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Abstract 

 The focus of my research was on the secondary metabolites produced by 

crucifer plants under stress and their biological activity against fungi. Both cultivated 

and wild plants were investigated to isolate phytoalexins and phytoanticipins, and 

determine their metabolite profiles. 

 The first chapter of this thesis describes cruciferous plants and their most 

important pathogenic fungi. These plants are divided into three groups: oilseeds, 

vegetables and wild species. The metabolites isolated from these plants and their 

biosynthetic studies are reviewed. In addition economically important necrotrophic 

fungi such as Leptosphaeria maculans, Alternaria brassicae, Sclerotinia sclerotiorum 

and Rhizoctonia solani are also reviewed along with their phytotoxins.  

 The second chapter of this thesis describes the detection, isolation, structure 

determination, syntheses of stress metabolites and biological activity of these 

metabolites against L. maculans, S. sclerotiorum and R. solani. The investigation of 

cauliflower led to the isolation of seven phytoalexins: 1-methoxybrassitin (55), 

spirobrassinin (71), isalexin (64), brassicanal C (60), caulilexins A (106), B (107), and 

C (105). The phytoalexins caulilexins A (106), B (107) and C (105) were reported for 

the first time. Caulilexin A (106), having a disulfide bridge, showed the highest activity 

against S. sclerotiorum and R. solani among the known phytoalexins. Similarly four 

phytoalexins: 1-methoxybrassitin, brussalexins A (121), B (117) and C (118) along 

with four metabolites: ascorbigen (51), diindolylmethane (50), 1-methoxy-3,3’-

diindolylmethane (119) and di-(1-methoxy-3-indolyl)methane (120) were isolated from 
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Brussels sprouts. The phytoalexins brussalexins A (121), B (117) and C (118) are new 

metabolites. Brussalexin A (121) is the only cruciferous phytoalexins having an allyl 

thiolcarbamate functional group. The metabolite 1-methoxy-3,3’-diindolylmethane 

(119) is reported for the first time. 

 The investigation of brown mustard for polar metabolites led to the isolation of 

indole-3-acetonitrile (76) and spirobrassinin (71) along with isorhamnetin-3,7-

diglucoside (134). Investigation of wild species such as Asian mustard, sand rocket, 

wallrocket, hedge mustard and Abyssinian mustard for production of stress metabolites 

led to the isolation of indole-3-acetonitrile (76), arvelexin (84), 1,4-dimethoxyindole-3-

acetonitrile (137), rapalexins A (138) and B (142), methyl-1-methoxyindole-3-

carboxylate (59) and metabolites bis(4-isothiocyanotobutyl)-disulfide (139), 5-(3-

isothiocyanato-propylsulfanyl)-pentylisothiocyanate (136) and 3-(methylsulfinyl)-

propylisothiocyanate (135).  

 Two metabolites were also isolated from Brussels sprouts and brown mustard; 

however, these structures are not yet determined. The metabolites 1,4-

dimethoxyindole-3-acetonitrile (137) and 5-(3-isothiocyanato-propylsulfanyl)-

pentylisothiocyanate (136) are reported for the first time. 
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Chapter 1 

1. Introduction 

1.1 General objectives 

 This thesis will describe phytoalexins and phytoanticipins from both cultivated 

and wild crucifer plants. The main objectives of this research project were to isolate 

phytoalexins and phytoanticipins, and to determine their chemical structures and 

biological activities. These investigations also attempt to compare phytoalexin 

production by cultivated and wild cruciferous plants.  Cultivated plants can be 

susceptible to diseases caused by phytopathogenic fungi that cause significant crop 

losses. On the other hand, some wild species are resistant to these pathogens. 

Therefore, research that develops a better understanding of the factors potentially 

involved in the resistance of plants to fungal diseases may facilitate the control of 

fungal pathogens. 

This research involved: 

I) Isolation of active secondary metabolites from both crucifer vegetables and wild 

species. 

IΙ) Syntheses of new compounds. 

ΙΙΙ) Bioassays of new compounds to determine their antifungal activity. 
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1.2 Cruciferous plants 

 A large number of economically important plants cultivated worldwide belong 

to the Brassicaceae (Cruciferae) family.  This family contains approximately 13-19 

tribes and Brassiceae is one of these tribes (Gomez-Campo, 1980). Brassiceae contain 

3500 species distributed in 350 genera; the most economically important crops are from 

the Brassica genus. These plants are important as they are sources of edible roots, 

stems, leaves, flowers and buds as well as oilseeds (edible and industrial) and 

condiment crops. Brassica includes vegetables such as cauliflower, broccoli, kale, the 

oilseeds canola and mustard, and wild species such as rocket, hedge rocket etc. 

Epidemiological studies have shown that a high intake of brassica plant products is 

associated with a lower risk of chronic diseases, such as atherosclerosis and cancer 

(Gundgaard et al., 2002).  

1.2.1 Oilseeds, vegetables and wild species 

 Brassica oilseeds are the third most important world source of edible oil after 

soyabean and palm (Downey & Robbelen, 1989). Among the most important Brassica 

oilseeds are rapeseed (Brassica napus and B. rapa) and Indian / brown mustard (B. 

juncea) that contain 40-50% of seed weight in oil. The oilseed B. juncea (brown 

mustard) is an important source of oil in South Asia (Gomez-Campo, 1999). Brown 

mustard is resistant to drought, acidity, basicity, salinity, smog, weeds, insects and 

blackleg disease.  Some oils from Brassica species contain a significant proportion of 

erucic acid (45%, cis-13-docosenoic acid) that downgrade the oil quality to non-edible. 

The meal obtained after crushing the seeds contains glucosinolates which made it 

unsuitable as a livestock feed. As a result, rapeseed oil and meal were regarded as low 
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quality products in most countries in the western world (Stefansson, 1990). With a high 

content of erucic acid (45%), rapeseed oil was used only for plastic and lubricant 

manufacturing. Plant breeders have been able to alter the chemical composition of 

rapeseed oil and provided an oil seed containing lower erucic acid and glucosinolates. 

This double-low seed type was named as “canola” (a contraction of “Canadian” and 

“oil”). In Canada there are two types of “canola” grown: a short season, yellow seeded, 

polish (B. rapa) and a longer season, blacked seeded (B. napus) variety (Fahey et al., 

2001). Hence, canola containing less than 1% erucic acid and < 30 micromoles of 

glucosinolates per gram of meal is now economically competitive with other edible oil 

seeds. Canola oil contains higher (55-65 %) oleic acid (18:1) and lower (20-23%) 

linolenic acid compared to sunflower oil and soyabean oil. The residual seed meal 

contains 38-46% of protein which made it a source of protein supplement in animal 

feeds (Rosa, 1999).   

 The chlorophyll content of canola seeds downgrades the oil quality. Genetic 

transformation of B. napus and B. rapa seeds reduced chlorophyll, odor and colour of 

oil (Morissette, et al., 1998). Canola oil is used mainly for cooking, non-stick spray, 

margarine, and salad oil. Canola is one of the important crops in the Canadian prairies 

(Alberta, Manitoba, and Saskatchewan). Canola quality brown mustard varieties are 

also available since the genes conditioning low glucosinolate content have been 

transferred to that species (Stefansson, 1990). Hence the cultivation of brown mustard 

is growing rapidly in Canada. The mustard seeded area in Saskatchewan increased to 

242.8 thousand hectares in 2002 from 133.5 thousand hectares in 2001 (Field Crop 

Reporting Series, 2002, Statistics Canada Field Crop Reporting Series, 1992-2001). As 
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canola is one of the staples in the Canadian prairies, the reduction of yield caused by 

pathogens is a key issue in production. The main diseases of canola caused by 

pathogenic fungi are blackleg, stem rot, black spot, and root rot, as discussed in section 

1.2.2.  

 In the Brassica genus, the next most important group of crops are vegetables. 

Brassica species are the third most important source of vegetables in the developed 

countries and in third place in consumption (Rosa, 1999). Brassica vegetables include 

different types of cabbages such as white, red, savoy, swamp and Chinese, rutabaga, 

Brussels sprouts, kale, kohlrabi, turnip, radish, cauliflower and broccoli. These 

vegetables possess antioxidant, as well as anticarcinogenic activity (Verhoeven et al., 

1997). The epidemiological evidence strongly suggests that consumption of brassica 

vegetables is associated with reduced risk of cancers of the colon, rectum and thyroid 

and cancer at other sites (Gliszczynska-Swiglo et al., 2006, Mithen et al., 2000, Mehta, 

et al., 1995). Brassica vegetables are also potential sources of vitamins, carotenoids, 

and polyphenols.  

 A number of wild crucifers are reported to be resistant to cruciferous fungi. 

Wild crucifers such as Diplotaxis muralis, D. tenuifolia, Sisymbrium loeselii, 

Arabidopsis thaliana were reported as Leptosphaeria maculans resistant plants. The 

cotyledons, leaves, and stems of these plants were inoculated with L. maculans and 

their high level resistance was observed (Chen & Seguin-Swartz, 1999). Though all 

cultivated brassica species are susceptible to blackspot disease, some crucifer wild 

species such as Sinapis alba (white mustard), Camelina sativa (false flax), Alliaria 

petiolata, Barbarea vulgaris, B. maurorum and C. bursa-pastoris (Shepherd’s purse) 
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show high levels of resistance to this disease (Pedras et al., 2003, Westman & Dickson, 

1998, Chrungu, 1999). The genomic sequence of the wild crucifer A. thaliana was 

published (The Arabidopsis Genome Initiative, 2000) and other crucifer genomes are 

under investigation. 

 

1.2.2 Fungal pathogens 

 Fungal diseases are a major concern in crucifer production in many parts of the 

world.  Depending on the parasitism, fungi are divided into two groups: biotrophic and 

necrotrophic. Biotrophic fungi are unable to survive in a dead host; therefore, they keep 

hosts alive and use the host's genetic and cellular processes to multiply. On the other 

hand, necrotrophic fungi, also known as parasitoids because they use the host's tissue 

for their own nutritional benefit until the host dies from loss of needed tissues or 

nutrients. Although necrotrophic fungi are considered primitive in comparison to the 

more sophisticated biotrophs, these fungi must also be highly specialized to avoid or 

suppress host resistance responses. Leptosphaeria maculans, Rhizoctonia solani, 

Sclerotinia sclerotiorum, Alternaria brassicae and A. brassicicola are among the most 

important necrotrophic fungi of crucifers whereas Albugo candida (Pers.) Kuntze, 

Peronospora parasitica and Plasmodiophora brassicae are the most important 

biotrophic fungi of crucifers (Goyal et al., 1995, Casimiro et al., 2006). A. candida is 

responsible for white rust and staghead diseases whereas P. parasitica and P. brassicae 

are responsible for mildew and clubroot diseases to cruciferous plants respectively. 

(Gupta et al., 2006, Manzanares-Dauleux et al., 2000).  
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  Blackleg disease of cruciferous plants is caused by L. maculans (Desm.) Ces. 

et de Not., asexual stage Phoma lingam (Tode ex Fr.) Desm. Blackleg is a serious 

problem for brassica oilseed production in many parts of the world. Epidemic 

outbreaks of this disease caused yield losses up to 80% in France during the 1950s and 

in Australia during the 1970s (West et al., 2001). In Canada, losses of canola caused 

by L. maculans can reach up to 50%. It attacks leaves, cotyledons, pods, stems, and 

roots of crucifers. Blackleg spreads through canola stubble containing fruiting bodies 

pycinidia and pseudothecia. Pycinidia and pseudothecia release dispersed 

pycinidiospores and air born ascospores which infect the new healthy tissues. In its 

primary stage, the fungus grows in the intercellular space of leaves without showing 

any symptoms. After these, lesions appear on leaves and the fungus invades the stem, 

kills the stem cortex cell that leads to lodging and death of the plant. Blackleg 

infection symptoms are lesions in the leaves dotted with numerous pycnidia (Howlett 

et al., 2001). Taxonomic studies of L. maculans isolates have divided them in two 

groups. Isolates that cause stem canker on B. napus have been named aggressive, 

virulent or A-group isolates, whereas isolates causing only superficial damage have 

been named non-aggressive, PG1, avirulent or B-group isolates. Generally, virulent 

isolates grow slowly and irregularly on V-8 juice agar culture but avirulent isolates 

grow faster in this culture. In Czapek’s broth media, virulent isolates produced no 

water soluble pigments but avirulent isolates produced yellow pigments (Koch et al., 

1989). Moreover the virulent isolate cultures are characterized by sirodesmin 

production whereas sirodesmins were not detected in the cultures of avirulent isolates 

(Pedras & Seguin-Swartz, 1990). According to amplified fragment length 
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polymorphism (AFLP) analyses of different L. maculans, the B-group has been 

classified into three subgroups: NA1, NA2 and NA3 (Koch et al., 1991). Recently, 

NA1 isolate of B-group has been classified as L. biglobosa (Rimmer, 2006). Based on 

the diseases reaction isolates, A-groups are subdivided into pathogenicity groups PG2, 

PG3 and PG4 (Koch et al., 1991). PG2 and PG3 are virulent on B. napus cultivars 

Westar and Glacier, respectively, whereas PG4 is highly virulent on both Westar and 

Glacier. Another group of L. maculans isolates called, Mayfair-2 and Laird-2, were 

found in Saskatchewan. These isolates are virulent on B. juncea, but avirulent on B. 

napus and B. rapa. Mayfair-2 and Laird-2 produced metabolites similar to those of 

avirulent Polish isolates and were, therefore, assigned to the Polish isolate group 

(Pedras  & Biesenthal, 2000).   

 To invade the plant, fungi produce secondary metabolites which are toxic to 

plants, named phytotoxins. Based on the reactions of host plant, these toxins are 

classified into host-selective (HST) and non-selective phytotoxins (Graniti, 1991). 

Host-selective phytotoxins affect only the susceptible plants, but non-selective 

phytotoxins damage a broad range of plants. Phytotoxins interact with plants at the 

cellular level, causing dysfunction of plasma membrane and other organelles. They 

can also cause a rapid and dose dependent increase in electrolyte loss from cells 

(Khomoto & Otani, 1991).  Phytotoxins were isolated from A-group of L. maculans.  

The first isolated non-host selective phytotoxin was sirodesmin PL (1) and later a host-

selective phytotoxin phomalide (2) was isolated from 30-60 hour old cultures of 

blackleg fungus (Pedras et al., 1993). Another phytotoxin, depsilairdin (3) isolated 

from Laird 2 isolate, causes strong necrotic lesions only on brown mustard leaves 
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(Pedras et al, 2004b). Similarly, polanrazine A (4) and phomalairdenone A (6) were 

reported from virulent isolates, whereas phomapyrone A (5) and phomapyrone F (7) 

were also isolated from both Mayfair 2 and Laird 2. Phomapyrone A (5) was isolated 

from avirulent isolates (Fig 1, Pedras et al., 2005a). 
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Fig 1. Phytotoxin sirodesmin PL (1), phomalide (2), depsilairdin (3), polanrazine A (4), 
phomapyrone A (5), phomalairdenone A (6) and phomapyrone F (7) from 
Leptosphaeria maculans (Pedras et al., 1993, Pedras et al, 2004b, 2005a,b). 

 

 Rhizoctonia solani Khun [teleomorph: Thanatephorus cucumeris (Frank) Donk] 

fungus causes different diseases, such as damping off, root rot, wirestem, bottom rot, 
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head rot, and root rot to cruciferous crops (Kataria & Verma, 1992). R. solani primarily 

attacks below ground plant parts, such as seeds, hypocotyls and roots, but is also 

capable of infecting above ground parts of plants such as stem, fruits and leaves. 

Damping off and root rot are widespread diseases in the Canadian prairies. Damping 

off occurs when germinating seedlings are infected prior to or just after emergence. On 

hypocotyls, lesions are reddish-brown, sunken and darken. The fungus can survive in 

soil and plant residues over the winter as mycelium or sclerotia. Root rot disease is 

observed all over the Canadian prairies. In Alberta, it is recognized as a serious disease 

(Kataria & Verma, 1992). According to hyphal anastomosis behavior, R. solani have 

been divided into 12 anastomosis group named AG1-11 and BI. Depending on the 

anastomosis frequency and thiamine requirement, AG2 was divided into three 

subgroups: AG2-1, AG2-2, and AG-2-3. Based on pathogenicity and cultural 

morphology, AG2-2 was divided into two intraspecific groups (ISGs), distinguished as 

IIIB and IV. The culture type IIIB isolates can grow at 35°C, but VI isolates cannot 

(Hyakumachi et al., 1998). AG2-1 and AG4 are mainly responsible for canola and rape 

seed infection in Canadian prairies. The isolates AG2-1 are more virulent to canola and 

rapeseed plants than isolates AG4. The AG2-1 and AG4 isolates from seedlings were 

more virulent than the same isolates from adult plants (Kataria & Verma, 1992). The 

available methods to control the damping off and root rot disease are crop rotation and 

seed treatment with chemical fungicides. No phytotoxic compounds have been reported 

to date, but other metabolites (8), (9) and (10) have been reported from this fungus (Fig 

2, Pedras et al., 2005c). 
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Fig 2. Metabolites isolated from the root rot fungus Rhizoctonia solani (Pedras et al., 
2005c). 

 

 Alternaria black spot and dark leaf spot diseases are among the most destructive 

diseases of brassica crops worldwide and are caused by Alternaria spp. Four species of 

Alternaria pathogen named Alternaria brassicae, A. brassicicola, A. alternata (Fr.) 

Keissler and A. japonica Yoshii are pathogenic on Brassica spp. A. brassicae and A. 

brassicicola are the most important economically and both are found in crucifer 

growing areas. Alternaria black spot, caused by A. brassicae usually occur during 

warm and moist weather. The hosts of these species include oleiferous, vegetables, 

wild crucifers and some other non-cruciferous plants. Though both species may occur 

on the same crop, A. brassicae normally associates with the oleiferous B. juncea, B. 

napus and B. rapa and A. brassicicola associates with the vegetable B. oleracea L. 

(Humpherson-jones & Phelps, 1989). Infected seeds and infected weeds are the direct 

source of infection of the host plant. The major symptom of Alternaria species is the 

leaf spotting.  Yellow-brown spots with target-like concentric rings appear on leaves, as 

well as dark brown sunken spots on heads of Brussels sprouts, broccoli and cauliflower 

(Gomez-Campo, 1999). Although commercial Brassicas are susceptible to A. 

brassicae, they are different in the degree of susceptibility (Jasalavich, et al., 1993). B. 

juncea and B. rapa are more susceptible to A. brassicae than B. napus and B. carinata. 
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The fungus persists on crop debris and wild crucifers and/ or in seeds. In unfavorable 

conditions, e.g. winter, Alternaria species survive on the infected crop residue, wild 

species, and seeds. Hot-water treatment of seed reduces both internal infection and 

external infestation of seed, while protective fungicide treatment will only control 

spores on the seed surface. Crop rotation with non cruciferous and eradication of 

cruciferous wild species also help to control this infection (Howard et al., 1994). Four 

phytotoxins destruxin B (11), homodestruxin B (12), desmethyldestruxin B (13) and 

destruxin B2 are known from A. brassicae. The major phytotoxic compound produced 

by A. brassicae is destruxin B (14). The cyclodepsipeptide destruxin B causes chlorotic 

and necrotic foliar lesions in many species of cruciferous plants (Fig 3, Pedras et al. 

2003a). 
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Fig 3. Phytotoxins destruxin B (11), homodestruxin B (12), desmethyldestruxin B (13), 
and destruxin B2 (14) from Alternaria brassicae (Pedras et al., 2003a). 
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 Both susceptible and resistant plants transformed destruxin B (11) to hydroxydestruxin 

B (15). Then the metabolite hydroxydestruxin B (15) was further transformed by 

glucosylation and malonylation to hydroxydestruxin B-β-D-glucopyranoside (16) and 

(6’-O-malonyl)hydroxydestruxin B-β-D-glucopyranoside (17), respectively. Both 

hydroxylation and glucosylation reactions occur in susceptible and resistant plants. In 

resistant species, glucosylation was the rate limiting step, whereas in susceptible 

species, hydroxylation was the rate limiting step (Fig 4, Pedras et al., 2003a). As A. 

thaliana was the first flowering plant having the genomic sequence known, research 

possibilities to increase resistance to diseases has made the combination of this plant 

with A. brassicicola fungus an important model system for the investigation of 

polygenic resistance (Tierens, et al., 2002, Cramer, et al., 2006, Thomma, et al., 1999). 
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Fig 4. Metabolism of the host selective toxin destruxin B (11) by crucifers: 
hydroxydestruxin B (15), hydroxydestruxin B-β-D-glucopyranoside (16), and 6’-O-
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 Sclerotinia sclerotiorum (Lib.) de Bary causes different soil-borne diseases such 

as sunflower wilt, root rot of pea and timber rot of tomato, and airborne diseases such 

as stem rot of canola, cottony soft rot of carrot, lettuce drop of lettuce and white mould 

on beans (Purdy, 1979, Bardin & Huang, 2001). More than 408 species in 278 genera 

are the host of this fungus (Boland & Hall, 1994). All types of canola, brown mustard, 

rapeseed and white mustard are susceptible to Sclerotinia stem rot.  Because of 

Sclerotinia stem rot, the yield losses of canola and rapeseed can reach up to 50%. The 

initial symptom of S. sclerotiorum is the presence of cottony white mycelial growth on 

the surface of plants such as cabbage, lettuce, carrot, and canola. Within this fluffy 

white mass, dense white bodies of fungus form. These bodies become black and are 

called sclerotia. The pigment of sclerotia is due to the presence of melanin, which plays 

an important role in protecting fungi from adverse biological conditions and harsh 

environmental situations (Starratt et al., 2002). The size of sclerotia range from 2 to 10 

mm in length and can survive for 4 to 5 years in the soil (Kohn et al., 1995, Bardin & 

Huang, 2001). After the dormant period when the moisture and temperature are 

suitable, the sclerotia germinate, and subsequently, the apothecia form to liberate 

ascospore into the air. The apothecia produce enormous numbers of ascospores that are 

blown out and cause primary infections (Kohn et al., 1995). The air disseminated 

ascospores adhere to the surface of canola petals. Ascospores then invade the green 

leaves of stem and penetrate the stem to form lesions in which sclerotia eventually 

develop. Once the fungus is established, it continues vegetative growth as long as there 

is sufficient moisture.  Severely infected crops lodge and the seed pod shattered result 

in a total crop loss. Though stem rot is a crucial problem in Saskatchewan and western 
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Canada, no cultivar of canola resistant to this disease is commercially available. S. 

sclerotiorum attacks have negative impact on the quality and production of crops. Due 

to the lack of adequate genetic resistance in oilseed, disease control therefore has to 

rely largely on crop rotation, use of certified seeds, removal of infected stubble, and 

application of fungicides. A few metabolites were isolated from this fungus, but only 

two phytotoxins are reported to date. Oxalic acid (18) was reported to be a 

pathogenicity determinant for S. sclerotiorum; mutants unable to produce oxalic acid 

were not pathogenic. But in B. napus, B. juncea and S. alba, oxalic acid (18) did not 

show any phytotoxicity, whereas sclerin (19) also produced by this fungus, showed 

toxicity (Fig 5, Pedras & Ahiahonu, 2004).   
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Fig 5. Metabolites oxalic acid (18) and sclerin (19) from Sclerotinia sclerotiorum 
(Pedras & Ahiahonu, 2004). 
 

1.2.3 Secondary metabolites 

 The complete set of chemical reactions that occur in living organisms to make 

them grow, reproduce, maintain their structures and respond to their environment are 

called metabolism (Mann, 1987). Metabolism is usually divided into two categories: 

primary metabolism and secondary metabolism. Primary metabolism encompasses 
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reactions involving those compounds which are formed as a part of the normal anabolic 

and catabolic processes and take place in most cells of the organism. On the other hand, 

processes that result in many of the chemical changes of compounds and which are 

required for secondary utilities are known as secondary metabolism. Secondary 

metabolites are synthesized from primary precursors. These, secondary metabolites 

include the following: a) polyketides derived from acetate-malonate; b) terpenoids 

derived from acetate-mevalonate; c) aromatic amino acids and polyphenyles derived 

from shikimic acid; d) alkaloids derived from amino acids; e) metabolites derived from 

a/the mixed biogenetic origin (Mann, 1987). 

 

1.2.3.1 Chemical defenses 

 Pathogen attacks reduce the quality and quantity of crops all over the 

world. When plants come under fungal attack, they respond by blocking or delaying the 

advancement of the invader. These mechanisms include preformed physical and 

chemical barriers, as well as inducible defenses, such as strengthening the cell wall, the 

hypersensitive response, development of systemic acquired resistance (SAR) and 

synthesis of antimicrobial molecules (Grayer & Harbone., 1994). The physical barriers 

that plants produce are due to the lignification process in the cell wall to prevent 

pathogens from penetrating into the plant tissues. Epicuticular wax may also contribute 

to resistance.  However, some microorganisms are able to overcome the defense system 

and infect plant tissues. To fight against pathogenic fungi, plants also produce a broad 

range of secondary metabolites such as phytoanticipins (VanEtten et al., 1994) and 

phytoalexins (Pedras et al., 2003).  Two indole based compounds, 1,2-dihydro-3-thia-
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4,10,10b-triaza-cyclopenta[.a.]fluorine-1-carboxylic acid (20) and  [(1,2-Dihydro-3-

thia-4,10,10b-triaza-cyclopenta[a]fluorene-1-carbonyl)-amino]-acetic acid (21) were 

isolated from the surface of B. oleracea cv. botrytis leaves; these compounds 

stimulated very effectively oviposition in the cabbage root fly, Delia radicum (Fig 6, 

Hurter et al., 1999). 

 

N

N

N
S

RO

20 R = OH
21 R = NHCH2COOH 

Fig 6. Metabolites 1,2-dihydro-3-thia-4,10,10b-triaza-cyclopenta[.a.]fluorine-1-
carboxylic acid (20) and [(1,2-Dihydro-3-thia-4,10,10b-triaza-cyclopenta[a]fluorene-1-
carbonyl)-amino]-acetic acid (21) are isolated from cauliflower infested by Delia 
radicum (Hurter et al., 1999) 

 

Phytoanticipins 

 The term ‘phytoanticipin’ was proposed by Mansfield and defined as   “low 

molecular weight antimicrobial compounds that are present in the plant before 

challenge by microorganisms or are produced after infection solely from preexisting 

constituents” (VanEtten, et al., 1994). A large number of constitutive plant compounds 

have been reported to have antifungal activity. These compounds include major classes 

of secondary metabolites such as terpenoids, long chain fatty acids, saponins, phenols 

and phenolic glycosides, unsaturated lactones, sulfur compounds, cyanogenic 
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glycosides, and glucosinolates (Osbourn, 1996a). These secondary metabolites are 

present in a wide range of plant species. A wild species, Crambe abyssinica 

(Abyssinian mustard), is getting more attention due to production of triglycerides 

(refined oil), erucic acid, behenic acid, erucyl acid wax esters and fatty acids. Two 

constitutive compounds crambene (28) and phenylethyl cyanide isolated from seed 

meal of Abyssinian mustard are used as insecticides against house fly (Bondioli, et al., 

1997, Peterson et al., 2000, Niedoborski, et al., 2001). It was shown that two 

compounds from Brussels sprouts crambene (28, Fig 8) and indole-3-methanol elevate 

quinine reductase, glutathione transferase (phase 2 detoxification enzymes) and 

CYP1A activity individually and synergistically (Staack et al., 1998). More than 120 

glucosinolates were found in 16 plant families (Hailkier, 1999). Glucosinolates are 

present in all investigated brassica species and form the main class of phytoanticipins 

in the crucifer family. Brassica vegetables can contain glucosinolates up to 1% of dry 

weight (Rosa et al., 1997). The structure of glucosinolates contains a β-D-

thioglucoside-N-hydroxysulfate group and a side chain (Lee et. al., 2006). Most of the 

side chains are either straight or branched carbon chains having double bonds, 

hydroxyl, carbonyl or various sulfur groups. One third of all glucosinolates side chains 

contain a sulfur atom in various oxidation states such as methylthioalkyl-, 

methylsulfinylalkyl or methylsulfonylalkyl. Twenty three different glucosinolates were 

reported from A. thaliana (Haughn et al., 1991). Glucosinolates are divided into three 

groups depending on the side chain nature e.g. aliphatic, aromatic and heteroaromatic. 

Glucosinolates are derived mainly from seven amino acids (alanine, valine, leucine, 

isoleucine, phenylalanine, tyrosine and trytophan). Glucosinolates have been used as 
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taxonomic markers to support evolution based classification of plants. For example, 

methyl glucosinolate is absent in the Brassicaceae, but is a distinctive component in the 

Capparaceae family. Some glucosinolates such as glucobrassicin (22), hydroxylGluco- 

brassicin (23), 4-methoxty glucobrassicin (24), neoglucobrassicin (25), aliphatic 

glucosinolate and others (Fig 7) were reported from cauliflower (Tian et al., 2005). 

Aliphatic and aromatic glucosinolates, and nitrile compounds were reported from 

Brussels sprouts (B. oleracea var. gemmifera). These are sinigrin (29), glucobrassicin 

(22), allylnitrile (30) and sulforaphane (31) (Liang et al., 2005, Smith et al., 2005). 

Glucobrassicin (22), neoglucobrassicin (23) and sulforophane (31) were reported at 

high levels in broccoli (Fig 7, Fig 8, Fahey, et al., 2001).  
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Fig 7. Phytoanyicipins glucobrassicin (22), hydroxyglucobrassicin (23), 4-methoxty 
glucobrassicin (24) and neoglucobrassicin (25) from cauliflower (Tian et al., 2005). 
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Fig 8. Phytoanticipins crambene (28), sinigrin (29), allylnitrile (30), sulforaphane (31) 
from Brussels sprouts (Liang et al., 2005, Smith et al., 2005). 

 

 

  In 1962, Underhill and co-workers first reported that glucosinolates are 

biosynthesized from amino acids. Feeding experiments with radioactive 14C labelled 

amino acids and 14C-acetate to horseradish, nasturtium and watercress resulted in the 

incorporation of 14C into glucosinolates (Underhill et al., 1962, Chisholm & Wetter., 

1964).  Glucosinolate biosynthesis involves three major steps: 1) side chain 

elongation, 2) glycone biosynthesis and 3) side chain modification. The first stage of 

biosynthesis of glucosinolates involves the conversion of amino acids to aldoximes 

(32) (Mikkelsen, et al., 2002, Mithen et al., 2000). It is believed that aldoximes (33) 

are converted to S-alkyl-thiohydroxamic acid (35) by insertion of sulfur from cysteine 

through nitro intermediates 34 (Mikkelsen, et al., 2002). S-glycosyl transfer from 

UDP-glucose and sulfonation by the high energy sulfate donor, 3’-phosphoadenosine-

5-phosphosulfate (PAPS) is known to occur. S-Glycosylation of thiohydroximic (36) 

is catalysed by UDP:thiohydroximate glucosyltransferase to yield a 

desulfoglucosinolate (37) (Guo & Poulton, 1994). The final step is the sulfation of 
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desulfoglucosinolate (37) through a soluble 3’-phosphoadenosine-5-phosphosulfate 

(PAPS): desulfoglucosinolate sulfotransferase to yield a glucosinolate (38, Fig 9). 
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Fig 9. Glucosinolate biosynthetic pathway (Mikkelsen, et al., 2002, Fahey, et al., 
2001). 
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 The glucosinolate degradation product allyl isothiocyanate is largely 

responsible for the flavor of mustard and horseradish as well as bitter taste for 

condiment crops, whereas the glucosinolates sinigrin and progoitrin confer bitterness 

on Brussels sprouts and other Brassica vegetables (Mithen et al., 2000). The 

glucosinolates are converted to isothiocyanates upon wounding of the plant, by 

mastification of fresh vegetables, or by tissue damage (Rosa et al., 1997). The tissue 

damage releases a glycoprotein myrosinase (EC 3.2.3.1) which coexist with 

glucosinolates, but are physically separated from each other. It was thought that 

myrosinase is localized in specialized ‘myrosin’ cell (Drozdowska et al., 1992). It has 

been suggested that myrosin cells are formed at an early state of leaf development and 

then no new cells are produced (Pocock et al., 1987). Although this enzyme is present 

in dormant mature seeds, it is normally sequestered within aqueous vacuoles of cells 

(Bones & Rossiter, 1996, 2006). 
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Fig 10.  Scheme of glucosinolate hydrolysis (Mithen et al., 2000). 
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 When tissue disruption occurs, glucosinolates from vacuoles are released along 

with myrosinase, which results in the release of glucose to leave unstable 

intermediates, thiohydroxamate-o-sulfonates (40). This intermediate further degrades 

to produce isothiocyanates (41), nitriles (42) and thiocyanates (43, Fig 10).  Lossen-

type rearrangement of thiohydroxamate-O-sulfonates (40) produces isothiocyanates 

(Mithen et al., 2000). The enzyme catalyzed hydrolysis of glucobrassicin (44) yields 

unstable thiohydroxamate-O-sulfonates (45).  At pH 7, this intermediate further 

degrades to the corresponding alcohol and may condense to form diindolylmethane; 

however, in more acidic pH 3, it gives indolyl-3-carbinol (49), indolyl-3-acetonitrile 

(46) and elemental sulfur (Fig 11, Agerbirk et al., 1998). In reaction with L-ascorbate, 

the intermediate 48 produced ascorbigen (51). Though antifungal metabolites indolyl-

3-acetonitrile (46) and elemental sulfur are released from glucobrassicin (44) in 

response to stress, these are phytoanticipins because the substrate and myrosinase 

enzyme are present in the healthy cell. 
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Fig 11. Myrosinase-catalysed hydrolysis of glucobrassicin (Agerbirk et al., 1998). 
 

 Although glucosinolates are known as flavor precursors, the main reason of 

glucosinolate research stemmed from the adverse effect that these compounds had on 

animals. However, studies showed that the inclusion of high glucosinolate meal 

reduced feed intake, enlarged thyroid, caused abnormalities of liver and kidneys, and 

reduced growth and reproductive performance (Mawson et al., 1993, Mawson et al., 

1994, Mawson et al., 1994a, Bell, 1993). Studies on the metabolic detoxification of 

carcinogens showed three stages of detoxification: activation of carcinogen by 

oxidation (Phase I); conjugation to a more polar strcuture (Phase II); and the eventual 

excretion and transport out of the cell (Phase III). Brassica diets have been shown to 

increase the oxidative metabolism and to facilitate glucuronide conjugation (Phase II) 

(Johnson et al., 1995, Talalay et al., 1995).  It was shown that the glucotropaeolin 
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breakdown product, benzyl isothiocyanate inhibited the induction of mammary tumours 

by 7,12-dimethylbenzlanthracene (DMBA) when administered orally to rats two hours 

before treatment with the carcinogen (Wattenberg 1977). The major glucosinolate 

breakdown products in the leaves of Brassica plants are isothiocyanates. Two 

isothiocayantes allyl-(2-propenyl)isothiocyanate and 2-butenylisothiocyanate were 

found to be highly toxic to fungi. The fact that glucosinolate breakdown products are 

also effective against some pathogens, which are non pathogenic to Brassica, led to 

their use as fungicides for control of cereal diseases and post harvest pathogens of fruits 

and vegetables (Osbourn, 1996). 

Phytoalexins 

 The term ‘phytoalexin’ was first introduced by Muller and Borger (1940) from 

the Greek words φυτον = plant and αλεξειν = to defend. Probably phytoalexin 

production is one of the most studied defense responses of plants to microbial infection. 

Over a period of time, the definition of the term has been modified according to new 

evidence. The widely accepted definition is that phytoalexins are low molecular weight 

secondary metabolites locally produced de novo in plants at the time of both biotic and 

abiotic stress (Pedras et al., 2003). This is why antifungal peptides and proteins 

produced by plants do not belong to this group. At the beginning, phytoalexin research 

was devoted to find novel natural fungicides, but the antifungal activities of most 

phytoalexins were much lower than that of commercial fungicides. Phytoalexins from 

Crucifers have been studied for over two decades (Pedras et al., 2006). These works 

covered mainly vegetables, wild plant species and most of the brassica oilseed plants.  
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Fig 12. Phytoalexins from cultivated crucifers:  brassinin (52), 4-methoxybrassinin 
(53),  1-methoxybrassinin (54), 1-methoxybrassitin (55), brassitin (56), wasalexin A 
(57), brassicanal A (58), methyl 1-methoxyindole-3-carboxylate (59), brassicanal C 
(60), brassicanate (61), cyclobrassinin (62), cyclobrassinin sulfoxide (63), isalexin (64), 
dioxibrassinin (65), 1-methoxybrassenin A (66), 1-methoxybrassenin B (67), dehydro-
4-methoxyclobrassinin (68), rutalexin (69), brassicanal B (70), spirobrassinin (71), 1-
methoxyspirobrassinin (72),  1-methoxyspirobrassinol (73), 1-methoxyspirobrassinol 
methyl ether (74), wasalexin B (75), indolyl-3-acetonitrile  (76) and brassilexin (77).  
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A significant characteristic of phytoalexins reported form crucifers is that they are 

indole derived compounds (Pedras et al., 2003, 2007, Fig 12). 

 The first phytoalexins isolated from cruciferous plants were brassinin (52), 

cyclobrassinin (62) and 1-methoxybrassinin (54). These three phytoalexins were 

isolated from Chinese cabbage Brassica campestris L. ssp pekinesis elicited by P. 

cichori (Takasugi et. al. 1986). Since then, more than thirty phytoalexins were reported 

from 25 species (Pedras et al., 2003, Pedras et al., 2007). Out of all, 23 phytoalexins 

(52-77) were isolated from 12 cultivated plants (Fig 12) and 8 phytoalexins were 

isolated only from 13 wild species. Some phytoalexins such as spirobrassinin (71), 1-

methoxyspirobrassinin (72), indolyl-3-acetonitrile (76), brassilexin (77), cyclobrassinin 

(62), cyclobrassinin sulfoxide (63), 1-methoxybrassinin (55), and wasalexin A (57) 

were reported from both cultivated and wild species. Five phytoalexins brassilexin 

(77), cyclobrassinin (63), cyclobrassinin sulfoxide (64), indole-3-acetonitrile (76) and 

spirobrassinin (71) were isolated from brown mustard elicited with A. bassicae and L. 

maculans (Pedras et al., 2002a). From Thlaspi arvense another phytoalexin was 

isolated known as wasalexin A (57) which was reported before from Wasabi japonica 

syn. Eutrema wasabi (Pedras et al., 1999a, 2004c). The two species are from different 

genus, but both of them are resistant to L. maculans.  Rutalexin (69) was isolated from 

kohlrabi, but the wrong structure was assigned (Gross et al., 1994, Pedras et al., 

2004g). On the other hand, erucalexin (85), isolated from Erucastrum gallicum (dog 

mustard), is a unique phytoalexin having a carbon substitutent at C-2 position instead 

of the common C-3 substitution observed in all other crucifer phytoalexins (Fig 13, 

Pedras et al., 2006, 2000c).  
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Fig 13. Phytoalexins from wild crucifers: camalexin (78), 1-methylcamalexin (79), 6-
methoxycamalexin (80), sinalbin B (81), sinalbin A (82), sinalexin (83), arvelexin (84), 
erucalexin (85). 

   

 Brassinin (52) is an important phytoalexin, not only for its antifungal activity, 

but also because it is a precursor of many phytoalexins (Pedras et al., 2007). Like 

some pesticides and herbicides, brassinin has a dithiocarbamate group. Brassinin (52) 

was predicted to derive from glucobrassicin (22). Studies on UV-irradiated turnip 

tissue that had been fed deutereted compound showed that both brassinin (52) and 

glucobrassicin (22) are biosynthesized from S-tryptophan; however, glucobrassicin 

was not a precursor of brassinin (52) (Pedras et al., 2007). The methyl group of 

brassinin (52), cyclobrassinin (62), and spirobrassinin (71) were originated from (S)-

methionine. Incorporation studies with 35S-cysteine showed that the thiocarbonyl 

sulfur atom of brassinin originated from (S)-cysteine. Administered [methyl 2H3]- 

brassinin to UV-irradiated turnip roots indicated effective incorporation of deuterium 
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into spirobrassinin (71) and cyclobrassinin (62) (Monde et al., 1994). Feeding 

experiments were conducted to determine whether cyclobrassinin (62) was a precursor 

of spirobrassinin. However, [methyl 2H3]- cyclobrassinin was not incorporated into 

spirobrassinin. Experiments done by Pedras and co-workers using Brassica carinata, 

elicited with L. maculans (blackleg fungus), showed that brassilexin (77) is formed 

from brassinin (52) through cyclobrassinin (62) (Pedras et al., 2002a, 2003). These 

results demonstrated that brassinin (52) is an advanced precursor of both 

cyclobrassinin (62) and spirobrassinin, and that spirobrassinin is biosynthesized 

directly from brassinin (52). Furthermore brassilexin (77) is biosynthesized from 

brassinin (52) via cyclobrassinin (62). Further studies have established that (S)-

tryptophan (86) is converted to brassinin (52) via indole-3-acetaldoxime (87). It also 

demonstrated that indole-3-acetaldoxime (87) is the precursor of both brassinin (52) 

and glucobrassicin (Pedras et al. 2002a). Rutalexin (69), erucalexin (85) and 1-

methoxyspirobrassinin (72) originated from cyclobrassinin (62) (Fig 14, Pedras et al., 

2004f, 2004g, Pedras & Okinyo, 2006a). 
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Fig 14. Biosynthesis of major cruciferous phytoalexins (Pedras et al., 2007). 

 

 Recently, crucifer phytoalexins are getting more attention due to their 

chemopreventive activity (Mezencev et al., 2003). It was found that brassinin, 

cyclobrassinin and spirobrassinin inhibited the formation of 7,12-dimethylbenz 

(a)anthracene-induced mammary lesions in a dose-dependent manner (Mertha et al., 

1994). In other experiments, it was found that 1-methoxybrassinin exerted the potent 

cytotoxic and apoptosis-inducing activity in Jurkat cells (Pilatov et al., 2005).  

Camalexin (78) is one of the most discussed phytoalexins because the genome 

sequence of camalexin producing plant A. thaliana is published (The Arabidopsis 

Genome Initiative, 2000). It was shown that if the approximate concentration of 

camalexin reached 50-100 µM in necrotic area of wild type A. thaliana, the spore 
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germination and germ-tube elongation of most of the Alternaria reduced significantly 

(Sellam et al., 2007).  

 

Detoxification of cruciferous Phytoalexins  

 Phytoalexins can inhibit the plant pathogen but pathogens can circumvent 

these plant chemical defenses through metabolic detoxification (Pedras & Ahiahonu, 

2005). As a result plants become susceptible to the fungus. Crucifer phytoalexin 

detoxifications were studied using three cruciferous phytopathogenic fungus such as L. 

maculans, S. sclerotiorum, and R. solani (Pedras & Ahiahonu, 2005).  
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Fig 15. Detoxification of brassicanal A (58) by Leptosphaeria maculans (Pedras & 
Ahiahonu, 2005). 

 

 Brassicanal A (58) was biotransformed by L. maculans to three metabolites: 

brassicanal A sulfoxide (86), 3-hydroxymethylindolyl-2-methylsulfoxide (87), and 3-

methylindolyl-2-methyl-sulfoxide (88). The first step in the transformation of 

brassicanal A (58) involved oxidation of SCH3 group yielding brassicanal A sulfoxide 

(86), which was subsequently reduced at aldehyde group to 3-hydroxymethylindolyl-

2-methylsulfoxide (87) and then further to the 3-methylindolyl-2-methyl-sulfoxide 

(88, Fig 15). The biotransformation of brassicanal A (58) was shown to be a 
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detoxification because the transformed metabolites (86-88) were significantly less 

antifungal to L. maculans than brassicanal A (58) (Pedras & Ahiahonu, 2005).   
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Fig 16. Detoxification of brassilexin (77) and sinalexin (83) by Leptosphaeria 
maculans (Pedras & Suchy, 2005). 

 

 The transformation of brassilexin (77) and sinalexin (83) by L. maculans, 

involved reduction of isothiazole ring yielding 3-aminomethyleneindole-2-thione (89) 

and 1-methoxy-3-aminomethyleneindole-2-thione (92) respectively. Subsequently 3-

aminomethyleneindole-2-thione (89) was hydrolyzed to 2-sulfanylindolyl-3-

carbaldehyde (90) followed by oxidation to 3-formylindolyl-2-sulfonic acid (91). 1-

Methoxy-3-aminomethyleneindole-2-thione (92) was found to decompose in aqueous 

solution (Fig 16). The antifungal activities of brassilexin (77) and its metabolites 

indicated that brassilexin (77) was more antifungal to L. maculans than any of the 

products 89-91 ((Fig 16, Pedras & Suchy, 2005b). 

 The biotransformation of brassinin (52) by blackleg fungus (L. maculans) and 

stem rot fungus (S. sclerotiorum) was investigated (Pedras & Ahiahonu, 2005, Pedras 
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et al., 2004). It was reported that L. maculans transformed brassinin (52) into indole-3-

carboxaldehyde (94) and indole-3-carboxylic acid (95) via indole-3-methanamin (93, 

R=H) and Nb-acetyl-3-indolyl-methanamine (93, R=Ac) (Fig 17). S. sclerotiorum 

metabolized brassinin (52) to 1-β-D-glucopyranoylbrassinin (96), a rather different 

pathway as shown in (Fig 17). 
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Fig 17. Detoxification of brassinin (58) by i) Leptosphaeria maculans and ii) 
Sclerotina sclerotiorum (Pedras & Ahiahonu, 2005, Pedras et al., 2004). 

 

 The biotransformation of camalexin (78) was investigated in mycelial cultures 

of S. sclerotiorum and R. solani. Camalexin (78)) was biotransformed by R. solani to 

two metabolites: 98 and 99 via 5-hydroxycamalexin (97). On the other hand S. 

sclerotiorum metabolized camalexin (78) to 6-oxy-(O-β-D-glucopyranisyl) camalexin 
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(101) via 6-hydroxycamalexin (100). The biotransformed products 97-101 were found 

to be significantly less toxic than camalexin (78) (Pedras & Ahiahonu, 2005, 2002).    
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Fig 18. Detoxification of camalexin (78) by i) Rhizoctonia solani and ii) Sclerotinia 
sclerotiorum (Pedras & Ahiahonu, 2005). 

 

 Both virulent and avirulent isolates of L. maculans metabolize cyclobrassinin 

(62) differently.  Cyclobrassinin (62) was biotransformed by virulent isolates of L. 

maculans to the phytoalexin dioxybrassinin (65); avirulent isolates of L. maculans 

produced a different phytoalexin brassilexin (77), via an unstable 3-

methylaminoindolyl-2-thione (89) (Fig 19, Pedras & Ahiahonu, 2005).   
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Fig 19. Detoxification of brassinin (58) by i) Leptosphaeria maculans virulent and ii) 
L. maculans avirulent (Pedras & Ahiahonu, 2005, Pedras & Okanga, 1999) 

 

The detoxification pathways of cyclobrassinin (62) by R. solani and S. sclerotiorum 

are different from the detoxification pathways of cyclobrassinin (62) by L. maculans. 

It was reported that R. solani transformed cyclobrassinin (62) into 5-

hydroxybrassicanal A (103) via 2-sulfanylindolyl-3-carbaldehyde (90) and brassicanal 

A (58). S. sclerotiorum metabolized cyclobrassinin (62) to 1-β-D-

glucopyranoylcyclobrassinin (104) (Fig 19, 20, Pedras et al., 2004a, Pedras & 

Ahiahonu, 2005).  
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Fig 20. Detoxification of cyclobrassinin (62) by i) Rhizoctonia solani and ii) 
Sclerotina sclerotiorum (Pedras et al., 2004a, Pedras & Ahiahonu, 2005) 
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1.3 Conclusion 

Fungicides are much more active against pathogens than phytoalexins or 

phytoanticipins. Fungicide utilization is popular all over the world. But it is really hard 

to know the exact time of fungal attack to the plants and the amount of fungicide 

which needs to be applied. Moreover, these chemicals have adverse effects on the 

environment, so to save the environment from pollution, it is urgently necessary to 

produce disease resistant cultivars to reduce fungicide application. Understanding the 

defense response of both resistant and susceptible plants will assist in devising 

solutions to this problem. 

 The plant defense mechanism against fungus is very complex. To fight againt 

fungus plants syhthesize induced and constitutive defense compounds: phytoalexins 

and phytoanticipins. On the other hand fungi produce phytotoxins to invade the plants 

as well as detoxify the phytoalexins, produced by plants. Detoxification processes 

have been shown being important in the virulence of pathogens to the plans that 

synthesized both phytoalexins and phytoanticipins. Some wild and cultivated crucifer 

plants show resistance to different fungus. To understand the metabolite profiles, the 

aim of my project was to isolate constitutive and induced antifungal compounds to 

characterize and determine their structures. Synthesis of the isolated compounds to 

confirm the assigned structures and antifungal bioassays to determine activity were 

part of the research plan. 
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Chapter 2 

2. Results and discussion 

2.1. Time course experiments 

Experiments were carried out to induce defense responses in plant tissues and to 

analyze the production of induced compounds. The induced compounds produced by 

cauliflower (Brassica oleracea var. botrytis), Brussels sprouts (B. oleracea var. 

gemmifera), broccoli (B. oleracea var. italica), Asian mustard (B. tournefortii), hedge 

mustard (Sisymbrium officinale), wallrocket (Diplotaxis muralis), Sandrocket (D. 

tenufolia) and Abyssinian mustard (Crambe abyssinica) were analysed over a period of 

time to determine the time for maximum production. The analyses were carried out 

using an HPLC equipped with a diode array detector and by TLC bioassay using 

Cladosporium cucumerinum. The plant tissues were treated according to the type of 

tissues: hard and soft, as follows. 

2.1.1. Hard tissues 

For the purpose of isolation of metabolites, cauliflower, Brussels sprouts, and 

broccoli were considered hard tissues (relative to leaf tissue). Slices were irradiated 
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under a UV light (250 nm wavelength) and incubated in humid and dark environment 

at 21-22 ºC (Pedras et al., 2004d). Slices of the elicited tissues were collected at 24 

hour interval up to 120 hours, ground in a blender and extracted with ethyl acetate as 

described in the experimental. Control (i.e. non-elicited) slices were treated in a similar 

manner, but without UV irradiation. Analysis of these extracts by HPLC-DAD detected 

the presence of fourteen peaks (RT = 3.8, 8.8, 9.6, 11.7, 12.2, 13.9, 14.0, 16.2, 16.8, 

17.8, 20.2, 24.2 and 32.8 min)  in the extract of elicited cauliflower slices and eleven 

peaks (RT at 4.5, 7.2, 8.7, 11.9, 13.9, 17.8, 18.0, 23.1, 28.4, 33.3 and 36.0 min) in the 

extract of elicited Brussels sprouts slices and eleven peaks (RT = 4.5, 7.2, 8.7, 11.9, 

13.9, 17.1, 17.8, 23.1, 28.4, 33.3 and 36.0 min) in the extract of elicited broccoli, which 

were absent on the chromatograms of control tissues extracts (Table 1). The results of 

these time courses experiments showed that the maximum production of induced 

metabolites occurred around 96 hours for cauliflower and Brussels sprouts and 72 

hours for broccoli (B. oleracea var. italica). 

2.1.2. Soft tissues 

 Asian mustard, hedge mustard, wallrocket, sandrocket and Abyssinian 

mustard plants (3-4 weeks old) were sprayed with CuCl2 and incubated at 21±2 °C 

temperature (Pedras et al., 2004c). Leaves were harvested at 24 hour intervals from 

both elicited and control plants. Leaves were separately frozen in liquid nitrogen, 

crushed, and extracted with ethyl acetate and methanol. After 12 hours, the crushed 

leaves were filtered and the filtrates were dried and concentrated. The residues were 

redissolved in acetonitrile and analysed by HPLC (Gradscr or Albpol method). Known 

induced compounds were identified by comparison of their UV spectra and retention 
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times with the phytoalexin-library available in Pedras laboratory (Pedras et al., 2006). 

HPLC analysis indicated the presence of two compounds (RT = 4.5 and 11.8 min) in the 

extract of elicited Asian mustard leaves, three compounds (RT at 11.8 13.9 and 19.0 

min) in the extract of elicited hedge mustard leaves, three compounds (RT = 11.8, 13.9 

and 22.9 min) in the extract of elicited sandrocket leaves, five compounds (RT = 13.9, 

20.1, 24.0, 28.0 and 36.1 min) in the extract of elicited wallrocket leaves and three 

compounds (RT = 11.8, 13.9, 15.0 and 21.0 min) in the extract of elicited Abyssinian 

mustard leaves which were not detectable on the chromatograms of extracts of control 

leaves extracts (Table 1). The results of these time courses experiments showed that the 

maximum production of these metabolites were around 72 hours for sandrocket, 

Abyssinian mustard and hedge mustard, 48 hours for  wallrocket and 96 hours for 

Asian mustard leaves.  

 Brown mustard, an oil seed plant, was also investigated for polar metabolites.      

Six compounds (RT  at 7.2, 11.8, 12.2, 14.4, 14.7 and 21.0 min) were detected in the 

extract of elicited brown mustard leaves but not detectable on the chromatograms of 

extracts of control leaves extracts (Table 1). 
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Table 1 Retention times for induced compounds from different species. 

Obs No Species 
 

Retention time (minutes) 

1 Abyssinian mustard 
 

11.8, 13.9, 15.0 and 21.0 min 

2 Asian mustard 
 

4.5 and 11.8 min 

3 Broccoli 
 

4.5, 7.2, 8.7, 11.9, 13.9, 17.1, 17.8, 23.1, 
28.4, 34.2 and 36.0 min 
  

4 Brown mustard 7.2, 11.8, 14.4, 14.7 and 21.0 min (Albpol) 
 

5 Brussels sprouts 
 

4.5, 7.2, 8.7, 11.9, 13.9, 17.8, 18.0, 23.1, 
28.4, 33.3 and 36.0 min  
 

6 Cauliflower 
 

3.8, 8.8, 9.6, 11.8, 12.2, 13.9, 14.0, 16.2, 
16.8, 17.8, 20.2, 24.2 and 32.8 min  
 

7 Hedge mustard 
 

11.8, 13.9 and 19.0 min 

8 Sandrocket 
 

11.8, 13.9 and 22.9 min 

9 Wallrocket 
 

13.9, 20.1, 24.0, 28.0 and 36.1 min 

 

2.2. Cauliflower (Brassica  oleracea var. botrytis) 

Using HPLC analysis of elicited tissues, seven induced compounds were 

detected in cauliflower florets (B. oleracea var. botrytis). In order to isolate these 

metabolites to determine their structures, larger scale experiments were performed as 

described below. 
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2.2.1. Isolation of elicited compounds 

 
 In order to isolate elicited metabolites, which were potentially new 

phytoalexins, large scale experiments were carried out with cauliflower florets which 

were irradiated with a UV light. Elicited slices were extracted with ethyl acetate and 

the solvent was evaporated. The residue was fractionated by gradient flash column 

chromatography (C6H12:CH2Cl2:MeOH) as described in the experimental. Fractions F 

6, F 8, F 10 and F 11 were further subjected to multiple chromatographies guided by 

HPLC analysis to isolate the elicited compounds with retention times at RT = 17.8, 

16.8, 16.2, 12.2, 9.6, 8.8 and 3.8 min respectively (Fig 21, Fig 22). The last four 

compounds were isolated from F11 (Fig 21). 
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Fig 21. Isolation of compounds from crude extract of cauliflower (Brassica oleracea 
var. botrytis) 

 

 The most polar component (RT = 3.8 min) in the EtOAc extract had the 

molecular formula C9H7NO3, as determined by HREIMS. The UV and 1H-NMR 

spectral data were identical with those of isalexin (64). Isalexin was first isolated as a 

phytoalexin from rutabaga tubers (Pedras et al., 2004f).  
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 The component with RT = 9.6 min was isolated by reversed phase column 

chromatography; HRMS indicated that the molecular formula of this compound was 

C10H9NSO3. The UV spectra and 1H-NMR spectral data were identical with those of 

brassicanal C (60). The optical rotation of this compound was not determined, due to 

the small amounts isolated. Brassicanal C (60) was first isolated as a phytoalexin from 

cabbage (Monde et al., 1991) and synthesized recently (Pedras et al., 2006b).  

  The component with RT = 12.2 min was isolated by flash column 

chromatography and HREIMS indicated that the molecular formula of this compound 

was C11H10N2S2O. The UV and 1H-NMR spectral data were identical with those of 

spirobrassinin (71). The optical rotation of spirobrassinin was [α]D
24 -109 (CH2Cl2, c 

0.35) and its absolute configuration was determined to be S (analysed by chiral 

solvation, Pedras et al., 2004d). Spirobrassinin (71) was first isolated as a phytoalexin 

from Raphanus sativus L. var. hortensis. (Takasugi et al., 1987).  

 The component with RT = 17.8 min was isolated by reverse phase column 

chromatography (CH3CN:H2O, 4:6). HRMS indicated that the molecular formula of 

this compound was C12H14N2SO2. The UV and 1H-NMR spectral data was identical to 

those of 1-methoxybrassitin (55). 1-Methoxybrassitin (55) was first isolated as a 

phytoalexin from Chinese cabbage inoculated with Pseudomonas cichorii. (Takasugi et 

al., 1988). 
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Fig 22. Phytoalexins from cauliflower: caulilexin C (105), caulilexin A (106), 1-
methoxinbrassinin (55), spirobrassinin (71), caulilexin B (107), isalexin (64), and 
brassicanal C (58). 

 

 The compound with RT = 16.2 min (106) was found to have the molecular 

formula C10H9NOS2, indicating seven degrees of unsaturation (HRMS). In the 1H-NMR 

spectrum, the presence of four aromatic protons suggested that the compound was 2,3-

disubstitued indole containing an aldehydic proton at δΗ 10.20 (s, 1H) and a 

methylsulfanyl group at δΗ 2.60 (s, 3H) respectively. The 13C-NMR spectrum 

confirmed the presence of 10 carbons. The corresponding chemical shifts at δC 184.4 

and δC 23.6 suggest an aldehydic and a methylsulfanyl group respectively. Thus, the 

proposed structure was 2-dithiomethoxyindole-3-carboxaldehyde (106) and this 

structure was confirmed by synthesis (Pedras et al., 2006a). The compound was given 

the name caulilexin A, by analogy with a related phytoalexin, brassicanal A (58). This 

compound is the first indole phytoalexin containing a disulfide bridge. 
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 The compound with RT = 16.8 min was found to have the molecular formula 

C11H10N2O with eight degrees of unsaturation (HRMS). The presence of five aromatic 

protons suggested that the structure contained a 2- or 3-substituted indole nucleus. 

Signals in the 1H-NMR spectrum at δΗ 4.24 (3H) and δΗ 3.91 (2H) and 13C-NMR at 

δC  67.5 and 14.5 confirmed the presence of methoxy and methylene groups. In the 

FTIR spectrum, the absorption at 2249 cm-1 indicated the presence of a nitrile group 

(δC 119.6 in 13C-NMR) and the structure was assigned as 1-methoxyindol-3-

ylacetonitrile (105). The compound was given the name caulilexin C. The proposed 

structure was confirmed by synthesis, as described later in this study. Caulilexin C 

(105) has been isolated as a constitutive metabolite from Chinese cabbage (Nomoto et 

al., 1970). Incubation of indole glucosinolate with myrosinase also led to the formation 

of 1-methoxyindole-3-yl acetonitrile (105) (Agerbirk et al.1998, Hanley et al.1990). 

Caulilexin C (105) was isolated as induced metabolite for the first time in this work. 

 The molecular formula of the compound with retention time RT = 8.8 min was 

established as C11H12N2O2 having seven degrees of unsaturation (HREIMS). In the 1H-

NMR spectrum, five aromatic protons were observed, suggesting that the structure 

contained a 2- or 3-substituted indole. Signals in the 1H-NMR spectrum at δΗ 4.07 (s, 

3H) and δΗ 4.52 (d, J = 6 Hz, 2H) and in the 13C-NMR spectrum at δC  67.0 (q) and 

δ 33.7 (t) respectively, indicated the presence of methoxy and methylene protons. The 

singlet at δ 8.14 (1H, s) indicated the presence of a formamide group. Consequently, 

the structure was assigned 1-methoxyindol-3-ylmethylformamide. The proposed 

structure was confirmed by synthesis as described later. 1-Methoxyindol-3-

ylmethylformamide (107) was likely derived from the degradation of brassinin and was 
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given the name caulilexin B. Caulilexin B represents a new example of a non-sulfur 

indole phytoalexin. 

Table 2. Metabolitesa of phytoalexinsb in cauliflower florets (Brassica oleraceae var. 
botrytis) upon elicitation with UV light (250 nm). 

Metabolite 48 hours 72 hours  96 hours  120 hours  

 

Caulilexin A  
(106) 

0.59 ± 0.04 7.8 ± 0.2 1.7 ± 0.1 1.3 ± 0.8 

Caulilexin B 
(107) 

0.84 ± 0.02 1.8 ± 0.2 2.3 ± 0.5 0.64 ± 0.09 

Caulilexin C 
(105) 

0.12 ± 0.01 0.55 ± 0.13 0.39 ± 0.08 0.20 ± 0.01 

Isalexin 
(64)  

0.062 ± 0.014 0.23 ± 0.03 0.49 ± 0.05 0.46 ± 0.06 

S-(-)-
Spirobrassinin 
(71) 

0.51 ± 0.07 24.4 ± 6.5 39.7 ± 1.8 11.1 ± 2.5 

1-
Methoxybrassitin 
(55) 

17.0 ± 0.22 0.75 ± 0.01 0.54 ± 0.06 0.30 ± 0.0 

Brassicanal C 
(60) 

2.2 ± 0. 5 4.9 ± 0.9 0.43 ± 0.09 3.0 ± 0.9 

Cyclobrassinin 
(62) 

0.025±0.002 0.079±0.006 
 

0.50±0.00 0.088±0.06 
 

1-Methoxy 
Spirobrassinin 
(72) 

0.049±0.007 
 

0.057±0.008 
 

0.030±0.008 
 

0.012±0.002 
 

Sinalexin (83) 0.007±0.001 
 

0.07±0.01 
 

0.028±0.002 
 

0.17±0.09 
 

a Amounts of phytoalexins are µmol/g tissues. 
b Results are presented as mean ± standard deviation. 
 
 

2.2.3. Syntheses of elicited compounds 

 Caulilexin C (105) (1-methoxyindolyl-3-acetonitrile) was synthesized from 

tryptamine (108) as shown in Fig 23. The key intermediate 1-methoxyindole-3-

acetaldoxime (88) was synthesized from tryptamine (108) by protecting the amino 
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group with acetyl followed by reduction, oxidation and methylation using sodium 

cyanoborohydride, hydrogen peroxide and dimethylsulfate to yield 1-methoxy-Nb-

acetyltryptamine (111) (Pedras & Okinyo, 2006a). Hydrolysis of compound 111 with 

methanolic sodium hydroxide yielded the corresponding amine, which was oxidized 

with hydrogen peroxide to yield 1-methoxyindole-3-acetaldoxime (88, Pedras et al., 

2004f). Upon treatment with acetic anhydride, 1-methoxyindole-3-acetaldoxime (88) 

yielded caulilexin C (105) in 8% overall yield. 
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Fig 23. Synthesis of caulilexin C (105, overall yield 10%). 

 

Caulilexin C (105) was also synthesized by another route. The reduction of 

commercially available indolyl-3-acetonitrile (76) with NaBH3CN-AcOH yielded 2,3-

dihydrogenindolyl-3-acetonitrile (112) (Gribble 1998), which was oxidized with H2O2-

Na2WO4-mediate oxidation of 112, followed by methylation with (CH3)2SO4 to yield 
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caulilexin C (105) in 10% overall yield (Fig 23, 24). Although these reactions gave 

caulilexin C (105) in low yield, both routes are more efficient than the previous 

syntheses. (Acheson et al., 1984, Somei et al., 1985).  

 

N
OCH3

CN

N
H

CN

N
H

CN

NaBH3CN, AcOH
H2O2,
Na2WO4.2H2O

K2CO3, (CH3)2SO4

76 105112  

Fig 24. Synthesis of caulilexin C (105, overall yield 10%). 

 

 The synthesis of caulilexin B was accomplished in five steps from indoline 

(113) via 1-methoxyindole (114) and oxime (116) as outlined in Fig 25. The 

intermediate 1-methoxyindole (114) was prepared from indoline by oxidation and 

methylation using hydrogen peroxide and dimethylsulfate. Thus 1-methoxyindole was 

formylated under Vilsmeier condition (Smith, 1954). The resulting 1-methoxyindole-3-

carboxaldehyde (115) quantitatively yielded to 1-methoxyindole-3-carboxaldehyde 

oximes (116) upon treatment with hydroxylamine hydrochloride in ethanol. The 

intermediate 1-methoxyindole-3-acetaldoxime (88) was reduced with sodium 

borohydride in the presence of NiCl2.6H2O to the corresponding 1-methoxy-indole-3-yl 

methyl amine (Pedras et al., 2003) and followed by formylation under in reflux with 

ethyl formate to yield caulilexin B (107) with 17% overall yield (Fig 25).  
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Fig 25. Synthesis of caulilexin B (107) 

 

2.2.4. Bioassay of elicited compounds 

 Antifungal activities of caulilexins A-C (106, 107 and 105) against fungal 

pathogens (L. maculans/Phoma lingam, S. sclerotiorum and R. solani) of cruciferous 

plants were established using radial growth antifungal bioassays. Antifungal activities 

of caulilexins A-C (106, 107 and 105) against C. cucumerinum were determined using 

a TLC antifungal bioassay. Activities of caulilexin A (106) and caulilexin C (105) were 

compared with those of structurally related phytoalexins, brassicanal A (58) and 

arvilexin (84). The results of these studies are shown in Table 2. Caulilexin A (106) 

appears to exhibit the strongest antifungal activity against R. solani and S. 

sclerotiorum. It causes complete inhibition of the growth of R. solani at 5.0 × 10-4 M 

(twice as antifungal as brassicanal A (58), whereas the growth of S. sclerotiorum is 

completely inhibited even at 1.0 × 10-4 M (100 times more antifungal than brassicanal 
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A (58). Moderate antifungal activity of caulilexin A (106) 55% (5.0 × 10-4 M) against 

L. maculans / P. lingam is slightly lower than the antifungal activity of brassicanal A 

(Pedras et al., 2006b). Caulilexin C (105) appears to be slightly more antifungal than 

arvilexin (84) and caused complete inhibition (5.0 × 10-4 M) of the fungal growth in R. 

solani and slightly lower antifungal activity (77%) against L. maculans / P. lingam. 

Caulilexin B (107) exhibited the lowest antifungal activity among the new 

phytoalexins. In a TLC bioassay against C. cucumerinum, caulilexin A (106) caused 

inhibition of growth at 1.0 × 10-8 M, whereas caulilexin B and C (105 and 107) caused 

inhibition of the growth at 1.0 × 10-6 M. 
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Table 3. Antifungal activity a (% of inhibition) of caulilexins A, B, C (106,107,105)
, brassicanals A (58) and C (60), and arvelexin against Leptosphaeria maculans, 
Sclerotinia sclerotiorum and Rhizoctonia solani. 

Metabolite  Conc. (M) L. maculans 
/Phoma 
lingam b

Sclerotinia 
sclerotiorum c

Rhizoctonia solani 

d

Caulilexin A 
(106)
 

5.0 × 10-4 

2.5 × 10-4

1.0 × 10-4 

5.0 × 10-5

1.0 × 10-5

55 ± 7 
39 ± 3 
21 ± 7 
10 ± 6 
n.d. 

100 ± 0 
100 ± 0 
100 ± 0 
90 ± 7 
71 ± 12 

100 ± 0 
83 ± 9 
50 ± 8 
13 ± 2 
 n.d. 

Brassicanal A 
(58) 
 

5.0 × 10-4 

2.5 × 10-4

1.0 × 10-4 

5.0 × 10-5

70 ± 5 
62 ± 7 
30 ± 5 
13 ± 4 

33 ± 9 
12 ± 5 
8 ± 2 
n. i. 

53 ± 4 
33 ± 7 
 n. i  
 n. i.. 

Brassicanal C 
(60) 

5.0 × 10-4 

2.5 × 10-4

1.0 × 10-4 

5.0 × 10-5

70 ± 5 
62 ± 5 
30 ± 5 
10 ± 4 
 

53 ± 4 
33 ± 7 
 n. i. 
 n. i. 

33 ± 9 
11 ± 4 
 n. i. 
 n. i. 

Caulilexin B 
(107) 
 

5.0 × 10-4 

2.5 × 10-4

1.0 × 10-4

31 ± 8 
17 ± 6 
n. i. 

31 ± 1 
20 ± 2 
n. i. 

18 ± 7 
 n. i. 
 n. i. 

Caulilexin C 
(105) 

5.0 × 10-4 

2.5 × 10-4

1.0 × 10-4

77 ± 2 
45 ± 5 
30 ± 10 

30 ± 8 
n. i. 
n. i. 

100 ± 0 
80 ± 7 
48 ± 11 

Arvilexin 
(84) 
 

1.0 × 10-4 

2.5 × 10-4

5.0 × 10-4

59 ± 3 
36 ± 3 
15 ± 2 

37 ± 3 
17 ± 3 
n. i. 

70 ± 3 
17 ± 7 
 n. i. 

a % Inhibition = 100 - [(growth on treated/growth on control) × 100] ± standard 
deviation; results are the means of at least three separate experiments; n.i., no 
inhibition; n.d., not determined. 
b Results after 96 hours of incubation. 
c Results after 48 hours of incubation. 
d Results after 72 hours of incubation. 
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2.3. Brussels sprouts (Brassica oleracea var. gemmifera) 

 In time course experiments, nine induced metabolites were detected in 

extracts of Brussels sprouts (B. oleracea var. gemmifera) of which five are known and 

four were unknown. To isolate these metabolites, large scale experiments were carried 

out.    

 

2.3.1. Isolation of metabolites 

To isolate the elicited metabolites, large scale experiments were carried out with 

Brussels sprouts irradiated with UV light. Elicited slices or leaves were ground and 

extracted with EtOAc. The solvent was evaporated under reduced pressure and the 

residue was fractionated by gradient flash column chromatography 

(C6H12:CH2Cl2:MeOH), as described in the experimental.  Fractions F 6, F 7, F 8, F 11, 

F 12 and F 13 were further subjected to multiple chromatography to yield the elicited 

compounds with (HPLC) retention time RT = 4.5, 7.2, 8.7, 11.9, 13.9, 17.8, 18.0, 23.1, 

28.4, 33.3  and 36.0 min (Fig 26, Fig  27).  

 The molecular formula of the elicited compound with RT = 33.3 min was 

determined to be C19H18N2O2 by HRMS, which suggested twelve degrees of 

unsaturation. The 1H-NMR (CD3CN) spectrum of this metabolite showed ten aromatic 

protons as well as two methylene protons at δH 4.17 and six methoxy protons at δH 4.03 

(s). Therefore, di-(1-methoxy-3-indolyl)methane (120) was assigned to this elicited 

compound with RT = 34.6 min. The proposed structure was confirmed by synthesis, as 
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described later in this study. Di-(1-methoxy-3-indolyl)methane (120) was previously 

obtained in the  neoascorbigen synthesis (Yudina et al., 2000).  

 The molecular formula of the elicited compound with RT = 28.4 min was 

determined to be C18H16ON2 by HRMS, which suggested twelve degrees of 

unsaturation. The 1H-NMR (CD3CN) spectrum of this metabolite showed ten aromatic 

protons of indole ring, as well as three methoxy protons at δH 4.03 (s), two methylene 

protons at δH 4.20 (s) and one NH proton at δH 9.01 (s). Therefore, this elicited 

compound with RT = 28.4 min was assigned as 1-methoxy-3,3’-diindolylmethane 

(119). The proposed structure was confirmed by synthesis, as described later in this 

study. 

 The molecular formula of the elicited compound having RT = 23.1 min was 

determined to be C17H14N2 by HRMS, which suggested twelve degrees of unsaturation. 

The 1H-NMR (in CD3CN) spectrum of this metabolite showed ten aromatic protons as 

well as two methylene protons at δH 4.22 (s) and two NH protons at δH 9.03 (bs). Two 

C-2 protons were at δH 7.08 (s), indicated that two indole moiety had the same 

substitution. Therefore, diindolylmethane (50) was assigned to this elicited compound 

with RT = 23.1 min. The proposed structure was confirmed by synthesis as described 

later in this study. 
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Table 4 Productiona of induced metabolites in Brussels sprouts (Brassica oleraceae 
var. gemmifera) upon elicitation with UV light (250 nm). 

Metabolite 

 

 48 h 

 

72 h 

 

96 h  

 

120 h  

 

Brussalexin A  
(121) 0.15±0.05 1.07±0.012 0.59 ± 0.01 0.39±0.04 

Brussalexin B 
(117) 0.02±0.00 0.80±0.12 0.34±0.02 0.022±0.004

Brussalexin C  
(118) 0.10±0.00 0.44±0.14 0.19±0.00 0.004±0.003

1-Methoxy-3, 3’-
diindolylmethane  
(119) 

0.081±0.00 0.245±0.00 0.14±0.01 0.006±0.003

Di-(1-methoxy-3-
indolyl)methane  
(120)  

0.05±0.01 0.19±0.03 0.12±0.02 0.028±0.01 

Diindolylmethane  
(50) 0.034±0.0 0.13±0.01 0.08±0.02 0.0029±0.00

1-Methoxybrassitin  
(55)  - 1.17 - - 

Ascorbigen (51) - 4.21 
 - - 

aAmounts of induced metabolites are ηmol/g tissues 
bResults are presented as mean ± standard deviation. 

 

 The HRMS spectrum of the compound having RT = 7.0 min indicated the 

molecular formula C10H11O2SN, (m/z 209.0509). The 1H-NMR (CD3CN) spectrum of 

this metabolite showed five aromatic protons attributable to an indole, as well as two 

methylene protons at δH 4.50 (2H, s), three thiomethyl protons at δH 2.80 (3H, s) and 

one NH proton at δH 9.53 (1H, bs, D2O exchangeable). 13C-NMR (CD3CN) spectrum 

peaks at δC 52.2 and 38.9 indicated methylene group and methyl group attached to 

sulfoxide. Therefore, 3-methanesulfonylmethylindole (117) was assigned to this 
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elicited compound with RT = 7.2 min. The compound was given the name brussalexin 

B (117). To confirm this structure, brussalexin B (117) was synthesized as shown later. 

The spectral data of the isolated compound were identical with those of the synthesized 

compounds. 

The molecular formula of the elicited compound having RT = 8.7 min was 

determined to be C11H13SNO3 by HRMS-EI (m/z 239.0617), which suggested seven 

degrees of unsaturation. The 1H-NMR spectrum of this metabolite showed four 

aromatic protons as well as two methylene and three methoxy protons. The spin system 

of aromatic protons showed that the proton at δH 7.11 (H-6, dd, J = 7.5, 7.5 Hz) was 

coupled to two protons at δH 7.08 (H-7, d, J = 7.5 Hz) and δH 6.61 (H-5, d, J = 7.5 Hz), 

the coupling constant further suggested that the orientation of H-6 to H-7 and to H-5 is 

ortho. A D2O exchangeable broad proton δH 9.50 and a doublet at δH 7.27 (d, J = 2.5 

Hz, with N-H proton), suggested the aromatic protons to be part of indole ring having 

substitution at either C-4 or C-7. HMBC spectrum analysis showed correlations of a 

downfield carbon (C-4) at δC154.6 with methoxy protons, and the methylene protons at 

δH 4.64 with carbons at δC 102.8 (C-2), δC 116.9 (C-4a) and δC 125.6 (C- 3). The 

signals at δC 55.0, 53.2 and 38.9 indicated the carbons of methoxy, methylene and 

methyl attached with sulfone groups. Therefore, the structure of this elicited metabolite 

was assigned as methyl 4-methoxy-3-methylsulfanylmethylindol. The compound was 

given the name brussalexin C (118). The structure of brussalexin C (118) was 

confirmed by synthesis, as shown later in this study.   

The HRMS of the component having RT = 17.8 min, indicated that the 

molecular formula of this compound is C12H14N2SO2. The UV spectra and NMR 
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signals were identical with those of authentic 1-methoxybrassitin (55) sample. 1-

Methoxybrassitin (55) was also previously isolated from cauliflower (Pedras et al., 

2006) and described previously in this chapter.  
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Fig 26. Phytoalexins 1-methoxybrassitin(55), brussalexin A (121), B (117) and C 
(118), and compounds diindolylmethane (50), 1-methoxy-3, 3’-diindolylmethane (119) 
and di-(1-methoxy-3-indolyl)methane (120) and ascorbigen (51) from Brussels sprouts. 

 

 The HRMS spectrum of the compound having RT = 18.0 min indicated the 

molecular formula C13H14N2SO. The 1H-NMR (CD3CN) spectrum of this metabolite 

showed five aromatic protons, as well as four methylene (δH 4.34, s, 2H and δH 3.85, 

m, 2H), and three olifinic protons at δH 5.81 (m), 5.06 (dd, J = 11, 2 Hz ) and 5.17 (dd, 

J = 14, 2 Hz). The spin system of aromatic protons showed that the proton at δH 6.96 
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(H-5, dd, J = 7, 8 Hz) was coupled to two protons at δH 7.61 (H-4, d, J = 8 Hz) and δH 

7.05 (H-6, d, J = 7, 8 Hz); the coupling constant further suggested that the proton at δH 

7.05 (H-6, dd, J = 7, 8 Hz) was coupled to two protons at δH 6.96 (H-5, dd,  J = 7, 8 

Hz) and 7.41 (H-7, d, J = 8 Hz). One D2O exchangeable broad proton δH 9.10 for NH 

and a doublet at δH 7.23 (d, J = 2.5 Hz, with N-H proton) for H-2 proton, suggested the 

aromatic protons to be part of an indole ring having substitution at C-3. Terminal vinyl 

proton δH 5.17 (dd, 1H, J = 17, 2.5 Hz) was coupled with geminal proton δH 5.17 (dd, 

1H, J = 11, 2.5 Hz) and trans proton δH 5.81 (m, 1H). The remaining atoms (HCNOS) 

required to fulfill the molecular formula were used for connecting the methylene with 

allyl group. Further more the allyl group showed coupling with an exchangeable 

proton, Therefore, [S-(indol-3-yl) methylallylthiocarbamate] (121) was assigned as the 

possible structure of this elicited metabolite with RT = 18.0 min (Pedras et al., 2007a). 

The compound was given the name brussalexin A (121). The structure was confirmed 

by synthesis, as shown later.  The spectral data were identical with those of a 

synthesized sample.  

 The HREIMS spectrum of the compound at RT = 4.5 min indicated the 

molecular formula C13H14N2SO. The 1H-NMR (CD3CN) spectrum of this metabolite 

showed five aromatic protons, along with one NH proton (D O exchangeable). This 

indicated an indole ring with substitution at C-3 position. Based on H-NMR and C-

NMR signals the structure was assaigned as ascorbigen (51) and the spectral data were 

similar to published work (

2

1 13

Lazhko et al., 1993). The optical rotation was [α]  -30 in 

CH Cl  at c 0.50. Ascorbigen (51) was first isolated from Savoy cabbage (Prochazka & 

D
24

2 2
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Zelimir,1958, Prochazka & Severa., 1960). Kutacek group found that ascorbigen (51) 

was biogenenatically synthesized from the precursor tryptophan (Kutacek et al., 1960). 
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Fig 27. Isolation of compounds from crude extract of Brussels sprouts 

 

  The compound X with RT = 36.0 min was isolated through flash column 

chromatography and reverse phase column chromatography (Fig 27). The color of this 

 57



compound is white in solid but brown in solution (CH2Cl2). High resolution mass 

spectrometry of the compound X indicated the likely molecular ion m/z 371 but did not 

indicate the molecular formula. The 1H-NMR (in CD3CN) spectrum of this metabolite 

indicated seventeen aromatic protons and three NH (δH 9.06, bs, 1H and 8.82, bs, 2H) 

D2O exchangeable protons (probably two indole ring). The 13C-NMR spectrum 

indicated the presence of eighteen peaks between 150-99 ppm. The UV spectrum and 

retention time of compound X did not match with any of the previously isolated 

crucifer phytoalexins available in Pedras’ library (Pedras et al., 2006a and unpblished 

works in Pedras lab). 

 

2.3.2. Synthesis of metabolites 

 The synthesis of diindolylmethane (50) was carried out, as shown in Fig 28. 

Diindolylmethane (50) was synthesized by the reaction of indole (122) with 

formaldehyde at 90°C (90% yield) (Jackson et al., 1987).  
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Fig 28. Synthesis of diindolylmethane (50). 
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 To synthesize 1-methoxy-3,3’-diindolylmethane (119), the key intermediate 1-

methoxyindole-3-methanol (123) was prepared from 1-methoxyindole (114) by 

Vilsmeier formylation under Vilsmeier conditions (Smith, 1954) followed by   

reduction. Reaction of 1-methoxyindole-3-methanol (123) with indole in presence of 

acetic acid at 50°C, yielded 1-methoxy-3,3’-diindolylmethane (119, overall yield  34%, 

Fig 29).  

 Reaction of 1-methoxyindole (114) with 40% formaldehyde gave product di-(1-

methoxy-3-indolyl)-methane (120, 25% yield). Although the overall yield of di-(1-

methoxy-3-indolyl)methane (120) obtained by this method was low (25% yield),  

previous syntheses appear to be less efficient (<2% yield, Fig 29,Yudina et al., 2000).  
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Fig 29. Synthesis of 1-methoxy-3,3’-diindolylmethane (119) and di-(1-methoxy-3-
indolyl)methane (120). 
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 Brussalexin B (117) was prepared from indole-3-methanol (49, Fig 30). Indole-

3-methanol was treated with Et3N and SOCl2 at 0°C for 40 min to form unstable 

indolyl-3-methylchloride. Then sodium thiomethoxide was added to the reaction 

mixture to get indole-3-methylthioether (124) in 52% yield. Oxidation of indole-3-

methylthioether (124) with oxone yielded brussalexin B (117, Fig 30, 70% yield). 

 

N
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CH2OH

N
H

SOCl2,THF

NaSMe

SMe

N
H

S

Oxone, MeOH
Me

O O

52%
70%

11712449  

Fig 30. Synthesis of brussalexin B (117). 

 

 Synthesis of brussalexin C (118) was accomplished in three steps, via 4-

methoxyindole-3-methanol (126) and 4-methoxyindole-3-methayl thiomethoxide (127) 

as outlined in Fig. 31, and the overall yield was 44%. 4-Methoxyindol-3-

carboxaldehyde in ethanol was reduced by NaBH4 to yield 4-methoxyindol-3-methanol 

(126). 4-Methoxyindol-3-methanol (126) was treated with Et3N and SOCl2 at 0°C for 

40 min to form unstable 4-methoxy indolyl-3-methylchloride. Then sodium 

thiomethoxide was added to the reaction mixture to get 4-methoxyindole-3-

methylthioether (127) in 58% yield. Oxidation of 4-methoxy indole-3-methylthioether 

(127) with oxone yielded brussalexin C (118, Fig 31, 60% yield). 
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Fig 31. Synthesis of brussalexin C (118). 

 

 Synthesis of brussalexin A (121) was accomplished in three steps via (indol-3-

yl)-methanethiol (131) as outlined in Fig 32. Gramine (129) was converted to S-3-

indolymethylthioacetate (130) by reaction with dimethylsulfate and potassium 

tioacetate (Benghiat & Crooks, 1983). The key intermediate indol-3-yl-methanethiol 

(131) was prepared by hydrolysis of S-3-indolylmethylthioacetate (130) with degassed 

KOH solution. Indol-3-yl-methanethiol (131) was then reacted with allyisocyanate to 

form brussalexin A (121, 3% overall yield, Fig 32). Recent work reported the synthesis 

of Brussalexin A in 55% overall yield (Pedras et al., 2007a). 
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Fig 32. Synthesis of Brussalexin A (121, overall 3 % yield) 

 

 

2.3.3. Bioassay of metabolites from Brussels sprouts 

 Antifungal activities of diindolylmethane (50), 1-methoxy-3,3’-

diindolylmethane (119) and brussalexin B (117) against fungal pathogens of 

cruciferous plants (L. maculans / P. lingam, S. sclerotiorum and R. solani) were 

established using radial growth antifungal bioassays. Antifungal activity against C. 

cucumerinum was determined using a TLC antifungal bioassay. The antifungal activity 

of brussalexin B (117) was compared with those of structurally related indole-3-

methylthioether (124). The results of these studies are shown in Table 5. 

Diindolylmethane (50), 1-methoxy-3,3’-diindolylmethane (119) appear to exhibit 

antifungal activity. These compounds diindolylmethane (50) and 1-methoxy-3,3’-

diindolylmethane (119) cause moderate inhibition of growth of R. solani, S. 

sclerotiorum and L. maculans at 1.0 × 10-4 M. Brussalexin B (117) and brussalexin C 
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(118) caused little inhibition (5.0 × 10-4 M) of fungal growth on L. maculans and R. 

solani, whereas moderate antifungal activity was observed using the same 

concentration of 3-methylsulfanylmethylindole (124). In TLC bioassay 3,3’-

diindolylmethane (50) caused inhibition of growth C. cucumerinum at 1.0 × 10-6 M, but 

1-methoxy-3,3’-diindolylmethane (119) caused no inhibition of growth at similar 

concentration. 

 

Table 5. Antifungal activity a (% of inhibition) of diindolylmethane (50), 1-methoxy-
3,3’-diindolylmethane (119), 3-methylsulfanylmethylindole (124), brussalexin B (117) 
and brussalexin C (118) against pathogens of crucifers: Leptosphaeria maculans 
(Phoma lingam) (84 h, incubation), Rhizoctonia solani (72 h incubation) and 
Sclerotinia sclerotiorum (48 h incubation). 

Metabolites Conc. (M) L. maculans/ 
P. lingam b S. sclerotiorum c R. solani d

Diindolylmethane 
 (50) 

5.0 × 10-4 

2.5 × 10-4

1.0 × 10-4 

5.0 × 10-5

71 ± 7 
62 ± 1 
32 ± 5 
8 ± 4 

94 ± 4 
82 ± 4 
67 ± 1 
49 ± 2 

92 ± 4 
88 ± 1 
52 ± 4 
39 ± 1 

1-methoxy-3,3’-
diindolylmethane 
(119) 

5.0 × 10-4 

2.5 × 10-4

1.0 × 10-4 

5.0 × 10-5

29 ± 5 
6 ± 7 
n. i. 
- 

- 
- 
49 ± 5 
41± 6 

68 ± 5 
56 ± 8 
48 ± 1 
24 ± 5 

3-Methylsulfanyl 
methylindole  
(124) 

5.0 × 10-4 

2.5 × 10-4

1.0 × 10-4

59 ± 4 
21 ± 1 
9 ± 4 

25 ± 1 
12 ± 1 
7 ± 3 

54 ± 5 
26 ± 1 
13 ± 3 

Brussalexin B 
(117) 

5.0 × 10-4 

2.5 × 10-4
22 ± 1 
14 ± 1 

22 ± 2 
10 ± 4 

29 ± 8 
13 ± 1 

Brussalexin C 
(118) 

5.0 × 10-4 

2.5 × 10-4
23 ± 3 
10 ± 1 

20 ± 2 
9 ± 2 

25 ± 4 
10 ± 1 

a % Inhibition = 100 - [(growth on treated/growth on control) × 100] ± standard 
deviation;  results are the means of at least three separate experiments; n.i., no 
inhibition; n.d., not determined. 
b Results after 96 hours of incubation. 
c Results after 48 hours of incubation. 
d Results after 72 hours of incubation. 
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2.4. Brown mustard (Brassica  juncea variety Commercial Brown) 

 The CuCl2 (1 × 10-2) elicited brown mustard leaves, were extracted with MeOH. 

After evaporating the solvent under reduced pressure, the crude extract was dissolved 

in H2O and EtOAc. The solvent EtOAc extract was separated and the conc. aqueous 

extract (49 g) was subjected to reverse phase column chromatography. Fractions F 6, F 

7, F 8, and F 10 were further subjected to multiple reverse phase column 

chromatography to isolate compounds having retention times at RT = 7.2, 11.8, 14.4, 

14.7 and 21.0 min (Albpol, Fig 33). 

 The molecular formula of the compound having RT = 7.2 min (Albpol method) 

was determined to be C9H12NO2 by HRMS, which suggested five degrees of 

unsaturation. The 1H-NMR spectra of this compound indicated it to be phenylalanine 

(132). The NMR data were identical to the authentic sample.  

The molecular formula of the elicited compound having RT = 11.8 min (Albpol 

method) was measured to be C11H12N2O2 by HRMS, which suggested seven degrees of 

unsaturation. The 1H-NMR spectra of this compound indicated it to be tryptophan (86). 

The HPLC and 13C-NMR data were identical with those of an authentic tryptophan (Fig 

34). The stereochemistry of isolated tryptophan ([α] -31; c 0.41) was determined to 

be S configuration by comparison of its [α]  with that of an authentic sample. 

5.24

5.24

D

D
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Fig 33. Isolation of compounds from Brassica juncea variety Commercial Brown. 

 

The compound Y with RT = 14.4 min (Albpol method) was isolated through 

flash column chromatography and reverse phase column chromatography (Fig 33). 

High resolution mass spectrometry of the compound Y provided the mass of fragments 

instead of molecular molar mass but LC-MS indicated the molecular ion to be m/z 470. 

The 1H-NMR (in CD3CN) spectrum of this metabolite indicated four aromatic protons 

Crude mass (49 g) 

F 7 F 8 
F 6 
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MC 

MC 

MC 

MC 

Compound Y 
 RT = 14.4 min 
(2.5 mg) 

Isorhamnetin 3,7 
–diglucoside 

(134), RT = 14.7 
min (7.8 mg)

Phenylalanine 
(132), RT = 7.2 
min, (13.8 mg) 

Indole-3-
acetonitrile (76) 
RT = 21.0 min 
(1 mg)

Spirobrassinin 
(71), RT = 21.0 
min (1 mg) 

Methyl indole-3-
carboxylate (133), 
RT = 21.0 min,  
(1 mg) 

F 5 

RPCC

MC 

(S)- Tryptophan 
(86), RT = 11.8 
min, (1.8 mg) 
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and eleven other protons in between δH 3 to 5 ppm. The UV spectrum and retention 

time of compound Y did not match with any of the previously isolated crucifer 

metabolites available in Pedras’ group (Pedras et al., 2006 and unpublished work in 

Pedras lab). 
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Fig 34. Phytoalexins spirobrassinin (71) and indole-3-acetonitrile (76), and compounds 
phenylalanine (132), (S)-tryptophan (86), isorhamnetin 3, 7-diglucoside (134), methyl-
idole-3-carboxylate (133) were isolated from Brassica juncea. 

  

 The molecular ion of yellow compound having RT = 14.7 min (Albpol method) 

was measured to be m/z 640 by HRMS. The UV absorption at 350, 255, and 207 nm 

indicated it to be a flavonoid compound. The 1H-NMR spectrum of this metabolite 

showed five aromatic protons at δH 7.96, 7.65, 6.92, 6.79 and 6.51 as well as three 

methoxy protons at δH 3.73. Signals at δH 5.48 (d, 1H, J = 7 Hz) and δH 5.07 (d, 1H, J = 

7 Hz) indicated the presence of two β- anomeric protons. LC-MS spectra showed the 
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loss of two pyranoside units (m/z 315, 477, 639 and 640) (Romani et al., 2006). 

Therefore, the probable structure would be isorhamnetin 3, 7-diglucoside (134, Fig 34). 

Isorhamnetin 3,7-diglucoside was previously detected in Brassica juncea (L) Czern 

extract (Aguinagald, 1988).  

 The component with RT at 21.0 min (Albpol method) revealed to be a mixture 

of thee compounds. HPLC retention times of these compounds were RT = 11.8 min 

(21.0 min in Albpol method) and 12.2 min (Gradscr method). These compounds were 

purified by flash column chromatography and identified as follows. The compound 

with RT = 11.8 min. had the molecular formula C10H8N2 by HRMS. The HPLC, UV 

and mass fragmentation (LC-MS) were identical with those of the authentic indole-3-

acetonitrile (76).  

 The component with RT = 12.2 min (21.0 min in Albpol method) was identified 

as spirobrassinin (71) and it was also isolated from cauliflower. The UV and NMR 

spectra were identical with that of authentic spirobrassinin (71, Pedras et al., 2004d). 

 The 1H-NMR (CD3CN) spectrum of the compound having RT = 12.2 min 

indicated the presence of an indole system along with a signal due to a methoxy group 

at δH 3.87 ppm. The compound was assigned as methyl indole-3-carboxylate (133). The 

spectral data were identical to those of an authentic sample.  

2.5. Wild species 

2.5.1. Metabolites from Asian mustard (Brassica tournefortii) 

 In time course experiments, the extract from the elicited leaves showed a 

maximum production of induced compounds at 72 hours. HPLC analysis of this extract 
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showed two new peaks at RT = 4.5 and 11.8 min. The elicited Asian mustard leaves 

were harvested and extracted in the same manner that was used in the time course 

experiment. The extract was subjected to flash column chromatography. Fractions F 8 

was further subjected to multiple chromatography to yield a compound with retention 

time at RT = 4.5. In FTIR spectrum, a strong absorption at ν 2099 cm-1 indicated the 

presence of isothiocyanide group and absorption at ν 1046 cm-1 indicated a sulfoxide 

group. The 1H-NMR spectrum at δH 2.54 (s, 3H) indicated the presence of a thiomethyl 

group along with three methylene groups at δH  3.75 (dd, 2H, J = 6.5, 6.5 Hz), 2.82 (m, 

1H), 2.71 (m, 1H) and 2.10 (m, 1H). The molecular formula of this compound was 

determined to be C5H9NSO by HRMS, which suggested three degrees of unsaturation. 

Therefore, the proposed structure 3-(methylsulfinyl) propylisothiocyanate (135) was 

proposed for this metabolite. The optical rotation at ([α]  -5.24
D

 66 c 4.75; CH2Cl2 and 1H-

NMR spectrum at δ 2.82 (1H, m) and 2.71 (1H, m) indicated the presence of a 

stereogenic centre. The 1H-NMR and FTIR spectra matched with those of 3-

(methylsulfinyl) propylisothiocyanate (135) (Holland et al., 1995, Fig 35).  The 

compound with RT = 11.8 min. had the molecular formula C10H8N2 by HRMS. The 

HPLC, UV and mass fragmentation (LC-MS) were identical with those of the authentic 

indolyl-3-acetonitrile (76). 
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135 

Fig 35. Compound 3-(methylsulfinyl) propylisothiocyanate (135) isolated from Asian 
mustard. 

 

2.5.2. Metabolites from sand rocket (Diplotaxis tenufolia) 

 In time course experiments, the extract from elicited leaves of sandrocket 

showed a maximum production of induced compounds at 72 hours. HPLC analysis of 

this extract showed three peaks at RT = 11.8, 13.9 and 22.9 min. The elicited leaves 

were extracted with EtOAc and the residue (1.2 g) was separated by gradient flash 

column chromatography. Fraction F 4 was further subjected to column 

chromatography, guided by bioassay against C. cucumerinum to isolate elicited 

compound with HPLC retention time at RT = 22.9 min. The molecular formula of the 

elicited compound having RT = 22.9 min was measured to be C10H16S3N2 by HRMS, 

which suggested four degrees of unsaturation. The 1H-NMR spectrum of this 

compound displaying signals from eight methylene groups and two signals likely due 

to two CH2S groups (δH 2.44 and 2.76), two CH2NCS group (δH 3.62 and 2.76) and 

four methylene (δH 1.80 and 1.73 at 3:1 ratio). Ten carbons could be distinguished by 

13C-NMR including two carbon with δC 119.7 ppm indicative of two CH2NCS group. 

Based on these data 5-(3-isothiocyanato-propylsulfanyl)-pentylisothiocyanate (136) 

was proposed as the structure of this isolated compund (Fig 36). 
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SSCN NCS 

  136 

Fig 36. Compound 5-(3-isothiocyanato-propylsulfanyl)-pentylisothiocyanate (136) 
isolated from sand rocket. 

 

2.5.3. Metabolites from   wallrocket (Diplotaxis muralis) 

 In time course experiments, the extract from the elicited leaves showed a 

maximum production of induced compounds at 48 hours. HPLC analysis of this extract 

showed three new and a constitutive metabolites at RT = 13.9, 20.1, 24.0 and 28.0 min. 

In order to isolate these induced metabolites, large scale experiments were carried out. 

In large scale experiments, plants were elicited by treating with CuCl2 solution. Elicited 

leaves were collected, frozen in liquid nitrogen, crushed, and extracted with EtOAc. 

The crude extract of wallrocket (5.7 g) was fractionated by gradient flash column 

chromatography. Fractions F 4, F 5, F  6, F 7 and F 8 were further subjected to multiple 

column chromatography and reverse phase column chromatography guided by HPLC 

analysis to yield the metabolites with retention times RT = 13.9, 28.0, 20.1, 24.0 and 

36.9 respectively (Fig 37). 

  The molecular formula of the elicited compound with RT = 20.1 min was 

determined to be C12H12O2N2 by HRMS, which suggested eight degrees of 

unsaturation. The 1H-NMR spectrum of this metabolite showed four aromatic protons 

as well as one methylene and six methoxy protons. The spin system of aromatic 

 70



protons showed that the proton at δH 7.20 (H-6, dd, J = 8, 8 Hz) was coupled with two 

protons at δH 7.05 (H-7, d, J = 8 Hz) and 6.65 (H-5, d, J = 7.5 Hz) suggesting an indole 

ring having substitution at 4 or 7 position. The signals at δH 7.32 (s, H-2) indicated an 

indole ring with substitution at C-3 position.  The signals at δH 4.07 (s, 3H), (4.05s, 2H) 

and 4.00 (s, 3H) indicated one methylene group attached with indole ring at C-3 and 

two methoxy groups in the indole ring at positions 1 and 4 or 1 and 7. Arvelexin (84) 

and caulilexin C (105) are two indolyl-3-acetonitrile having methoxy substitution at 1 

or 4 position (Pedras, et al., 2004c, Pedras, et al., 2006b). Therefore, the structure of 

this metabolite was assigned as 1, 4-dimethoxyindole-3-acetonitrile (137). 

 

 

Fig 37. Isolation of compounds from wallrocket. 
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The molecular formula of the elicited compound with RT = 24.0 min was 

determined to be C H ON  by HRMS, which suggested eight degrees of unsaturation. 

The 1H-NMR spectrum of this metabolite showed four aromatic protons, as well as a 

methoxy group. The spin system of the aromatic protons was similar to that of 

arvelexin (84, Fig 38). Therefore, this elicited compound with R  = 24.0 min could 

have structures 141 or 138. To confirm the structure, 4-methoxyindole-3-thiocyanate 

(141) was synthesized by coupling 4-methoxyindole (140) with ammoniumthiocyanate 

in presence of iodine. The 1H-NMR of 4-methoxyindole-3-thiocyanate (141) did not 

match with the isolated compound (Fig 39). The other possible structure is 4-

methoxyindole-3-isothiocyanate (138). The structure of 4-methoxyindole-3-

isothiocyanate (138) was recently proven by synthesis (Pedras et al., 2007b).  
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Fig 38. n A (138) and 
Bis(4-i

 

 he molecular formula of the metabolites with RT at 28.0 min was measured to 

be C10H S N  by HRMS, which suggested four degrees of unsaturation. Strong 

doublet absorptions at 2106, 2183 cm-1 and 1346 cm-1 in the FTIR indicated the 

presence of an alkyl isothiocyanate group (Svatek et al., 1959). The 1H-NMR spectrum 

 Compound arvelexin (84), 1,4 dimethoxyindole (137), rapalexi
sothioccyanatobutyl)disulfide (139) isolated from wallrocket. 

T

16 4 2
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contained a multiplet at δ  1.83 ppm and two triplets at δ  2.73 and 3.57 ppm having 

an integration ratio 2:1:1. The spectral data matched with those of the previously 

isolated compound bis(4-isothioccyanatobutyl)disulfide (139) from Eruca sativa 

(Cerny et al.,1996).  

 

H H

N
H

OCH3 SCN

N
H

OCH3
NH4SCN, I2, MeOH

 

140                                                        141 

Fig 39. Synthesis of 4-methoxyindole-3-isothiocyanate (141). 

Table 6 Productiona of metabolitesb in wallrocket upon elicitation with CuCl2 (1×10-2 

M). 

etabolite 24 h 48 h  72 h  96 h 120 h 

 

. 

 
M
 
 
Arvelexin  

) 
4.3 ± 1.2 0.2±0.08 0.15±0.09 0.73±0.08 0.026±0.008 

(84
 
Rapalexin A  

) 
19±6 27±1 200±3 22±2 17±9 

(138
1, 4-dimethoxy 

l-3- - 140 - - - indoly
acetonitrile 
 (137) 
Bis(4-isothio 

butyl) - 1490 - - - cyanato
disulfide  
(139) 

aA uced metabolites are 10-3µmol per 100 g of fresh tissue. 
bResults are presented as means ± standard deviation. 

mount of ind
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2.5.4. Metabolites from hedge mustard (Sysimbrium officinale) 

ves showed a 

maximum production of induced compounds at 72 hours. HPLC analysis of this extract 

showed two new peaks at R  = 11.8, 13.9 and 19.0 min. The elicited hedge mustard 

leaves were extracted and the residues were separated by gradient flash column 

chromatography (C H :CH Cl :MeOH) as described in the experimental. Fractions F 8 

and F 9 were further subjected to multiple chromatographies to yield the elicited 

compounds with HPLC retention times R  = 11.8 and 19.0 min. The HPLC and 1H-

NMR data of former compound were identical with those of an authentic sample of 

indolyl-3-acetonitrile (76, Pedras et al., 2002). The 1H-NMR (CD CN) spectrum of 

compound having R  = 19.0 min indicated the presence of an indole system along with 

signals likely due to two methoxy groups at δ  3.87 and δ  4.22. The 1H-NMR 

(CD CN) spectral data of this metabolite suggested it to be methyl 1-methoxyindole-3-

carboxylate (59, Fig 40). The HPLC and 1H-NMR spectra were identical with those of 

an authentic sample (Pedras and Sorensen, 1998). 

 In time course experiments, the extracts from the elicited lea

T

6 12 2 2

T

3

T

H H

3

 

 

76         59 

Fig 40. Phytoalexin indole-3-acetonitrile (76) and methyl 1-methoxyindole-3-
carboxylate (59) from hedge mustard. 
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Table 7. Productiona of metabolitesb in hedge mustard upon elicitation with CuCl2 (1 × 
10-2 M). 
Metabolites  24 h 48 h 72 h 96 h 120 h 

 

Indole-3-
acetonitrile 

0.038±0.007
 

0.25±0.05 
 

0.64±0.14 
 

0.078±0.019 
 

0.027±0.001
 

(76)    
Methyl-1-
methoxyindole-3- 

e  

0.5 

Carboxylat
(59) 

- 1 - - - 

aAmount of induced metabolites are µmol per 100 g of fresh tissue. 
ts are presented as mean ± standard deviation. 

2.5.5. Metabolites from Abyssinian mustard (Crambe abyssinica) 

stard leaves 

showed

Pedras et al., 2007b).  

bResul
 

In time course experiments, the extract from elicited Abyssinian mu

 a maximum production of induced compounds at 72 hours. HPLC analysis of 

this extract showed four new peaks at RT = 11.8, 13.9 and 15.0 min. In order to isolate 

induced metabolites, large scale experiments were carried out. In large scale 

experiments, plants were elicited by spraying with CuCl2 solution. Elicited leaves were 

collected, frozen in liquid nitrogen, crushed, extracted with ethyl acetate and the 

solvent was concentrated. The crude extract was fractionated by gradient flash column 

chromatography. Fraction F 7 was further subjected to multiple column 

chromatography and reverse phase column chromatography guided by HPLC analysis 

to isolate the elicited compounds with retention times RT = 13.9 and 15.0 min. 

respectively. The UV, NMR and HRMS data of compound having RT = 13.9 min were 

identical with those of arvelexin (84) previously isolated from T. arvense infected with 

CuCl2 (Pedras et al., 2004). The HPLC and 1H-NMR data of the compound with RT = 

15 min were identical with those of an authentic sample of rapalexin B (142, Fig 41, 
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Fig 41. Phytoalexin rapalexin B (142), and arvelexin (84) from Abyssinian mustard 

 

l2 
(1×10 M). 

Metabolites 24 h 48 h 72 h  96 h 120 h 

Table 8. Productiona of metabolitesb in Ayssinian mustard upon elicitation with CuC
-2

 
 

Indole-3-
cetonitrile a

 (76) 
 0.01  0.67  0.13  0.27 0.06 0.29 ± 1.62 ± 0.80 ± 1.19 ± 0.98 ± 

 
Arvelexin  
(84) 

1.14 ± 0.05 5.1 ± 0.8 1.5 ± 0.25 0.99 ± 0.03 0.62 ± 0.07 

 
Rapalexin 

2) B (14
0.0 ± 0.0 11.5 ± 0.6 13.8 ± 2.5 1.20 ± 0.15 5.3 ± 0.38 

a ount of induced metabolites are µmol per 100 g of fresh tissue. 
b se  ± st on
Am
Results are pre

 

nted as mean andard deviati . 
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3. Conclusions 

 Caulilexin A (106), B (107) and C (105) were the first isolated phytoalexins 

from cauliflower (Pedras et al., 2006b). These are the new phytoalexins in Cruciferae 

family. Four other known pyhtoalexins, 1-methoxybrassitin (55), spirobrassinin (71), 

brassicanal C (60) and isalexin (64) were also reported from cauliflower. Seven other 

phytoalexins, cyclobrassinin (62), 1-methoxyspirobrassinin (72), sinalexin (83), 

arvelexin (84), indole-3-acetonitrile (76), rutalexin (69) and 1-methoxycyclobrassinin 

(81) were detected in the same plant. The first reported synthesis for the cruciferous 

phytoalexin caulilexin B (107) has been carried out. Caulilexin C (105) was 

synthesized in two different pathways (Table 9, Pedras et al., 2006b).  

 Brussalexin A (121), B (117) and C (118) were the first isolated phytoalexins 

from Brussels sprouts. These are new phytoalexins from crucifers. One new metabolite 

1-methoxy-3,3’-diindolylmethane (119) and one known pyhtoalexin, 1-

methoxybrassitin along with three other metabolites, ascorbigen (51), diindolylmethane 

(50) and  di-(1-methoxy-3-indolyl)methane (120) were also reported from Brussels 

sprouts. Two other phytoalexins, arvelexin (84) and indole-3-acetonitrile (76) were 

detected in the same plant. The first synthesis of the phytoalexin brussalexin A (121), B 

(117) and C (118) was carried out (Pedras et al., 2007a).  

 Rapalexin A (138), arvelexin (84), and phytoanticipin bis-(4-

isothiocyanotobutyl) disulfide (139) and a new metabolite 1,4-dimethoxyindole-3-

acetonitrile (137) were isolated from wallrocket (Table 9).  

 From four wild species such as hedge mustard, sandrocket, Abyssinian mustard 

and Asian mustard, number phytoalexins e.g. indolyl-3-acetonitrile (76), arvelexin (84), 

methyl-1-methoxyindolecarboxylate (59) and rapalexin B (142) along with 
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thio/isothiocyanates e.g. 5-(3-isothiocyanato-propylsulfanyl)-pentylisothiocyanate 

(136) and 3-(methylsulfinyl)propylisothiocyanate (135) were isolated (Table 9). 

 

 The cauliflower phytoalexins caulilexin A (106) and B (107) are the first 

reported phytoalexins having disulfide and formamide in the structure, respectively. 

The phytoalexin cauliexin A (106) appears to have strong inhibitory effect on S. 

scletiorum and R. solani and moderate inhibitory effect on L. maculans. The Brussels 

sprouts phytoalexins brussalexin A (121) is the first reported phytoalexin having 

thiolcarbamate in the structure whereas brussalexin B (117) and C (118) are also the 

first reported phytoalexins having methanesulfonyl in the structure. Brussalexin A 

(121), B (117) and C (118) showed antifungal activity against L. maculans, S. 

scletiorum and R. solani. The phytoanticipins diindolylmethane (50) and 1-methoxy-

3,3’-diindolylmethane (119) showed moderate inhibitory effect on L. maculans, S. 

scletiorum and R. solani. 

 

Table 9. Elicited and constitute metabolites isolated or detected in crucifer plants 

investigated in this project. 

Species Metabolites 

Brassica juncea (Brown mustard) 

Phenylalanine (132, isolated) 
Tryptophane (86, isolated) 
Indole-3-acetonitrile (76, isolated) 
Spirobrassinin (71, isolated) 
Methylindole-3-carboxylate 
(133, isolated) 
Isorhamnetin 3,7 -diglucoside  
(134, likely) 
 

Brassica oleracea var. botrytis 
(Cauliflower) 

Caulilexin A (106, isolated) 
Caulilexin B (107, isolated) 
Caulilexin C (105, isolated) 
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1-Methoxybrassitin (55, isolated) 
Spirobrassinin (71, isolated) 
Brassicanal C (58, isolated) 
Isalexine (64, isolated) 
Cyclobrassinin (62, detected)a

Methoxyspirobrassinin (72, detected)a

Sinalexin (83, detected)a

Arvelexin (84, detected)a

Indole-3-acetonitrile (76, detected)a

Rutalexin (69, detected)a

1-Methoxycyclobrassinin 
(81, detected)a

Brassica oleracea var. gemmifera 
 (Brussels sprouts) 

Brussalexin A (121, isolated) 
Brussalexin B (117, isolated) 
Brussalexin C (118, isolated) 
Diindolylmethane (50, isolated) 
1-Methoxybrassitin (55, isolated) 
Ascorbigen (51, isolated) 
Indole-3-acetonitrile (76, detected)a

Arvelexin (84, detected)a

Brassica tournefortii   
(Asian mustard) 

3-(Methylsulfinyl) 
propylisothiocyanate  
(135, isolated) 
Indole-3-acetonitrile (76, isolated) 
 

C. abyssinica (Abyssinian mustard) Rapalexin B (106, isolated) 
Arvelexin (84, isolated) 

Diplotaxis  muralis  (Wallrocket) 

Indole-3-acetonitrile (76, detected)a

Arvelexin (84, isolated) 
1, 4-Dimethoxyindole-3-acetonitrile  
(137, isolated) 
Rapalexin A (138, isolated) 
Bis(4-isothioccyanotobutyl)- 
disulfide (139, isolated) 

Sisybrium officinale 
 (hedge mustard) 

Indole-3-acetonitrile (76, isolated) 
Arvelexin (84, detected)a

Methyl-1-methoxyindolecarboxylate 
 (142, isolated) 
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Chapter 4 

4. Experimental  

4.1. General methods 

 All chemicals were purchased from Sigma-Aldrich, Canada (Oakville, ON). All 

solvents were HPLC or ACS grade and used as such except for CH2Cl2 and CHCl3, 

which were redistilled. Thin layer chromatography (TLC) was carried out on pre-

coated silica gel aluminium plates (Merck, 60 F254, 20 cm × 20 cm, 0.25 mm thickness). 

Eluted TLC plates were examined under UV light (254 nm) and were dipped in a 5% 

(w/v) aqueous phosphomolibdic acid solution containing 1% (w/v) ceric sulfate and 4% 

(v/v) water, followed by heating on a hot plate. Flash column chromatography (FCC) 

was performed on silica gel, Merck grade 60, mesh size 230-400, 60 Aº, or on J. T. 

Baker reversed phase C-18 silica gel, 40 µm.  

High performance liquid chromatography (HPLC) analysis was carried out with high 

performance liquid chromatography systems equipped with quaternary pumps, auto 

injectors, photodiode array detectors (wave length 190-600 nm), degasser, and hypersil 
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ODS columns (5 µm particle size silica, 4.6 mm internal diameter × 200 mm) and in-

line filters. A gradient elution [CH3CN:H2O (25:75) to CH3CN (100%)] for 35 minutes 

and flow rate 1.0 ml/min was used. Sample solutions in MeOH, CH3CN or water were 

filtered through a tight cotton wool plug before analysis.  

Specific Optical rotations ([α]D) were determined using a Digipol 781-TDV 

auto polarimeter. The solutions were placed in a 1 ml cell, length 10 cm; the 

concentrations are reported in g/100 ml and the units are 10-1 deg cm2 g-1.  

NMR spectra were obtained with Bruker Avance 500 spectrometers (chemical 

shifts are reported in ppm where δ of TMS is zero). The chemical shifts (δ) values are 

referred to CDCl3 (CHCl3 at 7.27 ppm), CD3CN (CD2HCN at 1.94 ppm) or CD3OD 

(CD2HOD at 3.31 ppm) for 1H-NMR spectra. Assuming first order behaviour, the 

multiplicities in 1H-NMR are indicated by one or more of the following s = singlet, d = 

doublet, dd=doublet of doublet, t = triplet, q = quartet, m = multiplet and br = broad. 

Spin coupling constants (J) are reported to the closest 0.5 Hz. For 13C-NMR chemical 

shifts (δ) values are referred to CDCl3 (77.2 ppm), CD3CN (118.7 ppm) or CD3OD 

(49.2 ppm). 2DNMR experiments performed were COSY-45 (1H-1H correlations), 

HMQC (13C-1H single bond correlations) and HMBC (13C-1H multiple bond 

correlations).  

Fourier transform infrared (FTIR) spectra were recorded on Bio-Rad FTS-40 

spectrometers using the diffuse reflectance method on samples dispersed in KBr. 

Mass spectra (MS), high resolution mass spectra (HR-MS), electron impact (EI) 

or electron spray ionization (ESI) were obtained on a VG 70 SE mass spectrometer. 
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Gas chromatography – mass spectra (GC-MS) was obtained on a Fisons GC 8000 

series model connected to the VG 70 SE mass spectrometer. 

4.2. Plant material 

 Cauliflower, broccoli and Brussels sprouts were purchased in local markets. 

Seeds of sand rocket (B. tournefortii), wallrocket (D. muralis), Abyssinian mustard (C. 

abyssinica), brown mustard (B. juncea variety Commercial Brown) and hedge mustard 

(S. officinale) were obtained from Plant Gene Resources, AAFC, Saskatoon, Canada. 

The seeds were sown in a commercial potting soil mixture, and plants were grown in a 

growth chamber with 16 hours of light (fluorescent and incandescent)/8 hours of dark 

at 24±2 °C. 

 

4.3. Antifungal bioassays 

 Bioassays were carried out using the plant pathogens Rhizoctonia solani (AG 

2-1 isolate), Leptosphearia maculans (BJ-125 isolate), Sclerotinia sclerotiorum (clone 

#33) and Cladosporium cucumerinum. R. solani and L. maculans were grown on 

potato dextrose agar (PDA) media under continuous light, whereas S. sclerotiorum 

was grown on potato dextrose agar (PDA) media in the dark. Sclerotia were formed in 

the plates after 15 days and stored at 22 °C. L. maculans spores were collected after 15 

days and stored at -20 °C. After three days of inoculation, the plates containing R. 

solani were stored.  

The antifungal activities of compounds (50, 58, 60, 84, 105, 106, 107, 117, 118, 119 

and 124) were tested using a mycelial radial growth bioassay. These compounds were 
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dissolved in DMSO at 5.0 × 10-2 M and serially diluted with PDA media (DMSO 

concentration in media was 1%) at 50 °C to make overall concentrations of 5.0 × 10-4 

M, 2.5 × 10-4 M, 1.0 × 10-4 M, 5.0 × 10-5 M, 2.5 × 10-5 M, 1.0 × 10-5 M, 5.0 × 10-6 M , 

2.5 × 10-6 M and 1.0 × 10-6 M. These solutions were poured (2.5 ml) into the wells of 

sterile six well plates. The control solutions contained only 1% DMSO in PDA media. 

An agar plug of L. maculans or R. solani having 5 mm diameter was placed upside 

down on the middle of each well. After sealing with parafilm, the plates were 

incubated at 23±1°C under constant light for a few days. The diameter of mycelia 

were measured at different intervals and compared with those of controls of R. solani 

(Pedras & Liu, 2004) and L. maculans (Pedras & Okanga, 1999). Antifungal activity 

against S. sclerotiorum (Pedras & Ahihonu, 2002) was determined in the same way 

but using minimal media (having 5% agar), being used instead of the PDA media. 

Experiments were carried out at least three times. 

 Bioassay tests against C. cucumerinum were conducted on aluminum backed 

TLC (2 × 20 cm) plates (Pedras & Sorensen, 1998). Samples were applied on plates 

and the plates were developed in proper solvent systems followed by cool air drying 

(40 min). C. cucumerinum suspension having concentration 1 × 106 spores/ml in double 

strength PDB media was sprayed on these spotted plates. These plates were then 

incubated in plastic boxes in a dark humid environment. After 48 hours, the area 

containing antifungal compounds remained white, whereas the rest of the areas were 

greenish or gray, due to fungal growth.     
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4.4. Time course experiments 

4.4.1. Hard tissues 
 
 Cauliflower and broccoli were cut vertically in 10-15 mm thick slices whereas 

Brussels sprouts were cut into two pieces. After 24 hours of incubation in covered 

plastic boxes, the slices were divided into two groups and labelled control and elicited. 

The slices labeled elicited were irradiated with UV light in a laminar flow hood for 15-

20 min on each side. Both the control and elicited slices were then incubated further in 

plastic boxes at 20 °C. Control and elicited slices were collected at 24 hour intervals for 

five days. Slices were ground separately in a blender and the ground tissues were 

separately extracted with ethyl acetate (150 ml). After 12 hours, the macerate tissues 

were filtered, the filtrates were dried over Na2SO4 and concentrated to dryness under 

reduced pressure. The residues were redissolved in acetonitrile and analysed by HPLC. 

Known phytoalexins were identified by comparison of their UV spectra and retention 

times with those of pure metabolites available in Pedras’ group (Pedras et al., 2006).  

 4.4.2. Soft tissues 

  Plants 3 to 4 weeks old were sprayed with CuCl2 (1 ×10-2 M) and incubated in a 

growth chamber. Leaves from elicited plants and from control plants were harvested at 

24 hour intervals for 5 days. Both control and elicited leaves were separately frozen in 

liquid nitrogen, crushed and extracted with ethyl acetate (50 ml per replicate). After 24 

hours, the crushed leaves were filtered; the filtrates were dried over Na2SO4 and 

concentrated to dryness under reduced pressure. The residues were redissolved in 

acetonitrile and analysed by HPLC. Known induced compounds were identified by the 
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comparison of their UV spectra and retention times with those of authentic samples 

available in pedras groups (Pedras et al., 2006 and unpublished work in pedras group).  

 

4.5. Cauliflower (Brassica oleracea var. botrytis) 

 4.5.1. Isolation of elicited compounds 
 

Cauliflowers florets (total fresh weight 12 kg) were purchased from local 

markets and vertically cut in 10-15 mm thick slices/pieces. After 24 hours of incubation 

at 20 °C in moist covered plastic boxes, slices were irradiated under UV light for 15 

min on each side and were incubated further at 20 °C in moist covered plastic boxes. 

After four days, slices were ground in a blender and the ground tissues were extracted 

with ethyl acetate.  After 12 hours, the mixture was filtered, and the filtrate was 

concentrated to dryness under reduced pressure (4.05 g). This residue was redissolved 

in hexane and washed with water. The hexane extract (2.7 g) was chromatographed on 

silica gel column (15 cm × 5 cm) and eluted with a gradient of CH2Cl2:hexane followed 

by CH2Cl2:MeOH. Thirteen fractions were collected and analysed by HPLC: F 6 

showed a peak with RT = 16.8 min, F 8 showed a peak with RT = 16.2 min, F 10 

showed a peak with RT = 17.8 min and F 11 showed peaks with RT = 12.2 min, 9.6 

min, 8.8 min, 3.8 min along with other compounds. Caulilexin C (105, 1 mg) was 

isolated from F 6 by two successive flash column chromatography (EtOAc:hexane) and 

reverse phase column chromatography (CH3CN:H2O). F 8 was subjected to reverse 

phase column chromatography (CH3CN:H2O), flash column chromatography 

(EtOAc:hexane) and preparative TLC (5% Et2O in CH2Cl2) to yield caulilexin A (106, 
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1 mg). 1-Methoxybrassitin (55, 2 mg) was isolated from F 10 by flash column 

chromatography (Et2O:hexane) and reverse phase column chromatography 

(CH3CN:H2O). Spirobrassinin (71, 4 mg), caulilexin B (107, 1 mg), brassicanal C (58, 

1 mg) and isalexin (64, 1 mg) were isolated from F 11 by flash column chromatography 

(Et2O:hexane) and reverse phase column chromatography (CH3CN:H2O). 

 

 1-Methoxybrassitin (55) 

HPLC RT = 17.8 min. UV (HPLC): λmax 225, 280 nm. 1H-NMR(500 MHz,CD3CN): δ 

7.61 (d, J = 8 Hz, 1H), 7.45 (d, J = 8 Hz, 1H), 7.37 (d, 1H, J = 8 Hz), 7.27 (dd, J = 7, 8 

Hz, 1H), 7.13 (dd, J = 7, 8 Hz, 2H), 6.73 (bs, 3H), 4.53 (d, J = 5Hz, 1H), 4.07 (s, 3H), 

2.30 (s, 3H). HR-MS: m/z 250.0765 (100%, M+), cal. 250.0776, EI-MS 250.0765 

(100%), 219 (46%), 191 (23%), 171 (41%) 128 (29%), 127 (56%), 117 (29%), 74 

(61%). 

 

Brassicanal C (58) 

HPLC RT = 9.6 min. UV (HPLC): λmax 215, 248, 318 nm. 1H-NMR (500 MHz, 

CD3CN) δH 10.72 (bs, 1H), 10.34 (s, 1H), 8.24 (d, J = 7 Hz, 1H), 7.67 (d, J = 8 Hz, 

1H), 7.46 (dd, J = 7, 8 Hz, 2H), 7.40 (dd, J = 7.5, 7 Hz, 1H), 5.40 (bs, 2H), 3.67 (s, 

3H), 2.80 (s, 3H). 
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Isalexin (64) 

HPLC RT = 3.8 min. UV (HPLC): λmax210, 238, 350 nm. 1H-NMR (500 MHz, CDCl3) 

δ 7.57 (bs, 1H), 7.53 (dd, J = 8, 8 Hz, 1H), 7.27 (1H with CHCl3), 6.63 (d, J = 8.5 Hz, 

1H), 6.47 (d, J = 8 Hz, 1H).  

 

Spirobrassinin (71) 

HPLC RT = 12.2 min. UV (HPLC): λmax225, 300 nm. Optical rotation: [α]  5.24
D -109, (c 

0.35, CH Cl , 85% ee). 2 2
1H-NMR (500 MHz, CDCl ): δ  8.37 (bs, 1H), 7.34 (d, J = 7 

Hz, 1H), 7.28 (dd, J = 8, 8 Hz, 1H), 7.11 (dd, J = 8, 8 Hz, 1H), 6.92 (d, J = 8Hz, 1H), 

4.7 (d, J = 15 Hz, 1H), 4.52 (d, J = 15 Hz, 1H), 2.64 (s, 3H). 

3 H

 

Caulilexin A (106) 

HPLC RT = 16.2 min. 1H-NMR (500 MHz, CD3CN): δH 10.42 (br s, D2O 

exchangeable, 1H), 10.20 (s, 1H), 8.09 (d, J = 8 Hz, 1H), 7.56 (d, J = 8 Hz, 1H), 7.33 

(dd, J = 8, 8 Hz, 1H), 7.28 (dd, J = 8, 8 Hz, 1H), 2.60 (s, 3H). 13C-NMR (125 MHz, 

CD3CN): δ 185.5 (s), 143.8 (s), 138.1 (s), 128.0 (s), 126.7 (s), 125.4 (d), 124.1 (d), 

121.0 (d), 113.1 (d), 24.1 (q). HREIMS m/z [M+] measured: 223.0121 (223.0126 calc. 

for C10H9NOS2); EIMS m/z (% relative abundance): 223 [M+] (58), 176 (100), 121 

(19), 77 (16). FTIR ν max: 3213, 2920, 1632, 1578, 1433, 1373, 1242, 846, 745 cm-1.  

UV (MeOH) λ max (log ε): 213 (4.4), 252 (4.2), 307 (4.0) nm. 
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4.5.2. Syntheses of elicited compounds 

4.5.2.1. Synthesis of caulilexin C (105) 

 

N
H

NH2

N
H

NHCOCH3

1.Na2WO4.2H2O
30% H2O2,
2.K2CO3
(CH3)2SO4

NaBH3CN
CH3COOH

N
H

NHCOCH3

N
OCH3

NHCOCH3
1.NaOH, MeOH
reflux

2.Na2WO4.2H2O,
30% H2O2

N
OCH3

N

N
OCH3

CN

OHreflux

pyridine

(CH3CO)2O

108 109 110

105 88 111

(CH3CO)2O

  

Fig 23. Synthesis of caulilexin C (105, overall yield 10%). 

 

Nb -Acetyltryptamine (109) 

 Tryptamine (108, 100 mg, 0.62 mmol), acetic anhydride (400 µl), and pyridine 

(200 µl) were stirred for 30 min at room temperature. The reaction mixture was diluted 

with CH2Cl2 (1 ml), washed with saturated NaHCO3 solution and then the solvent was 

evaporated under reduced pressure to yield crude Nb-acetyltryptamine (109, 114 mg, 

yield 90%). Spectral data of Nb-acetyltryptamine (109) were identical with those of an 

authentic sample (Fig 23, Pedras et al., 2004f).  
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1H-NMR (500 MHz, CDCl3): δH 8.27 (s, 1H), 7.62 (d, J = 8 Hz, 1H),7.40 (d, J = 8 Hz, 

1H),  7.23 (dd, J = 8, 8 Hz 1H), 7.15 (dd, J = 8, 8 Hz 1H), 7.04 (s, 1H), 5.58 (bs, 1H), 

3.62 (dd, J = 6.5, 6.5 Hz 2H), 3.00 (dd, J = 6.5, 6.5 Hz 2H), 1.94 (s, 3H).    

 

2, 3-Dihydro-Nb-acetyltryptamine (110) 
 

 Nb-Acetyltryptamine (109, 110 mg, 0.54 mmol) was dissolved in glacial 

acetic acid (2 ml) and stirred for 5 minutes. To this solution, Na(CN)BH3 (68 mg, 1.6 

mmol) was added in three portions while stirring was allowed to continue. After 3 

hours, the reaction mixture was diluted with water (10 ml), made alkaline with 2N 

NaOH and extracted with CH2Cl2 (30 ml × 3). The combined extract was dried over 

anhydrous Na2SO4 and concentrated under reduced pressure to yield crude 2,3-dihydro-

Nb-acetyltryptamine (110, 93 mg, 0.46 mmol, yield 85%). Spectral data of 2,3-dihydro-

Nb-acetyltryptamine (110) were identical with those of an authentic sample (Fig 23, 

Taniguchi & Hino, 1981). 

1H-NMR (500 MHz, CDCl3): δ 7.10 (d, J = 7.5 Hz, 1H), 7.05 ( dd, J = 7.5, 7.5 Hz, 

1H), 6.74 (dd, J = 7.5, 7.5 Hz, 1H),  6.67 (d, J = 7.5 Hz, 2H), 5.89 (br s, D2O exch., 

1H), 3.71 ( dd, J = 8.5,8.5 Hz,1H), 3.31 (m, 2H), 3.24 (m, 2H), 3.12 (br s, D2O exch, 

1H), 1.99 (s, 3H). 
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1-Methoxy-Nb-acetyltryptamine (111) 

 A solution of 2,3-dihydro-Nb-acetyltryptamine (110, 105 mg, 0.51 mmol) in 

methanol (3 ml) was treated with a solution of Na2WO4.2H2O (43 mg, 0.13 mmol) in 

H2O (260 µl). The suspension was cooled to -15 °C and 30% H2O2 solution (600 µl 

30% H2O2 and 600 µl MeOH) was added to the mixture over 6 min. After 10 min, 

K2CO3 (600 mg, 4.43 mmol) and (CH3)2SO4 (160 µl) were added to the mixture with 

vigorous stirrings at room temperature for 3 hours. The reaction mixture was diluted 

with water (5 ml) and extracted with Et2O (30 ml × 3). The combined diethylether 

extract was dried over Na2SO4 and concentrated. The 1-methoxy-Nb-acetyltryptamine 

(111) was purified with flash column chromatography (CH2Cl2-MeOH, 98:2) to yield 

53 mg (0.28 mmol, 55 %, Fig 23). Spectral data of 1-methoxy-Nb-acetyltryptamine 

(111) were identical with those of an authentic sample (Iwaki, et al., 2005).  

1H-NMR (500 MHz, CDCl3): δ 7.59 (d, J = 8 Hz, 1H), 7.44 (d, J = 7.5 Hz,1H), 7.28 

(dd, J = 7.5, 7.5 Hz, 1H), 7.14 (dd, J = 7.5, 7.5 Hz, 1H),    7.13 (s,1H),  5.5 (br s, D2O 

exch, 1H), 4.09 (s, 3H), 3.60 (dd, J = 6.4, 6.4 Hz, 1H), 2.95 (dd, J = 6.5, 6.5 Hz, 1H), 

1.97 (s, 3H).  

 

1-Methoxytryptamine  

N
OCH3

NH2

 
 
 1-Methoxy-Nb-acetyltryptamine (111, 350 mg, 1.51 mmol) in 15% NaOH (2.1 g 

NaOH in 15 ml of MeOH) was heated at 124 °C for 12 hours. The solvent was 
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evaporated and the residue was dissolved in water (10 ml) and extracted with CH2Cl2 

(50 ml × 3). The combined organic extract was dried over Na2SO4 and concentrated. 

Separation by flash column chromatography (CH2Cl2-MeOH-NH4OH, 98:2-90:10) 

yielded 1-methoxytryptamine (145 mg, 0.75 mmol, 50 % yield). Spectral data of 1-

methoxytryptamine were identical with those of an authentic sample (Somei et al., 

1985). 

1H-NMR (500 MHz, CDCl3): δ 7.58 (d, J=7.5 Hz, 1H), 7.39 (d, J = 8 Hz, 1H), 7.21 

(dd, J = 7.5, 7.5 Hz, 1H), 7.20(d, J = 8 Hz, 1H), 7.073 (dd, J = 7.5, 7.5 Hz, 1H), 4.25 

(br s, D2O exch, 2H), 4.03 (s, 3H), 3.16 (bs, 2H), 3.10 (s, 2H). 

 

1-Methoxyindole-3-acetaldoxime (88) 

 To a solution of 1-methoxytryptamine (217 mg, 1.10 mmol) in MeOH (1.5 ml) 

cooled to  -17 °C, Na2WO4.2H2O (6.3 mg, 1.9 × 10-2 mmol in 250 µl H2O) and 30% 

H2O2 (250 µl) were added dropwise over 4 min.  After stirring for 40 min, the mixture 

was diluted with water (5 ml) and extracted with CH2Cl2 (10 ml × 3). The combined 

organic extract was dried over Na2SO4 and concentrated. After separation by flash 

column chromatography (CH2Cl2-MeOH, 98:2), 1-methoxyindole-3-acetaldoxime (88) 

was obtained in 78 mg (0.45 mmol) in 41% yield based on recovery of starting material 

(Fig 23). Spectral data of 1-methoxyindole-3-acetaldoxime (88) were identical with 

those of an authentic sample (Pedras & Montaut, 2004f). 
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1H-NMR (500 MHz, CDCl3): δ 7.60 (d, 1H, J = 7.5 Hz), 7.42 (s 1H), 7.25-7.22 (m, 

2H), 7.14 (d, 2H, J = 7.5 Hz), 6.7(s, 1H), 4.08 ( s, 3H), 3.77 (d, 1H, J = 5.5 Hz), 3.68 

(d, 1H, J =  5.5 Hz).   

 

Synthesis of caulilexin C (105) 

 1-Methoxyindole-3-acetaldoxime (88, 95 mg, 0.46 mmol) in acetic anhydride (1 

ml) was reflux at 124 °C for 60 min. The reaction mixture was cooled and the solvent 

was evaporated to dryness. Separation by flash column chromatography (CH2Cl2-

MeOH, 98:2) gave caulilexin C (105, 36 mg, 0.29 mmol) in 64% yield (based on 

recovered of starting material) (Fig 23, Pedras et al., 2006b).    

HPLC RT   = 16.8 min. 1H-NMR (500 MHz, CD3CN): δ 7.65 (d, J = 8 Hz, 1H), 7.50 (d, 

J = 8 Hz, 1H), 7.49(s, 1H), 7.31(dd, J = 8, 8 Hz, 1H), 7.31(dd, J = 7, 8 Hz, 1H), 7.19 

(dd, J  = 8, 8 Hz, 1H), 4.10 (s, 3H), 3.91 (s, 1H). 13C-NMR (125 MHz, CDCl3): δ 133.4 

(s), 142.1 (s), 136.2 (d), 127.3 (s), 124.4 (d), 123.3 (d), 120.3 (s), 117.7 (s), 111.2, 14.5. 

HREIMS m/z (% relative abundance) measured: 186.0795 (186.0793 calc. for 

C11H10N2O2); EIMS m/z (% relative abundance): 186 [M+] (97), 171 (37), 155 (100), 

146 (28), 128 (58), 101 (23), 77 (16). FTIR νmax: 3398, 3124, 3056, 2936, 2249, 1729, 

1704, 1453, 1414, 1358, 1240, 1227, 1150, 954, 738 cm-1. UV (CH2Cl2) λmax (log ε): 

200 (4.4), 219 (4.5), 271 (3.8). 
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Synthesis of 1-methoxyindolyl-3-acetonitrile (105) from indolyl-3-acetonitrile (76). 

 

N
OCH3

CN

N
H

CN

N
H

CN

NaBH3CN, AcOH
H2O2,
Na2WO4.2H2O

K2CO3, (CH3)2SO4

76 105112  

Fig 24. Synthesis of caulilexin C (105, overall yield 10%). 

 

 To a stirred solution of indolyl-3-acetonitrile (76, 100 mg, 0.64 mmol) in glacial 

acetic acid (2 ml), sodium cyanoborohydride (120 mg, 1.8 mmol) was added in 

portions over 3 hours. The reaction mixture was diluted with water (40 ml) and 

extracted with CH2Cl2 (50 ml × 3); the combined extract was dried over Na2SO4 and 

concentrated. The crude reaction mixture was fractionated by flash column 

chromatography to yield 2, 3-dihydroindole-3-acetonitrile (112, 40 mg, 60%, Fig 24). 

 A vigorously stirred solution of 2,3-dihydroindolyl-3-acetonitrile (112, 40 mg) 

in methanol (2 ml) was treated with a solution of Na2WO4.2H2O (22 mg, 2.2 mmol) in 

H2O (160 µl). The resultant suspension was cooled to -18°C and 30% H2O2 (300 µl) 

was added over 15 min. After 30 min, K2CO3 (300 mg) and (CH3)2SO4 (80 µl) were 

added to the reaction mixture and the mixture was stirred at room temperature for five 

hours, the reaction mixture was diluted with water (5 ml), the mixture was extracted 

with CH2Cl2 (10 ml × 3). The combined extract was dried over Na2SO4 and 

concentrated. The extracted was fractionated by flash column chromatography 
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(EtOAc:hexane, 3:7) to yield 1-methoxyindolyl-3-acetonitrile (105, 7 mg, 14% yield, 

Fig 24, Pedras et al., 2006b). 

 

4.5.2.2. Synthesis of caulilexin B (107) 

 

Na2WO4.2H2O,
30% H2O2,

N
OCH3

1. POCl3, DMF
2. NaOH

NH2OH.HCl
Na2CO3, EtOH

N
OCH3

N
OH NiCl2.6H2O

NaBH4
N
OCH3

NHCHO

HCOOEt,
reflux

K2CO3, (CH3)2SO4N
H

40%
70%

60%

113 114

116 107

100%

N
OCH3

CHO

115

Fig 25. Synthesis of caulilexin B (107) 

 

1-Methoxyindole (114) 

 A solution of indoline (113, 556 µl, 4.6 mmol) in methanol (20 ml) was treated 

with a solution of Na2WO4.2H2O (294 mg, 0.89 mmol) in H2O (2 ml). The resultant 

suspension was cooled to -15 °C and 30% H2O2 solution (4.5 ml 30% H2O2 and 4.5 ml 

MeOH) was added to the mixture over 15 min while stirring. After 30 min, K2CO3 (2.8 

g, 20 mmol) and (CH3)2SO4 (0.75 ml, 7.5 mmol) were added to the mixture with 

vigorous stirring at room temperature. After 1.5 hours, the reaction mixture was diluted 

with water (20 ml) and extracted with Et2O (50 ml × 3). The combined diethylether 
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extract was dried over Na2SO4 and concentrated. Crude 1-methoxyindole (114) was 

purified with flash column chromatography (CH2Cl2-MeOH, 98:2) to yield 352 mg (2.4 

mmol, 48 %, Fig 25). Spectral data of 1-methoxyindole (114) were identical with those 

of an authentic sample (Somei, et al., 1985, Kawasaki & Somei, 1990). 

1H-NMR (500 MHz, CD3CN): δH 8.23 (s, 1H) 7.15 (t, J = 8, 8 Hz, 1H), 7.12 (t, J = 3, 

2.5 Hz, 1H), 7.04 (d, J = 8 Hz, 1H), 6.69 (bs, 1H), 6.49 (d, J = 7.5 Hz, 1H), 3.96 (s, 

3H). 

 

1-Methoxyindole-3-carboxaldehyde (115) 

 To a solution of 1-methoxyindole (114, 130 mg, 0.88 mmol) in dry DMF (600 

µl), phosphorus oxychloride (84 µl, 0.91 mmol) was added slowly at room temperature. 

After 30 min, the reaction mixture was neutralized with 5N NaOH (2 ml) and refluxed 

for 5 min. The reaction mixture was extracted with Et2O (3 ml × 3); the combined 

organic phase was dried over Na2SO4 and concentrated. The product was separated by 

flash column chromatography (CH2Cl2:MeOH, 98:2) to yield 1-methoxyindole-3-

carboxaldehyde (115, 72 mg, 58 % yield, Fig 23). Spectral data of 1-methoxyindole-3-

carboxaldehyde (115) were identical with those of an authentic sample (Pedras & 

Okinyo, 2006a). 

HPLC RT =12.2 min. 1H-NMR (500 MHz, CDCl3): δH 10.01 (s, 1H), 8.33 (d, J = 8 Hz, 

1H), 7.91(s, 1H), 7.50 (d, J = 8 Hz, 1H), 7.40(dd, J = 8, 8 Hz, 1H), 7.37 (dd, J = 8, 8 

Hz, 1H), 4.21(s, 3H). 
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 1-Methoxyindole-3-carboxaldehyde oxime (116) 

 An aqueous solution of NH2OH·HCl (67 mg, 0.94 mmol) and Na2CO3 (51 mg, 

0.48 mmol) was added to a solution of 1-methoxyindole-3-carboxaldehyde (115, 85 

mg, 0.54 mmol). The reaction mixture was heated at 60º C for 3 hours, then the 

reaction mixture was diluted with water (10 ml) and extracted with Et2O (20 ml × 3). 

The combined organic phase was dried over anhydrous Na2SO4 and concentrated to 

dryness to yield 1-methoxyindole-3-carboxaldehyde oxime (116, 86 mg, 0.85 mmol, 

90% yield). Spectral data of 1-methoxyindole-3-carboxaldehyde oxime (116) were 

identical with those of an authentic sample (Pedras & Okinyo, 2006a). 

HPLC RT =12.3 and 12.5 min (ratio 1:2 for E and Z isomer) 
  

1-Methoxyindolyl-3-methanamine  

 

N
OCH3

NH2

 

 

 To a stirred cooled solution of 1-methoxyindole-3-carboxaldehyde oxime (116, 

34 mg, 0.19 mmol) in MeOH (500 µl) cooled 0 º C, NaBH3(CN) (113 mg, 1.79 mmol) 

and NH4OAc (50 mg, 0.65 mmol) were added and then a neutralized solution of TiCl3 

(30% wt in 2N HCl, 730 µl) was added. After 15 min, the reaction mixture was diluted 

with water (10 ml), neutralized with 5N NaOH and extracted with CH2Cl2 (10 ml × 3). 

The combined organic phase was dried over anhydrous Na2SO4 and concentrated to 

dryness to yield crude amine (50 mg). After flash column chromatography with 
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(CH2Cl2:MeOH, 9:1), 1-methoxyindole-3-methylamine was obtained in 81 % yield (26 

mg). Spectral data of 1-methoxyindole-3-methylamine were identical with those of an 

authentic sample (Pedras et al., 2006b).  

1H-NMR (500 MHz, CD3OD): δH 7.58 (d, J = 8 Hz, 1H), 7.36 (d, J = 8 Hz, 1H), 7.33 

(s, 1H), 7.18 (dd, J = 8, 7.5 Hz, 1H), 7.04 (dd, J = 7.5, 7.5 Hz, 1H), 4.02 (s, 3H), 3.92 

(d, J = 2 Hz, 1H). 

 

Caulilexin B (107) 

 1-Methoxyindolyl-3-methanamine (34 mg, 0.2 mmol) was refluxed in HCOOEt 

(2 ml) at 70 ºC for 16 hours. The reaction mixture was allowed to cool to room 

temperature and the excess HCOOEt was evaporated. Separation by flash column 

chromatography (CH2Cl2: MeOH, 95:5) gave caulilexin B (107, 23 mg, 85% yield, Fig 

25) (Pedras et al., 2006b).  

HPLC RT = 8.8 min; 1H-NMR (500 MHz, CD3CN) δH 8.15 (s, 1H), 7.63 (d, 1H, J = 8 

Hz), 7.46 (d, 1H, J = 8 Hz), 7.38(s, 1H), 7.27 (dd, 1H, J = 7.5, 7.5 Hz), 6.70 (bs, 1H), 

4.52 (d, 2H, J = 6 Hz), 4.07 (s, 3H). 13C-NMR (125 MHz, CD3CN): δC 162.2 (s), 133.8 

(s), 124.3 (s), 124.0 (d), 123.8 (d), 121.2 (d), 120.6 (d), 110.6 (s), 109.7 (d), 67.0 (q), 

33.7 (t);  HR-EIMS: m/z (% relative abundance) measured: 204.0898 (92%, 204.0898 

calc for C11H12N2O2); EIMS m/z (% relative abundance): 204 (M+), 175 (22), 173 (64), 

146 (21) 145 (39), 118.0659 (100), 117 (31), 91 (21). FTIR νmax: 3282, 3053, 2935, 

2860, 1661, 1523, 1452, 1360, 1226, 1101, 740 cm-1. UV (MeOH) λmax (log ε): 271 

(4.4), 290 (3.7). 
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4.6. Brussels sprouts (Brassica oleracea var. gemmifera) 

 

 4.6.1. Isolation of metabolites 

 Brussels sprouts were cut into two pieces.  After 24 hours of incubation at 20 °C 

in moist covered plastic boxes, the elicited slices were irradiated with UV light for 20 

min, incubated in moist covered plastic boxes and after 72 hours were ground in a 

blender. The ground tissues were stirred in ethyl acetate (3.9 Kg in 6 l).  After 12 hours, 

the mixture was filtered; the filtrate was dried over Na2SO4 and concentrated to dryness 

under reduced pressure (crude extract 9.6 g). This extract was redissolved in hexane 

and H2O. The hexane layer was separated, dried over Na2SO4 and concentrated to 

dryness. The crude hexane extract (6.7 g) was separated by flash column 

chromatographed using a gradient elution (CH2Cl2:hexane, CH2Cl2:MeOH). Thirteen 

fractions were collected and analysed by HPLC: F 6 showed a peak at RT 28.4 min, F 7 

showed a peak at RT 23.1 min, F 8 showed peaks at RT = 33.3 and 36.0 min, F 11 

showed a peak at RT = = 7.2 min, F12 showed a peak at RT = 8.7 and F 13 showed 

peaks at RT = 18.0 and 4.5 min along with other compounds. 1-Methoxy-3,3’-

diindolylmethane (119) was isolated from F 6 by reverse phase column 

chromatography (CH3CN:H2O). Diindolylmethane (50) was isolated from F 7 by 

reverse phase column chromatography (CH3CN:H2O). Di-(1-methoxy-3-

indolyl)methane (120) was isolated from F 9 by PTLC (CH2Cl2:hexane) and reverse 

phase column chromatography (CH3CN: H2O). Brussalexin B (117) was isolated from 

F 11 by flash column chromatography (Et2O:hexane) and reverse phase column 
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chromatography (CH3CN:H2O). 1-Methoxybrassitin (55) and brussalexin C (118) was 

isolated from F 12 by flash column chromatography (Et2O:hexane) and reverse phase 

column chromatography (CH3CN:H2O). Brussalexin A (121) and ascorbigen (51) were 

isolated from F 13 by preparative TLC (CH2Cl2:hexane) and reverse phase column 

chromatography (CH3CN:H2O). 

Compound X 

HPLC: RT = 36.0 min. (Gradscr), 16.4(nonpolarscr). 1H-NMR (500 MHz, CD3CN) δH 

9.81(bs, 1H exchangeable with D2O), 9.06 (bs, 2H exchangeable with D2O), 8.81 (s, 

1H), 8.18 (d, J = 7.5 Hz, 2H), 7.77 (d, J = 2.4 Hz, 1H), 7.67 (d, J = 8 Hz, 1H), 7.41 (d, 

J = 8 Hz, 2H), 7.36 (m, 3H), 7.28 (dd, J = 7, 7.5 Hz, 1H), 7.20 (dd, J = 7,7.5 Hz, 2H), 

7.13 (dd, J = 8,7 Hz, 1H). 13C-NMR (125 MHz, CD3CN): δC 150.3, 140.8, 139.3, 

137.2, 126.9, 125.3, 125.1, 124.3, 122.5, 120.1, 119.9, 119.8, 119.2, 112.4, 110.8, 

110.1, 108.7, 99.7. UV (HPLC): λmax 215, 278, 310, 361 nm. 

 

Ascorbigen (51) 

HPLC RT = 4.5 min. UV (HPLC): λmax   222, 280 nm. 1H-NMR (500 MHz, CD3CN): δH 

9.24 (bs, 1H D2O exchangeable), 7.58 (d, J = 8Hz, 1H), 7.41 (d, J = 8Hz, 1H), 7.21 (s, 

1H), 7.13 (dd, J = 7.5,7.5 Hz, 1H), 7.04 (dd, J = 7.5,7 Hz, 1H), 4.30 (bs, 1H), 4.06 (m, 

1H), 4.00 (s, 2H), 3.39 (m, 1H), 3.21 (d, J = 14 Hz, 1H). 13C-NMR (125 MHz, 

CD3CN): δC 175.2, 135.3, 122.2, 124.8, 120.7, 118.3, 118.1, 110.6, 106.7, 106.1, 85.6, 

78.4, 74.1, 73.2, 29.3. HREIMS m/z measured: 305.0989 (305.0899 calc. for 

C15H15NO6. 
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 4.6.2. Synthesis of metabolites 

4.6.2.1. Synthesis of diindolylmethane (50) 

 

N
H

N
H

N
H

HCHO, CH3COOH, H2O

85-90 ºC
 

122 50 

 

Fig 28. Synthesis of diindolylmethane (50). 

 

 Indole (122, 100 mg, 0.85 mmol) was added to a solution of acetic acid (40 µl, 

0.68 mmol in 1 ml water). After being stirred for 10 min, 37% aqueous formaldehyde 

(10 µl) was added to the reaction mixture and heated at 85-90 °C for 5 hours. The 

mixture was cooled at room temperature, filtered and concentrated. The crude reaction 

mixture was subjected to reverse phase column chromatography (CH3CN:H2O, 75:25) 

to afford diindolylmethane (50, 100 mg, 94% yield, Fig 28, Jackson et al., 1987).       

HPLC: RT = 23.1 min. 1H-NMR (500 MHz, CD3CN): δH 9.03 (s, 2H), 7.54 (d, J = 8 

Hz, 2H), 7.38 (d, J = 8 Hz, 2H), 7.11 (dd, J = 7, 7 Hz, 2H), 7.07 (d, J = 2 Hz, 2H), 6.99 

(dd, J = 7, 8 Hz, 2H), 4.22 (s, 2H). HREIMS m/z (% relative abundance) measured: 

246.1153 (246.1157 calc. for C17H14N2). FTIR νmax: 3413, 3053, 2936, 1618, 1486, 

1455, 1421, 1338, 1220, 1089, 1009, 741 cm-1. UV (CH2Cl2) λmax (log ε): 224 (4.8), 

270 (4.1). 
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4.6.2.2. Synthesis of 1-methoxy-3, 3’-diindolylmethane (119) 

 

90% 54%
N
OCH3

CHO

NaBH4, EtOH

N
OCH3

CH2OH
Indole, CH3COOH, 
at 50 °C

N
H

N
OCH3

115 123
119  

 
Fig 42. Synthesis of 1-methoxy-3,3’-diindolylmethane (119). 

 

1-Methoxyindole-3-methanol (123) 

 To a stirred solution of 1-methoxyindole-3-carboxaldehyde (115, 18 mg, 0.10 

mmol) in EtOH (300 µl), NaBH4 (5.2 mg, 0.14 mmol) was added at 0°C; after 1.5 hour, 

the reaction mixture was diluted with water (5 ml) and extracted with EtOAc (5 ml × 

3). The combined organic portion was dried over anhydrous Na2SO4 and concentrated 

to give 1-methoxyindole-3-methanol (123, 20 mg, 98% yield, adapted from Letxague et 

al., 1991). 

1H-NMR (500 MHz, CD3CN): δH 7.82(d, J = 7.5 Hz, 1H), 7.28 (s, 1H), 7.25 (dd, J = 8, 

8 Hz, 1H), 6.73 (d, J = 7.5 Hz, 1H), 4.75 (s, 3H), 3.96 (s, 2H). UV (CH2Cl2) λmax (log 

ε): 220 (4.4), 271 (3.7).   

     

1-Methoxy-3,3-diindolylmethane (119) 

 To a solution of 1-methoxyindole-3-methanol (123, 20 mg, 0.098 mmol) and 

indole (122, 24 mg, 0.205 mmol) in EtOH (300 µl), glacial acetic acid (13 µl, 0.22 

mmol) was added at 50°C and stirred for 5 hours. The solvent was evaporated to 
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dryness. The crude reaction mixture was subjected to reverse phase column 

chromatography (CH3CN:H2O-50:50) to afford 1-methoxy-3,3-ddiindolylmethane 

(119, 15 mg, 54%, Fig 42, adapted from Jackson et al., 1987).   

HPLC: RT = 29.3 min. 1H-NMR (500 MHz, CD3CN) δH 9.06 (bs, 1H), 7.56 (d, 1H, J = 

8 Hz), 7.55 (d, 1H, J = 8 Hz), 7.40 (dd, 2H, J = 8, 8 Hz), 7.22 (s, 1H), 7.21 (d, 1H, J = 

8 Hz), 7.13 (d, 1H, J = 7.5 Hz), 7.10 (s, 1H), 7.02 (dd, 1H, J = 7.5, 7.5 Hz), 6.97 (dd, 

1H, J = 7.5, 7.5 Hz), 4.20 (s, 2H), 4.03 (s, 3H). 13C-NMR (125 MHz, CD3CN): δC 

167.6, 137.1, 133.4, 127.8, 124.3, 123.1, 122.6, 121.8, 119.8, 119.1, 119.0, 114.8, 

112.5, 111.7, 108.6, 65.6, 21.1. HREIMS m/z (% relative abundance) measured: 

276.1262 (276.1262 calc. for C18H16N2O. FTIR νmax: 3441, 3056, 2927, 1695, 1609, 

1456, 1345, 1221, 1091, 955, 741 cm-1. UV (CH2Cl2) λmax (log ε): 219 (4.5), 271 (3.8). 

 

4.6.2.3. Synthesis of di-(1-methoxy-3-indolyl)-methane (120) 

 

N
OMe

N
OMe

120

HCHO, CH3COOH,
at 90 °C

25%
N
OCH3

114  
 

Fig 43. Synthesis of di-(1-methoxy-3-indolyl)methane (120). 

 

 To a solution of 1-methoxyindole (114, 30 mg, 0.20 mmol) dissolved in EtOH 

(1 ml), glacial acetic acid (10 µl, 0.17 mmol) was added to the solution and stirred at 

50°C for 20 min. Then 40% formaldehyde (10 µl) was added to the reaction mixture 

and stirred at 90°C. After 3 hours, the reaction mixture was cooled and the solvent was 
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evaporated. The crude reaction mixture was subjected to reverse phase column 

chromatography (CH3CN:H2O-50:50) to afford di-(1-methoxy-3-indolyl)-methane 

(120, 8 mg, 0.05 mmol, 25% yield, Fig 43, adapted from Jackson et al., 1987).   

HPLC: RT = 33.3 min. 1H-NMR (500 MHz, CD3CN): δH 7.58 (d, 2H, J = 7.5 Hz), 7.42 

(d, 2H, J = 8 Hz), 7.25 (s, 2H), 7.21 (dd, 2H, J = 7.5, 8 Hz), 7.05 (dd, 2H, J = 7.5, 8 

Hz), 4.17 (s, 2H) 4.04 (s, 6H). 13C-NMR (125 MHz, CD3CN): δC 133.3, 124.2, 122.7, 

122.2, 119.8, 119.7, 111.8, 108.6, 65.7, 20.9. HREIMS m/z (% relative abundance) 

measured: 306.1367 (306.1368 calc. for C19H18N2O2). EIMS m/z (% relative 

abundance): 306 [M+] (90), 275 (30), 243 (100), 149 (58). 

 

4.6.2.4. Synthesis of brussalexin B (117) 

 
 

N
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N
H
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11712449
 
 
Fig 30. Synthesis of brussalexin B (117). 

 

Indolyl-3-methylsulfanylmethane (124)  

 A mixture of indolyl-3-methanol (49, 200 mg, 1.36 mmol) and Et3N (800 µl) in 

THF (4 ml) was cooled to 0°C; SOCl2 (240 µl, 3.44 mmol) was added dropwise to the 
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above mixture and the reaction mixture was stirred for 50 min. Then the reaction 

mixture was concentrated and the residue was redissolved in THF (4 ml). After 10 min, 

NaSMe (264 mg 3.44 mmol) was added to the reaction mixture and stirred for 2 hours. 

The reaction mixture was diluted with water (10 ml) and extracted with Et2O (15 ml × 

3). The combined organic portion was dried over Na2SO4 and solvent was evaporated. 

The crude reaction mixture was subjected to flash column chromatography 

(EtOAc:hexane, 20:80) to afford 3-methylsulfanylmethylindole (124, 100 mg, 42%), 

m. p. 77-79 °C 

HPLC: RT = 19.3 min. 1H-NMR (500 MHz, CDCl3) δH 7.70 (d, J = 8 Hz, 2H), 7.34(dd, 

J = 7.5, 7.5 Hz, 1H), 7.24 (dd, J = 8, 8 Hz, 2H), 7.06 (s, 1H), 3.85 (s, 2H), 2.68 (s, 3H). 

13C-NMR (125 MHz, CDCl3): δC 136.9, 127.3, 123.3, 122.9, 120.3, 119.6, 112.8, 

111.9, 34.8, 15.7. FTIR νmax: 3390, 3261, 2927, 1617, 1507, 1448, 1348, 1256, 1100, 

940 cm-1. UV (CH2Cl2) λmax (log ε): 201 (4.4), 222 (4.4), 280 (3.8). 

 

Brussalexin B (117)  

 To a solution of 3-methylsulfanylmethylindole (124, 16 mg, 0.09 mmol) in 

MeOH (500 µl), oxone (176 mg, 0.32 mmol) solution in water (500 µl) was added and 

stirred at room temperature. After 10 min, the reaction mixture was filtered and the 

solution was extracted with Et2O (10 ml × 3). The combined organic extract was dried 

over anhydrous Na2SO4 and concentrated. The crude reaction mixture was subjected to 

flash column chromatography (CH2Cl2-MeOH, 90:10) to afford brussalexin B (117, 15 

mg, 0.08 mmol, 85%, Fig 30, adapted from Latxague et al., 1991). m. p. 150-152 °C. 
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HPLC: RT = 7.2 min. 1H-NMR (500 MHz, CD3CN) δ 9.53 (bs, 1H), 7.71 (d, J = 8 Hz, 

1H), 7.48 (d, J = 8 Hz, 1H), 7.39 (d, J = 2.6 Hz, 1H), 7.21 (dd, J = 7.5, 7.5 Hz, 1H), 

7.16 (dd, J = 7.5, 7.5 Hz, 1H), 4.50 (s, 2H), 2.79 (s, 3H). 13C-NMR (125 MHz, 

CD3CN): δ 136.7, 127.6, 127.0, 122.5, 120.1, 119.4, 112.1, 102.9, 51.4, 38.9. HREIMS 

m/z (% relative abundance) measured: 209.0509 (209.0510 calc. for C10H11NO2S. FTIR 

νmax: 3358, 2925, 2852, 1653, 1458, 1296, 1114, 966, 891, 745 cm-1. UV (CH2Cl2) λmax 

(log ε): 217 (4.4), 270 (3.7). 

 

4.6.2.5. Synthesis of brussalexin C (118) 
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Fig 31. Synthesis of brussalexin C (118). 

 

4-Methoxyindole-3-carboxaldehyde (125) 
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 Indole-3-carboxaldehyde (94, 145 mg, 1.0 mmol) was added to a solution of 

thalium trifluoroacetic acid (815 mg, 1.8 mmol) and the mixture was stirred at room 

temperature. After 1.5 hours, trifluoroacetic acid was removed under reduced pressure 

and the residue was dissolved in DMF (2.5 ml); CuI (761 mg, 3.0 mmol) and I2 (762 

mg, 4.0 mmol) were added and the reaction mixture stirred for 1 hour at room 

temperature. Then MeONa solution (10 ml, 15%) was added and refluxed for 1 hour. 

The reaction mixture was diluted with CH2Cl2:MeOH, 95:5 (50 ml) and was filtered 

through celite. The filtrate was washed with water (5 ml × 3), dried over Na2SO4, and 

concentrated. The crude reaction mixture was subjected to flash column 

chromatography (EtOAc:hexane, 40:60) to afford 4-methoxyindole-3-carboxaldehyde 

(125, 102 mg, 58 %, Somei et al., 1984). 

 

4-Methoxyindole-3-methanol (126) 

 4-Methoxyindole-3-carboxaldehyde (125, 40 mg, 0.24 mmol) was dissolved in 

EtOH (1 ml) and cooled to 0°C. To the reaction mixture, NaBH4 (30 mg, 0.90 mmol) 

was added and stirred for 30 min. The reaction mixture was concentrated, diluted with 

water (20 ml) and extracted with EtOAc (30 ml × 3). The combined organic extract was 

dried over Na2SO4 and the solvent was evaporated to give 4-methoxyindole-3-methanol 

(126, 40 mg, 100 % yield, adapted from Latxague et al., 1991). 

1H-NMR (500 MHz, CD3CN) δH 8.23 (bs, 1H) 7.82 (d, J = 8 Hz, 1H), 7.43 (s, 1H), 

7.28 (d, J = 8, 8 Hz, 1H), 6.73 (d, J = 8 Hz, 1H), 4.75 (s, 2H), 3.96 (s, 3H). 
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4-Methoxy-3-methylsulfanylmethylindole (127) 

 A mixture of 4-methoxyindole-3-methanol (126, 40 mg, 0.23 mmol) in THF (1 

ml) and Et3N (150 µl) was cooled to 0°C, SOCl2 (55 µl, 0.50 mmol) was added 

dropwise and the reaction mixture was stirred for 1 hour. The reaction mixture was 

concentrated, the residue was redissolved in THF (1 ml) and stirred for 10 min. Then 

NaSMe (60 mg, 0.78 mmol) was added and the reaction mixture stirred for 1 hour. The 

reaction mixture was diluted with water (10 ml) and extracted with Et2O (15 ml × 3). 

The combined organic extract was dried over Na2SO4 and the solvent was removed. 

The crude reaction mixture was subjected to flash column chromatography 

(EtOAc:hexane, 20:80) to afford 4-methoxy-3-methylsulfanylmethylindole (127, 35 

mg, 70 %, Fig 31). m. p. 96-98 °C 

1H-NMR (500 MHz, CD3CN) δH 7.06 (dd, J = 8, 8 Hz, 1H), 7.01 (d, J = 7.5 Hz, 1H), 

6.50 (d, J = 8 Hz, 1H), 4.01(s, 2H), 3.90 (s, 3H), 2.08 (s, 3H). FTIR νmax: 3390, 2927, 

2854, 1617, 1507, 1448, 1348, 1256, 1100 cm-1. 

 

Brussalexin C (118) 

 To a solution of 4-methoxy-3-methylsulfanylmethylindole (127, 30 mg, 0.15 

mmol) in MeOH (2.5 ml), oxone (330 mg, 0.50 mmol) in water (2.5 ml) solution was 

added and the reaction mixture was stirred at room temperature. After 10 min, the 

reaction mixture was filtered and the filtrate was extracted with Et2O (10 ml × 3). The 

combined organic extract was dried over anhydrous Na2SO4 and concentrated. The 

crude residue was subjected to flash column chromatography (CH2Cl2-MeOH, 90:10) 
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to afford brussalexin C (118, 20 mg, 66 % yield, Fig 31, adapted from Hanquet & 

Lusinchi, 1993), m. p. 161-163 °C as a white solid. 

HPLC: RT = 8.7 min. 1H-NMR (500  MHz, CD3CN) δH 9.50 (bs, 1H), 7.27 (d, J = 2.5 

Hz, 1H), 7.11(dd, J = 7.5, 7.5 Hz, 1H), 7.05 (d, J = 7.5 Hz, 1H), 6.60 (d, J = 7.5 Hz, 1 

H), 4.77 (s, 2H), 4.64 (s, 3H), 2.70 (s, 3H). 13C-NMR (125 MHz, CD3CN): δC 137.8, 

125.6, 123.5, 123.3, 116.9, 105.4, 102.5, 100.4, 55.0, 53.2, 38.6. HREIMS m/z (% 

relative abundance) measured: 239.0617 (239.0616 calc. for C11H13NO3S). FTIR νmax: 

3358, 2922, 2841, 1653, 1509, 1350, 1291, 1253, 1113, 1081, 960, 890, 726 cm-1. UV 

(CH2Cl2) λmax (log ε): 220 (4.476), 268 (3.661). 

 

3-Methanesulfinylmethyl-4-methoxyindole (128) 

 To a solution of 4-methoxy-3-methylsulfanylmethylindole (127, 6 mg, 0.03 

mmol) in MeOH (500 µl), oxone (24 mg, 0.04 mmol) in water (500 µl) solution was 

added and stirred at room temperature. After 5 min, the reaction mixture was filtered 

and the filtrate was extracted with Et2O (30 ml × 3). The combined organic extract was 

dried over anhydrous Na2SO4 and concentrated. The crude residue was subjected to 

flash column chromatography (CH2Cl2-MeOH, 90:10) to afford 2 mg of 3-

methanesulfinylmethyl-4-methoxyindole (35 % yield, 128). 

1H-NMR (500 MHz, CD3CN) δH 9.37 (bs, 1H), 7.16 (d, 1H, J = 2.5Hz), 7.10 (dd, 1H, J 

= 8 Hz), 7.05 (d, 1H, J = 7.5Hz), 6.57 (d, 1 H, J = 7.5 Hz), 4.29 (s, 2H), 3.92 (s, 3H), 

2.47 (s, 3H). 
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4.6.2.6. Synthesis of brussalexin A (121) 
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Fig 32. Synthesis of Brussalexin A (121, overall 3 % yield) 

 
 

S-3-Indolemethyl thioacetate (130) 

 
 To a solution of gramine (129, 116 mg, 0.66 mmol) and (CH3)2SO4 (62 µl) in 

water (2 ml), a solution of CH3COSH (65 µl) in KOH (1N, 1 ml) was added and the 

reaction mixture was refluxed for 20 min. After cooling to room temperature, the 

reaction mixture was extracted with Et2O (5 ml × 3). The combined organic extract was 

dried over anhydrous Na2SO4 and concentrated. The crude reaction mixture was 

subjected to flash column chromatography (CH2Cl2:MeOH, 90:5) to afford S-3-
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indolemethyl thioacetate (130, 110 mg, 81 % yield, Fig 32 ) (Benghiat & Crooks, 

1983).  

HPLC RT   = 19.0 min. 1H-NMR (500 MHz,CD3CN): δH 8.26 (bs, 1H), 7.67 (d, J = 8 

Hz, 1H), 7.37 (d, J = 8 Hz, 1H) 7.26 (dd, J = 8, 8 Hz, 1H), 7.21 (dd, J = 8, 8 Hz, 1H), 

7.16 (d, J = 2.4 Hz, 1H), 4.15 (s, 1H), 2.39 (s, 1H). HREIMS m/z (% relative 

abundance) measured: 205.0557 (205.0561 calc. for C11H11NOS). UV (HPLC): λmax   

220, 285 nm. 

 

Brussalexin A (121) 

 S-3-Indolemethyl thioacetate (130, 29 mg, 0.14 mmol) in degassed THF (0.7 

ml) was added to degassed KOH (1.4 ml, 1N) solution and stirred for 8 hours under 

argon atmosphere and then the solvent was removed under reduced pressure. The 

residue was redissolved in water with HCl (1N, 1.5 ml) and extracted with EtOAc (5 

ml × 3). The combined extract was concentrated to a solid mass. The residue (24 mg) 

was redissolved in benzene (1 ml) and Et3N (50 µl). Allylisocyanate (22 µl) was added 

to the solution and stirred for 12 hours. The reaction mixture was concentrated, and was 

subjected to preparative TLC (EtOAc:hexane, 20:80) to afford (3 mg) of brussalexin A 

(121, 3 % yield, adapted from Tsukamoto et al., 2005). 

HPLC RT   = 18.0 min. 1H-NMR (500 MHz,CD3CN): δH 9.17 (bs, 1H), 7.61 (d, J = 8 

Hz, 1H), 7.41 (d, J = 8 Hz, 1H), 7.23 (d, J = 2.4 Hz, 1H), 7.17 (dd, J = 7, 8 Hz, 1H), 

7.05 (dd, J = 8,7 Hz, 1H), 6.47 (bs, 1H), 5.81 (m, 1H), 5.17 (dd, J = 17, 1.5 Hz, 1H), 

5.06 (dd, J = 11, 1.5 Hz, 1H), 4.34 (s, 2H), 3.85 (m, 1H). 1H-NMR (500 MHz, CDCl3): 
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δH 8.05 (bs, 1H), 7.69 (d, J = 8 Hz, 1H), 7.4 (d, J = 8 Hz, 1H), 7.2 (bs, 1H), 7.2 (dd, J = 

7, 7.5 Hz, 1H), 7.18 (dd, J = 7.5 Hz, 1H), 5.85 (m, 1H), 5.4 (bs, 1H), 5,23 (d, J = 12 

Hz, 1H), 5.17 (d, J = 12 Hz, 1H), 4.4 (s, 2H), 3.96 (bs, 1H). 13C-NMR (125 MHz 

CD3CN): δC 167.5, 136.3, 133.7, 126.6, 123.4, 122.4, 119.8, 119.0, 116.9, 112.3, 111.3, 

43.7, 25.5. HREIMS m/z (% relative abundance) measured: 246.0825 (246.0826 calc. 

for C13H14N2OS). FTIR νmax: (KBr)/cm-1: 3395, 3315, 3046, 2922, 1652, 1497, 1420, 

1340, 1203, 743. λmax (log ε): 228 (4.4), 279 (3.9). 

 

 

4.7. Brown mustard  

 

 4.7.1. Isolation of metabolites from brown mustard (Brassica juncea var. 

Commercial Brown) 

 
 Brown mustard plants elicited with CuCl2 (1 × 10-2 M) solution. After 36 hours, 

the leaves (800 gm) were harvested, crushed in liquid N2 and extracted with MeOH (3 

× 1500 ml).  The crude extract was redissolved in water and EtOAc. The water soluble 

extract (49 g) was fractionated on reversed phase column chromatography (15 cm × 3 

cm), eluted with a gradient of H2O:CH3CN. Sixteen fractions were collected and 

analysed by HPLC. F 5 showed a peak at RT = 11.8 min (Albpol), F 6 showed a peak at 

RT = 7.2 min, F 7 showed a peak at RT = 14.0 min, F 8 showed a peak at RT = 14.7 min 

and F 10 showed a peak at RT = 21.0 min. L-Tryptophan (86) was isolated from F 5 by 

reverse phase column chromatography (CH3CN:H2O) and sephadex column 
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chromatography (MeOH:H20, 95:5). Phenylalanine (132) was isolated from F 6 by 

reverse phase column chromatography (CH3CN:H2O). Compound Y was isolated from 

F 7 by reverse phase column chromatography (CH3CN: H2O). Isorhamnetin 3,7-

diglucoside (134) was isolated from F 8 by reverse phase column chromatography 

(CH3CN:H2O). Spirobrassinin (71), indolyl-3-acetonitrile (76) and methylindole-3-

carboxylate (133) were isolated from F 11 by reverse phase column chromatography 

(CH3CN: H2O).   

Compound Y 

HPLC: RT = 14.4 min. 1H-NMR (500 MHz, CD3OD) δH 7.64 (d, J = 7.5 Hz, 1H), 7.39 

(d, J = 8 Hz, 1H), 7.22 (dd, J = 7, 7.5 Hz, 1H), 7.12 (dd, J = 7, 7.5 Hz, 1H), 4.73 (bs, 

1H), 4.58 (s, 1H), 3.90 (d, J = 11.5 Hz, 1H), 3.70 (bm, 2H), 3.69 (bs, 1H), 3.67 (s, 2H), 

3.57 (dd, J = 5, 4.5 Hz, 1H), 3.20 (d, J = 9 Hz, 1H), 3.07 (m, 1H). 2.81 (bs, 1H) 

HREIMS m/z (% relative abundance) measured: 274 (61), 227 (41), 163 (100), 161 

(37), 128 (39), 117 (58). UV (HPLC): λmax 225, 285 nm. 

 

 

 

Methylindole-3-carboxylate (133) 

HPLC: RT = 21.0 min (Albpol). 1H-NMR (500 MHz, CDCl3) δH 9.1 (bs, 1H), 8.16 (d, 

1H, J = 8 Hz), 7.96 (s, 1H), 7.46 (d, 1H, J = 8 Hz), 7.29 (m, 2H), 7.22 (s, 1H), 3.90 (s, 

3H).  

   

Isorhamnetin 3,7-diglucoside (134) 
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HPLC RT = 14.7 min. UV (HPLC): λmax 205, 245 nm. 1H-NMR (500 MHz, CD3OD) δH 

7.95 (d, J = 2.0 Hz, 1H), 7.65 (d, J = 2.0 Hz, 1H), 7.63 (d, J = 2.0 Hz, 1H), 6.94 (s, 

1H), 6.92 (s, 1H), 6.80 (d, J = 2.0 Hz, 1H), 6.51 (d, J = 2.0 Hz, 1H), 5.46 (d, J = 7.5 

Hz, 1H), 5.08 (d, J = 7.0 Hz, 1H), 3.92 (s, 1H), 3.91 (s, 1H), 3.76 (m, 3H), 3.55 (m, 

2H), 3.45 (m, 4H), 3.41 (m, 1H), 3.13 (m, 1H). 13C-NMR (CD3CN): δC 178.6, 163.8, 

161.8, 158.3, 157.0, 150.2, 147.5, 134.6, 123.1, 121.9, 115.1, 113.6, 106.6, 102.5, 

100.7, 99.9, 94.9, 76.9, 74.9, 73.8, 70.6, 70.3, 61.6, 61.5 and 55.93.  

4.8. Wild species: Isolation of metabolites 

4.8.1. Metabolites from Asian mustard (Brassica tournefortii) 

 Asian mustard plants were sprayed with CuCl2 solution (1 × 10-2 M). The 

elicited leaves were harvested after 96 hours, frozen with liquid N2, powdered with a 

glass rod and extracted with EtOAc (12 hours). The EtOAc was filtered, the filtrate was 

dried over Na2SO4 and the solvent was evaporated to dryness to yield a residue (1.2 g). 

The residue was chromatographed on flash column chromatograph (15 cm × 5 cm) 

eluted with a gradient mixture of CH2Cl2:hexane followed by CH2Cl2:MeOH. Thirteen 

fractions were collected and analysed by HPLC. F 12 showed a peak at RT = 4.5 min 

which was isolated after reverse phase column chromatography (CD3CN: H2O) and 

flash column chromatography (CH2Cl2:hexane) to yield 3-methanesulfinyl 

propylisothiocyanate (135). 

3-methanesulfinyl propylisothiocyanate (135) 
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HPLC RT = 4.5 min. UV (HPLC): λmax 205, 245 nm. Optical rotation: [α]  5.24
D -65.8, (c 

4.8, CH Cl ). 2 2
1H-NMR (500 MHz, CHCl ) δ  3.75 (dd, 2H, J = 6.5, 6.5 Hz), 2.82 (m, 

1H), 2.71 (m, 1H), 2.54 (s, 3H), 2.10 (m, 2H). 

3 H

13C-NMR (CHCl ): δ  129.8, 50.8, 44.5, 

38.5 and 23.3. EIMS: 163 (6%, M

3 C

+), 71 (100%). IR: νFilm 3427, 2933, 2183, 2099, 

1444, 1349, 1046, and 1016 cm-1. 

 

4.8.2. Metabolites from sand rocket (Diplotaxis tenuifolia) 

 Plants (4-week old) were sprayed with CuCl2 solution (1 × 10-2 M). The elicited 

leaves were harvested after 72 hours, frozen with liquide N2, powdered with glass rods, 

and extracted with EtOAc for next 12 hours. The crushed leaves in EtOAc were 

filtered, the filtrate was dried over Na2SO4 and the solvent was evaporated to dryness to 

yield a residue (1.5 g). The residue was chromatographed on silica gel column (15 cm 

× 5 cm) eluted with a gradient of CH2Cl2:hexane, CH2Cl2:MeOH. F 4 was further 

subjected to reverse phase column chromatography, guided by bioassay against C. 

cucumerinum to isolate 5-(3-isothiocyanato-propylsulfanyl)-pentylisothiocyanate (136) 

and arvelexin (84) having retention time at RT = 14.0 and 22.9 min. 

 

5-(3-isothiocyanato-propylsulfanyl)-pentylisothiocyanate (136) 

HPLC RT = 22.9 min. 1H-NMR (500 MHz, CD3CN)  δH 3.63 (t, J = 3.0 Hz, 2H), 2.76 

(t, J = 7.0 Hz, 4H), 2.44 (t, J = 7.0 Hz, 2H), 1.80 (m, 6H) 1.73 (m, 2H). 13C-NMR 

(CHCl3): δC 119.7, 45.1, 29.0, 28.9, 28.3, 26.5, 24.5, 24.4 and 17.3. EIMS m/z (% 
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relative abundance) measured: 260 (12), 114 (100), 71(61), HREIMS: m/z 260.0472 

(12%, M+), cal. 260.04756 calc. for C10H16N2S3.  UV (HPLC): λmax 215, 260 nm.

 

 

 4.8.3. Metabolites from wallrocket (Diplotaxis muralis) 

 Plants (4-week old) were sprayed with CuCl2 solution (1 × 10-2 M) and 

incubated for 2 days. Leaves (3.2 kg) were harvested, frozen in liquid N2, crushed, and 

extracted with EtOAc for 12 hours. The EtOAc extract was dried over anhydrous 

Na2SO4, concentrated to dryness. The residue (5.7 g) was chromatographed on silica 

gel column (15 cm × 5 cm) and eluted with a gradient mixture of CH2Cl2:hexane and 

CH2Cl2:MeOH. Ten fractions were collected and analysed by HPLC. F 4 contained 

arvelexin (84) having peak at RT = 13.9 min, F 5 showed a peak at RT = 28.0 min, F 6 

showed a peak at RT = 36.1 min, F 7 showed a peak at RT = 20.1 min and F 8 showed a 

peak at RT = 24.0 min. F 6 was subjected to reverse phase column chromatography 

(CH3CN: H2O) to yield bis (isothiocyanatobutyl) disulfide (139, 8.8 mg). Rapalexin A 

(138, 1 mg) was isolated from F 7 by flash column chromatography (Et2O:hexane) and 

reverse phase column chromatography (CH3CN:H2O). 1,4-Dimethoxyindole-3-

acetonitrile (137, 2 mg) was isolated from F 8 by flash column chromatography 

(Et2O:hexane) and reverse phase column chromatography (CH3CN:H2O). 

 

1, 4-Dimethoxyindole-3-acetonitrile (137) 
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HPLC RT = 20.1 min. 1H-NMR (500 MHz, CD3CN): δH 7.32 (s, 1H), 7.20 (dd, J = 8, 8 

Hz, 1H), 7.05 (d, J = 8 Hz, 1H), 6.61 (d, J = 7.5 Hz, 1H), 4.07 (s, 3H), 4.00 (s, 2H), 

3.93 (s, 3H). HREIMS: m/z 216.0898 (81%, M+), cal. 216.0898 for C12H12N2O2, EIMS: 

m/z 216 (81%) 185 (100%). 

 

Rapalexin A (138) 

HPLC RT = 24.0 min. 1H-NMR (500 MHz, CD3CN): δH 9.38 (bs, 1H), 7.20 (d, J = 3 

Hz, 1H), 7.17 (dd, J = 8, 8 Hz, 1H), 7.06 (d, J = 8 Hz, 1H), 6.64 (d, J = 8 Hz, 1H), 3.93 

(s, 3H). HREIMS: m/z 204.0349 (100%, M+), cal. 204.0357, 189.0123 (100%). 

 

4-Methoxyindole-3-thiocyanate (141) 

RT = 26.1 min. 1H-NMR (500 MHz, CDCl3): δH 8.54 (brs, 1H), 7.51 (d, J = 3.8 Hz, 

1H), 7.13 (d, J = 8.7 Hz, 1H), 7.02 (d, J = 8.7 Hz, 1H), 5.53 (brs, 1H), 4.09 (s, 3H). 1H 

NMR (500.1 MHz, CD3OD): δ 7.56 (s, 1H), 7.08 (d, J = 8.65 Hz, 1H), 6.88 (d, J = 8.65 

Hz, 1H), 4.01 (s, 3H).  HREI-MS: calc. for C10H8N2O2S, m/z 220.0306, found 

220.0313.  

 

bis (Isothiocyanatobutyl) disulfide (139)  

HPLC RT = 28.0 min. 1H-NMR (500 MHz, CD3CN): δH 3.58 (dd, J = 6.5, 6.5 Hz, 4H), 

2.73 (dd, J = 6.5, 6.5 Hz, 4H), 1.85 (m, 4H), 1.85 (m, 4H). 13C-NMR (125 MHz, 
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CD3CN): δc 130.4, 44.7, 37.8, 28.6, 26.1. HR-MS: m/z 292.0083 (15%), Cal. 

292.007532 calc. for C10H16N2S4.  

 

4.8.4. Metabolites from hedge mustard (Sisymbrium officinale) 

 Plants (4-week old, 100) were sprayed with CuCl2 (1 × 10-2 M) and incubated 

for two days. Elicited (200 g) leaves were collected separately, frozen in liquid N2, 

crushed and extracted with EtOAc (300 ml × 3). The EtOAc extract was filtered, dried 

over anhydrous Na2SO4 and concentrated under reduced pressure. The residue (2.8 g) 

was chromatographed on a silica gel column (15 cm × 5 cm), eluted with a gradient 

mixture of (C6H12:CH2Cl2:MeOH). F 6 showed a peak at RT 11.8 min and F 7 showed a 

peak at RT 19.0 min. Indolyl-3-acetonitrile (76) was isolated from F 6 by reverse phase 

column chromatography and methyl 1-methoxyindole-3-carboxylate (142) was isolated 

from F 7 by reversed column chromatography (CH3CN:H2O).  

 

Methyl 1-methoxyindole-3-carboxylate (142) 

HPLC: RT = 18.0 min. 1H-NMR (500 MHz, CDCl3) δH 8.16 (d, 1H, J = 8 Hz), 7.96 (s, 

1H), 7.46 (d, 1H, J = 8 Hz), 7.29 (m, 2H), 7.22 (s, 1H), 4.14 (s, 3H), 3.90 (s, 3H).    

13C-NMR (125 MHz, CD3CN): δC 165.2, 132.2, 128.5, 123.7, 123.0, 122.6, 122.1, 

108.8, 103.7, 66.8, 51.3.  HREIMS m/z (% relative abundance) measured: 205.0736 

(205.0739 calc. for C11H11NO3. 
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4.8.5 Metabolites from Abyssinian mustard (Crambe abyssinica) 

 Plants (3-week old) were elicited by sprayed with CuCl2 solution (1 × 10-2 M). 

Elicited leaves were collected, frozen in liquid nitrogen, crushed, and extracted with 

EtOAc. The crude extract (1.6 g) was fractionated by gradient flash column 

chromatography (C6H14 : CH2Cl2 : MeOH). Fraction F 7 was further subjected to 

multiple column chromatography and reverse phase column chromatography (CH3CN: 

H2O) to yield the arvelexin (84) and rapalexin B (143) with retention times at RT = 13.9 

and 15.0 min respectively. 

 

Rapalexin B (143) 

RT = 15.0 min. 

1H-NMR (500 MHz, CDCl3): δH 8.54 (brs, 1H), 7.51 (d, J = 3.8 Hz, 1H), 7.13 (d, J = 

8.7 Hz, 1H), 7.02 (d, J = 8.7 Hz, 1H), 5.53 (brs, 1H), 4.09 (s, 3H). 1H-NMR (500.1 

MHz, CD3OD): δ 7.56 (s, 1H), 7.08 (d, J = 8.65 Hz, 1H), 6.88 (d, J = 8.65 Hz, 1H), 

4.01 (s, 3H). 13C-NMR (125 MHz, CDCl3): δC 144.2 (s), 138.9 (s), 132.7 (s), 132.5 (d), 

114.5 (d), 112.9 (s), 112.6 (s), 109.0 (d), 63.6 (q). HREI-MS: m/z 220.0313. calc. 

220.0306 for C10H8N2O2S.  
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Clibration curve of Isalexin at 220 nm
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Calibration curve of caulilexin A at 220 nm
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Calibration curve of Caulilexin B at 220 nm
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Calibration Curve of Brassicanal C at 220 nm
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Calibration curve of Spirobrassinin at 
200 nm y = 1E+07x

R2 = 1
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Calibration curve of Brussalexin B at 220 nm

y = 4E+07x
R2 = 0.9998
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Calibration Curve of Brassicanal C at 220 nm
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Calibration curve of Brussalexin C at 220 nm
y = 7E+06x
R2 = 0.9994
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Calibration curve of 1-methoxy-
3,3'diindolylmethane at 220 nm
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Calibration curve of di-(1-methoxy-3,3'-diindolyl)-
methane at 220 nm y = 1E+07x

R2 = 0.9998
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Calibration curve of diindolylmethane at 220 nm

y = 2E+07x
R2 = 0.9981
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