Farm-scale modelling of C sequestration and GHG mitigation by shelterbelts: Holos, 3PG and CBM-CFS3 simulations

Amadi, C.*, R. Farrell and K. Van Rees

Department of Soil Science, University of Saskatchewan, Saskatoon, SK. Canada.

Agriculture and Agri-Food Canada Ag

Agriculture et Agroalimentaire Canada

Centre for Northern Agroforestry and Afforestation

Environmental benefits of shelterbelts on agricultural farmlands

Shelterbelts accumulate atmospheric C in plant biomass
Increase soil carbon
Reduce N2O emissions due to deep roots
Increase soil CH4 oxidation

Knowledge gap – Changes on total farm GHG emissions due to the integration of shelterbelts is not well understood

To assess the impact of five levels of white spruce (*Picea glauca*) shelterbelt establishment on the global warming potential of a model farm after 60 years of cultivation

✓ Farm carbon change
✓ Soil N₂O emissions
✓ Soil CH₄ fluxes

Model Farm Information

□ Wheat field cultivated for 60 years

□ Farm size – 688 ha (average farm size in Saskatchewan)

Dark brown chernozem, Ecodistrict 772, Semiarid Prairies in Saskatchewan

□ Fertilizer N input – 45 kg ha⁻¹ yr⁻¹

N2O emission factors calculated using precipitation and evapotranspiration 30-year normal = 0.0047

Farm Elements — Shelterbelt area, Ecotone area and Unsheltered zone

Source: http://permaculturenews.org/2008/09/29/nitrogen-fixing-trees-the-multipurpose-pioneers/

Basic Assumptions

- □ All trees are alive and healthy
- □ Annual soil C change in unsheltered zone is negligible (i.e. has reached equilibrium)
- □ Soil CH₄ from shelterbelt is a function of root biomass
- □ Soil N2O in shelterbelts is a function of N input in foliar and below ground biomass

Total farm size (ha)	Shelterbelt area (ha)	Wooded area (%)
688	0	0
688	2.1	0.3
688	4.1	0.6
688	6.2	0.9
688	8.2	1.2

Farm GHG Models

- □ White spruce Growth 3PG Model
- **Soil C simulations CBM-CFS3 Model**
- **Soil** N₂O and CH₄ emissions Holos Model

Biomass and soil C fluxes (Mg CO₂ equivalents)

Soil C

Biomass C

Total farm C fluxes (Mg CO₂ equivalents)

Total Farm C = Biomass C + Soil C

Total farm N₂O fluxes (Mg CO₂ equivalents)

Total farm CH₄ fluxes (Mg CO₂ equivalents)

Overall Farm emissions

Total GHG emissions = Total farm C emissions + N2O fluxes + CH4 fluxes

Overall Farm emissions (Mg CO₂ equivalents)

Summary of Results

- Cumulative total farm emissions after 60 years of cultivation decreased with increasing levels of shelterbelt cover.
- □ An initial loss of soil C was compensated by biomass C associated with tree growth.
- □ Biomass and soil C accounted for 10 41% of decrease in cumulative total farm emissions
- Reduced soil N₂O as well as increased soil CH₄ sink in shelterbelts accounted for 0.5 3.2 % of decrease in farm emissions.

Acknowledgement

We appreciate support and technical assistance from D. Jackson, D. Richman, F. Krignen, M. Cooke, M. Jones, S. Poppy and C. Braaten.

Funding was provided by Agriculture and Agri-Food Canada – Agricultural Greenhouse Gas Program (AGGP).

Additional support was provided by the Saskatchewan Ministry of Agriculture – Strategic Research Program – Soils & Environment

Agriculture and Agri-Food Canada

Agriculture et Agroalimentaire Canada

Thank you