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ABSTRACT 

 

Filamentous fungi, such as Aspergillus nidulans, are composed of tubular, highly 

polarized, multinucleate cells called hyphae.  Polar growth involves secretion specifically 

at the hyphal tip.  Secretion involves intracellular transport and co-ordination of the 

cytoskeleton and the endomembrane system.   

 Intracellular transport is likely mediated by cytoskeletal elements, which, in 

fungal cells consist primarily of actin and microtubules (MTs).  An A. nidulans strain 

transformed with green fluorescent protein (GFP) tagged α-tubulin was utilized in the 

investigation of relationship between cytoplasmic MT arrays and hyphal growth rate.  A. 

nidulans MTs were observed to be long and flexuous and to run roughly parallel to the long 

axis of hyphae.  No correlation between relative MT abundance and hyphal growth rate 

was observed, although non-growing hyphae had a lower relative MT abundance than 

growing hyphae.  Actin depolymerization decreased hyphal growth rate while MT 

depolymerization did not.  MT stabilization increased hyphal growth rate.  Ethanol, the 

solvent in which the MT and actin inhibitors were dissolved, increased both average overall 

growth rate and growth rate variability for individual hyphae.  Taxol appeared to interact 

with irradiation to decreased growth rate during imaging.   

Golgi are involved in secretion and potentially in polar growth.  An A. nidulans 

α-coatomer protein (COP)I homolog (α-COPI), tagged with GFP, was used to investigate 

the role(s) of fungal Golgi in polar growth.  α-COPI-GFP co-localized with the known 

Golgi marker, α-2, 6-sialyltransferase (ST), tagged with red fluorescent protein (RFP), in 

untreated hyphae.  Based on this observation, I propose that α-COPI-GFP can be used as a 

proxy for fungal Golgi localization.  Fungal Golgi were more abundant at hyphal tips than 

subapically.  Fungal Golgi forward (tipward) velocity correlated with hyphal growth rate.  

Fungal Golgi forward velocity was, on average, approximately ten times greater than 

average hyphal growth rate.  Actin depolymerization reduced fungal Golgi forward 

velocity while MT depolymerization did not.  However, MT stabilization increased fungal 

Golgi forward velocity.   

Polymerized MTs do not appear to be essential for hyphal growth but do appear to 

be involved in hyphal growth rate variability.  MTs also appear to play some role in the 
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movement of fungal Golgi.  The distribution and movement of fungal Golgi is clearly 

related to polarity. 
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CHAPTER 1: Introduction  

1-1. Cell polarity 

1-1.1. General features of cell polarity 

Polarity can be broadly defined as the generation and maintenance of 

specialized regions.  It is found in taxonomically diverse biological systems.  Filamentous 

fungi are highly polarized (reviewed in Bartnicki-Garcia 2002; Harris 2006; Heath 1990a, 

1994) and hence are exemplary model systems for studying polar growth.  The generation 

and maintenance of specialized regions involves targeted secretion of materials needed 

for cell growth such as cell wall and membrane constituents (reviewed in 

Bartnicki-Garcia 2002).  Targeted secretion requires co-ordination of cellular machinery 

(reviewed in Bartnicki-Garcia 2002; Heath 1990a), including the cytoskeleton (reviewed 

in Heath 1994, 1995) and the endomembrane system (reviewed in Heath 1994).  Polarity 

is complex.  Thus, it is useful to break the phenomenon of polarity down into more easily 

studied components rather than attempting to study polarity as a whole.  This thesis 

presents insight into certain aspects of polarity relating to the cytoskeleton and 

endomembrane system in the model filamentous fungus Aspergillus nidulans.  

 

1-1.2. Cell polarity in filamentous fungi 

Fungi are eukaryotic, heterotrophic organisms that reproduce by spores 

(Kendrick 2000).  Fungi are composed of long, multinucleate, walled tubular cells called 

hyphae (Kendrick 2000).  Hyphae are divided into compartments by cross walls called 

septa (Bessey 1950).  The individual compartments have some developmental autonomy, 

for example regarding sporulation, but the septa are perforate (Buller 1933; Moore and 

McAlear 1962) to allow continuity at least of turgor pressure, and likely of passage of 

small metabolites.   

Fungal hyphae are highly polarized cells (reviewed in Bartnicki-Garcia 2002; 

Heath 1990a) in that growth takes place only at tips or at branch sites accompanied by no 

or minimal lateral growth (Kendrick 2000).  Thus fungal hyphae are extremely polar in 

that they do more than generate and maintain specialized regions.  Filamentous fungi are 

experimentally tractable in that they possess small genomes compared to other 

eukaryotes (Cavalier-Smith 1985), few vegetative cell types, short life cycles and haploid 
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vegetative cells (Kendrick 2000).  In addition, in some well-studied organisms, such as A. 

nidulans, many biological tools such as temperature sensitive mutant alleles and genes 

fused with DNA sequences encoding fluorescently proteins exist.  A more detailed 

discussion of some of these biological tools will follow. 

 

1-1.3. Suitability of Aspergillus nidulans as a model fungal system in which to 

study polarity 

The genus Aspergillus is likely the fungal genus that is both the most useful and 

the harmful to humans.  Aspergillus nidulans is related to species important to humans 

including human pathogens, crop spoilage and food production agents such as A. 

fumigatus (Denning 1998; Patterson et al. 2000), A. flavus (Moss 1998) and A. sojae 

respectively (Abe 2006; FAO/WHO 1987).  Other Aspergillus species include A. niger, 

A. terreus and A. oryzae.  These species have biotechnological relevance.  For example, 

A. niger can be used in the manufacture of citric acid by fermentation of molasses (Ali 

2006), A. terreus can be used in ethanol fermentation (Pushalker and Rao 1995, 1998) 

and A. oryzae has been used for hundreds of years in the production of soy sauce, miso 

and sake (Abe 2006).  The genomes of A. nidulans, A. fumigatus, A. niger, A. flavus A. 

terreus and A. oryzae have all been sequenced (Board Institute). 

The dual modes of fungal propagation, asexual anamorph and sexual telomorph, 

have been known since approximately 1861 (reviewed in Weresub and Pirozynski 1979).  

Emericella nidulans is the telomorph of Aspergillus nidulans (Kendrick 2000).  A. 

fumigatus, A. niger, A. flavus A. terreus and A. oryzae have no known telomorph stages 

(Kendrick 2000). The existence of a sexual stage in A. nidulans facilitates sexual crosses, 

and hence more convenient genetic study; in the absence of known sexual stages, genetic 

crosses involving other Aspergillus species are more difficult.  The anamorphs, or asexual 

forms, of Aspergillus species are difficult to distinguish from one another without a great 

deal of practice (Raper and Fennel 1965).  This morphological similarity illustrates how 

closely related members of the Aspergillus genus are and suggests that biological 

properties found in one species may be extrapolated to apply to other species.  

Phylogenetic classification of Aspergillus species can be made on DNA sequence and/or 

on morphological data.  Phylogenetic classification based on 18S rRNA sequences 
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indicated that A. flavus, fumigatus, terreus, niger and nidulans represent a monophyletic 

group (Verweij et al. 1995).  In addition, a comparison to the whole genomes of A. flavus 

and A. oryzae shows a high degree of similarity (Payne et al. 2006). 

The biology of Aspergillus nidulans has been thoroughly studied (e.g. Martinelli 

1994).  Its genome is sequenced (Broad Institute) and its life cycle and reproduction has 

been characterized (Adams et al. 1998; Champe et al. 1994; Doonan 1994; Timberlake 

and Clutterbuck 1994).  Also, many genetic tools are available in A. nidulans such as 

morphological mutants and fluorescently tagged gene products (Fernández-Abalos et al. 

1998; Suelmann et al. 1997) and morphogenesis mutant alleles (Kaminskyj and Hamer 

1998; Malavazi et al. 2006; Shaw and Upadhyay 2005).   

 

1-1.3.1. HypA1 morphogenesis mutant allele  

Morphogenesis mutants are used to identify loci involved in various processes 

related to polarity (e.g. Kaminskyj and Hamer 1998; Malavazi et al. 2006; Shaw and 

Upadhyay 2005).  The hypA1 mutant allele is part of a family of A. nidulans mutants 

known as the hyp for hypercellular mutant family (Kaminskyj and Hamer 1998).  The 

hypercellular mutant family is characterized by having aberrant patterns of septation and 

showing defects in polarity establishment and tip growth (Kaminskyj and Hamer 1998).  

However, they have normal nuclear division cycles and can complete the asexual growth 

cycle at restrictive temperature (Kaminskyj and Hamer 1998).  The hypA1 mutant allele 

contains a nonconservative amino acid change resulting in a temperature sensitive 

phenotype (Kaminskyj and Hamer 1998; Shi et al. 2004).  Temperature sensitivity is a 

useful tool in that even potentially lethal temperature sensitive mutants can be maintained 

and can complete their lifecycle at the permissive temperature (e.g. Harris et al. 1999).  

Also, temperature sensitive mutants facilitate the alteration of morphology of cells by 

changing the temperature from permissive to restrictive or vice versa (Harris et al. 1999; 

Kaminskyj and Hamer 1998; Shi et al. 2004).  In hypA1 mutant strains, hyphal growth 

resembles wildtype at 28˚C, but at 42˚C the hypA1 mutation leads to defects in polarity 

(Kaminskyj and Hamer 1998; Shi et al. 2004).  When growth temperature is changed 

from 42˚C to 28˚C, hypA1 mutant cells regain the polarized wildtype morphology.  The 

hypA1 mutant phenotype defects include proliferation of nuclei in subapical cells and 
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decreased polarity characterized by delayed spore germination, increased hyphal diameter 

and reduced hyphal elongation (Kaminskyj and Hamer 1998; Shi et al. 2004).  The hypA1 

mutant phenotype may affect the morphology of fungal Golgi and other components of 

the secretory system (Kaminskyj and Boire 2004; Shi et al. 2004).   

 

1-2. Fungal cytoskeleton and polarity  

The eukaryotic cytoskeleton is a coordinated meshwork of filamentous 

polymers permeating the cytoplasm (reviewed in Heath 1994).  The cytoskeleton is 

important in the spatial organization of organelles and other intracellular structures 

(reviewed in Heath 1994).  The main structural components of the cytoskeleton are 

microtubules (MTs), actin and intermediate filaments (reviewed in Heath 1994).  This 

thesis will deal exclusively with MTs and actin. 

 

1-2.1.  Microtubules (MTs) 

Microtubules (MTs) are a highly conserved component of the eukaryotic 

cytoskeleton.  MTs are composed of α-tubulin and β-tubulin protein subunits that 

assemble to form heterodimers.  These heterodimers in turn assemble, along with 

MT-associated proteins, into long, polar, dynamic filaments called protofilaments.  

Typically, the protofilaments arrange themselves in an imperfect helix with one turn of 

the helix containing 13 tubulin dimers each from a different protofilament (Fig. 1-1a; 

reviewed in Howard and Hyman 2003; Ledbetter and Porter 1964).  MT filaments are 

polar in that α-tubulin is at one end, the (-) end, while β-tubulin is at the opposite, or (+) 

end (Fig. 1-1a).  MT filaments are dynamic in that they exhibit dynamic instability, 

which involves slow growth (polymerization) and rapid shrinkage (depolymerization), in 

vivo (Fig. 1-1b; reviewed in Howard and Hyman 2003; Mitchison and Kirschner 1984).  

A third type of tubulin monomer, γ-tubulin, is involved in MT nucleation (Horio et al. 

1991; Oakley et al. 1990).  In addition, γ-tubulin is a component of the spindle-pole-body 

that is essential for MT organization and function in Aspergillus nidulans (Fig.-1-1b; 

Oakley et al. 1990). The spindle-pole-body acts as a cap of the (−) end while MT growth 

continues at the (+) end.   
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MTs are required for mitosis and nuclear migration (Morris and Enos 1992; 

Morris et al. 1995; Plamann et al. 1994; Suelmann and Fischer 2000b).  While the roles 

of actin in fungal tip growth have been relatively clearly established (e.g. Heath 1994), 

the role(s) of MTs beyond nuclear migration and mitosis require further investigation and 

clarification.  Because of this lack of clarity, I chose to undertake a study of the role(s) of 

MTs in tip growth in Aspergillus nidulans.  MTs seem likely to contribute to tip growth 

in that A. nidulans MTs are mostly parallel to the long hyphal axis (Meyer et al. 1987; 

Ovechkina et al. 2003; Sampson and Heath 2005), suggesting long-distance tracks for 

transport of materials needed for tip growth and morphogenesis.  However evidence to 

support this is largely circumstantial. 

 

1-2.1.1. Benomyl 

Benomyl inhibits the assembly of MTs both in vitro and in vivo in some fungi, 

including Aspergillus nidulans (Davidse and Flach 1977, 1978; Harris et al. 1994; 

Howard and Aist 1977, 1980; Momany and Hamer 1997).  Benomyl is an important 

fungicide because it appears to inhibit the assembly of the MTs in pathogenic fungi, 

while having little impact on the plants on which the fungi grow (reviewed in Davidse 

1986).  On a molecular level, benomyl breaks down to methyl 

benzimidazole-2-ylcarbamate (MBC) (reviewed in Davidse 1986).  MBC binds the 

tubulin dimer and prevents polymerization of MTs (Davidse and Flach 1977).  MBC 

binds β-tubulin by interacting with amino acids 6, 165, and 198-200 (Jung and Oakley 

1990; Jung et al. 1992).  The interaction of benomyl and related compounds to amino 

acid 6 is likely hydrophilic and binding at amino acid 200 appears to be blocked by the 

polar OH group on tyrosine (Jung et al. 1992).  

 

1-2.1.2. Taxol 

Taxol prevents MT depolymerization by stabilizing existing MTs (Schiff et al. 

1979).  Because of the dynamic nature of MTs, prevention of depolymerization leads to 

disruption of dynamic instability and increased polymerization of the MT population.  On 

a molecular level, taxol binds at the taxol-binding site on β-tubulin (Combeau et al. 1994; 

Rao et al. 1992) in polymerized MT filaments, preventing depolymerization by an 
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unknown mechanism, involving the interaction between α and β-tubulin (Nogales et al. 

1995).  Rao et al. (1994) found the taxol-binding site to be located in the N-terminal 31 

amino acids of β-tubulin.  In addition, Nogales et al. (1995) showed that the taxol-binding 

site is near the inter-protofilament contact point (Fig. 1-1c).  Consistent with the known 

stoichiometry of taxol in MTs (Díaz and Andreu 1993), Nogales et al. (1995) showed the 

existence of one taxol-binding site per tubulin heterodimer (Fig. 1-1c). 



 

 

 

7 
 

 

              
 
Figure 1-1. Microtubule (MT) structure, dynamics and taxol binding.  a) Cartoon of a MT 

showing the (+) and (-) ends and the α and β subunits and the bundling of protofilaments.  

b) Spindle-pole-body (SPB) nucleating dynamic instability. Arrows pointing away form 

the spindle-pole-body indicate polymerizing MTs, while arrows pointing towards the 

spindle-pole-body indication depolymerization.  The two MTs shown in black undergo a 

shift from polymerization to depolymerization, or a shift from depolymerization to 

polymerization. Adapted from Figure 2a Howard and Hyman (2003).  c) A tubulin 

heterodimer with α-tubulin shown in white and β-tubulin in grey. Arrow and T indicate 

the approximate position of the taxol-binding site.  The taxol binding site does not appear 

to interfer with the contact point between α- and β-tubulin.  Adapted from Figure 3a of 

Nogales et al. (1995). 
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1-2.2. Actin 

Actin polymers, often referred to as F-actin, are composed of globular protein 

monomers, often referred to as G-actin (reviewed in Carlier 1991; Korn 1982).  F-actin 

filaments have +/- polarity; polymerization is more rapid at the plus end.  

In fungi, actin is involved in tip-localized extension of the cell wall and plasma 

membrane and migration of the cytoplasm towards the advancing tip (Bachewich and 

Heath 1999; reviewed in Heath 1994).  Actin, or actin binding proteins such as 

tropomyosin (Maytum 2000), also appear to be involved in the migration of organelles 

(Shepherd et al. 1993) and vesicles (Lui and Bretscher 1992; Novick and Botstein 1985) 

presumed to be carrying material needed for tip growth through the cytoplasm towards 

the tip (reviewed in Heath 1994; Heath et al. 2000).  Actin is abundant at growing hyphal 

tips, often in the form of a cap next to the apical plasma membrane (Bartnicki-Garcia 

2002; Heath et al. 2003).  This actin cap has been implicated in tip morphology and 

shown to be present in growing tips and absent in non-growing tips (Heath 1994; Jackson 

and Heath 1990a, 1990b, 1993a).  Actin inhibition has been shown to reduce tip growth 

in Aspergillus nidulans (e.g. Sampson and Heath 2005) as well as Saprolegnia ferax 

(Bachewich and Heath 1997; Gupta and Heath 1997). 

 

1-2.2.1. Latrunculin B 

Latrunculin is produced by Latrunculia magnigicans, a Red Sea sponge 

(Nèeman et al. 1975).  Two related latrunculin compounds, latrunculin A and latrunculin 

B have been shown to depolymerize actin structures in vitro and in vivo (Kashman et al. 

1980; Spector et al. 1983).  The inhibitor latrunculin B binds actin monomers and 

prevents assembly into filaments by inducing a conformational change (Morton et al. 

2000).  These changes in the structure of actin are limited to specific regions (Morton et 

al. 2000).  Latrunculin A and/or B binding blocks actin polymerization by interfering 

with the ATP-binding site on actin monomers (Morton et al. 2000).    
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1-3. The fungal secretory system and polarity 

The components of the secretory pathway include the endoplasmic reticulum 

(ER), fungal Golgi, Spitzenkörper and vesicles.  Because polarized secretion is involved 

in polar growth (reviewed in Bartnicki-Garcia 2002) it is possible that the fungal 

secretory system contributes to polarity. 

 

1-3.1. Fungal endoplasmic reticulum (ER) 

The ER is a network of interconnected tubules, vesicles and sacs that function in 

synthesis of both integral membrane proteins and proteins destined for secretion, 

sequestration of calcium, and insertion of membrane proteins.  The ER is a dynamic 

structure.  In the ectomycorrhizal basidiomycete fungus Pisolithus tinctorius the ER 

forms reticulate tubules throughout the hyphae (Cole et al. 2000).  Proteins synthesized in 

the ER subsequently progress to the Golgi (Caro and Palade 1964). 

 

1-3.2. Fungal Golgi 

Golgi are involved in the sorting of proteins for secretion or transport to 

intracellular locations (reviewed in Farquhar and Palade 1981, 1998; Mogelsvang and 

Howell 2006; Palade 1975).  In Aspergillus oryzae the putative Golgi marker, 

FmanIBp:GFP, was observed under fluorescence microscopy as punctate structures 

distributed through the hyphal cytoplasm (Akao et al. 2006).  A. nidulans and P. 

tinctorius fungal Golgi consist of single, multilobed cisterna (Beckett et al. 1974; Cole et 

al. 2000).  Consistent with observations in A. oryzae, in P. tinctorius, many fungal Golgi 

are observed in each cell (Cole et al. 2000).   Kaminskyj and Boire (2004) observed A. 

nidulans fungal Golgi to be single, multilobed cisterna occupying a roughly horseshoe 

shaped area.  These observations were made in relatively young hypA1 A. nidulans cells, 

grown at the restrictive temperature, but containing relatively non-aberrant 

endomembrane arrays because of the cells’ youth.  

GFP tagged sod
VI

C (suppression of disomy of chromosome VI) (Whittaker et al. 

1999; discussed in more detail in section 1-3.3.2., page 12) appear to localize 

preferentially to numerous small structures in each A. nidulans hypha (Figs. 3-2, 3-3, 3-4 

inset) as could be expected, based on the appearance of fungal Golgi in the literature 
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(Akao et al. 2006; Beckett et al. 1974; Kaminskyj and Boire 2004).  Thus it is possible 

that GFP tagged sod
VI

C could be used as a reasonable a proxy for fungal Golgi. 

 

1-3.3. Vesicles  

The maintenance of specialized functions of membrane-bound components of 

the secretory system requires distinct protein and lipid compositions.  These proteins 

must be sorted within and between membrane-bound compartments or organelles.  

Transport within and between organelles is facilitated by the budding of vesicles from a 

donor membrane, followed by the transport of the vesicles to a recipient membrane and 

subsequent fusion of the vesicle and recipient membranes (reviewed in Lee et al. 2004; 

Palade 1975; Rothman and Wieland 1996).  Vesicle transport can be anterograde or 

retrograde (reviewed in Lee et al. 2004).  Anterograde vesicle transport can be defined as 

transport progressing in the direction of secretion, such as from the ER to the Golgi 

(reviewed in Lee et al. 2004).  Thus, retrograde vesicle transport is transport progressing 

in the opposite direction to secretion, such as from the Golgi to the ER (reviewed in Lee 

et al. 2004).  

 

1-3.3.1. The vesicle coatomer protein (COP)I 

Vesicle formation employs membrane-associated protein skeletons, which in 

fungi are composed of coatomer protein assemblies called COPI and COPII (Serafini et 

al., 1991). Retrograde transport from the Golgi to the ER is mediated by COPI 

(Letourneur et al. 1994; Rothman 1996; Fig. 1-2), which consists of eight subunits: 

ADP-ribosylation factor (ARF) and seven COP proteins known as α, β, β�, γ, δ, ε and ζ 

(Gayner et al. 1998; Serafini et al. 1991; Waters et al. 1991).  Activation of ARF by a 

Golgi-localized GDP exchange factor (GEF) causes ARF-GTP to bind the Golgi 

membrane which leads to the recruitment of COPI coatomer (Rothman and Wieland 

1996).  ARF-GTP-COPI reshapes the donor membrane, leading to budding of a vesicle 

(Rothman and Wieland 1996).   
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Figure 1-2. Golgi to ER via COPI coated vesicles.  Coatomer protein (COP)I coats 

vesicles involved in retrograde transport. COPI coated vesicles bud from the cis Golgi 

and subsequently fuse with the rough endoplasmic reticulum (ER).  COPI coatomers are 

made up of eight subunits: COPs α, β, β�������, γ, δ, ε and ζ (shown collectively as circles and 

rods) and ADP-ribosylation factor (ARF). The grey circle and black arrow represent ARF 

and an exposed N-terminal myristate, respectively.  When ARF exchanges GDP for GTP 

(not shown; promoted by an ARF-specific GDP exchange factor (GEF)) the N-terminal 

myristate is exposed on ARF.  This in turn promotes binding of COPI to the Golgi 

membrane.  Vesicle fusion occurs at the ER when ARF-GTP is hydrolyzed via 

endogenous phosphatase activity of ARF.  Adapted from Figure 1.1 of Yang (2003).  
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1-3.3.2. The Aspergillus nidulans α-COPI homolog: suppression of disomy of 

chromosome VI (sod
VI

C)  

Suppression of disomy prevents the genetic abnormality characterized by the 

presence of two copies of a given chromosome, in this case chromosome VI, instead of 

the single copy normally found in the haploid genome of Aspergillus nidulans.  

Surprisingly, given its role in prevention of disomy of chromosome VI, the protein 

encoded by the A. nidulans gene sod
VI

C has 71% amino acid sequence similarity to the 

Saccharomyces cerevisiae α-coatomer protein (COP)I protein (Gerich et al. 1995; 

Letourneur et al. 1996; Whittaker et al. 1999).  Because of this, A. nidulans sod
VI

C will 

hereafter be referred to as α-COPI.   

A mutation of α-COPI, known as sod
VI

C1, leads to abnormal growth and 

morphology in A. nidulans at the restrictive temperature, 42ºC, while permitting 

apparently wildtype growth at 30ºC, albeit at a reduced rate (Lee et al. 2002; Whittaker et 

al. 1999).   When grown at 42ºC, sod
VI

C1 mutants show almost zero percent germination 

(Whittaker et al. 1999).  When grown at 30ºC before being transferred to 42ºC, sod
VI

C1 

mutants exhibited reduced growth rate and defects in nuclear division at 42ºC (Whittaker 

et al. 1999).  Many sod
VI

C1 cells showed signs of lysis when incubated at 42ºC for longer 

than 8 h (Whittaker et al. 1999).   The impacts of the sod
VI

C1 mutation in α-COPI on 

morphology (Lee et al. 2002; Whittaker et al. 1999) suggest than COPI function is 

required for wildtype morphology of A. nidulans.   

 

1-3.4.  The Spitzenkörper 

The Spitzenkörper was originally discovered in living hyphae in 1957 (Girbardt 

1957) and can be described as a phase-dark, usually spherical body (López-Franco and 

Bracker 1996) that is found in growing hyphal tips and represents an accumulation of 

secretory vesicles (reviewed in Bartnicki-Garcia 2002).  The Spitzenkörper is spatially 

coincident with the vesicle supply center (reviewed in Bartnicki-Garcia 2002).  

Spitzenkörper have been found in over 30 species of fungi (López-Franco and Bracker 

1996).  Spitzenkörper position and trajectory have been shown to correlate with the 

direction of hyphal growth in living Neurospora crassa hyphae (Riquelme et al. 2000).  

The establishment of a new growth direction correlated with a sustained shift in 
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Spitzenkörper trajectory (Riquelme et al. 2000).  Similarly, Bracker et al. (1997) found 

that manipulation of the Spitzenkörper trajectory with laser tweezers resulted in an 

alteration in the direction of hyphal growth.  Thus, the Spitzenkörper is important in 

hyphal growth. 

 

1-3.5. The inhibitor brefeldin A (BFA) 

Brefeldin A (BFA) is a toxin produced by organisms such as the fungus 

Eupenicillium brefeldianum.  BFA is an inhibitor of COPI-mediated Golgi derived 

vesicle budding in vivo (Donaldson et al. 1991).  Fujiwara et al. (1988) found that BFA 

treatment of animal cells for 60 min resulted in disassembly of the Golgi complex and 

accumulation of secretory proteins in the ER.  Similarly, Sciaky et al. (1997) found that 

BFA induced tubulation of the Golgi within 10 min and subsequent fusion with the ER in 

another 5-10 min in animal cells.  Treatment with BFA leads to the disassembly of the 

Golgi apparatus in plant cells (e.g. Ritzenthaler et al. 2002).  In the fungus Pisolithus 

tinctorius brefeldin A reduces growth, disrupts the Spitzenkörper, reduces the number of 

apical vesicles, redistributes and mildly dilates the ER, and increases the size of Golgi 

bodies (Cole et al. 2000). 

BFA inhibits vesicle transport by inducing the release of COPI coatomers from 

Golgi complex membrane derived vesicle buds (Donaldson et al. 1990, 1992; Helms and 

Rothman 1992; Klausner et al. 1992; Robinson and Kreis 1992). This occurs because 

BFA inhibits the ARF GEF involved in facilitating COPI vesicle budding (Morinaga et 

al. 1996; Peyroche et al. 1996).  Thus, BFA is a potentially useful tool for studying Golgi 

dynamics in fungi. 

 

1-4. Fluorescent proteins as tools in cell biology 

Green fluorescent protein (GFP) is derived from the jellyfish Aequorea victoria.  

GFP fluoresces green when exposed to blue light (Prendergast and Mann 1978; Tsien 

1998).  The use of GFP as an in vivo tag fused to other proteins of biological interest has 

revolutionized fluorescence microscopy (Yuste 2005).  GFP fusion proteins permit 

protein localization in living cells and visualization of the structure and function of living 

tissues (reviewed in Brandizzi et al. 2004; Yuste 2005).  The introduction of GFP fusion 
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proteins to fungal cell biology represented a major advance in this field (Cormack 1998).  

GFP fusion proteins have been used in Aspergillus nidulans (e.g. Fernández-Ábalos et al. 

1998; Horio and Oakley 2005; Sampson and Heath 2005; Suelmann et al. 1997) and 

other filamentous fungi, such as Neurospora crassa (Fuchs et al. 2002). 

The Discosoma red fluorescent protein, DsRed, has also been used in A. 

nidulans (Dou et al. 2003).  However, DsRed requires tetramer formation and maturation 

over several days for fluorescence, making it inappropriate for many applications (Baird 

et al. 2000).  Campbell et al. (2002) developed a monomeric red fluorescent protein 

(mRFP) which matures quickly.  In A. nidulans, mRFP fusion proteins have been used 

successfully (Toews et al. 2004). 

 

1-4.1. Green fluorescent protein (GFP) tagged α-tubulin  

Tagging of α-tubulin with GFP permits the observation of MT profiles (an 

estimate of MT abundance described in Material and Methods, section 2-3.3., page 21) 

and distribution in vivo.  The GFP tagged α-tubulin used was under the control of a 

constitutive promoter, tubA, rather than the alcA promoter that has been used with 

previous constructs. The use of the constitutive promoter tubA is a major advance in the 

study of MTs as it facilitates the observation of fluorescent MTs in cells grown on 

glucose rather than ethanol or threonine. 

  

1-4.2. Green fluorescent protein (GFP) tagged α-COPI 

An A. nidulans strain possessing GFP tagged α-COPI (provided by the Assinder 

group; Whittaker et al. 1999) was used to observe α-COPI dynamics in-vivo.  GFP tagged 

α-COPI is under the control of the alcA promoter (Whittaker et al. 1999). 

 

1-4.3. The red fluorescent protein (RFP) tagged Golgi marker 

α-2,6-sialyltransferase (ST) 

The mammalian enzyme α-2,6-sialyltransferase (ST) contains a transmembrane 

domain that is important in Golgi retention (Munro 1991).  ST has been shown to localize 

to the animal (Munro 1991), plant (Wee et al. 1998) and S. cerevisiae Golgi (Schwientek 

et al. 1995).  Brandizzis’ group provided an ST-monomeric red fluorescent protein 
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(mRFP) plasmid under the control of the cauliflower mosaic virus 35S promoter.  This 

promoter has been shown to induce expression of genes under its control in plants 

(Jefferson et al. 1987; Odell et al. 1985), ascomycete yeast (Hirt et al. 1990) and 

filamentous fungi such as Uromyces (Li et al. 1993), Ganoderma lucidum and Pleurotus 

citrinopileatus (Sun et al. 2002) and Pleurotus ostreatus (Xu et al. 2004).  Because 

cauliflower mosaic virus 35S promoter can induce expression in yeast and filamentous 

fungi, both of which are somewhat closely related in Aspergillus nidulans, it was possible 

that the cauliflower mosaic virus 35S promoter will also drive gene expression in A. 

nidulans. 

 

1-5. Objectives 

1-5.1. Objectives for chapter 2 entitled “Growth rate of Aspergillus nidulans 

hyphae is largely independent of cytoplasmic microtubule abundance”.   

1) To examine and describe cytoplasmic microtubule populations in living 

Aspergillus nidulans hyphae.  

2) To examine the relationship between hyphal growth rate and relative MT 

abundance in untreated A. nidulans hyphae.  

3) To examine the effects of actin- and MT-selective inhibitors and solvent 

controls on relative MT abundance and hyphal growth rate.  

4) To examine hyphal growth rate variability and the effects of actin- and 

MT-selective inhibitors and solvent controls on hyphal growth rate variability in A. 

nidulans. 

 

1-5.2. Objectives for chapter 3 entitled “The distribution and movement of fungal 

Golgi are related to growth rate and the cytoskeleton in Aspergillus 

nidulans hyphae”.   

1) To determine whether the Golgi marker ST-RFP co-localizes with the 

putative fungal Golgi marker α-COPI-GFP.  

2) To investigate the impact of BFA on α-COPI-GFP and ST-RFP particle 

morphology.  
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3) To investigate the distribution of sod
VI

C-GFP in hypA1 A. nidulans hyphae at 

restrictive (42°C) and permissive (28°C) temperatures. 

4) To investigate the relationship between the temperature at which hypA1 A. 

nidulans hyphae are grown and the average forward velocity of fungal Golgi and growth 

rate in the same cells. 

5) To investigate the relationship between hyphal growth rate and forward 

velocity of fungal Golgi.  

6) To investigate the impact of MT and actin targeting drugs on the average 

forward velocity of fungal Golgi and hyphal growth in the same cells. 



  

 17 
 

CHAPTER 2: Growth rate of Aspergillus nidulans hyphae is largely independent of 

cytoplasmic microtubule abundance. 

 

2-1. Summary 

Roles for the microtubule (MT) cytoskeleton in fungal growth include mitosis 

and nuclear migration, but otherwise are less clearly understood. Confocal microscopy 

was used to quantify MT abundance and growth rate in hyphae of an Aspergillus nidulans 

strain containing GFP-α-tubulin. There was no correlation between growth rate and MT 

abundance for 112 growing hyphae in an untreated population.  However, the 109 

non-growing hyphae had a lower average MT abundance than did their growing 

counterparts. Results for untreated cells were compared to cells treated for 30-120 min 

with the MT drugs taxol and benomyl, the actin drug latrunculin B, and with solvents 

used for the drug treatments.  Taxol was dissolved in DMSO and benomyl and 

latrunculin were dissolved in ethanol.  Compared to their respective controls, MT 

abundance was significantly increased by DMSO, significantly reduced by benomyl, and 

moderately increased by latrunculin, but was unaffected by ethanol.  Growth rates were 

significantly increased by ethanol and taxol, significantly reduced by latrunculin, and 

unaffected by DMSO.  Average hyphal growth rate in the first 30-120 min following 1 

µg/mL benomyl treatment was statistically similar to untreated cells, despite the absence 

of visible MTs after 2 min of treatment, but growth rate was significantly reduced by 2.5 

µg/mL benomyl over the same time period, implying there were ancillary effects from 

this treatment. For individual hyphae in each treatment, growth rates varied over short 

time periods; treatment with 0.1 % ethanol substantially increased growth rate variability, 

as well as overall growth rate. Notably, growth rates of taxol treated hyphae decreased 

significantly following fluorescence observation, suggesting a possible application to 

cancer chemotherapy.  
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2-2. Introduction 

The actin and microtubule (MT) cytoskeletons have many roles in polarized 

growth of filamentous fungi (Bartnicki-Garcia 2002, Heath 1990a, 1994, 1995).  

Filamentous actin arrays are concentrated in areas of active cell extension and cell wall 

deposition (Heath 1990a, 1990b, 1994, 1995). In Aspergillus nidulans, cytoplasmic actin 

arrays have documented roles in hyphal extension and morphogenesis (Harris et al. 1994; 

Sampson and Heath 2005; Torralba et al. 1998), septation (Momany and Hamer 1997), 

and mitochondrial motility (Suelmann and Fischer 2000a). A class I myosin is essential 

in A. nidulans and is enriched at hyphal tips (McGoldrick et al. 1995). The SEPA formin 

important in actin organization is enriched at A. nidulans hyphal tips (Sharpless and 

Harris 2002). A chitin synthase in Ustilago maydis, mcs1, was shown to have an 

N-terminal myosin class V-like domain (Weber et al. 2006), a novel link between the 

actin cytoskeleton and cell wall deposition that might in future be related to chitin 

synthase localization and Aspergillus septum deposition (Ichinomiya et al. 2005). Taken 

together, Heath (1990b) and Heath et al. (2000) provide abundant evidence that actin is of 

primary importance in hyphal tip growth and morphogenesis, which is supported in A. 

nidulans by Harris et al. (1994), Sampson and Heath (2005), and Torralba et al. (1998).  

There is abundant evidence that MTs are required for mitosis and for nuclear 

migration in filamentous fungi (Heath 1994, 1995; Morris and Enos 1992; Morris et al. 

1995; Plamann et al. 1994; Suelmann and Fischer 2000b).  However, unlike actin, roles 

for MTs specifically in hyphal growth are less consistent. Cytoplasmic MTs support 

rapid, long term, and/or morphologically wildtype growth in fungi including Aspergillus 

(Horio and Oakley 2005; Konzack et al. 2005; Ovechkina et al. 2003; Sampson and 

Heath 2005), Neurospora (Mouriño-Pérez et al. 2006, Riquelme et al. 2002), and 

Ustilago (Fuchs et al. 2005, Schuchart et al. 2005). However, A. nidulans conidia can 

germinate in the presence of the MT-depolymerizing agent benomyl (Oakley and Morris 

1980). A. nidulans hyphal growth continues during mitosis, during which most 

cytoplasmic MT depolymerize (Riquelme et al. 2003; Trinci and Morris 1979); for 

contrary results, see Sampson and Heath (2005). A. nidulans temperature-sensitive nud 

mutants form hyphae under restrictive conditions, despite defects in MT-associated motor 

proteins (Morris et al. 1995). Many fungi with tip growing cells show dramatic growth 
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rate fluctuations on the order of a few seconds (López-Franco et al. 1994; Sampson et al. 

2003) whereas comparable quantitative changes in A. nidulans MT arrays require much 

longer times (Ovechkina et al. 2003; Sampson and Heath 2005).   

The number and arrangement of cytoplasmic MTs vary significantly even 

between filamentous ascomycetes, further complicating development of a general 

description of their role(s) in hyphal tip growth. For example, in A. nidulans, MTs are 

relatively few in number and are predominantly in the central cytoplasm (Meyer et al. 

1987; Ovechkina et al. 2003; Sampson and Heath 2005), whereas in N. crassa MTs are 

relatively numerous and are found in the both central and peripheral cytoplasm (Freitag et 

al. 2004; Mouriño-Pérez et al. 2006). A. nidulans MTs are mostly parallel to the hyphal 

axis (Meyer et al. 1987; Ovechkina et al. 2003; Sampson and Heath 2005), whereas N. 

crassa MTs are mostly parallel to the axis near the hyphal tip but more randomly oriented 

in basal compartments (Freitag et al. 2004).  

Until recently, it was not possible to probe the dynamic relationship between 

MT arrays and tip growth rate, since MTs had to be visualized in fixed cells using 

immunofluorescence or electron microscopy. The development of A. nidulans strains 

with constitutive GFP-α-tubulin (Horio and Oakley 2005) allows investigation of MT 

dynamics in living hyphae. Horio and Oakley (2005) and Sampson and Heath (2005) 

showed that benomyl- and methyl benzimidazole-2-ylcarbamate (MBC)-induced MT 

disassembly led to decreased growth rate.  However, using an alcA-regulated GFP-MT 

strain, Ovechkina et al. (2003) found that mitosis-induced MT disassembly in individual 

hyphae did not reduce growth rate. This lack of consistency indicates the need for further 

investigation into the roles of MTs in hyphal growth. 

We used an A. nidulans strain with constitutively-tagged GFP-α-tubulin 

described in Horio and Oakley (2005) to study the quantitative relationship between 

cytoplasmic MTs and growth rate in large numbers of individual hyphae. Our study 

differs from reports by Horio and Oakley (2005) and Sampson and Heath (2005) in 

several ways: 1) We used a haploid strain (LO1022) grown on nutrient-rich medium 

rather than a diploid strain (LO1052) grown on minimal medium. Most A. nidulans 

experimental strains are haploid, as are those isolated from nature. 2) We collected data 

on large numbers of hyphae chosen for their similar morphology, and then restricted 
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analyses to hyphae that were shown to be growing. 3) We used both equivalent and lower 

concentrations of benomyl and latrunculin B, and compared them to solvent-only 

controls.  In addition: 4) We estimated relative MT abundance using a quantitative index. 

5) We present the first data on the in vivo effect of taxol on A. nidulans MT abundance 

and growth rate. 

Surprisingly, MT index and growth rate were not correlated for large numbers 

of individual untreated hyphae, although the average MT index for growing hyphae 

exceeded that of non-growing ones.  Similarly, when groups of hyphae were treated with 

the cytoskeleton-selective drugs benomyl, latrunculin B and taxol, or with comparable 

concentrations of carrier solvents, average growth rate and microtubule index varied 

independently following different treatments.  

 

2-3. Materials and Methods  

2-3.1. Aspergillus nidulans growth conditions. 

A. nidulans strain LO1022 (GFP-α-tubulin; pabaA1; wA2; cnxE16, sC12; veA1) 

was maintained at 28 ºC on complete medium (CM; Kaminskyj 2001) supplemented with 

methionine. LO1022 is ideal for this type of study since it is haploid, like A. nidulans 

strains in nature and the majority of the strains studied experimentally, and can be grown 

on rich medium for optimal growth rate.  For confocal microscopy, freshly harvested 

spores were inoculated onto sterile dialysis tubing overlying CM agar (Kaminskyj 2000), 

and grown for at least 24 h at 28 ºC. The dialysis tubing and overlying hyphae were lifted 

from the CM agar, mounted in a microscope slide chamber (Heath 1988) in ~100 µL of 

liquid CM, containing solvent and inhibitors as required, and allowed to recover for 30 

min before observation. Mounting induced transient hyphal tip swelling that made a 

convenient marker for treatment initiation. Observations were terminated after 120 min.  

 

2-3.2. Cytoskeletal inhibitors 

Benomyl, paclitaxel (trade name, Taxol®), and anhydrous dimethyl sulphoxide 

(DMSO) were obtained from Sigma (www.sigmaaldrich.ca). Latrunculin B (hereafter, 

latrunculin) was obtained from Molecular Probes (www.molecularprobes.com). All other 
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chemicals were obtained from VWR (www.vwrcanlab.ca). Inhibitors were diluted from 

stock solutions with room temperature liquid CM immediately before use.  

Benomyl was stored at 4 °C as a 10 mg/mL stock in 100% ethanol, and used at 

1 µg/mL in 0.01 % ethanol or 2.5 µg/mL in 0.025% ethanol. Latrunculin B (hereafter, 

latrunculin) was stored as a 25 mg/mL stock in 100% ethanol at -20 ºC, and used at 5 

µg/mL in 0.02 % ethanol or 20 µg/mL in 0.08 % ethanol. Taxol was stored at -20 ºC as a 

2 mM stock in 100 % DMSO and used at 50 µM in 0.25 % DMSO. DMSO was 

purchased as 1 mL ampoules of dry solvent, and the stock was stored in aliquots, over 

desiccant. The ethanol control concentration was 0.1 %, at the top of the range used in 

preliminary experiments, and similar to previously published studies (Harris et al. 1994; 

Kaminskyj 2000), but higher than used for the benomyl and latrunculin data presented. 

The inhibitor concentrations were similar to or lower than those used in the literature 

(benomyl and latrunculin) or were the lowest for which a response was detected (taxol).  

 

2-3.3. Confocal microscopy 

Aspergillus nidulans hyphae were imaged with a Zeiss META 510 laser 

scanning confocal microscope (www.zeiss.com) using a Plan Apochromat 63 x, N.A. 1.2, 

multi-immersion objective equipped with differential interference contrast (DIC) optics. 

GFP-α-tubulin fluorescence was imaged with 488 nm excitation from an Argon laser, 

with emission controlled by a BP505-530 filter. Excitation intensity was 5 - 10 % from a 

laser current of 5.9 amps. Eight or 16 scans per pixel at 0.6-2.5 µs/pixel were used to 

improve signal to noise ratio. Optical sections were 1.2 µm thick, and chosen to be 

near-median focal level. 

Hyphae were chosen for analysis if they were located at the colony margin, had 

an even profile, a smoothly tapered tip, and had grown out from the characteristic 

mounting-induced morphology, that is, a swollen tip or an abrupt change in growth 

direction. Hyphae that had not responded in this way to mounting were assumed to be 

non-growing, and were not selected for analysis. However, whether a particular hypha 

was actually growing, and at what rate, was not determined until after the data were 

collected. For each tip, 5-20 images were collected over 60-300 s.  For observation of 

relative MT abundance and hyphal growth rate, we did not use cells whose nuclei were in 
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mitosis at any time during the observation period.  DIC images used to measure hyphal 

growth rates were captured simultaneously with the fluorescence images used to quantify 

MT profiles.  Minor photobleaching was detected by the end of longer imaging sessions, 

but MT index values and hyphal growth rates were not noticeably affected. 

MTs containing GFP-α-tubulin cannot be precisely counted using fluorescence 

microscopy, even with optimal confocal settings employed here. The theoretical 

resolution of our confocal system was 230 nm, whereas the width of a fluorescent MT is 

about 25 nm plus the GFP decoration. Fluorescent objects are self-luminous, which 

enhances detection but does not improve resolution. Williamson (1991) showed that 

fluorescence images of fixed MTs in plant cells underestimated number and 

overestimated continuity compared to serial reconstruction transmission electron 

microscopy (TEM). Sampson and Heath (2005) reported “approximate correlations” 

between numbers of MTs containing GFP-α-tubulin visualized by fluorescence and MTs 

in the same A. nidulans cells following chemical-fixed TEM. Precise correlations are 

simply not possible given the inevitable chemical fixation-induced cytoplasmic 

movements (Kaminskyj et al. 1992). Other factors confounding MT quantification 

include that a MT grazing the confocal optical volume may not be detected, and 

GFP-tubulin dimers, protofilaments or MTs shorter than the resolution limit would 

contribute to background cytoplasmic fluorescence. Thus, our MT index values described 

below reflect relative rather than absolute abundance. Regardless, strains with 

constitutive GFP-α-tubulin are a major advance. 

MT bundling in A. nidulans hyphae further complicates quantification. A 

freeze-substitution, cross section, serial reconstruction TEM analysis of an A. nidulans 

hypha revealed about half of the cytoplasmic MTs were in bundles of two or three, 

typically at least one MT-width apart (R. Roberson, personal communication). Confocal 

microscopy cannot resolve individual MTs within bundles, nor unambiguously 

distinguish MT bundles from singletons, although occasionally we could infer bundling 

from abrupt changes in brightness, as did Mouriño-Pérez et al. (2006) in N. crassa. Thus 

some of the drug effects presented herein may be due to MT bundling / unbundling as 

well as polymerization / depolymerization. 
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To compare relative MT abundance between hyphae or treatments, we 

developed the MT index using near-median confocal optical sections encompassing about 

25 % of the hyphal volume. The MT index for a hypha was defined as the sum of MT 

profile counts at 5 µm, 10 µm, 15 µm and 20 µm from the hyphal tip. Counts for MT 

index used 12-bit Zeiss confocal images. Figure 2-1 shows Adobe Photoshop 8-bit 

images of typical cells, presented in reverse contrast to facilitate MT visualization. 

To assess growth rate, the tip position imaged using DIC was marked at the 

beginning and the end of the analysis period. Growth rate was the difference in 

hundredths of µm between the initial and final tip position divided by the difference in 

time in decimal seconds (both generated by the LSM510 software) and expressed as 

µm/min.  

 

2-3.4. Statistical and graphical analysis 

Data are expressed as the mean ± standard error of the mean. Statistical analyses 

used the 2000 version of Microsoft Excel with data analysis add-ins, or Statview 

SE+Graphics 1.01, both of which generate probability values. Statistical comparisons 

between treatments used one-way, single factor ANOVA, and post-hoc comparisons used 

Fisher PLSD. Numerical data are presented using Cricket Graph 1.0. Images are 

presented using Adobe Photoshop 7.0.  

Comparisons were made only between groups with similar variances.  Data for 

MT indexes was collected in groups of 10-20 hyphae per treatment, followed by MTs 

indexes from 10-20 hyphae from another treatment.  Hyphal growth rates were collected 

after MT indexes had already been recorded.  Individual hyphae were selected arbitrarily 

from a field of view containing numerous apparently growing (ie hyphae with a tapered 

tip profile). 

 

2-4. Results 

2-4.1. Cytoplasmic microtubules in Aspergillus nidulans hyphae 

In untreated A. nidulans hyphae, cytoplasmic MTs are long and flexuous, and 

run generally parallel to the long axis of the cell (Fig. 2-1a). Over seconds to minutes, 

MT position varied but MT index remained consistent. MTs arrays were not affected by 
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ethanol (Fig. 2-1b), whereas all detectable MTs were lost within 2 min of treatment with 

benomyl (Fig. 2-1c). MT arrays were relatively unaffected by latrunculin (Fig. 2-1d) 

consistent with its cytoskeletal target being actin microfilaments rather than MTs.  A. 

nidulans MT arrays were relatively unaffected by DMSO (Fig. 2-1e) or taxol (Fig. 2-1f) 

whereas taxol-treated cells appeared to have coarser arrays, perhaps due to MT bundling.  
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Figure 2-1. Representative images of Aspergillus nidulans hyphae containing 

GFP-α-tubulin.  Hyphae were visualized using confocal epifluorescence microscopy of 

single near-median sections. Images are shown with inverted contrast so microtubules are 

seen as dark lines. Hyphae were a) untreated, or treated with b) 0.1 % ethanol, c) 1 µg/mL 

benomyl in 0.01 % ethanol, d) 5 µg/mL latrunculin B in 0.02% ethanol, e) 0.25% DMSO, 

f) 50 µM taxol in 0.25% DMSO. Treatments including taxol give the impression of 

inducing microtubule bundling, but individual microtubules cannot be resolved with 

fluorescence microscopy. Bar = 5 µm, for all images. 
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2-4.2. Growth rate and relative microtubule abundance in untreated Aspergillus 

nidulans hyphae 

Tagging of α-tubulin with GFP does not alter hyphal growth rate as compared to 

the hyphal growth rates in A28, a wildtype A. nidulans strain lacking α-tubulin tagged 

with GFP (Fig. A-1). MT profile numbers were counted for 1.2 µm thick near-median 

optical sections of 112 growing A. nidulans hyphae. The average number of MT profiles 

at 5 µm, 10 µm, 15 µm and 20 µm behind the tip was 2.73±0.07, 3.06±0.06, 3.09±0.07 

and 3.07±0.06, respectively. There were significantly fewer MTs 5 µm behind the tip 

than further back (P=0.001). In A. nidulans, cytoplasmic MTs are nucleated from nucleus 

associated organelles, so this result is consistent with the typical position of the nucleus 

nearest the hyphal tip (Fig. 2-1). 

Tip growth rate and MT index (relative MT abundance) for 221 untreated A. 

nidulans hyphae are shown in Fig. 2-2.  Some data points overlap, particularly for the 109 

non-growing hyphae. The average MT index of growing hyphae (11.75 ± 0.73) was 

higher than for non-growing hyphae (7.72 ± 0.28) (P<0.0001), but there was no 

significant correlation between MT index and growth rate amongst the growing hyphae. 

Occasionally, even rapidly-growing hyphae had a low MT index: two cells with growth 

rates close to 1 µm/min had MT index values of 6.  
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Figure 2-2. The correlation between relative microtubule abundance and hyphal growth 

rate.  Microtubule index, an estimate of relative microtubule abundance, is shown for 

untreated Aspergillus nidulans hyphae containing constitutively tagged GFP-α-tubulin. 

See Methods for calculations of microtubule index and growth rate. Some data points 

overlap, particularly for the 109 non-growing cells. The average microtubule index was 

significantly lower for the non-growing cells (7.74 ± 0.28) than the 112 growing cells 

(11.76 ± 0.28) (P<0.05, t-test), but otherwise microtubule index did not correlate with the 

growth rate variation.  
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2-4.3. Effect of cytoskeleton-selective drugs on relative microtubule abundance 

and hyphal growth rate  

Our preliminary data from untreated A. nidulans hyphae showed that growth 

rate was not correlated with MT index amongst growing cells, although overall there was 

a difference between the MT index of growing and non-growing hyphae. To explore the 

relationship between growth rate and MT index we used well-characterized drugs, 

benomyl and latrunculin B, known to affect hyphal tip growth in A. nidulans (Horio and 

Oakley 2005; Sampson and Heath 2005) targeting MTs and filamentous actin, 

respectively.  In addition, taxol has been shown to induce polymerization of A. nidulans 

MTs in vitro (Yoon and Oakley 1995) but to our knowledge had not been studied in vivo. 

If there were treatment-related differences between groups of hyphae, we might yet 

discern broad relationships between relative MT abundance and hyphal growth rate. 

Cytoskeleton drugs are sparingly soluble in aqueous solutions, and are used at 

low concentrations, so treatment solutions are diluted into growth medium from stocks 

prepared in ethanol or DMSO (e.g. Harris et al. 1994; Kaminskyj 2000). A. nidulans 

grows well in medium containing 1 % ethanol as a sole carbon source (Fernández-Ábalos 

et al. 1998; Palmer et al. 2004) and it tolerates 1 % DMSO without noticeable 

morphological effects. Average MT index and growth rate for populations of untreated, 

0.1 % ethanol treated, and 0.25 % DMSO treated A. nidulans hyphae are shown in Fig. 

2-3a. The 0.1 % ethanol treatment significantly increased hyphal growth rate (P=0.0001) 

but did not affect MT index (P>0.1); most of the ethanol-treated hyphae were growing 

compared to half of the untreated cells (Fig. 2-3a). In contrast, 0.25 % DMSO treatment 

significantly increased the average MT index (P=0.0001), but not the hyphal growth rate 

(P >0.05). Half of the DMSO-treated hyphae were growing, similar to untreated hyphae. 

Thus, low solvent concentrations caused significant effects on A. nidulans cytoplasmic 

MT abundance or on hyphal growth rate, but not on both parameters.  

Benomyl treatments to depolymerize cytoplasmic MTs were 1 µg/mL and 

2.5 µg/mL dissolved in 0.01 % and 0.025 % ethanol, respectively. Both concentrations 

were effective (Fig. 2-3b); one MT found in 76 hyphae after 1 µg/mL benomyl, and none 

in 27 hyphae after 2.5 µg/mL benomyl. Unexpectedly, a third of the hyphae in each 

benomyl-treated population continued to grow at least during the first 2 h following 
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benomyl application (Fig. 2-3b). For 1 µg/ml benomyl, the average growth rate was 

statistically similar to the ethanol control treatment (Fig. 2-3b), whereas 2.5 µg/mL 

benomyl caused a significant growth rate reduction (P<0.001). Benomyl blocks A. 

nidulans nuclei at metaphase (Oakley and Morris 1981) and the mitotic cycle is about 

100 min. By the end of 2 h in 1 µg/mL benomyl essentially all nuclei had metaphase 

spindles, so hyphal growth rate studies for benomyl treatments ended at 60 min. 

Overnight treatment with 1 µg/mL benomyl induced the formation of multiple apical 

branches (Fig. A-4) comparable to Riquelme et al. (1998, 2003). In addition to the 

immediate effect of 1 µg/mL benomyl on cytoplasmic MTs, higher benomyl 

concentrations or longer treatment times had additional deleterious consequences on 

hyphal growth. We were unable to abolish hyphal tip growth by eliminating MTs, 

implying that the actin cytoskeleton was playing a key role in delivering growth related 

materials to the hyphal tip over substantial distances. 

Latrunculin targets filamentous actin (Bachewich and Heath 1998), whose 

functions in hyphal tip growth are well established (Bartnicki-Garcia 2002; Harris et al. 

1994; Heath 1990b, 1994, 1995; Torralba et al. 1998), but not MTs (Bachewich and 

Heath 1998). Our latrunculin concentrations were chosen to reduce tip growth rate 

(5 µg/mL) or to match the concentration (20 µg/mL) used previously on A. nidulans 

(Sampson and Heath 2005). Both latrunculin concentrations significantly reduced 

average growth rate (P<0.01), and there was a clear dose relationship (Fig. 2-3c). By 120 

min, latrunculin treatment caused apical swelling and/or branch initiation (not shown). 

All these effects were expected. Latrunculin also reduced the proportion of growing cells 

compared to the ethanol control (Fig. 2-3c), but only to a level comparable to untreated 

cells (Fig. 2-3a). We were surprised to find that both latrunculin treatments were 

associated with higher MT index values than the ethanol control (Fig. 2-3c) although the 

increase was marginal (P=0.08). Increased MT index following actin perturbation implies 

interdependence between the actin and MT cytoskeletal systems. 

Taxol has been shown to induce polymerization of A. nidulans MTs in vitro 

(Yoon and Oakley 1995), but to our knowledge this is the first in vivo study in this 

species. We used 50 µM taxol in DMSO, which Yoon and Oakley (1995) had found 

effective in vitro although they also used higher levels. We were seeking to avoid toxic 
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side effects especially as DMSO had already been shown to significantly increase MT 

index values over untreated controls (Fig. 2-3a). Taxol treatment did not increase the MT 

index (Fig. 2-3d), perhaps for lack of polymerizable tubulin. However, unexpectedly, 

taxol treated cells had a significantly higher average hyphal growth rate (P<0.01) than the 

DMSO control (Fig. 2-3d), and a higher proportion of taxol treated cells were growing 

than DMSO control cells (Fig. 2-3d). 
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Figure 2-3. Effect of solvents and cytoskeleton-selective drugs on relative microtubule 

abundance and growth rates of Aspergillus nidulans hyphae.  Microtubule index is an 

estimate of relative microtubule abundance.  Microtubule index (light bars) and growth 

rate (dark bars) data are shown for growing hyphae. The boxed numbers indicate the 
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number of growing and non-growing cells analyzed for each treatment. Observations 

were made between 30-120 min after treatment application. Calculation of microtubule 

index and growth rate is described in Methods. Error bars indicate standard error of the 

mean. Asterisks indicate a significant difference (P<0.05) with respect to the 

corresponding control.  (a-d) show results for untreated and solvent treated hyphae, 

ethanol vs benomyl/ethanol treatment, ethanol vs latrunculin/ethanol treatment, and 

DMSO vs taxol/DMSO treatment. 

(a) Microtubule index and growth rate for untreated, 0.1 % ethanol-treated, and 0.25 % 

DMSO-treated hyphae. The ethanol concentration is consistent with Kaminskyj (2001) 

and early experiments in this study (not shown), but is higher than that used for the 

benomyl and latrunculin B treatment results below. Ethanol treatment significantly 

increased growth rate but not microtubule abundance; the converse was found for 

DMSO. 

(b) Effect of benomyl dissolved in 0.01 % ethanol. Both concentrations of benomyl 

depolymerized microtubules within 2 min; growth rate measurements began 30 min after 

treatment. Growth rates for the 1 µg/mL treated cells were statistically similar to ethanol 

control cells, but fewer cells in the benomyl treated population were growing. Average 

growth rate was lower following 2.5 µg/mL benomyl. 

(c) Effect of latrunculin B dissolved in 0.02 % ethanol. Latrunculin treatment was 

associated with a higher microtubule index, but the difference was not statistically 

significant (P=0.08). Latrunculin affected the number of growing cells in the treated 

population and the growth rate of the growing cells. 

(d) Effect of taxol dissolved in 0.25 % DMSO. Taxol significantly increased growth rate 

but not microtubule index compared to DMSO, and more cells in the taxol-treated 

population were growing than the control. 
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2-4.4. Hyphal growth rate variability  

Hyphal growth rates vary over short time intervals (López-Franco et al. 1994; 

Sampson et al. 2003) although the underlying mechanism(s) are not fully understood. In 

N. crassa growth rate variations are temporally correlated with de novo generation and 

fusion of satellite Spitzenkörper (López-Franco et al. 1995) but this phenomenon has not 

been reported for A. nidulans. Having data in hand for large numbers of hyphae that we 

knew had grown during 60-300 s data collection intervals, we examined growth rate for 

15-30 s intervals. Confocal imaging requires fluorescence irradiation, thus energy 

absorption and the potential for damage. We wished to minimize the impact of 

irradiation; to do so, we used longer intervals (and hence fewer cycles of irradiation) than 

previous studies of this type. Results for four to seven hyphae per treatment are shown in 

Fig. 2-4 to demonstrate the range of growth rate variation without compromising visual 

clarity.  For a larger number of hyphae than we have shown graphically, Fig. 2-4 also 

reports the number of time intervals in which hyphae did or did not grow.  

Growth rates of untreated hyphae varied considerably (Fig. 2-4a), with rate 

changes up to 1 µm/min within 60 s. As expected from Fig. 2-2, there were substantial 

differences in average growth rates between untreated hyphae, but almost all intervals 

had measurable growth (Fig. 2-4a).  DMSO treatment (Fig. 2-4b) did not affect the 

growth rate variation compared to untreated cells, but fewer intervals had measurable 

growth (Fig. 2-4b). Ethanol treatment (Fig. 2-4d) dramatically increased hyphal growth 

rate variability, with rate changes exceeding 2 µm/min in 30 s. However compared to 

untreated cells, ethanol treated hyphae had fewer intervals with measurable growth (Fig. 

2-4d).  

Benomyl treatment depolymerized cytoplasmic MTs but did not abolish tip 

growth (Fig. 2-3b). Compared to the ethanol control (Fig. 2-4d) there were fewer 

intervals with measurable growth following benomyl treatment (Fig. 2-4e).  Latrunculin 

treatment (Fig. 2-4f) suppressed hyphal growth rate variability, consistent with its effect 

on reducing average hyphal growth rate (Fig. 2-3c), and the proportion of intervals with 

measurable growth was similar to the ethanol control (Fig. 2-4d).  

Hyphal growth rate was not affected by repeated imaging for most of the 

treatment populations (Fig. 2-4a, b, d-f). Consequently, its effect on taxol treated cells 
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(Fig. 2-4c) was notable: the average growth rate decreased significantly following 

imaging. Growth rates for 12 taxol-treated cells including the six shown in Fig. 2-4c were 

grouped by time from the beginning of observation (0-39.9 s, 40-79.9 s, 80-119.9 s, 

120-159.9 s). The average growth rate for 0-39.9 s interval (1.24±0.15 µm/min) was 

significantly higher than for all subsequent periods (0.78±0.11 µm/min, 0.71±0.10 

µm/min, 0.51±0.08 µm/min, respectively) (P=0.001, ANOVA), and there was a trend for 

the average growth rate to decrease with continued fluorescence imaging. However, 

consistent with increased growth rate following taxol treatment, almost all intervals had 

measurable growth. The hyphae shown in Fig. 2-4c were analyzed at similar times after 

treatment began, about 90 min, so there were minimal inter-hypha differences, again 

suggesting that growth rate depression was fluorescence imaging related.  In addition, it 

appears that irradiation of taxol-treated hyphae at 488nm (the wavelength absorbed 

maximally by GFP) correlates with a decrease in hyphal growth rate during imaging, 

while irradiation at 633nm (a wavelength not absorbed by GFP) does not correlate with a 

decrease in hyphal growth rate during imaging (Fig. A-2). 
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Figure 2-4. Effect of solvents and cytoskeleton-selective drugs on growth rate variability 

of Aspergillus nidulans hyphae.  Growth rates are calculated for 15-30 s intervals. All 

graphs use the same axis scales. Each line represents a different hypha; only a 

representative subset from each treatment is shown for visual clarity. A tally of growing : 

non-growing intervals from a larger number of cells is shown for each treatment 

population. The drug treatments used the same (DMSO) or lower (ethanol) solvent 

concentrations than the solvent controls. See Figure A-2 for a control for the wavelength 

of irradiation on the growth rate variability of taxol-treated hyphae. 
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2-5. Discussion  

Cytoplasm is permeated by a meshwork of cytoskeletal filaments and associated 

proteins. Apart from very small molecules, nothing moves by diffusion through a living 

cell (Bray 1992) and even diffusion can be constrained by membranes. Consequently, 

energy must be expended for motility of organelles within the cytoplasm (Bray 1992), 

and for apical migration of bulk cytoplasm with respect to cortical cytoplasm (Kaminskyj 

and Heath 1996). Motor proteins associated with MTs and with actin have been 

characterized in A. nidulans (reviewed in Bartnicki-Garcia 2002), but the mechanics 

underlying wall vesicle motility remain unclear (Bartnicki-Garcia 2002).  

As well as MTs, A. nidulans hyphal tips contain filamentous actin arrays that 

have been imaged using electron tomography (Hohmann-Marriott et al. 2006), 

complementing whole-cell studies using actin immunofluorescence (Harris et al. 1994; 

Torralba et al. 1998). A. nidulans actin is concentrated in the apical 5 µm of growing 

hyphae; its abundance in more basal regions is much lower. Conversely, A. nidulans MTs 

are more abundant in basal regions than near the apex. Since the metabolic resources of a 

considerable length of hypha (the hyphal growth unit: Trinci 1973) are needed to support 

tip growth, it is intuitively attractive to ascribe long-distance transport of hyphal growth 

materials to MTs, and near apical transport to actin. If this notion is correct, then even if 

individual hyphal growth rates fluctuated (Lopez-Franco et al. 1995; Sampson and Heath 

2005), growth rates for groups of hyphae should correlate with MT abundance. 

This is the first study to examine the quantitative relationship between relative 

MT abundance, expressed as MT index, and hyphal growth rate in large numbers of A. 

nidulans hyphae. Contrary to our initial expectation, there was no correlation between 

growth rate and MT index for 112 growing, untreated hyphae. Untreated hyphae that 

failed to grow could not be predicted from their morphology prior to data collection, nor 

from their MT index. The only correlation we could find between growth rate and MT 

abundance for untreated hyphae was that, as a group, non-growing hyphae had fewer 

MTs than growing ones. 

 

2-5.1. Effect of cytoskeleton-selective drugs on relative microtubule abundance 

and hyphal growth rate  
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Our early studies on untreated hyphae showed MT index-related differences 

between growing vs non-growing cells. Our subsequent growth rate comparisons were 

between growing cells (only) from different treatment groups so that our data could not 

be confounded by treatment-induced changes in proportion of growing cells. We 

compared groups of hyphae treated with cytoskeleton selective drugs known to be 

effective in A. nidulans; we also considered the effects of low levels of solvents in which 

the drugs would be dissolved.  

Previous work including Kaminskyj (2000) had shown that 0.1 % ethanol or 

DMSO had a negligible growth effect on A. nidulans, but that study considered a longer 

time period and a different cellular event. Compared to untreated cells, low 

concentrations of ethanol or DMSO each had significant effects: ethanol increased 

growth rate but not MT index and the converse was true for DMSO. Thus group MT 

index and growth rate responses to these solvents did not change in a coordinate manner.  

Benomyl at 1 µg/mL rapidly abolished essentially all visible MTs (1 MT in 76 

hyphae in the treated population compared to an expected 893 MTs estimated for 76 

ethanol control hyphae) but did not significantly reduce the average growth rate. 

However, 2.5 µg/mL benomyl significantly reduced hyphal growth rate compared to the 

control and to the 1 µg/mL dose. It seems unlikely that there are invisible but functional 

MTs given the provenance of LO1022 (Horio and Oakley 2005) whereas secondary drug 

effects cannot be discounted. Based on our data, we recommend cautious interpretation of 

published results that employ solvents, and use of the lowest drug concentrations 

possible. 

In cells lacking MTs, wall vesicle transport must use the actin cytoskeleton. 

Growth at 0.5 µm per min (Fig. 2-3b) of a 3 µm wide hypha (Kaminskyj and Hamer 

1998) requires addition of 4.7 µm2 of cell surface per minute. A wall-forming vesicle 

~-50 nm in diameter (Hohmann-Mariott et al., 2006) has a membrane surface of 

~-65-nm2. At least 72,000 vesicles this size must fuse at the tip each minute in order to 

generate sufficient new cell membrane to maintain that growth rate. Generating these 

vesicles and their contents likely requires much of the resources of the hyphal growth 

unit. If vesicle transport in A. nidulans were MT-based, the relatively few cytoplasmic 

MTs would have to be heavily coated with vesicles.  Hohmann-Marriott et al. (2006) 
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showed that putative wall forming vesicles were about ~-50nm from cytoplasmic MTs, 

whereas dynein is about 25 nm long, suggesting MTs are not the direct scaffold for 

vesicle transport. Taken together, the actin cytoskeleton appears to be responsible for 

much of the long distance vesicle transport in benomyl-treated as well as in untreated 

cells of A. nidulans.  

MT assembly depends in part on the pool of unpolymerized tubulin. DMSO 

treatment induced a significant increase in MT index, so cells treated with taxol in 

DMSO might have had a reduced tubulin pool.  Evidence from Ovechkina et al. (2003) 

suggests mitotic spindle MTs form from the same subunits as interphase cytoplasmic 

MTs, so there appears to be a limited pool of unpolymerized tubulin in A. nidulans.  

Actin and MTs have been shown to interact in vitro (Pollard et al. 1984) and in 

vivo (Chang et al. 2005; Schuchardt et al. 2005). Our evidence shows these systems 

interact in vivo in A. nidulans. The growth rate reduction caused by 2.5 µg/mL benomyl, 

despite complete MT depolymerization from 1 µg/mL, implies an ancillary effect on 

actin-based transport. Latrunculin treatments reduced growth rate and caused 

morphological abnormalities (see also Bachewich and Heath 1998; Sampson and Heath 

2005). Notably, MT index values increased following latrunculin treatment, implying 

compensatory MT polymerization or MT unbundling following weakening of the actin 

cytoskeleton. The tensegrity model of cytoplasm structure proposed for Saprolegnia 

hyphae (Kaminskyj and Heath 1996), suggests that MTs may have a role in cytoplasm 

cohesion.  

Prolonged treatment with sublethal benomyl concentrations induce multiple 

apical branch formation in N. crassa (Riquelme et al. 1998) and in A. nidulans 

(Kaminskyj, unpublished) so MTs appear to have a role in Spitzenkörper stability. 

Riquelme et al. (1998) also showed that sublethal cytochalasin A treatment (another actin 

poison) was substantially similar to the effect of benomyl, except that the apical branches 

had impaired direction control. This is consistent with our suggestion that MTs and actin 

have some functional redundancy. 

 

2-5.2. Hyphal growth rate variability 
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Growth rates in many species vary over periods as short as 1-5 s periods 

(López-Franco et al. 1994; Sampson et al. 2003) related in part to cytoplasmic ion 

gradients (Torralba and Heath 2000) and likely there are multiple feedback loops. The 

erratic growth rate variation we observed for untreated cells is consistent with those 

reports, and like Sampson et al. (2003) we found that growth rate varied between hyphae 

as well as over time.  

Two treatments had notable effects on growth rate variability. Treatment with 

0.1 % ethanol greatly increased growth rate variability, while also increasing average 

growth rate, perhaps by affecting membrane permeability and ion homeostasis. This 

argues for caution in interpreting results using strains containing alcA-inducible genes 

grown on ethanol media. 

Most notable regarding growth rate variability was the effect of fluorescence 

imaging on taxol treated cells: the average growth rate in the first 40 s of imaging was 

significantly faster than for all subsequent intervals, although growth was not halted 

during the observation period. It is unlikely that growth rate changes were due to drug 

effects prior to irradiation, so they appear to have been caused by the fluorescence 

imaging. We minimized cell irradiance in all our experiments, and repeated imaging did 

not diminish average growth rates following other treatments. The binding of taxol to 

MTs (Horwitz 1992; Ross and Fygenson 2003) is of considerable interest due to its use in 

cancer chemotherapy, which is being studied using fluorescent taxol derivatives (Li et al. 

2000).  Visible light irradiation may thus enhance the efficacy of taxol chemotherapy, 

given the use of fluorescent taxol derivatives. In addition, the fact that irradiation with a 

wavelength absorbed my GFP (488nm), but not a longer wavelength not absorbed by 

GFP (633nm), reduce hyphal growth rate (Fig. A-2) suggest that either only certain 

wavelength might enhance the efficacy of taxol chemotherapy and/or that a molecule, 

such as GFP, capable of absorbing the radiation used is required to be in contact with 

taxol.  The use of irradiation to enhance taxol chemotherapy would require that the effect 

of fluorescence imaging of taxol treated GFP-α-tubulin in A. nidulans was shown to be 

comparable to fluorescent taxol treated cancer cell MTs.  Treatment could be achieved by 

treating tissue with a fluorescent taxol derivative followed by appropriate wavelength 

visible light irradiation. 
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2-5.3. What roles do MTs appear to play in hyphal tip growth? 

Our results show that MT index and hyphal growth rate are not correlated for 

individual cells nor for groups of cells following solvent or drug treatments. In particular, 

1 µg/mL benomyl depolymerized all cytoplasmic MTs but did not significantly affect 

growth rate over 30-60 min. Hyphal growth rates were significantly reduced by 2.5 

µg/mL benomyl over the same period, suggesting that some short-term fungi toxic effects 

may be ancillary to MT depolymerization. Benomyl impairs progress through metaphase 

(Oakley and Morris 1981) and perturbs the Spitzenkörper (Riquelme et al. 1998) but 

morphology was not affected in the first hour, and we specifically excluded analysis of 

mitotic cells. Weakening the actin cytoskeleton with latrunculin, which reduced growth 

rates, was associated with more abundant MTs. Solvent control treatments significantly 

affected growth rate or MT index, but not both. 

There was a correlation between effects on growth rate and on proportion of 

growing cells. Treatments that increased average growth rate also increased proportion of 

growing cells (ethanol compared to untreated; taxol compared to DMSO) and vice versa 

(latrunculin compared to ethanol). Also, with the exception of benomyl treated cells, all 

of which lacked MTs, the average MT index in non-growing cells was similar or lower 

than in growing cells for all treatments.  

Taken together, our results suggest that the most likely roles of MTs are in 

overall regulation of average tip growth rate, whereas actin likely controls vesicle 

transport and targeting for tip growth. The MT system can respond to actin-selective 

agents by limited polymerization but cannot take over actin-specific function, and 

although many details require clarification tip growth rate and dynamics are influenced 

by cytoplasmic ion homeostasis.
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CHAPTER 3: The distribution and movement of fungal Golgi are related to growth 

rate and the cytoskeleton in Aspergillus nidulans hyphae 

 

3-1. Summary 

The distribution of fungal Golgi may be related to polar growth.  An Aspergillus 

nidulans strain containing a GFP tagged putative fungal Golgi marker, α-COPI, was 

utilized.  GFP tagged α-COPI co-localized with RFP tagged α-2,6-sialyltransferase (ST), 

a known Golgi marker, in untreated and brefeldin A (BFA) treated A. nidulans hyphae.  

α-COPI localized to numerous, mobile, structures frequently approximately 0.5-1 µm in 

diameter, hereafter referred to as fungal Golgi.  Fungal Golgi were more abundant at 

hyphal tips than subapically.  Forward (tip directed) velocity of fungal Golgi was 

positively correlated with hyphal growth rate, while being approximately ten times 

greater. The actin inhibitor latrunculin B decreased the average forward velocity of 

fungal Golgi and hyphal growth. The above results suggest that forward fungal Golgi 

movement is interrelated to hyphal growth rate.  The movement of fungal Golgi is likely 

dependant on both actin and MTs, though actin may be more important. 
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3-2. Introduction 

The process of secretion is essential for polar growth in filamentous fungi 

(reviewed in Bartnicki-Garcia 2002; Heath 1990a, 1994, 1995).  Golgi are involved in 

processing and sorting materials (reviewed in Farquhar and Palade 1998) prior to 

secretion (reviewed in Mogelsvang and Howell 2006).  Thus, it appears likely that Golgi 

are involved in polar growth.  It is possible that the spatial positioning and movement of 

fungal Golgi is related to polar growth.  

Although Golgi bodies differ morphologically between animals, plants and 

fungi, the Golgi is functionally similiar between kingdoms.  Animal cells contain a single 

central Golgi apparatus (reviewed in Bentivoglio and Mazzarello 1998; Ladinsky et al. 

1999; Palade 1975) whose morphology and dynamics have been shown to depend on the 

actin cytoskeleton (Egea et al. 2006; Lazaro-Dieguez et al. 2006).  MTs are also 

associated with animal Golgi (Farah et al. 2006; Papoulas et al. 2005).  In addition, the 

position of the Golgi apparatus in animal cells depends on the presence of an intact 

microtubule (MT) cytoskeleton (Burkhardt 1998).  Unlike animal cells, which have one 

large centrally located Golgi body (Ladinsky et al. 1999), plant cells contain numerous 

small Golgi bodies (Boevink et al. 1998; daSilva et al. 2004; Saint-Jore-Dupas et al. 

2004).  Plant Golgi have been shown to be mobile within the cytoplasm (Boevink et al. 

1998; reviewed in Hawes and Satiat-Jeunemaître 2005) and to depend on the actin 

cytoskeleton for mobility (Boevink et al. 1998; Nebenfuhr et al. 1999; Satiat-Jeunemaître 

et al. 1996).  In the hyphae of Candida albicans, Golgi have been shown, via 

immunofluorescent microscopy, to concentrate at the growing hyphal tips (Rida et al. 

2006).  This association of C. albicans Golgi with the apical portion of the hypha during 

its extension is maintained in a formin-dependant manner (Rida et al. 2006).  Formin is 

an actin-associated protein, functioning as an actin cable nucleator (Evangelista et al. 

2002; Pruyne et al. 2002; Sharpless and Harris 2002).  Fungal Golgi resemble plant Golgi 

(Boevink et al. 1998; daSilva et al. 2004; Saint-Jore-Dupas et al. 2004) and C. albicans 

Golgi (Rida et al. 2006) in that they are small and numerous (Akao 2006; Cole et al. 

2000; Kaminskyj and Boire 2004).  However, fungal and plant Golgi differ in that the 

plant Golgi consists of distinct, roughly parallel stacks of cisternae with a clear cis-trans 

polarity (reviewed in Saint-Jore-Dupas et al. 2004) whereas the cisternae of fungal Golgi, 
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except those of Saccharomyces, are non-stacked and lack clear cis-trans polarity (Beckett 

et al. 1974; Cole et al. 2000).   

The actin and microtubule (MT) cytoskeletons have roles in polarized growth of 

filamentous fungi (reviewed in Bartnicki-Garcia 2002; Heath 1990a, 1994, 1995; Chapter 

2, section 2-4.3., page 27).  F-actin arrays are concentrated in areas of active cell 

extension and cell wall deposition (reviewed in Heath 1990a, 1990b, 1994, 1995) as is 

the A. nidulans actin motor protein myoA (McGoldrick et al. 1995).  In A. nidulans, 

cytoplasmic actin arrays have demonstrated roles in hyphal extension and morphogenesis 

(Fidel et al. 1988; Harris et al. 1994; Sampson and Heath 2005; Torralba et al. 1998) as 

well as septation (Momany and Hamer 1997).  In addition, both actin and MTs have 

documented roles in organelle movement in filamentous fungi.  For example, the actin 

cytoskeleton is involved in mitochondrial movement in A. nidulans (Suelmann and 

Fischer 2000a) and the MT cytoskeleton is involved in nuclear migration in filamentous 

fungi (Morris et al. 1995; Plamann et al. 1994; Suelmann and Fischer 2000b).   

It has not, to our knowledge, been demonstrated that Golgi in filamentous fungi 

are motile independent of hyphal extension. However, as plant Golgi are mobile 

(Boevink et al. 1998; reviewed in Hawes and Satiat-Jeunemaître 2005), it is possible that 

fungal Golgi shared this characteristic.  Because of the role of the Golgi in secretion, 

which in fungal hyphae, is concentrated at the tips (Bartnicki-Garcia and Lippman 1969), 

we expect A. nidulans fungal Golgi to show a tip-high concentration gradient, similar to 

that found in Candida albicans (Rida et al. 2006). The relationship between 1) the 

longitudinal spatial distribution of fungal Golgi and tip growth, 2) the tip-directed 

movement of fungal Golgi and tip growth, and 3) the movement of fungal Golgi and the 

cytoskeleton, all represent novel aspects of fungal cell biology.  To our knowledge, this is 

the first work exploring any of these relationships.  Based on the results found in animal 

and plant cells discussed above, we expect that the movement of fungal Golgi will be 

observed to be dependent on the actin and/or MT cytoskeleton. 

In order to study the relationship between fungal Golgi, polar growth and the 

cytoskeleton in A. nidulans we exploited two genes: suppression of disomy in 

chromosome VI (sod
VI

C) (Whittaker et al. 1999) and hypercellularA (hypA) (Kaminskyj 

and Boire 2004; Kaminskyj and Hamer 1998; Shi et al. 2004).  Morphological mutant 
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alleles have been shown to be useful tools for studying factors that contribute to polar 

growth (e.g. Gatherar et al. 2004; Harris et al. 1999; Momany et al. 1999).   

The hypA1 morphological mutation allele is a useful tool with which to study 

hyphal polarity because, in hypA1 mutant strains, hyphal growth resembles 

wildtype at 28˚C, but at 42˚C cells exhibit reduced polarity, defects in fungal Golgi, 

slower growth, and abnormal morphology (Shi et al. 2004).  When the growth 

temperature is changed from 42˚C to 28˚C, hypA1 mutant cells regain wildtype 

morphology and polarity.  The Saccharomyces cerevisiae homolog of hypA, trs120 

encodes a component of the TRAPP II (transport protein particle) complex that has a 

variety of fungal Golgi-related functions (Cai et al. 2005; Guo et al. 2000; Kim et al. 

2006).     

A. nidulans sod
VI

C encodes a protein similar to the yeast α-COPI (Whittaker et 

al. 1999), and thus was proposed to localize to vesicles derived from putative fungal 

Golgi.  Using an A. nidulans strain containing GFP tagged sod
VI

C (α-COPI) in a hypA1 

background, we characterized the distribution and rate of forward-moving (see section 

3-3.5, page 46) GFP tagged α-COPI particles in hyphae grown at 28˚C and 42˚C as well 

as in hyphae treated with drugs targeting the actin and MT cytoskeletons.   

 

3-3.  Materials and methods 

3-3.1. Aspergillus nidulans strains and growth conditions 

The Aspergillus nidulans strain used for distribution and movement studies was 

AAB1.  Susan Kaminskyj, Univ Saskatchewan, Saskatoon, SK, Canada, gave Sue 

Assinder the A. nidulans strain ASK30.  In return, Assinder, Univ Wales, Bangor, 

Gwynedd UK, gave Kaminskyj the A. nidulans strain AAB1 (hypA1, wA2, pabaA1, 

veA1).  AAB1 is ASK30 transformed with alcA-GFP-sod
VI

C.  The A. nidulans strain used 

for a wildtype control was A28 (paba6, veA1), the mutagenesis parent of the hypA1 

strains (Kaminskyj and Hamer 1998). 

In AAB1, GFP is under the control of the alcA promoter, which requires alcohol 

to induce expression of genes under its control (reviewed in Felenbok 1991).  The 

expression of genes under the control of alcA is repressed by glucose (reviewed in 

Felenbok 1991).  AAB1 was maintained at 28ºC on complete medium (CM) (Kaminskyj 
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2001), supplemented with p-aminobenzoic acid, with 1% ethanol as the sole carbon 

source, or on nutrient broth (Difco), supplemented with paba, with 0.5% threonine as the 

alcohol inducer of alcA controlled expression.  Nutrient broth with threonine was used as 

an alcA inducer as a control for impact of ethanol.  Ethanol has been shown to alter 

hyphal growth dynamics when used even at 0.1% in addition to a glucose carbon source 

(see Chapter 2, Fig. 2-4, section 2-4.4., page 32). 

For confocal microscopy, freshly harvested spores were inoculated onto sterile 

dialysis tubing overlying CM agar (Kaminskyj 2000) or nutrient broth agar, and grown 

for at least 24 h at 28ºC.  The dialysis tubing and overlying hyphae were mounted in a 

microscope slide chamber (Heath 1988) in ~100 µL of liquid medium, containing 

solvents and cytoskeleton targeting inhibitors as required, and allowed to recover for 30 

min before observation.  Mounting induced transient hyphal tip swelling that made a 

convenient marker for treatment initiation.  Observations were terminated after 120 min.  

Hyphae were treated with the endomembrane targeting inhibitor BFA after mounting in 

CM and the allowance of a 30 min period of recovery and observation.  Subsequently, 

CM plus BFA was added via rinsing through the slide chamber.  Observations began 

immediately following addition of BFA and terminated after 50 min.  The controlled and 

reproducible nature of the slide chamber increase the likelihood of the growth observed 

being a normal, intrinsic feature of the hyphae of A. nidulans.   

 

3-3.2.  Inhibitors 

Benomyl, paclitaxel (trade name, Taxol®), and anhydrous dimethyl sulphoxide 

(DMSO) were obtained from Sigma (www.sigmaaldrich.ca). Latrunculin B (hereafter, 

latrunculin) was obtained from Molecular Probes (probes.invitrogen.com). All other 

chemicals were obtained from VWR (www.vwrcanlab.ca). Inhibitors were diluted from 

stock solutions with room temperature liquid CM immediately before use.  

Benomyl was stored at 4 °C as a 10 mg/mL stock in 100 % ethanol, and used at 

1 µg/mL in 1 % ethanol. Latrunculin was stored as a 25 mg/mL stock in 100 % ethanol at 

-20 ºC, and used at 5 µg/mL in 1 % ethanol. Taxol was stored at -20 ºC as a 2 mM stock 

in 100 % DMSO and used at 50 µM in 0.25 % DMSO plus 1 % ethanol.  DMSO was 

purchased as 1 mL ampoules of dry solvent, and the stock was stored over desiccant and 
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used at 0.25% DMSO plus 1 % ethanol.  BFA was stored at –20°C as a 5mg/mL stock in 

100% methanol, and used at 10 µg/ml in 0.5% methanol plus 1% ethanol.  The inhibitor 

concentrations were similar to those used in the literature (benomyl and latrunculin) 

and/or were the lowest for which a response was detected (taxol). Threonine was stored 

at room temperature as a powder, and added to cool, autoclaved media to a final 

concentration of 0.5 %.  Ethanol was stored at room temperature as a 100 % stock, and 

added to cool, autoclaved media to a final concentration of 1 %. 

 

3-3.3. Confocal microscopy 

Aspergillus nidulans hyphae were imaged with a Zeiss META 510 laser 

scanning confocal microscope (www.zeiss.com) with a Plan Apochromat 63x, N.A. 1.4 

multi-immersion objective equipped with differential interference contrast (DIC) optics. 

GFP-sod
VI

C fluorescence imaging used 488 nm excitation Argon laser with emission 

controlled by a BP505-530 filter, an excitation intensity of 5 - 10 %, and a laser current 

of 5.9 amps.  ST-RFP fluorescence imaging used 543 nm excitation HeNe1 laser with 

emission controlled by LP585 filter and an excitation intensity of 100%.  Eight or 16 

scans per pixel at 0.6-2.5 µs/pixel were used to improve signal to noise ratio. Optical 

sections were 1.2 µm thick, and chosen to be near-median focal level as judged by cell 

profile.  Observations were made based on single optical sections. 

Hyphae were chosen for analysis if they were located at the colony margin, had 

an even profile, a smoothly tapered tip, and had grown out from the characteristic 

mounting-induced morphology, that is, a swollen tip or an abrupt change in growth 

direction. Hyphae that had not responded in this way to mounting were assumed to be 

non-growing, and were not selected for analysis. However, whether a particular hypha 

was actually growing, and at what rate, was not determined until after the data were 

collected. For each tip for which GFP tagged α-COPI movement and growth rate data 

was collected, 5-20 images were collected over 60-300 s. 

 

3-3.4. α-2,6-sialyltransferase (ST)-RFP 

The mammalian enzyme α-2,6-sialyltransferase (ST) contains a transmembrane 

domain important in Golgi retention (Munro 1991).  ST has been shown to localize to the 



 

 

 

47 
 

animal (Munro 1991), plant (Wee et al. 1998) and Saccharomyces cerevisiae 

(Schwientek et al. 1995) Golgi.  The Brandizzi group, University of Saskatchewan, 

Saskatoon, SK, Canada and the Hawes’ group, Research School of Biological & 

Molecular Sciences, Oxford Brookes University, Oxford, UK kindly provided an 

ST-monomeric red fluorescent protein (mRFP, hereafter RFP) plasmid.   

The ST-RFP is under the control of the cauliflower mosaic virus 35S promoter.  

This promoter has been shown to induce expression in plants (Jefferson et al. 1987; Odell 

et al. 1985), yeast (Hirt et al 1990) and filamentous fungi including Uromyces (Li et al. 

1993), Ganoderma lucidum and Pleurotus citrinopileatus (Sun et al. 2002) and Pleurotus 

ostreatus (Xu et al. 2004).   

In preparation for transformation with ST-RFP, AAB1 was crossed with 

ASK376 (pyrG89, yA2, pabaA1, veA1).  An alcA-GFP-sod
VI

C, pyrG89, yA2 progeny was 

selected and assigned the name AMH1.  Transformation of AMH1 used 4 µg of ST-RFP 

DNA plus 1 µg of the ARp1 DNA (Gems et al. 1991) that contains Neurospora crassa 

pyr4
+ as a selectable marker (Shi et al. 2004).  The transformation followed a protocol 

adapted from Osmani et al. (1987) described in Shi et al. (2004).  After transformation, 

aliquots of protoplast suspension were mixed with CM (Kaminskyj 2000) containing 

0.6% agar and 1 M sucrose but lacking exogenous pyrimidine and plated over the same 

medium containing 1.5% agar. Protoplasts were incubated at 28 °C for 72 h before 

testing for RFP and GFP fluorescence.  The resultant A. nidulans strain 

(alcA-GFP-sod
VI

C, ST-RFP, yA2) was assigned the name AMH2.   

 

3-3.5. Protein extraction, SDS-PAGE and western blotting for 35S CaMV 

promoter induced α-2,6-sialyltransferase (ST)-RFP expression 

A. nidulans strains A28 (paba6, veA1; negative control for GFP and RFP), 

LO1022 (GFP-α-tubulin; pabaA1; wA2; cnxE16, sC12; veA1; positive control for GFP), 

and AMH2 (ST-RFP; fluorescence visible using confocal microscopy, described in 

section 3-3.3., page 45) were grown in 50 mL CM shaking at 200 rpm at 28 °C for 48 h.  

A protease inhibitor cocktail containing 4- (2-aminoethyl)benzenesulfonyl fluoride 

(AEBSF), pepstatin A, E-64, and 1,10-phenanthroline (Sigma) was added to the growth 

media (1:500 dilution) and incubated for ~ 2 min at room temperature with gentle 
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shaking.  The growth media was filtered off using a funnel made from a sterile paper 

towel.  Protein was extracted by gently scooping ~ 1 mL of mycelium into a mortar 

pre-chilled with liquid nitrogen, pouring ~ 5 mL of liquid nitrogen onto the mycelium, 

and grinding the frozen mycelium with a pre-chilled pestle.  Additional liquid nitrogen 

was added as required to maintain a low grinding temperature.  With a pre-chilled 

spatula, ~ 500 µL of the ground mycelium was placed directly into 100-°C denaturing 

sample buffer and vortexed immediately. 

In preparation for western blot analysis, equivalent amounts of protein extract 

(20 µL) were separated on a 10% denaturing SDS–PAGE gel for 1 h at 200 V.  The 

protein was then electrophoretically transferred to a nitrocellulose membrane, using a 

buffer consisting of 25 mM Tris, 192 mM glycine, and 20 % methanol, at 100 V for 1 h. 

Total protein was visualized via ponceau S staining.  The membranes were subsequently 

incubated for 1 h at room temperature in MPBS (0.137 M NaCl, 2.7 mM KCl, 8.0 mM 

Na2HPO4, 1.8 mM KH2PO4, and 4% skimmed milk powder).  To detect GFP-α-tubulin 

expression in LO1022 and ST-RFP expression in AMH2, anti-GFP polyclonal antibody 

(Santa Cruz Biotechnology Inc.) was used at a dilution of 1:1000 in MPBS (2% skim 

milk).  Santa Cruz Biotechnology Inc. expects the anti-GFP use to detect both GFP and 

RFP (Santa Cruz Biotechnology Inc. Technical Service Representative, personal 

communication).  Anti-GFP was incubated with the membrane for 2 h, shaking, at room 

temperature.  The membrane was washed 3×5 min with PBST.  Subsequently, 

goat-anti-rabbit-HRP conjugated antibody (Bio-Rad Laboratories) was used as the 

secondary antibody at a 1:5,000 dilution in MPBS (2% skim milk) and was incubated 

with the membrane for 1 h, shaking, at room temperature.  The membrane was washed 

3×5 min with PBST, followed by detection using the ECL chemiluminescent system 

(Amersham GE Healthcare).  Chemiluminescence was detected using X-ray film (40 min 

exposure). 

 

3-3.6. Analysis of sod
VI

C-GFP particle movement and distribution 

Sod
VI

C-GFP particle movement was considered forward (tip directed) if the net 

movement between subsequent frames brought the sod
VI

C-GFP particle in question closer 

to the tip.  Because sod
VI

C-GFP particle movement was roughly ten times greater than 
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hyphal growth rate, the movement of the hyphal tip was easily taken into account in the 

calculation of sod
VI

C-GFP particle movement.  In order to be considered forward, the net 

tip-directed movement was required to be at a ≤ 45 º relative to an imaginary line drawn 

from the hyphal tip to the sod
VI

C-GFP particle in question (Fig. 3-1).  Only the movement 

and/or distribution of sod
VI

C-GFP particles that could be identified, by means of intensity 

and/or size, were measured. 
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Figure 3-1.  Definition of sod
VI

C-GFP particle movement as forward, backwards or 

sideways.  Sod
VI

C-GFP particle movement was considered forward if the sod
VI

C-GFP 

particle being observed moved toward the hyphal tip, or within a 45˚ angle of this 

trajectory.   sod
VI

C-GFP particle movement was considered backwards if the sod
VI

C-GFP 

particle being observed moved away from the tip or within a 45˚ angle of this trajectory.  

sod
VI

C-GFP particle movement was considered sideways if the sod
VI

C-GFP particle 

being observed moved at a 90˚ angle to the tip (i.e. towards the side of the hypha) or 

within a 45˚ angle of this trajectory.
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3-3.7. Statistical and graphical analysis 

Data are expressed as the mean ± standard error of the mean.  Statistical 

analyses used the 2000 version of Microsoft Excel with data analysis add-ins, which 

generates probability values. Statistical comparisons between treatments used one-way, 

single factor ANOVA, and post-hoc comparisons used Fisher PLSD.  Numerical data are 

presented using the 2000 version of Microsoft Excel. Images are presented using Adobe 

Photoshop 7.0 with minor contrast adjustment. 

Comparisons were made only between groups with similar variances.  Data for 

α-COPI-GFP particle movement was collected in groups of 10-20 α-COPI-GFP particles 

hyphae per treatment, followed by α-COPI particle movement from 10-20 α-COPI-GFP 

particles from another treatment.  Hyphal growth rates were collected after α-COPI-GFP 

particle movement rates had already been recorded.  Individual α-COPI-GFP particles 

were selected arbitrarily from the brighter particles visiable within a given hypha.  

Individual hyphae were selected arbitrarily from a field of view containing numerous 

apparently growing (ie hyphae with a tapered tip profile). 

 

3-4.  Results 

3-4.1. Sub-cellular localization of α-2,6-sialyltransferase (ST)-RFP and 

sod
VI

C-GFP particles  

Both ST-RFP and sod
VI

C-GFP particles resembled numerous oval or horse-shoe 

shaped or dot-like, structures, roughly 0.5-1 µm, in diameter, found in each Aspergillus 

nidulans hypha (Figs. 3-2a and e and b and f, respectively).  The shape described above is 

consistent with that shown of A. nidulans fungal Golgi in transmission electron 

microscopy such as those in Figure 2c of Kaminskyj and Boire (2004).  When ST-RFP 

and sod
VI

C-GFP were visualized in the same cell, the two patterns co-localized (Fig. 3-2c 

and g) in A. nidulans hyphae (shown in DIC in Fig. 3-2d and h).  Negative controls for 

ST-RFP and An sod
VI

C-GFP fluorescence are shown in Figure 3-2i-t.  

Sod
VI

C-GFP particles were mobile, independent of hyphal extension (Figs. 3-5, 

3-6g).  Sod
VI

C-GFP particles were observed to move forward (tip directed), backwards 

(away from the tip) and sideways.  Distinctive shapes and intensity profiles permitted the 
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identification of individual sod
VI

C-GFP particles between frames, taken at 7 to 25 s 

intervals, in a time series.   

The SodVIC protein has 71 % sequence similiarity to the α-COPI protein from 

yeast Saccharomyces cerevisiae (Gerich et al. 1995; Letourneur et al. 1994), as well as 

significant sequence similiarity to the human (Chow and Quek 1996) and bovine 

(Faulstich et al. 1996; Whittaker et al. 1999) α-COPI protein.  Consistent with the 

relatively close phylogenetic relationship between the ascomycetes S. cerevisiae and A. 

nidulans, the A. nidulans SodVIC protein is closer in sequence to the S. cerevisiae 

homolog than to the human or bovine α-COPI protein (Whittaker et al. 1999).  The A. 

nidulans SodVIC protein has 71 % similarity to the S. cerevisiae homolog (Whittaker et 

al. 1999).  Because of the similarity between A. nidulans SodVIC protein and S. cerevisiae 

α-COPI, sod
VI

C will hereafter be referred to as α-COPI.  In S. cerevisiae, α-COPI has 

been shown to function in a very early Golgi compartment (Boehm et al. 1997), 

suggesting that α-COPI may also function in the Golgi, or be a reasonable proxy for 

Golgi localization.  Because of the findings of Boehm et al. (1997) and Whittaker et al. 

(1999), the consistency of the appearance of α-COPI-GFP particles (Fig. 3-2b, f) with 

that expected for fungal Golgi (Beckett et al. 1974; Kaminskyj and Boire 2004) and the 

co-localization of α-COPI-GFP and ST-RFP (Fig. 3-2c and g) we expected that the 

morphology of α-COPI-GFP and ST-RFP particles would respond to the Golgi-targeting 

inhibitor BFA (Sciaky et al. 1997) in a similar manner.   
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Figure 3-2.  Co-localization of α-2,6-sialyltransferase (ST)-RFP and α-COPI-GFP. When 

visualized using confocal epifluorescence microscopy of single near-median sections, the 

Golgi marker, ST-RFP (magenta), co-localizes with α-COPI-GFP (cyan).  ST is a 

mammalian enzyme that localizes to Golgi via a transmembrane domain (Munro 1991).  

(a-h) show Aspergillus nidulans strain AMH2 expressing both ST-RFP and α-COPI-GFP.  

(e) ST, (b and f) α-COPI, (c and g) co-localization and (d and h) transmitted light.   
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(i-l) show a wildtype A. nidulans (strain A28) hypha not transformed with α-COPI-GFP 

or ST-RFP.  m-p) show A. nidulans strain AMH2 grown in glucose and hence expressing 

ST-RFP, but not α-COPI-GFP.  (q-t) show A. nidulans strain AMH1 (not transformed 

with ST-RFP).  (i, m and q) were imaged using microscope settings for RFP detection.  

(j,-n and r) were imaged using microscope settings for GFP detection.  (k, o and s) were 

imaged using microscope settings for detection of  both the RFP and GFP signal.  (l, p 

and t) show DIC images of the hyphae shown above.  See Figure 3-3 for confirmation, by 

western blot, of 35S CaMV promoter-driven expression of ST-RFP in A. nidulans.  Bar = 

2 µm 
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Figure 3-3. Western blot for expression of α-2,6-sialyltransferase (ST)-RFP in 

Aspergillus nidulans under the control of the 35S CaMV promoter.  The primary 

antibody, anti-GFP (Santa Cruz Biotechnology Inc) was expected to bind both GFP and 

RFP.  (a) shows the protein ladder with molecular weights of bands shown at left.  (b and 

c) show protein extracted from A28, an A. nidulans strain not expressing GFP or RFP.  (d 

and (e) show protein extracted from LO1022, an A. nidulans strain expressing 

GFP-α-tubulin.  (f and g) show protein extracted from AMH2 grown with glucose so as 

to express ST-RFP under the control of the 35S CaMV promoter, but not α-COPI-GFP.  

(b, d and f) shown total protein stained with Ponceau S.  (e) I interpret the band at 

approximately 77 kD (white arrow) to represent GFP-α-tubulin and the band at 

approximately 27 kD (grey arrow) to represent free GFP.  (g) I interpret the band at 

approximately 35 kD (black arrow) to represent ST-RFP.  
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3-4.2.  Brefeldin A (BFA) alters α-2,6-sialyltransferase (ST)-RFP and 

α-COPI-GFP particle morphology in Aspergillus nidulans hyphae 

The endomembrane-targeting drug BFA has been shown to alter the 

morphology of fungal Golgi (Sciaky et al. 1997).  Hence, we expected that BFA 

treatment would alter ST-RFP particle distribution.  If α-COPI-GFP can be used as a 

proxy for fungal Golgi, we expected that BFA would alter α-COPI-GFP particle 

distribution in parallel ways.  We found that BFA altered the distribution of both ST-RFP 

(Fig. 3-4a, d, g and j) and α-COPI-GFP particles (Fig. 3-4b, e, h and k).  Within 10 min 

of BFA treatment, ST-RFP and α-COPI-GFP particles began to appear larger and more 

diffuse than they did prior to treatment (Fig. 3-4d and e).  25 min after treatment ST-RFP 

and α-COPI-GFP particles were still more diffuse and less distinct (Fig. 3-4 g and h).  40 

min after treatment ST-RFP and α-COPI-GFP particles were extremely diffuse and 

almost indiscernible (Fig. 3-4j and k).  Under all BFA treatments, ST-RFP and 

α-COPI-GFP particles co-localized (Fig. 3-4c, f, i and l).    

Based on the sequence similiarity of α-COPI-GFP with Saccharomyces 

cerevisiae α-COPI (Whittaker et al. 1999), the co-localization of ST-RFP and 

α-COPI-GFP, in untreated and BFA treated cells, the similar response of ST-RFP and 

α-COPI-GFP to BFA, and the consistency of the appearance of α-COPI-GFP with that 

expected for fungal Golgi (Akao et al. 2006; Cole et al. 2000; Kaminskyj and Boire 

2004), we propose that α-COPI-GFP can be used as a proxy for fungal Golgi.  For this 

reason, α-COPI-GFP particles will hereafter be referred to as fungal Golgi. 
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Figure 3-4.  Brefeldin A (BFA) alters α-2,6-sialyltransferase (ST)-RFP and α-COPI-GFP particle morphology in Aspergillus nidulans 

hyphae.  (a-c) The Golgi marker ST, tagged with RFP, (magenta) and the putative fungal Golgi marker α-COPI, tagged with GFP, 

(cyan) appeared as numerous, small, relatively distinct, oval or horse-shoe shaped structures before BFA treatment.  (d-f)-ST-RFP and 

α-COPI-GFP particles appeared somewhat larger, more diffuse and less numerous 10 min post treatment with BFA.  (g-i) ST-RFP and 

α-COPI-GFP particles appeared still more diffuse, elongated and less numerous 25 min post treatment with BFA.  (j-l) ST-RFP and 

α-COPI-GFP particles appeared very diffuse and almost indiscernible 40 min post treatment with BFA.  Under all conditions shown, 

ST-RFP and α-COPI-GFP co-localize.  (a, d, g and j) show ST-RFP.  b, e, h, and k show α-COPI-GFP.  (c, f, i and l) show 

co-localization of ST-RFP and α-COPI-GFP. (m) shows a DIC image of the same hypha.  Bar = 5-µm. 
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3-4.3.  Distribution of fungal Golgi  

Golgi play a central role in secretion (e.g. reviewed in Farquhar and Palade 

1998).  Secretion is needed at growing hyphal tips (reviewed in Bartnicki-Garcia 2002; 

Bartnicki-Garcia and Lippman 1977).  This tip-targeted secretion combined with the 

tip-high Golgi distribution gradient found in the hyphae of Candida albicans (Rida et al. 

2006) suggest that fungal Golgi might also display a tip-high gradient in A. nidulans 

hyphae.  Fungal Golgi were more abundant in the apical 25µm of hypA1 A. nidulans 

hyphae grown at 28 °C (which generally exceed 100 µm in length) than at 30, 35 or 

40 µm from the tip (P < 0.01; Fig. 3-5).  Fungal Golgi were more abundant in the apical 

5 µm of hypA1 A. nidulans hyphae (which are generally approximately 15 µm in length) 

grown at 42°C than at 10 or 15 µm from the tip (P < 0.01; Fig. 3-5).  This trend was also 

observed in hyphae treated with cytoskeleton-targeting inhibitors and the DMSO solvent 

control (data not shown). 

 

3-4.4.  Average forward velocity fungal Golgi at 42°C and 28°C 

Fungal Golgi were observed to move forward (tipward), backward (away from 

the tip) and sideways in all hyphae observed (see Fig. 3-1 for definition of forward, 

backward and sideways movement).  Forward velocity of fungal Golgi was faster than 

backwards or sideways under all conditions observed A. nidulans hyphae.  In addition, 

the forward (but not backward of sideways) velocity of fungal Golgi correlated with 

hyphal polarity as determined by restrictive or permissive growth temperature for the 

hypA1 mutant allele (Fig. A-3).  There was no significant relationship between hyphal 

growth rate or cytoskeletal inhibitor treatment and backwards or sideways velocity of 

fungal Golgi movement; in contrast, a significant relationship was found between hyphal 

growth rate or cytoskeletal inhibitor treatment and forward velocity of fungal Golgi 

(discussed later, section 3-4.4., pages 55 and 57; section 3-4.5., pages 58).  Furthermore, 

more fungal Golgi moved forward, than backward or sideways, although sideways 

movement has twice the angular proportion of either forward or backward movement 

(Fig. 3-5).  We chose to show only data pertaining to the forward velocity of fungal Golgi 

in order to emphasize significant trends while reducing visual clutter. 
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As fungal Golgi were found to be quantitatively more abundant at the tips of 

hypA1 hyphae grown at both 28ºC and 42ºC (Fig. 3-5), we investigated whether there 

was a relationship between the average forward velocity of fungal Golgi and average 

hyphal growth rate at 28ºC and 42ºC.  Based on the work of Kaminskyj and Hamer 

(1998) and Kaminskyj and Boire (2004), it was expected that hypA1 hyphae would grow 

more slowly at 42ºC than at 28ºC.  HypA1 Aspergillus nidulans hyphae grown at 42ºC for 

approximately 14 h before being shifted to 28 ºC show increased polarity within 1 h and 

even greater polarity after 2 h at 28ºC (Kaminskyj and Boire 2004; Kaminskyj and 

Hamer 1998; Shi et al. 2004).  The average forward velocity of fungal Golgi was 

significantly greater in hypA1 A. nidulans grown at 28ºC for 1 and 2 h after being grown 

at 42ºC for approximately 14 h than in hyphae grown at 42ºC for approximately 14 h 

without being shifted to 28 ºC (all P < 0.001) (Fig. 3-6a).  The average forward velocity 

of fungal Golgi in hypA1 A. nidulans hyphae grown at 28ºC differed significantly from 

that of hypA1 A. nidulans hyphae grown at 42ºC (P < 0.001) or grown at 42ºC for 

approximately 14 h before being grown at 28ºC for 1 h (P< 0.001) or 2 h (P = 0.01) (Fig. 

3-6a).  The growth rates of the same hyphae discussed above were measured; hyphae 

grown at 42 ºC grew the most slowly (P < 0.01; Fig. 3-6b).  Hyphal growth rate increased 

as time after growth temperature change from 42 ºC to 28 ºC increased (P < 0.01; Fig. 

3-6b).  Hyphal growth rate was greatest in the hyphae grown at 28ºC without 

pre-incubation at 28ºC (P < 0.01; Fig. 3-6b). 
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Figure 3-5.  Fungal Golgi are more abundant in the apical region of Aspergillus nidulans 

hyphae.  In hypA1 A. nidulans hyphae grown at 42˚C and 28˚C, fungal Golgi were 

significantly more abundant at the tip.  In hyphae grown at 42˚C the apical 10 µm was 

considered the tip.  In hyphae grown at 28˚C the apical 25 µm was considered the tip.  

Fungal Golgi distribution was observed in 15 hypA1 A. nidulans hyphae grown at 42˚C 

and 22 hypA1 A. nidulans hyphae grown at 28˚C. The inset image shows the relative 

morphology of A. nidulans hyphae expressing GFP tagged α-COPI grown at 28˚C and 

42˚C.  Grey bars = 42˚C; White bars = 28˚C.   
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Figure 3-6.  Average forward velocity of fungal Golgi and hyphal growth rate-increase 

significantly as hypA1 Aspergillus nidulans hyphae are downshifted from 42ºC to 28ºC.  

For each growth condition, 42ºC, 42ºC → 28ºC 1 h, 42ºC → 28ºC 2 h and 28ºC, data on 

the forward velocity of fungal Golgi a) and hyphal growth rate b) were collected in the 

same cells. All A. nidulans hyphae were grown on complete medium containing ethanol 

as a sole carbon source.  The average forward velocity of fungal Golgi was slowest in 

hyphae grown at 42ºC, significantly greater in 42ºC → 28ºC 1 h hyphae, significantly 

greater again in 42ºC → 28ºC 2 h hyphae and greatest in hyphae grown at 28ºC (all P 

<0.001).  Statistical comparisons between treatments used one-way, single factor 

ANOVA.  fG = number of fungal Golgi; N = number of hyphae.    
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3-4.5.  The relationship between the forward velocity of fungal Golgi and 

Aspergillus nidulans hyphal growth rates   

We found that forward velocity of fungal Golgi was greater in more rapidly 

growing hyphae, grown 28ºC, then in slower growing hyphae grown at 42ºC or at 42ºC 

and subsequently transferred to 28ºC (Fig. 3-6).  We explored the relationship between 

the forward velocity of fungal Golgi and hyphal growth rates in hyphal grown only at 

28ºC.  We expected that a positive correlation might be found.  A positive correlation was 

observed between the rate of fungal Golgi movement and the growth rate of A. nidulans 

hyphae when the hyphae were grown in either threonine (Fig. 3-7a) or ethanol (Fig. 

3-7b).  A positive correlation was also observed between the rate of forward-moving 

fungal Golgi and hyphal growth rate when the hyphae were treated with benomyl (Fig. 

3-7d), DMSO solvent control (Fig. 3-7e) or taxol (Fig. 3-7f).  In contrast, no correlation 

was observed between the forward velocity of fungal Golgi and hyphal growth rate when 

the hyphae were treated with latrunculin (Fig. 3-7c).  While 42% of fungal Golgi 

observed were moving forward in latrunculin treated hyphae, albeit at a reduced average 

rate relative to other growth conditions (Fig. 3-7g), none of the latrunculin treated hyphae 

observed were growing.
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Figure 3-7. Correlation between forward fungal Golgi movement and growth rates of Aspergillus nidulans hyphae and impact of 

cytoskeletal inhibitors.  a-f) all use the same x and y-axis to show the correlation between the forward velocity of fungal Golgi 

movement and hyphal growth rate for each treatment.  In same cells, g) shows the average forward velocity of fungal Golgi and 



 

 64 
 

hyphal growth rate.  There was a positive correlation between the rate of forward-moving fungal Golgi and hyphal growth rate for 

cells grown with a) nutrient broth threonine, b) CM ethanol, d) benomyl, e) DMSO solvent control and f) DMSO plus taxol.  There 

was no correlation between the forward velocity of fungal Golgi and hyphal growth rate for cells grown with c) CM ethanol 

latrunculin.   

g) White bars show average hyphal growth rate and grey bars show average forward velocity of fungal Golgi in the same cells.  Error 

bars show standard error of the mean.  A. nidulans hyphae grown on CM ethanol (13 hyphae observed) did not significantly differ in 

either the forward velocity of fungal Golgi or hyphal growth rate as compared to a control grown on nutrient broth threonine (13 

hyphae observed) (P > 0.1).  Out of the 13 hyphae grown on CM ethanol, only 3 did not grow during the period of observation.  Out of 

the 13 hyphae grown on nutrient broth threonine, 5 did not grow during the period of observation.  All inhibitor and solvent controls 

were grown in CM ethanol.  Latrunculin, benomyl and DMSO reduced the average rate of forward-moving fungal Golgi with respect 

to the CM ethanol control (P < 0.001, P = 0.01, P < 0.001).  Taxol plus DMSO increased the average rate of forward-moving fungal 

Golgi with respect to the DMSO solvent control (P < 0.01).  Latrunculin reduced hyphal growth rate as compared to the CM ethanol 

control (P < 0.01) while benomyl, DMSO and taxol plus DMSO did not (P > 0.1).  Statistical comparisons between treatments used 

one-way, single factor ANOVA.  Asterisks indicate a significant difference (P < 0.05) with respect to the corresponding control.  fG = 

number of fungal Golgi; N = number of hyphae. 
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3-4.6.  Impact of cytoskeleton-targeting drugs on forward velocity of fungal Golgi 

and hyphal growth rate  

Based on animal Golgi, which appear to depend on both the actin and MT 

cytoskeleton for movement and organization (Farah et al. 2006; Lazaro-Dieguez et al. 

2006; Papoulas et al. 2005), and plant Golgi, which appear to depend on actin and not 

MTs for motility (Boevink et al. 1998; Satiat-Jeunemaître et al. 1996), we hypothesized 

that fungal Golgi would depend on either the actin and MT or only the actin cytoskeleton 

for motility.  To test this idea, A. nidulans hyphae were treated with the 

cytoskeleton-targeting inhibitors benomyl, latrunculin, and taxol and the solvent control 

DMSO.  Benomyl and latrunculin are both well-characterized and known to have an 

impact on hyphal tip growth in A. nidulans (Chapter 2, Fig. 2-3; Horio and Oakley 2005; 

Sampson and Heath 2005) by targeting MTs and F-actin, respectively.  Taxol has been 

shown to induce polymerization of A. nidulans MTs in vitro (Yoon and Oakley 1995) but 

to our knowledge had not been studied in vivo in A. nidulans prior to our results in 

Chapter 2.   As controls, A. nidulans hyphae were grown, and the forward velocity of 

fungal Golgi measured, without inhibitor treatment.  These inhibitor-free hyphae were 

grown in CM with ethanol as the sole carbon source (Fig. 3-7b and g) and in nutrient 

broth with threonine as an alterative alcA inducer (Fig. 3-7a and g). A. nidulans hyphae 

grown on CM ethanol did not significantly differ in either the forward velocity of fungal 

Golgi or hyphal growth rate as compared to hyphae grown on nutrient broth threonine (P 

< 0.001).  The impact of cytoskeletal inhibitors and solvents controls on the forward 

velocity of fungal Golgi and hyphal growth rate was observed in the same cells.  

Latrunculin and DMSO reduced the average forward velocity of fungal Golgi with 

respect to the ethanol control (each P <0.001; Fig. 3-7g) while benomyl did to a lesser 

extent (P > 0.1; Fig. 3-7g).  Taxol plus DMSO increased the average forward velocity of 

fungal Golgi with respect to the DMSO solvent control (P < 0.01; Fig. 3-7g).   

Latrunculin significantly reduced hyphal growth rate as compared to the ethanol control 

(P < 0.01) while benomyl, DMSO and taxol plus DMSO did not (all P > 0.1; Fig. 3-7g).   

 

3-5.  Discussion 
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The Golgi complex is involved in the secretory pathway in eukaryotic cells. 

Proteins and carbohydrates destined for secretion pass through the Golgi as they move 

towards the plasma membrane (reviewed in Farquhar and Palade 1981, 1998 and 

Mogelsvang and Howell 2006), or, in fungi, primarily the growing hyphal tip (reviewed 

in Bartnicki-Garcia 2002; Bartnicki-Garcia and Lippman 1977).  Because of the 

contribution of Golgi to secretion (reviewed in Farquhar and Palade 1981, 1998 and 

Mogelsvang and Howell 2006), and the role of secretion in polar growth (reviewed in 

Bartnicki-Garcia 2002), it seems reasonable that the distribution and/or movement of 

fungal Golgi might be related to polar growth.  We set out to investigate 1) fungal Golgi 

distribution relative to the hyphal tip and polarity, 2) the movement of fungal Golgi, 

independent of tip extension, and polar growth and 3) the movement of fungal Golgi and 

the actin and MT cytoskeleton, using A. nidulans as a model system. 

 

3-5.1. α-COPI localizes to fungal Golgi  

Because ST-RFP and α-COPI-GFP co-localize in Aspergillus nidulans hyphae 

(Fig. 3-2) we hypothesize that α-COPI-GFP is associated with COPI coated fungal 

Golgi-derived vesicles and can thus be used as a proxy for fungal Golgi.  ST is a 

mammalian enzyme that contains a transmembrane domain important in Golgi retention 

(Munro 1991).  ST has been shown to localize to the animal (Munro 1991), plant (Wee et 

al 1998) and Saccharomyces cerevisiae (Schwientek et al. 1995) Golgi.  Given that, in 

the yeast S. cerevisiae, α-COPI has been shown to function in a very early Golgi 

compartment (Boehm et al. 1997) it is not unexpected that the α-COPI homolog, α-COPI, 

should appear to be a reasonable proxy for fungal Golgi in A. nidulans.  Slight 

differences in shape or intensity of ST-RFP and α-COPI-GFP localization could be 

attributed to the fact that ST is associated with the Golgi via a transmembrane domain 

(Munro 1991) while α-COPI (Chow and Quek 1996; Faulstich et al. 1996; Gerich et al. 

1995; Letourneur et al. 1994; Whittaker et al. 1999) functions as a vesicle coatomer 

(Rothman 1996), implying that α-COPI is likely to associate peripherally with Golgi 

membranes.     

The cauliflower mosaic virus 35S promoter has been shown to induce 

expression in plants (Jefferson et al. 1987; Odell et al. 1985), the yeast Saccharomyces 
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(Hirt et al 1990) and filamentous fungi including Uromyces (Li et al. 1993), Ganoderma 

lucidum and Pleurotus citrinopileatus (Sun et al. 2002) and Pleurotus ostreatus (Xu et al. 

2004).  As Saccharomyces is an ascomycete, and Uromyces, Ganoderma and Pleurotus 

are filamentous fungi, and hence related to A. nidulans, it was not unexpected that the 

cauliflower mosaic virus 35S promoter also induced expressed in A. nidulans (see 

western blot for ST-RFP protein expression, Fig. 3-3).  Therefore, ST-RFP, under the 

control the cauliflower mosaic virus 35S promoter can be used as a marker for Golgi in 

A. nidulans.   

Treatment of A. nidulans hyphae with BFA results in both ST-RFP and 

α-COPI-GFP particles increasing in diameter and becoming more diffuse (Fig 3-4).  The 

impact of BFA on α-COPI-GFP particle morphology is consistent with α-COPI-GFP 

being a reasonable proxy for fungal Golgi.  For example, treatment with BFA leads to the 

disassembly of the Golgi apparatus in animal (e.g. Fujiwara et al. 1988) or plant cells 

(e.g. Ritzenthaler et al. 2002).  Similar BFA-induced effects have been observed on Golgi 

morphology in Aspergillus niger (Khalaj et al. 2001), Schizophyllum commune (Rupeš et 

al. 1995) and Pisolithus tinctorius (Cole et al. 2000).  These effects include increased size 

of the fungal Golgi (Cole et al. 2000; Rupeš et al. 1995) and Golgi disassembly (Khalaj et 

al. 2001).  The impact of BFA treatment on ST-RFP and α-COPI-GFP particle 

morphology is consistent with Cole et al. (2000) and Rupeš et al. (1995) in that ST-RFP 

and α-COPI-GFP particles appear larger hyphae treated with BFA for 10 to 40 min (Fig. 

3-4).  The impact of BFA treatment on ST-RFP and α-COPI-GFP particles can also be 

interpreted as being consistent with Khalaj et al. (2001) in that ST-RFP and α-COPI-GFP 

particles appear more diffuse post-BFA treatment than prior to treatment (Fig. 3-4); the 

diffuse appearance of ST-RFP and α-COPI-GFP particles could indicate at least some 

degree of disassembly.  Notably, interpretation of the impact of BFA on α-COPI-GFP 

particle morphology is complicated by the fact that one of the first effects of BFA is the 

release of COPI coat proteins from the Golgi complex (Donaldson et al. 1992; Helms and 

Rothman 1992).  Thus, the fact that ST-RFP and α-COPI-GFP particles show a 

coordinated response to BFA treatment, appearing more diffuse and less punctate, 

strongly supports our interpretation of α-COPI-GFP as a proxy for fungal Golgi prior to 
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BFA treatment.  Even if the impact of BFA on α-COPI-GFP morphology does not 

demonstrate their equivalence to fungal Golgi, it does not argue against this hypothesis.   

α-COPI-GFP particles appeared as numerous oval or horseshoe shaped 

structures in each hypha (Figs. 3-2b and f; 3-3b; and 3-4 inset).  This shape is consistent 

with that shown in Figure 2c of Kaminskyj and Boire (2004).  In the filamentous 

basidiomycete Pisolithus tinctorius, many small fungal Golgi have been observed per 

hypha, each made up of two to four oval membranous compartments, which together 

outline a roughly circular region (Cole et al. 2000).  Consistent with and the observations 

of Kaminskyj and Boire (2004) and Cole et al. (2000), α-COPI-GFP particles in A. 

nidulans (Figs. 3-2b and f; 3-3b; and 3-4 inset), in Aspergillus oryzae the putative fungal 

Golgi marker, FmanIBp:GFP, was observed with fluorescent microscopy as dot-like 

structures distributed through the hyphal cytoplasm (Akao et al. 2006).  Thus, the 

appearance of GFP tagged α-COPI in living A. nidulans hyphae is consistent with that 

expected for fungal Golgi (Akao et al. 2006; Beckett et al. 1974; Cole et al. 2000; 

Kaminskyj and Boire 2004).  

 

3-5.2.  Role of fungal Golgi in hyphal growth 

There are four lines of evidence to suggest that fungal Golgi could contribute to 

polar growth in Aspergillus nidulans. 1) fungal Golgi are observed to have a tip localized 

distribution (Fig. 3-5).  2) Forward velocity of fungal Golgi was more rapid in more 

highly polarized hypA1 A. nidulans hyphae (i.e. hyphae grown at the permissive 

temperature; Kaminskyj and Boire 2004; Kaminskyj and Hamer 1998) (Fig. 3-6).  3) A 

positive correlation was observed between the forward velocity of fungal Golgi 

movement and hyphal growth rate (Fig. 3-7a-f).  4) Inhibition of the actin cytoskeleton 

reduced hyphal growth rate to zero and led to a significant decrease in the average 

forward velocity of fungal Golgi (Fig. 3-7g).  The elimination of hyphal growth in 

latrunculin treated hyphae (Fig. 3-7g) differs from results of chapter 2 (Figs. 2-3c, page 

30 and 2-4f, page 34).  This discrepancy will be discussed below (page 71). 

In fungal hyphae growth occurs at the tips or at branch sites.  It seems 

reasonable that fungal organelles involved in polar growth would be more abundant near 

the tip than subapically.  Consistent with this idea, vesicles in Neurospora crassa, 
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presumed to be destined for fusion at the growing tip, and thus involved in polar growth, 

are found with dramatically higher density near the tip (Collinge and Trinci 1974; 

Silverman-Gavrila and Lew 2003).  The Spitzenkörper is positioned immediately behind 

the growing tip (reviewed in Bartnicki-García 2002; Harris 2006).  Displacement of the 

Spitzenkörper can alter the direction of hyphal growth (reviewed in Bartnicki-García 

2002; Bracker et al. 1997; Riquelme et al. 2000).  In addition, SNAREs (soluble NSF 

attachment receptors that mediate fusion of cellular transport vesicles) involved in 

exocytosis (Gupta and Heath 2000; Weinberger et al. 2005) and ER to Golgi transport 

(Weinberger et al. 2005) have been observed to be concentrated in the apical domain of 

growing fungal hyphae (Gupta and Heath 2000).  In contrast to fungal Golgi of A. 

nidulans, which were most abundant in the apical 25 µm, Golgi in rapid freeze fixed 

specimens of the oomycete Saprolegnia ferax were absent from the apical 5 µm, and 

roughly evenly disrupted subapically (Heath and Kaminskyj 1989).  Potentially, the 

differences in Golgi distribution between A. nidulans and S. ferax can be explained by 1) 

taxonomic differences, 2) the larger size of S. ferax cells, meaning that the apical 5 µm is 

a smaller portion of the cell size, 3) differences between living and fixed cells or 4) the 

smaller number of S. ferax cells (N = 3; Heath and Kaminskyj 1989) observed compared 

to A. nidulans cells (N = 22).  The greater abundance of fungal Golgi in the apical region 

of both hypA1 A. nidulans hyphae grown at both 28˚C and 42˚C (Fig. 3-5), suggests that 

fungal Golgi could be involved in polar growth.  The contribution of fungal Golgi to 

polar growth probably, based on Golgi functions (reviewed in Farquhar and Palade 

1998), involves the processing and sorting of material to be packaged into vesicles 

destined to fuse with the hyphal tip.  

Although motility of fungal Golgi has not, to our knowledge, been previously 

demonstrated, plant Golgi have been shown to be mobile (Boevink et al. 1998; reviewed 

in Hawes and Satiat-Jeunemaître 2005).  Since both plant and fungal Golgi are small with 

respect to animal Golgi and found in multiple copies per cell (Boevink et al. 1998; Cole 

et al. 2000; daSilva et al. 2004; Saint-Jore-Dupas et al. 2004), it is not unexpected that 

fungal Golgi were also observed to be mobile independent of hyphal growth (Figs. 3-5 

and 3-6).   
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Based on observations made at 28°C and 42°C in hypA1 A. nidulans hyphae, it 

appears that forward movement of fungal Golgi is related to hyphal polarity (Fig. 3-6).  

A. nidulans strains containing the hypA1 mutant allele are a useful tool for exploring 

polarity because hypA1 has been shown to decrease hyphal polarity at 42°C while 

permitting wildtype polarity at 28°C (Kaminskyj and Boire 2004; Kaminskyj and Hamer 

1998; Shi et al. 2004).  When hypA1 A. nidulans hyphae are transferred from restrictive 

temperature (42°C) to the permissive temperature (28°C), the average forward velocity of 

fungal Golgi increased significantly while polarity and growth rate increased in the same 

cells (Fig. 3-6).  A precedent for the validity of using temperature sensitive 

morphological mutants to study factors potentially contributing to polarity has been 

shown (Gatherar et al. 2004; Harris et al. 1994, 1999; Momany et al. 1999).  For 

example, Gatherar et al. (2004) used the hbrB temperature sensitive hyperbranching A. 

nidulans mutant involved in vacuolar import, hbrB3, to investigate hyphal polarity.  

Gatherar et al. (2004) found that the hbrB3 mutant influences polarity through 

osmoregulation and cell wall biogenesis.  Harris et al. (1999) used temperature sensitive 

pod (polarity defective) morphogenesis mutants to show that polarity establishment is 

dependant on the actin cytoskeleton.  Momany et al. (1999) used temperature sensitive 

swo (swollen cell) morphogenesis mutants to suggest that polarity establishment and 

polarity maintenance are genetically separate events and that a persistent signal is 

required for apical extension in A. nidulans.   

The positive correlation between the average forward velocity of fungal Golgi 

and hyphal growth rate (Fig. 3-7a-f) suggests that forward moving fungal Golgi could 

contribute to polarity.  Forward moving fungal Golgi could act as components of the 

machinery presumably needed to transport material to the tip.  This correlation between 

the forward velocity of fungal Golgi and hyphal growth is found in cells grown in 

nutrient broth with threonine, cells grown on CM with ethanol as the carbon source and 

cells grown on CM treated with MT inhibitors or solvent controls (Fig. 3-7a-f).  The fact 

a positive correlation between the forward velocity of fungal Golgi and hyphal growth 

rate persists even in the presence of cytoskeleton-targeting drugs and under different 

nutritional conditions, could indicate that the relationship between polar growth and 

tipward fungal Golgi movement is fundamental to hyphal growth in A. nidulans, rather 
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than being dependant on certain growth conditions.  Deviations away from linear 

correlation between forward velocity of fungal Golgi and hyphal growth rate may be 

explained by the fact that growth rates of the hyphae were variable, rather than constant, 

between tip position measurements (see Chapter 2, section 2-5.2., page 37 for a 

discussion of growth rate variability in A. nidulans hyphae).  Despite deviations, a 

positive correlation between forward velocity of fungal Golgi and hyphal growth rate is 

still observed.   

The elimination of hyphal growth in latrunculin treated hyphae (Fig. 3-7g) 

differs from results of chapter 2 (Figs. 2-3c, page 30 and 2-4f, page 34).  This 

discrepancy can potentially be explained by 1) differences in the growth conditions used 

between chapters 2 and 3, 2) differences in sample size and 3) differences in data 

presentation.  First, in chapter 2, the hyphae were grown in CM glucose with 0.1% 

ethanol, while, in this chapter, the hyphae were grown in CM with 1% ethanol without 

glucose.  The impact of ethanol is discussed further in section 3-5.3., page 69.  Second, in 

Figure 2-3c, 46 hyphae were observed, while, in Figure 3-6g, only 19 hyphae were 

observed.  Third, in Figures 2-3 and 2-4 only data from growing hyphae is presented.  Of 

the 46 hyphae observed, 25 were non-growing.  Figure 2-3c shows the average growth 

rate of the 21 growing latrunculin treated hyphae.  Figure 2-4c shows a random selection 

of 4 of these 21 growing hyphae.  

The fact that latrunculin treatment both eliminated observable hyphal growth 

and significantly reduced the average forward velocity of fungal Golgi (Fig. 3-7g), 

suggests that forward-moving fungal Golgi are important in polar growth.  However, the 

fact that forward fungal Golgi movement continues in the absence of any growth could 

imply that forward fungal Golgi movement and hyphal growth are partly independent.  

Figures 3-6a-f also show non-growing hyphae in which some forward fungal Golgi 

movement was observed.  Potentially, non-growing hyphae have a ‘residual’ degree of 

fungal Golgi movement in all directions.  The rate of fungal Golgi forward movement 

increases above this ‘residual’ level with increasing hyphal growth rate and/or polarity.  

 

3-5.3. Relationship between the distribution and movement of fungal Golgi and 

the cytoskeleton  
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It seems intuitive that the motors transporting organelles (Bray 1992; reviewed 

in Heath 1994) would require cytoskeletal tracks.  As both actin and MTs form long 

polymers in vivo (reviewed in Heath 1994) it is reasonable to hypothesize that one or 

both of these cytoskeletal components could be involved in the long-range transport of 

fungal Golgi in fungal hyphae. 

The actin cytoskeleton has been shown to be essential for polar growth in A. 

nidulans (e.g. Fidel et al. 1988; Harris et al. 1994; Kaminskyj 2000; Sampson and Heath 

2005; Chapter 2, section 2-4.3., page 27; section 3-4.5., page 58), Neurospora crassa 

(e.g. Virag and Griffiths 2004), and oomycetes such as Saprolegnia ferax (Bachewich 

and Heath 1997; Gupta and Heath 1997; Heath et al. 2000).  Consistent with the above, 

depolymerization of F-actin with latrunculin leads to elimination of observable hyphal 

growth and significantly reduced the average forward velocity of fungal Golgi (Fig. 

3-7g), suggesting that fungal Golgi movement is dependant, at least in part, on the actin 

cytoskeleton.   

Treatment of A. nidulans hyphae with 1 µg/mL benomyl reduces hyphal growth 

rate, though not to a statistically significant degree, but does not reduce the average 

forward velocity of fungal Golgi (Fig. 3-7g). This suggests that intact MTs are not 

essential for motility of fungal Golgi in A. nidulans.  There are three pieces of evidence 

that MTs did, as expected, depolymerize as a result of 1 µg/mL benomyl treatment.  1) 

Treatment with 1 µg/mL benomyl eliminated all observation cytoplasmic MTs (data from 

α-tubulin-GFP A. nidulans strain; Chapter 2).  2) Overnight treatment with 1 µg/mL 

benomyl resulted in morphological changes in A. nidulans (Fig. A-4) consistent with that 

expected from higher levels of benomyl treatment (Kaminskyj, unpublished results; 

Riquelme et al. 2003; see Riquelme et al. 1998 for N. crassa data).  3) Treatment with 

1-µg/mL benomyl for more than 2 h led to virtually all hyphae being arrested at 

metaphase (data from α-tubulin-GFP A. nidulans strain; Chapter 2, section 2-4.3., page 

27), consistent with the elimination of polymerized cytoplasmic MTs (Ovechkina et al. 

2003).  Data from section 3-4.5., page 61, suggest that, in the absence of MTs, at least in 

the first 2 h, the function(s) of MTs in movement of fungal Golgi can be performed by 

actin, while those of actin cannot be performed by MTs.   
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The fact that taxol plus DMSO significantly increases the average forward 

velocity of fungal Golgi over that found in hyphae treated with the DMSO solvent control 

(Fig. 3-7g) suggests that MTs may play some role in fungal Golgi movement.  The 

presence of additional polymerized MTs, found in taxol treated A. nidulans hyphae (e.g. 

Chapter 2, section 2-4.3., page 27), could facilitate an increase in forward fungal Golgi 

movement by providing additional tracks if MTs are involved in fungal Golgi movement.     

Fungal Golgi were more abundant at A. nidulans hyphal tips (Fig. 3-5), while 

MTs are less abundant at the tip (Chapter 2, section 2-4.2., page 25), suggesting that the 

positioning of fungal Golgi may be more dependent on actin than MTs.  This hypothesis 

is supported by the fact that actin is abundant at the tips of fungal hyphae 

(Bartnicki-Garcia 2002; Heath 1994; Heath et al. 2003; Torralba et al. 1998).  

Consistently, Rida et al. (2006) showed that the actin-nucleating protein formin 

(Evangelista et al. 2002; Pruyne et al. 2002; Sharpless and Harris 2002), rather than MTs, 

is required for Golgi distribution in Candida albicans hyphae.   

When MTs or actin arrays are disrupted or altered (for example by treatment 

with latrunculin, benomyl, DMSO and taxol) and forward fungal Golgi movement 

continued, albeit at a decreased or increased rate (Fig. 3-7g), for a period of time.  

Interpreting results obtained from drug treatments is complicated by the fact that all 

chemicals have secondary effects.  Potentially the continued motility of fungal Golgi 

could be based on 1) other, non-disrupted, cytoskeletal components (i.e. actin if MTs are 

disrupted or MTs if actin is disrupted) and/or 2) cytoplasmic flow towards the growing 

tip, which could continue from the undisrupted cytoskeletal components.  In growing 

hyphae, the apical cytoplasm is presumably migrating forward as the tip extends in order 

to fill in the nascent hyphal tip.  Potentially this forward movement of the cytoplasm 

could have contributed to the higher forward velocity of fungal Golgi as compared to 

backwards or sideways velocity as well as movement in the presence of cytoskeletal 

disruption.  The migration of hyphal cytoplasm is likely almost wholly dependent on the 

actin cytoskeleton (Bray 1992; reviewed in Heath 1994; Kaminskyj and Heath 1995, 

1996), potentially explaining why latrunculin-induced actin depolymerization reduced the 

average forward velocity of fungal Golgi to a greater degree than did benomyl-induced 

MT depolymerization (Fig. 3-7g).   



 

 

 

74 
 

 

3-5.3. Impact of ethanol  

Ethanol can be used to induce expression of genes under the control of alcA 

promoter (Fernández-Ábalos 1998; Nikolaev et al. 2002; Romero et al. 2003), but the 

results presented in Chapter 2 (section 2-4.4., page 32) suggest that the impacts of ethanol 

on hyphal growth are not unimportant.  Low concentrations of ethanol altered hyphal 

growth rate dynamics, leading to increased variability (Fig. 2-4), potentially by altering 

membrane permeability, thus affecting homeostasis of ions such as Ca2+ (Torralba and 

Heath 2000).  In Neurospora crassa, dissipation of the tip-high Ca2+ gradient has been 

shown to inhibit tip growth (Silverman-Gavrila and Lew 2000).  Silverman-Gavrila and 

Lew (2001) show that alteration of the tip-high Ca2+ gradient corresponds to alterations in 

the actin cytoskeleton.  As discussed above, the migration of hyphal cytoplasm is likely 

almost wholly dependent on the actin cytoskeleton (Bray 1992; reviewed in Heath 1994; 

Kaminskyj and Heath 1995, 1996).  Also, only a slight tip-high Ca2+ gradient is required 

in N. crassa for tip growth (Silverman-Gavrila and Lew 2003), implying that a small 

change in Ca2+ gradient could alter growth.  Altered tip growth, cytoplasmic migration 

and/or actin cytoskeleton all represent significant changes in hyphal biology. 

The experiments in this chapter differ significantly from those in Chapter 2 

where 0.1% ethanol was added to CM, in addition to glucose, as a carbon source, while, 

in this work, 1% ethanol in CM is the sole carbon source.  Cells grown on threonine in 

nutrient broth did not different significantly from the ethanol in CM in terms of either 

average forward velocity of fungal Golgi or hyphal growth rate (Fig. 3-7g).   
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CHAPTER 4: Discussion  

Hyphae of filamentous fungi elongate at the tips by polar growth.  In this thesis, 

I set out to evaluate the contributions of the microtubule (MT) cytoskeleton and the 

spatial distribution and movement of fungal Golgi to polar growth in the ascomycete 

Aspergillus nidulans.   

 

4-1. The cytoskeleton and tip growth 

The cytoskeleton, two major components of which are actin and MTs, is a 

cellular ‘scaffolding’ contained within the cytoplasm. The cytoskeleton has many 

functions as part of the structural framework of eukaryotic cells including assisting in the 

maintenance of cell shape and distribution of genetic material during cell division.  I 

chose to focus on the roles of MTs in Aspergillus nidulans hyphae because 1) the role of 

MTs are less clearly understood than those of actin (see Chapter 2, section 2-1., page 18) 

and 2) a GFP tagged MT A. nidulans strain was available, facilitating study of MTs in 

vivo. 

The study of all possible contributions of MTs to polar growth is a complex 

topic.  Because of this, I set out to explore the role of MTs in tip growth by setting four 

specific goals.  1) To observe and characterize the appearance and organization of 

cytoplasmic MT populations in living A. nidulans hyphae.  2) To examine the 

relationship between hyphal growth rate and relative MT abundance in untreated A. 

nidulans hyphae.  3) To examine the effects of inhibitors and the solvents in which the 

inhibitors were dissolved on relative MT abundance and hyphal growth rate in A. 

nidulans.  4) To assess the effects of cytoskeletal inhibitors and solvent controls on 

hyphal growth rate variability in A. nidulans.  I will relate my findings to data presented 

in the literature on other hyphal organisms.  In so doing I hope to put into context my 

findings on the contribution(s) of MTs to hyphal growth in A. nidulans. 

 

4-1.1. MT organization  

MTs in living untreated Aspergillus nidulans hyphae are long and flexuous, and 

run parallel to the long axis of the cell (Fig. 2-1a).  This arrangement suggests that MTs 

could act as tracks on which material needed for polar growth could be transported.  This 
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section will examine data on the organization of MTs in other hyphal organisms beyond 

A. nidulans.  Subsequent sections will relate MT organization to the role(s) MTs have in 

polar growth in these organisms.  This may provide a more complete understanding of 

the role(s) of MTs in hyphal growth than could be obtained from looking exclusively at 

data obtained from A. nidulans.  The number and arrangement of cytoplasmic MTs varies 

significantly among filamentous ascomycetes.  For example, in A. nidulans, MTs are 

relatively few in number and are predominantly in the central, as opposed to the 

peripheral, cytoplasm (Meyer et al. 1987; Ovechkina et al. 2003; Sampson and Heath 

2005).  In N. crassa hyphae MTs are relatively numerous and are found in the both 

central and peripheral cytoplasm (Freitag et al. 2004; Mouriño-Pérez et al. 2006).  A. 

nidulans MTs are mostly parallel to the hyphal axis (Meyer et al. 1987; Ovechkina et al. 

2003; Sampson and Heath 2005), whereas N. crassa MTs are mostly parallel to the axis 

near the hyphal tip but more randomly oriented in basal compartments (Freitag et al. 

2004).   

Basidiomycete MT organization appears to more closely to resemble that of A. 

nidulans MTs.  In hyphae of the basidiomycete Pleurotus ostreatus, cytoplasmic MTs are 

observed to be long filaments oriented longitudinally within hyphae (Kaminskyj et al. 

1989; Torralba et al. 2004).  This longitudinal orientation resembles that of A. nidulans 

MTs (Fig 2-1).  The organization of P. ostreatus MTs also resembles A. nidulans MTs in 

that they circumvent the vicinity of the nucleus (Fig. 2-1; Torralba et al. 2004).  The MTs 

in hyphae of the basidiomycetes Ustilago maydis and Schizophyllum commune resemble 

those of A. nidulans in that they are also long and flexuous and run parallel to the long 

axis of the hyphae (Fuchs et al. 2005; Raudaskoski et al. 1991; 1994; Rupeš et al. 1995).  

Also, like A. nidulans MTs, S. commune MTs appear to circumvent nuclei and extend 

into the apical zone, without converging or noticeably increasing in abundance as they do 

so (Raudaskoski et al. 1991).   

When MTs of oomycete hyphae are considered, still greater diversity of MT 

organization can be observed than is observed among ascomycetes.  For example, in 

hyphae of the oomycete Phytophthora infestans, MTs are found in bundles, observed via 

immunofluorescence, extending from the nucleus-associated centers towards and away 

from the tip (Temperli et al. 1990; Uchida et al. 2005).  In addition, Saprolegnia ferax 
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and P. infestans MT density is highest near the nucleus (Kaminskyj and Heath 1994; 

Temperli et al. 1990; Uchida et al. 2005).  This contrasts with MTs in A. nidulans, which 

appear to be less numerous in the vicinity of the nuclei and to circumvent the perinuclear 

regions (Fig. 2-1).  These nucleus-circumventing MTs are likely nucleated by 

nucleus-associated organelles (reviewed in Aist and Berns 1981; Heath 1981; Heath and 

Kaminskyj 1989; Kaminskyj et al. 1989).  The nucleation of A. nidulans MTs by nucleus 

associated organelles could explain the lower abundance of MTs in the apical 5 µm; A. 

nidulans nuclei are not generally found in the apical 5 µm (e.g. Fig. 2-1a, b, d, and f 

where nuclei are interpreted as lying in the roughly oval regions from which MTs are 

largely absent).  However, A. nidulans and the oomycetes S. ferax and P. infestans MTs 

do resemble each other in that all three organisms possess longitudinally oriented MTs 

(Fig. 2-1; Kaminskyj and Heath 1994; Temperli et al. 1990; Uchida et al. 2005).  In 

addition, the number of MTs in A. nidulans, S. ferax and P. infestans decrease towards 

the tip; a few A. nidulans MTs reach the extreme apex (Chapter 2, section 2-4.1., page 

23; Heath and Kaminskyj 1989; Kaminskyj and Heath 1994; Temperli et al. 1990).  

Temperli et al. (1990) interpreted immunofluorescent observations made in P. infestans 

as MTs reaching lengths of up to 20 µm and occurring in bundles of up to 10 MTs.  

These bundles are much larger than those observed by freeze-substitution cross-section 

serial reconstruction TEM analysis of an A. nidulans hypha, which revealed that about 

half of the cytoplasmic MTs were in bundles of two or three (R. Roberson, personal 

communication).  The observations of Roberson (personal communication) are roughly 

consistent with those made the ascomycete fission yeast Schizosaccharomyces pombe; S. 

pombe MTs were observed, by electron tomography, to form bundles typically consisting 

of 4 MTs (Höög et al. 2007). However, the method of observation should be taken into 

account in interpreting the apparent differences between the sizes of bundles of MTs in A. 

nidulans and P. infestans.  The resolution of immunofluorescence (the method used by 

Tempereli et al. (1990)) is much less than that of TEM.  Because immunofluorescence 

cannot resolve individual MTs (discussed in Chapter 2, section 2-3.3., page 22), the 

numbers of MTs in bundles in P. infestans may be inaccurately estimated.  MTs have 

also been observed to converge at the tips of hyphae in the oomycete P. infestans (Uchida 

et al. 2005) and the ascomycete N. crassa (Freitag et al. 2004; Mouriño-Pérez et al. 
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2006).  This has not been observed in A. nidulans.  In the true hyphae of Candida 

albicans, which have Spitzenkörpers (Crampin et al. 2005), MTs are long, flexuous and 

run parallel to the long axis of the cell (Crampin et al. 2005) as do MTs in A. nidulans.  In 

the Chytridiomycete Allomyces macrogynus MTs are also long, flexuous, and parallel to 

the long axis of the hyphae (Bartnicki-Garcia 2002; McDaniel and Roberson 1998, 2000).  

A large number of A. macrogynus MTs also extend to the apex and co-localize with the 

Spitzenkörper (Bartnicki-Garcia 2002; McDaniel and Roberson 1998, 2000).  This MT 

arrangement contrasts with A. nidulans MTs, which are less numerous in the apical 5 µm 

than 5-20 µm from that the tip (Chapter 2, section 2-4.2., page 25) and do not appear to 

converge on the apical 1 µm in the way A. macrogynus MTs do.  Generally, MTs in 

hyphae are long, flexuous and run parallel to the long axis of the hyphae taxonomically 

diverse hyphae, potentially suggesting a function as tracks.  As there is abundant 

evidence that MTs are required for nuclear migration in filamentous fungi (Heath 1994, 

1995; Morris and Enos 1992; Morris et al. 1995; Plamann et al. 1994; Suelmann and 

Fischer 2000b), MT tracks may be largely involved in longitudinal nuclear migration 

and/or the maintenance of hyphal growth direction (see section 4-1.2.2., page 80; Fig. 

A-4), rather than the longitudinal movement of materials, such as vesicles and/or 

organelles, needed for polar growth.  The differences in MT organization between hyphal 

organisms could conceivably result in different roles for MTs in polar growth.  

Alternatively, if MTs play a relatively minor role in hyphal growth, the differences in MT 

organization between hyphal organisms may be largely irrelevant. 

  

4-1.2.  MTs and hyphal growth rate 

The arrangement of Aspergillus nidulans MTs (Fig. 2-1a) suggests that MTs 

could act as tracks on which materials, such as vesicles and/or organelles, needed for 

polar growth could be transported.  If MTs function as tracks it would be reasonable to 

expect a correlation between the relative abundance of MTs and hyphal growth rate.  In 

addition, inhibitor-induced MT depolymerization would equate to a decrease or 

elimination of these tracks.  A reduction in number of intact tracks could lead to a 

reduction in hyphal growth rate. 
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The relationship between the relative abundance of MTs and hyphal growth rate 

was investigated in A. nidulans. No correlation between relative MT abundance and 

hyphal growth rate was observed (Fig. 2-2), although non-growing hyphal had a lower 

relative MT abundance than did growing hyphae.  In addition, 1 µg/mL benomyl induced 

depolymerization of all visible MTs without a significant decrease in hyphal growth rate 

(Fig. 2-2).  However, 2.5 µg/mL benomyl significantly reduced hyphal growth rate (Fig. 

2-2), suggesting secondary cytotoxic effects of the high benomyl concentration in A. 

nidulans.  In light of the above findings, the role of MTs in growth of filamentous fungi 

requires clarification.  As the role of MTs in A. nidulans is not fully understood, I will 

discuss the contributions of MTs to polar growth in other hyphal organisms in order to 

build up a more complete picture of the roles of MTs in hyphal growth.   

MTs are reported to be important for hyphal growth in various filamentous 

fungi and other hyphal organisms, including A. nidulans (Horio and Oakley 2005; 

Konzack et al. 2005; Ovechkina et al. 2003; Sampson and Heath 2005), Neurospora 

crassa (Mouriño-Pérez et al. 2006, Riquelme et al. 2002; That et al. 1988), Ustilago 

maydis (Fuchs et al. 2005; Schuchart et al. 2005; Steinberg et al. 2001), Fusarium 

acuminatum (Howard and Aist 1977), and Candida albicans (Akashi et al. 1994).  This 

can be interpreted as being consistent with the proposal that MTs are responsible for the 

long-distance transport of post-Golgi secretory vesicles to the Spitzenkörper (a model 

suggested by Plamann et al. (1994)), whereas actin filaments control short-range vesicle 

transport from the Spitzenkörper to the plasma membrane (Crampin et al. 2005).  

However, the fact that some A. nidulans hyphae continue to grow relatively rapidly in the 

absence of MTs, as a result of 1 µg/mL benomyl treatment (Fig. 2-3), does not support 

the above proposal.  Growth in the absence of MTs has also been observed in a variety of 

other hyphal organisms.  The continuation of apical growth for several hours in the 

basidiomycete Schizophyllum commune without cytoplasmic microtubules has been 

observed and interpreted to mean that microtubules are not the major elements in hyphal 

growth (Raudasksoski et al. 1994).  Similarly, in C. albicans, nocodazole-induced MT 

depolymerization did not arrest hyphal growth (Yokoyama et al. 1990).  In contrast, 

Akashi et al. (1994) found that benomyl-induced MT depolymerization reduced the apical 

growth of C. albicans hyphae.  Furthermore, in the oomycetes Phytophthora infestans 
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and Saprolegnia ferax, nocodazole induced MT depolymerization while permitting 79 % 

(Temperli et al. 1991) and 50 % (Heath et al. 2002) of the control growth rate, 

respectively.  Clearly there is conflicting evidence as to whether MT depolymerization 

correlates with a reduction in hyphal growth rate.  This is especially notable in organisms 

such as A. nidulans in which MT depolymerization has been shown not to reduce growth 

rate (Chapter 2, section 2-4.3., page 27) despite the opposite finding in the literature 

(Horio and Oakley 2005; Konzack et al. 2005; Ovechkina et al. 2003; Sampson and 

Heath 2005).  Similarly, Yokoyama et al. (1990) found that MT depolymerization did not 

inhibit hyphal growth in C. albicans while Akashi et al. (1994) found that MT 

depolymerization did inhibit hyphal growth.  In light of these contradictory findings, I 

propose that either 1) MT depolymerization inhibits hyphal growth in some organisms, 

but not in others, and/or 2) MT depolymerization does not inhibit hyphal growth, but can 

sometimes appear to do so because of secondary cytoxic effects of the drug(s) used.  

Under the first model, different roles for MTs in different hyphal organisms are implied.  

Clearly the first model does not apply to A. nidulans because contradictory findings exist 

in the same organism.  However, the second model could apply to A. nidulans, implying 

that the reductions in hyphal growth rate observed by Horio and Oakley (2005) and 

Sampson and Heath (2005) were due to cytotoxic effects of benomyl and MBC rather 

than to a lack of MTs.  Consistent with this second model, the concentration of benomyl 

used by Horio and Oakley (2005) was equivalent to the higher benomyl concentration 

used in Chapter 2 (2.5 µg/mL).  In Chapter 2, I also observed this benomyl concentration 

to reduce hyphal growth rate in A. nidulans (Fig. 2-3).  However, I observed that 

1 µg/mL benomyl depolymerized all cytoplasmic MTs without significantly reducing 

hyphal growth rate (Fig. 2-3).  Under the second model, it is implied that the reductions 

in the rate of hyphal growth observed in N. crassa (Mouriño-Pérez et al. 2006, Riquelme 

et al. 2002; That et al. 1988), U. maydis (Fuchs et al. 2005; Schuchart et al. 2005; 

Steinberg et al. 2001) and F. acuminatum (Howard and Aist 1977) were due to cytotoxic 

secondary effects of the inhibitors used rather than to a lack of MTs.  However, it is also 

possible that polymerized MTs are not essential for tip growth in some hyphal organisms, 

such as A. nidulans, C. albicans (Yokoyama et al. 1990), P. infestans (Temperli et al. 

1991) and S. commune (Raudasksoski et al. 1994), but are required for tip growth in N. 
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crassa (Mouriño-Pérez et al. 2006, Riquelme et al. 2002; That et al. 1988) and U. maydis 

(Fuchs et al. 2005; Schuchart et al. 2005; Steinberg et al. 2001).  This might be shown to 

be the case if inhibitor concentrations minimally sufficient to induce MT 

depolymerization were shown to inhibit tip growth in N. crassa and U. maydis, but 

inhibitor concentrations insufficient to induce MT depolymerization were shown not to 

inhibit tip growth.  Polymerized MTs are non-essential for the maintenance of hyphal 

growth in many, if not all, hyphal organisms, but do likely play some role in polarity.   

 

4-1.2.1.  MTs and germination 

Germination, which involves polarity establishment, is a prerequisite to hyphal 

growth.  As polarity initiation and polarity maintenance have been shown to be separate 

processes (Momany et al. 1999), an examination of the observations recorded in the 

literature on the roles of MTs in hyphal germination may clarify the roles of MTs in 

polarity.  C. albicans can transition from yeast to hyphal growth; this transition, the 

initiation of hyphal growth, can be interpreted as being similar to germination.  Akashi et 

al. (1994) found that MT depolymerization inhibited hyphal growth initiation in C. 

albicans.  This suggests that MTs may be needed for establishment of hyphal growth in 

this species.  However, the observations in N. crassa and A. nidulans contrast with those 

made in C. albicans.  A. nidulans conidia have been observed to germinate in the 

presence of the MT-depolymerizing agent benomyl (Oakley and Morris 1980).  

Consistent with this, the rate of N. crassa conidia germination was not altered by MT 

depolymerization (That et al. 1988).  In addition, N. crassa conidia exposed to benomyl 

for 5 h formed multiple germ tubes (That et al. 1988).  This altered germination pattern 

may be linked to or share common mechanisms with MT-depolymerization-induced 

hyphal branching, such as Spitzenkörper destabilization.   

 

4-1.2.2.  MT depolymerization induces hyphal branching 

It is possible that MTs are not essential for continued hyphal growth or for 

germination, but are involved in the maintenance of appropriate directionality of the 

hyphae.  If MTs are needed to maintain directional growth, it would be expected that, in 

the absence of polymerized MTs, hyphae would branch more frequently than in control 
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hyphae.  Overnight treatment of A. nidulans hyphae with 1 µg/mL benomyl induces 

apical branching (Fig. A-4), although long-term secondary cytoxic effects are likely 

under these conditions.  Consistent with the above, in S. commune, nocodazole-induced 

MT depolymerization coincides with apical branch formation in the apical cells 

(Raudasksoski et al. 1991; 1994; Rupeš et al. 1995).  Potentially, branching could 

correlate with MT depolymerization because of a shift in the position of apical vesicles 

and/or Spitzenkörper.  Spitzenkörper are associated with MTs in at least some hyphae.  

For example, the MTs of Allomyces macrogynus converge on the tip; this convergence 

co-localizes with the Spitzenkörper (Bartnicki-Garcia 2002; McDaniel and Roberson 

1998, 2000).  In A. nidulans, the Spitzenkörper also appears, based on 

Spitzenkörper-related defects observed in MT dynein mutants, to be at least partially 

dependent on the MTs (Inoue et al. 1998).  A shift of the spatial distribution of apical 

vesicles from the center to the side of the tip has been observed in freeze-substitution 

TEM in some nocodazole-treated S. commune hyphae (Rupeš et al. 1995).  In F. 

acuminatum apical MT depolymerization is associated with the re-organization of 

vesicles from a tip-high gradient to an equal distribution along the length of hyphae 

(Howard and Aist 1980) and disappearance of Spitzenkörper (Howard and Aist 1977).  

Seiler et al. (1997) also observed that the expression of a mutation in kinesin, a motor 

protein that runs on MT tracks (reviewed in Bloom and Endow 1995; Brady 1985; 

Scholey et al. 1985; Vale et al. 1985), in N. crassa correlates with the disappearance of 

the Spitzenkörper and increased branching.  The disappearance of the Spitzenkörper 

could be related to branch formation; displacement of the Spitzenkörper has been shown 

to alter the direction of hyphal growth (reviewed in Bartnicki-García 2002).  As MT 

depolymerization appears to induce apical branching in a wide range of hyphae, it could 

be inferred that MTs are involved in the maintenance of growth directionality.  Control of 

hyphal branching is important in that, as hyphae branch, they form a mycelial meshwork, 

or colony.  Branching creates multiple hyphal tips with which the fungus can explore and 

exploit its environment in multiple directions.  Conceivably, this exploration by 

additional tips could by facilitated by individual tips growing at a variety of rates.  

Individual hyphae have been shown to grow at a variety of rates (Figs. 2-2, 2-4, 3-6a and 

b) and Kaminskyj and Heath (1992) have shown that all growing hyphal tips were not 
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equivalent. Tip growth at a variety of rates in multiple directions could allow new 

environments (i.e. directions from the colony) to be explored with only a few hyphae per 

environment at a time.  Hyphal tips have been shown to undergo age-related changes in 

their response to the environment (Kaminskyj and Heath 1992).  Thus, if the new 

environment is favorable, more energy can be devoted to its exploitation, while, if it is 

unfavorable, the fungus as a whole has lost only a small investment.      

 

4-1.3.  MTs and hyphal growth rate variability 

The A. nidulans hyphae I observed were growing under controlled and 

reproducible conditions (see Chapter 2, section 2-3., page 20).  Despite this, growth rates 

varied greatly, ranging from zero, to approximately 1.4 µm/min (Figs. 2-2 and 3-6a).  

This variability of growth rate among hyphae led me to investigate variation in hyphal 

growth rate over time in individual hyphae.  Qualitatively, MTs were observed to vary 

slightly in terms of lateral intra-hyphal position over seconds to minutes, but overall 

relative abundance remained consistent (Chapter 2, section 2-4.1., page 23).  This time 

frame is similar to the time frame over which hyphal growth rate variability was observed 

(Fig. 2-4).  I observed the growth rates of A. nidulans hyphae to vary over 15-30 s 

intervals (Fig. 2-4).  Hyphal growth rates in many other hyphal species vary over periods 

as short as 1-5 s (López-Franco et al. 1994; Sampson et al. 2003).  It is likely that the 

growth rates of A. nidulans hyphae also vary over time periods shorter than 15 s, 

although my data does not address this because of constraints on image collection and 

measurement accuracy.  In N. crassa some growth rate variations are temporally 

correlated with de novo generation and fusion of satellite Spitzenkörper (López-Franco et 

al. 1995).  However this phenomenon has not been reported for A. nidulans.   

In A. nidulans hyphae, ethanol treatment dramatically increased hyphal growth 

rate variability (Fig. 2-4).  Ethanol could alter membrane permeability to ions such as 

Ca2+ or H+.  An increase in Ca2+ concentration in the hyphal apex can enhance polarized 

tipward cytoplasmic contractions in hyphae of the oomycete S. ferax (Jackson and Heath 

1992, 1993b; Kaminskyj et al. 1992).  It is conceivable that polar contractions are 

induced in A. nidulans hyphae by ethanol-induced altered ion homeostasis.  Such polar 

contractions could contribute to hyphal growth rate variability. 
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The MT and actin cytoskeleton may also contribute to hyphal growth rate 

variability.  Sampson and Heath (2005) suggest that dynamic, predominantly elongating, 

apical MTs may be responsible for the tipward migration of vesicles, organelles and/or 

proteins.  The depolymerization of either MTs (Fig. 2-4e) or actin (Fig. 2-4f) decreased 

growth rate variability with respect to the ethanol solvent control.  If A. nidulans growth 

rate variability resembles N. crassa growth rate variability in that it is temporally 

correlated with de novo generation and fusion of satellite Spitzenkörper (López-Franco et 

al. 1995), it is possible that there is a link between the actin and/or MT cytoskeleton and 

the Spitzenkörper.  However, there is, as yet, no evidence of such a similarity between A. 

nidulans and N. crassa growth rate variability.  Actin depolymerization could also reduce 

hyphal growth variability by reducing cytoplasmic contractions similar to those observed 

by Jackson and Heath (1992).  Both Jackson and Heath (1992) and Bray (1992) suggest 

that actin is involved in hyphal cytoplasmic contractions.  In light of the importance of 

the cytoplasm in tip growth suggested by Kaminskyj and Heath (1996), it seems 

reasonable that tipward cytoplasmic contractions could contribute to hyphal growth rate 

variability. 

Fluorescence imaging of taxol treated cells had a notable impact on growth rate 

variability: the average growth rate in the first 40 s of imaging was significantly faster 

than for all subsequent intervals, although growth was not halted during the observation 

period.  It is unlikely that growth rate changes were due to drug effects prior to 

irradiation, so they appear to have been caused by the fluorescence imaging.  In addition, 

hyphal growth rate was not affected by repeated imaging for most of the treatment 

populations (Fig. 2-4a, b, d-f), suggesting an interaction between irradiation and taxol 

treatment.  The binding of taxol to MTs (Horwitz 1992; Ross and Fygenson 2003) is of 

considerable interest due to its use in cancer chemotherapy, which is being studied using 

fluorescent taxol derivatives (Li et al. 2000).  Irradiation of cells with visible light, at a 

wavelength absorbed by GFP, or another fluorescent molecule bound to taxol (see 

Chapter 2, section 2-5.2., page 38; Fig. A-2) may thus enhance the efficacy of taxol 

chemotherapy, given the use of fluorescent taxol derivatives.  Indeed, taxol has been 

patented as a radiation sensitizer (Schiff 2000). Treatment could be achieved by treating 

tissue with a fluorescent taxol derivative followed by appropriate wavelength visible light 
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irradiation.  The fact that an interaction between irradiation and taxol has an impact on 

hyphal growth rate variability suggests either secondary toxic effects or that MTs are in 

some way involved in mediating growth rate variability.   

The organization of the actin and MT cytoskeletons in P. infestans suggested to 

Temperli et al. (1990) that MTs maintain the spatial organization of hyphae and facilitate 

intrahyphal movements.  Growing hyphae maintain characteristic distributions of 

organelles (Heath 1994), which could be established and maintained by these intrahyphal 

movements.  As Golgi are important in the processing and sorting of material destined for 

secretion (e.g. reviewed in Farquhar and Palade 1981, 1998) and secretion is important in 

polar growth (e.g. reviewed in Bartnicki-Garcia 2002), it seems reasonable to investigate 

the role(s) of Golgi in tip growth.   

 

4-2.  The role of the fungal Golgi in polar growth 

Golgi are part of the secretory system (reviewed in Farquhar and Palade 1981, 

1998).  The Golgi functions in the processing proteins and lipids, which are synthesized 

in or on the ER (reviewed in Farquhar and Palade 1981, 1998).  This processing prepares 

these proteins and lipids for intra- or extra-cellular use (reviewed in Farquhar and Palade 

1981, 1998).  When fungal hyphae extend at the tip they require materials, such as wall 

components in order to grow (Bartnicki-Garcia and Lippman 1977; Bartnicki-Garcia 

2002).  These wall components are supplied by what Bartnicki-Garcia (2002) termed 

basically a polarization of the secretory apparatus of the cells.  As fungal Golgi are part 

of the secretory apparatus, I set out to explore their contribution to polar growth.  

In order to focus this work, six goals were set for investigating the roles of 

fungal Golgi in polar growth of Aspergillus nidulans.  First, to 1) determine whether the 

Golgi marker α-2,6-sialyltransferase (ST) (Munro 1991) co-localizes with α-COPI-GFP.  

After having established that α-COPI-GFP does co-localize with the Golgi marker 

ST-RFP (Fig. 3-2), this thesis 2) investigates the impact of BFA on α-COPI-GFP and 

ST-RFP morphology.  Both ST-RFP and α-COPI-GFP responded to BFA in similar 

ways.  The observed changes were consistent with the changes that might be expected of 

proxies for fungal Golgi, based on previously observed impacts of BFA treatment on 

fungi (Cole et al. 2000; Sciaky et al. 1997; Fig. 3-4).  These data provide a strong case to 
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argue that α-COPI-GFP can be used as proxy for fungal Golgi and that α-COPI-GFP 

particles can be referred to as fungal Golgi.  Next I 3) investigated the distribution of 

α-COPI-GFP in the hyphae of an A. nidulans strain with a genetic background including 

the temperature sensitive morphological mutant, hypA1.  Subsequently, I 4) explored the 

relationship between the temperature at which hypA1 A. nidulans are grown and the 

average forward velocity of fungal Golgi and growth rate in the same cells.  Finally, this 

thesis 5) investigates the relationship between hyphal growth rate and forward velocity of 

fungal Golgi and 6) the impact of MT and actin targeting drugs on the average forward 

velocity of fungal Golgi and hyphal growth in the same cells. 

 

4-2.1. Spatial distribution and motility of fungal Golgi and polar growth 

Golgi are part of the secretory system (reviewed in Farquhar and Palade 1981, 

1998).  Because of the contribution of Golgi to secretion and the role of secretion in polar 

growth (reviewed in Bartnicki-Garcia 2002) it seems reasonable that the spatial 

distribution and/or movement of fungal Golgi might be related to polar growth.  Prior to 

this thesis, little research had been done in hyphal organisms on the relationship between 

polar growth and the spatial distribution of fungal Golgi relative to the hyphal tip in 

living cells.  A. nidulans fungal Golgi have a tip-high distribution gradient in wildtype 

phenotype hyphae (Fig. 3-5).  Consistent with my observations in A. nidulans, C. 

albicans Golgi have also been observed to posses a tip-high gradient (Rida et al. 2006).  

It seems reasonable that organelles involved in secretion, which are needed at the tip for 

polar growth (Bartnicki-Garcia 2002) would be more abundant near the tip than 

subapically.  However, in the oomycete S. ferax, Heath and Kaminskyj (1989) did not 

observe Golgi or mitochondria in the apical 5 µm.  Heath and Kaminskyj (1989) did 

observe a tip high vesicle gradient in S. ferax.  The tip-high fungal Golgi gradient was not 

entirely unexpected in A. nidulans.  Because living hyphae are dynamic, intrahyphal 

movements of Golgi presumably maintain the tip-high Golgi distribution observed in A. 

nidulans and C. albicans.   

The intrahyphal movement of fungal Golgi, independent of tip extension, have 

not been observed in fungi prior to the work presented in this thesis Chapter 3, section 

3-4.1., page 50) in A. nidulans.  It also shows a clear correlation between the rate of 
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forward movement of fungal Golgi and hyphal growth rate (Fig 3-6).  Movements of 

Golgi-derived vesicles have also been observed in the cylindrical tip-growth cells of 

Chara rhizoids (Bartnik et al. 1990).  Golgi derived vesicles in Chara are up to 1 µm in 

diameter (Bartnik et al. 1990), meaning they are of similar size to fungal Golgi in A. 

nidulans (Chapter 3, section 3-4.1., page 50).  Bartnik et al. (1990) observed Chara 

Golgi-derived vesicles to be highly dynamic, undergoing movement in all directions 

relative to the tip.  The most rapid movements of Chara Golgi derived vesicles were 

observed between the ER and the elongating tip as opposed to other trajectories (Bartnik 

et al. 1990). This is consistent with my observation that forward (Fig. 3-1) fungal Golgi 

movement in A. nidulans was generally more rapid than backwards or sideways 

movement under the same conditions (Chapter 3, section 3-4.4., page 57; Fig A-3).  The 

ER aggregate (observed at the rhizoid tip by in vivo DIC microscopy) to tip movements 

of Chara Golgi derived vesicles took place at speeds up to five times as great as did 

movements on other trajectories (Bartnik et al. 1990).  This suggests that Chara Golgi 

derived vesicles are involved directly in secretion and polar growth by shuttling and 

processing material from the ER to the growing tip.  In addition, Bartnik and Sievers 

(1988) show that the Chara Spitzenkörper is composed of an aggregation of ER and 

Golgi derived vesicles.  If the positioning of the Chara Spitzenkörper (ER and Golgi 

derived vesicle aggregate) correlates with the direction of polar growth as it does in 

filamentous fungi (Bartnicki-Garcia 2002; Bracker et al. 1997; Riquelme et al. 2000), it 

could be inferred that Golgi also contribute to tip growth directionality.  An indication 

that forward fungal Golgi movement is tied to the rate of polar growth, if not the 

direction, is the fact that actin depolymerization eliminates all observable hyphal growth 

and also significantly reduces the average forward velocity of fungal Golgi (Fig. 3-7g).   

Consistent with the movement of fungal Golgi being related to polarity, I 

observed a link between polar morphology and fungal Golgi movement.  In A. nidulans 

hyphal with a hypA1 temperature sensitive morphological mutant allele, I observed that, 

as hyphal morphology became increasingly polarized with increased time at the 

permissive temperature for hypA1 (28 °C), the average forward velocity of fungal Golgi 

increased (Fig. 3-6a).  The link I observed between establishment of polar morphology 

and a component of the secretory system, fungal Golgi, is consistent with the findings of 
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Bartnicki-Garcia and Lippman (1969, 1977) in Mucor rouxii.  Bartnicki-Garcia and 

Lippman (1969, 1977) found in M. rouxii that during germination (which requires 

polarity establishment) secretion of cell wall constituents occurred much more frequently 

at the point of germ tube emergence than in other locations.  The observations of 

Bartnicki-Garcia and Lippman (1969, 1977) in M. rouxii and the tip-high gradient of 

Golgi distribution observed in A. nidulans (Fig. 3-4) and C. albicans (Rida et al. 2006) 

during polarity establishment could be interpreted as showing a correlation between 

Golgi-mediated targeted secretion and the establishment of hyphal polar morphology.   

 

4-2.2.  Relationship between MTs and fungal Golgi  

The intrahyphal spatial distribution and movement of fungal Golgi in A. 

nidulans hyphae is clearly non-random, as discussed above.  Non-random distribution of 

fungal Golgi appears to require some kind of structural framework, or ‘scaffolding’.  The 

cytoskeleton could provide such a scaffolding framework.  The MT and/or actin 

cytoskeleton could thus be involved in the positioning and/or movement of fungal Golgi.  

In A. nidulans hyphae, fungal Golgi were roughly equally abundant at 0-5, 5-10, 10-15, 

15-20 and 20-25 µm from the tip (Fig. 3-5), while MTs were less abundant in the apical 

5-µm (Chapter 2, section 2-4.2., page 25) and actin is more abundant (Bartnicki-Garcia 

2002; Heath 1994; Heath et al. 2003; Torralba et al. 1998), suggesting that actin may play 

a larger role in fungal Golgi positioning than MTs.  Actin depolymerization led to a 

decrease in the average rate of forward fungal Golgi movement (Fig. 3-7g).  In contrast, 

MT depolymerization did not alter fungal Golgi movement (Fig. 3-7g).  This suggests 

that actin may play a larger role in fungal Golgi movement than MTs.  However, 

taxol-induced stabilization of the MT cytoskeleton does increase the average forward 

velocity of fungal Golgi (Fig. 3-7g), suggesting either that there is some association 

between fungal Golgi movement and MTs or that MT stabilization facilitates fungal 

Golgi movement in some other way, such as enhancing the fungal Golgi 

movement-related functions of actin. 

My observations are consistent with observations in other hyphal organisms.  

For example, in the basidiomycete S. commune, Golgi seem to appear in association with 

cytoplasmic MTs (Rupeš et al. 1995).  However, Rupeš et al. (1995) did not note any 
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alteration in Golgi intrahyphal arrangement associated with MT depolymerization.  

Consistent with the observations of Rupeš et al. (1995) in S. commune, Heath and 

Kaminskyj (1989) found no association between S. ferax Golgi and MTs.  In Candida 

albicans the positioning of Golgi have been shown to be dependant on formin (Rida et al. 

2006).  Formin is associated with the actin cytoskeleton (Evangelista et al. 2002; Pruyne 

et al. 2002; Sharpless and Harris 2002), suggesting that, in C. albicans, Golgi are at least 

indirectly associated with actin, rather than MTs.  Taken together, observations of the 

association of fungal Golgi with the cytoskeleton in A. nidulans, S. commune (Rupeš et 

al. 1995), S. ferax (Heath and Kaminskyj 1989) and C. albicans (Rida et al. 2006) suggest 

an association between fungal Golgi and actin, rather than MTs.  

 

4-3. Future research 

Viewing the organization of A. nidulans MTs with electron tomography could 

provide information about the association of MTs with the plasma membrane (as shown 

in S. pombe by Höög et al. (2007)) or with the Spitzenkörper (as suggested indirectly via 

observations in dynein mutants in A. nidulans by Inoue et al. 1998).  An association of A. 

nidulans MTs with the Spitzenkörper could suggest a mechanism by which MTs mediate 

the direction of hyphal growth (Fig. A-4). 

It appears that fungal Golgi primarily utilize the actin cytoskeleton for 

intrahyphal motility (Fig. 3-7g).  However, increased MT-stabilization may increase the 

forward velocity of fungal Golgi.  This information could be used to develop a model for 

ER-to-Golgi export in fungal system.  In order to develop such a model, it would be 

helpful to gather data on the movement and distribution of the ER in A. nidulans.  For 

example, the response(s) of A. nidulans ER morphology, distribution and rate of 

movement could be observed in untreated and actin- and MT-inhibitor treated hyphae.  

The morphology of GFP-tagged ER (in a strain currently available) could be described 

qualitatively in terms of shape and/or degree of tubulation. Potentially, ER distribution 

could be characterized in terms of the percent hyphal area GFP-tagged ER fills in a single 

optical section at various set distances from the tip.  The degree of mobility of 

GFP-tagged A. nidulans ER could potentially be assessed using fluorescent recovery after 

photobleaching.  If an A. nidulans strain containing GFP-tagged ER were transformed 
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with ST-RFP, the relative positioning of the fungal Golgi and ER could be observed.  For 

example, it could be determined whether the fungal Golgi were frequently in contact with 

the ER, or appeared to associate preferentially with specific morphological features in the 

ER.  In addition, observations similar to those made in Chara, in which the movements of 

the Golgi with respect to the ER were noted (Bartnick et al. 1990), could be made in A. 

nidulans.  Furthermore, the dependency of Golgi-ER interactions on the actin and MT 

cytoskeleton could potentially be examined by treating A. nidulans hyphae containing 

GFP-tagged ER and RFP-tagged fungal Golgi with MT and/or actin targeting drugs.  For 

example, it could be noted whether inhibition of the actin and/or MT cytoskeleton 

reduced (or increased) the proximity of GFP-tagged ER and RFP-tagged fungal Golgi.  It 

is also possible that, during contact and/or vesicle tracking between GFP-tagged ER and 

RFP-tagged fungal Golgi, some RFP fluorescence might be observed co-distributed with 

the GFP-tagged ER.  The occurrence of such co-distribution might be influenced by the 

nature of the RFP and GFP fusion proteins.  For example, if the Golgi marker employed 

was RFP tagged α-COPI, which is peripheral to the membrane (Fig. 1-3), it might be 

more likely to be observed intermingled with the ER than would ST-RFP, which localizes 

to the Golgi via a transmembrane domain.  If co-distribution of the ER and fungal Golgi 

was observed, the proximity of the association could potentially be assessed using 

fluorescence resonance energy transfer.  In fluorescence resonance energy transfer a 

fluorophore absorbs energy at a specific wavelength and subsequently emitts energy at a 

longer wavelength.  If a second flourophore, whose excitation spectrum matches the 

emission spectrum of the first fluorophore, is sufficiently close to the first fluorophore 

(1-9nm) it will absorb the emitted energy and subsequently emitt energy at a still longer 

wavelength.  For example, if fungal Golgi were tagged with GFP and the ER were tagged 

with yellow fluorescent protein, cells could be irradiated at 488nm (the wavelength 

absobed by GFP) and yellow, rather than green, fluorescence would be observed in 

regions where the two fluorophores came into close contact. 

Studies of the maturation of A. nidulans Golgi, inspired by those conducted in S. 

cerevisae by Losev et al. (2006) and Matsuura-Tokita et al. (2006) could be conducted 

using three-dimensional time-lapse confocal microscopy.  Such experiments might 

investigate whether individual A. nidulans fungal Golgi mature during their lifetime by 
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changing their complement of resident proteins, or, alternatively, maintain a constant 

complement of resident proteins.  In order to differentiate between these two models, an 

early Golgi protein (such as α-COPI) could be tagged with GFP and a late Golgi protein 

could be tagged with RFP (based on a method suggested by Losev et al. 2006).  If 

individual fungal Golgi are stable, the relative amounts of GFP and RFP should remain 

constant, but, if individual fungal Golgi mature over time, the relative amounts of GFP 

would be expected to decrease and RFP would be expected to increase. 
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Figure A-1.  Tagging of α-tubulin with GFP does not alter hyphal growth rate.  The 

growth rates of Aspergillus nidulans hyphae transformed with GFP-α-tubulin (labeled 

GFP-MT) do not differ significantly compared to the hyphal growth rates of A28 (labeled 

untransformed), a wildtype A. nidulans strain not transformed with α-tubulin tagged with 

GFP (P > 0.1).  N = number of hyphae. 

N = 219 N = 19 
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Figure A-2.  Taxol induces sensitivity to 488 nm, but not 633 nm irradiation in 

Aspergillus nidulans hyphae with GFP tagged α-tubulin. Growth rates are calculated for 

15-30 s intervals.  Both graphs use the same y-axis.  Each line represents a different 

hyphae; only a representative subset from each treatment is shown for visual clarity.  A 

tally of growing : non-growing intervals from a larger number of cells (n) is shown for 

both treatment populations.  a) Repeated irradiation of taxol-treated A. nidulans hyphae 

with 633nm radiation (a wavelength not absorbed by GFP) does not appear to reduce 

hyphal growth rate during imaging.  b) However, repeated irradiation of taxol-treated A. 

nidulans hyphae with 488nm radiation (the wavelength that is absorbed maximally by 

GFP) does appear to reduce hyphal growth rate during imaging.  The overall average 

hyphal growth rate of taxol treated hyphae imaged with 633nm radiation does not differ 

significantly from that of taxol treated hyphae imaged with 488nm radiation in Figure 2-

3d (P = 0.5).
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Figure A-3.  Forward, backward and sideways fungal Golgi movement in Aspergillus 

nidulans hyphae.  Forward fungal Golgi movement was faster than backwards or 

sideways under all conditions observed A. nidulans hyphae.  In addition, the relationship 

between the rate of forward fungal Golgi movement and hyphal polarity (as determined 

by growth temperature, 28 ºC and 42 ºC) was not observed found to be significant for the 

relationship between the rate of backwards or sideways fungal Golgi movement and 

hyphal polarity.  

F = Forward, B = Backward, S = Sideways 
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Figure A-4. Morphological impact of overnight treatment of Aspergillus nidulans hyphae 

with 1 and 2.5 µg/mL benomyl. a) A representative A. nidulans hypha grown overnight in 

a moist chamber in liquid media containing 1 µg/mL benomyl.  b) A representative A. 

nidulans hypha grown overnight in a moist chamber in liquid media containing 

2.5 µg/mL benomyl.  Bar = 5 µm. 

a 

b 


