of apical and basolateral membranes. The apical membrane 

(aka brush border membrane, BBM) is covered with microvilli of epithelial cells. Under well-

controlled in vitro conditions, isolation of vesicles derived from the apical and basolateral plasma 

membranes makes it possible to characterize some transport systems. In an effort to overcome 

drawbacks in studying intestinal transport using isolated intestinal cells, the use of BBMV was 
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introduced in the early 1960s. With pure BBMV, transport properties could be investigated without 

the interference of the transport from the lateral-basolateral membrane (176). The method used to 

isolate intestinal BBMV is based upon the principle of divalent cation precipitation which results 

in the coalescence of cytoplasmic organelles (61). The success of isolation procedure could be 

evaluated by comparing the enrichment level of BBM marker enzymes (e.g. alkaline phosphatase, 

sucrase) and the contamination level of the basolateral membrane (e.g. Na+/K+-ATPase) in final 

vesicle suspension and the original homogenate. After confirming the purity, BBMV could be used 

for tracer flux measurement with rapid filtration technique, which is described in detail by Turner 

(399). Briefly, the technique involves three main steps: 1) the vesicles are incubated in a medium 

containing a radioactively-labelled tracer and other components as required, 2) a “stop solution” 

is added at a specific time interval, and 3) the vesicles are collected on a filter, washed and counted 

for radioactivity.  

2.3.2. In situ methods 

In situ approaches overcome several physiological limitations of in vitro approaches since 

blood vessels, endocrine enzymes and membrane integrity are preserved. 

2.3.2.1. Intestinal perfusion  

Since the 1950s-1960s, intestinal absorption of water, electrolytes and nutrients has been 

estimated using perfusion methods (80, 144, 342). The technique is also widely used to study 

intestinal drug permeability in rodents, which has been introduced and studied with various 

modifications, including single-pass perfusion (225), recirculating perfusion (341), oscillating 

perfusion (348), and the closed-loop Doluisio perfusion (92). Although models are slightly 

different from each other, the general experimental procedure is similar and described in previous 

studies (82, 105, 224). Firstly, fasted animals are anesthetized and isolated intestinal segments are 



15 

 

rinsed with an appropriate buffer. Secondly, the perfusion solution containing a known 

concentration of a drug or a substance of interest is perfused into the intestine at the desired rate 

controlled by a peristaltic pump. To evaluate the viability of intestinal segments during the 

experiment, non-absorbable inert markers (e.g. phenol red or 14C-labeled PEG-4000), glucose and 

antipyrine are included in the perfusion solution for later assessment of water flux, active transport 

and passive transport, respectively. The perfusate is then collected at predefined time intervals for 

calculation of the effective permeability coefficient (Peff).  

Although the in situ technique is the nearest to the in vivo system, it still has some 

limitations. For example, the absorption rate can be greatly decreased due to the reduction of 

intestinal blood flow caused by anesthesia and intestinal surgery (400). The central principle of 

the perfusion method is that the substance concentration of interest in the perfusion solution 

reduces over time when passing through the intestinal tract, which is attributed to intestinal 

absorption. The technique relies on the disappearance of test substances from the intestinal lumen 

as an indicator of absorption rather than the appearance of test substances in the serosal side (13). 

However, measuring the reduction of substance concentration in the perfusate does not always 

reflect the accurate arrival of the substance in the vessels, particularly for substances that undergo 

pre-systemic or intracellular intestinal metabolism (19).  

2.3.2.2. Intestinal perfusion with the mesenteric blood sampling method  

As introduced earlier, the intestinal perfusion technique allows us to measure the 

disappearance of the test compound from the perfusion solution (effective permeability). However, 

the prediction of the amount that appears in the blood circulation could be misleading due to 

intestinal metabolism or non-specific binding of the test compound to the isolated intestinal 

segments. Therefore, intestinal perfusion along with mesenteric blood sampling makes it possible 
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to measure the appearance of the test substance in the blood (apparent permeability), which results 

in better insights about the drug/nutrition absorption mechanism. Along with the basic 

experimental set-up of classical intestinal perfusion, mesenteric vein or portal vein near the liver 

may be cannulated, and blood samples are collected at fix time intervals for calculating the 

apparent permeability (373).  

2.3.3. Ex-vivo methods 

Ex-vivo methods imply experiments that are performed on tissues in an artificial milieu 

with minimum modification of natural conditions of animals. In comparison, studying nutrient 

transport using the ex-vivo method involves in advantages of both in vitro and in situ approaches.  

2.3.3.1. Everted intestinal sac 

The intestinal sac method was originally developed by Wilson and Wiseman (428). The 

preparation is simple and effective to study nutrient and drug absorption. In brief, excised intestine 

segments are placed over a glass/stainless steel rod and everted. The everted intestinal are tied off 

with thread ligatures to form sacs. The sac is filled with the appropriate buffer. The empty sac and 

filled sac are weighed, and the increase in weight is considered the initial volume. The filled sac 

is transferred into the incubation buffer containing a test substrate or drug. At the end of 

experiment, the final volume in the sac is determined by weighing the sac before and after draining 

the fluid. The differences between the initial and final volume will be used to determine the 

transference direction of the test substance: positive transference values indicate the transport of 

the substance from mucosal to serosal side, while negative values indicate the transport from 

serosal to mucosal (428). The major advantages of using everted intestinal sac are: 1) the transport 

across the apical and basolateral membrane could be independently evaluated, (2) buffer inside 

and outside sacs could be removed/changed at ease (219). However, the technique still has some 
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limitations such as tissue viability and high passive diffusion. The histological evaluation shows 

that 50-75% of the normal epithelium has disappeared after 30 min incubation at 370 C (210).  

2.3.3.2. Ussing chamber 

The method was first introduced by Hans H. Ussing and Zerahn in 1951 when measuring 

active sodium transport across the frog skin (401). The principle idea is to study the transport 

properties of ions, nutrients and drugs across intestinal epithelium between Lucite half-chambers 

(Figure 2.3). There are two major applications of the technique including measurement of total 

ionic currents across the epithelium (short-circuit current, Isc) and radioactively-labelled substrate 

flux. The basic protocol is described as follows. Excised intestinal tissues are mounted as a flat 

sheet between the buffer-filled chambers. The physiological buffer could be modified depending 

on species. The buffer is oxygenated, and temperature is maintained with a heating water jacket 

attached around the chamber.  

In a classic experiment of Isc measurement, the bathing buffer is identical in both chamber 

reservoirs, resulting in the same electrical potential. The spontaneous potential difference between 

the two sides could be eliminated with a computer-controlled voltage-clamp apparatus. The change 

in Isc (net active ions transports, measured as µA/cm2) is continuously recorded by voltage/current 

Ag-AgCl2 electrodes via 3M KCl agar bridges. In a general setting, a movement of a cation (anion) 

from the mucosal to the serosal direction or an anion (cation) from the serosal to the mucosal 

direction would result in positive (negative) changes in Isc.  

Isotopic flux measurement is the other important application of Ussing chamber. The basic 

set up is similar as described earlier. However, using radioisotopic tracers to measure the 

electrolytes or substrates across the epithelium requires some additional steps. After tissues are 

loaded into the chambers, about 0.5-1.0 µCi/ml isotopes are added to the “source” side, aka “hot 
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or donor” side. 30-60 min equilibration is necessary to allow isotopic flux to get stead-state. Flux 

period is carried out by sampling the “sink” side, aka “cold or receiver” side. An identical volume 

of fresh bathing buffer is replaced after each sampling. Radioactivity could be determined using 

Geiger counters, scintillation counters, and solid-state detectors depending on isotope used.  

After considering the advantages and limitations of each of the different methods, the use 

of Ussing chamber, an ex-vivo method, is chosen as an effective approach to study methionine 

transport in the current thesis.  

  

https://www.sciencedirect.com/topics/engineering/geiger-counter
https://www.sciencedirect.com/topics/engineering/scintillation
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Figure 2.3. Measurement of nutrient transport across intestine using Ussing chamber.  
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2.4. Nutrient transport in the gastrointestinal tract 

2.4.1. Structure of fish gastrointestinal tract 

Structural and functional characteristics of the fish GI tract are vastly diverse among 

species due to the diversity of habitats and feeding habits. Structurally, the intestine is divided into 

three different segments:  proximal intestine, mid and distal intestine (hindgut). In several fish 

species, there are finger-like projections that extend from the proximal intestine, called pyloric 

caeca or intestinal caeca (Figure 2.4). Original thoughts suggested that the function of pyloric 

caeca was to store and ferment food, but its role has more recently been correctly identified as 

important for nutrient absorption and osmoregulation (47, 77, 411). According to Ferraris and 

Ahearn (115), the length of fish intestine is shorter in carnivores (meat-eaters) than in herbivores 

(plant-eaters) and omnivores (flexible eaters). This divergence probably results from the 

differences in nutrient density and digestibility of food groups. While meat is rich in energy and 

highly digestible, most plant-based food contains a high percentage of difficult-to-digest materials 

such as fibre and cellulose. Hence, the longer intestine may allow the digesta to stay longer in the 

GI tract, which could improve the digestion and absorption in herbivorous fish. Whereas, 

increasing the absorptive surface area of pyloric caeca is an effective strategy to enhance nutrient 

absorption in carnivorous fish with shorter intestine (48).  
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Figure 2.4. Intestinal segments of rainbow trout. 
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Intestinal histology of teleost fish has been described in several species including Esox 

Zucius L. Pike (45), Prochilodus scrofu (272), Danio rerio zebrafish (420), Oncorhynchus mykiss 

rainbow trout (193), topmouth culter Culter alburnus (56), and Schizodon knerii (338). Basically, 

the intestinal wall is composed of three main layers: mucosa (including epithelium and connective 

tissue lamina propria), muscularis (including circular and longitudinal smooth muscle), and serosa. 

The mucosa is an important layer for several physiological functions such as nutrients transport, 

osmoregulation and barrier against external toxicity (26, 146). Compared to mammals, similar 

types of intestinal epithelial cells are found in fish mucosa including enterocytes (absorptive cells), 

goblet cells (mucus - secreting cells) and enteroendocrine cells (hormone - secreting cells); while 

Paneth cells (antimicrobial peptides - secreting cells) and M cells (gatekeepers of luminal antigens) 

haven not been reported in the fish intestine. According to Van der Flier and Clevers (403), 

enterocytes account for more than 80% of total epithelial cells and are mainly responsible for 

nutrient absorption. The cells are highly polarized and characteristically possess an apical (facing 

lumen) and basolateral membrane domains (facing capillary), which are separated by intercellular 

junctional complexes (aka tight junction). The transporting properties of enterocytes are 

determined by the presence of the transporters and ion channels located in apical and basolateral 

membranes.  

2.4.2. Modes of nutrient transport across intestinal epithelial cells 

 Once ingested, nutrients are broken down into absorbable molecules. Generally, solutes 

could be transported either between the enterocytes (paracellular transport) or across the cellular 

membranes (transcellular transport) (Figure 2.5A). The transport achieved by the former route in 

healthy cells is negligible due to the tight junction. The transport achieved by the the latter route 

is composed of two different processes (Figure 2.5B): passive transport process (down a 
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concentration gradient - no energy ATP required) and active transport process (against a 

concentration gradient - ATP needed).  

The passive transport process includes simple diffusion and facilitated diffusion which 

includes channel or carrier (aka passive channel/carrier-mediated transports). Substances that 

could move via simple diffusion pathway are typically small molecules such as steroid hormones 

and non-polar gases (e.g. O2, CO2 and N2) (436). When plotting the diffusion rate versus substrate 

concentration, the rate of simple diffusion increases linearly with substrate concentration and 

obeys Fick’s law (295). Unlike, large and charged molecules such as inorganic ions (Na+, K+, Cl-, 

etc.) and AAs are transported via facilitated diffusion pathway using channel or uniporter carrier 

(267, 349). The rate of facilitated diffusion will reach maximum (Vmax or Jmax) when a carrier is 

saturated, which could be described by the Michaelis-Menten equation (2). The transport rate 

achieved by facilitated diffusion is typically faster than that of simple diffusion, but the capacity 

is determined by the number of the carriers.  

In the active transport process, molecules move across a membrane from low to high 

concentration at the expense of biological energy adenosine triphosphate (ATP). There are two 

types of active transport processes: primary and secondary. In primary active transport, the carrier 

protein pumps a solute against its concentration gradient by direct use of energy derived from ATP 

hydrolysis, which thus is referred to as a pump (or ATPase). A protein pump could transport one 

type of ion (e.g. H+ ATPase, Ca2+ ATPase) or two different types of ion (e.g. Na+/K+ ATPase) 

(111). In secondary active transport, the energy stored in ion gradient (known as coupling ions/or 

driving ions such as Na+ or H+) that is originally established from primary active transport is used 

to drag a second molecule (driven molecule) across a membrane. A symporter moves two types of 

molecules in one direction (e.g. sodium/glucose cotransporter, sodium/amino acid cotransporter); 
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whereas an antiporter (exchanger) moves two types of molecule in opposite directions (e.g. Na+/H+ 

exchanger) (111, 295).  
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Figure 2.5. Schematic model of molecule transport 

A) Paracellular and transcellular transport. B) Types of transcellular transport routes. Regular 

arrows indicate molecules moving down concentration gradient. Broken line arrows indicate 

molecules moving against concentration gradient. 
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2.4.3. General transport pathways of amino acid across the intestine 

The nutrient transport mechanisms in fish are greatly unknown, and most of the literature 

on the transport processes comes from mammalian studies. AA uptake in the intestine is a complex 

process, and an individual AA usually could be transported by multiple systems. In order to 

classify transport routes, AAs are structurally grouped into non-polar and polar AAs. The latter is 

divided into three subgroups: neutral, negatively (anion), and positively (cation) charged side 

chains (18). As a neutral AA, Met could be transported by multiple routes including sodium-

dependent (system A, system ASC, system B0, system B0,+, system IMINO and system y+L) and 

sodium-independent pathways (system b0,+-like, system y+-like, and system L) (39, 202, 247, 367). 

Putative transporters that are responsible for methionine transport are described in figure 2.6 as 

well as summarized in table 2.1. To characterize AA transport systems, carrier kinetics and 

inhibitors associated with the transport systems are the principal criteria (190) which include: 1) 

dependence on Na+, Cl- or H+, 2) kinetic parameters Km and Jmax (Vmax), 3) competition between 

AAs for a transporter, 4) sensitivity to some inhibitors such as bicyclo[2.2.1]heptane-2-carboxylic 

acid (BCH), N-ethylmaleimide (NEM) and 2-(methylamino) isobutyric acid (MeAIB).  
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Figure 2.6. Hypothetical model of Met transport in the intestine of mammals and avian. 
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Table 2.1. Putative transporters mediate Met transport in the intestine of mammals and 

avian.  
 

System Gene name SLC1 
Affinity

2 Mechanism
3 Location

4 

S
o
d

iu
m

-d
ep

en
d

en
t 
 

A 

SNAT1 SLC38A1 Medium? S BM 

SNAT2 SLC38A2 Medium? S BM 

SNAT4 SLC38A4 Medium? S BM 

ASC 
ASCT1 SLC1A4 High A BM 

ASCT2 SLC1A5 High A AM 

B
0 

B
0
AT1 SLC6A19 Low S AM 

B
0
AT2 SLC6A15 High S AM 

B
0,+ ATB

0,+
  SLC6A14 High S AM 

IMINO  IMINO SLC6A20 Low S AM 

y
+
L 

4F2hc/y
+
LAT1 SLC3A2/SLC7A7 High A BM 

4F2hc/y
+
LAT2 SLC3A2/SLC7A6 Medium A BM 

S
o
d

iu
m

-i
n

d
ep

en
d

en
t 

b
0,+ rBAT/b

0,+
AT SLC3A1/SLC7A9 High A AM 

y
+ 

CAT1 SLC7A1 Low? U AM 

CAT2 SLC7A2 Low? U AM 

CAT3 SLC7A3 Low? U AM 

L 

4F2hc/LAT1 SLC3A2/SLC7A5 High A BM 

4F2hc/LAT2 SLC3A2/SLC7A8 Medium A BM 

4F2hc/LAT3 SLC43A1 Low U BM 

4F2hc/LAT4 SLC43A2 Low U BM 

1-Solute carrier. 2-Affinity (high, < 100 µM; medium, 100 µM – 1 mM; low, > 1 mM). 3-

Mechanism (A: antiport, S: symport, U: uniport). 4-Location (AM: apical membrane, BM: 

basolateral membrane).  
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2.5. DL-Met transport across the gastrointestinal tract by AA transporters  

Amino acid transporters are defined as solute carrier transporter (SLC) that could be 

classified into some families based on substrate selectivity and sodium-dependence/independence.  

2.5.1. Sodium-dependent AA transport systems 

2.5.1.1. System A 

 System A encoded by the SLC38 gene family is the sodium-coupled neutral AA transporter 

(SNAT) (227). This system is present in almost all cell types, which transport most of the aliphatic 

AAs with Na+ ions (251). System A activity has been found in both the apical and basal membrane 

of the placenta (282), but is generally associated with the basolateral side in the intestine (247, 

445). The system is recognizably different from several AA transport systems by the fact that it 

could also transport N-methylated AAs like MeAIB (68). This system is shown to be pH-sensitive 

(98, 251). Three cDNAs that encode proteins for system A activity have been identified and 

recently renamed by Mackenzie and Erickson  (227) as follows: SNAT1 (previously known as 

ATA1, GlnT, SA2, SAT1, or NAT2), SNAT2 (previously ATA2, SA1, or SAT2) and SNAT4 

(previously ATA3, NAT3, or SAT3).   

 SNAT1 (SLC38A1) mediates neutral AA/Na+ cotransport with a stoichiometry of 1:1 and 

exhibits a preference for glutamine, asparagine, methionine, alanine, cysteine, serine, histidine, 

etc. (1, 228). Glutamine is the principal substrate of SNAT1 in the brain, which is transported with 

Km value of ~ 300 µM (228). In X. oocytes expressing SNAT1, pH could change the affinity of 

Na+ (Km for Na+ increases from 3.5 mM at pH 7.4 to 31 mM at pH 6.0), which likely causes an 

allosteric site effect on the transporter (1). SNAT1 is dominantly expressed in the brain, placenta, 

and heart (408, 422). Although SNAT1 is predicted to transport methionine from the basolateral 
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side of the intestine (445), its protein expression in rat intestine has been shown to reduce shortly 

after birth (426). 

 SNAT2 (SLC38A2) has been suggested to operate by a similar mechanism as SNAT1, 

including substrate specificity, 1:1 stoichiometry of sodium/AA and pH-sensitive. Alanine appears 

to be a preferred substrate for SNAT2 transporter with Km ~ 0.5 mM, as well as MeAIB with Km 

between 0-2-0.5 mM (377, 437). Glutamine is also transported by SNAT2, although with lower 

affinity (Km ~ 1.6 mM) (437). Competition experiments reveal that methionine is one of the 

effective neutral AAs that competes with [14C]MeAIB for the transport process mediated by 

SNAT2 expressed in X. laevis oocytes (165, 377). Although mRNA expression SNAT2 has not 

been found in the human intestine (165), SNAT2 protein is found in all duodenum, jejunum and 

ileum during the suckling period (211).  

 Although SNAT4 (SLC38A4) performs comparable transport characteristics with other 

isoforms of system A, it has some striking differences from SNAT1 and SNAT2. Firstly, common 

substrates of system A are transported by SNAT4 with significantly lower affinity: Km values are 

3.5-4.2 mM for alanine (147, 378) and 6.7 mM for MeAIB (164). Secondly, while SNAT1 and 

SNAT2 do not interact with cationic AAs such as arginine and lysine (422, 437), evidence shows 

that SNAT4 recognizes these AAs as good substrates (164). Thirdly, SNAT4 is expressed 

dominantly in the liver and lower extent in other tissues like muscle, kidney, and pancreas (147, 

164, 378).  

2.5.1.2. System ASC 

System ASC’s preferred substrates are alanine, serine and cysteine. Thus, the initial letters 

of these AAs were originally used by Christensen and co-workers to describe the substrate 

specificity of this Na+-requiring system (71). The transport properties of these AAs are then studied 
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in many cell lines to represent common neutral AAs (133, 357, 441). The system ASC  has been 

found to express in a wide variety of cell types (135, 313, 402), and it consists of two isoforms, 

including ASCT1 and ASCT2. 

ASCT1 (SLC1A4) termed by Arriza et al. (5), or named as SATT by Shafqat et al. (355), 

is a Na+-dependent neutral AA transporter. The Km values for L-alanine, L-serine, and L-cysteine 

transport by ASCT1-expressing oocytes are between 29-88 µM (5). ASCT1-mediated transport is 

reported to be an electrogenic process that is sensitive to the reduction of intracellular Na+ 

concentration (5). However, Zerangue and Kavanaugh (442) argued that the electrical currents 

detected during an AA flux could be attributed to the activation of an uncoupled negative charged 

of chloride movement through ASCT1; and the transporter mediates an electroneutral AA 

exchange rather than the net flux of AA. The transporter has been abundantly found in  the brain 

and non-neuronal peripheral tissues (162, 178, 355). In the intestine, ASCT1 is described as a 

transporter localized on the basolateral membrane (162, 179).  

ASCT2 (SLC1A5) is generally known as a Na+-dependent exchanger in the apical 

membrane (39). It mediates the transport of L-alanine, L-serine, L-cysteine, L-threonine, L-

glutamine with high affinity (Km between 18-24 µM), whereas L-methionine, L-glycine, L-leucine 

and L-valine are transported with slightly lower affinity (Km between 300-500 µM) (402). While 

there is the suggestion that D-Met is a better substrate for ASCT2, D-serine appears to be 

transported by ASCT2 with lower affinity (135) than L-serine (402).  This is interesting because 

generally AA transporters favour L over D-isomers (27, 34, 54). However, there is little 

information about the impact of D and L transport in a mixture. It is suspected that the affinity of 

DL-Met mixture would be between D-Met and L-Met. The electrical property generated by 

ASCT2 is not uniformly observed. Some studies describe the transport process mediated by 
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ASCT2 is electroneutral (33, 402), along with the ability to display substrate-gated anion 

conductance (37). In the GI tract, it is first believed that ASCT2 is only present in the large intestine                    

(402). However, later studies show that it also resides in the small intestine (97) and stomach (199).  

2.5.1.3. System B0 

Characterization of neutral AA transporters was performed early in rabbit BBMV (343), 

bovine renal epithelial cell line NBL-1 (93), and Caco-2 cells (368). These studies suggest that the 

transport system is sodium-dependent and chloride-independent and denoted as neutral brush-

border (NBB). The system was later renamed as system B to indicate the broad substrate 

specificities and is finally preferred as B0 to reveal the zero net charge on the substrate molecules. 

There are two members of system B0, including B0AT1 and B0AT2.  

B0AT1 (SLC6A19) mediates the apical Na+-AA cotransport with a stoichiometry of 1:1 

(29). The transporter is mainly expressed in intestine and kidney, which accepts all neutral AAs 

with different affinities and is considered as a methionine-preferring transporter (35, 39). B0AT1 

transports neutral AA with affinities from approximately 1-10 mM and shows a preference for 

carbon-sulfur side chains (e.g. methionine) and branched-chain AAs (e.g. leucine and valine) (29, 

39). X. laevis oocytes expressing mouse B0AT1 reveals that  Km value for methionine is 

approximately 0.67 mM (276). A recent electrophysiological study on sea bass and salmon 

indicates that the functional properties of B0AT1 expressed in X. oocytes are similar to mammalian 

transporter (240, 241). However, it appears that salmon B0AT1 needs to co-express with accessory 

protein collectrin in order to perform its functions appropriately (240). 

B0AT2, aka SBAT1 (SLC6A15), is a neuron-specific neutral AA transporter. Its function 

has been exclusively studied in the brain (150, 324). B0AT2 transports several large zwitterionic 

AAs, with a preference for the branched-chain AAs, methionine and proline (Km ~ 40-200 µM) 
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(36, 382). It also accepts glutamine, phenylalanine and alanine with lower affinities (Km ~ 0.6-5.3 

mM) (36).  

2.5.1.4. System B0,+ 

System B0,+ is a sodium- and chloride-dependent system that could transport both neutral 

(0) and basic (+) AAs. According to Sloan and Mager (362), human ATB0,+ (SLC6A14) is 

responsible for the activity of system B0,+ and it transports AAs with high affinity (Km for 

methionine ~ 14 µM). The AA uptake via ATB0,+ is driven by transmembrane gradients of Na+ 

and Cl- ions with a stoichiometry of 2 or 3 Na+:1 Cl-:1 AA (275, 362). Although the expression of 

the transporter is mainly found in the lung, trachea, and salivary gland, it may still contribute to 

the absorption of AAs in the GI tract since it is detected in the stomach and colon of mammalians 

(128, 163, 362). 

2.5.1.5. System IMINO   

 System IMINO (SLC6A20) (aka sodium/imino-acid transporter 1 (SIT1)) is the major Na+-

dependent transporter for the absorption of proline and hydroxyl-proline in the intestine and kidney 

(383). At physiological sodium concentration, proline is transported by IMINO with a consistent 

affinity (Km between 0.2-0.3 mM) in intestinal BBMV and in oocytes (375, 383). It also appears 

to transport N-methylated AAs (Km = 3.2 mM for sarcosine) (383) and methionine with lower 

affinity (Km = 6.9 mM) (276). The transporter is obviously shown to be sodium-dependent, most 

likely transporting one to two Na+ with one substrate (374, 375, 383). Unlike sodium, a noticeable 

discrepancy in dependent (270) or not completely dependent on chloride (383) for IMINO carrier 

has been observed,  which proposes inconclusive electrogenicity of the transporter. 
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2.5.1.6. System y+L 

System y+L is a unique system that has characteristics of both system y+ and system L 

which more information is presented in the next sections. The capability of this system in 

transporting both neutral and basic AAs was originally identified and described in the erythrocyte 

plasma membrane (88). Specifically, this system could transport neutral AAs in the presence of 

sodium and is also capable of transporting basic AAs in the absence of sodium (4, 87, 88). The 

system y+L is composed of a heavy subunit (4F2hc) and light subunits: y+LAT1 and y+LAT2.  

4F2hc/y+LAT1 (SLC3A2/SLC7A7) was originally identified as a member of the family 

that is homologous to the yeast high-affinity methionine permease MUP1 (396). It is highly 

expressed in the basolateral membrane of the kidney and intestine, which involves the efflux of 

basic AAs and the influx of neutral AAs (4, 64). The transport of basic AAs such as arginine and 

lysine is not affected when replacing Na+ by K+, while the transport of neutral AAs such as 

methionine and leucine is highly Na+-dependent (88, 307). In physiological Na+ conditions, the 

transporter functions as an obligatory antiporter with affinity for neutral AAs that tends to be 

higher than basic AAs. It is suggested that the transporter mediates the cellular efflux of basic AAs 

in exchange for a cellular influx of neutral AAs, plus a cellular influx of Na+, which overall process 

is electroneutral (307). Thus, y+LAT1 potentially facilitates the re-enter of Met and to support the 

exit of intracellular basic AAs from the basolateral membrane of enterocytes.  

4F2hc/y+LAT2 (SLC3A2/SLC7A6) is abundantly present in several tissues and functions 

similarly with y+LAT1. However, its substrate specificity tends to be narrower than y+LAT1, and 

it may play an important role in the release of arginine in tissues or cell types that have low 

transport capacity (38). It has further been suggested that y+LAT2 activity may be suppressed by 

mutations of y+LAT1 (369). 
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2.5.2. Sodium-independent AA transport systems 

2.5.2.1. System b0,+ 

 System b0,+ was originally studied in mouse blastocysts as a Na+-independent transport 

system with broad specificity for neutral (0) and cationic (+) AAs and cystine (406). The system 

b0,+ is composed of two different protein subunits: a heavy chain rBAT (approximately 90 kDa) 

and a light chain b0,+AT (roughly 40 kDa) (297). rBAT/b0,+AT (SLC3A1/SLC7A9) is mainly 

expressed in the apical membrane of the small intestine and the nephron epithelial cells (127, 310). 

In oocytes and opossum kidney (OK) cells, the transporter demonstrates as an obligatory 

exchanger that mediates the influx of cationic AAs and efflux of neutral AAs with 1:1 

stoichiometry (64). Substrates are transported with high affinity, and Km values are between 71-

130 µM for methionine (276, 296). rBAT/b0,+AT is also known as cystine transporter due to the 

critical role in the reabsorption of cystine in the kidney. In chicken BBMV, Soriano-García and 

co-workers (367) indicates that L-Met could be transported by a carrier-mediated mechanism that 

is described as b0,+-like with high affinity Michaelis constant (Km ~ 2.2  µM) and low capacity 

(Vmax ~ 0.13 pmol (mg protein)-1 (2 s)-1). 

2.5.2.2. System y+ 

System y+ is known as a Na+-independent lysine-accepting system (system L+) that was 

originally described in Ehrlich cells by Christensen (67). In later research, Christensen and Liang 

(70) showed that cationic AAs could be transported by two pathways, including lysine-accepting 

system L+ and lysine-preferring agency known as Ly+; which the former could be partially 

inhibited by phenylalanine, while the latter is resistant to the inhibition of phenylalanine. However, 

a further investigation performed in rabbit reticulocytes does not result in strong inhibitory effects 

of neutral AAs such as leucine, phenylalanine, and methionine on lysine uptakes (69). Therefore, 
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the authors concluded that there is only one system transporting cationic AAs. The system was 

then renamed as y+ since it does not accept lysine exclusively, but also recognizes arginine, 

homoarginine,  ornithine, and other cationic analogs in human skin fibroblasts (427). Investigation 

on intestinal transport of Met, Soriano-García and co-authors (367) found that Met could be 

transported by a system that was similar to system y+ and named as y+m with Km about 3 mM in 

chicken BBMV. However, this has not been confirmed in heterologous expression systems. 

System y+ is assembled by four main cationic AA transporters genes (CAT1-4) which have 

assigned to the gene names as SLC7A1-4 (415).  

CAT1 (SLC7A1) is likely to be the major Na+-independent transporter of system y+ in most 

of the cells. It was originally identified as a receptor for murine ecotropic leukemia viruses. CAT1 

expression has been found in all tissues with the exception of the liver (87), which its expression 

levels markedly vary among types of tissues and are controlled by different factors such as growth 

factors, hormones, nutrients, etc. (166). Cationic AAs such as L-arginine, L-ornithine, and L-lysine 

are transported with high-affinity (70-100 µM) by CAT1 expressed in oocytes, while D-isomers 

are transported by lower affinity (Km in mM ranges) (197, 423). In addition, neutral AAs (e.g. 

cysteine) are also transported at high concentrations, but only with the condition of sodium (197).  

CAT2 (SLC7A2) with two isoforms (CAT2A and CAT2B) is structurally similar to CAT1, 

but different in substrate affinity and tissue distribution. CAT2A is abundantly expressed in the 

liver (229) and exhibits low-affinity with cationic substrates (Km ~ 2-5 mM), while CAT2B could 

be found in a variety of cells, and Km ranges between 0.3-0.7 mM (75). CAT3 (SLC7A3) 

expression is restricted to the brain in rodents and displays high-affinity when transporting L-

arginine (Km ~ 40-103 µM) and L-lysine (Km ~ 115-165 µM) (177, 183). Whereas, CAT4 

(SLC7A4) has not been functionally studied.  
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2.5.2.3. System L 

System L was originally defined in the Ehrlich ascites tumor cell and named as the leucine-

preferring site because of its high transport rate with leucine (293). It is an important basolateral 

Na+-independent system that transports large neutral, branched or aromatic AAs, and could be 

inhibited by BCH. A study in Chang liver cells proposes that an imposed proton gradient across 

the membrane could increase the affinity of the transport system for leucine (263).  There are four 

members of system L including LAT1-4. LAT1 and LAT2 belong to the SLC7 family and are 

heterodimeric proteins that require a heavy chain subunit 4F2hc to elicit transport activity. In 

contrast, LAT3 and LAT4 belong to the SLC43 family and are not heterodimeric transporters, so 

no co-expression with 4F2hc is required. 

4F2hc/LAT1 (SLC3A2/SLC7A5) and 4F2hc/LAT2 (SLC3A2/SLC7A8) are expressed in 

varieties of cell. In the intestine, LAT1 is abundantly found in the colon, while LAT2 is 

homogenously present throughout the intestinal tract (124). LAT1 and LAT2 are identified as AA 

exchangers with a 1:1 stoichiometry (414). This means that the transporters transfer one AA out 

of the cell and simultaneously one AA into the cell, resulting in neither a net influx nor efflux. 

Thus, their roles are likely to equilibrate the AA concentration across the membrane rather than to 

contribute to a net flux of AA (252). Both LAT1 and LAT2 could transport substrate AAs with 

high affinity. For instance, human LAT1 transports large neutral AAs with high-affinity (Km ~ 15-

50 µM) including L-Met with the affinity of 20 µM and is equally capable of accepting D-isomers 

(434). Compared to LAT1, LAT2 exhibits a broader substrate selectivity including large and small 

neutral AAs, but with lower affinities (Km ~ 30-300 µM), plus L-Met with the affinity of 204 µM 

(351). It appears that pH-dependence is the primary criterion to differentiate between LAT1 and 
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LAT2. The transport mediated by the former is not influenced by proton concentration (321), while 

the latter could be stimulated by low pH (351). 

LAT3 (SLC43A1) and LAT4 (SLC43A2) are Na+-, Cl-, and H+- independent transporters 

that have narrow substrate specificity including leucine, isoleucine, methionine, and phenylalanine 

(6, 27). LAT3 mRNA is mainly expressed in the pancreas, liver and skeletal muscle (6), whereas 

LAT4 mRNA is highly distributed in the placenta, kidney and intestine (27). Unlike antiporters 

LAT1 and LAT2, LAT3 and LAT4 play an important role in facilitating a net efflux of AAs across 

the membrane (73). An earlier study in Caco-2 cell proposed that the rate-limiting of Met transport 

is largely determined by basolateral efflux (62). A recent study in knock-out mice has confirmed 

the role of uniporter LAT4 in controlling (re)absorption of essential AAs, especially phenylalanine 

and methionine in basolateral sides of the small intestine and kidney (148). Experiments in oocytes 

demonstrates that LAT4 transports phenylalanine with low affinity from 4-5 mM (27, 148).  

2.6. DL-MHA transport across the gastrointestinal tract by monocarboxylate transporters   

The chemical structure of Met includes an amine group (NH2), a carboxyl group (COOH), 

a hydrogen atom and a R group (C3SH7). In the MHA molecule, the amino group is substituted 

with a hydroxyl group (OH). Due to this substitution, MHA is closely similar to monocarboxylate 

rather than a true Met. As a result, DL-MHA is believed to be transported by a different mechanism 

that involves monocarboxylate transporters of the SLC16 family and/or sodium monocarboxylate 

transporters of SLC5 family (230, 245). The general description of transporters are presented in 

table 2.2  
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Table 2.2. Putative transporters mediate MHA transport in the intestine of mammals 

  

 

Gene name SLC
1
 Affinity

2
 Mechanism

3
 Location

4
 

P
ro

to
n
-d

ep
en

d
en

t/
in

d
ep

en
d
en

t 

MCT1 SLC16A1 Low H
+
 AM/BM 

MCT2 SLC16A7 
High-

Medium 
H

+
 AM/BM 

MCT3 SLC16A8 Low H
+
 AM/BM 

MCT4 SLC16A3 Low H
+
 AM/BM 

MCT5 SLC16A4 ? ? ? 

MCT6 SLC16A5 ? ? ? 

MCT7 SLC16A6 ? ? ? 

MCT8 SLC16A2 ? ? ? 

MCT9 SLC16A9 ? ? BM? 

TAT1 SLC16A10 ? ? ? 

MCT11 SLC16A11 ? ? ? 

MCT12 SLC16A12 ? ? ? 

MCT13 SLC16A13 ? ? ? 

MCT14 SLC16A14 ? ? ? 

S
o
d
iu

m
-

d
ep

en
d
en

t 

SMCT1 SLC5A8 

High-

Medium- 

Low 
Na

+
 AM 

SMCT2 SLC5A12 Low Na
+
 AM 

1-Solute carrier. 2-Affinity (high, < 100 µM; medium, 100 µM – 1 mM; low, > 1 mM). 3-

Mechanism (H
+
: proton-dependent, Na+: sodium-dependent). 4-Location (AM: apical 

membrane, BM: basolateral membrane).  
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2.6.1. Monocarboxylate transporters  

The monocarboxylate transporter (MCT) family consists of 14 members in which only 

MCT1-4 are well characterized and known as H+-coupled transporters, while the functions of the 

remaining transporters have not fully understood.  

MCT1 (SLC16A1) expression is found in almost all tissue and most pronounced in 

muscles, which directly link to the regulation of lactic acid production (12, 30, 188, 354). Findings 

of expression pattern along the intestine show that MCT1 mRNA and protein are richly expressed 

in the large intestine, including colon and cecum (132, 184, 330). The abundant expression of 

MCT1 in the distal intestine is logical with the dominant activity of bacterial fermentation 

producing SCFAs in this area (394). Initial studies on lactate transport were carried out in human 

red blood cells (86, 96) using radiolabeled substrates flux techniques, and in tumor cells by 

monitoring the substrate-induced decrease in intracellular pH using fluorescent H+ indicator 

BCECF (57). Subsequently, MCT1 is expressed in X. laevis oocytes and its transport properties 

are studied using similar mentioned techniques (43, 237, 330). Recently, a new technique using 

hyperpolarized [13C]-labeled substrates combined with nuclear magnetic resonance (NMR) was 

employed to study the transport kinetics of monocarboxylic acids (161). Regardless of 

methodologies used, these studies reveal that MCT1 accepts a wide range of SCFAs. C-2 (acetate, 

glyoxylate, oxamate, lycolate), C-3 (propionate, pyruvate, lactate, chloropropionate), and C4 

(oxobutyrate, hydroxybutyrate, hydroxy-2-methylpropionate) are transported with affinity from 

0.2-63 mM; whereas, C-1 (formate and bicarbonate) are poorly transported with affinity >100 mM 

(152). MCT1-mediated substrate transport is suggested to be an electroneutral process because of 

1:1 H+/monocarboxylate stoichiometry and the transport process is easily stimulated by decreasing 

the pH from 8 to 5.0 (181, 207, 233, 330). Although Martin-Venegas and co-workers suggest that 
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MCT1 mediates the transport of DL-MHA in Caco-2 cells with Km around 13 mM (245), the 

authors could not observe the differences in DL-MHA uptakes between pH conditions (pH 5.5 

versus 7.4). Whether or not MCT1 could regulate DL-MHA uptakes also depends on its location 

in the cell membrane, which has been inconsistently observed. Several studies have showed that 

MCT1 is mainly expressed in the apical membrane (55, 63, 273, 308). Some studies find its 

exclusive expression on the basolateral surface of epithelial cells (131, 132, 184), whereas the 

other studies find it on both apical and basolateral surfaces (243, 384). The identification of 

inhibitors is an essential part of characterizing transporters. According to Halestrap and Price 

(156), inhibitors of MCT1 could be grouped into four categories including: (1) substituted aromatic 

monocarboxylates such as α-cyano-4-hydroxycinnamate (CHC) and its analogs), (2) amphiphilic 

compounds such as phloretin, quercetin and 3-isobutyl-1-methylxanthine (IBMX), (3) 

organomercurial thiol reagents such as p-chloromercuribenzene sulphonate (pCMBS), and (4) 

stilbene disulphonates such as 4,4′-dibenzamidostilbene-2,2′-disulphonate (DBDS) and 4,4′-

diisothiocyanostilbene-2,2′-disulphonate (DIDS). Since none of these inhibitors are specific for 

inhibiting MCT1, caution needs to be taken when analyzing data.  

MCT2 (SLC16A7) is an H+-dependent transporter. It is expressed in various animal tissues 

and tends to transport substrates with higher affinity than MCT1 (131, 214). Specifically, Garcia 

et al. (131) demonstrates that Km values for [14C] pyruvate uptake by hamster MCT2 and MCT1 

expressed in insect Sf9 cells are 0.8 mM and 3.1 mM, respectively. A higher affinity for human 

MCT2-expressing in oocytes is also observed in the research of Lin et al. (214), which Km values 

of 25 µM and 2.3 mM for pyruvate transported by MCT2 and MCT1, respectively. Likewise, a 

later experiment in oocytes conducted by Broer and co-workers (40) again concludes that Km 

values generated by MCT2 are smaller than that by MCT1 for most of the substrates, including 
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pyruvate, L-lactate, acetoacetate, D,L-β-hydroxybutryate, 2-oxoisohexanoate, and 2-

oxoisovalerate. It is reported that MCT2 is more sensitive than MCT1 to most of the inhibitors, 

including CHC, DIDS and DBDS (153). The main difference between MCT1 and MCT2 is that 

the former is inhibited by pCMBS, while the latter is resistant to the pCMBS (40, 131).  

MCT3 (SLC16A8) distribution has been found in several tissues including retinal pigment, 

choroid plexus, skeletal muscle, heart, placenta, white blood cells, NBL1 cells, and COS cells 

(309, 429, 440). Wilson and his colleagues (429) performed transport kinetics of MCT3 in multiple 

cell lines derived from the bovine kidney (NBL1), monkey kidney COS and mouse tumor (ELT). 

The results show that Km values are in millimolar ranges: L-lactate (6.4-10.1 mM) and D-lactate 

(12.6-46.6 mM) and pyruvate (0.9-2.1 mM). These authors also suggest that L-lactate transport is 

inhibited by CHC, DIDS, and phloretin. The location of MCT3 in the basolateral membrane of rat 

retinal pigment epithelium (RPE) is well demonstrated by Philp and co-workers (308). 

Subsequently, L-lactate is kinetically studied when MCT3 from chicken RPE is expressed in yeast.  

Although the results of affinity are compatible with previous research (Km ~ 6 mM), MCT3 is 

greatly resistant to classical inhibitors such as CHC, pCMBS, and phloretin (145).   

MCT4 (SLC16A3) is another major member of the MCTs family that plays an essential 

role in glycolytic metabolism. It is widely expressed in glycolytic tissues such as skeletal muscles  

(119, 311, 354), astrocytes (24) and white blood cells (256). MCT4 is similar to the other MCT 

isoforms in several aspects: specificity of substrate recognition, pH dependence, and inhibitory 

response to CHC, DIDS and phloretin. However, it could be distinguished from MCT1-3 by its 

low substrate affinity. The Km for lactate transport is between 13-25 mM in rat sarcolemmal giant 

vesicles (mixed isoforms with MCT4 dominant) determined by monitoring intracellular pH 

response using fluorescent H+ indicator BCECF (187). In oocytes experiment, rat MCT4 transports 
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lactate with Km of 17 mM or 34 mM by measuring changes of the cytosolic pH with pH-sensitive 

microelectrodes or measuring flux with radioactive tracers, respectively (91).  

The following are the remaining SLC16A family members with some defined functions, 

minimally characterized or not characterized at all. Despite being members of MCTs, several 

transporters below refuse to accept common monocarboxylic compounds.  

MCT8 (SLC16A2) encoded by XPCT gene was initially cloned in 1994 and temporarily 

named as X-linked “PEST”-containing transporter since the domain region was rich in proline (P), 

glutamic acid (E), serine (S) and threonine (T) residues (206). However, its substrates and transport 

functions remained unknown until it was identified as a specific thyroid hormone transporter by 

Friesema and co-workers (126). Expression of MCT8 in X. laevis oocytes shows that [125I] labelled 

thyroxine (T4), 3,3’,5-triiodothyronine (T3), and 3,3’,5’-triiodothyronine (rT3) are transported 

with high affinity (apparent Km values of 2-5 µM), whereas aromatic AAs such as phenylalanine, 

tyrosine, and tryptophan, and leucine are not transported. The authors also point out that the 

organic anion bromosulfophthalein (BSP) is a potent inhibitor along with T3 analogs where the α-

NH2 group is blocked (BrAcT3) or deleted (Triac). Data on expression is found on both protein 

and gene levels in various rat tissues including the brain, liver, kidney, teste, and heart (60, 126, 

404).  

TAT1 (SLC16A10) is known as T-type amino acid transporter 1 that mediates the transport 

of aromatic AAs, but not lactate and pyruvate. The transporter is primarily distributed in the 

kidney, skeletal muscle, intestine, liver and placenta (195, 196).  Rat TAT1 expressed in Xenopus 

oocytes exhibits low-affinity transport of aromatic AAs with Km of about 2-7 mM (195). Unlike 

MCT1-4, AAs uptakes mediated by TAT1 are Na+ and H+ independent. However, higher affinity 

(Km in µM ranges) is observed when a similar experiment is performed in human TAT1 (196). 
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Both studies demonstrate the inhibitory effects of N-methyl and N-acetyl derivatives of aromatic 

AAs substrates on TAT1-mediated radiolabeled substrate uptakes. 

MCT5-7 (SLC16A4-6) distribution has been performed in human tissues using Northern 

blots (323). Recent studies (203, 271) demonstrate that MCT6 (SLC16A5) facilitates drug uptakes 

with high affinities: Km of 84 µM (bumetanide) and 46 µM (nateglinide), but does not accept 

common substrates of MCT (e.g. lactic acid and tryptophan). Although kinetic transports have not 

been studied, MCT7 (SLC16A6) is reported as an important factor regulating the secretion of 

ketone bodies in the liver during fasting (180). The information about the full substrate specificity 

of MCT9 (SLC16A9) has not been established. However, when expressed in X. oocytes, MCT9 

has been identified as a pH-independent transporter that mediates unidirectional efflux of [3H]-

carnitine, suggesting its function in delivering substrates from basolateral membrane of absorptive 

epithelial cells into the blood (379). The functions of the remaining orphan MCT11-14 (SLCA11-

14) have not been elucidated, although their distributions have been reviewed in a variety of tissues 

(154, 155).   

2.6.2. Sodium monocarboxylate transporters 

As mentioned previously, DL-MHA transport was proposed to be mediated by proton-

dependent transporter MCT1 in Caco-2 cells by Martín-Venegas and co-authors (245). However, 

these authors fail to demonstrate the stimulation of DL-MHA transport by the imposed H+-

gradient. Likewise, the dependence of DL-MHA transport on sodium is inconsistently observed in 

a few studies. The transport of DL-MHA was not dependent on sodium when being studied in 

chick and rat intestinal BBMV (31, 32) as well as in X. oocytes injected with poly(A)+ RNA that 

encode proteins capable of transporting DL-MHA isolated from chicken intestinal mucosa tissue 

(298). Whereas partial Na+-dependence of DL-MHA uptake is detected in the chicken small 
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intestine using the everted sac method (244). The presence or absence of sodium dependence in 

these studies could be caused by the differences in techniques and/or animal species that are used. 

Hence, DL-MHA transport in the fish intestine could be sodium-dependent/independent, which 

requires the examination of sodium-linked monocarboxylate carriers. Evidence emerged many 

years ago that there are sodium/monocarboxylic acid cotransport pathway across renal brush 

border membranes. Uptake of L-lactate and pyruvate in BBMV was found to be stimulated by 

inwardly directed Na+ gradient (16, 279) and no significant contribution of H+/lactate co-transport 

is observed in the pH-dependent study (16). Analysis of transport properties shows that sodium: 

lactate stoichiometry is 2:1 (254), or 1:1 (17). Km values are 0.4-4.3 mM for lactate (16, 253, 280) 

and 0.1-0.25 mM for pyruvate (279, 343). Thus, it is possible that DL-MHA could be transported 

by SLC5 sodium-coupled MCTs gene family (SMCTs) that includes two members: SMCT1 and 

SMCT2. 

SMCT1 (SLC5A8) was originally cloned as a sodium iodide symporter (NIS) by 

Rodriguez et al. (333) and proposed as an important tumor suppressor in colon and gliomas cancer 

(174, 212). When expressed in X. oocytes, SMCT1 was shown to transport a broad range of SCFAs 

and drugs in a Na+-dependent manner with high-affinity for L-lactate (159-235 µM), butyrate (72-

81 µM), propionate (127-162 µM), pyruvate (387 µM), nicotinate (230-390 µM) ; and with low-

affinity for acetate (2.5 mM), β-hydroxybutyrate (1.4-2.3 mM) and drugs such as benzoate and 

salicylate (1.1-1.5 mM) (76, 141, 246, 264, 299). In inhibitor studies, SMCT1 is strongly inhibited 

by probenecid or ibuprofen (76), but insensitive to CHC and phloretin which are the potent 

inhibitors for MCT1 (40, 42). Immunohistochemical findings in intestine indicate that SMCT1 and 

MCT1 have been primarily found in the apical and basolateral membrane, respectively, suggesting 
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the major role in luminal SCFA uptake of the former and the SCFA efflux towards bloodstream 

of the latter (184).  

SMCT2 (SLC5A12) expression is primarily found in the kidney, intestine and skeletal 

muscle (371). In the intestine, SMCT2 is dominantly expressed in the proximal areas, while 

SMCT1 is expressed in distal areas (371). Similar findings in the kidney report that SMCT2 

expression is extended throughout the whole length of the proximal tubule (S1/S2/S3 segments), 

whereas SMCT1 is confided in the final area (S3 segment) (142). In comparison, although the 

substrate specificity of SMCT2 is similar to that of SMCT1, SMCT2 interacts with its substrates 

with relatively lower affinity: butyrate (2.6-16 mM), nicotinate (3.7-9.5 mM), and lactate (16.9-49 

mM) (142, 371). These observations in the distribution and affinity between two transporters lead 

to the suggestion that the uptake of SCFAs in proximal intestine/kidney is initiated by SMCT2 

with low-affinity, whereas the presence of high-affinity SMCT1 will likely ensure complete 

absorption in the distal intestine/kidney (153). Another difference between SMCT1 and SMCT2 

is in the electrophysiological nature of their transport processes. It is generally concluded that 

SMCT1 mediates electrogenic absorption of substrates with 2-4 sodium ions per one 

monocarboxylate (76, 129, 140). In contrast, there is no agreement about electrophysiological 

results generated by SMCT2, which the process could be electroneutral (142), electrogenic (371), 

or both (315).  

2.7. Segmental differences in AA and SCFA transport in the gastrointestinal tract  

 The structure of the fish intestine is comprised of distinctive regions including proximal 

intestine with pyloric caeca, mid intestine (midgut) and distal intestine (hindgut). Pyloric caeca are 

finger-like pouches that protrude from the proximal intestine, whereas midgut and hindgut are long 

tubes with different thickness of circular and longitudinal muscle layers (52). Such anatomical 
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differences are expected to account for the existence of functional differences in nutrient transport 

in the intestine. In fact, several studies in fish have demonstrated that there are segmental 

differences in Km and Vmax of phenylalanine influx, activity of basolateral membrane Na⁺/K⁺ 

pump, electrical potential difference (PD) and short circuit current (Isc) in gilthead seabream (3, 

221, 222), the transepithelial influx of proline in coho salmon (77), and tissue permeability in 

rainbow trout (344). As introduced previously, intestinal nutrient transport is largely regulated by 

protein transporters. Distribution and mRNA expression of AA transporters in the intestine has 

been shown to be segmentally different. For example, study in pigs show that y+ LAT1 is most 

abundant in the duodenum, while the highest expression of b0,+AT and CAT2 are found in the 

ileum (112, 424, 446, 449). In rat small intestine, mRNA expression level of glutamate transporter 

(EAAC1) is apparently high in distal regions, proposing that it is an important region for 

transporting acidic AAs (102). Meanwhile, other studies in equine shows that b0,+AT and LAT3 

are highly expressed in large intestine, suggesting that this region could transport cationic and 

neutral AA as well (432). In fish, evidence has proven that segmental segregation of glucose 

transport kinetics highly associates with the gene expression pattern of glucose transporters along 

the intestinal tract of trout and tilapia (376). Hence, it would be interesting to explore the 

segmental-dependent DL-Met transport in rainbow trout intestine.  

Regarding SCFAs, regional distribution of MCT1 is primarily expressed in the colon, 

corresponding to the segmental distribution of SCFAs production which are primarily produced 

from fibre fermentation in the large intestine of mammalian species (101, 134). The regional 

comparison has been performed in a limited amount within this segment. Unidirectional flux 

mucosal-serosal of acetate, butyrate and propionate are found to be higher in distal colon than in 

caecum and proximal colon of guinea pig (100). However, several studies have shown that the 
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small intestine is still capable of transporting SCFAs in mammalian animals (345, 366). This also 

holds true for teleost fish. Acetate concentration in the digesta determined by HPLC was shown to 

be similar in all three intestinal regions (upper, middle and lower) of tilapia (Oreochromis 

mossambicus) ranging from 14-18 mM (392). The transport of [3H]acetate into BBMV from the 

proximal intestine of tilapia was found to obey Michaelis-Menten kinetics with Km of 6.4 mM 

(392). These suggest that the entire intestinal tract may be able to transport SCFAs which are an 

important nutrient source for plant-eating fish. Interestingly, while caeca of mammals and birds 

often serve as fermentation chambers, pyloric caeca in carnivorous fish are known as an absorptive 

site of nutrients (47), which is typically reduced or absent in herbivorous fish (48). Therefore, the 

existence of segmental differences in transport of SCFAs in the intestine of rainbow trout, a 

carnivore, is possible and would be examined in the current thesis.  

2.8. Triploid and diploid rainbow trout aquaculture 

Salmonid species (salmon and trout) are one of the most important cultured finfish group 

and are primarily produced by Norway, Chile and several countries from Europe and North 

America. The use of triploid salmonids has been introduced in aquaculture as a strategy to mitigate 

the genetic threats caused by the interaction between escaped farmed and wild fish and to improve 

production. Genetically, triploid fish is not a genetic modified organism (GMO). Compared to 

normal diploid fish (2N), it has three sets of chromosomes (3N) which is produced by subjecting 

newly-fertilized eggs to a hydrostatic pressure, thermal or chemical shock to prevent the extrusion 

of a polar body during meiosis (21, 89, 216). Fundamentally, triploid fish are similar to diploid 

fish, with the exception of the inability to reproduce in the former. Therefore, scientists generally 

agree that negative consequences caused by interbreeding between wild fish population and 

escaped farmed triploid fish are prevented (78). On the other hand, whether triploid fish 
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outperforms diploid fish in growth performance and disease resistance is still the subject of debate. 

In salmonids, several authors suggest that the growth performance of diploids is better than (250, 

385), or similar to triploids (284). In contrast, faster growth has been observed for triploid salmon 

and rainbow trout (289, 386), which agrees with work on other aquatic species including catfish, 

oyster, shrimp, and tilapia (110, 158, 316, 320). It is thought that triploid animals have superior 

growth, flesh quality and survival compared to diploid counterparts due to three main reasons: 

increased heterozygosity, the concept of gigantism, and sterility. Firstly, the genomic 

heterozygosity hypothesis states that meiosis I triploid is more heterozygous than diploid, 

suggesting that faster growth results from increased allelic diversity and/or numbers (167, 372, 

425). Secondly, the hypothesis of gigantism in triploid suggests that the increased body size in 

triploid is due to the increased cell volume in order to compensate for a reduction in cell numbers 

(22, 106, 149). Thirdly, the reduced gonads could prevent the allocation of energy from somatic 

to gonadal development of female triploid fish during sexual maturation (160, 185, 215). Despite 

the economic and ecological potentials, there is a rising reluctance in commercial operation to 

produce triploid Atlantic salmon since triploid fish tend to be more susceptible to disease infection 

(294), less tolerant of suboptimal water conditions such as low oxygen and high temperature (159, 

213, 412), and high occurrence of body deformities such as cataract, skeleton, jaw, and gill 

deformities (125, 208, 290, 305, 336, 380).  

Although differences in growth and survival performances of 3N and 2N fish are not yet 

conclusive, morphological and physiological differences have been described for several species 

(249). The GI tract is an important site for nutrient absorption. Differences in relative gut length, 

pyloric caeca numbers and mass between diploid and triploid fish may be influential in digestive 

efficiency and nutrient utilization, which subsequently causes differences in growth (304, 407). In 
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an effort to understand the mechanisms, the effects on ploidy on gene expression have been studied 

to understand the dissimilarity in physiological performance between diploids and triploids. 

Cleveland and Weber (74) suggest that reduced expression of IGF binding proteins, altered 

expression of muscle regulatory factors (mstn1a and mstn1b); and altered tissue responsiveness to 

TGFbeta superfamily ligands possibly explain why 3N juvenile rainbow trout recovery from 

nutritional restriction is better than 2N counterparts. In studies about the changes in gene 

expression during sexual maturation, Manor et al. (238, 239) report that the expression of fatty 

acid synthesis-related genes increases in 3N triploid female liver and muscle, and expression of β-

oxidation-related genes increases in 2N diploid muscle and adipose tissues. These indicate that the 

discrepancy in deposition and degradation of fatty acids in 3N and 2N fish during sexual 

maturation. Hence, understanding how nutrient is absorbed in the GI tract and how it correlates 

with genes involved in nutrient transport are potential approaches to explain phenotypic 

differences between 3N and 2N fish. Since knock-out models of genes that are capable of 

transporting methionine have not been developed in trout, triploid and diploid rainbow trout are 

used as a tool to exploit the potential differences in DL-Met transport and gene expression, which 

is performed in the 3rd chapter. 
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Transition 

The following chapter focuses on addressing the 1st objective and the 1st hypothesis. It has been 

documented in mammalian species that DL-Met transport is mediated by sodium-dependent and 

sodium-independent transporters, and there is evidence of segmental differences in several amino 

acid transporters in the intestine. However, such understanding has not been confirmed in rainbow 

trout fish. This chapter has been published in Physiological Reports. The chapter has been 

reformatted from the original manuscript to fit the structure of the thesis.  

Objective: Characterize sodium-dependent DL-Met transport in the intestinal tract of rainbow trout 

using Ussing chamber and gene expression analysis. 

Hypothesis: DL-Met transport is sodium-dependent, and there are segmental differences in DL-

Met transport along the intestinal tract of rainbow trout. 

Manuscript: To, V.P.T.H.1, Masagounder, K.2, Loewen, M.E1. SLC transporters ASCT2, B0AT1‐

like, y+LAT1, and LAT4‐like associate with methionine electrogenic and radio‐isotope flux 

kinetics in rainbow trout intestine.  Physiological reports 7, no. 21 (2019): e14274. 

1Veterinary Biomedical Science, University of Saskatchewan, Saskatoon, SK, Canada 

2Evonik Nutrition and Care GmbH Rodenbacher Chaussee 4D-63457 Hanau, Germany 

Contribution: VT designed and performed experiments, analyzed data and interpreted data, 

prepared manuscript and revised manuscript. KM revised manuscript. ML received funding, 

designed experiments, interpreted data and revised manuscript.  
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CHAPTER III 

DL-MET TRANSPORT IN THE INTESTINAL TRACT OF RAINBOW TROUT 

3.1 Abstract 

Methionine (Met) is an important building block and metabolite for protein biosynthesis. However, 

the mechanism behind its absorption in the fish gut has not been elucidated. Here we describe the 

fundamental properties of Met transport along trout gut at µM and mM concentration. Both 

electrogenic and unidirectional DL-[14C]Met flux were employed to characterize Met transporters 

in Ussing chambers. Exploiting the differences in gene expression between diploid (2N) and 

triploid (3N) and intestinal segment as tools, allowed the association between gene and Met 

transport. Three intestinal segments: pyloric caeca (PC), midgut (MG) and hindgut (HG) were 

assessed. Results at 0-150 µM concentration demonstrated that DL-Met was most likely 

transported by apical transporter ASCT2 (SLC1A5) and recycled by basolateral transporter 

y+LAT1 (SLC7A7) due to five lines of observation: (1) lack of Na+-independent kinetics, (2) low 

expression of B0AT2-like gene, (3) Na+-dependent, high-affinity (Km, µM ranges) kinetics in DL-

[14C]Met flux, (4) association mRNA expression with the high-affinity kinetics and (5) 

electrogenic currents induced by Met. Results at 0.2 - 20 mM concentration suggested that DL-

Met is possibly transported by B0AT1-like (SLC6A19-like). This observation is based on gene 

expression, Na+-dependence, low-affinity kinetics (Km, mM ranges), and cis inhibition. Similarly, 

genomic and gene expression analysis suggested the basolateral exit of DL-Met was primarily 

through LAT4-like transporter (SLC43A2-like). Conclusively, DL-Met uptake in trout gut was 

most likely governed by Na+-dependent apical transporters ASCT2 and B0AT1-like and released 
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through basolateral LAT4-like, with some recycling through y+LAT1. This is a relatively simpler 

model than described in mammals. 

3.2. Introduction 

Methionine (Met) is a sulfur-containing essential amino acid (EAA) that plays an important 

role in numerous metabolic processes. Three primary functions of this EAA are protein 

biosynthesis, methyl donor and precursor of cysteine synthesis (25, 257, 389). Influences of Met-

deficient diets on feed consumption, growth performance, immune response, mRNA translation 

efficiency, oxidative status and protein turnover have been observed in a variety of fish species 

(20, 103, 205, 260, 352, 398). The intestinal tract is a critical site for animal nutrient uptakes. 

Compared to mammals, considerably less information is available on the nutrient absorptive 

mechanisms in aquatic species. Initial studies on AA absorption in fish included goldfish 

Carassius auratus (255), white grunt Haemulon plumieri (364), rainbow trout Salmo gairdneri 

(182), killifish Fundulus heteroclitus (262), European yellow eel Anguilla anguilla (232), and sea 

bass Dicentrarchus labrax (14). Most of these studies demonstrated that the Na+ electrochemical 

gradient is the driving force for the absorption of AAs.  

AA absorption in the intestine is a complex process and an individual AA is typically 

transported by multiple transporters. AA transporter systems belong to solute carrier (SLC) gene 

superfamily and can be grouped into some categories such as neutral, basic and acidic systems. 

Being a neutral AA, Met transports have been described in both Na+-dependent (system A, system 

ASC, system B0, aka NBB, system IMINO and system y+L) and Na+-independent pathways 

(system L, system b0,+-like, system y+-like) (39, 202, 235, 269, 367). As mentioned earlier, current 

knowledge of how nutrients are absorbed in the fish intestine in comparison to mammals is very 

limited due to the diversity of the living environment and gut anatomy of aquatic species. 
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Here, we exploit the differences in the absorption kinetics of DL-Met and transport gene 

expression between diploid and triploid rainbow trout as tools to determine the mechanism of Met 

absorption in fish gut.  It should be noted that the intention of this study was not to give mechanism 

to the controversial difference in growth rate between ploidy (250, 285, 289). Met absorption 

kinetics were successfully studied in the presence and absence of sodium at µM and mM DL-Met 

concentration gradients created by increasing sequential concentration of Met. Trout gut 

demonstrated Na+-dependent, high-affinity kinetics at 0-150 µM DL-Met concentration and a Na+-

dependent, low-affinity kinetics at 0.2-20 mM DL-Met concentration. Genome and gene 

expression analysis indicated that ASCT2 (SLC1A5) and B0AT1-like (SLC6A19-like) were 

possible candidates responsible for the apical Met absorption at µM and mM concertation 

gradients, respectively. Whereas basolateral transporter y+LAT1 (SLC7A7) was associated with 

electrogenic recycling and LAT4-like (SLC43A2-like) was associated with Met exit.  

3.3. Materials and methods 

3.3.1. Genomic analysis to identify methionine transporter genes  

All Met transporter candidates that were previously described in mammalian and aquatic 

species were first listed. The list included 18 transporter candidates: SNAT-1,2,4 (SLC38A-1,2,4), 

ASCT2 (SLC1A5), rBAT/b0,+AT (SLC3A1/SLC7A9), IMINO (SLC6A20), 4F2hc/LAT1 

(SLC3A2/SLC7A5), 4F2hc/LAT2 (SLC3A2/SLC7A8), LAT3 (SLC43A1), LAT4 (SLC43A2), 

4F2hc/y+LAT1 (SLC3A2/SLC7A7), 4F2hc/y+LAT2 (SLC3A2/SLC7A6), ATB0,+ (SLC6A14), 

B0AT1 (SLC6A19), B0AT2 (SLC6A15), CAT-1,2,3 (SLC7A-1,2,3). Zebrafish sequences were 

initially used as reference to identify sequences of candidate genes in trout. However, several listed 

genes were not available in zebrafish and the blast analysis (https://www.ncbi.nlm.nih.gov/) 

resulted in poor identification compared to similar process employed when using human 

https://www.ncbi.nlm.nih.gov/
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transporters sequences. Therefore, the nucleotides of 18 human transporters were used to blast 

against the rainbow trout genome to identify similar mRNA sequences in trout. The match between 

human and trout sequences was justified based on the e-values less than 10^-15 which were 

accepted. The results were double checked in NCBI assembly software using gene name search. 

Subsequently, available trout mRNA sequences were retrieved from NCBI website 

(http://www.ncbi.nlm.nih.gov/) and aligned using CLUSTAL W and MEGA7 software 

(https://www.megasoftware.net/) to create a phylogenetic tree.  

3.3.2. Fish source and husbandry 

All fish were maintained in accordance with the guidelines of the Canadian Council on 

Animal Care (CCAC, 2005) (59). All animal protocols were approved by the Animal Care 

Committee at the University of Saskatchewan (AUP#: 20170056). Diploid and triploid rainbow 

trout (Oncorhynchus mykiss) were purchased from B&B Freshwater Fish Farm (Gunton, 

Manitoba, Canada) and Wild West Steelhead hatchery (Lucky Lake, Saskatchewan, Canada), 

respectively. Fish were housed in an indoor recirculating system which included 120L fiberglass 

tanks connected to a sump tank and a biofilter. Each tank was oxygenated using air stones to 

maintain the oxygen above 6 mg/L, and the temperature was kept at 11-12 0C throughout the 

experiments. Fish were fed twice daily (2-3% body weight/day) with commercial feed containing 

45% crude protein and 16% lipid manufactured by EWOS Canada Limited (Surrey, British 

Columbia, Canada).  

3.3.3. Tissue collection 

Healthy fish at grow-out stage between 50-150 g were selected and transferred to a 

processing building for gut dissection. Fish were euthanized by blunt trauma. The intestine was 

collected immediately after dissection, opened and rinsed carefully with teleost buffer pH 7.7, 

http://www.ncbi.nlm.nih.gov/
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containing (in mM): 118 NaCl, 2.9 KCl, 2.0 CaCl2·2H2O, 1.0 MgSO4·7H2O, 0.1 NaH2.PO4·H2O, 

2.5 Na2HPO4, 1.9 NaHCO3, and 5.6 Glucose, which was adopted from the research of Small and 

co-authors (363). Feces and uneaten feed were removed from luminal content. Pyloric caeca (PC), 

midgut (MG) and hindgut (HG) regions were collected. Three segments were visually distinct from 

each other, which were described by Burnstock (52). Specifically, the pyloric ceca region was 

located directly behind the stomach. Midgut and hindgut were located about 5 cm and 13-15 cm 

from the stomach, respectively (376). Each figure N represents a biological replicate of an 

individual fish intestinal segment. 

3.3.4. RT-qPCR analysis to quantify mRNA expression of Met-linked transporters 

About 100 mg samples of PC, MG, and HG were obtained from the fish dissection and 

stored in RNAlater® RNA Stabilization Solution (Fisher Scientific) at -80 0C for later use gene 

expression. Total RNA was extracted using Trizol (Thermo Fisher Scientific) according to the 

manufacturer’s instruction. RNA quality and quantity were determined with Nano-Drop 

spectrophotometer (Fisher Scientific). cDNA synthesis via reverse transcription was performed 

using qScript cDNA Synthesis Kit (Quanta BioSciences) for 5 min at 25 0C, 30 min at 42 0C, and 

5 min at 85 0C.  To evaluate PCR efficiency, cDNA templates from biological samples were diluted 

to create dilution standard curves. Amplification efficiency of qPCR between 90-100% was 

considered acceptable. PCR products were purified with QIAquick kit (Quiagen), sequenced and 

BLAST searched before proceeding to RT-qPCR. RT-qPCR was performed using PerfeCTa® 

SYBR® Green SuperMix (Quanta BioSciences); initiated at 95 0C for 3 min, followed by 40 cycles 

of 95 0C for 10 s, 59 0C for 10 s and 72 0C for 30 s, using Bio-Rad T100 Thermal Cycler (Bio-

Rad). Elongation factor 1 alpha (EFα1) was used as a reference to normalize mRNA expression of 

genes that were predicted to participate in Met transport. EFα1 has been extensively used as 
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housekeeping gene in different fish species (238, 278, 303, 391). Primer sequences along with 

Efα1 used for RT-qPCR were listed in Table 3.1. 
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Table 3.1. Rainbow trout (Oncorhynchus mykiss) primer sequences used for RT-qPCR. 

 

SLC
*
 System 

(Gene name) 

Location Forward 

(5
’
 – 3

’
) 

Reverse 

(5
’
 – 3

’
) 

Gene Bank 

Accession # 

SLC1A5  ASCT (ASCT2)  AM  AAA GAG TCG GTC ATG TAG AG GAG AGA AGA CAC AAG GAG AG XM021587427.1 

SLC3A1  b
0,+

  (rBAT)  AM AGG CCG ATA CAG GTT TAT G  CCC AGT TCC AGT CAG ATT AG  XM021576370.1 

SLC7A5  L (LAT1)  BM TGG TCT GTT TGC CTA TGG  GTG AAG TAG GCC AGG TTA G  XM021568487.1 

SLC43A1  L (LAT3)  BM CTG TTG CCT GGA TAC CTA TT  TAT GCT AGA CCG TTG CTA TG  XM021583981.1 

SLC43A2-like L (LAT4-like) BM GAC GGA CGG AGA TTT GTT GAG AGA GAG AGA GAG AGA GAG XM021582086.1 

SLC7A7  y
+
L (y

+
LAT1)  BM GAG GAC TCA ACG CTT CTA TC  CAA CAC ACA GGT AGA CCA A  XM021614955.1 

SLC6A19-like B
0
 (B

0
AT1-like) AM GGT CCA TCC TGT TCT TCA T  TGA CAC CAG ACA GAC AAT AC  XM021562073.1 

SLC6A15-like B
0
 (B

0
AT2-like) AM TCT ACT TCT CCC AGT CCT T GGA GTC AGA GAT GTT CAG AG XM021604100.1 

SLC6A14  B
0,+

 (ATB
0,+

)  AM TGG AGT GAC TGT TTC TAC TG  CTG GGA TGC TGA TGA TGT  XM021610363.1 

SLC7A3-like y
+
 (CAT3-like) AM GTT TAC TGG GCT CAA TGT TC ATC AGG GCT GCT ACA ATA C XM021561172.1 

SLC3A2 4F2hc / GGA TCT GAC TCC CTA CTA TCT CCC AAA GAG ACG GAA CTA C XM021591192.1 

Housekeeping  EFα1  
 

AGC GAG CTC AAG AAG AAG  GAC CAA GAG GAG GGT ATT C  NM001124339.1 

SLC*: Solute carrier 

AM: Apical membrane 

BM: Basolateral membrane  
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3.3.5. Flux transport and electrogenic studies in Ussing Chamber 

EasyMount Ussing Chambers System model (Physiologic Instruments Inc., San Diego, 

CA) was used in this study. The Ussing chamber technique was adapted from descriptions in 

previous works (220, 376). In brief, three intestinal segments (PC, MG, and HG) were mounted as 

flat sheets on metal pins of the inserts with the exposure of a surface area of 0.3 cm2. Another 

insert was put on the top like a sandwich and the unit was then placed into the middle of the 

chamber and secured with thumbwheel screws. Each side of the chamber reservoirs contained 5 

mL fresh teleost saline buffer and oxygenated continuously with 1% CO2 and 99% O2 through 

needle valves. The buffer was maintained at a constant temperature (12 0C) throughout the 

experiment by a circulating water jacket connected with a heater. 

3.3.5.1. 14C radiolabeled DL-Met flux study  

The teleost buffer was prepared freshly to initiate Na+-dependent experiments. Meanwhile, 

sodium was iso-osmotically replaced with potassium to perform Na+-independent experiments. 

Prior to adding radioactive isotopes, blank samples were taken to ensure that the chambers were 

not contaminated with isotope from previous use. 0.5 µCi of DL-[14C]Met with the specific activity 

of 55 mCi mmol-1 (American Radiolabel Chemicals) was added to the apical compartment as 

tracers. 0.5 µCi of [3H]-Inulin with the specific activity of 9.25 MBq/0.5 mCi (PerkinElmer) was 

used to analyze and determine the viability of the tissues afterward along with resistances. Tissues 

were excluded if significant inulin flux or a drop in resistance of the tissues was noted. Tissues 

were allowed to equilibrate for 60 minutes. After equilibration time, unlabeled substrate DL-Met 

was added to the apical compartment, and mannitol was added to the basolateral compartment with 

the same concentration to maintain an equal osmolarity. Two sets of experiments were separately 

studied with two levels of substrate concentration gradient: 0 - 150 µM (21 increasing sequential 
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concentration) and 0.2 mM - 20 mM (19 increasing sequential concentration). Each level included 

Na+-dependent and Na+-independent experiments in both triploid and diploid trout. In cis-

inhibition study, the effects of phenylalanine (20 mM) or leucine (20 mM) on DL-[14C]Met flux 

were only studied in diploid fish at a concentration gradient of DL-Met 0.2-20 mM. In all cases, 

each data increment was at 10 min increment. 500 µL samples were taken from “cold side” mixed 

with 4 mL-UltimaGold cocktail solution (PerkinElmer) and counted using a Scintillation Counter 

(Beckman Coulter). 

The unidirectional fluxes rates were calculated from the appearance of radiotracer on the 

“cold side” (aka receiver chamber or sink chamber) and specific activity in the “hot side” (aka 

donor chamber or source chamber) using adapted equation described by Schultz and Zalusky to 

determine Jms (347).  Jms was then used to determine kinetic parameters (Jmax and Km). 

Jms = vs(Ps2 − cPs1)/(∆t ∗ Pm ∗ 𝐴) 

 

Jms = unidirectional substrate flux from mucosa to serosa in µmol/cm2/ hr  

νs = volume of bathing solution perfusing the serosal surface in cm3 

Ps1 = Initial cpm/cm3 in the serosal reservoir  

Ps2 = cpm/cm3 in the serosal reservoir after increment change 

c = correction factor for dilution 

A = area of tissue exposed  

Δt = time interval between two samples in hour 

Pm = specific activity of the radioactive isotopes in the mucosal solution in cpm/µmol  

3.3.5.2. Electrophysiological recording 

 It is well documented that a large number of the transporters involved in Met transports 

are Na+-dependent. Therefore, although Met is a neutral amino acid, its transport could be 

indirectly measured via changes in short-circuit current (Isc) due to the movement of ions such as 
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Na+ altering electrical membrane potential. The detailed protocol was followed as manufacturer 

instruction and described previously in the guide of Ussing chamber technique (72). In brief, to 

measure the changes in Isc, the Ussing chamber system (Physiologic Instruments Inc., San Diego, 

CA) included two Ag/AgCl electrodes pairs: one voltage set and one current set measuring the 

short-circuit current across the fish tissue via agar bridges. The electrodes were attached to a 

voltage/current clamp (Physiologic Instruments Inc., San Diego, CA). Tissues were then clamped 

to 0.0 mV and the resulting short-circuit current measured by a computer in µA. The electrode 

configuration would result in a positive short-circuit current when a cation moves in the mucosal 

to serosal direction or an anion moving in the serosal to mucosal direction. The tissue was then 

pulsed with a constant 1 mV pulse to determine tissue resistance every 30s. These 

electrophysiological recordings were done concurrent to the flux sampling. The changes in 

currents were used to characterize the presence and function of electrogenic Met transporter, but 

not to quantify Met transport.  

3.4. Kinetic and statistical analysis  

To find out Jmax (presented in µmol/cm2/ hr), Vmax (presented in µA/cm2) and Km (presented 

in µM or mM), changes in flux rate and short circuit current over all concentrations were computer 

fitted to nonlinear regression Michaelis-Menten equation denoted by equation (1) or (2) using 

GraphPad Prism version 5:  

J = {(Jmax x [S])/(Km + [S])}  (1) 

V = {(Vmax x [S])/(Km + [S])}  (2) 

where Jmax was the maximal flux rate and Vmax  was the maximal current at saturable substrate 

concentration, Km was the substrate concentration that generated half Jmax (or Vmax), and [S] was 
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the substrate concentration. Results were presented as means ± SEM. The Jmax and Vmax values 

were compared between ploidy using student’s t-test. Similarly, Km values were compared 

between ploidy using student’s t-test. Jmax, Vmax and Km within intestinal segments of each ploidy 

were compared using one-way ANOVA, followed by Tukey HSD to determine differences among 

intestinal segments (PC, MG, and HG). Similar statistical analysis methods were used to analyze 

RT-qPCR data. All statistical tests were performed using SYSTAT version 13. A P-value less than 

0.05 was accepted as a statistically significant difference.  

3.5. Results 

3.5.1. Genomic and gene expression analysis of trout transporters involved in Met 

transport 

A genomic analysis for putative Met transporters resulted in 11 mRNA sequences of Met-

linked transporters and 2 heavy subunits present in rainbow trout out of the 18 known transporters 

(39, 247). Although genes including y+LAT2 (SLC7A6), CAT1 (SLC7A1), IMINO (SLC6A20), 

b0,+AT (SLC7A9), and SNAT-1,2,4 (SLC38A-1,2,4) were previously reported to have Met 

transport function in mammalian and poultry species (39, 62, 228, 247, 276, 367, 437, 445), 

genomic analysis did not detect these genes. Figure 3.1 illustrates multiple transporters found, 

emphasizing complexity (both their diversity and similarity) of transporting methionine in the 

entire animal and gut specifically. 
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Figure 3.1. Phylogenetic tree of Methionine-linked transporters. 

The analysis demonstrates the diversity of transporters that were capable of transporting Met found 

in the genome of rainbow trout (Oncorhynchus mykiss), emphasizing complexity (both their 

diversity and similarity) of transporting methionine in the entire animal and gut specifically. 

Transporters with (*) including CAT3-like, LAT1, LAT2 and ATB0,+ might have minor role in 

Met transport due to low mRNA expression. Whereas, mRNA expression of CAT2 (**) was not 

detectable. Heavy chain 4F2hc typically associated with a number of light chain including LAT1, 

LAT2 and y+LAT1, meanwhile heavy chain rBAT associated with b0,+AT. 
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Among 11 genes and 2 heavy subunits found in the genome, RT-qPCR was performed in 

the three intestinal segments of 3N and 2N trout to identify which genes were present and 

potentially responsible for Met transport along the trout gut. Despite being present in the trout 

genome, RT-qPCR did not detect CAT2 (SLC7A2) in the intestine; while CAT3-like (SLC7A3-

like), LAT1 (SLC7A5), LAT2 (SLC7A8) and ATB0,+ (SCL6A14) had exceptionally low mRNA 

expression. More specifically the relative expression of these genes to EFα1 was less than 0.005, 

suggesting a minor or insignificant role of these transporters in gut methionine transport of rainbow 

trout. However, RT-qPCR analysis identified six candidate genes that might have direct 

contribution to Met transport and regulation in the intestine of rainbow trout including ASCT2 

(SLC1A5), B0AT1-like (SLC6A19-like), B0AT2-like (SLC6A15-like), y+LAT1 (SLC7A7), LAT3 

(SLC43A1), and LAT4-like (SLC43A2-like) along with the heavy subunits rBAT (SLC3A1) and 

4F2hc (SLC3A2) which were typically required for some transporters to be functional.  

 More specifically, RT-qPCR results showed that there was the mRNA expression of both 

high-affinity transporters (ASCT2, y+LAT1, B0AT2-like) and low-affinity transporters (B0AT1-

like, LAT3, LAT4-like). Details of the gene expression were presented along with kinetic analysis 

in the following sections. Due to the two transporter populations (high affinity and low affinity 

transports) we performed flux experiments in both micromolar (0-150 µM) and millimolar (0.2-

20 mM) substrate concentration ranges to characterize the kinetics associated with these genes. 

Furthermore, these ranges were chosen due to relevance in aquaculture where plant-based diet 

could have exceptionally low methionine and supplementation could increase levels to mM 

concentration.  

3.5.2. Transport of DL-Met at micromolar concentration 

14C radiolabeled Met flux  
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DL-[14C]Met flux rate was performed in the presence or absence of Na+ at a range of 

substrate concentration of 0-150 µM. In Na+ buffer, the flux rate of DL-[14C]Met in all three 

intestinal segments exhibited saturable kinetics with increasing concentration of DL-Met  (Figure 

3.2). Segmental comparison demonstrated that the flux rate (Jmax) was signficantly higher in the 

PC and MG than in the HG. Table 3.2 showed that this phenomenon was observed in both types 

of ploidy (P <0.0001). Moreover, ploidy comparison demonstrated that DL-[14C]Met flux rate in 

the gut of 3N trout (0.003, 0.006 and 0.002 µmol/cm2/hr in PC, MG and HG respectively) was 

statistically higher than that of 2N trout (0.0019, 0.0021, and 0.0006 µmol/cm2/hr in PC, MG and 

HG respectively). The analysis of kinetic constants revealed that the high affinity for DL-[14C]Met 

was identical (Km values between 4-5 µM) in the entire intestinal tract regardless of type of ploidy 

or segment. On the contrary, the flux rate of DL-[14C]Met was not a function of substrate 

concentration when the assays were carried out in Na+-free buffer. Data from sodium free 

experiments could not be fitted to Michaelis-Menten kinetics nor linear regression (negative or 

poor R2 values). These observations indicated that DL-Met transport at micromolar concentrations 

was strictly dependent on the existence of a Na+-dependent, high-affinity transporter.  
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Figure 3.2. Transport of DL-Met at micromolar (µM) concentration. 

Michaelis-Menten plots for the DL-[14C]Met flux assays in the presence of Na+ (N = 19-25) and absence of Na+ (N=17-20) in (A) pyloric 

caeca (PC), (B) midgut (MG) and (C) hindgut (HG) of triploid (● 3N,  3N) and diploid (■ 2N,  2N). Experiments were carried out 

with DL-Met gradient from 0-150 µM (21 increasing sequential concentration). Each data point was expressed as mean ± SEM. 
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Table 3.2. Transport of DL-Met at micromolar (µM) concentration.  

 

Jmax(µmol/cm2/hr) Km (µM) 

Intestinal  
segments 

Triploid Diploid Jmax between  

triploid vs. diploid 
(P-value) 

Triploid Diploid Km between  

triploid vs. diploid 
(P-value) 

PC   0.003 ± 0.0003 0.0019 ± 0.0003 0.004* 5.48 ± 0.65 4.01 ± 0.86 0.324 

MG   0.006 ± 0.0005 0.0021 ± 0.0003 <0.0001* 4.64 ± 0.41 4.71 ± 0.71 0.930 

HG   0.002 ± 0.0004 0.0006 ± 0.00001 0.007* 3.93 ± 0.84 4.33 ± 0.95 0.753 

 

Jmax and Km values generated by DL-[14C]Met isotope flux along the GI tract of rainbow trout in the Na+ buffer, substrate DL-Met 

gradient from 0-150 µM. Values were expressed as mean ± SEM (N=19-25). Asterisks represent significant difference in Jmax between 

ploidies (Student’s t-test, *p<0.05). 
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Gene expression of high-affinity transporters candidates affirmed high-affinity transport kinetics 

at micromolar concentrations 

Among genes identified, ASCT2 (SLC1A5) and B0AT2-like (SLC6A15-like) were Na+-

dependent, high-affinity transporters located in the apical membrane. There were statistically 

significant differences in gene expression between 2N and 3N trout. Figure 3.3A showed that 

mRNA expression of ASCT2 in PC (P=0.005) and MG (P=0.026) of triploid were significantly 

greater than that of diploid. This supports the greater transport rate in 3N fish at micromolar 

concentrations. A similar difference was observered with B0AT2-like mRNA expression (Figure 

3.3B, P <0.05 in all three intestinal segments). However, the expression of B0AT2-like transporter 

was less than ASCT2, particularly in diploid fish. 

Additionally, y+LAT1 (SLC7A7), a Na+-dependent, high-affinity transpoter usually 

localized in the basolateral membrane was found to have expression throughout the intestine 

(Figure 3.4A). Data analysis revealed that mRNA expression of y+LAT1 was significantly lower 

in HG than in PC and MG (P = 0.019 in triploid, P = 0.037 in diploid). There was no difference in 

the expression of 4F2hc, a heavy subunit of y+LAT1 (Figure 3.4B). Finally, heavy chain rBAT 

(SLC3A1) of Na+-independent, high-affinity apical transporter b0,+AT (SLC7A9) was found to 

have dominant expression along the trout gut, particularly in HG (data not shown). However, RT-

qPCR could not be performed for the conducting light chain b0,+AT due to its absence in the 

genome. This was consistant with our flux studies which showed no transport of Met in Na+-

independent experiments, suggesting that rBAT/b0,+AT did not directly facilitate the Met uptakes. 

Thus, we assumed that Met transport at the concentration 0-150 µM was primarily mediated by 

ASCT2 and y+LAT1.  

  



69 

 

 

Figure 3.3. Expression of sodium dependent high-affinity (µM) apical transporters.  

A) Relative mRNA expression of Na+-dependent high-affinity apical transporter ASCT2 

(SLC1A5). B) Relative mRNA expression of Na+-dependent high-affinity apical transporter 

B0AT2-like (SLC6A15-like) in pyloric caeca (PC), midgut (MG), and hindgut (HG) of triploid 

and diploid rainbow trout using RT-qPCR. Housekeeping gene EFα1 was used for normalization 

of mRNA abundance data. Values were expressed as means ± SEM (N=8-10). Asterisks represent 

significant differences between ploidy (Student’s t-test, p <0.05). 
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Figure 3.4. Expression of sodium dependent high-affinity (µM) basolateral transporter and 

its heavy subunit. 

A) Relative mRNA expression of Na+-dependent high-affinity basolateral transporter y+LAT1 

(SLC7A7). B) Relative mRNA expression of heavy subunit 4F2hc (SLC3A2) in pyloric caeca 

(PC), midgut (MG) and hindgut (HG) of triploid and diploid rainbow trout using RT-qPCR. 

Housekeeping gene EFα1 was used for normalization of mRNA abundance data. Values were 

expressed as means ± SEM (N=8-10). Asterisks represent significant differences among intestinal 

segments (one-way ANOVA, p <0.05).  
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Electrophysiological recordings supported the presence of apical transporter ASCT2 and 

basolateral transporter y+LAT1 functional expression 

In the presence of sodium, DL-Met gradient induced an Isc change in the intestine of rainbow 

trout. Increasing substrate concentration from 0-150 µM resulted in a negative Isc in the PC and 

MG; and a positive Isc in the HG (Figure 3.5). The changes in Isc were found to display saturable 

kinetics resulting in a small Km (micromolar ranges) regardless of segments (Table 3.3). Overall 

when comparing the effects of ploidy on the rate of short circuit current, Vmax tended to be higher 

in 3N trout compared to Vmax in 2N trout. P-values were 0.012 in PC (3.87 ± 1.10 µA/cm2 in 

triploid versus. 1.12 ± 0.19 µA/cm2 in diploid) and 0.054 in MG (4.24 ± 1.03 µA/cm2 in triploid 

versus. 2.94 ± 0.70 µA/cm2 in diploid), respectively. The larger negative Isc was associated with 

higher expression of ASCT2 in triploid PC and MG (Figure 3.3A), likely resulting in higher 

basolateral Met available for y+LAT1 recycling causing a larger negative Vmax in triploid (Figure 

3.5). However, the positive Isc in the HG was associated with a decrease in y+LAT1 (Figure 3.4A) 

and an increase in ASCT2 in both triploid and diploid (Figure 3.3A). The observation of 

electrophysiological recordings of DL-Met-induced currents and associated gene expression 

confirmed the possibility of Na+-dependent, high-affinity transporter ASCT2 and y+LAT1 

facilitated DL-Met uptake at the range of substrate concentration less than 150 µM.  
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Table 3.3. Electrogenic Vmax and Km values generated by DL-Met in Na+ buffer at micromolar (µM) concentration.  

 

Vmax (µA/cm2) Km (µM) 

Intestinal  
segments 

Triploid Diploid Vmax between  

triploid vs. diploid 
(P-value) 

Triploid Diploid Km between  

triploid vs. diploid 
(P-value) 

PC 3.87 ± 1.10 1.12 ± 0.19 0.012* 15.5 ± 4.01 14.6 ± 3.31 0.572 

MG 4.24 ± 1.30 2.94 ± 0.70 0.054 6.3 ± 1.72 6.2 ± 1.18 0.259 

HG 1.94 ± 0.26  1.81 ± 0.34 0.504 13.5 ± 3.47 6.4 ± 1.11 0.052 

 

Values were expressed as mean ± SEM (N=13-18). Asterisks represent significant differences in Vmax between ploidies (Student’s t-

test, *p < 0.05).   



73 

 

 

Figure 3.5. Electrogenic short-circuit current (Isc) induced by DL-Met. 

Increasing concentrations of DL-Met in Na+ media induced changes in Isc  (A) in pyloric caeca  

(PC), (B) midgut (MG), and (C) hindgut (HG) of triploid (● 3N) and diploid (■ 2N) with segmental 

representative traces (D, E, and F) presented on the right side. The DL Met‐induced current was 

plotted as a function of the extracellular substrate concentrations using Michaelis-Menten 

equation. Experiments were carried out with DL-Met gradient from 0-150 µM (21 increasing 

sequential concentration). Each data point was expressed as mean ± SEM (N=13-18). 
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3.5.3. Transport of DL-Met at millimolar concentration 

14C radiolabeled Met flux results 

DL-[14C]Met flux rate was performed in the presence or absence of Na+ at a higher 

substrate DL-Met concentration gradient 0.2-20 mM. In Na+-conditions, the result demonstrated 

that the flux rate of DL-[14C]Met at mM concentration fitted Michaelis Menten kinetics, revealing 

another transporter that mediated Met transport at mM substrate concentration. The kinetic 

analysis demonstrated low-affinity kinetics (mM ranges) (Table 3.4). Jmax in PC and MG of 3N 

trout were 0.0009 ± 0.0001 and 0.0013 ± 0.0001 µmol/cm2/hr respectively. These were 

significantly lower than 0.0014 ± 0.0002 and 0.002 ± 0.0002 µmol/cm2/hr in PC and MG, 

respectively of 2N trout (Figure 3.6). These differences could be accounted for by the higher 

mRNA expression of B0AT1-like in diploid, the significant of which was discussed below. 

Additionally, data could not be fitted to Michaelis-Menten equation (negative R2) in Na+-

independent assays and reduced flux to almost zero. This indicated that DL-Met was strictly 

regulated by Na+-dependent transporter even at mM DL-Met concentrations.  
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Table 3.4. Transport of DL-Met at millimolar (mM) concentration.  

 

Jmax (µmol/cm2/hr) Km (mM) 

Intestinal  
segments 

Triploid Diploid Jmax between  

triploid vs. diploid 
(P-value) 

Triploid Diploid Km between  

triploid vs. diploid 
(P-value) 

PC 0.0009 ± 0.0001 0.0014 ± 0.0002 0.035* 0.65 ± 0.12 0.73 ± 0.10 0.659 

MG 0.0013 ± 0.0001 0.002 ± 0.0002 <0.0001* 1.00 ± 0.09 0.98 ± 0.13 0.897 

HG 0.0006 ± 0.0001 0.0006 ± 0.00001 0.696 0.55 ± 0.09 0.67 ± 0.14 0.623 

 

Jmax and Km values generated by DL-[14C]Met flux assays along the GI tract of rainbow trout in the Na+ buffer, substrate DL-Met 

gradient from 0.2-20 mM. Values were expressed as mean ± SEM (N=21-27). Asterisks represent significant difference in Jmax between 

ploidies (Student’s t-test, *p<0.05). 
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Figure 3.6. Transport of DL-Met at millimolar (mM) concentration. 

Michaelis-Menten plots for the DL-[14C]Met flux assays in the presence of Na+ (N = 21-27) and absence of Na+ (N = 14-20) in (A) 

pyloric caeca  (PC), (B)  midgut (MG) and (C) hindgut (HG) of triploid (● 3N,  3N) and diploid (■ 2N,  2N). Experiments were 

carried out with DL-Met gradient from 0.2-20 mM (19 increasing sequential concentration). Each data point was expressed as mean ± 

SEM. 
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Gene expression of low-affinity transporters candidates affirmed low-affinity kinetics 

B0AT1-like (SLC6A19-like) is a Na+-dependent, low-affinity apical transporter that was 

found to be expressed throughout the trout gut. Its mRNA expression was significantly higher in 

diploid than in triploid (Figure 3.7, P=0.009 and P=0.01 in MG and HG respectively, Student’s t-

test) associating with the observed Met flux across the mucosa at mM concentration. Whereas, the 

low-affinity sodium independent transporter mRNA expession of LAT3 with its undetermined 

location was low and there was no significant difference between triploid and diploid, exception 

for PC (Figure 3.8A). On the other hand, LAT4-like (SLC43A2-like) is a Na+-independent, low-

affinity transporter which typically is located in basolateral membrane. Its mRNA expression 

tended to be higher in 2N compared to 3N fish (Figure 3.8B), again supporting greater flux across 

the serosa. That being said LAT3 contribution was likely minor compared to B0AT1-like due to 

the lack of Met transport in sodium-independent experiments along with the low expression of 

LAT3 mRNA. Thus, B0AT1-like was likely to be the major contributer to apical transporter 

mediating Met flux across the intestine at mM concentration. Whereas, transporting Met from 

enterocytes to the basolateral side was most likely controlled by LAT4-like.  

Cis-inhibition study 

In diploid trout experiment, common neutral AA substrates of B0AT1 transporter including 

phenylalanine and leucine were added to apical bathing buffer with a concentration of 20 mM 

each. The results demonstrated that both phenylalanine and leucine significantly reduced DL-

[14C]Met flux in PC and MG (Figure 3.9) which ranged between 0.0007-0.0009 µmol/cm2/hr. 

Although Km values of radiolabeled DL-Met tended to increase in the dominant presence of 

phenylalanine and leucine, there were no significant differences (P>0.05). In HG, no inhibitory 

effects on flux rate and affinity were observed (Table 3.5). 
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Figure 3.7. Expression of sodium dependent low-affinity (mM) apical transporter. 

Relative mRNA expression of Na+-dependent low-affinity apical transporter B0AT1-like 

(SLC6A19-like) in pyloric caeca, midgut and hindgut of triploid and diploid rainbow trout using 

RT-qPCR. Housekeeping gene EFα1 was used for normalization of mRNA abundance data. 

Values were expressed as means ± SEM (N=8-10). Asterisks represent significant differences 

between ploidy (Student’s t-test, p <0.05). 
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Figure 3.8. Expression of sodium independent low-affinity (mM) transporters. 

A) Relative mRNA expression of Na+-independent low affinity apical transporter LAT3 

(SLC43A1). B) Relative mRNA expression of Na+-independent low-affinity basolateral 

transporter LAT4-like (SLC43A2-like), in pyloric caeca, midgut and hindgut of triploid and 

diploid rainbow trout using RT-qPCR. Housekeeping gene EFα1 was used for normalization of 

mRNA abundance data. Values were expressed as means ± SEM (N=8-10). Asterisks represent 

significant differences between ploidies (Student’s t-test, p <0.05)
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Figure 3.9. Effects of cis inhibition on transport of DL-Met at millimolar (mM) concentration. 

Michaelis-Menten plots for the DL-[14C]Met flux control assays (◼), or in the presence of 20 mM phenylalanine () or leucine (⚫) on 

apical buffer in (A) pyloric caeca (PC), (B) midgut (MG), and (C) hindgut (HG). Experiments were performed in diploid trout with DL-

Met gradient from 0.2-20 mM (19 increasing sequential concentration). Values were means ± SEM (N=21-27 control, N=9-11 

phenylalanine or leucine). 
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Table 3.5. Effects of cis inhibition on transport of DL-Met at millimolar (mM) concentration. 

  
Jmax (µmol/cm2/hr) Km (mM) 

Intestinal  
segments 

Control + Phe + Leu P-value Control + Phe + Leu P-value 

PC 0.0014 (± 0.0002) 0.0007 (± 0.00001) 0.0007 (± 0.00001)  0.002*
 

0.73 (± 0.10) 1.21 (± 0.23) 0.92 (± 0.21) 0.244 

MG 0.002 (± 0.0002) 0.0008 (± 0.00001) 0.0009 (± 0.00001) <0.001*
 

0.98 (± 0.13) 1.28 (± 0.24) 0.93 (± 0.14) 0.560 

HG 0.0006 (± 0.00001) 0.0005 (± 0.00001) 0.0008 (± 0.00014) 0.349 0.67 (± 0.14) 0.34 (± 0.07) 0.87 (± 0.24) 0.264 

 

Jmax and Km values generated by DL-[14C]Met flux assays in the presence or absence of phenylalanine and leucine along the GI tract of 

diploid trout, substrate DL-Met gradient from 0.2-20 mM. Values were expressed as mean ± SEM (N=21-27 control, N=9-11 

phenylalanine or leucine). Asterisks represent significant difference in Jmax among treatments (one-way ANOVA *p<0.05). 
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Electrophysiological recordings at mM concentration 

Attempts to characterize electrogenics at mM concentration were inconclusive (data not 

shown), with electrophysiological changes not fitting kinetic models. This was possibly due to the 

competing or opposing electrical signals generated by the apical and basolateral sodium dependent 

transporters that were more closely paired at mM concentration. 

3.6. Discussion  

Despite its important roles, there is a scarcity of research investigating the mechanisms of 

Met absorption in the fish intestine. This study was conducted to differentiate transport routes and 

transporters participating in Met transport in the trout gut. Here, we postulate that ASCT2 and 

y+LAT1 are responsible for Met uptake at µM concentration into the enterocyte from the apical 

and basolateral locations, respectively. There are five lines of evidence to support our assumption: 

(1) lack of Na+-independent kinetics, (2) low expression of Na+-dependent B0AT2-like gene, (3) 

Na+-dependent, high-affinity (Km, µM ranges) Met radiotracer flux, (4) association of ASCT2 and 

y+LAT1 mRNA expression with high-affinity kinetics, and (5) negative electrogenic currents in 

PC and MG, positive electrogenic currents in HG induced by Met. B0AT1-like, however, is 

responsible for absorption at mM concentration based on the gene expression and Na+-dependent, 

low-affinity kinetics (Km, mM ranges) and cis inhibition. Finally, it would appear that major route 

of exit for Met from the basolateral side of the epithelium is through LAT4.  

3.6.1. ASCT2 and y+LAT1 associate with DL-Met transport at concentration gradient 0-

150 µM 

Absences of Na+-independent transport kinetics support ASCT2 and y+LAT1 function 
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At the concentration gradient 0-150 µM, DL-Met transport strictly depends on the presence 

of Na+. Removal of Na+ from the buffer abolished all kinetics properties of DL-[14C]Met flux. This 

is consistent with the absence of b0,+AT, the Na+-independent high-affinity transporter, in the 

genome, despite the presence of mRNA expression for rBAT- the heavy non conducting subunit 

of b0,+AT. Although there was no saturable kinetics observed in our flux study in Na+-free buffer, 

we cannot rule out the possibility that rBAT/b0,+AT might act as an exchanger exporting Met back 

into the lumen once Met has accumulated inside the enterocytes. This assumption is supported in 

several studies suggesting that rBAT/b0,+AT typically behaves as an obligatory antiporter 

facilitating the influx of cationic AAs at the expense of neutral AAs efflux (54, 65, 306, 395). 

However, the role of rBAT in this study is not fully interpreted as there is no genomic presence of 

b0,+AT to create primers for expression analysis. The expression of rBAT without b0,+AT is odd, 

suggesting rBAT interaction with other transporters in fish species. Nonetheless, no Na+-

independent mucosal to serosal flux is observed at M concentration ruling out a significant 

contribution of rBAT/b0,+AT. Therefore, absences of Na+-independent transport kinetics and gene 

expression support ASCT2 and y+LAT1 function in Met transport.  

Low expression of Na+-dependent B0AT2-like gene supports ASCT2 and y+LAT1 function 

The question arising is that which Na+-dependent, high-affinity transporter is responsible for 

Met-uptake at the concentration gradient 0-150 µM. RT-qPCR results revealed three important 

gene candidates B0AT2-like, ASCT2, and y+LAT1 which could explain the high-affinity sodium-

dependent flux. However, B0AT2-like mRNA expression was relatively insignificant (Figure 

3.3B), particularly in the diploid fish compared to ASCT2 and y+LAT1. Hence, it may not directly 

contribute to the kinetics observed in diploid and only minor contribution in triploid. This leaves 
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ASCT2 and y+LAT1 as the best-fit Na+-dependent, high-affinity candidates for transporting Met 

at the concentration of 0-150 µM.  

Na+-dependent, high-affinity (Km, µM ranges) Met radiotracer flux support ASCT2 function 

Observations in the current study predict that DL-Met transport is mediated by the Na+-

dependent, high-affinity transporter ASCT2. In Na+ conditions, measurements of flux rate versus 

substrate concentration displayed typical Michaelis-Menten curves with high affinity (Km between 

4-5 µM). These values are lower than Km values generated by ASCT2 in other research such as 

240 µM in pregnant mice tissues (413), and 288 µM in mouse testis (402). The differences in the 

affinity determinations of the current research with previous studies could be due to two reasons. 

Firstly, different research techniques are carried out. In our study, tissues were used, and the 

experiments were performed at a cold physiological temperature of trout (12 0C); while vesicles, 

cell lines, or transporter-expressed Xenopus oocyte were carried out at room temperature or 

warmer. Secondly, kinetic properties of a transporter could differ from one species to another to 

some extent. For example, the Km for D-Glucose transported by GLUT1 (SLC2A1) varies greatly 

within species and taxonomic lines; namely 2.5-75 mM in human (51, 84, 143, 151, 431), 14-26  

mM in rat (277, 327), or 9.3 mM in rainbow trout (387). 

Gene expression supports ASCT2  

In the flux studies, Km values are similar along the intestine while Jmax in PC, MG, and HG 

of 3N is statistically higher than 2N trout. A similar Km implies that Met transport is likely 

mediated by the same type of transporter along the entire intestine. Meanwhile the difference in 

Jmax suggests different density of transporter expression. This correlates well with RT-qPCR results 

(Figure 3.3A) where higher ASCT2 mRNA expression in the 3N fish is observed, compared to 

that of 2N fish (P=0.005 and 0.026 in PC and MG, respectively).  



85 

 

Negative currents in PC and MG, and positive currents in HG induced by DL-Met support ASCT2 

and y+LAT1 functional contribution 

The functional contribution of ASCT2 and y+LAT1 was further affirmed by 

electrophysiological recording associated with the expression of these two transporters. In Na+-

containing buffer, robust negative Isc in PC and MG and positive Isc in HG in both 2N and 3N were 

found when increasing the concentration of DL-Met.  

To give clarity, in our Ussing chambers a negative current would occur if an anion is moving 

in the mucosal to serosal direction or a cation is moving in the serosal to mucosal direction. On 

the other hand, a positive current would occur if a cation is moving in mucosal to serosal direction 

or an anion moving from the serosal to mucosal direction. With this above in mind, it appears that 

the negative current in PC and MG is due to Met transport through basolateral y+LAT1 with 

sodium. It is widely reported that y+LAT1 is an AA exchanger that mediates influx of 

basic/cationic AAs within the enterocytes into the blood and re-influx of neutral AAs from the 

blood back into the enterocytes (41, 307). It transports basic AAs without the requirement of Na+, 

whereas it is dependent on Na+ when transporting neutral AAs (123, 189, 396). This process of 

neutral AA absorption is thought to be generally electroneutral exchanging the available 

intracellular basic AAs for Na+ and the neutral AAs. However, in our Ussing chamber assay we 

did not supply cationic AAs. Thus, this created a very limited intracellular pool of cationic AA to 

exchange with Met and Na+. This would result in an electrogenic signal from y+LAT1 as Met, a 

neutral AA can stimulate the efflux of neutral AA through y+LAT1, while also driving Na+ uptake 

(189). Thus, the negative currents observed here are probably due to Na+ and accumulated fluxed 

Met entering from the basolateral side of the enterocytes via y+LAT1. This electrical contribution 

from y+LAT1 may also explain why interpretable electrophysiological data was unattainable at 
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mM concentration, where B0AT1-like electrical signal (apical entry of sodium) would be masked 

by y+LAT1 electrical signal (basolateral sodium entry in the absence of cationic AAs). 

On the other hand, the positive currents in the HG could be due to the dominate expression 

of ASCT2 on the apical membrane and a decrease in y+LAT1. Although ASCT2 is generally 

reviewed as a transporter transporting alanine, serine, cystine, glutamine, and asparagine at high 

affinity (313, 350), it also accepts methionine, leucine, and glycine with lower affinity (312, 402, 

413). Studies on the functional characteristics of ASCT2 confirms that the transporter is an 

obligatory antiporter (exchanger) which utilizes Na+-electrochemical gradient to equilibrate 

cytoplasmic glutamine and neutral AAs pools, but the exact stoichiometry of the transport is still 

unknown (312). The matter of net electrical ion flux generated by ASCT2 is a subject of 

controversy (33, 340, 402). The positive current in the HG is possibly not due to sodium transport 

by ASCT2. However, ASCT2 has also been characterized to have channel like anion conductance 

(37). Thus, if ASCT2 anion conductance is activated by AA transport, the resting membrane 

potential of the epithelial cell would likely drive chloride out of the cell into the lumen creating a 

positive current. More specifically, the reduction of basolateral y+LAT1 would reduce sodium 

entry on the basolateral membrane (a serosal to mucosal movement) contributing less negative 

current to the overall tissue and the increase of apical ASCT2 would result in more chloride 

movement out the cell to the mucosal surface creating a positive current. 

Additionally, the higher Vmax in the 3N was associated with higher expression of ASCT2 in 

the PC and MG. The higher ASCT2 likely accounts for the larger mucosal to serosal flux, which 

then results in higher basolateral methionine concentration available for y+LAT1 reabsorption 

causing a larger negative Vmax in triploid (Figure 3.3A). In short, the dominant functional y+LAT1 

expression would produce a negative current when bringing sodium and methionine into the cell 
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on the basolateral side of the epithelium. This is further supported by gene expression and the 

positive currents in the HG, where expression of ASCT2 is much higher than the expression 

y+LAT1.  

  The low expression of the sodium dependent transporter B0AT2-like, and poor association 

with changes in Isc suggests a very minor contribution in 3N and almost none in 2N. Therefore, 

B0AT2-like is unlikely to account for the robust changes in Isc observed between segment and 

ploidy. Hence, ASCT2 and y+LAT1 are the most likely major contributors to mediating DL-Met 

electrogenic currents at the concentration range of 0-150 µM.  

3.6.2. B0AT1-like transporter associates with DL-Met transport at concentration gradient 

0.2-20 mM 

At the concentration gradient 0.2-20 mM, DL-Met transport was also dependent on Na+ as 

the driving force for absorption. Repeatedly, the flux of DL-[14C]Met was absent when sodium 

was removed from the buffer. Flux measurement without Na+ could not be mathematically 

modeled using both either linear or non-linear regression. This reinforces the role of sodium in 

regulating AAs absorption of teleost species (14, 182, 226, 232, 255, 262, 364, 417).  

Supporting this sodium dependent flux at mM concentrations was the strong expression of 

B0AT1-like transporter gene. B0AT1, is a Na+-dependent apical transporter, typically has a low 

affinity (Km in mM ranges) likely eliminating its contribution to the flux at M concentration (39, 

200). Therefore, the B0AT1-like transporter is the sole candidate gene that could participate in Met 

absorption at high substrate concentration. This is supported by the gene expression which is 

higher in diploid compared to triploid (Figure 3.7), resulting in greater Jmax in diploid. The 

transporter belongs to system B0. The system has been previously identified in brush border 

membrane preparations (268, 322), a bovine renal epithelial cell line (93), and Caco-2 cells (368). 
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These works have demonstrated that system B0 accepts all neutral AAs, obviously with varying 

affinity levels. Mouse B0AT1 transporter studied in the X. oocyte expression system using two 

electrode voltage-clamp techniques and tracers shows that Km values for neutral AAs ranged 

between 1-10 mM (29). Preston and coworkers (322) found that the L-Met maximal influx and 

affinity in rabbit ileum were 2.2 µmol/cm2/hr and 1.6 mM, respectively over a concentration range 

of 0.1-16 mM. This is relatively compatible with our study in terms of results. The Km calculated 

in the present study for high concentration 0.2-20 mM were between 0.6-1.0 mM in both triploid 

and diploid trout (Table 3.4). The maximal flux in our study is lower, which could be due to 

differences in species, the isomeric form of substrate, or the involvement of other Met transporters. 

The contribution of B0AT1 in DL-Met transport is further supported by cis inhibition study in 

which flux rates are reduced but affinities are unchanged. This indicates that phenylalanine and 

leucine are non-competitive substrates that could compete with Met for the same transporter. It is 

important to note that high concentration of phenylalanine and leucine are used in the inhibition 

study to demonstrate the presence of B0AT1 (or LAT4) and its broad substrate specificity for 

neutral AAs. This is not necessary to imply the inhibitory effects of these AAs on Met absorption 

by fish in practical feed formulation.  

Lower Jmax at mM concentration  

 Noticeably, the Jmax observed in the mM concentration gradient is lower than the Jmax in 

the M concentration gradient. A comprehensive explanation for this phenomenon requires 

understandings about transport modes and expression of genes involved. Met exit from the 

enterocytes across the basolateral membrane is most likely mediated by LAT4-like transporter, 

based on expression levels (Figure 3.8B), the absence of other known basolateral transporters in 

the genome and LAT4’s previously defined basolateral function in mammalian species. The 
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preferential substrates of LAT4 included branched-chain AAs, phenylalanine, and methionine 

(27). Transport via LAT4 expressed in X. laevis oocytes is Na+-independent with low affinity: Km 

for L-phenylalanine was between 4-6 mM (27, 148). The role of LAT4 is further validated with a 

knockout model in which mice lacking LAT4 protein suffer growth defects and early postnatal 

lethality, presumably due to malnutrition with low Met and branched-AAs in plasma (148).  

However, the expression of the LAT4-like transporter is substantially less than that of 

B0AT1-like transporter potentially resulting in DL-Met accumulation in the enterocytes. If this is 

occurring, accumulative cytosol Met must be exported back into the lumen. This may explain why 

the maximal flux rate is smaller in HG than in PC and MG, due to high expression of ASCT2. This 

notion is supported by the observation that several AAs can be bidirectionally transported by 

ASCT2 (33, 85). For example, human ASCT2 expressed in Pichia pastoris shows that 

extracellular side displays high affinity (micromolar range Km), while intracellular side shows low 

affinity (millimolar range Km) when analyzing the kinetics of [3H]glutamine (312). Thus, in our 

study when methionine reaches mM concentration, ASCT2’s low internal affinity could then 

transport methionine back to the lumen decreasing Jmax. However, based on our current 

understanding of ASCT2 stoichiometry it likely only recycles at the higher concentration. Thus, 

this suggests an alternative channel with an internally low Km allowing back flux. A possible 

candidate would be b0,+AT as we have found high expression of associated rBAT (data not shown). 

However, we are unable to find b0,+AT in the trout genome, suggesting a yet to be identified 

channel interacts with rBAT. This is not surprising as rBAT has been suggested to associate with 

an unidentified subunit in the kidney (114). For instance, renal apical membrane transporter AGT1 

(SLC7A13) has been identified as the second partner of rBAT involving in cystine reabsorption 

(274), but it has not been proven to transport Met.  
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3.7. Conclusion 

 Amino acid transporters have been intensively studied in the intestine of mammalian 

species. Here we present the very first description of the kinetic properties of Met epithelial 

transport and associated transporter gene expression in fish intestine. Similar to mammals, sodium 

is physiologically important for many nutrient transport functions in fish. In this study, we have 

clearly demonstrated that it is the driving force governing Met absorption in trout intestine through 

the Na+-dependent transporters. The mucosal to serosal flux of DL-Met at µM concentration 

gradient seems to be primarily governed by the apical ASCT2 transporter. This is supported by 

gene expression, Na+-dependence, and a high affinity kinetics (Km in µM ranges) that are relatively 

similar to basic functional properties of ASCT2 that have been described by others in literature 

(37, 135, 340). Meanwhile y+LAT1 may play a role in the basolateral reabsorption of methionine. 

This is supported by electrogenics and gene expression of y+LAT1. At mM concentration, 

evidence including Na+-dependence, low affinity kinetics (Km in mM ranges), cis inhibition and 

association of gene expression suggest that transport at these concentrations is primarily mediated 

by apical B0AT1-like transporter. Genomic and gene expression analysis along with lower Jmax in 

the mM concentration suggest the sole contribution of basolateral exit of methionine through a 

LAT4-like transporter. This first description begins to define the overall mechanism of methionine 

transport in trout intestine which is summarized in Figure 3.10.  
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Figure 3.10. Schematic model of Methionine transport in the intestine of rainbow trout.  

At µM concentration, Met uptakes across the mucosal membrane of epithelial cells were facilitated 

by the Na+-dependent high-affinity apical transporter ASCT2 (SLC1A5). At mM concentration, 

Met was taken up into the epithelium via the Na+-dependent low-affinity apical transporter B0AT1-

like (SLC6A19-like). Whereas, the basolateral transporter LAT4-like (SLC43A2) appeared to be 

the sole gate controlling Met exit from enterocytes into the blood stream. Presence of 

4F2hc/y+LAT1 (SLC3A2/SLC7A7) on the serosal side allowed some Met to be recycled back into 

enterocytes, and eventually exported back into the lumen via intracellular low affinity ASCT2 

and/or unidentified subunit associates with rBAT.  
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Transition 

The following chapter focuses on addressing the 2nd objective and the 2nd hypothesis. Besides DL-

Met, DL-MHA is also used to supplement methionine in deficient diets. It is predicted that DL-

MHA is transported by the monocarboxylate carrier mechanism, which is proton-dependent. In 

mammals, monocarboxylates are mainly produced in the large intestine by bacterial fermentation. 

Since fermentation is minimal in carnivorous fish, we predict that rainbow trout intestine may be 

capable of transporting MHA along the intestinal tract. This chapter and some data of chapter 5 

have been published in Comparative Biochemistry and Physiology. The chapter has been 

reformatted from the original manuscript to fit the structure of the thesis. 

Objective: Characterize proton-dependent DL-MHA transport in the intestinal tract of rainbow 

trout using Ussing chamber and gene expression analysis. 

Hypothesis: DL-MHA transport is proton-dependent, and there are segmental differences in DL-

MHA transport along the intestinal tract of rainbow trout. 

Manuscript: To, V.P.T.H.1, Subramaniam, M.1, Masagounder, K.2, Loewen, M.E 1. 

Characterization of the segmental transport mechanisms of DL-methionine hydroxy analogue 

along the intestinal tract of rainbow trout with an additional comparison to DL-methionine. Comp 

Biochem and Physiol Part A: Molecular and Integrative Physiology (2020): 110776. 

1Veterinary Biomedical Science, University of Saskatchewan, Saskatoon, SK, Canada 

2Evonik Nutrition and Care GmbH Rodenbacher Chaussee 4D-63457 Hanau, Germany 

Contribution: VT designed and performed experiments, analyzed data and interpreted data, 

prepared manuscript and revised manuscript. MS helped to design experiments. KM revised 

manuscript. ML received funding, designed experiments, interpreted data and revised manuscript.   
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CHAPTER IV 

DL-MHA TRANSPORT IN THE INTESTINAL TRACT OF RAINBOW TROUT 

4.1. Abstract 

The aim of this study was to identify the unknown transport mechanism of the extensively used 

monocarboxylate methionine feed supplement DL-methionine hydroxyl analogue (DL-MHA) in 

rainbow trout. Here characterization of DL-MHA transport was performed in segmental regions 

of trout intestine: pyloric caeca (PC), midgut (MG), and hindgut (HG). These anatomic locations 

were placed in Ussing chambers and the Na+- and H+-dependence of DL-[14C]MHA flux were 

kinetically studied. Gene expression of monocarboxylate (MCTs) and sodium monocarboxylate 

transporters (SMCTs) were assessed to determine any association between transporter expression 

and function. Results demonstrated that DL-MHA transport from 0.2 - 20 mM concentration was 

Na+-dependent and obeyed Michaelis-Menten kinetics. Jmax and Km were 0.0007-0.0009 ± 0.00001 

µmol/cm2/hr and ~1 mM, respectively in PC and MG in apical/basal pH of 7.7/7.7. Changes in 

apical/basal pH (6.0/6.0, 6.0/7.7, and 7.7/8.7) had insignificant effects on kinetics in PC and MG. 

In contrast, HG flux kinetics were only obtained in pH 7.7/8.7 or in the presence of lactate with 

medium affinity. Finally, incremental increases from 0-150 µM demonstrated the potential 

presence of another Na+-dependent high-affinity transporter (Km in micromolar ranges) in PC and 

MG. Conclusively, two distinct carrier-mediated DL-MHA transport mechanisms along the trout 

gut were found: 1) in PC and MG: apical transport of DL-MHA was regulated by Na+-requiring 

systems that possibly contained low- and high-affinity transporters, and basolateral transport was 

primarily achieved through H+-independent transporter; 2) in HG: uptake was apically mediated 

by a Na+-dependent medium-affinity transporter, and basolateral exit was largely controlled by an 

H+-dependent transporter.  
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4.2. Introduction 

Classified as an essential amino acid (EAA), methionine (Met) and its metabolic precursors 

participate in numerous biochemical processes such as protein synthesis, immune defence, and 

physiological homeostasis. One of the most important metabolites of Met cycle is S- 

adenosylmethionine (SAM), which donates methyl group for a wide range of receptors such as 

nucleic acids, phospholipids, and protein; subsequently used for over 100 methylation reactions 

(248). Due to its importance, dietary Met in plant-based aquaculture feed is commonly 

supplemented with DL-methionine (DL-Met) or liquid methionine hydroxy analogue free acid 

DL-2-hydroxy-4-(methylthio)butanoic acid (DL-HMTBA-FA, or DL-MHA in short), or DL-

MHA calcium salt. MHA molecular structure is chemically unlike Met, in which the amine group 

(NH2) is replaced by the hydroxyl group (OH). Therefore, MHA is a monocarboxylate rather than 

a true AA, which has a different transport pathway compared to Met. A large number of studies 

have compared the difference in bioefficacy of the two products. Several studies in poultry (99, 

172, 209, 300, 390) and pigs (113, 194, 288, 448) have demonstrated that bioefficacy of DL-MHA 

is significantly lower than DL-Met. Similarly, studies in fish have shown lower bioefficacy of DL-

MHA relative to DL-Met (192, 331). Recently, Powell et al. (319) demonstrated in rainbow trout 

that calcium salt of DL-MHA was only 60-73% biologically available relative to DL-Met 

depending on performance parameters. Studies in poultry and swine have demonstrated the 

possible physiological reasons behind for differences observed in biological efficacy using 

radiolabelled methionine sources (95, 104, 231, 234). However, such understanding is mostly 

lacking in fish. Information about how DL-MHA transports would greatly aid in our understanding 

of the differences in bioefficacy between the two. Additionally, it would begin to give insight into 

monocarboxylate transport in the trout gut, which has not been characterized. 
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 As a monocarboxylate, DL-MHA is thought to be transported by either two families: 

SLC16 family comprises of proton-linked monocarboxylate transporters (MCTs), and SLC5 

family comprises of sodium-linked monocarboxylate transporters (SMCTs). Maenz and Engelle-

Schaan (230) originally describes the dependence of H+ in MHA transport in chick intestinal brush 

border membrane vesicles (BBMV). Likewise, DL-MHA transport in Caco-2 cells is H+-

dependent and demonstrates similar characteristics with MCT1 (245). MCT-1,2,3,4 are known as 

proton-coupled transporters of monocarboxylate compounds such as pyruvate, lactate, and ketone 

bodies (155–157). Whereas MCT9 and possibly other members are thought to be proton-

independent (379). Furthermore, the transport of DL-MHA is demonstrated to be Na+-independent 

in chick intestinal BBMV and Xenopus oocytes injected with poly(A)+ RNA isolated from broiler 

intestinal mucosa (32, 298); while partial Na+-dependence of MHA uptake is reported in everted 

sacs of the chicken small intestine by Martín-Venegas and co-workers (244). Differences in 

techniques and experimental species may have resulted in the absence or presence of the observed 

sodium dependence. Thus, monocarboxylate or MHA transport across the trout gut may be 

sodium- or proton-dependent or independent.  

Previous studies have demonstrated that MCTs and SMCTs play a major role in 

transporting short-chain fatty acids (SCFAs-products of dietary fiber fermentation by colonical 

bacteria) (130, 198, 266) and there are segmental differences in SCFAs transport observed in 

mammalian intestine (353, 419). Therefore, here we characterize the segmental differences of DL-

MHA transport kinetics in trout intestine in Ussing chambers, along with identifying the 

association of candidate MCT/SMCT genes involved in the DL-MHA transport. The DL-

[14C]MHA flux was kinetically characterized in Na+- and H+-dependent conditions. The results of 

radiolabeled substrate flux kinetics and association between gene expression and physiological 
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transport suggested that DL-MHA transport across the PC and MG was different from HG. 

Specifically, the apical influx in the PC and MG was mediated by low- and high-affinity Na+-

dependent transporters, and basolateral efflux was H+-independent. Whereas, it appeared that 

apical influx into the HG cells was governed by a Na+-dependent medium-affinity transporter with 

basolateral exit controlled by an H+-dependent transporter.   

4.3. Materials and methods 

 4.3.1. Fish source and husbandry  

The animals used in this research were maintained in accordance with the guidelines of the 

Canadian Council on Animal Care (59). All animal procedures were approved by the Animal Care 

Committee at the University of Saskatchewan (AUP#: 20170056). Rainbow trout (Oncorhynchus 

mykiss) were purchased from BandB Freshwater Fish Farm (Gunton, Manitoba, Canada). Fish 

were kept in an indoor recirculating system. Water quality was monitored and maintained at 

desirable conditions for optimal health. Oxygen was maintained at above 6 mg/L with air stones, 

and the temperature was kept at 11-12 0C with a chiller throughout the trials. Floating commercial 

feed containing 45% crude protein and 16% lipid manufactured by EWOS Canada Limited 

(Surrey, British Columbia, Canada) was offered twice per day at the daily ration of 2-3% fish body 

weight.  

4.3.2. Intestinal tissue collection 

 Healthy rainbow trout about 100 - 350 g each were transferred from the housing tank to 

the lab for gut collection. Fish was euthanized by blunt force trauma to head. After dissection, 

luminal contents such as feces and uneaten feed were removed. The collected intestine segments 

(PC, MG, and HG) were rinsed with physiological teleost buffer containing the following 
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composition (in mM):118 NaCl, 2.9 KCl, 2.0 CaCl2·2H2O, 1.0 MgSO4·7H2O, 0.1 NaH2.PO4·H2O, 

2.5 Na2HPO4, 1.9 NaHCO3, and 5.6 Glucose, at pH 7.7 adjusted with 2-(N-morpholino) 

ethanesulfonic acid (MES) or trisaminomethane (Tris) base (363, 393). Each replicate N 

represented an individual fish. Three segmental regions were distinctly different from each other. 

The PC region was defined as the region directly behind the stomach with finger-like pouches, 

followed by MG region, and finally the HG region that was thicker and darker compared to the 

MG (52). 

 4.3.3. RT-qPCR analysis to quantify mRNA expression of MHA-linked transporters 

During fish dissection, intestinal fish segments (about 100 mg PC, MG, and HG samples) 

were collected and cold-stored in RNAlater® RNA Stabilization Solution (Fisher Scientific) at 

−80 0C for later analysis of gene expression. PC, MG, and HG samples were homogenized using 

Trizol (Thermo Scientific). Total RNA was extracted following the manufacturer’s protocol. The 

purity assessment and RNA quantification concentration were determined using Nano-Drop 

spectrophotometer (Thermo Scientific). cDNA was synthesized using qScript cDNA Synthesis Kit 

(Quanta BioSciences) according to the manufacturer's instruction. The reactions were run as 

follows: incubation at 25 0C for 5 min, then at 42 0C for 30 min, and finally at 85 0C for 5 min in 

the PXE 0.2 Thermal Cycler (Thermo Scientific). All RT-qPCR assays were performed using Bio-

Rad T100 Thermal Cycler (Bio-Rad). The total PCR reaction volume was 12.5 µl containing a 

mixture of 6.25 µL SYBR® Green SuperMix (Quanta BioSciences), 0.5 µL mix of forward and 

reverse primers, 2.5 µL cDNA template and 3.25 µL free-RNA water. The cycling condition was 

activated at 95 0C for 3 min for denaturation, followed by 40 cycles of 95 0C for 10 s, 59 0C for 10 

s, and 72 0C for 30 s. Standard curves for each gene were generated to determine PCR primer 

efficiencies using a serial dilution of cDNA. Data were normalized to expression levels 
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of housekeeping gene α-elongation factor 1 (EFα1). Primer sequences designed for RT-qPCR were 

presented in Table 4.1.  
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Table 4.1. Rainbow trout (Oncorhynchus mykiss) primer sequences used for RT-qPCR. 

 

SLC
* System 

(Gene name) 

Forward 

(5
’
 – 3

’
) 

Reverse 

(5
’
 – 3

’
) 

Gene Bank 

Accession # 

SLC16A1-like MCT1-like  GAA GAA GGC GGA GTC TAA TC  TAG CGT AGT TGG AGA GGA A XM_021567179.1 

SLC16A7-like MCT2-like  GTG GAC CTA TCA GCA GTA TT  GTC CAA ACC CTC CAA TGA XM_021609615.1 

SLC16A3 MCT4 TGT TCG TGG TGA GCT ATG GCT GAA CAG GTA AAC  AAC TC XM_021576234.1 

SLC16A5-like MCT6-like  GGC AAA TCT GAA CCC ATA AA  GTA GGT CCG TGT AGA AGA TG XM_021576090.1 

SLC16A2-like MCT8-like  GAG AGA GAC GAT TGG CAT TA  GCC AGC TCT ATA TGG TAC AC XM_021583413.1 

SLC16A9-like MCT9-like  GTT GTT GGG TGG TTC TTT G  GTC GAT GTC AGC CTT CTT XM_021580615.1 

SLC16A13 MCT13  GTA GGC TAT GCG TGA GTA AG  GCC TCG AGC TAG TTG AAT AA XM_021615.062.1 

SLC5A8-like SMCT1-like  GGC ATC AGA ACC TGA GAT AA  CAG TTG ACA GAG TGC ATT TAG XM_021569991.1 

SLC5A12-like SMCT2-like  GGG TCA ACC AGT CAA CTA TAC  GGC GTA GAA AGC GTA CAT AA XM_021578511.1 

House keeping  EFα1  AGC GAG CTC AAG AAG AAG  GAC CAA GAG GAG GGT ATT C  NM_001124339.1 

 

  

SLC
* 
Solute carrier 
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4.3.4. 14C radiolabeled DL-MHA flux studies 

The collected intestinal segments were mounted as flat sheets between two sliders. The 

exposure of a tissue surface area was 0.3 cm2. The sliders were then inserted in between two halves 

of chambers and kept tight by thumbwheel-driven screws. 5 mL of fresh teleost buffer was filled 

each side of the chamber compartment and was constantly gassed with 1% CO2 and 99% O2. The 

temperature was maintained around 12 0C through the experiment by a circulating water bath.   

In all cases, the transport of liquid DL-[14C]MHA free acid was carried out according to 

the procedure briefly described as follows. After a blank sample, 0.5 µCi of DL-[14C]MHA 

(specific activity 55 mCi/mmol produced by Moravek Inc.) was added to the apical compartment 

to measure isotopic flux from the mucosal bath to the serosal bath (Jms). 0.5 µCi of [3H]-Inulin 

(specific activity 9.25 MBq/0.5 mCi produced by PerkinElmer) was also added to the apical 

compartment for later analysis of tissue viability. Exclusions from data analysis were made for 

tissues with considerable inulin flux, or tissue resistance decreased over the course of the 

experiment. After 60 min equilibration, increasing consecutive concentrations of unlabelled DL-

MHA were added to the apical compartment, and mannitol was added to the basolateral 

compartment for balanced osmolality. Two levels of substrate were independently examined: 0.2 

- 20 mM (19 consecutively increasing concentration) and 0 - 150 µM (21 consecutively increasing 

concentration). Na+-dependent manners were evaluated in both concentration levels, but pH 

dependence and cis-inhibition were only evaluated in mM concentration ranges. A flux period was 

performed by sampling from the basolateral compartment at 10 min after each data increment. 500 

µL radioactive sample withdrawn from the basolateral side was mixed with 4 mL-liquid 

scintillation cocktail (PerkinElmer) and subsequently counted using the Scintillation Counter 

(Beckman Coulter). 
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Sodium dependent/independent studies. Transport rate measurement of DL-[14C]MHA was 

performed in the presence or absence of Na+ at apical/basal pH of 7.7/7.7. In Na+-free condition, 

NaCl, NaH2.PO4·H2O, Na2HPO4, and NaHCO3 in bathing buffer were substituted with an 

equimolar concentration of KCl, KH2.PO4·H2O, K2HPO4, and KHCO3, respectively.  

Proton dependent studies. Assays were performed using physiological Na+-containing buffer with 

variable apical/basal pH of 6.0/6.0, 6.0/7.7, and 7.7/8.7. pH was adjusted with MES (acidic) or 

Tris (basic). In all cases, DL-[14C]MHA flux was measured in the range of unlabeled DL-MHA 

concentration 0.2-20 mM.  

Cis inhibition studies: Effects of sodium lactate (20 mM) or sodium acetate (20 mM) on DL-

[14C]MHA flux were studied in buffer pH 7.7/7.7, the concentration gradient of DL-MHA 0.2-20 

mM.  

4.4. Kinetic and statistical analysis  

 The calculation of unidirectional isotopic fluxes rate was described as follows (347). 

Jms = vs(Ps2 − cPs1)/(∆t ∗ Pm ∗ 𝐴) 

 

Jms = unidirectional DL-[14C]MHA flux from mucosa to serosa in µmol/cm2/hr  

νs = volume of buffer solution perfusing the serosal surface in cm3 

Ps1 = Initial cpm/cm3 in the serosal reservoir  

Ps2 = cpm/cm3 in the serosal reservoir after increment change 

A = area of tissue exposed = 0.3 cm2 

Δt = time interval between two samples in hour 

Pm = specific activity of the radioactive isotopes in the mucosal solution in cpm/µmol 

The radioisotopic flux rates of carrier-mediated transport were then fitted to classical 

nonlinear regression Michaelis-Menten equations using GraphPad Prism to determine maximal 
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flux rate (Jmax) and kinetic constant (Km). The formula of Michaelis-Menten equation was: J = 

{(Jmax x [S])/(Km + [S])}, where Jmax the maximal transport rate, S substrate concentration, Km 

half-saturation constant.  

 Jmax and Km data were presented as means ± SEM. Data were analyzed using one-way 

ANOVA to determine whether Jmax/Km values for each intestinal segment was significantly 

different. Student’s t-test was used to compare between two groups. Gene expression data were 

analyzed with similar methods using SYSTAT software. In all cases, a P-value < 0.05 was 

considered statistically significant for the difference between mean values.  

4.5. Results 

4.5.1 14C radiolabeled DL-MHA flux at millimolar concentration 0.2-20 mM 

Sodium dependent/independent studies: DL-[14C]MHA flux kinetics were characterized in Na+ and 

Na+-free conditions at a substrate concentration of 0.2-20 mM. In the presence of Na+ buffer pH 

7.7/7.7, DL-[14C]MHA flux displayed a saturable Michaelis-Menten mechanism with similar 

kinetic parameters in the first two segments (Figure 4.1). The Km values were 1.10 ± 0.23 mM and 

0.97 ± 0.14 mM in PC and MG, respectively; and Jmax values were 0.0007 ± 0.00001 µmol/cm2/hr 

and 0.0009 ± 0.00001 µmol/cm2/hr in the PC and MG, respectively. On the other hand, the flux 

rate was dramatically reduced in the HG and void of characterizable transport kinetics. Likewise, 

no concentration-dependent transport kinetics were detected when Na+ ions were removed from 

the buffer 7.7/7.7 (Figure 4.1). Together this suggested the participation of a Na+-dependent 

carrier-mediated mechanism in DL-MHA transport in PC and MG.
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Figure 4.1. Effects of sodium on DL-MHA transport at millimolar (mM) concentration. 

Michaelis-Menten plots for the DL-[14C]MHA flux assays in the presence of Na+ 
(N=16-18) (◼) and absence of Na+ (N=11-12) () 

with apical pH/basal pH of 7.7/7.7 in (A) pyloric caeca (PC), (B) midgut (MG), and (C) hindgut (HG). Experiments were performed 

with DL-MHA gradient from 0.2-20 mM (19 increasing sequential concentration). Values were means ± SEM. 
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Proton dependent studies: With the same sodium concentration, the proton-dependent transport 

was evaluated at variable apical/basal pH including 6.0/6.0, 6.0/7.7, and 7.7/8.7 (Figure 4.2). 

Reducing the pH to 6.0/6.0 or 6.0/7.7 did not result in significant changes in transport rates and 

affinity values between PC and MG, suggesting a similar apical transport mechanism in these two 

segments. At pH 6.0/6.0, the Jmax in PC and MG were 0.0007 ± 0.00001 and 0.0008 ± 0.00001 

µmol/cm2/hr, respectively; Km values in PC and MG were 0.56 ± 0.12 and 0.80 ± 0.13 mM, 

respectively. Similarly, a strong proton gradient across the apical membrane under pH conditions 

of 6.0/7.7 produced little effect. Jmax in PC and MG were 0.0006 ± 0.00001 and 0.0007 ± 0.00001 

µmol/cm2/hr, respectively; Km values in PC and MG were 0.77 ± 0.15 and 0.66 ± 0.17 mM, 

respectively. These small changes in affinity and flux rates were not statistically significant (Table 

4.2). Correspondingly, the poor flux in the HG remained unaffected in both pH conditions. 

Together this suggested the limited apical proton dependence of apical MHA transport throughout 

the intestine. Likewise, increasing pH on the basolateral side to pH 7.7/8.7, creating a proton 

gradient across the basolateral membrane in the PC and MG produced insignificant differences in 

Jmax and Km in comparison with pH 7.7/7.7. This suggested a proton independent mechanism of 

MHA exit in the PC and MG. However, in the HG this pH 7.7/8.7 gradient markedly increased 

Jmax flux and obeyed the Michaelis-Menten equation with Jmax and Km of 0.0006 ± 0.00001 

µmol/cm2/hr and 0.39 ± 0.10 mM, respectively (Figure 4.2 and Table 4.2). Under the same pH 

conditions, the removal of sodium eliminated the response (data not shown). These observations 

proposed that DL-MHA transport involved low-affinity Na+-dependent apical transporters and H+-

independent basolateral transporters in PC and MG, while it appeared that there was the 

participation of an H+-coupled MHA basolateral transporter in HG.  
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Figure 4.2. Effects of proton on DL-MHA transport at millimolar (mM) concentration. 

Effects of proton on DL-MHA transport at millimolar (mM) concentration. Michaelis-Menten plots for the DL-[14C]MHA flux assays 

in the presence of Na+ with apical/basal pH of 7.7/8.7 (), 6.0/7.7 (⚫), and 6.0/6.0 (◆) in (A ) pyloric caeca (PC), (B) midgut (MG), 

and (C) hindgut (HG). Experiments were performed with DL-MHA gradient from 0.2-20 mM (19 increasing sequential concentration). 

Values were means ± SEM (N=10-16). 
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Cis-inhibition studies: Common substrates of MCTs including sodium lactate/sodium acetate (20 

mM) were added to apical bathing buffer pH 7.7/7.7. The results demonstrated that sodium lactate 

had insignificant inhibitory effects on Jmax of DL-[14C]MHA flux in PC and MG. Remarkably, HG 

flux obeyed Michaelis-Menten kinetics with Jmax and Km of 0.0007 ± 0.00013 µmol/cm2/hr and 

0.36 ± 0.08 mM, respectively (Figure 4.3 and Table 4.2). On the other hand, the flux rate in MG 

was significantly reduced in the presence of sodium acetate: Jmax of 0.0006 ± 0.00001 µmol/cm2/hr 

compared to 0.0009 ± 0.00001 µmol/cm2/hr in acetate-free containing buffer (Student’s t-test, 

P=0.02). Nonetheless, regardless of dissimilarities of how lactate and acetate affected on flux rate, 

Km values tended to decrease in both cases (Table 4.2). A decrease in Km indicated an increased 

affinity, which would be consistent with the inhibition of a low-affinity transporter and a shift to 

the dependence of the transport on a high-affinity transporter.  
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Figure 4.3. Effects of cis inhibition on DL-MHA transport at millimolar (mM) concentration. 

Effects of cis inhibition on transport of DL-MHA at millimolar (mM) concentration. Michaelis-Menten plots for the DL-[14C]MHA flux 

control assays (◼), or in the presence of 20 mM sodium lactate () or sodium acetate () on apical buffer in (A) pyloric caeca (PC), 

(B) midgut (MG), and (C) hindgut (HG). Experiments were performed with DL-MHA gradient from 0.2-20 mM (19 increasing 

sequential concentration). Values were means ± SEM (N=10-18). 
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Table 4.2. Transport of DL-MHA at millimolar (mM) concentration.  

 

 

Jmax and Km values generated by DL-[14C]MHA flux assays along rainbow trout intestine, unlabeled substrate DL-MHA gradient 0.2-

20 mM (19 increasing consequential concentration). Values were expressed as means ± SEM (N=10-18 in Na+, N=11-12 in Na+ free). 

Asterisks represent significant differences in Jmax or Km from the control 7.7/7.7 (Student’s t-test, p < 0.05). Jmax and Km values derived 

from Na+-free experiments and HG in Na+-containing buffer were not obtainable and shown as non detectable (ND). 

 

 

  
Jmax (µmol/cm2/hr) Km (mM) 

 
Apical pH/basal 

pH 
PC MG HG PC MG HG 

Na
+
 

dependent 

assays 

7.7/7.7 with Na
+
 0.0007 ± 0.00001 

(control) 
0.0009 ± 0.00001 

(control) 
ND 

(control) 
1.10 ± 0.23 

(control) 
0.97 ± 0.14 

(control) 
ND 

(control) 

7.7/7.7 without Na
+
 ND ND ND ND ND ND 

H
+
 

dependent 

assays 

6.0/6.0 with Na
+
 0.0007 ± 0.00001 0.0008 ± 0.00001 ND 0.56 ± 0.12 0.80 ± 0.13 ND 

6.0/7.7 with Na
+
 0.0006 ± 0.00001 0.0007 ± 0.00001 ND 0.77 ± 0.15 0.66 ± 0.17 ND 

7.7/8.7 with Na
+
 0.0006 ± 0.00001 0.0009 ± 0.00001 0.0006 ± 0.00012 0.50 ± 0.10 0.89 ± 0.18 0.39 ± 0.10 

Cis 

inhibition 
7.7/7.7 + lactate 0.0006 ± 0.00001 0.0008 ± 0.00014 0.0007 ± 0.00013 0.59 ± 0.11 0.55 ± 0.11* 0.36 ± 0.08 

7.7/7.7 + acetate 0.0008 ± 0.0001 0.0006 ± 0.00001* ND 0.80 ± 0.16 0.52 ± 0.11* ND 
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4.5.2. 14C radiolabeled DL-MHA flux at micromolar concentration 0-150 µM 

 To identify a potential existence of a high-affinity transporter, DL-[14C]MHA flux was 

performed in the presence or absence of Na+ pH 7.7/7.7 at the substrate concentration 0-150 µM 

(Figure 4.4). In the presence of Na+, DL-[14C]MHA mucosal to serosal flux exhibited a saturable 

process that could be described by the Michaelis-Menten equation. Although Jmax was significantly 

lower in PC (0.0008 ± 0.00001 µmol/cm2/hr) than in MG (0.001 ± 0.00001 µmol/cm2/hr), no 

significant differences in affinity was detected between the two segments (Table 4.3), suggesting 

similar transporter involvement. In Na+-free conditions at pH 7.7/7.7, there was no flux. The HG 

again displayed poor MHA transport. In both Na+ and Na+-free conditions at pH 7.7/7.7, there was 

little or no substrate-dependent flux in HG. The DL-[14C]MHA flux was not significantly impacted 

in any of the segments (Figure 4.4) by lowering the pH to 6.0/6.0 apical/basal conditions in Na+-

containing buffer. No significant differences in flux rates and kinetics constant values (P>0.05) 

were detected between pH 6.0/6.0 and 7.7/7.7 (Table 4.3). Together these results indicated the 

presence of a MHA Na+-dependent high-affinity transporter in trout PC and MG, which could 

explain the decrease in Km with cis-inhibition described earlier in the 0.2- 20 mM concentrations. 
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Figure 4.4. Transport of DL-MHA at micromolar (µM) concentration. 

Michaelis-Menten plots for the DL-[14C]MHA flux assays in the presence of Na+ 
(N=13-19) with apical/basal pH of 7.7/7.7 (◼) and 

6.0/6.0 (⚫) and absence of Na+ (N=10-12) with apical/basal pH of 7.7/7.7 () in (A ) pyloric caeca (PC), (B) midgut (MG), and (C) 

hindgut (HG). Experiments were carried out with DL-MHA gradient from 0-150 µM (21 increasing sequential concentration). Values 

were means ± SEM. 
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Table 4.3. Transport of DL-MHA at micromolar (µM) concentration.  

 
 

Jmax (µmol/cm2/hr) 
 

Km (µM) 

Apical pH/basal pH PC MG HG P-value PC MG HG P-value 

7.7/7.7 with Na
+
 0.0008 (± 0.00001) 0.001 (± 0.00001) ND 0.006* 8.76 (± 1.26) 10.65 (± 1.10) ND 0.264 

7.7/7.7 without Na
+
 ND ND ND - ND ND ND - 

6.0/6.0 with Na
+
 0.0008 (± 0.00001) 0.001 (± 0.00001) ND 0.041* 10.1 (± 1.59) 6.97 (± 0.94) ND 0.199 

 

Jmax and Km values generated by DL-[14C]MHA flux assays along rainbow trout intestine in the Na+ and Na+ free buffer, unlabeled 

substrate DL-MHA gradient 0-150 µM (21 increasing sequential concentration). Values were expressed as mean ± SEM (N=13-19 in 

Na+, N=10-12 in Na+ free). Asterisks represent significant differences in Jmax or Km between PC and MG (Student’s t-test, P < 0.05). Jmax 

and Km values derived from Na+-free experiments and HG in Na+-containing buffer were not obtainable and shown as non detectable 

(ND). 
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4.5.3. Gene expression of monocarboxylate transporters (MCTs) and sodium 

monocarboxylate transporters (SMCTs) 

Here we determine if there is an association between the members of the two major class 

of monocarboxylates transporters and the transport of MHA seen in this study. RT-qPCR was 

performed for all genes of MCT family (SLC16A) and SMCT family (SLC5A) found in the trout 

genome. Among 14 members, RT-qPCR was not performed for MCT3 (SLC16A8), MCT11 

(SLC16A11), and MCT14 (SLC16A14) due to no genomic presence of these genes in rainbow 

trout. RT-qPCR was not detectable for genes including MCT5-like (SLC16A4-like), MCT7-like 

(SLC16A6-like), TAT1-like (SLC16A10-like), and MCT12-like (SLC16A12). On the other hand, 

genes including MCT2-like (SLC16A7-like), MCT4 (SLCA16A3), MCT6-like (SLC16A5-like), 

MCT8-like (SLC16A2-like), and SMCT2-like (SLC5A12-like) were negligibly expressed in trout 

gut (Table 4.4).  

There seemed to be an association of four candidate genes that could potentially contribute 

to MHA transport. They included SMCT1-like (SLC5A8-like), MCT1-like (SLC16A1-like), 

MCT9-like (SLC16A9-like), and MCT13 (SLC16A13). Specifically, relative mRNA expression 

of sodium-dependent SMCT1-like gene and the putative proton-independent MCT9-like gene 

were significantly higher in PC and MG in comparison with HG (Figure 4.5A and Figure 4.6B). 

An opposite trend was detected for the proton dependent MCT1-like and MCT13 in which there 

was significantly greater expression found HG segment (Figure 4.5B and Figure 4.6A). 
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Table 4.4. RT-qPCR results of genes with low relative mRNA expression in intestine.  

 

Gene PC MG HG 

MCT2-like 0.001 ± 0.0002 0.001 ± 0.00001 0.002 ± 0.0005 

MCT4 0.004 ± 0.0008 0.009 ± 0.0022 0.022 ± 0.0071 

MCT6-like 0.002 ± 0.0002 0.002 ± 0.00001 0.017 ± 0.0025 

MCT8-like 0.006 ± 0.0031 0.002 ± 0.0002 0.006 ± 0.0009 

SMCT2-like 0.004 ± 0.0014 0.020 ± 0.0054 0.003 ± 0.0008 

 

House keeping gene α-elongation factor 1 (EFα1) was used to normalize expression data. Values 

were expressed as means ± SEM (N=8-10).  
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Figure 4.5. Gene expression of SMCT1-like (SLC5A8-like) and MCT13 (SLC16A13) 

A) Relative mRNA expression of SMCT1-like (SLC5A8-like), and B) Relative mRNA expression 

of MCT13 (SLC16A13) in pyloric caeca, midgut and hindgut of rainbow trout using RT-qPCR. 

House keeping gene α-elongation factor 1 (EFα1) was used to normalize expression data. Values 

were expressed as means ± SEM (N=8-10). Significant differences among segments were 

indicated with asterisks (one-way ANOVA, p <0.05). 
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Figure 4.6. Gene expression of MCT1-like (SLC16A1-like) and MCT9 (SLC16A9-like) 

A) Relative mRNA expression of MCT1-like (SLC16A1-like), B) Relative mRNA expression of 

MCT9-like (SLC16A9-like) in pyloric caeca, midgut and hindgut of rainbow trout using RT-qPCR. 

House keeping gene α-elongation factor 1 (EFα1) was used to normalize expression data. Values 

were expressed as means ± SEM (N=8-10). Significant differences among segments were 

indicated with asterisks (one way ANOVA, p <0.05). 
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4.6. Discussion  

 Since Met is one of the first limiting EAAs in animal diets, dietary inclusion of Met sources 

such as DL-Met or DL-MHA has been commonly practiced for optimal growth and health of farm-

raised animals, particularly in aquaculture (283). Understanding the mechanism of how these Met 

sources transported is an important step to better understand their biological efficacy and to 

approach a cost-effective feed formulation. Reports suggest that MHA gut transport is proton-

dependent, but dependence on sodium is inconsistently observed, which is likely due to difference 

in techniques, tissue and cells used (32, 230, 244, 245, 298). As a monocarboxylate, the intestinal 

transport pathway of DL-MHA is expected to be similar to SCFAs. Although SCFAs are mainly 

produced in the colon by bacterial fermentation of dietary fibre, they could be still absorbed in the 

small intestine (366). This is also true in several fish species (365, 392). Additionally, segmental 

differences and membrane specific locations of transporters could be also attributed to the 

dependence of sodium and proton in intestinal MHA transport. Unidirectional flux Jms of SCFAs 

(acetate, butyrate, and propionate) is found to be higher in the distal colon than in caecum of 

guinea-pig, and absorption appears to be H+-independent when reducing luminal pH (326, 419). 

Therefore, segmental differences in DL-MHA transport are studied using an isotopically-labelled 

DL-MHA to determine its transport kinetics throughout the length of the fish intestine. Our results 

indicate that perhaps there are two distinct DL-MHA transport mechanisms existing in different 

segments of trout gut: 1) in PC and MG regions: apical influx and basolateral efflux of DL-MHA 

are likely facilitated by Na+-dependent and H+-independent carrier-mediated transporters, 

respectively; 2) in HG region: it seems that apically localized Na+-dependent medium-affinity 

transporter supports DL-MHA influx while H+-dependent transporter mediates basolateral exit. 

Additionally, the interaction between DL-MHA and lactate/acetate predicts that apically DL-MHA 
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transport probably involves more than one transporter with different affinity ranges in PC and MG; 

and a not yet identified transport pathway in HG favouring MHA recycling resulting in lower flux 

rate in HG. 

4.6.1. DL-MHA transport in PC and MG  

Apical influx and basolateral efflux were mediated by Na+-dependent and H+-independent 

mechanism, respectively  

Presence of apical Na+-dependent and absence of H+-dependent transport evidence in PC and 

MG 

 Firstly, results demonstrated that DL-MHA transport at concentration 0.2-20 mM greatly 

relied on the presence of a Na+-dependent low-affinity transporter (Km in mM ranges) at the 

physiological pH of 7.7/7.7 (Figure 4.1). Replacement of the sodium resulted in a complete lack 

of DL-MHA flux across the trout intestine. This was in agreement with the role of sodium in 

nutrient absorption previously observed in trout gut (182, 376, 393), although this observation was 

unlike previous reports of MHA transport in chicken (32, 298) or acetate transport in tilapia (392). 

This difference could be due to technique and species used, as care must be taken when comparing 

between teleost species as well animal categories (mammals, fish and avian). 

However, the possibility still existed for the contribution of proton dependence to MHA 

transport along with sodium-dependent transport. With similar sodium conditions, excess 

provision of proton in pH 6.0/6.0 resulted in insignificant differences in maximal flux rates and 

kinetic constants (Figure 4.2 and Table 4.2). It was possible to argue that the apical/basal pH of 

7.7/7.7 and 6.0/6.0 did not provide reasonable proton gradients for initiating the full functions of 

MCTs. Therefore, pH 6.0/7.7 and 7.7/8.7 were designed to explore potential location-specific 
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regulation of proton-coupled transporters further. The results demonstrated that the increasing H+ 

gradient across the lumen-facing apical membrane by lowering pH in the apical reservoir with 

buffers pH 6.0/7.7 did not alter kinetic affinities and transport rates (Table 4.2). Similarly, 

increasing H+ gradient across the basolateral membrane by increasing pH on the basolateral 

reservoir in buffer pH 7.7/8.7 also resulted in insignificant differences in Jmax and Km in PC and 

MG. These results associated with low expression of monocarboxylate H+-dependent transporter 

MCT1-like in PC and MG (Figure 4.6A). These observations indicated that the H+-coupled 

mechanism was unlikely involved in mediating DL-MHA transport in the first two intestinal 

segments PC and MG, which left only H+-independent and Na+-coupled mechanism of DL-MHA 

absorption.  

Kinetic constants and gene expression support apical Na+-dependent and H+-independent 

transport mechanism in PC and MG 

 As noted above, the apical influx of DL-MHA was unlikely regulated by H+-gradient 

dependent transporters but relied on the presence of Na+-requiring system instead. MCTs (14 

members) and SMCTs (2 members) were known transporters mediating the transports of 

monocarboxylate compounds. The former belongs to the SLC16A family, while the latter 

belonged to the SLC5A family. Although substrate specificity was found to be similar, MCTs and 

SMCTs mediated substrate transport by different chemical driving forces: MCTs relied on H+-

electrochemical gradient, whereas SMCTs relied on Na+-gradient (16, 139, 152, 186, 264, 265, 

371). It was generally agreed that SMCTs were apically localized in the membrane of the intestine 

and kidney tubules with absorptive functions (140, 142, 184, 388, 435).  

In the absence of published transport kinetics of DL-MHA via cloned SMCTs in a 

functional heterologous expression systems makes comparisons difficult. However, this is the first 
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study that demonstrates an association between transport kinetics of DL-MHA and the 

MCTs/SMCTs transporters. In our study, the kinetic constants (Km) calculated for DL-MHA 

transport were ranging between 0.5-1.1 mM and 7-10 µM in PC and MG at high concentration 

(0.2-20 mM) and low concentration (0-150 µM), respectively. These Km values could correspond 

with a low-affinity SMCT2 and a high-affinity transporter SMCT1, respectively (130, 153). In the 

current study, SMCT2 mRNA was poorly expressed in trout gut (Table 4.4), and the expression 

pattern was not thoroughly related to flux rates observed, while segmental mRNA expression of 

SMCT1-like (Figure 4.5A) highly correlated to segmental differences in flux rate in high 

concentration. However, the affinity difference of these two transporters in trout has not been 

investigated, and affinity constant values generated by a transporter could differ from substrate to 

substrate. For instance, Km ranges of monocarboxylate compounds were relatively large for human 

SMCT1 transport in X. laevis oocytes: 72-81 µM for butyrate, 159 - 235 µM for L-lactate, 1.6 mM 

for γ-hydroxybutyrate, 2.5 mM for acetate, 6.5 mM for 5-aminosalicylate (76, 130, 246, 264). Or 

there might be species differences in transport functions. For example, Ohkubo et al. (287) found 

that Km for nicotinate transported by SMCT1-like and SMCT2-like in rat intestine were 8.62 µM 

and 1.18-2.36 mM, respectively; while it was 390 µM in human SMCT1 (299) and 23.7 mM in 

zebrafish SMCT2 (315). Taken together, it seemed inappropriate to distinctively conclude whether 

SMCT1 or SMCT2 was responsible for DL-MHA transport at high or low concentration. However, 

experimental observation and gene expression analysis in this study clearly demonstrated the 

participation of apical Na+-dependent transporters in DL-MHA influx.  

The remaining question is the mechanism of DL-MHA export from the basolateral side. 

Since the flux rate remained unchanged throughout different pH-dependent experiments, the 

delivery of DL-MHA from intracellular cells to bloodstream was possibly mediated by an H+-
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independent process. MCT9-like was a feasible candidate responsible for this. Although its 

functions and substrate specificity has not been fully discovered, experimental evidence has 

indicated that MCT9 found on the basolateral side of epithelium, acted as H+-independent carnitine 

efflux when expressed in X. oocytes (379). Moreover, gene expression of MCT9-like in the current 

study was also well associated with H+-independent flux rates in PC and MG (Figure 4.6B).  

Cis-inhibition in millimolar concentration and transport kinetics in micromolar concentration 

revealed multiple Na+-dependent transporters in PC and MG for DL-MHA 

Cis-inhibition studies demonstrated that lactate had minor inhibitory effects on DL-MHA 

flux in PC and MG, while acetate significantly reduced the transport rate of DL-MHA in MG. 

Despite the differences in inhibitory degree, both lactate and acetate tended to shift affinity 

constants towards higher affinity (lower Km values). This could be simply explained by kinetic 

characteristics in which uncompetitive inhibition reduced both Km and Jmax (286). However, an 

alternative explanation was that there existed two transporters with different affinity ranges. At 

high DL-MHA concentrations (0.2-20 mM), the role of high-affinity transporter would probably 

be negligible compared to low-affinity transporter. In the presence of cis-inhibition, the low-

affinity transporter could be inhibited, giving a chance for the high-affinity transporter to be 

exposed. Therefore, DL-MHA flux at 0-150 µM concentration was carried out to illustrate the 

concept. The results clearly demonstrated that there was the potential existence of Na+-dependent 

high-affinity transport mechanism at low concentration in PC and MG (Figure 4.4 and Table 4.3). 

It was unclear which high-affinity transporter was responsible for DL-MHA transport at 

micromolar concentration. As discussed earlier, SMCT2-like would seem to be not a candidate 

because known literature suggests that SMCT2 was a low-affinity transporter (130, 140, 153, 371). 
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Nevertheless, we could not eliminate the possibility that the affinity of SMCT2 in trout is higher 

than that in mammals, and/or there is the existence of a not yet-identified high-affinity transporter.  

These experimental observations concluded that apical DL-MHA influx in PC and MG 

was mediated by Na+-dependent low- and high-affinity transporters, meanwhile efflux from 

basolateral side likely involved in the participation of H+-independent transporter. The schematic 

model of DL-MHA transport in PC and MG was presented in Figure 4.7.  
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Figure 4.7. Simplified illustration of DL-MHA transport in the GI tract of rainbow trout. 

DL-MHA transports differed in the first two segments compared to the last segments. In PC and 

MG, apical uptake was likely mediated by Na
+
-dependent low- and high- transporters (predictively 

SMCT1-like and SMCT2-like) and basolateral delivery was primarily controlled by H
+
-

independent process (predictively MCT9-like). In HG, apical absorption was perhaps responsible 

by a Na
+ 

-dependent medium-affinity transporter, but basolateral efflux was mainly dependent on 

H
+
-coupled MHA transporter (possibly MCT1-like). There might be an unidentified back flux 

transporter (MCT13?) that could be inhibited by lactate. 
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4.6.2. DL-MHA transport in HG 

Apical influx and basolateral efflux were facilitated by Na+-dependent and H+-dependent 

mechanism, respectively  

pH-dependent experiments and gene expression revealed basolateral H+-dependent efflux in HG 

 Unlike PC and MG, HG appeared to perform DL-MHA transport functions differently. 

Segmental differences in transport kinetics were likely due to dynamic changes in expression and 

location-specific regulation of Na+, H+-dependent and Na+, H+-independent transport systems 

along the intestinal tract. Firstly, hindgut DL-[14C]MHA flux was unsuccessfully achieved with 

typical physiological Na+-buffer. Suggested above, the Na+-dependent transporter SMCT1 was 

most likely responsible for apical DL-MHA uptake in PC and MG at 0.2-20 mM. Thus, the absence 

of transport kinetics in the HG of DL-[14C]MHA could be partly explained by the low expression 

of SMCT1 (Figure 4.5A). Secondly, pH-dependent studies elucidated the association of flux 

kinetics with side-specific H+-dependent regulation. DL-MHA transport from the lumen into 

epithelial cells seemed to be proton-independent since the flux rates remained unchanged when 

decreasing pH (increase H+ concentration) on the apical side in pH 6.0/7.7 buffer. In contrast, a 

substantial increase in Jmax was seen when lower H+ concentration imposed on the basolateral side 

in pH 7.7/8.7 assays. The hindgut Km-derived value was 0.39 ± 0.10 mM, which was higher than 

PC and MG Km values. Additionally, Na+-free experiment in pH 7.7/8.7 (data not shown) 

demonstrated no kinetics in HG. Together, it appeared that apical uptake of DL-MHA still relied 

on Na+-dependent transporter, but basolateral exit could be facilitated by H+-dependent 

transporter. RT-qPCR result demonstrated that H+-dependent transporter MCT1-like was 

dominantly expressed in the HG (Figure 4.6A). The dominant expression of MCT1-like in the HG 
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was not surprising, given the transport kinetics in this study and its observed role in the mammal 

colon transporting SCFAs produced by bacteria via dietary fibre fermentation (138, 198, 359, 418).  

 Whether MCT1 is located on the apical and/or basolateral membrane is still controversial. 

Several studies have reported that MCT1 was mainly expressed in the apical membrane (55, 63, 

273, 308), while some found exclusive expression of MCT1 on the basolateral surface of epithelial 

cells (131, 132, 184), whereas additional studies found it on both apical and basolateral surfaces 

(243, 384). Findings in the current study in trout gut suggested that H+-dependent transporter, 

probably MCT1-like, played an essential role in the basolateral exit of DL-MHA from HG 

epithelium. In agreement with this suggestion, lactate transport across the basolateral membrane 

was found to be H+-dependent using rat BBMV (292) and MCT1 mRNA injected into Xenopus 

laevis oocytes (291). This finding required an additional basolateral pH-regulating mechanism to 

compensate for H+-taken out from the epithelial cells such as Na+/H+ exchanger NHE1 (58). This 

was in contrast to MCT1 mediated apical DL-MHA uptake in Caco-2 cell (243, 245).  

Cis-inhibition and gene expression revealed the possible existence of an apical back-flux 

mechanism in HG  

 Noticeably, Michaelis-Menten affinity constant calculated in pH 7.7/8.7 was smaller in HG 

(0.39 ± 0.10 mM) than in PC and MG (0.50 ± 0.10 and 0.89 ± 0.18 mM, respectively), revealing 

a different transporter involved in HG with higher affinity. Thus, there is likely the involvement 

of a Na+-dependent medium-affinity transporter in trout HG. Likewise, a kinetic flux in the HG 

was obtainable in the presence of lactate. This observation could be due to competition of DL-

MHA and lactate through another orphan not yet-identified back-flux transporter, which might 

push intracellularly trapped DL-MHA cross the basolateral membrane increasing overall transport 

rate. mRNA expression of MCT13 tended to be elevated in HG (Figure 4.5B), which might 
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associate with exporting DL-MHA back to the lumen, causing low/non-detectable flux in HG. 

However, MCT13 is still an orphan transporter with unknown functions. The mechanism 

underlying this sophisticated observation requires further investigation in the future.  

Experimental evidence here supported the conclusion that the apical DL-MHA influx in 

HG was likely controlled by a Na+-dependent medium-affinity transporter, while basolateral efflux 

was largely governed by an H+-dependent transport mechanism. Illustration of DL-MHA transport 

in HG was simplified in Figure 4.7. 

4.7. Conclusion 

This is the first study characterizing DL-MHA kinetic flux using radio-isotopic labelled 

substrate to gain knowledge of the transport mechanism in the fish intestine at a molecular level. 

The current study demonstrated the reliance of DL-MHA transport on sodium and protons with 

the association of the SMCTs and MCTs genes. Two distinct segmental kinetics reveals different 

transport mechanisms along trout intestine: 1) in PC and MG: DL-MHA apical uptakes are 

primarily governed by Na+-dependent low- and high-affinity transporters and basolateral exit relies 

on H+-independent transporter, 2) in HG: apical uptake seems to be controlled by Na+-dependent 

medium-affinity transporter and basolateral exit is mainly mediated by an H+-dependent process. 
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Transition 

The following chapter focuses on addressing the 3rd objective and the 3rd hypothesis. There has 

been an ongoing debate about the effectiveness of DL-Met versus. DL-MHA supplementation in 

animal feeds. Understanding the transport rates of these synthetic methionine products in the 

intestine could contribute to explain observed differences in bioefficacy. Part of this chapter is 

combined with chapter 4 for one manuscript, as indicated previously. The chapter has been 

reformatted from the original manuscript to fit the structure of the thesis.  

Objective: Compare the transport kinetics between DL-Met and DL-MHA by reanalyzing data 

obtained from the mentioned objectives. 

Hypothesis: DL-Met is transported with higher affinity and rate than DL-MHA in rainbow trout 

intestine. 
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CHAPTER V 

A COMPARISION OF DL-MET VERSUS DL-MHA TRANSPORT IN THE 

INTESTINAL TRACT OF RAINBOW TROUT 

5.1. Abstract 

Dietary methionine (Met) supplementation is an important aspect in animal nutrition since Met is 

an indispensable amino acid (AA). Numerous studies have been conducted to compare the 

effectiveness of DL-Met and DL-MHA which are the primary forms of synthetic Met. The 

knowledge of the transport mechanism involved in these products in the intestine is essential to 

elucidate the continuing arguments centred on the relative bioefficacy of DL-Met and DL-MHA. 

The aim of this study is to compare the intestinal transport of DL-Met and DL-MHA based on the 

pre-established understanding of the transport mechanism of these Met substrates in rainbow trout 

(Oncorhynchus mykiss). Flux rates of radiolabeled DL-Met and DL-MHA were extracted from 

data pools in previous chapters. The comparison was made at low concentrations (2, 10, 50, 100, 

and 150 µM) and high concentrations (1, 5, 10. 15, and 20 mM) in trout intestine, including PC, 

MG and HG. Overall, Michaelis-Menten analysis illustrated a significantly higher maximal flux 

rate (Jmax) and affinity (Km) for DL-[14C]Met compared to DL-[14C]MHA. Specifically, at µM 

concentrations, results showed that DL-[14C]MHA flux rates were considerably lower than DL-

[14C]Met, with intestinal flux rates of radiolabeled DL-MHA about 25.4-49.4% in PC, 39.3-48.4% 

in MG, and 47.2-70.1% in HG of DL-Met. Likewise, intestinal flux rates of radiolabeled DL-MHA 

were only about 61.9-66.0% in PC and 42.2-50.4% in MG compared to DL-Met at high 

concentrations. Conclusively, DL-Met transport was higher than DL-MHA in the intestinal tract 

of rainbow trout.  
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5.2. Introduction 

Since Met is one of the first limiting essential AAs in plant-based diets, synthetic Met is 

often supplemented to fortify nutritional balance in diets of monogastric animals. There are two 

primary forms of commercially synthetic Met: DL-Methionine (DL-Met, ≥ 99 % purity) and DL-

2-hydroxy-4-(methylthio) butanoic acid (DL-HMTBA or DL-MHA, 88% active substances and 

12% water). DL-Met is a pure powder product with a 50:50 mixture of D- and L-isomers, while 

88% active substances of liquid DL-MHA contains approximately 65% monomeric form and the 

remaining 23% are dimers and oligomers (28, 356). The effects of dietary DL-Met and DL-MHA 

supplementation on growth performance, feed conversion, protein synthesis, etc. have been widely 

evaluated to compare bioefficacy or bioavailability which indicates the effectiveness and cost-

effective purchase of these Met sources. Several studies have revealed similar effectiveness of the 

two products (122, 136, 218, 334, 410). However, the relative bioefficacy of DL-MHA has often 

found to be lower than DL-Met across different species, including poultry (83, 171, 209, 337, 405), 

swine (194, 288, 358) and aquatic species (191, 192, 317, 319, 331). This conclusion is confirmed 

by a meta-analysis estimating that the relative bioefficacy of DL-MHA is ≤ 81% compared to DL-

Met on an equal molar basis depending on performance parameters (339). DL-Met and DL-MHA 

are chemically unlike and are transported by different mechanisms in the GI tract, possibly 

explaining the different bioefficacies.  

As a neutral amino acid, DL-Met transport could be achieved via multiple carrier-mediated 

Na+-dependent systems (A, ASC, B0, B0,+, IMINO, and y+L) and Na+-independent systems (b0,+, 

y+-like, and L) (39, 367, 393, 445). Each of these systems could be composed of one or several 

transporters. In chapter III, DL-Met transport was kinetically studied in Ussing chambers. It 

appears that ASCT1, B0AT1, y+LAT1, and LAT4 are the major transporters that participate in DL-
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Met transport. Whereas DL-MHA is a monocarboxylate since it contains a hydroxyl group (OH) 

instead of an amine group (NH2), which is believed to be transported by monocarboxylate 

transporters (MCTs) or sodium monocarboxylate transporters (SMCTs). Previous studies have 

shown that DL-MHA absorption is Na+-independent (32) and H+-dependent (230, 298) with 

similar transport kinetics of MCT1 (245). In chapter IV, an association between the segment-

specific location of MCT/SMCT and DL-MHA flux was observed. Based on these findings, the 

transport rates of these Met sources are compared by reanalyzed DL-[14C]Met and DL-[14C]MHA 

flux data. The result demonstrated that there were significant differences in transport capacity and 

affinity between Met sources. At low concentration (µM), DL-[14C]Met was transported with 

higher affinity and greater flux rates compared to DL-[14C]MHA. At high concentration (mM), 

DL-[14C]Met and DL-[14C]MHA were transported with similar affinity, but higher flux rates were 

found for the former. Overall, DL-Met had higher transport capacity than DL-MHA in the intestine 

of rainbow trout. 

5.3. Materials and methods 

DL-Met and DL-MHA data were derived from previous chapters. All fish were held and 

maintained under identical conditions, as described in previous chapters. Both DL-[14C]Met and 

DL-[14C]MHA flux were studied in Na+-containing buffer with apical/basal pH of 7.7/7 at 12 0C. 

Unidirectional radioisotopes mucosal-serosal flux was assessed in all three intestinal segments at 

the micromolar concentration (2, 10, 50, 100, and 150 µM) and millimolar concentration of 

unlabelled substrates (1, 5, 10, 15, and 20 mM). Fish used for the comparative experiments were 

obtained from the same hatchery and were at a similar growth stage with the mean size of 138.3 ± 

9.3g for DL-Met and 156 ± 9.1g for DL-MHA. 
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5.4. Statistical analysis  

Flux rates were obtained from flux experiments: four increments (2, 10, 50, 100 and 150 

µM) from low concentration gradient, and five increments (1, 5, 10, 15, and 20 mM) from high 

concentration gradient. The radioisotopic flux rates of carrier-mediated transport were fitted to 

classical nonlinear regression Michaelis-Menten equations using GraphPad Prism to determine 

maximal flux rate (Jmax) and kinetic constant (Km). The formula of Michaelis-Menten equation 

was: J = {(Jmax x [S])/(Km + [S])}, where Jmax the maximal transport rate, S substrate concentration, 

Km half-saturation constant. Jmax and Km data were presented as means ± standard error of the mean 

(SEM). The radioisotopic flux rates, maximal flux rate, and affinity of DL-Met and DL-MHA were 

compared using Student’s t-test. Each intestinal segment (PC, MG, and HG) were analyzed 

independently. Significance was set at P < 0.05.  

5.5. Results 

Flux rates were compared for DL-Met and DL-MHA under experimental apical/basolateral 

pH 7.7/7.7 in Na+-conditions. The comparison was made in both µM and mM concentration since 

Met content in plant-based diets is relatively low, and supplementation could increase the Met 

content to a high concentration. Results demonstrated that the transport of both Met sources 

primarily occurred in PC and MG regardless of concentration. There were significant differences 

in transport rates between DL-Met and DL-MHA. At µM concentration DL-[14C]MHA flux rates 

were significantly lower than DL-Met in all concentrations of 2, 10, 50, 100, and 150 µM (Figure 

5.1). Specifically, the flux rates of DL-[14C]MHA were approximately 25.4-49.4% in PC, 39.3-

48.4% in MG, and 47.2-70.1% in HG of DL-[14C]Met flux. Radiolabeled substrates transport 

exhibited saturable Michaelis-Menten kinetics with significant differences found in both maximal 

flux rate and affinity (Table 5.1). Jmax for DL-[14C]Met were 0.002 ± 0.0004 µmol/cm2/hr in PC 
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and 0.002 ± 0.0003 in MG, which were statistically greater than Jmax for DL-[14C]MHA of 0.001 

± 0.00001 µmol/cm2/hr and 0.011 ± 0.00001 µmol/cm2/hr in PC and MG, respectively. Km values 

for DL-[14C]Met were 4.25 ± 0.99 µM in PC and 4.68 ± 0.67 µM in MG, which were significantly 

lower than Km for DL-[14C]MHA with 7.66 ± 1.19 µM and 9.58 ± 1.23 µM in PC and MG, 

respectively. These data suggested that DL-Met was transported with a higher rate and higher 

affinity compared to DL-MHA along the intestinal tract of rainbow trout at low concentration. 

Similar patterns were also observed when comparing these two products at high 

concentrations 1, 5, 10, 15, and 20 mM. Results demonstrated that radiolabeled DL-MHA flux 

rates were only about 61.9-66.0% and 42.2-50.4% relative to radiolabeled DL-Met flux rates in 

PC and MG, respectively (Figure 5.2). In HG, no statistical difference was found at high 

concentrations. Transports of both substrates obeyed Michaelis–Menten saturation kinetic 

behaviour with similar affinity but different maximal velocity. Jmax for DL-[14C]Met were 0.0014 

± 0.0001 µmol/cm2/hr in PC and 0.0021 ± 0.0002 µmol/cm2/hr in MG, which were significantly 

greater than Jmax of DL-[14C]MHA with 0.0008 ± 0.00001 and 0.0011 ± 0.00001 µmol/cm2/hr in 

PC and MG, respectively. The flux rates were lowest in HG with no detectable kinetics of DL-

MHA (Table 5.2). These results indicated that DL-Met transport in trout intestine was more 

efficient than DL-MHA. 
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Figure 5.1. Flux rates DL-[14C]Met and DL-[14C]MHA at micromolar concentration 

Flux rates of DL-[14C]Met and DL-[14C]MHA were performed in Na+-containing buffer with apical/basal pH of 7.7/7.7 in (A) pyloric 

caeca (PC), (B) midgut (MG), and (C) hindgut (HG). Met substrate concentration was in micromolar concentration. Values were means 

± SEM (N=19-22). Asterisks represent significant difference in flux rates between Met sources (Student's t-test P*< 0.05. P**<0.01, 

P***<0.001).
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Table 5.1. Michaelis-Menten parameters of DL-[14C]Met and DL-[14C]MHA at micromolar concentration.  

 
 

Jmax(µmol/cm2/hr) 
 

Km(µM) 

Intestinal  
segments 

DL-Met DL-MHA P-value DL-Met DL-MHA P-value 

PC 0.002 ± 0.0004 0.001 ± 0.00001 0.006* 4.25 ± 0.99 7.66 ± 1.19 0.030* 

MG 0.002 ± 0.0003 0.011 ± 0.00001 <0.001* 4.68 ± 0.67 9.58 ± 1.23 0.002* 

HG 0.0006 ± 0.0001 ND - 6.24 ± 1.17 ND - 

 

Jmax and Km values DL-[14C]Met and DL-[14C]MHA along the intestinal tract of rainbow trout in the Na+-containing buffer with 

apical/basal pH of 7.7/7.7. Substrate DL-Met and DL-MHA gradient were from 2-150 µM. Values were expressed as mean SEM (N=19-

22). Asterisks represent significant difference in Jmax between substrates (Student’s t-test, *P < 0.05). Jmax and Km values derived DL-

MHA flux were not obtainable in HG and shown as non-detectable (ND). 
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Figure 5.2. Flux rates DL-[14C]Met and DL-[14C]MHA at millimolar concentration 

Flux rates of DL-[14C]Met and DL-[14C]MHA were performed in Na+-containing buffer with apical/basal pH of 7.7/7.7 in (A) pyloric 

caeca (PC), (B) midgut (MG), and (C) hindgut (HG). Met substrate concentration was in millimolar concentration. Values were means 

± SEM (N=17-22). Asterisks represent significant difference in flux rates between Met sources (Student's t-test P*< 0.05. P**<0.01, 

P***<0.001).  
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Table 5.2. Michaelis-Menten parameters of DL-[14C]Met and DL-[14C]MHA at millimolar concentration. 

 
 

Jmax(µmol/cm2/hr) 
 

Km(mM) 

Intestinal  
segments 

DL-Met DL-MHA P-value DL-Met DL-MHA P-value 

PC 0.0014 ± 0.0001 0.0008 ± 0.00001 0.003* 1.33 ± 0.24 1.12 ± 0.15 0.466 

MG 0.0021 ± 0.0002 0.0011 ± 0.00001 <0.001* 1.10 ± 0.12 1.44 ± 0.11 0.056 

HG 0.0005 ± 0.00001 ND - 0.96 ± 0.27 ND - 

 

Jmax and Km values DL-[14C]Met and DL-[14C]MHA along the intestinal tract of rainbow trout in the Na+-containing buffer with 

apical/basal pH of 7.7/7.7. Substrate DL-Met and DL-MHA gradient were from 1-20 mM. Values were expressed as mean SEM (N=17-

22). Asterisks represent significant difference in Jmax between substrates (Student’s t-test, *P < 0.05). Jmax and Km values derived DL-

MHA flux were not obtainable in HG and shown as non detectable (ND).  
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5.6. Discussion and conclusion  

Supplementation of synthetic AAs in plant-based diets is a strategy to produce cost-

effective diets. Dietary Met supplementation is typically achieved with DL-Met or DL-MHA. 

Although several in vivo studies have been conducted, controversy about relative bioefficacy 

between DL-Met and DL-MHA still remains. Research in poultry and swine suggests that 

bioefficacy of DL-MHA is lower than DL-Met, ranging from 57-69% on product-product (wt/wt) 

basis in poultry (83, 236, 300, 405) and ) and 64-71% in swine (194, 288, 358). Similar conclusions 

are also made in different fish species (191, 192, 317, 319, 331), although a few studies indicated 

similar performance (122, 136). Differences in bioefficacy could depend on the efficiency in gut 

absorption and the degree of microbial metabolism of the substrate. Determination of how much 

and how fast Met is intestinally transported is an initial critical step in evaluating bioefficacy. In 

the current study, radiolabeled DL-MHA flux rates were appreciably less than DL-Met flux. At 

low concentrations, DL-MHA flux rates were only 25.4-49.4% in PC, 39.3-48.4% in MG, and 

47.2-70.1% in HG compared to DL-Met. Lower Km values indicated that DL-Met was transported 

with higher affinity (Table 5.1). Similarly, at high concentrations, DL-MHA flux rates were only 

61.9-66.0% in PC and 42.2-50.4% in MG (Figure 5.2). These findings contradicted an in vitro 

study using everted intestinal slices in chicken. Richards et al. (328) found that the uptake rates of 

DL-Met were only higher than that of DL-MHA at 2 mM, but significantly lower uptake rates over 

the concentration 5-50 mM. Overall results in the current study showed that DL-Met was 

transported faster than DL-MHA. A study in broilers found that only 4.4% of the administered 

DL-[14C]Met was recovered in the excrement as opposed to 17% DL-[14C]MHA calcium salt 

(217). This indicated that the intestinal absorption of DL-MHA was not as complete as DL-Met. 

Faster intestinal absorption rate would reduce the potential conversion of substrate into non-
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absorbable products and/or metabolism by gut microorganisms. It was reported that the absorption 

of L-[3H]-Met per gram intestinal tissue was higher in germ-free than in conventional and 

monoassociated chicks (439). Several other studies in chicken revealed that the initial dietary 

radioactivity of DL-MHA in feed found in distal segments of the small intestine were 10-21% 

compared to 2.5-4.5% of DL-Met, which was likely attributed to microbial activity (95, 104, 231). 

Likewise, Malik et al. (234) reported that residual activities of conventional pigs fed DL-MHA 

supplemented diets (34%, 15% and 13%) were higher than pigs fed DL-Met supplemented diets 

(16%, 8% and 7.8%) at 25%, 75% and 95% along the small intestine length. This was  associated 

with a higher population of aerobe (5.42 CFU/g) and lactobacilli (6.22 CFU/g) in digesta for the 

pigs fed DL-MHA compared to aerobe count (4.9 CFU/g) and lactobacilli (5.63 CFU/g) in the DL-

Met group (234). Thus, it appears that DL-MHA is more readily used by microbial bacteria than 

DL-Met, either as preferential substrate or less being transported by intestine, leaving it to be used 

by bacteria. In rainbow trout, it is not surprising that DL-Met is transported more efficiently than 

DL-MHA because proteins (AAs) are the major dietary components as opposed to 

monocarboxylate compounds in carnivorous fish. The comparison data here concluded that DL-

Met transport across the intestinal tract of rainbow trout was higher than DL-MHA. This could be 

the possible reason why the bioefficacy of DL-Met is found to be higher in rainbow trout (317, 

319) and other fish species (191, 332). Given the fact that Met is an EAA in fish diets, the findings 

in this study is possibly informative for formulating cost-effective diets.  
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 CHAPTER VI 

GENERAL DISCUSSION 

6.1. Implication 

The increasing use of plant-based protein in feeds is necessary for a profitable and 

sustainable aquaculture industry. Dietary methionine (Met) is indispensable for the normal growth 

and development of animals. The current practical approach to correct Met deficiency in a plant-

based diet is to supplement it with synthetic Met, such as DL-Met and its analogue liquid DL-

MHA. There has been an ongoing discussion regarding these Met sources’ bioefficacy because 

both could be converted to biologically active L-Met. Knowledge of the intestinal transport 

mechanism involved would be important to explain the controversial debate concerning relative 

biological efficacy and economic implication of DL-Met and DL-MHA. 

 In chapter III, the transport of radiolabeled DL-Met across intestinal epithelium was 

investigated in PC, MG and HG of triploid and diploid rainbow trout at low (µM) and high 

concentration (mM) gradient of the substrate. At low concentration, both flux and electrogenic 

studies revealed that DL-Met transport was dependent on sodium and displayed a saturable 

mechanism with high affinity (Km in micromolar ranges). Greater flux was higher in triploid than 

in diploid, which associates with the higher expression of sodium-dependent apical high-affinity 

transporter ASCT2. At high concentration, DL-[14C]Met flux was also found to be strictly 

dependent on sodium and was transported with low affinity (Km in millimolar ranges). Association 

between ploidy differences in flux rates and gene expression along with cis inhibition using 

phenylalanine and leucine supported that apical Na+-dependent low-affinity transporter B0AT1-

like mediated the uptake of DL-Met. Whereas, the expression of basolateral transporters y+LAT1 

and LAT4 likely had implications in recycling Met and mediating efflux to the blood circulation, 
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respectively. Overall, the kinetic properties of Met epithelial transport, and gene expression 

showed that sodium was important for the transport of DL-Met and the transport mechanism in 

fish appeared to be simpler than mammalian and avian species. Additionally, the transporters 

responsible for Met transport identified in the current study appeared to have similar affinity, but 

lower transport rates than transporters in mammalian species (322). This might be a result of the 

substantially lower temperatures used in the trout 12 0C versus 37 0C in mammals or the technique 

used.  The comparison of transport kinetic characteristics of Met is difficult between studies. For 

instance, transport/flux rates could be presented as the amount of substance across membrane per 

unit of surface area (Ussing chamber), per unit of weight (BBMV and everted sac), or per cell (cell 

culture model). Therefore, caution needs to be taken when concluding the transport kinetics among 

animal categories when different techniques are used. However, this thesis does not aim to 

establish the true total in vivo flux rate in fish gut, but to describe the transport mechanism of Met 

in association with exploring the responsible transporters.  

In chapter IV, the characterization of DL-MHA transport across trout intestine was studied 

in diploid trout. Although Martin-Venegas et al. (245) suggested that DL-MHA uptake was 

mediated by proton-dependent transporter MCT1, there was evidence showing that DL-MHA 

transport was partially dependent on sodium (244). That was why the radioisotope flux of DL-

MHA was studied in both sodium and proton conditions. The result demonstrated that there were 

different transport mechanisms along the intestinal tract of rainbow trout. Specifically, the apical 

influx of DL-MHA was dependent on sodium throughout the intestine. However, basolateral efflux 

occurred in PC and MG tended to be proton-independent, but proton-dependent in HG. Regional 

distribution of MCT1 was primarily expressed in the colon of omnivorous mammals, 

corresponding to the segmental distribution of SCFAs production (101, 134). This was 
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interestingly similar to rainbow trout in which MCT1 expression was significantly higher in the 

HG. However, unlike omnivorous mammals where SCFAs/monocarboxylate transport mainly 

occurred in the colon/large intestine, there appeared segmental inversion in which these 

compounds were primarily transported in the proximal intestine (PC) and mid intestine (MG) in 

trout. This was probably due to the significant expression and function of the apical sodium-

dependent transporters SMCTs in these segments. It was questionable why rainbow trout could 

transport monocarboxylate or why they had monocarboxylate transpoters in the intestine as they 

were carnivorous fish and would likely not produce significant amounts of SCFAs. However, 

SCFAs had been found with high concentration during the summer in largemouth bass (365), 

suggesting the capability of fermentation in carnivorous fish with the production and use of 

SCFAs, with the hypothesis that temperature is the primary limit factor. It was understandable that 

rainbow trout were a cold water fish and would likely not produce many SCFAs. Thus, 

alternatively the presence and function of intestinal monocarboxylate transporters could be for the 

uptake of micronutrients, such as nicotinate (141, 299). This might partially explain the segmental 

inversion of monocarboxylate transport observed in trout compared to mammalian species. 

Additionally, the low mRNA expression of apical SMCT1 and high mRNA expression of the 

putative basolateral located MCT1 in trout hindgut associated with substantially lower flux that 

would also match with the physiology of carnivores which relied less on bacterial fermentation 

products. 

In chapter V, the comparison of DL-Met and DL-MHA transport in trout intestine was 

performed by reanalyzing data obtained from previous chapters. Noticeably, fish of similar growth 

phase were sourced from the same hatchery, and the experimental conditions were identically kept 

to make the comparisons of two data set valid. Overall results showed that radiolabeled DL-Met 
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flux rates were significantly higher than radiolabeled DL-MHA in all segments regardless of low 

(µM) and high substrate concentration (mM). Furthermore, DL-Met was transported with higher 

affinity compared to DL-MHA at low concentration, suggesting that the binding affinity of AA 

transporter for Met was more efficient than the binding affinity of MCT/SMCT transporter for DL-

MHA. Unquestionably, both Met sources could be converted into L-Met for biological activities 

and metabolism. However, the conversion primarily happens in the liver and kidney (409, 445) 

after GI tract uptakes. The higher transport rate and affinity observed in trout intestine possibly 

contributed to explaining the higher relative bioefficacy of DL-Met over DL-MHA and better 

economic efficiency of the former.  

Together, studies in this thesis provided new insight into the epithelial transport mechanism 

of different Met sources in the fish intestine. DL-Met and DL-MHA in fish followed different 

transport routes as previously reviewed in mammals and avian (409, 444, 445), which were 

mediated by amino acid transporters and sodium monocarboxylate/monocarboxylate transporters, 

respectively. These physiological understandings gave important explanations about the higher 

transport capacity of DL-Met compared to DL-MHA, supporting dietary designs in nutrition to 

improve fish growth and performance.  

6.2. Limitation  

The techniques and experiments used in this thesis had a couple of limitations and 

challenges. Firstly, mRNA levels did not always correlate with protein expression. However, 

currently there were no available fish antibodies for these transporters to be assessed by Western 

blot. Similarly, the lack of fish antibodies made it impossible to determine the tissue distribution 

of a transporter of interest, particularly localization of apical and basolateral transporters using 

immunohistochemistry technique. Thirdly, there was scarce information about DL-MHA 
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transport, and kinetic characterization of this substrate had not been studied in any protein 

expression system. This limited only mRNA expression of MCTs and SMCTs family as the 

potential candidates to be investigated. Finally, the use of specific inhibitors would have been 

advantageous to confirm the role of the associated transporters involved. However, mammalian 

inhibitors generally did not work in trout. This could be due to the lower temperature at which the 

experiments were run. Previous work demonstrated glucose transport inhibitors worked in tilapia 

at 26 0C but not in trout at 12 0C (376). This was not too surprising as the temperature was known 

to affect a drug’s ability to inhibit its target (121). Unfortunately, elevating the temperature of the 

trout tissue resulted in the death of the tissue. These limitations and challenges generated new 

questions that should be addressed in future research.  

6.3. Future research  

 The transporters for DL-Met and DL-MHA in trout intestine are proposed here based on 

their functions in mammalian tissues matching with the observed kinetics of this study. In addition, 

some transporters have not been or minimally characterized. Thus, to confirm the association of 

known transporters with the observed transport kinetics, the fish clones of the expressing 

transporters that are capable of transporting these Met substrates is necessary. For example, 

molecular cloning and functional expression of trout/salmon ASCT2, B0AT1, MCTs and SMCTs 

in X. Oocytes would greatly increase our knowledge of these transporters in fish, and also further 

confirm our work. The transport of AAs and monocarboxylic compounds could be investigated 

with other types of fish species to allow a broader conclusion between carnivorous and herbivorous 

fish. Moreover, diet composition would likely modify the gene/protein expression of transporters, 

especially with lumen-facing apical transporters. Therefore, before there are available fish 

antibodies to examine protein expression and immunohistochemical analysis, diet (or culture 
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medium) manipulation could be an alternative method to study electrophysiological intestinal 

epithelial properties and gene expression of transporters using ex vivo tissue-based approach (or in 

vitro cell-based method). For instance, if high/low protein diets could modify the expression of 

amino acid transporters, and if there is association between the gene expression and intestinal flux 

rates, this would further support the identified transporters responsible for AA transport.   
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