
Performance Analysis of

Hardware/Software Co-Design of Matrix

Solvers

A Thesis Presented to the

College of Graduate Studies and Research

In Fulfillment of the Requirement

For the Degree of Master of Science

In the Department of

Electrical and Computer Engineering

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

By

Peng Huang

© Copyright Peng Huang, November 2008. All rights reserved.

PERMISSION TO USE

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate

degree from the University of Saskatchewan, I agree that the Libraries of this University may

make it freely available for inspection. I further agree that permission for copying of this

thesis in any manner, in whole or in part, for scholarly purposes may be granted by the

professor or professors who supervised my thesis work or, in their absence, by the Head of

the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial

gain shall not be allowed without my written permission. It is also understood that due

recognition shall be given to me and to the University of Saskatchewan in any scholarly use

which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or

part should be addressed to:

Head of the Department of Electrical and Computer Engineering

57 Campus Drive

University of Saskatchewan

Saskatoon, Saskatchewan, Canada

S7N 5A9

ACKNOWLEDGEMENTS

First, I would like to express my sincere gratitude and appreciation to my supervisor, Dr.

Daniel Teng, for his tremendous support, invaluable guidance and constant encouragement

during the course of my studies. The completion of this thesis would not have been possible

without Dr. Teng’s exceptional supervision and ever lasting support. I am also grateful to

him for providing me with various opportunities to pursue a dynamic and fascinating area of

digital systems as well as explore opportunities out of the lab.

I also wish to thank all the members of VLSI lab; working with them made my time during

graduate study a wonderful experience.

A countless and sincere thanks goes to my family, especially my wife, Zhang Bei, and my

parents, Huang Peikuan and Qiu Sufang, for their continuous support and encouragement

throughout my studies.

 ii

ABSTRACT

Solving a system of linear and nonlinear equations lies at the heart of many scientific and

engineering applications such as circuit simulation, applications in electric power networks,

and structural analysis. The exponentially increasing complexity of these computing

applications and the high cost of supercomputing force us to explore affordable high

performance computing platforms. The ultimate goal of this research is to develop hardware

friendly parallel processing algorithms and build cost effective high performance parallel

systems using hardware in order to enable the solution of large linear systems.

In this thesis, FPGA-based general hardware architectures of selected iterative methods

and direct methods are discussed. Xilinx Embedded Development Kit (EDK)

hardware/software (HW/SW) codesigns of these methods are also presented. For iterative

methods, FPGA based hardware architectures of Jacobi, combined Jacobi and Gauss-Seidel,

and conjugate gradient (CG) are proposed. The convergence analysis of the LNS-based

Jacobi processor demonstrates to what extent the hardware resource constraints and

additional conversion error affect the convergence of Jacobi iterative method. Matlab

simulations were performed to compare the performance of three iterative methods in three

ways, i.e., number of iterations for any given tolerance, number of iterations for different

matrix sizes, and computation time for different matrix sizes. The simulation results indicate

that the key to a fast implementation of the three methods is a fast implementation of matrix

multiplication. The simulation results also show that CG method takes less number of

iterations for any given tolerance, but more computation time as matrix size increases

compared to other two methods, since matrix-vector multiplication is a more dominant factor

in CG method than in the other two methods. By implementing matrix multiplications of the

three methods in hardware with Xilinx EDK HW/SW codesign, the performance is

significantly improved over pure software Power PC (PPC) based implementation. The EDK

implementation results show that CG takes less computation time for any size of matrices

compared to other two methods in HW/SW codesign, due to that fact that matrix

 iii

multiplications dominate the computation time of all three methods while CG requires less

number of iterations to converge compared to other two methods.

For direct methods, FPGA-based general hardware architecture and Xilinx EDK HW/SW

codesign of WZ factorization are presented. Single unit and scalable hardware architectures

of WZ factorization are proposed and analyzed under different constraints. The results of

Matlab simulations show that WZ runs faster than the LU on parallel processors but slower

on a single processor. The simulation results also indicate that the most time consuming part

of WZ factorization is matrix update. By implementing the matrix update of WZ

factorization in hardware with Xilinx EDK HW/SW codesign, the performance is also

apparently improved over PPC based pure software implementation.

 iv

Table of Contents

PERMISSION TO USE... i

ACKNOWLEDGEMENTS ... ii

ABSTRACT.. iii

Table of Contents .. v

List of Tables .. viii

List of Figures... ix

List of Abbreviations ... xi

Chapter 1 Introduction... 1

1.1 Motivation ... 1

1.2 Thesis Overview and Objectives... 3

1.3 Thesis Outline ... 4

Chapter 2 Background... 6

2.1 SPICE Algorithm Overview.. 6

2.2 Matrix Solving Methods Used in SPICE .. 8

2.2.1 Gaussian Elimination (GE)... 8

2.2.2 LU Factorization... 9

2.3 Parallel Iterative Matrix Solving Methods .. 10

2.3.1 Jacobi Iterative Method .. 10

2.3.2 Combined Jacobi and Gauss-Seidel ... 12

2.3.3 Conjugate Gradient (CG).. 12

2.4 Parallel Direct Matrix Solving Methods ... 14

2.4.1 Parallel Implicit Elimination (PIE)... 14

2.4.2 WZ Factorization.. 16

2.4.3 Comparison of Direct Methods .. 18

2.5 Hardware Architectures for General Applications.. 19

2.5.1 Toronto Molecular Dynamic (TMD) Architecture... 19

 v

2.5.2 Hardware/Software (HW/SW) Partitioned Computing System 20

2.5.3 Mixed-Mode Heterogeneous Reconfigurable Machine (HERA) Architecture...... 21

Chapter 3 General Hardware Architectures and HW/SW Codesigns of Iterative Methods . 24

3.1 FPGA-based Hardware Architectures... 24

3.1.1 Jacobi Iterative Method .. 24

3.1.2 Combined Jacobi and Gauss-Seidel Method.. 27

3.1.3 Conjugate Gradient Method ... 29

3.2 LNS-based Hardware Design of Jacobi Processor.. 32

3.3 Xilinx EDK HW/SW Codesign of Iterative Methods... 34

Chapter 4 General Hardware Architectures and HW/SW Codesign of Direct Methods 42

4.1 Alternative Methods of WZ factorization and PIE ... 42

4.1.1 ZW Factorization.. 43

4.1.2 X Factorization ... 45

4.2 FPGA-based Hardware Architectures of WZ factorization .. 47

4.2.1 Single Unit Architecture... 48

4.2.2 Scalable Architecture.. 50

4.3 Xilinx EDK HW/SW Codesign of WZ Factorization ... 53

4.4 Reordering Techniques for Sparse Matrix... 55

Chapter 5 Performance Analysis... 58

5.1 Performance Analysis of Iterative Methods .. 58

5.1.1 Matlab Comparison of Jacobi, Gauss-Seidel and Conjugate Gradient 58

5.1.2 Convergence Analysis of LNS-based Jacobi Processor ... 61

5.1.3 Xilinx EDK Simulation of Three Iterative Methods .. 65

5.1.4 Memory Consideration... 69

5.2 Performance Analysis of Direct Methods ... 70

5.2.1 Matlab Comparison of LU and WZ.. 70

5.2.2 Xilinx EDK Simulation of WZ Factorization... 71

Chapter 6 Conclusions and Future Work .. 74

 vi

6.1 Conclusions ... 74

6.2 Suggestions for Future Work .. 76

Appendix A Numerical Examples ... 84

 vii

 viii

List of Tables

Table 3.1 Functions of five user control registers for CG .. 40

Table 4.1 Functions of three user control registers for WZ.. 53

List of Figures

Figure 2.1: Flow chart of SPICE algorithms ... 7

Figure 2.2: Algorithm description of CG .. 13

Figure 2.3: TMD architecture hierarchy [36]. ... 20

Figure 2.4: HW/SW partitioned system architecture [40]. .. 21

Figure 2.5: HERA system architecture [43]. ... 22

Figure 2.6: HERA PE architecture [43]... 23

Figure 3.1: Ideal hardware architecture for Jacobi method .. 25

Figure 3.2: Hardware architecture for Jacobi method (case 3)... 26

Figure 3.3: Hardware architecture for Jacobi method (case 4)... 26

Figure 3.4: Hardware architecture for combined Jacobi and Gauss-Seidel method......... 28

Figure 3.5: General hardware architecture for CG algorithm... 31

Figure 3.6: Hardware architecture for multiplication unit .. 32

Figure 3.7: Hardware architecture for LNS-based Jacobi processor 33

Figure 3.8: Hardware architecture for DED ... 34

Figure 3.9: Basic embedded design process flow [18]. .. 36

Figure 3.10: EDK design simulation stages [18]. ... 36

Figure 3.11: EDK design architecture of Jacobi, Gauss-Seidel, and CG 38

Figure 3.12: Hardware architecture of MMB ... 38

Figure 4.1: Block diagram of a single unit for WZ factorization method. 49

Figure 4.2: Block diagrams of Wsolver and Aupdate... 49

Figure 4.3: Scalable architecture of WZ factorization(case 4). .. 52

Figure 4.4: EDK design architecture of WZ factorization.. 54

Figure 4.5: Hardware architecture of Update block.. 54

Figure 4.6: Sparse matrix in BDB form.. 57

Figure 4.7: Parallel WZ factorization of a sparse BDB matrix... 57

Figure 5.1: Number of iterations required for solving specific size of linear systems for

different tolerance values according to Jacobi, GS and CG method. 59

Figure 5.2: Number of iterations required for solving different size of linear systems for

specified tolerance value according to Jacobi, GS and CG method. 59

 ix

Figure 5.3: Total computation time required for solving different size of linear systems

for specified tolerance values according to Jacobi, GS and CG method. 60

Figure 5.4 Number of iterations required for solving different size of linear systems for

different diagonal values according to Jacobi method with and without using LNS. Scale

factors for diagonal values are ×1... 62

Figure 5.5 Number of iterations required for solving different size of linear systems for

different diagonal values according to Jacobi method with and without using LNS. Scale

factors for diagonal values are ×10... 62

Figure 5.6 Number of iterations required for solving different size of linear systems for

different diagonal values according to Jacobi method with and without using LNS. Scale

factors for diagonal values are ×100... 63

Figure 5.7 Number of iterations required for solving different size of linear systems

according to Jacobi method with and without using LNS under different initial values.. 63

Figure 5.8: Speed comparison of EDK SW design and HW/SW codesign of Jacobi

method... 66

Figure 5.9: Speed comparison of EDK SW design and HW/SW codesign of GS method

... 67

Figure 5.10: Speed comparison of EDK SW design and HW/SW codesign of CG method

... 67

Figure 5.11: Speed comparison of Jacobi, GS and CG method implemented in EDK SW

and HW/SW codesign for different iteration until convergence. 68

Figure 5.12: Speed comparison of Jacobi, GS and CG method implemented in EDK SW

and HW/SW codesign for same iteration.. 68

Figure 5.13: Computation time for WZ and LU factorization, time difference between

WZ and LU, and computation time for the update of An-2i in WZ.................................... 70

Figure 5.14: Speed comparison of EDK based SW design and SW/HW codesign of WZ

factorization .. 72

Figure 6.1: General hardware architecture of LU factorization.. 77

 x

List of Abbreviations

BDB Bordered-Diagonal-Block

BRAM Block Random Access Memory

CG Conjugate Gradient

CGNR Conjugate Gradient on the Normal Equations

DED Diagonal Element Detector

EDK Embedded Development Kit

FIFO First in First out

FPGA Field Programmable Gate Array

FSL Fast Simplex Link

GE Gaussian Elimination

HDL Hardware Description Language

HERA Heterogeneous Reconfigurable Machine

HW/SW Software/Hardware

ISE Integrated Software Environment

JPU Jacobi Processor Unit

JTAG Joint Test Action Group

LNS Logarithmic Number System

LU Lower-Upper

MAC Multiplication and Accumulation

MGT Multi-Gigabit Transceiver

MIMD Multiple-Instruction, Multiple-Data

MMB Matrix Multiplication Block

MPI Message Passing Interface

M-SIMD Multiple-SIMD

NEWS North, East, West and South

OCM On-chip Memory

OPB On-the-Chip-Peripheral Bus

PCB Printed Circuit Board

PCI Peripheral Component Interconnect

 xi

PE Processing Element

PIE Parallel Implicit Elimination

PLB Processor Local Bus

PPC Power PC

QIF Quadrant Interlocking Factorization

SDK Software Development Kit

SIMD Single-Instruction, Multiple-Data

SOC System-on-a-Chip

SPICE Simulation Program with Integrated Circuit Emphasis

TMD Toronto Molecular Dynamic

UART Universal Asynchronous Receiver/Transmitter

WZ Matrices in W and Z shapes

XPS Xilinx Platform Studio

ZW Matrices in Z and W shapes

 xii

 1

Chapter 1

Introduction

Many scientific and engineering problems, such as circuit simulation, applications in

electric power networks, and structural analysis [1, 2, 3], involve solving large systems of

simultaneous linear equations. Parallel implementations of these computation intensive

processes were limited primarily to multiprocessor computers. However due to the

exponentially increasing complexity of these applications, the high cost of supercomputing

forces us to explore new, sustainable, and affordable high performance computing platforms.

Configurable computing , where hardware resources are configured appropriately to match

specific hardware designs, has recently demonstrated its ability to significantly improve

performance for computing intensive applications. With steady advances in silicon

technology, as predicted by Moore’s Law, Field Programmable Gate Array (FPGA)

technologies have enabled the implementation of System-on-a-Chip (SOC) computing

platforms, which, in turn, have given a significant boost to the field of configurable

computing.

[4]

[5] [6]

1.1 Motivation

Driven by the advanced fabrication technology of semiconductor and market demand,

complexities of sub 200,000 logic gates on a single chip are now moving to 10 million-plus

logic gates with 50 million logic gates in sight . The productivity of semiconductor

fabrication over the last twenty years has seen a 58% compounded annual growth; however

the productivity of chip design has lagged behind, with only a 21% compounded annual rate.

This clearly shows the widening productivity gap between design and fabrication. As product

life time is decreasing form 3-5 years to 1-2 years, in many cases as short as a few months,

[7]

 2

chip design cycles of months or years are no longer acceptable, since time-to-market is of

critical importance in the semiconductor industry.

One of the major goals in semiconductor industry is to increase design productivity, which

requires improvements in design methodology. Design methodology is a combination of

design software, design flow and design techniques by which designers can follow step-by-

step to produce a design that meets its functional specification. Functional verifications are

very important steps during a design cycle. It is estimated that the functional verification of a

design requires up to 70% of all design time . Digital simulator is one of the verification

tools which provide faster simulation results but do not guarantee the performance

requirements because many of the essential features are not taken into account, for example:

power consumption, non-linearity of load capacitors, parasitic feedbacks, and the influence of

temperature. Additional steps and software tools are required for verifying these important

effects of design, which increase the complexity of design methodology. Circuit simulation

such as Simulation Program with Integrated Circuit Emphasis (SPICE) is able to provide

much more accurate results by taking those effects into account, but the existing circuit

simulators are time consuming when dealing with large size circuits containing millions of

components.

[7]

[8]

It is known that the most time-consuming task in computer simulation of large systems,

such as electronic circuits and power systems, is solving large linear systems. Some efforts

have been made to exploit the power of parallel computers in speeding up matrix

computations. However, case studies [6, 10, 11] showed hardware accelerator can be 1,000 to

10,000 faster than a software simulator core. The research results did not catch much attention

mostly because the industry at that time did not have the design challenges as they are facing

today. The motivation of this research is to build cost-effective high performance parallel

systems using hardware in order to enable the solution of large linear systems, i.e. the solution

of matrices.

[9]

Matrix solving methods contains two categories: iterative methods and direct methods

. Gaussian elimination (GE) and Lower-Upper (LU) factorization [12, 13] are two of

[17]

[16]

 3

direct methods used in SPICE simulation to solve matrices. Even though these matrix solving

methods have been parallelized to run on parallel computers due to the advent of parallel

computers, their performance is not satisfactory since both methods are essentially algorithms

in which elimination and factorization are performed serially. Most iterative methods such as

Jacobi and conjugate gradient (CG) aim at parallel processing, but accuracy is not guaranteed

for limited iterations. Direct methods such as WZ factorization and parallel elimination

method (PIE) are able to achieve exact solutions without considering rounding off error

and solve matrices in parallel compared to LU and GE but mainly target on dense matrices.

Since applications like circuit simulation and power systems produce large size sparse

matrices, in order to extend parallel properties of these direct methods, reordering technique

like minimum fill-in should be used to transform the sparse matrices into bordered-

diagonal-block (BDB) forms where submatrices are dense and can be factorized by

multiprocessor in parallel.

[14]

[15]

[16]

One possible solution for improving the performance of matrix solving is to develop

hardware friendly matrix solving algorithms which can be efficiently implemented in

hardware. Hardware friendly algorithms are normally parallel in nature. The independent

evaluation procedures of these algorithms are increased over methods like GE and LU, which

makes them well suited for hardware design. The success of the proposed solution for matrix

solving will simplify the design methodology, narrow the design productivity gap, and also

reduce the design cost.

1.2 Thesis Overview and Objectives

This thesis focuses on the development of hardware friendly parallel processing algorithms

and “sea-of-processor” architectures for the hardware accelerator to replace the software

simulator core. The algorithms and architectures are verified by building a prototype using

Matlab simulation and FPGA-based hardware device respectively. The detailed objectives are

listed as follows:

I. Iterative methods

 4

a. Propose FPGA-based general hardware architectures of Jacobi, combined Jacobi and

Gauss-Seidel, and CG methods.

b. Compare the performance of three iterative methods based on the results of Matlab

simulations and FPGA-based HW/SW codesigns.

c. Convergence analysis of a logarithmic number system (LNS) [19, 20, 21, 22] based

Jacobi processor: Due to the complexity of hardware designs of arithmetic units such

as multiplier and divider, LNS provides an alternative to floating point with the

possibility to simplify arithmetic operations. For matrix solvers, fast multiplication

and division operations can be achieved by using addition and subtraction operations

on the logarithms of the input data. It is interested to know how the simplified error

correction circuit is related to the convergence of Jacobi method.

II. Direct methods

a. Investigate other factorization algorithms, i.e., ZW factorization and X factorization,

as alternatives to WZ factorization and PIE respectively.

b. Propose FPGA-based general single unit and scalable hardware architectures of WZ

factorization. Analyze the architectures under different constraints.

c. Analyze the performance of WZ factorization based on the results of Matlab

simulations and FPGA-based HW/SW codesigns. Extend the BDB form to WZ

factorization for parallel processing.

1.3 Thesis Outline

There are four primary topics of interest discussed in this thesis, including hardware

implementation of iterative methods, hardware implementation of direct methods,

performance analysis and suggestions for future work.

Chapter 2 describes the background of circuit simulation, selected iterative and direct

methods (i.e., Jacobi, combined Jacobi and Gauss-Seidel, CG, PIE and WZ factorization)

targeting on their parallel property for solving sparse and dense matrices, and several existing

 5

hardware architectures for general applications. Chapter 3 discusses FPGA-based general

hardware architectures and LNS-based hardware architectures of Jacobi, combined Jacobi and

Gauss-Seidel, and CG, followed by HW/SW codesigns of three iterative methods by using

Xilinx Embedded Development Kit (EDK) [18]. In Chapter 4, an implementation of WZ

factorization is presented. Firstly, ZW factorization and X factorization are introduced as

alternatives to WZ factorization and PIE respectively. Single unit and scalable hardware

architectures of WZ factorization are proposed and analyzed under different constraints.

Xilinx EDK HW/SW codesign of WZ factorization is also presented followed by reordering

techniques [16] dealing with large size sparse matrices. This will lead into Chapter 5 where

performance of design simulations is analyzed. Finally, the conclusion and suggestions for

future work will be given in Chapter 6.

 6

Chapter 2

Background

The algorithms used in SPICE define the traditional approach to circuit simulation. The goal

of this chapter is to provide a brief background of basic concepts of SPICE and major matrix

solving methods (i.e., GE and LU factorization) used in SPICE. Since evaluation procedures

of GE and LU are not processed in parallel, selected iterative and direct methods (i.e., Jacobi,

combined Jacobi and Gauss-Seidel, conjugate gradient, PIE and WZ factorization) which are

parallel in nature are introduced for solving sparse and dense matrices. Several existing FPGA

based hardware architectures targeting on general applications are also reviewed.

2.1 SPICE Algorithm Overview

SPICE [24, 25] is a general purpose analog electronic circuit simulator and is used to

provide analysis of circuits containing active components such as bipolar transistors, field

effect transistors, diodes and passive components such as resistors, capacitors and inductors.

The program originates from the University of California, Berkeley. SPICE is a powerful

program which allows designers to evaluate designs without actually building them.

Most of SPICE algorithms [25] can be explained by the following block diagram shown in

Figure 2.1. The key of all algorithms inside SPICE is nodal analysis (blocks 3 and 4)

including formulating the nodal matrix and solving the nodal matrix for the circuit voltages.

The inner loop (blocks 2-6) finds the solution for nonlinear circuits where nonlinear devices

are replaced by equivalent linear models. The solution process starts with an initial guess

(block 1), goes through the inner loop (blocks 2-6), and repeats until it reaches convergence.

The time domain solution is represented by the outer loop (blocks 7-9), together with the inner

 7

Create Linear Companion

model for capacitors,

inductors, etc

Select new operating

point

Initial trial operating

Point

Create Linear

Companion Model for

nonlinear components

Load linear conductance

in circuit matrix

Solve linear equations

Convergence?

Increment time

End of time?

No

Yes

Yes

No

Stop

1

2

3

4

9
6

5

8

7

Figure 2.1: Flow chart of SPICE algorithms

loop, it performs a transient analysis creating equivalent linear models for energy-storage

components such as capacitors, inductors, etc.

SPICE begins an analysis by reading elements from the input file. Using matrix

construction by inspection and a set of predefined element templates [25], system equations

are described in a set of linear matrices. SPICE has two solution algorithms, one for linear

circuits and one for nonlinear circuits. For linear circuits, only two of the blocks are needed:

load the Nodal Matrix (block 3) using Kirchhoff’s current law [26] and solve the nodal matrix

(block 4) using GE or LU factorization. For Non-Linear circuits, SPICE needs to create

equivalent linear models for the non-linear devices such as diode. The loop (blocks 1-6)

 8

2.2.1

iteratively finds the exact solution as follows: guess an operating point, create equivalent

linear models and solve the nodal matrix for the circuit voltages. Then, choose a new

operating point (block 6) based on the new voltages and start the loop again until the voltage

and current reach convergence.

2.2 Matrix Solving Methods Used in SPICE

Gaussian Elimination (GE)

GE and LU factorization [12, 13] are two major methods used in SPICE to solve matrix. GE

contains forward elimination and backward substitution. Forward elimination uses scaling of

each equation followed by subtraction from the remaining equations in order to eliminate

unknowns one by one until matrix A is reduced to an upper triangular matrix. The final

solution can then be found by backward substitution which computes each element of x in

reverse order. Using GE method, any linear system equation can be solved in at most cubic

time. Consider the system of linear equations Ax = b shown in Equation 2.1.

 (2.1)

11 12 1 1 1

21 22 2 2 2

1 2

. .

. .
.
.

. .

n

n

n n nn n n

a a a x b
a a a x b

a a a x b

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Assume solution 1 2, ,..., ,k k k
nx x x x⎡= ⎣ ⎤⎦ , which can be obtained in two steps:

First step: column elimination.

1 2
()

()

 (, ,...,),

(/) ,

(/) ,

i i i in
j

i ij jj ji

j
i ij jj ji

e a a a

e e a a e

b b a a b

=

= −

= −

 (2.2)

 9

b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

where j = 1, 2,…, n-1 representing jth column elimination stages and i = j+1, j+2,…, n

representing ith row of matrix A. The first step repeats for j = 1, 2,…, n-1 until the system is

transformed into a right triangular matrix shown in Equation 2.3.

11 12 1 11
(1) (1) (1)

222 2 2

(1) (1)

. .

0 . .
..
..

0 0 . .

n

n

n nnnn n

a a a bx
xa a

xa b− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

 (2.3)

Second step: back-substitution process. x is solved starting from xn using Equation 2.4

upwards to x1 using Equation 2.5. The entire process is done serially.

(1)

1 .
n

k n
n n

nn

bx
a

−

−= (2.4)

(1) (1)
,(1)

1

1 for = 1, 2,..., 1.
n

i ik k
i ji i ji

j iii
x b a x i n n

a
− −

−
= +

⎡ ⎤
= − − −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ (2.5)

2.2.2 LU Factorization

The LU factorization decomposes matrix as the product of a lower and upper triangular

matrices. There are several ways for LU factorization such as Doolittle’s method and

Crout’s methods [12]. Doolittle’s method has all 1’s in the diagonal of lower triangular

matrix as showed in Equations 2.6. The factorization process begins with the first row of

upper triangular matrix U using Equation 2.7 followed by the first column of lower

triangular matrix L using Equation 2.8. The evaluation process repeats with second row of

matrix U followed by the second column of matrix L until the last row of matrix U and the

last column of matrix L are found. The Crout’s method is similar to Doolittle’s except that

Ukk = 1 instead of Lkk = 1 and the factorization process begins with first column of matrix L

followed by the first row of matrix U.

 10

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

+

11 12 1 11 12 1

21 22 2 22 221

1 2 n1 n 2

. . . .1 0 . . 0

. . 0 . .1 0
.
.

. . 0 0 1

n n

n n

n n nn nn

a a a U U U
a a a U UL

a a a UL L

⎡ ⎤ ⎡⎡ ⎤
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥=
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥⎣ ⎦⎣ ⎦ ⎣

 (2.6)

-1

1
- for = 1, 2,..., and , 1,..., .

i

ij ij ik kj
k

U a L U i n j i i n
=

= =∑ (2.7)

-1

1

1(-) for 1, 2,..., -1 and = +1, +2,..., .
j

ij ij ik kj
jjk

L a L U j n i j j
U=

= =∑ n

2.3.1

 (2.8)

After factorization of matrix A, Equation 2.1 can be rewritten as Ax = LUx = b. For given

A and b, the solution x can be obtained in two steps: Firstly, solving the equation Ly = b for y;

Secondly, solving Ux = y for x. In these two steps, y and x can be solved directly using

forward and backward substitution due to factorized lower and upper triangular matrices. The

algorithm description shows that LU factorization is more trivial and requires twice

substitution in order to solve x, but it is computationally efficient when a matrix equation is

solved for multiple times for different b as compared to GE.

GE and LU factorization have been modified for parallel processing due to the advent of

parallel computing [9], their performance is still not satisfactory since both methods are

essentially algorithms in which elimination and factorization are processed in serial, i.e., only

one row or one column is solved at a time. In next section, selected matrix solving methods

which are more suitable for parallel computation and aim at a parallel machine will be

introduced.

2.3 Parallel Iterative Matrix Solving Methods

Jacobi Iterative Method

The Jacobi method [12] is an algorithm in linear algebra for determining the solutions of

linear systems with largest absolute values in each row and column dominated by the

 11

diagonal elements. Each diagonal element is solved for, and an approximate value plugged

in. The process is then iterated until it converges. The solution to set of linear equations,

expressed in matrix terms as Equation 2.1, where A is an n×n matrix, is obtained as follows:

Let A = L + D + U, where L is the lower triangular matrix containing all elements of A below

the diagonal, U is the upper triangular matrix containing all elements of A above the

diagonal, and D is the diagonal matrix consisting of only the diagonal elements. Substituting

A = L + D + U into Equation 2.1 yields

[]1 ()x D b L U x−= − + (2.9)

The Jacobi method can be expressed as:

1 1 for = 1, 2,..., .k k
i i ij j

j iii

x b a x i
a

+

≠

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑ n (2.10)

Initially guess 0 0 0 0
1 2, ,... nx x x x⎡= ⎣ ⎤⎦ , substitute x0 into the right-hand side of Equation 2.10 to

calculate new, possibly more accurate, values of xi. This evaluation process repeats until the

convergence condition is met. Jacobi will always converge if the matrix A is strictly

diagonally dominant, which means that for each row, the absolute value of the diagonal term

is greater than the sum of absolute values of other terms shown in Equation 2.11.

ii ij
i j

a
≠

> a∑ (2.11)

The Jacobi method sometimes converges even if this condition is not satisfied. It is

necessary, however, that the diagonal terms in the matrix are greater (in magnitude) than the

other terms. Furthermore, Jacobi is barely used as a stand-alone solver, but rather as a

preconditioner to reduce the condition number, thus increase the rate of convergence for more

advanced iterative methods like conjugate gradient [27].

 12

2.3.2

1
2

Combined Jacobi and Gauss-Seidel

Unlike Jacobi method, Gauss-Seidel method [12] uses new values of xi as soon as they

become available. For example, when calculating x , the new value 1
1x is used instead of the

old value of 0
1x . The Gauss-Seidel can be expressed as:

1 (1)1k k
i i ij j ij

j i j iii

()k
jx b a x a x

a
+ +

< >

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∑ ∑ (2.12)

There are two important characteristics of the Gauss-Seidel method. Firstly, the

computations are processed in serial. Since each component of the new iterate depends upon

all previously computed components, the updates cannot be done simultaneously as in the

Jacobi method. Secondly, the new iterate xk+1 depends upon the order in which the equations

are examined. If this ordering is changed, the components of new iterates will also change. A

more hardware friendly approach is to combine Jacobi and Gauss-Seidel methods. In this

combined method, a number of variables, x, are calculated in parallel dependent upon

available hardware resource. If the hardware resource allows maximum p variables to be

calculated in parallel, x1, x2… xp are calculated first. The new values are used for calculating

the next p variables, xp+1, xp+2… x2p, and so on.

2.3.3 Conjugate Gradient (CG)

Conjugate gradient (CG) [27, 28] is an algorithm for finding the nearest local minimum of a

system of n variables which assumes that the gradient of the function can be computed. CG

derives its name from the fact that it generates a sequence of conjugate (or orthogonal) vectors

and uses conjugate vectors as search directions instead of the local gradient for going downhill

until the final solution is reached. CG is effective for the numerical solution of particular

linear systems, namely those whose matrix is symmetric and positive-definite, since storage

for only a limited number of vectors is required [29, 30, 31].

CG proceeds by generating vector sequences xk+1 of iterates, i.e., successive

approximations to the solution, residuals rk+1corresponding to iterates, and search directions

 13

0

0

0 0

%Start
%Begin with first iterate.
k = 0
%Set up initial values, where search direction
 is equal to the residual for the first iterate.
d = r = b

)
 - Ax

(rnewδ = T 0

k
k T k

k

ma

+1 k k k

k+

x

1

r

 α =
(d) Ad

 %Update new values of solution x.
 x = x + α d
 %Upda

while

te new values of residual r.

 k < k

do

r

newδ

k k k

k+1 T k+1

k

k+1 k+1 k k

 = r - α Ad

(r) r

 β =

 %Update new values of search direction d.
 d = r + β d
 %Increase iterate.
 k

=

 =
old new

new

new

old

δ δ

δ
δ
δ

=

 k + 1
%End

Figure 2.2: Algorithm description of CG

dk+1 used in updating iterates and residuals. Considering the linear system in Equation

2.1, denote the initial guess for x by x

Ax b=
0. The resulting algorithm is summarized in Figure 2.2.

The input vector x0 can be an approximate initial solution or zero.

CG method can also be applied to an arbitrary system where A is not symmetric, not

positive-definite, and even not square by transforming A into normal equations ATA and

right-hand side vector b into ATb shown in Equation 2.13, since ATA is a symmetric positive

 14

T

2.4.1

definite matrix for any A. The result is called conjugate gradient on the normal equations

(CGNR).

,TA Ax A b= (2.13)

However, the downside of forming the normal equations is that the condition number κ(ATA)

is equal to κ(A)2 and so the rate of convergence of CGNR may be very slow.

2.4 Parallel Direct Matrix Solving Methods

Parallel Implicit Elimination (PIE)

PIE method for the solution of linear system was introduced by Evans and Abdullah [14,

32]. This method simultaneously eliminates two matrix elements, in stead of just one in GE.

Thus, PIE is suitable for parallel implementation. Considering the linear system Ax b= in

Equation 2.1, the basis of PIE method is to transform matrix A into butterfly form Z as shown

in Equation 2.14 by multiplying matrix A with transformation matrix W. This transformation

process is called parallel elimination.

11 12 1, 1 1,

22 2, 1

(1)/2.(1)/2

1,2 1, 1

,1 ,2 , 1 ,

. . .

. . .

. . .
 for odd.

. . .

. . .

. . .

n n

n

n n

n n n

n n n n n n

a a a a
a a

aZ n

a a
a a a a

−

−

+ +

− − −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (2.14) 0 0

By combining WA=Z and Ax=b, WAx=Wb is obtained, which can be rewritten as 'bZx = ,

where . Vector b is also updated once matrix Z is obtained. The solution process of

PIE is similar to the solution procedure shown in WZ factorization. In this section, only the

transformation process will be introduced, which is summarized as follows: Matrix A is

denoted in shorthand form in Equation 2.15.

Wbb ='

 15

−
11 1 1

1

1

for , 2, 3,..., 1.
j n

i ij in

n nj nn

a a a
A a A a i j n

a a a

⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.15)

For the first evaluation stage, the transformation matrix W is shown in Equation 2.16.

1 1 2

1 0 0

0 0 1
i n inW w I w−

⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.16)

where i = 2, 3,…, n-1 and In-2 is the unit matrix of order n-2. Elimination is achieved by

taking product of W1 and A.

11 1 1

1 1 2 1

1

11 1 1

11 1 1 2 1 1 1 1 1 2

1

1 0 0

0 0 1

j n

i n in i ij in

n nj nn

j n

i i n n in i j ij in nj n i in n nn in

n nj nn

a a a
W A w I w a A a

a a a

a a a
a w a I a w w a A w a a w a I a w

a a a

−

− −

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= − − ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥= − + − − + − − + −⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.17)

Referring to Equation 2.14, in order to meet ZAW =1 , 11 1 1 2 1i i n na w a I a w− in− + − and

 shown in Equation 2.17 need to be equal to zero. By solving n-2 sets

of 2×2 equations, matrix Z

innnninin waIawa −+ −211

1 can be obtained in the form of Equation 2.18.

11 1 1

1 2

1

0 ' 0 for 2,3 ... -1.
j n

n

n nj nn

a a a
Z A j

a a a
−

⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦

n

nj

 (2.18)

An-2 is the remaining matrix of order n-2, which is updated by Equation 2.19.

2 1 1 2'n i j n inA w a A w a− −= − + − (2.19)

This evaluation process recursively repeats for (n-1)/2 stages. The final matrix Z is obtained

in the form of Equation 2.14. An example of PIE is given in Appendix A.

 16

2.4.2 WZ Factorization

WZ factorization was introduced by Evans and Hatzopoulos in 1973 [15, 33]. A method

using WZ factorization to solve matrix is called quadrant interlocking factorization (QIF)

[14]. WZ method decomposes coefficient matrix A into two interlocking quadrant factors of

butterfly form denoted by W and Z or as

A WZ= (2.20)

where W and Z are shown in Equations 2.21 and 2.22,

21 2

31 32 3, 1 3

2,1 2,2 2, 1 2,

1,1 1,

1 0
1 0

1 .. 0
..

0 .. 1
0 1

0 1

n

n n

n n n n n n

n n

w w
w w w w

W
w w w w
w w

−

− − − − −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0

n

n

 (2.21)

0
and

11 12 13 1, 2 1, 1 1

22 23 2, 2 2, 1

33 3, 2

2,3 2, 2

1,2 1,3 1, 2 1, 1

1 2 3 , 2 , 1

..

..

..
..

..

..

..

n n

n n

n

n n n

n n n n n n

n n n n n n n nn

z z z z z z
z z z z

z z
Z

z z
z z z z

z z z z z z

− −

− −

−

− − −

− − − − − −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (2.22) 0 0

Equation 2.20 can be rewritten as

11 1 1 11 1 1

1 2 1 2 2

1 1

1 0 0
0

0 0 1

i n i n

i n in i n in n

n ni n ni nn

a a a z z z
a A a w W w Z
a a ann z z z

− −

⎡ ⎤ ⎡⎡ ⎤
⎢ ⎥ ⎢⎢ ⎥=⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥⎣ ⎦⎣ ⎦ ⎣

0−

⎤
⎥
⎥
⎥⎦

 (2.23)

The elements of matrices W and A can be evaluated in (n-1)/2 distinct stages. The basic steps

are summarized as follows.

 17

At the first stage, it can be observed that the elements of first and last rows of the matrix Z

are obtained by

11 11 1 1 1 1

1 1

 , ,
 , , for 2, 3,..., -1.

i i n n

n n ni ni nn nn

a z a z a z
a z a z a z i n

= = =

= = = =
 (2.24)

The elements of the first and last columns of the matrix W are evaluated by solving (n-2) sets

of 2×2 linear systems given by

11 1 1 1

1 1

 for 2, 3,..., -1.

i n in i

n i nn in in

z w z w a
z w z w a i n

+ =

+ = =
 (2.25)

In general, each 2×2 linear system is solved by Cramer’s rule using Equation 2.26.

2
1 1, 1 1, , 1

1
2 1, 1 1, , 1

3
, 13 , 1 , 1

1

,

,

,

ii n i n i n i i i n i ji

ji n i n i n i i j n i

j n iii j n i ji i n i

xx z z z z W
x

x a z z a
xWx z a a z x

− + − + − + − +

− + − + − + − +

− +− + − +

⎫= − =
⎪⎪= − →⎬
⎪ == − ⎪⎭

 (2.26)

The remaining matrix An-2 is then updated by Equation 2.27.

 (2.27) 1 1 for , 2, 3.... -1ij ij i j in nja a w z w z i j n= − − =

For the following evaluation stages, this evaluation process is recursively repeated for the

remaining matrices An-2i (i.e. An-2, An-4…2 for n is even and An-2, An-4…1 for n is odd.).

In order to solve the system by the QIF method, Ax=b can be rewritten as (WZ)x = b. Only

two related and simpler linear systems of forms Wy = b and Z x = y need to be solved. The

solution procedure for y is carried out in pairs from top and bottom. In general, at ith stage,

1 and i i n i n iy b y b 1− + − += = (2.28)

Then update bi using Equation 2.29.

'
, 1 1 for 1, 2j j ji i j n i n ib b w y w y j i i n i− + − += − − = + + − (2.29)

 18

The final solution x is computed from the middle of matrix Z. This process can be

distinguished into two cases: n is odd and n is even. If n is odd, x(n+1)/2 is obtained by

Equation 2.30.

1
2

1
2

1 1
2 2

(1)
(1)

(1) , (1)

n
n

n n

y
x

z
+

+
+ +

= (2.30)

Update y for next stage,

1 1
2 2

' 1
(1) (1) 2, for 1, 2... , (1)j j n ny y x z j n j n− + += = ≠ +

1

 (2.31)

The remaining elements of x can be obtained in pairs by solving (n-1)/2 sets of 2×2 linear

equations. If n is even, x can be evaluated directly by solving n/2 sets of 2×2 linear equations

starting with x(n-1)/2 and x(n+1)/2. In general, at ith stage, solve Equation 2.32 to obtain the values

of x,

, 1 1

1 1 1

ii i i n i n i i

n i i zn i n i n i

z x z x y

z x x y
− + − +

− + + − + − + − +

+ =

=
 (2.32)

and update yj in Equation 2.33.

1 , 1j j i ji n i j n iy y x z x z− + − += − − . (2.33)

An example of WZ factorization is given in Appendix A.

2.4.3 Comparison of Direct Methods

As LU factorization compared to GE, WZ factorization is more trivial and requires twice

substitution in order to solve x, but is computationally efficient to solve a matrix equation

multiple times for different b compared to PIE. According to the similarity of evaluation

processes, the first type of comparison can be made between PIE and GE. During the

elimination stage of PIE method, two columns of transformation matrix W are solved or two

rows of matrix Z are eliminated simultaneously. The solution stage of PIE starts from the

middle of vector x being completed bi-directionally in parallel resulting in increased stability.

GE is only able to eliminate one column and solve one x at a time. In general, the timings on

multiprocessor for PIE are better than GE. For the larger matrices the gains of speed up vary

 19

2.5.1

from 6% for 1 processor to 10% for 10 processors [14]. These gains will increase for larger

matrices and larger number of processors.

The second type of comparison can be made between WZ and LU. The WZ factorization

solves W elements from left and right and Z elements from top and bottom bi-directionally

which is similar as PIE method. The solution stage of WZ solves two values simultaneously

from the top and bottom moving inwards bi-directionally for vector y and from the middle

moving outwards bi-directionally for vector x. LU is only able to solve one row of U followed

by one column of L at a time. The solution stage of LU is also processed in serial. The timings

on the sequent multiprocessor show that the WZ factorization is faster than LU and for larger

matrices, the gains appear to be 20% for all values of processor [33].

2.5 Hardware Architectures for General Applications

The flexibility, re-programmability and run-time reconfigurability of FPGAs have great

potential to offer an alternative computing platform for high performance computing. Recent

significant advances in FPGA technology and the inherent advantages of configurable logic

have brought new research efforts in the configurable computing field: parallel processing on

configurable chips [34, 35]. In this section, three FPGA based hardware architectures are

reviewed for general applications.

Toronto Molecular Dynamic (TMD) Architecture

TMD was designed for molecular dynamics simulations [36, 37]. This architecture can also

be used to solve other computing-intensive problems. The architecture is built entirely using

FPGA computing nodes which are implemented by Virtex-II Pro XC2VP100 FPGAs [38].

The machine enables designers to implement large-scale computing applications using a

heterogeneous combination of hardware accelerators and embedded microprocessors spread

across many FPGAs, all interconnected by three levels communication networks.

The TMD architecture is divided into there hierarchical tiers shown in Figure 2.3, allowing

it to scale up to reconfigurable machine containing many FPGAs. The lowest tier exists within

 20

Figure 2.3: TMD architecture hierarchy [36].

FPGA, where different topologies can be specified for interconnecting computing engines and

embedded processors. The middle tier is based on cluster printed circuit board (PCB) level

which consists of 8 FPGAs for computing purpose and 1 FPGA for communicating with other

clusters. The highest tier is the large network by interconnecting multiple clusters.

TMD communications networks can be divided into there levels. The first level is intra-

FPGA communication which is implemented using point-to-point unidirectional FIFOs. The

second level is inter-FPGA communication which uses multi-gigabit transceiver (MGT) [39]

hardware to implement communication between FPGAs. The third level is inter-cluster

communication by aggregating four MGT links, enabling the use of infiniband switches for

implementing global interconnection between clusters.

2.5.2 Hardware/Software (HW/SW) Partitioned Computing System

Usually, a reconfigurable computing system has multiple nodes which can be implemented

by processors, FPGAs, or both. This hybrid architecture [40] utilized both the processors and

the FPGAs in the system for computing purpose, as shown in Figure 2.4. The design is based

on Cray XD1 [41]. The basic unit is a computing blade, which consists of two AMD 2.2 GHz

processors and one Xilinx Virtex-II Pro XC2VP50 [38]. Six computing blades fit into one

chassis, interconnected by a non-blocking cross-bar switching fabric which provides two

2GB/s links to each node. The nodes communicate using Message Passing Interface (MPI)

[42]. In this system, only the processors of the blades (nodes) are connected through

communication network.

 21

Figure 2.4: HW/SW partitioned system architecture [40].

For different applications, tasks capable of different functions need to be specified. The

HW/SW partition is based on the workload of the task so that processor and FPGA are both

fully utilized. In other word, the computation times of processor and FPGA need to be equal

considering the data transfer time and communication costs. Other than workload partition,

the coordination between processor and FPGA is also very important.

2.5.3 Mixed-Mode Heterogeneous Reconfigurable Machine (HERA)
Architecture

The HERA machine [43] is based on Xilinx Virtex-II and Virtex-II pro platform FPGAs.

This machine can implement the single-instruction, multiple-data (SIMD), multiple-

instruction, multiple-data (MIMD) and multiple-SIMD (M-SIMD) execution modes in one

machine.

Figure 2.5 shows the general architecture of HERA machine with m×n processing elements

(PEs) interconnected by a 2-D mesh network. The architecture employs fast, direct North,

East, West and South (NEWS) connections for communications between nearest neighbors.

The global communication is achieved by the Cbus and column bus. Every column has a Cbus

and all the Cbuses are connected to the column bus. Every PE is built on a single-precision

IEEE 754 FPU [44, 45] with tightly-coupled local memory shown in Figure 2.6, and supports

 22

Cbus Cbus

Figure 2.5: HERA system architecture [43].

dynamic switching among SIMD, MIMD and M-SIMD at runtime. Most of the instruction

decoding is carried out by the local control unit within PE. The computing process is

controlled by a system sequencer that communicates with the host processor via the peripheral

component interface (PCI) bus. The capabilities of each PE and the number of PEs can be

reconfigured on the basis of the application’s requirements and available resources in target

FPGA devices respectively. The operating mode of each PE is configured dynamically by the

host processor through the operating mode register of PE.

In this chapter, background related to SPICE, selected parallel matrix solving methods and

the existing FPGA-based hardware architectures for general applications have been reviewed.

GE and LU are two major direct matrix solving methods used in SPICE, which are processed

in serial. To improve the performance of matrix solving process, FPGA-based hardware

 23

Figure 2.6: HERA PE architecture [43]

implementations of parallel matrix solving methods are desired. Most iterative methods such

as Jacobi and CG aim at parallel processing for solving large sparse matrices. In Chapter 3,

FPGA-based general hardware architectures, LNS-based hardware designs and FPGA-based

HW/SW codesigns of Jacobi, combined Jacobi and Gauss-Seidel, and CG are presented.

 24

Chapter 3

3.1.1

General Hardware Architectures and HW/SW Codesigns

of Iterative Methods

In computational mathematics, an iterative method attempts to solve a problem (for

example an equation or a linear system) by using successive approximations to obtain more

accurate solutions at each step starting from an initial guess. The goal of this chapter is to

provide detailed approaches to FPGA-based hardware design including FPGA-based general

hardware architectures, LNS based hardware designs and FPGA-based HW/SW codesigns to

Jacobi, combined Jacobi and Gauss-Seidel, and CG for solving sparse matrices.

3.1 FPGA-based Hardware Architectures

Jacobi Iterative Method

Assume no memory constraint. An ideal hardware architecture for Jacobi method would

consists of n Jacobi processor units (JPU) for n-vector x, where JPU is the basic unit of

Jacobi hardware architecture. Within each JPU there are n-1 multipliers, 1 divider, and binary

tree adders/subtractors as showed in Figure 3.1. This architecture requires n×(n-1) multipliers

in total. Multiplication of inputs aij and xj are processed in parallel for each xi and new n-

vector x is updated in parallel as well, where i, j = 1, 2,…, n and j i. Considering the

hardware resource, several other possible cases have been considered, where different case

has different JPU.

≠

1. n JPUs, 1 multiplier in each JPU: Multiplications of inputs aij and xj are processed

serially in each JPU. For each iteration, output for each x will be obtained and updated

 25

in parallel which means new value for each x is updated once all the outputs new xi are

available.

2. 1 JPU and n-1 multipliers in the JPU: Multiplication of inputs aij and xj are processed

in parallel for each x. Output x’s will be obtained and updated serially. This

architecture is actually equivalent to an ideal architecture for Gauss-Seidel method.

3. p (p<n) JPUs and 1 multiplier in each JPU: A subset of n-vector x are processed in

parallel at a time which requires /n p⎡ ⎤⎢ ⎥ number of times to process the n-vector x,

where is a ceiling function. Inside each JPU, multiplications of inputs a⎡ ⎤⎢ ⎥ ij and xj

are processed serially.

4. 1 JPU and l multipliers in each JPU: A subset of multiplications of inputs aij and xj are

processed in parallel at a time which requires (1) /n l−⎡ ⎤⎢ ⎥ number of times to process

one xi.

Figure 3.1: Ideal hardware architecture for Jacobi method

 26

Figure 3.2: Hardware architecture for Jacobi method (case 3)

Figure 3.3: Hardware architecture for Jacobi method (case 4)

 27

Cases 1 and 2 are applicable to small linear systems which require less hardware resource

for implementation. Cases 3 and 4 have scalable architectures and can be applied to large

linear systems considering the available hardware resource in reality. Figure 3.2 shows a

hardware architecture which implements case 3. For each iteration, a set of coefficients,

ap+1,q, ap+2,q,…, a2p,q from A and xq from x are placed at the inputs of JPU 1 to p. After n clock

cycles (i.e. for q = 1 to n), a total of p number of new xi are generated and loaded into x. The

first set of new xi are x1, x2,…,xp, the second set of new xi are xp+1, xp+2,…,x2p, and so on. The

second iteration repeats from x1, x2,…,xp until convergence has been reached.

Figure 3.3 shows a hardware architecture which implements case 4. This architecture

parallelizes multiplications inside each JPU instead of having multiple JPUs processed in

parallel. For each iteration, a set of coefficients, ak,l+1, ak,l+2,…,ak,2l from A and xl+1, xl+2,…,x2l

from x are placed at the inputs of multiplier 1 to l. After (1) /n l−⎡ ⎤⎢ ⎥ clock cycles, a new xi is

generated and loaded into x. All new xi’s will be generated in serial. The second iteration

again repeats from x1 until convergence has been reached.

One major difference between cases 3 and 4 is that how new values of xi are updated. In

case 3, a total of p new values of xi can be updated at a time with inputs processed in serial,

while in case 4 only one new value of xi will be updated at time but at a faster rate of update

of each new xi compared to case 3. Also, case 3 requires one accumulator for the product of

aij and xj in each JPU, while case 4 requires additional binary tree adders/subtractors in order

to take advantage of parallel multipliers [46].

3.1.2 Combined Jacobi and Gauss-Seidel Method

Assume no memory constraint. The ideal hardware architecture of Gauss-Seidel method is

equivalent to case 2 of hardware architectures of Jacobi, which consists of 1 JPU for updating

xi. Within JPU, there are n-1 multipliers, 1 divider, and binary tree adders/subtractors. This

architecture is able to process the multiplication of aij and xj in parallel inside JPU, but only

update one new xi at a time. However, considering the hardware resource constraint, it is

difficult to realize completely parallel multiplications inside JPU in particular for large linear

 28

Figure 3.4: Hardware architecture for combined Jacobi and Gauss-Seidel method

systems. A more realistic approach is to combine Jacobi and Gauss-Seidel method which

requires p×q multipliers in total, where p is the number of JPUs and q is the number of

multipliers inside each JPU. Given limited hardware resource, there is a trade off between the

number of JPUs and multipliers (i.e. p and q). In this combined method, a subset of variables,

x, are calculated in parallel dependent upon available hardware resource. If the hardware

resource allows maximum p variables to be calculated in parallel, x1, x2,…,xp are calculated

first. The new values are used for calculating the next p variables, xp+1, xp+2,…,x2p, and so on.

Figure 3.4 shows a hardware architecture which implements the combined Jacobi and

Gauss-Seidel method. This architecture contains p JPUs processed in parallel and q

multipliers inside each JPU. For each iteration, a set of coefficients, ai,q+1, ai,q+2,…,ai,2q from

A and xq+1, xq+2,…,x2q from x are placed at the inputs of multiplier 1 to q inside JPU. After

 clock cycles, a total of p number of new x(1) /n q−⎡⎢ ⎤⎥ i are generated and loaded into x. The

 29

3.1.3

d

first set of new xi are x1, x2,…,xp, the second set of new xi are xp+1, xp+2,…,x2p, and so on. The

second iteration again repeats from x1, x2,…,xp until convergence has been reached.

Conjugate Gradient Method

As described in Chapter 2, CG used as iterative method is memory-efficient and runs

quickly with sparse matrices. Figure 3.5 shows one way to implement CG in hardware. This

architecture consists of four matrix-multiplication blocks (MMB), two dividers, and two

adder/subtractors. Matrix-vector multiplication, vector-vector multiplication and scalar-

vector multiplication are implemented in the same block, i.e., MMB. Scalar-vector

multiplication is treated as matrix-vector multiplication by transforming the scalar into a

diagonal matrix with all diagonal values equal to the scalar value, where a diagonal matrix is

a square matrix in which the entries outside the main diagonal are all zero.

In this realization, there are five global signals. The first global signal, sel_r0, is used to

determine when to select b and Ax− r Aα− associated with ro and rk, where r0 is the

initialized residual, rk is the new residual and k is the number of current iteration. The second

global signal, sel_d0, is used to determine when to select d0 and dk, where d0 is the initialized

search direction and dk is the current search direction. The third global signal, sel_accu, is

used to accumulate multiplications to obtain dTAd. The fourth global signal, sel_αβ, is used to

determine when to select x dα+ and r dβ+ associated with xk+1 and dk+1, where xk+1 is the

new approximation to solution x. The last global signal, sel_x0, is used to determine when to

select x0 and xk. Divider_1 and Divider_2 perform scalar divisions to obtain α and β

respectively, where α and β are associated with calculations of x, r and d.

This architecture can be divided into three blocks including BLOCK_A, BLOCK_B and

BLOCK_C shown in Figure 3.5. Only one block will be enabled at a time. For the first

iteration, BLOCK_A is enabled at the beginning, where sel_r0 selects b, A, and x0 to calculate

the initial residual r0 which is also equal to the initial search direction d0, and δnew is

obtained by multiplying r0 with (r0)T. Then BLOCK_B is enabled, where sel_d0 selects d0,

sel_accu is used to accumulate the multiplication results, (d0)TAd0, and Divider_1 performs a

scalar division between δnew and (d0)TAd0 to obtain α0. Then BLOCK_C is enabled, where

 30

k

sel_x0 selects x0 and sel_αβ selects x0 and α0 to calculate x1. After x1 is obtained, BLOCK_A

is enabled again, where sel_r0 selects r0, α0, and Ad0 to calculate the second residual r1, δold

is set to δnew, and δnew is renewed by multiplying r1 with (r1)T. Divider_2 performs a scalar

division between δnew and δold to obtain β0. At the end of this iteration, BLOCK_ C is

enabled again, where sel_αβ selects r1 and β0 to calculate d1.

For second iteration, BLOCK_B is enabled at the beginning, where sel_d0 selects d1,

sel_accu is used to accumulate the multiplication results, (d1)TAd1 and Divider_1 performs a

scalar division between δnew and (d1)TA d1 to obtain α1. Then BLOCK_C is enabled, where

sel_x0 selects x1 and sel_αβ selects x1 and α1 to calculate x2. After x2 is obtained, BLOCK_A

is enabled, where sel_r0 selects r1, α1, and Ad1 to calculate the third residual r2, δold is set to

δnew and δnew is renewed by multiplying r2 with (r2)T. Divider_2 performs a scalar division

between δnew and δold to obtain β1. At the end of this iteration, BLOCK_ C is enabled again,

where sel_αβ selects r2 and β1 to calculate d2. For following iterations, the process repeats as

second iteration until convergence has been reached.

The above analysis shows that the key to a fast implementation of CG is a fast

implementation of MMB. A simplified multiplication and accumulation (MAC) unit for

matrix multiplication is shown in Figure 3.6. Assume aij and xj can be available as inputs data

simultaneously, the MAC unit computes aij×xj, and then adds aijxj to the accumulate register,

where accumulate register is initialized to zero. The MAC unit accumulates the products of

inputs fed every cycle. After n (matrix size) cycles, one element of resulted vectors will be

obtained and stored into memory until all of inputs are processed. CG is usually completed

after n iterations. In practice, the recursive formula for the residual, , results

in accumulated floating point round off error which will cause the residual r to gradually lose

accuracy. The evaluation process will be terminated early due to this floating point round off

error. This problem can be corrected by recalculating the exact residual, , where

global signal sel_r

1k k kr r Adα+ = −

1k kr b Ax+ = −
0 selects b, A, and xk to calculate rk+1 in BLOCK_A.

 31

M
U

X

M
U

X

M
U

X

Figure 3.5: General hardware architecture for CG algorithm

 32

Figure 3.6: Hardware architecture for multiplication unit

3.2 LNS-based Hardware Design of Jacobi Processor

Due to the complexity of hardware designs of arithmetic units such as multiplier and divider,

LNS has been studied in an effect to simplify arithmetic computations for lower computation

complexity, higher computation speed, and smaller counts size [19, 20, 21, 22]. In LNS, fast

multiplication and division operations can be achieved by using addition and subtraction

operations on the logarithms of the input data; i.e., the hardware cost of multiplications and

divisions are similar in LNS. The reduced circuit size and possibly increased speed of

multiplication and division make LNS becomes a viable solution to many computational

intensive applications such as hardware implementation of matrix solving.

Figure 3.7 shows one way to implement LNS-based JPU unit [51] for case 3 described in

Section 3.1.1, where logarithm and antilogarithm converters can be implemented according

to [19, 21]. In this realization, two logarithm converters are used for the multiplications of aij

and xj as well as the division of m
i ij

j i
b a x

≠

− j∑ and aii. The global signal, sel_div, is used to

determine when to select and am
i ij

j i
b a x

≠

−∑ j

j

ii to perform LNS-based division. A second global

signal, sel_bi, is used to determine when the accumulator is used for executing additions and

subtractions associated with and m
ij j

j i

a x
≠
∑ m

i ij
j i

b a x
≠

−∑ . An external signal, aii_en, from a

 33

1+m
ix

ija

_iia en
m
jx

∑
≠

−
ij

m
jiji xab

m
jij xa

ib

∑
≠ij

m
jij xa

iia

Figure 3.7: Hardware architecture for LNS-based Jacobi processor

diagonal element detector (DED) (not shown in Figure 3.7), is used to pick and store the

diagonal element, aii for individual JPUs. Each JPU has a DED as showed in Figure 3.8,

where input_addr is the base address of certain row corresponding to that JPU. An initial

address denoted as init_addr is obtained by input_addr + (p-1), where p is the sequence

number of JPU. For first subset of xi, sel_init_addr is set to high and the diagonal element

address diag_addr is equal to init_addr. For second subset of xi, the sel_init_addr is set to

low the diag_addr is obtained by adding init_addr with np(n+1), where np is the total number

of JPU, n is the size of matrix A, and np(n+1) is a pre-calculated number. For the following

subsets of xi, sel_init_addr is set to low and the diag_addr is obtained by adding the

 34

Figure 3.8: Hardware architecture for DED

diag_addr again with np(n+1). This process repeats until the first iteration is done. The

following iteration begins again by setting sel_init_addr to high, thus diag_addr is reset to 0

and init_addr is selected for the first subset of xi. The obtained diag_addr will be compared

with aij_addr, where aij_addr is the address of matrix element. If diag_addr is equal to

aij_addr, matrix element aij will be chosen and stored as diagonal element by aii_en.

LNS-based combined Jacobi and Gauss-Seidel can be implemented in a similar way as

LNS-based Jacobi Processor where multiplication and division are replaced with LNS-based

design. For CG method, MMB takes up the major part of multiplication which can also be

replaced with a LNS-based block.

3.3 Xilinx EDK HW/SW Codesign of Iterative Methods

Xilinx EDK [18] is a suite of tools and IP blocks that designs a complete embedded

processor system for implementation in a Xilinx FPGA device. The suite includes Xilinx

platform studio (XPS), software development kit (SDK), hardware IP for the Xilinx

 35

embedded processors, drivers and libraries for embedded software development, and GNU

compiler and debugger for C/C++ software development. XPS is the development

environment used for designing the hardware portion of embedded processor system and

SDK is an integrated development environment, complimentary to XPS, that is used for

C/C++ embedded software application creation and verification. Xilinx EDK tools are able to

design a system using embedded MicroBlazeTM soft processor cores implemented using

FPGA fabric, and/or PowerPCTM (PPC) hard processor cores, i.e., the fixed CPU cores

incorporated into FPGA fabric. The MicroBlaze soft processor core has access to a high-

speed serial interface called the Fast Simplex Link (FSL) which is an on-chip interconnect

that provides a high-performance data channel between the MicroBlaze processor and the

surrounding FPGA fabric. Similarly, the PowerPC hard processor core provides high-

performance communication channels through the processor local bus (PLB) and on-chip

memory (OCM) interfaces.

To use EDK, integrated software environment (ISE) [52] must be installed as well. ISE is

the foundation for Xilinx FPGA logic design, which includes tools related to embedded

processor systems and their design. Because FPGA design can be an involved process, Xilinx

has provided ISE that allow the designer to circumvent some of this complexity such as

constraints entry, timing analysis, logic placement and routing, and device programming

have all been integrated into ISE.

A simplified design flow for an embedded design using Xilinx EDK tools is showed in

Figure 3.9 [18]. The design enables the integration of both hardware and software

components of an embedded system. Typically, the ISE FPGA development software runs

behind the scene. The XPS tools make function calls to the utilities provided by the ISE

software. XPS is used primarily for embedded processor hardware system development,

where specification of the microprocessor, peripherals, and the interconnection of these

components, along with their respective property assignments takes place. Simple software

development can also be accomplished from within XPS, but for more complex application

development and debug, Xilinx recommends using the SDK tool. Verifying the correct

functionality of hardware platform can be accomplished by running the design through a

 36

Figure 3.9: Basic embedded design process flow [18].

Figure 3.10: EDK design simulation stages [18].

hardware description language (HDL) simulator. XPS facilitates three types of simulation

including behavioral, structural and timing-accurate. Verification through behavioral,

structural, and timing simulation can be performed at specific points in design process, as

illustrated in Figure 3.10 [18]. After completing the design, FPGA bitstream along with the

software executable and linkable format file (ELF) are downloaded into target board to

configure the target device.

 37

The Xilinx EDK design is implemented in Xilinx Virtex-II Pro XC2VP30 based platform

FPGA. The HW/SW codesign architecture for Jacobi, Gauss-Seidel and CG is shown in

Figure 3.11. This architecture includes the following hardware components:

 PPC 405: The brain of the system, the microprocessor.

 PLB_BUS: The processor local bus. PLB_BUS is the higher hierarchy bus, the one

closer to the processor. Primary instruction and data memory are transferred through this

bus.

 OPB_BUS: The on-chip-peripheral bus. Slow and non-critical peripheral is attached to

this bus.

 MMB: The matrix multiplication block, which implements matrix multiplications of

three iterative methods in FPGA.

 PLB_BRAM_IF_CNTRL: The controller for the memory which is attached to the PLB

bus.

 PLB_BRAM: Memories for storing data and instructions.

 PLB2OPB_BRIDGE: This bridge connects the PLB and the OPB bus in a master-slave

(PLB-OPB) schema. This is a one-way bridge. Therefore, as an OPB-PLB schema is

needed an opb2plb_bridge will be required.

 OPB_UART: Universal asynchronous receiver/transmitter, this is attached to the OPB

bus and allows the design system to display information on PC.

 DDR_CLOCK_MODULE_REF: The design system requires several different clocks,

for the bus, for the CPU, for peripherals, etc.

 PROC_SYS_RESET: The system has different types of resets (i.e. chip reset, system

reset, core reset, etc).

 38

Figure 3.11: EDK design architecture of Jacobi, Gauss-Seidel, and CG.

ij j
i j

a x
≠
∑

Figure 3.12: Hardware architecture of MMB

 39

As described in Section 3.1.1, the key to a fast implementation of three iterative methods is

a fast implementation of matrix multiplication. Hence, Xilinx EDK HW/SW codesign of

three iterative methods has matrix multiplications implemented in hardware, and the rest

operations implemented in software and stored in instruction RAM. The MMB is able to

execute matrix-vector multiplication, vector-vector multiplication and vector-scalar

multiplication in one block. Figure 3.12 shows the hardware architecture of MMB including

one single precision floating point multiplier, one accumulator containing one single

precision floating point adder, and five 32-bit user control registers (not shown in Figure

3.12) which can be accessed by both software and hardware. Functions of five user control

registers are listed in Table 3.1. As showed in Figure 3.11, one port of MMB is connected to

PLB bus, and another port is connected to data RAM to fetch data. Thus, MMB is only able

to fetch one of inputs at a time. Therefore, a global signal, sel_aijxj, shown in Figure 3.12 is

used to determine when to select aijxj so that only aijxj or 0 is selected. The MMB computes

aij×xj, and then adds aijxj to accumulate register, where the accumulate register is initialized

to zero. The MMB accumulates the products of inputs fed every two cycle. After 2n cycles,

one element of resulted vectors will be obtained and stored into memory until all of inputs

are processed. In order to simplify the design, MMB shares the same clock as PLB bus and is

able to run with a max frequency of 41.2MHz due to the limitation of floating point adder,

thus 25 MHz is chosen for PLB bus clock frequency selections and frequency of PPC is set

to100 MHz.

The write function: MYIP_mWriteReg(BaseAddress, RegOffset, Data) and read function:

MYIP_mReadReg(BaseAddress, RegOffset) are used as interfaces between software and

hardware, where BaseAddress is the base address of MMB on PLB bus , RegOffset is the

register address offset in MMB and Data is 32-bits data written into five user register. The

write function writes the base address of matrix A and x, the numbers of rows and columns of

matrix A, the base address of matrix result, and the status of flag into five user registers

respectively. The read function reads the status of flag for PPC to decide when the software

process will start to run.

 40

Table 3.1 Functions of five user control registers for CG

User Control Register Function

Register_1 Store the base address of matrix A.

Register_2 Store the base address of matrix x (column vector).

Register_3 Store the numbers of rows and columns of matrix A (high 16 bits
for row and low 16 bits for column);

Register_4 Store the base address of matrix result;

Register_5 Store the status of flag, i.e. start or end of matrix multiplication.

The overall EDK HW/SW codesign flow of three iterative methods is summarized as

follows: PPC runs software implemented operations at the beginning. When matrix

multiplication starts, PPC writes five user control registers with base addresses of matrices,

numbers of rows and columns, and status of flag. Once flag is set to start, MMB fetches data

from data RAM and start multiplication. At the same time, a clock counter begins to count

clock cycles and PPC keeps checking the flag register in MMB which shows the status of

matrix multiplication. Once matrix multiplications are finished, the flag is set to end, and

PPC continues to do other jobs implemented in software until another matrix multiplication

occurs. Once all of the evaluation process has been done, PPC reads the register in the clock

counter and prints the total time displayed in the number of clock cycles. All three iterative

methods are designed in a similar way which use the same MMB, but have different software

descriptions corresponding to each method.

So far, FPGA-based hardware architectures, LNS-based hardware designs, and Xilinx

EDK HW/SW codesigns of Jacobi, combined Jacobi and Gauss-Seidel and CG have been

discussed. Most iterative methods aim at parallel processing and are able to find solution in

fewer steps compared to direct methods, but accuracy is not guaranteed for limited iterations.

Selected direct methods such as PIE and WZ are able to achieve the required accuracy and

solve matrices in parallel compared to GE and LU but mainly target on dense matrices. In

Chapter 4, FPGA-based hardware architectures and Xilinx EDK based HW/SW codesign of

 41

WZ factorization is presented followed by the reordering technique dealing with large sparse

matrices.

 42

Chapter 4

General Hardware Architectures and HW/SW Codesign of

Direct Methods

Since mid-1950s some of direct methods solve matrices by transferring them into block

forms [23, 32]. Instead of solving a matrix one element at a time, the matrix is regrouped and

solved as sub-blocks. By doing this, matrix can be factorized and solved from two sides

simultaneously. WZ factorization and PIE are two of these methods which are more suitable

for parallel computation. The goal of this chapter is to provide FPGA-based hardware

implementations of WZ factorization. Single unit and scalable hardware architectures of WZ

factorization are proposed and analyzed under different constraints. Xilinx EDK HW/SW

codesign of WZ factorization is presented targeting on hardware implementation of the

matrix update, followed by the reordering technique extended to WZ factorization for solving

large sparse systems.

4.1 Alternative Methods of WZ factorization and PIE

As described in chapter 2, Doolittle’s method and Crout’s method are two alternatives to

LU factorization. Two methods are slightly different, where the Doolittle's method returns a

unit lower triangular matrix and an upper triangular matrix, while the Crout’s method returns

a lower triangular matrix and a unit upper triangular matrix. Two methods decompose

matrices in a similar process but with different sequence. Similarly, ZW factorization and X

factorization can be used as alternatives of WZ factorization and PIE respectively, where

matrices are factorized in a similar way but from different directions.

 43

4.1.1

,

0

1

ZW Factorization

An alternative of WZ factorization is to decompose matrix in a reverse way into ZW form,

called ZW factorization. Let where ' ' A Z W=

12 13 1,(1)/2 1, 2 1, 1

23 2, 2

(1)/2,(1)/2

(3)/2,(1)/2

1,3 1, 2

,2 ,3 ,(1)/2 , 2 , 1

1 0
1 ..

1 0
. 1 .'
0 1

0 ..
0 1

n n n

n

n n

n n

n n n

n n n n n n n n

z z z z z
z z

z
Z

z
z z

z z z z z

+ − −

−

− +

+ +

− − −

+ − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢
⎢
⎢
⎢ −⎣ ⎦

⎥
⎥
⎥
⎥

 (4.1) 0 0

and

 (4.2)

11 1,

21 22 2, 1 2,

(1)/2,1 (1)/2,2 (1)/2,(1)/2 (1)/2, 1 (1)/2,

1,1 1,2 1, 1 1,

,1 ,

..
.. ..'

..

n

n n

n n n n n n n n

n n n n n n

n n n

w w
w w w w

w w w w wW

w w w w
w w

−

+ + + + + − +

− − − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

0

0
ZW factorization solves two columns and two rows from the middle of matrices 'Z and

toward outside instead of solving them from outsides of matrices toward inside. The

evaluation procedure is distinguished into two cases.

'W

Case1: If n is odd, at the first evaluation stage, the elements of (n+1)/2th row of matrix W

are obtained by:

'

 (1)/2, (1)/2, for 1, 2 ... -1, .n j n jw a j n+ + n= = , , (4.3)

The elements of (n+1)/2th column of matrix 'Z are evaluated by

,(1)/2
,(1)/2

(1)/2,(1)/2

i n
i n

n n

a
z

w
+

+
+ +

= ， (4.4)

 44

where The remaining matrix is

then updated by

 1, 2,..., (1) / 2, (3) / 2,..., -1, and (1) / 2.i n n n n i n= − + ≠ +

,(1)/2 (1)/2, ,ij ij i n n ja a z w+ += − (4.5)

where At the second evaluation stage, the elements

of (n-1)/2

 , 1, 2, 3,..., and , (1) / 2.i j n i j n= ≠ +

th and (n+3)/2th rows of matrix are obtained by: 'W

(1)/2, (1)/2, (3)/2, (3)/2,and , n j n j n j n jw a w a− − + += = (4.6)

where The elements of (n-1)/21, 2 ..., -1, and (1) / 2.j n n j n= ≠, + th and (n+3)/2th columns

of matrix 'Z are evaluated by solving (n-3) sets of 2×2 linear equations given by

,(1)/2 (1)/2,(1)/2 ,(3)/2 (3)/2,(1)/2 ,(1)/2

,(1)/2 (1)/2,(3)/2 ,(3)/2 (3)/2,(5)/2 ,(3)/2

and
 ,

i n n n i n n n i n

i n n n i n n n i n

z w z w a

z w z w a

− − − + + − −

− − + + + + +

+ =

+ =
 (4.7)

where The remaining matrix is

updated by

1, 2,..., -1, and (-1) / 2, (1) / 2 and (3) / 2.i n n i n n n= ≠ + +

+

 (4.8) ,(1)/2 (1)/2, ,(3)/2 (3)/2, ,ij ij i n n j i n n ja a z w z w− − + += − −

where For following

stages, this process repeats until the matrix

, 1, 2,..., -1, and , (1) / 2, (1) / 2 and (3) / 2.i j n n i j n n n= ≠ − +

'Z and are found in the forms of Equations

4.1 and 4.2.

'W

Case 2: If n is even, at first evaluation stage, two rows of and two columns of 'W 'Z (i.e.

n/2th and (n+2)/2th rows, and columns) are obtained by using Equations 4.6 and 4.7. This

process repeats for the following stages until the elements of first and last rows, and columns

of matrix and 'W 'Z are found.

During the solution process, Ax b= can be rewritten as (' ')Z W x b= . Two related and

simpler linear systems of forms 'Z y b= and 'W x y= are required to be solved. Vector y is

obtained by solving 'Z y b= and final solution x is obtained by solving 'W x y= . The

 45

solution process begins by solving elements of y in pairs from the middle of vector y. For odd

case, the process starts with y(n-1)/2 and y(n+3)/2. In general, at ith stage,

- 1 - 1and ,i i n i n iy b y b+ += = (4.9)

where Vector b is then updated by Equation 4.10. 1, 2 ..., -1, and (1) / 2.i n n i n= ≠, +

'
, 1 1,j j ji i j n i n ib b z y z y− + − += − − (4.10)

where The final solution x is

solved from the top and bottom of matrix W , which is evaluated in pairs by solving (n-1)/2

sets of 2×2 linear equations ending with x

1, 2,..., 2, 1 and 2, 3,..., 1, .j i i j n i n i n n= − − = − + − + −

'

(n-1)/2 and x(n+3)/2. The last equation to be solved is

(1) / 2
(1) / 2

(1) / 2 ,(1) / 2

n
n

n n

y
x

w
+

+
+ +

= (4.11)

Even case is similar as odd case, where x is evaluated by solving n/2 sets of 2×2 linear

equations ending with xn/2 and x(n+2)/2. An example of ZW is given in Appendix A.

4.1.2

n

n

X Factorization

Another modification scheme of PIE method is named as X factorization. The final matrix

X is showed as follows.

11 1

22 2, 1

33 3, 2

2,3 2, 2

1,2 1, 1

1

...

n

n

n

n n n

n n

n n

x x
x x

x x
X

x x
x x

x x

−

−

− − −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0

0
−

 (4.12) 0

0
Matrix X is achieved by taking product of matrix 'Z in the form of Equation 4.13 with

matrix Z in the form of 2.14, where matrix Z is obtained by PIE method.

 46

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−

−−
−−−−

=

−−

−−−

−

−−

1...0
01...00
001...000
.........1.........
000...100
00...10
0...1

'

1,2,32

2,13,1

2,23,2

1,12,13,112

nnnnnn

nnn

n

nn

zzzz
zz

zz
zzzz

Z (4.13)

By transforming matrix Z into X form, final solution x can be obtained by solving multiple

sets of 2×2 equations simultaneously. The cross diagonal elements of matrix X are same as

those in matrix Z. By equalizing 'Z Z with X, matrix 'Z is obtained and used to update

vector , where vector is the updated vector b from PIE method. The relationship

between PIE and X factorization is showed as follows: First, multiply both sides of Equation

2.1 with matrix W to obtain Equation 4.14.

'b 'b

 WAx Wb= (4.14)

As described in PIE scheme, WA Z= , substitute this equation into Equation 4.14 to

obtain Equation 4.15

 'Zx b= (4.15)

where . Then multiply both sides of Equation 4.15 with Z’ to obtain the

following equation.

'b Wb=

 ''Z 'Zx Z b= (4.16)

Substitute 'Z Z X= into Equation 4.16 to obtain Equation 4.17

 ''Xx b= (4.17)

where . '' ' 'b Z b= 'Z Z can be written in Equation 4.18.

 47

n−

12 1,3 1, 2 1, 1

2,3 2, 2

1,3 1, 2

2 3 , 2 , 1

11 12 1, 1 1,

1 ' ' ... ' ' 0
0 1 ' ... ' 0 0
0 0 1 ... 0 0 0
... 1'
0 0 0 ... 1 0 0
0 0 ' ... ' 1 0
0 ' ' ... ' ' 1

. . .

 *

n n

n

n n n

n n n n n n

n

z z z z
z Z

Z Z

z z
z z z z

z z z z

− −

−

− − −

− −

−

− − − −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

22 2, 1

(1)/2,(1)/1

1,2 1, 1

,1 ,2 , 1 ,

. . .
.

.

.
. . .

n

n

n n

n n

n n n n n n

z z

z

z z
z z z z

−

+ +

− −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (4.18)

0 0

Considering the case when n is odd, at the first evaluation stage, the elements of 2nd and (n-

1)th columns of matrix 'Z are obtained by solving two sets of 2×2 equations given by

 12 22 1, 1 1,2 12

12 2, 1 1, 1 1, 1 1, 1

' '
' '

n n

n n n n

z z z z z
z z z z z

− −

n− − − − −

+ =
+ =

 (4.19)

and

,2 22 , 1 1,2 ,2

,2 2, 1 , 1 1, 1 , 1

' '
.

' '
n n n n n

n n n n n n n n

z z z z z
z z z z z

− −

− − − − −

+ =
+ =

 (4.19)

The remaining elements of Z are updated using 'Z values from the previous step. For

following evaluation stages, this procedure repeats until the elements of middle column of

matrix 'Z are found. An example of X factorization is given in Appendix A.

4.2 FPGA-based Hardware Architectures of WZ factorization

As described in chapter 2, WZ factorization solves matrices by transferring them into block

forms, where the matrix is regrouped and solved as sub-blocks. In FPGA-based hardware

design of WZ factorization, pairs of elements of matrix W can be solved in serial by single

 48

4.2.1

unit architecture and multiple pairs of matrix W can be solved in parallel by a scalable

architecture.

Single Unit Architecture

Figure 4.1 shows the single unit hardware architecture of WZ factorization. This

architecture consists of a 2×2 solver and one update block which are used to solve a pair of W

values and update one row of the remaining matrix An-2i respectively. The 2×2_solver contains

three Wsolvers, where sub/adder functioned as subtractor in these Wsolvers. The update

block contains several Aupdate units. Each Aupdate unit contains one Wsolver and one

sub/adder functioned as an adder. Each Aupdate unit is used to update certain elements of

the An-2i based on the position of Aupdate unit. Hardware architectures of Wsolver and

Aupdate unit are shown in Figure 4.2, where i represents each distinct evaluation stage for i

=1, 2,…,(n+1)/2, j represents elements of the first and last columns of matrix W for j =i+1,

i+2,…,n-i, and k represents row elements of the remaining matrix An-2i for k =i+1, i =2,…,n-i.

In this architecture, the 2×2_solver applies Cramer’s rule under the non-singularity

constraint imposed for their determinants. Three Wsolvers compute a pair of W values

simultaneously and fed them into the update block. Ideally, the update block consists of (n-

2i) Aupdate units. It is unlikely to implement this ideal case in reality, since the number of

Aupdate units will increase significantly as matrix size increases. Therefore, the number of

Aupdate units should be determined according to the available hardware resource. Assume

two ram modules are allocated to 2×2_solver and Aupdate respectively. During the

initialization phase, matrix A can be stored into matrix Z to save memory and accelerate the

calculation process. By doing so, the elements of first and last rows of matrix Z are not

necessary to be evaluated and the process of the update of the An-2i is carried out directly in

matrix Z. There are six different inputs for the 2×2_solver, and five inputs for each Aupdate

unit where two of them are W values coming from the 2×2_solver. The modification block

could start loading data once the 2×2_solver finishes loading data from memory. Only one

Wsolver’s processing time is counted since three Wsolvers are processed simultaneously.

Assume each Wsolver and divider take α and β cycles to process respectively. Thus the 2×2

 49

Wsolver

/

/

Reg

Reg

ajk

zji zj,n-i+1

zn-i+1,n-i+1

zn-i+1,i

zii
zi,n-i+1

zji zj,n-i+1

zn-i+1,k

2×2 Solver

Wsolver
zii

zn-i+1,n-i+1

zn-i+1,i zi,n-i+1

Wsolver

wji

wj,n-i+1

.

.

.

.

.

.

.

.

.

.

.

.

Aupdate
k=i+1

Aupdate
k=n-i

Aupdate
k=i+2

ajk

zik

Update block

Figure 4.1: Block diagram of a single unit for WZ factorization method.

Figure 4.2: Block diagrams of Wsolver and Aupdate.

 50

_solver requires (α+β) cycles to process. Memory is equally divided into λ portions satisfying

the bandwidth required for one 2×2_solver. The loading cycle for p Aupdate units is 3p/λ. By

equalizing these two items, p can be evaluated as

3 (() 3
p p) .λ α βα β λ

++ = ⇒ = (4.20)

From the data distribution aspect, four of inputs data of the 2×2_solver are located at four

corners of matrix Z (e.g. z11, zn1, zn1, znn for first stage). The other two are located at the first

and last columns and same row as W values located. For example, if wji and wj, n-i+1 are

evaluated by 2×2_solver, the rest two inputs are located at jth row of matrix Z (e.g. zji and zjn

for the first stage). Inputs data to each Aupdate are located at the same column of the element

which required to be updated. For example, in order to update aik, the inputs data are

retrieved from kth column of matrix Z (e.g. z1k and znk for first stage). Therefore, memory can

be divided into 4 portions according to data distribution and each portion is able to store a

quarter of matrix Z.

4.2.2 Scalable Architecture

To achieve complete parallel process, n-2 WZ_solvers can be parallized in WZ hardware

architecture. Each WZ_solver is responsible for evaluating a pair of W values and updating

elements of one row of the remaining matrix An-2i. To extend the parallelism, n-2 Aupdate

units can be parallized in each WZ_solver for the first iteration. For the following iterations,

both the numbers of WZ_solvers and Aupdate units will be decreased by 2, thus some of the

hardware resource are wasted at later stages. Considering the available hardware resource,

several possible cases are proposed as follows, where single unit is denoted as WZ_solver

here.

1. 1 WZ_solver with 1 2×2_solver and 1 Aupdate unit. Pairs of W values are solved in

serial by 2×2_solver and elements of one row of the remaining matrix An-2 are also

updated in serial by Aupdate unit.

 51

2. 1 WZ_solver with 1 2×2_solver and k (k<n-2) Aupdate units. A subset of one row of

An-2i is updated in parallel at a time which requires (2) /n i k−⎡ ⎤⎢ ⎥ number of times to

update one row of the remaining matrix An-2i. But pairs of W values are solved in serial

by 2×2_solver.

3. l (l<n–2) WZ_solvers with 1 2×2_solver and 1 Aupdate in each WZ_solver. 1

WZ_solver is corresponding to solve one pair of W values and update one row of the

remaining matrix An-2i. Inside each WZ_solver, the elements of one row of An-2i are

updated in serial, but a subset of W are solved in parallel at a time which requires

 number of times to obtain two columns of matrix W. (2) /n i l−⎡⎢ ⎤⎥

⎤⎥

4. p (p<n-2) WZ_solvers with 1 2×2_solver and q (q<n-2) Aupdate units in each

WZ_solver. A subset of one row of An-2i is updated in parallel inside each WZ_solver,

which requires number of times to process. A subset of W values are also

solved in parallel at a time among p WZ_solvers which requires number

of times to obtain two columns of matrix W.

(2) /n i q−⎡⎢

(2) /n i p−⎡ ⎤⎢ ⎥

Case 4 is considered here for scalable hardware architecture. In order to evenly distribute

the data, assume the memory allocated to 2×2 solver is divided into η portions and the

memory allocated to the update block is divided in to δ portions. Assume each Wsolver and

divider take α and β cycles to process respectively. As showed in Figure 4.3, first WZ_solver

has six inputs data for 2×2_solver and three inputs data for each Aupdate unit. Each extra

WZ_solver adds two more inputs data for 2×2_solver and one more input data for each

Aupdate unit. The numbers shown in Figure 4.3 represent the numbers of inputs data. The

numbers of WZ_solvers and Aupdate units (i.e. p and q) are obtained as follows. By

equalizing the number of inputs data of 2×2_solvers with memory portions η, p can be

evaluated as:

(- 4)(6 2(1)) 2p p ηη+ − = ⇒ = (4.21)

where 6 is the number of inputs data of 2×2_solver. 2(1)p+ −

 52

6

3
W

3

Z

.

.

.

.

.

.

1st
WZ_solver

1st
Aupdate

qth
Aupdate

.

.
.
.

2
W Zpth

WZ_solver

1

1

1st
Aupdate

qth
Aupdate

.

.
.
.

2
W Z2nd

WZ_solver

1

1

1st
Aupdate

qth
Aupdate

.

.
.
.

Figure 4.3: Scalable architecture of WZ factorization(case 4).

By equalizing the total number of inputs data of Aupdate units with the loading cycle for q

Aupdate units, q can be evaluated as:

(1 3) ()() (2
p q q p)

α β δα β δ
− + ++ = ⇒ = + (4.22)

where (1 3)p q− + is the number of inputs data of Aupdate units. Substitute Equation

4.21 into Equation 4.22, q is obtained by

 2()q α β δ
η

+= (4.23)

In this architecture, both parts of memory are initialized with matrix Z and are divided into

η and δ portions respectively, which make data distribution more dynamical according to the

requirements. The evaluation of next pairs of W values requires updating the remaining

matrix An-2i in the previous iteration. This dependence hinders the parallelization of the WZ

 53

factorization. This drawback can be improved by adjusting data input sequences. During the

update process, control signals are used to pick the Z values required to be updated first. In

this case, the elements of first and last columns in An-2i should be updated first since those

values are required by 2×2 solvers for next iteration.

4.3 Xilinx EDK HW/SW Codesign of WZ Factorization

As described in chapter 3, Xilinx EDK tools for HW/SW codesign enable the integration of

both hardware and software components of an embedded system. Xilinx EDK HW/SW

codesign architecture for WZ factorization is shown in Figure 4.4, which has the same

architecture as HW/SW codesign of CG except the hardware implemented block, i.e. the

update of one row of the remaining matrix An-2i instead of MMB is implemented in hardware.

The Update block shown in Figure 4.5 consists of one single precision floating point

multiplier, one single precision floating point adder/subtractor, and three 32-bit user control

registers (not shown in Figure 4.5) which can be accessed by both hardware and software.

Functions of three user control registers are listed in Table 4.1. As shown in Figure 4.4,

Update block is only able to fetch one of inputs at a time. Therefore, a global signal, sel_wz,

shown in Figure 4.5 is used to determine when to select wz so that only wz or 0 is selected.

The Update block computes wz, and then subtracts wz from aij and stores the result, , into

accumulate register. The second global signal, sel_a

'ija

ij, is used to determine when to select the

accumulated result , and subtracts second wz from . 'ija 'ija

Table 4.2 Functions of three user control registers for WZ

User Control Register Function

Register_1 Store the base address of the remaining matrix An-2i, which is
same as the base address of updated results

Register_2 Store the number of columns of the remaining matrix An-2i.

Register_3 Store the status of flag, i.e. start or end of matrix multiplication.

 54

PPC405

JTAG

IPLBDPLB

PORTASPLB

PLB_BRAM_IF_
CNTRL_1

PORTASPLB

Instruction RAM Data RAM

PORTAPORTA

PLB2OPB
BRIDGE

MPLBSPLB Update
Block

PCRS232
UART

PLB BUS

OPB BUS

PLB_BRAM_IF_
CNTRL_2

Figure 4.4: EDK design architecture of WZ factorization

Figure 4.5: Hardware architecture of Update block

 55

The write function: MYIP_mWriteReg(BaseAddress, RegOffset, Data) and read function:

MYIP_mReadReg(BaseAddress, RegOffset) are used as interfaces to software, where

BaseAddress is the base address of the Update block on PLB bus, RegOffset is the user

register address offset in the Update block and Data is 32-bits data written into three user

registers. Write function writes the base address of the remaining matrix An-2i, the number of

columns of the remaining matrix An-2i, and the status of flag into three user registers

respectively. Read function reads the status of flag for PPC to decide when the software

implemented processes will start to run.

The overall EDK HW/SW codesign flow of WZ factorization is summarized as follows:

PPC runs software implemented operations at the beginning. When the row update starts,

PPC writes three user control registers with the base address of An-2i, the number of columns

of An-2i, and the status of flag. Once flag is set to start, Update block fetches data from data

RAM and start update. At the same time, a clock counter begins to count clock cycles and

PPC keeps checking the flag register in update block. Once the update is finished, flag will

be set to end, and PPC continues to do other jobs implemented in software until another row

update occurs. Once all of the evaluation process has been done, PPC reads the register in the

clock counter and prints the total time displayed in clock cycles.

4.4 Reordering Techniques for Sparse Matrix

If a matrix is dense, the best choice is probably to factor the matrix and solve the equation

by back substitution. The time spent on factoring a dense matrix is roughly equivalent to the

time spent on solving the matrix iteratively. But for applications like power network and

circuit simulation, the larger the network is, the more sparse the matrix. For example, the

non-zero elements in a 3000×3000 power network matrix occupy only about two percent of

total elements. Even though a sparse matrix offers the advantage of reduced storage space for

data storage, factoring sparse matrix produces more nonzeros than matrix itself, resulting in

several fill-ins, which might be impossible to implement due to limited memory, and will be

 56

time consuming as well. Iterative methods are memory-efficient and run quickly with sparse

matrices, but direct methods are still preferred choices if more accurate results are desired.

A dynamic data structure [53] is discussed as follows to take care of the fill-ins during

factorizations of direct methods, where a sparse matrix can be reordered into bordered-

diagonal-block (BDB) form shown in Figure 7 to reduce the number of fill-ins. The most

widely used reordering techniques are minimum degree and minimum fill-in [54]. The idea is

to generate a permutation of the original matrix so that the permuted matrix results in a stable

solution that also increases parallelism. As showed in Figure 7, Aij’s are matrix blocks; Aii’s

are referred to as the diagonal blocks; Ain and Anj are called right border blocks and bottom

border blocks, respectively, where [], 1,i j n 1∈ − and Ann is known as the last block. The

blocks Aii, Ain, and Ani are said to form a 3-block group [55], where []1, 1i n∈ − and n N≤ .

Since all non-border off diagonal blocks contain only 0’s, there will be no fill-ins in these

blocks during factorization and the resulting factorized matrix keeps the same BDB structure.

In this BDB form, there is no data dependence among the factorization of the 3-block groups

until the last block. Hence, the factorization of the 3-block groups can be carried out

independently from each other and no inter-processor communication is required during this

procedure. In order to factor the last block Ann, pairs of blocks from right border and bottom

border are multiplied in parallel to produce *
nj nj jnA A A= , where []1, 1j n∈ − . The resulting

products can be stored in the bottom blocks and the summation of these products is required

to factor the last block. The summation of these products is carried out along a binary tree in

parallel and the results are sent to the processor assigned to the last diagonal block. Upon

above description, the BDB matrix algorithm shows distinct advantages for parallel

implementation.

Same technique can be applied to WZ factorization shown in Figure 8. This BDB-based

WZ factorization involves four steps: (1) WZ factorization of the independent blocks. (2)

Multiplication of the right and bottom border blocks to generate the partial sums. (3) The

accumulation of the partial results for the last diagonal block. (4) WZ factorization of the last

diagonal block using the accumulated partial results from the previous steps.

 57

11 1n

22 2n

n-1,n-1 n-1,n

n1 n2 n,n-1 n,n

A 0 ... 0 A
0 A ... 0 A
.. 0 ... 0 ..
0 0 ... A A

A A ... A A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Figure 7: Sparse matrix in BDB form

11 1

22 2

1, 1 1,

1 2 , 1

.. ..

..

n

n

n n n n

n n n n nn

WZ WZ
WZ WZ

WZ WZ
WZ WZ WZ WZ

− − −

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

Partial results accumulation

Figure 8: Parallel WZ factorization of a sparse BDB matrix

This chapter discussed FPGA-based hardware architectures and Xilinx EDK HW/SW

codesign of WZ factorization. So far, FPGA-based general hardware architectures of three

iterative methods and WZ factorization have been discussed, and Xilinx EDK HW/SW

codesign of three iterative methods and WZ factorization have been done. Performance

analysis and comparison of each method are showed in next chapter.

 58

Chapter 5

5.1.1

Performance Analysis

After realization of FPGA-based general hardware architectures, LNS based hardware

designs, and Xilinx EDK HW/SW codesigns of selected matrix solving methods,

performance analysis of each method are discussed under their own category (i.e., iterative

methods or direct methods) based on the results of Matlab simulations and Xilinx EDK

HW/SW codesigns. Convergence analysis of LNS-based Jacobi processor is also given to

show that how the simplified error correction circuit for logarithm/antilogarithm conversion

is related to the convergence of Jacobi method.

5.1 Performance Analysis of Iterative Methods

Matlab Comparison of Jacobi, Gauss-Seidel and Conjugate
Gradient

Single-processor computer based Matlab simulations were performed to evaluate three

iterative methods. This computer has IBM IntelliStation Z Pro with a 3.6 GHz Intel Xeon

processor, 2MB L2 cache and 2.75 GB of system memory. Symmetric, positive-definite

linear systems are used for testing. Those matrices are generated by Poisson equation [56],

which is a partial differential equation with broad utility in electrostatics, mechanical

engineering and theoretical physics. The Matlab simulation results for the three methods are

showed in Figures 5.1, 5.2 and 5.3 with different specifications of matrices and tolerance.

Figure 5.1 shows that given a specific matrix, CG always takes less numbers of iterations to

converge for any tolerance values. The result also verifies that CG converges in at most n

steps, where n is the size of matrix. Figure 5.2 shows that CG always converges at a faster

http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Electrostatics
http://en.wikipedia.org/wiki/Mechanical_engineering
http://en.wikipedia.org/wiki/Mechanical_engineering
http://en.wikipedia.org/wiki/Theoretical_physics

 59

0 50 100 150 200 250 300 350 400
10

-6

10
-4

10
-2

10
0

Iterations

To
le

ra
nc

e

Tolerance vs Iterations

Jacobi
Gauss-Seidel
CG

Figure 5.1: Number of iterations required for solving specific size of linear systems for

different tolerance values according to Jacobi, GS and CG methods.

0 50 100 150 200 250 300 350 400
10

0

10
1

10
2

10
3

10
4

Matrix size

Ite
ra

tio
ns

Iterations, until tolerance reaches 1.0e-006

Jacobi
Gauss-Seidel
CG

Figure 5.2: Number of iterations required for solving different size of linear systems for

specified tolerance value according to Jacobi, GS and CG methods.

 60

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Matrix size

Ti
m

e
(s

)

Computation time, until tolerance reaches 1.0e-006

Jacobi
Gauss-Seidel
CG

Figure 5.3: Total computation time required for solving different size of linear systems for

specified tolerance values according to Jacobi, GS and CG methods.

rate for a given tolerance and different size of matrix. The result also shows that Gauss-

Seidel takes about half numbers of iterations of Jacobi method taken to converge. Therefore,

in term of iteration, CG is a better choice to solve given linear systems. However, the total

computation times of the three methods indicate different results. A Matlab function named

as tic-toc is used to calculate the average computation time of the three iterative methods for

different matrices in terms of CPU time. Figure 5.3 shows that CG takes less computation

time than Jacobi at the beginning, but requires more time as the size of matrix grows over

400. This result is caused by the increasing number of matrix-vector multiplications as

described in Chapter 2, which is the dominant factor of the evaluation processes of three

methods as matrix increases, and matrix multiplication is more dominant compared with

Jacobi and Gauss-Seidel method. Therefore, this part has been implemented in hardware to

improve overall performance.

 61

5.1.2 Convergence Analysis of LNS-based Jacobi Processor

Jacobi method will always converge if A is diagonally dominant [57], i.e.,

ii
ij

ij aa <∑
≠

 (5.1)

Jacobi sometimes converges even if this condition is not satisfied. It is necessary, however,

that the diagonal terms in the matrix are greater (in magnitude) than the other terms. When

LNS is used, logarithm and antilogarithm conversions introduce additional errors. It is

important to know whether these additional errors affect the convergence of Jacobi method.

Matlab simulations were carried out to study how error introduced by logarithm conversion

in a LNS-based Jacobi processor could affect the convergence. The matrices generated by

Matlab that satisfy Equation 5.1 are chosen, i.e. the matrices are all convergent according to

Jacobi method. Firstly, non-diagonal values are randomly generated within a range of [10 20];

then diagonal values are chosen according Equation 5.1. For performance comparison, these

diagonal values are scaled up to 10 times and 100 times of the original one. Equations of

linear systems based on the chosen matrices are then solved by using Jacobi method with and

without using LNS.

Figure 5.4 shows the results of Matlab simulations of matrices with and without using LNS.

Two types of error correction approaches are used with LNS; one is 6-region error correction

according to [21] and the other is 8-region error correction according to [58]. Figure 5.5

shows similar Matlab simulation results with 10-times larger diagonal values than the ones

used in Figure 5.4. It should be noted that LNS with 6 regions error correction has accuracy

between 10-2 and 10-3 while LNS with 8 regions error correction has accuracy between

around 10-3. By comparing the numbers of iterations in Figures 5.4, 5.5 and 5.6, it shows that

larger diagonal values result in less number of iterations to obtain solutions, which is

consistent with Equation 5.1. Since data less than 10-8 can not be represented in binary

format with limited range of the fraction part of logarithm, for some cases, LNS-based Jacobi

processor is not able to converge for tolerance less than 10-8. The limited range of the fraction

part also causes degraded accuracy. In order to improve the convergence for smaller

 62

Figure 5.4 Number of iterations required for solving different size of linear systems for

different diagonal values according to Jacobi method with and without using LNS. Scale

factors for diagonal values are ×1.

Figure 5.5 Number of iterations required for solving different size of linear systems for

different diagonal values according to Jacobi method with and without using LNS. Scale

factors for diagonal values are ×10.

 63

20 30 40 50 60 70 80 90 100

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Matrix size

It
er

at
io

n

100 times diagonal values

Without LNS

LNS with 6-region error correction

LNS with 8-region error correction

Figure 5.6 Number of iterations required for solving different size of linear systems for

different diagonal values according to Jacobi method with and without using LNS. Scale

factors for diagonal values are ×100.

Figure 5.7 Number of iterations required for solving different size of linear systems

according to Jacobi method with and without using LNS under different initial values.

 64

i

tolerances and increase the data accuracy, the range of the fraction part of logarithm can be

increased. Figure 5.7 shows that LNS have similar iterations as multiplication when different

initial values for x are applied. It can be seen that different initial values for x do not have

significant impact on convergence.

The relationship between of convergence and LNS can be expressed in the following

mathematic form. Let be the difference between the im m
i ie x x= − th component of the exact

solution xi and the ith component of the mth iterate, m≥ 0.

1()
m

ij jm m
i i i

j i j iii ii

a
e x x

a a
ε m

iε
−

≠ ≠

= − − − +∑ ∑ (5.2)

where 1 1mm
i i ix e− − = m

j
− , x ε is the error cause by the logarithm and antilogarithm conversions

associated the multiplication of andija jx at mth iteration, and m
iε is the error caused by the

logarithm and antilogarithm division associated with 1 at m/ iia th iteration. Let

 and || . Then 1 1

1
|| || max{| |}m m

ii n
e− −

∞ ≤ ≤
=e || max{| |}m m

j jj i
ε∞ ≠

=ε

1
(1) m

jijm m
i i

j i ii ii

na
e

a a
mε− ∞

∞
≠

−
≤ +∑

ε
e + (5.3)

Let

max ij

j i ii

a
K

a≠

= ∑ (5.4)

Then Equation 5.3 becomes

1
(1) m

jm m
i i

ii

n
e K

a
mε− ∞

∞

−
≤ + +

ε
e (5.5)

The first term is same as the sufficient condition for Jacobi method to converge without

using LNS; i.e. if K < 1, e as 0m → m →∞ . For example, will be multiplied by 1
ie /ij ii

j i

a a
≠
∑

 65

for m–1 times at the mth iteration. However, every iteration also generates a new second term

and third term. At the mth iteration, the accumulated errors caused by logarithm and

antilogarithm conversions can be expressed as:

1

(1)
(

km
jm k k

i
k ii

n
K

a
)ε− ∞

=

−
+∑

ε
 (5.6)

Equation 5.6 shows the errors accumulate with the number of iterations (m) and is also

proportional to the size of matrix (n). In order for LNS-based Jacobi method to absolutely

converge, both Equation 5.1 and 5.6 must be satisfied. The accumulated errors expressed by

Equation 5.6 can be kept less than the convergence tolerance by including proper error

correction circuits in the logarithm and antilogarithm converters. Asume

ε ε ε maxk k
j i

k
iε∞ ∞ ∞

= = = (5.7)

Equation 5.6 can be simplified as:

()
()

/ 1 when

 / 1 when 0
ii

ii

m n a K

n a K

ε

ε
∞

∞

⎧ 1+ →⎪
⎨

+ →⎪⎩
 (5.8)

Equation 5.8 matches the Matlab simulations in Figure 5.4, Figure 5.5 and Figure 5.6.

When m and ε
∞

 are small, the numbers of iterations are similar for Jacobi method with or

without using LNS. If current error correction algorithms where ε
∞

is large, LNS must be

used with caution when Jacobi method needs more iterations to converge.

5.1.3 Xilinx EDK Implementation of Three Iterative Methods

Xilinx EDK implementation was performed to show the performance of the three iterative

methods, where the three iterative methods were implemented in pure software running on

PPC and also implemented in HW/SW codesign using PPC and FPGA. The comparison of

speeds of Jacobi, Gauss-Seidel and CG are shown in Figures 5.8, 5.9 and 5.10 respectively.

Since different microprocessors might have different frequency specifications, clock cycle is

 66

used to represent the speed instead of using actual time within this HW/SW codesign. In this

HW/SW codesign, MMB block is implemented in hardware while the rest is unchanged (i.e.,

implemented in PPC based software). As matrix increases, the computation time of the

software implemented designs grows exponentially, but HW/SW codesigns are almost linear

lines with comparable smaller slopes. These results also indicate that all three iterative

methods are matrix multiplication dominant, since only the MMB is implemented in

hardware. Figure 5.1 shows that CG runs faster than Jacobi method in HW/SW codesign for

a given tolerance (i.e., 10-6 in this case) , since both methods are matrix multiplication

dominant and CG takes less number of iterations to converge compared to Jacobi. However,

this result is also dependent on the matrix given for testing. If a matrix is highly diagonal

dominant, where the diagonal values are 10 times or even 100 times larger the sum of non-

diagonal values, Jacobi will take less number of iterations to converge and the difference of

clock cycles between Jacobi and CG within HW/SW codesigns will also be reduced.

Three methods implemented in software and HW/SW codesign are also compared for same

number of iterations (i.e. 6 iterations in this case). Figure 5.1 shows that CG runs slower than

Jacobi (HW/SW vs SW)

0
10
20
30
40
50
60
70
80
90

0 5 10 15 20 25 30

Matrix size

C
lo

ck
 c

yc
le

 (1
0

6)

HW/SW
SW

Figure 5.8: Speed comparison of EDK SW design and HW/SW codesign of Jacobi method

 67

Gauss-Seidel (HW/SW vs SW)

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30

Matrix size

C
lo

ck
 c

yc
le

 (1
0

6)
HW/SW
SW

Figure 5.9: Speed comparison of EDK SW design and HW/SW codesign of GS method

CG (HW/SW vs SW)

0

1

2

3

4

5

6

0 5 10 15 20 25 30

Matrix size

C
lo

ck
 c

yc
le

 (1
0

6)

HW/SW
SW

Figure 5.10: Speed comparison of EDK SW design and HW/SW codesign of CG method

 68

HW/SW vs SW of Jacobi, GS and CG until convergence

0
10
20
30
40
50
60
70
80
90

0 5 10 15 20 25 30

Matrix size

C
lo

ck
 c

yc
le

 (1
0

6)

Jacobi
GS
CG
Jacobi_H
GS_H
CG_H

Figure 5.11: Speed comparison of Jacobi, Gauss-Seidel and CG method implemented in

EDK SW design and HW/SW codesign for different iterations until convergence.

HW/SW vs SW of Jacobi, GS and CG with same iterations

0

2

4

6

8

10

12

0 5 10 15 20 25 30
Matrix size

C
lo

ck
 c

yc
le

 (1
0

6)

Jacobi

GS

CG

Jacobi_H

GS_H

CG_H

Figure 5.12: Speed comparison of Jacobi, Gauss-Seidel and CG method implemented in

EDK SW design and HW/SW codesign for same numbers of iterations.

 69

5.1.4

both Jacobi and Gauss-Seidel in software, but the differences of clock cycles among three

methods are apparently reduced in HW/SW codesign. This result also indicates that CG is

more matrix multiplication dominant compared to other two iterative methods.

Memory Consideration

Memory is one of the most important concerns in processing large linear systems. With

proposed hardware architectures of iterative methods, memory space is proportional to the

size of linear system. For example, for Jacobi method, every JPU must have read access to

memories of vector b, coefficient matrix A, vector x and write access to memory of new

vector x. For smaller size systems, the simplest form of the design is based on using build-in

FPGA block RAMs (BRAM), which allows the circuit to run at maximum frequency. For

example, the XC5VLX50 FPGA has 96×18 Kb BRAM which can provide enough memory

space for a system with 160 equations. With four XC5VLX50 FPGAs, the maximum system

size will be doubled.

 Every JPU requires read access to certain rows in matrix A and corresponding elements

from vector b based on the position of JPU. These elements can be loaded once into the

appropriate FPGAs and used until the end of the process. Every FPGA also should have an

identical image of the vector x. However, new elements of vector x (depending on the

number of JPUs) are generated after an iteration. In this case, using a shared bus and an

arbitration method, new elements of x can be distributed and shared among FPGAs during

the next iteration. Assuming there are four FPGAs with 8 JPUs in total, at the end of each

iteration eight new elements of vector x will be created. Eight write accesses to the shared

bus will be required to distribute the new elements.

In Xilinx EDK HW/SW codesigns of selected iterative methods, on-chip dual-port BRAM

is used for storing instructions and data in order to simplify the design. For larger systems,

where internal BRAM is not adequate, using single port external memory with large number

of JPUs is able to compare the performance of larger size matrices. However, data needs to

be fetched from external memory through PLB bus, and also PLB bus is always occupied by

PPC for checking the status of MMB block at the same time. This situation causes time

 70

5.2.1

confliction due to limited ports of external memory. Nevertheless, there are other ways to use

external memory. One of them is to use interrupt signal of PPC to check the status of MMB

block, but will take more time for exploring EDK and debugging.

5.2 Performance Analysis of Direct Methods

Matlab Comparison of LU and WZ

The well-known LU factorization is one of the most commonly used algorithms to solve

linear systems on sequential computers nowadays. Unlike WZ factorization, LU algorithm

essentially processes elimination and factorization serially. For an n×n matrix, it takes (n-1)

steps to factorize in LU, but only n/2 steps if n is even and (n-1)/2 steps if n is odd in WZ.

WZ vs LU

0

5

10

15

20

25

0 200
Matrix size

Time_WZ(s)

Time_LU(s)

Time_difference(s)

Aupdate(s)

C
om

pu
ta

tio
n

tim
e

(s
)

400 600 800 1000

Figure 5.13: Computation time for WZ and LU factorization, time difference between WZ,

and LU and computation time for the update of An-2i in WZ.

 71

5.2.2

Hence, WZ is more suitable for parallel computation compared to LU. Research made by

Yalamov [15, 33] showed that WZ based matrix solving method has obtained a 20% gain in

execution time compared to LU method when processed on a parallel computer.

In single-processor computer based Matlab simulations, however, WZ doesn’t exhibit any

advantage since every step is done in serial. The Matlab function function tic-toc is again

used to calculate the average computation times of WZ and LU in terms of CPU time. Figure

5.1 shows that the computation time of both methods is increased exponentially but WZ

increases faster than LU as matrix increases. The time difference between them is also

increased exponentially as matrix increases. The simulation results also shows that the major

computation time cost in WZ is from the update of A , which takes up to more than 90% of

total time and is close to 99% when matrix increases over 300. Therefore, it is expected that

the performance will be improved if the update of A is implemented in hardware with

HW/SW codesign.

n-2i

n-2i

Xilinx EDK Implementation of WZ Factorization

Xilinx EDK implementation was also performed to show the performance of WZ

factorization, where WZ factorization was implemented in pure software running on PPC and

also implemented in HW/SW codesign using PPC and FPGA. The comparison of speeds

between these two implementations is shown in Figure 5.1. In this figure, clock cycle is again

used to represent the speed instead of using actual time. In this HW/SW codesign, Aupdate

block is implemented in hardware while the rest is unchanged (i.e., implemented in software).

The matrices generated based on Poisson equation are also used in these simulations. When

matrix size is small (e.g. less than 9), the time difference of HW/SW codesign and software

implementation is not obvious. As matrix size increases, the computation time of both

designs increase exponentially, the software implementation increases faster than HW/SW

codesign, and the time difference between two implementations also increases exponentially.

The simulation results show that the performance of WZ improves when the update of An-2i

is implemented in hardware, which

 72

WZ (HW/SW vs SW)

0

2

4

6

8

10

12

14

0 10 20 30 40

Matrix size

C
lo

ck
 c

yc
le

 (1
0 6)

WZ_SW
WZ_HW/SW
Cycle_Diff

Figure 5.14: Speed comparison of EDK based SW design and HW/SW codesign of WZ

factorization

indicates that the update of the remaining matrix An-2i is the most time consuming part in WZ

factorization.

In this HW/SW codesign of WZ factorization, only the inner loop k, i.e., the update of one

row of the remaining matrix An-2i as described in Chapter 4, is implemented in hardware. The

performance will be improved if loop j is also implemented in hardware, which means the

update of the entire remaining matrix An-2i is processed in hardware. The performance will be

further improved if loop i is also replaced by hardware. This HW/SW codesign is also tested

with other matrices, where matrices A is randomly generated within range of [10 20] and

vector b is generated from matrix A and a given vector x. The simulation results are similar

with Figure 5.1. The implementation with these matrices shows the generality of this design.

This chapter discussed performance comparison of selected iterative methods and direct

method under each category. The most time consuming parts, i.e. the matrix multiplication of

 73

iterative methods and the update of WZ factorization, are implemented in hardware with

HW/SW codesigns. The EDK implementation results show that HW/SW codesigns achieve

significant improvement over pure software design. Convergence analysis of LNS-based

Jacobi processor shows the error caused by logarithm and antilogarithm conversion

accumulates as the number of iterations grows. The accumulated error is also proportional to

the size of a linear system.

 74

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis focuses on the development of parallel processing of matrix solving algorithms

and hardware architectures for the selected algorithms including Jacobi, Gauss-Seidel, CG and

WZ factorization. Several matrix solving methods were discussed targeting on their parallel

property. The FPGA-based general hardware architectures of these methods were proposed

considering the hardware resource. The performance comparisons of these methods were

analyzed based on the results of Matlab simulations and Xilinx EDK HW/SW codesign

simulations. For iterative methods, Matlab simulations were performed to compare the Jacobi,

Gauss-Seidel and CG methods. The simulation results indicate that the key to a fast

implementation of the three methods is a fast implementation of matrix multiplication. The

simulation results also show that CG method takes less number of iterations for any given

tolerance. For different sizes of matrices, CG method also takes less number of iterations to

reach a given tolerance compared with other two methods. Thus, in terms of iterations, CG is

a better algorithm to solve given linear systems. However, the total computation time of the

three methods indicates the different results. The simulation results show that CG takes more

computation time than other two methods as matrix size increases over certain size (e.g.

400×400 in this case), since matrix-vector multiplication is a more dominant factor in CG

method than in the other two methods. In order to improve the speed of matrix multiplication,

two approaches are used. The first approach is to use LNS instead of matrix multiplication. In

LNS, fast multiplication and division operations can be achieved by using addition and

subtraction operations on the logarithms of the input data. Convergence analysis of a LNS

 75

based Jacobi processor was discussed. Two major factors were identified and considered in

this convergence analysis. Firstly, in any hardware architecture for the Jacobi iterative

method, only a set of unknowns can be processed in parallel due to the constraint of

hardware resources. Secondly, the conversions of logarithm-to-floating point and floating-to-

logarithm introduce additional error. On the other hand, the convergence analysis also shows

that the proper error correction algorithm does not necessarily to be highly accurate for a

linear system with considerably smaller matrix or extremely diagonally dominated matrix.

The second approach is to implement matrix multiplications of the three methods in

hardware. The three iterative methods were implemented with Xilinx EDK HW/SW codesign

where MMB is implemented in hardware and the rest is unchanged (i.e. implemented in

software). The EDK testing results show that, as the size of matrix increases, the computation

time of software implemented designs grow exponentially, but the computation time of

HW/SW codesigns are relatively linear as compared to software implementation, which

proves that all three methods are matrix-multiplication dominant. CG runs faster than Jacobi

method in the HW/SW codesign for a given tolerance, due to that fact that matrix

multiplications dominate the computation time of all three methods while CG requires less

number of iterations to converge comparing to other two methods. The EDK testing results

also show that with software implementation, CG method is slower than both Jacobi and GS

methods for the same number of iterations. However, the differences in computation time are

improved significantly in HW/SW codesign, which is evidence that CG method is more

matrix-multiplication dominant comparing to the other two methods.

For direct methods, FPGA-based hardware architecture and Xilinx EDK HW/SW codesign

of WZ factorization are also presented. Single unit and scalable architectures of WZ

factorization are proposed and analyzed under different constraints. Matlab simulations were

performed to compare the performance of LU and WZ. The simulation results show that the

WZ factorization runs faster than the LU factorization on parallel processors but slower on

single processor. The simulation results also indicate that the most time consuming part of

WZ comes from the update of the remaining matrix An-2i. Hence, the matrix update is

implemented in hardware with Xilinx EDK HW/SW codesign of WZ factorization to

 76

improve the overall performance. The EDK simulation results show that the performance of

HW/SW codesign is apparently improved over pure software implementation.

6.2 Suggestions for Future Work

The implementation of the selected matrix solving methods remains for future work. Some

of future work is suggested as follows.

1. Performance comparison of LU and WZ on FPGA-based design: In order to compare LU

with WZ in hardware implementation, hardware architecture of LU needs to be designed

in a similar way as WZ. Figure 6.1 shows one way to implement hardware architecture

of LU factorization. This architecture has one L_decomposer and one U_decomposer to

solve matrices L and U respectively. Two decomposers process alternatively to

decompose a row and column of L and U respectively. At the beginning, the memory is

initialized with matrix A, where all three matrices can be stored in matrix A. During the

factorization, the modified elements in matrix A are deleted and replaced with matrices L

and U. The diagonal of matrix L or U contains all 1’s and is not stored explicitly. From

Equations 2.7, all nonzero elements on the preceding rows and columns have to be

available before the kth loop step begins. This relationship hinders the parallel property of

LU, although the elements of kth row or column can be calculated in parallel, which

means multiple multipliers can be paralleled at the input. The numbers of multipliers and

adders need to be determined according to the available hardware resource for pure

FPGA-based hardware implementation. Considering available hardware resource, the

comparison of LU and WZ can be simplified in HW/SW codesign. Matlab simulation of

LU factorization shows that the most time consuming part comes from the multipliers

and accumulators of L_decomposer and U_decomposer shown in Figure 6.1 respectively.

Therefore, those parts can be implemented in hardware with HW/SW codesign.

 77

Ujj

Lik

Ukj
x +

Accumulator

R
E
G

R
E
G

Multiplier -

aij

Li

j
/

Lik
Ukj

x +

Accumulator

R
E
G

R
E
G

Multiplier -

aij

Uij

RAM[A]

L_Decomposer

U_Decomposer

RAM
[L] & [U]

Figure 6.1: General hardware architecture of LU factorization

2. FPGA-based hardware implementation of the proposed hardware architectures of

selected iterative methods and direct methods. In particular, multi-FPGA implementation

of matrix solving methods according to TMD architecture can be further investigated.

The implementation results should be compared with the performance of other

multiprocessor-based computing.

3. HW/SW implementation of circuit simulators. The most time consuming parts of circuit

simulation are matrix solving and model evaluation. These parts can be implemented in

hardware with HW/SW codesign.

4. Hardware implementation of reordering techniques. The reordering of sparse matrix into

dense matrix is usually implemented in software for simplicity purpose. If the available

hardware resource allows, these techniques can be implemented in hardware to improve

the overall performance.

 78

References

[1] Q.K. Zhu, Power Distribution Network Design for VLSI, Wiley-IEEE, 2004.

[2] J. Ogrodzki, Circuit Simulation Methods and Algorithms, CRC Press, 1994.

[3] A. Ghali, A.M. Nevill and T.G. Brown, Structural Analysis: A Unified Classical and
Matrix Approach, Taylor & Francis, 2003.

[4] J. Schewel, Configurable Computing: Technology and Applications, SPIE, 1998.

[5] R. Hartenstein and H. Grünbacher, Field-Programmable Logic and Applications: The
Roadmap to Reconfigurable, Springer, 2000.

[6] W. Badawy and G. Jullien, System-on-chip for Real-time Applications, Springer, 2002.

[7] “International Technology Roadmap for Semiconductors 2007 Edition Design,” The
International Technology Roadmap for Semiconductors, 2007.

[8] K.E. Emam, J-N. Drouin and W. Melo, SPICE: The Theory and Practice of Software
Process Improvement and Capability Determination, IEEE Computer Society Press,
1997.

[9] P.-Y. Chung and I.N Hajj, “Parallel solution of sparse linear systems on a vector
multiprocessor computer,” IEEE International Symposium on Circuits and Systems, pp.
1577-1580, May. 1990.

[10] K. Compton and S. Hauck, Reconfigurable Computing: A Survey of Systems and
Software, ACM Computing Survey, pp. 171-210, Apr. 2002.

[11] R. Tessier and W. Burleson, “Reconfigurable computing and digital signal processing: a
survey,” Journal of VLSI Signal Processing, pp. 7-27, Feb. 2001.

[12] G.H. Golub and C.F.V. Loan, Matrix Computations, Johns Hopkins University Press,
1996.

[13] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, 1985.

 79

[14] D.J. Evans and R. Abdullah, “The parallel implicit elimination (PIE) method for the
solution of linear systems,” International Journal of Parallel, Emergent and
Distributed Systems, vol. 4, No. 1-2, pp. 153-162, 1994.

[15] P. Yalamov and D.J. Evans, “The WZ matrix factorisation method,” Parallel
Computing, vol. 21, pp. 1111-1120, 1995.

[16] I.S Duff, A.M. Erisman, and J.K. Reid, Direct Methods for Sparse Matrice, Oxford
University Press, Oxford, England, 1990.

[17] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company,
Boston, 1985.

[18] EDK Concepts, Tools, and Techniques: A Hands-on Guide to Effective Embedded
System Design, Xilinx support: Embedded Development Kit (EDK) 9.2i
Documentation, Jan. 2007.

[19] J.N. Mitchell, Jr., “Computer multiplication and division using binary logarithms,” IEEE
Transactions on Electronic, vol. 11, pp. 512-517, Aug. 1962.

[20] S.L. SanGregory, R.E. Siferd, C. Brother, and D. Gallagher, “A fast, low-power
logarithm approximation with CMOS VLSI implementation,” In proceeding of Midwest
Symposium on Circuits and Systems, pp. 388-391, Aug. 1999.

[21] K.H. Abed and R. Siferd, “CMOS VLSI implementation of a low-power logarithmic
converter,” IEEE Transactions on Computers, vol. 52, no. 11, pp. 1421-1433, Nov.
2003.

[22] K.H. Abed and R.E. Siferd, “VLSI implementation of a low-power antialgorithmic
converter,” IEEE Transactions on Computers, vol. 52, no. 9, pp. 1221-1228, Sep. 2003.

[23] D.J. Evans, “Parallel strategies for linear systems of equations,” International Journal
of Computer Mathematics, vol. 81, No. 4, pp. 417-416, Apr. 2004.

[24] K.E. Emam, J-N. Drouin and W. Melo, SPICE: The Theory and Practice of Software
Process Improvement and Capability Determination, IEEE Computer Society Press,
1997.

[25] R.M. Kielkowski, Inside SPICE, 2nd edition, McGraw-Hill, Inc, 1998.

 80

[26] A. Robbins and W.C. Miller, Circuit Analysis: Theory and Practice, Thomson Delmar
Learning, 2003.

[27] G.A. Meurant, The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite
Precision Computations, Society for Industrial and Applied Mathematics, 2006.

[28] J.R. Shewchuk, “An introduction to the conjugate gradient method without the
agonizing pain,” Carnegie Mellon University, Aug. 1994.

[29] M.R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear
systems,” Journal of Research of the National Bureau of Standards, vol. 49, Dec. 1952.

[30] V. Faber and T. Manteuffel, “Necessary and sufficient conditions for the existence of a
conjugate gradient method,” SIAM Journal of Numerical. Analysis, vol. 21, pp. 315-
339, 1984.

[31] C. Lanczos, “An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators,” Journal of Research of the National Bureau of
Standards, vol. 45, pp. 255-282, 1950.

[32] D.J. Evans, “Implicit matrix elimination (IME) schemes,” International Journal of
Computer Mathematics, pp, 229-237. 1993.

[33] R. Asenjo, M. Ujaldón, and E.L. Zapata, “Parallel WZ factorization on mesh
multiprocessors,” Microprocessing and Microprogramming, vol. 38, pp. 319-326, Sep.
1993.

[34] K. Compton and S. Hauck, “Reconfigurable computing: a survey of systems and
software,” ACM Comput. Survey, pp. 171–210, Apr. 2002.

[35] R. Tessier and W. Burleson, “Reconfigurable computing and digital signal processing: a
survey,” Journal of VLSI Signal Processing, pp. 7–27, Feb. 2001.

[36] A. Patel, C. A. Madill, M. Saldana, C. Comis, R. Pomes, and P. Chow, “A scalable
FPGA-based multiprocessor,” In proceeding of the 14th Annual IEEE Symposium on
Field Programmable Custom Computing Machines, pp. 111-120, Apr. 2006.

[37] M.A.S.D. Fuentes, A Parallel Programming Model for A Multi-FPGA Multiprocessor
Machine, M.Sc. thesis, Graduate Department of Electrical and Computer Engineering,
University of Toronto, 2006.

 81

[38] Xilinx Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet.
http://www.xilinx.com/support/documentation/virtex-ii_pro.htm.

[39] The Infiniband Architecture Specification R1.2, Technical report, InfiniBand Trade
Association, Oct 2004. http://www.infinibandta.org.

[40] L. Zhuo and V.K. Prasanna, “Hardware/Software co-design for matrix computations on
reconfigurable computing systems,” In proceeding of Parallel and Distributed
Processing Symposium, pp. 23-30, Mar. 2007.

[41] Cray XD1. http://www.cray.com/downloads/cray_xd1_datasheet.pdf.

[42] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
Technical Report, UT-CS-94-230, 1994.

[43] X. Wang and S.G. Ziavras, “Exploiting mixed-mode parallelism for matrix operations on
the HERA architecture through reconfiguration,” IEE Proceedings Computers and
Digital Techniques, vol 153, pp. 249-260, Jul. 2006.

[44] L. Zhuo and V.K. Prasanna, “Scalable and modular algorithms for floating-point matrix
multiplication on FPGAs,” 18th International Parallel and Distributed Processing
Symposium, pp. 92–101, Apr. 2004.

[45] J. Liang, R. Tessier, and O. Mencer, “Floating point unit generation and evaluation for
FPGAs,” 11th Annual IEEE Symp. on Field Programmable Custom Computing
Machines, pp. 185–194, Apr. 2003.

[46] G.R. Morris and V.K. Prasanna, “An FPGA-based floating-point Jacobi iterative
solver,” In proceeding of 8th International Symposium on Parallel Architecture,
Algorithms and Networks (ISPAN 2005), pp. 7-9, Dec. 2005.

[47] J. Dongarra, A. Lumsdaine, R. Pozo, and K. Remington, “A sparse matrix library in
C++ for high performance architectures,” Proceedings of the Second Object Oriented
Numerics Conference, pp. 214-218, 1994.

[48] R. Shahnaz, A. Usman, and I.R. Chughtai, “Review of storage techniques for sparse
matrices,” 9th International Multitopic Conference, pp. 1-7, Dec. 2005.

[49] R. Barrett et al., Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods, SIAM Press, Philadelphia, 1994.

 82

[50] Y. Saad, SPARSKIT: A Basic Toolkit for Sparse Matrix Computations, Technical
Report, Computer Science Department, University of Minnesota, Jun. 1994.

[51] P. Huang, D.H.-Y. Teng, K. Wahid, and S.-B. Ko, “Convergence aAnalysis of Jacobi
iterative method using logarithmic number system,” 7th IEEE/ACIS International
Conference on Computer and Information Science, pp. 27-32, May. 2008.

[52] Xilinx ISE 10.1 Design Suite Software Manuals and Help.
http://www.xilinx.com/support/software_manuals.htm

[53] W. Xiaofang and S.G. Ziavras, “Parallel LU factorization of sparse matrices on FPGA-
based configurable computing engines,” Concurrency and Computation: Practice &
Experience, vol 16, No. 4, pp. 319 – 343, 2004.

[54] D. Koester, S. Ranka, and G.C. Fox, “A parallel Gauss-Seidel algorithm for sparse
power systems matrices,” Proceedings of Supercomputing , pp. 184-193, Nov. 1994.

[55] W. Xiaofang and S.G Ziavras, “A configurable multiprocessor and dynamic load
balancing for parallel LU factorization,” Parallel and Distributed Processing
Symposium, Proceedings 18th international, pp. 234-242, Apr. 2004.

[56] C. Lanczos, “An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators,” Journal of Research of the National Institute of
Standards and Technology, vol. 45, pp. 255-282, 1950.

[57] R.W. Shonkwiller and L. Lefton, An Introduction to Parallel and Vector Scientific
Computing, Cambridge University Press, 2006.

[58] H.-J Kim, B.-G. Nam, J.-H. Sohn, J.-H. Woo, and H.-J. Yoo, “A 231-MHz, 2.18-mW
32-bit logarithmic arithmetic unit for fixed-point 3-D graphics system,” IEEE Journal
of Solid State Circuits, vol. 41, no. 11, pp. 2373-2381, Nov. 2006.

[59] I. Bravo, P. Jimenez, M. Mazo, J.L. Lazaro, J.J. de las Heras, and A. Gardel, “Different
proposals to matrix multiplication based on FPGAs,” IEEE International Symposium
on, pp. 1709-1714, Jun. 2007.

 83

Appendix A
Numerical Examples

1. Parallel Implicit Elimination (PIE)

Consider the following 5×5 dense matrix.

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

61121
16112
11511
21281
12116

A

Stage 1: i = 1

Step 1: The first and last rows of matrix Z are obtained as follows:

11 11 12 12 13 13 14 14 15 15

51 51 52 52 53 53 54 55 55 55

6, 1, 1, 2, 1.
1, 2, 1, 1. 6.

z a z a z a z a z a
z a z a z a z a z a

= = = = = = = = = =

= = = = = = = = = =

Step 2: Solve three sets of 2×2 linear systems to eliminate elements of first and last

columns in matrix Z.

4
2111 21 51 25 21 21 25 35

11
15 21 55 25 25 21 25 25 35

5
3111 31 51 35 31 31 35 35

5
15 31 55 35 35 31 35 35 35

11 41 51 45 41

15

For 2 :

6 1
6 2

For 3 :

6 1
6 1

For 4 :

j

wa w a w a w w
a w a w a w w w

j

wa w a w a w w
a w a w a w w w

j

a w a w a
a

=

=+ = + =⎫ ⎫
→ →⎬ ⎬+ = + = =⎭ ⎭

=

=+ = + =⎫ ⎫
→ →⎬ ⎬+ = + = =⎭ ⎭

=

+ = 11
4121 25 35

4
41 55 45 45 21 25 45 35

6 2
6 1

ww w
w a w a w w w

=+ =⎫ ⎫
→ →⎬ ⎬+ = + = =⎭ ⎭

Step 3: Update An-2

 84

254
22 3522 22 21 12 25 52

55
23 23 21 13 25 53 23 35

1624 24 21 14 25 54 24 35

32 32 31 12 35 52

33 33 31 13 35 53

34 34 31 14 35 5

For 2 and 2, 3, 4

For 3 and 2, 3, 4

j k

aa a w z w z
a a w z w z a
a a w z w z a

j k

a a w z w z
a a w z w z
a a w z w z

= =

== − − ⎫
⎪= − − → =⎬
⎪= − − =⎭

= =

= − −
= − −
= − −

20
32 35

165
33 35

204 34 35

16
42 3542 42 41 12 45 52

20
43 43 41 13 45 53 43 35

18444 44 41 14 45 54 44 35

For 4 and 2, 3, 4

a

a

a

j k

aa a w z w z
a a w z w z a
a a w z w z a

=⎫
⎪→ =⎬
⎪ =⎭

= =

== − − ⎫
⎪= − − → =⎬
⎪= − − =⎭

Stage 2: i = 2

Step 1: The 2nd and 4th rows of matrix Z are obtained as follows:

254 55 16
22 22 23 23 24 2435 35 35

16 20 184
42 52 43 43 44 4535 35 35

, , .

, , .

z a z a z a

z a z a z a

= = = = = =

= = = = = =

Step 2: Solve one set of 2×2 linear system to eliminate elements of 2nd and 4th

columns in matrix Z.

254 16 20 762
31 35 3222 32 42 34 32 35 35 35 10541

16 184 20 17
24 32 44 34 34 31 35 3435 35 35 166

For 3 :j

w w wa w a w a
a w a w a w w w

=

⎫+ = =+ = ⎫ ⎪→ →⎬ ⎬+ = + = =⎭ ⎪⎭

Step 3: Update An-4

47879
33 33 32 23 34 43 33 10541

For 3 3j and k

a a w a w a a

= =

= − − → =

The matrices Z is obtained as follows

 85

254 55 16
35 35 35

47879
10541

16 20 184
35 35 35

6 1 1 2 1

1 2 1 1 6

Z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2. WZ Factorization

Consider the following 4×4 dense matrix.

5 1 2 1 9
1 6 1 2 10

 and
2 1 7 1 11
1 2 1 4 8

A b

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Factorize matrix A into W and Z in the forms of Equations 2.21 and 2.22.

Stage1: i=1

Step 1: Obtain first and last rows of matrix Z as follows:

11 11 12 12 13 13 14 14

41 41 42 42 43 43 44 44

5, 1, 2, 1,
1, 2, 1, 4.

z a z a z a z a
z a z a z a z a

= = = = = = = =

= = = = = = = =

Step 2: Solve two sets of 2×2 linear systems to obtain elements of first and last

columns of matrix W.

2
2111 21 41 24 21 21 24 19

9
14 21 44 24 24 21 24 24 19

7
3111 31 41 34 31 31 34 19

3
14 31 44 34 34 31 34 34 19

For 2 :

5 1
4 2

For 3 :

5 2
4 1

j

wz w z w a w w
z w z w a w w w

j

wz w z w a w w
z w z w a w w w

=

=+ = + =⎫ ⎫
→ →⎬ ⎬+ = + = =⎭ ⎭

=

=+ = + =⎫ ⎫
→ →⎬ ⎬+ = + = =⎭ ⎭

 86

Step 3: Update An-2

94
2222 22 21 12 24 42 19

6
23 23 21 13 24 43 23 19

6
3232 32 31 12 34 42 19

116
33 33 31 13 34 43 33 19

For 2 and 2, 3

For 3 and 2, 3

j k

aa a w z w z
a a w z w z a

j k

aa a w z w z
a a w z w z a

= =

== − − ⎫
→⎬= − − =⎭

= =

== − − ⎫
→⎬= − − =⎭

The matrices W and Z are obtained as follows

9 942
19 19 19 19
7 3 6 116

19 19 19 19

1 0 0 0 5 1 2 1
1 0 0 0

 and
0 1 0 0

0 0 0 1 1 2 1 4

W Z

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢= =⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

6
⎤
⎥
⎥
⎥
⎥
⎥⎦

Solution procedure of system: Wy = b:

Stage 1: Obtain y1 and y4,

1 1

4 4

9,
8.

y b
y b
= =
= =

Then update the remaining elements of vector b,

100
2 2 21 1 24 4 2 19

122
3 3 31 1 34 4 3 19

2 : ,
4 : .

j b b w y w y b
j b b w y w y b
= = − − → =

= = − − → =

Stage 2:

100
2 2 19

122
3 3 19

,
.

y b
y b
= =

= =

Solution procedure for system: Zx = y

Stage 1: n is even,

 87

94 6 100
22 2 23 3 2 2 3 219 19 19

6 116 122
32 2 33 3 3 2 3 319 19 19

1
1

z x z x y x x x
z x z x y x x x

+ = + = =⎫⎫
→ →⎬ ⎬+ = + = =⎭ ⎭

Then, update the remaining elements of vector y

1 1 2 12 3 13 1

4 4 2 42 3 13 4

1: 6,
4 : 5.

j y y x z x z y
j y y x z x z y
= = − − → =
= = − − → =

Stage 2:

11 1 14 4 1 1 4 1

41 1 44 4 4 1 4 4

5 6
4 5

z x z x y x x x
z x z x y x x x

+ = + = =⎫ ⎫
→ →⎬ ⎬+ = + = =⎭ ⎭

1
1

The final solution of x is []T1 1 1 1x = .

3. ZW Factorization

Consider the same 4×4 dense matrix as showed in the numerical example of WZ

factorization.

5 1 2 1
1 6 1 2
2 1 7 1
1 2 1 4

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Factorize matrix A into 'Z and in the forms of Equations 4.1 and 4.2. 'W

Stage1: i=1

Step 1:The 2nd and 3rd
 rows of matrix are obtained as follows: 'W

2,1 2,1 2,2 2,2 2,3 2,3 2,4 2,4

3,1 3,1 3,2 3,2 3,3 3,3 3,4 3,4

1, 6, 1, 2;

2, 1, 7, 1.

w a w a w a w a

w a w a w a w a

= = = = = = = =

= = = = = = = =

 88

Step 2: Solve two sets of 2×2 linear equations to obtain elements of first and last

columns of matrix 'Z .

5
1222 12 32 13 12 12 13 41

11
23 12 33 13 13 12 13 13 41

13
4222 42 32 43 42 42 43 41

4
23 42 33 43 43 42 43 43 41

For 1:

6 1
7 2

For 4 :

6 2
7 1

j

zw z w z a z z
w z w z a z z z

j

zw z w z a z z
w z w z a z z z

=

=+ = + =⎫ ⎫
→ →⎬ ⎬+ = + = =⎭ ⎭

=

=+ = + =⎫ ⎫
→ →⎬ ⎬+ = + = =⎭ ⎭

Step 3: Update the remaining matrix.

178
1111 11 12 21 13 31 41

20
14 14 12 24 13 34 14 41

20
4141 41 42 21 43 31 41

134
44 44 42 24 43 34 44 41

For 1 and 1, 4

For 4 and 1, 4

j k

aa a z w z w
a a z w z w a

j k

aa a z w z w
a a z w z w a

= =

== − − ⎫
→⎬= − − =⎭

= =

== − − ⎫
→⎬= − − =⎭

The matrices 'Z and are obtained as follows 'W

5 178 2011
41 41 41 41

13 20 1344
41 41 41 41

1 0 0 0

0 1 0 0 1 6 1 2' and '
0 0 1 0 2 1 7 1
0 1 0 0

Z W

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢= =⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎥⎦

The solution part is very similar to WZ method. Refer to the solution part of the

numerical example as showed in WZ factorization.

4. X Factorization

Considering the matrix Z obtained from the numerical example of PIE.

 89

254 55 16
35 35 35

47879
10541

16 20 184
35 35 35

6 1 1 2 1

1 2 1 1 6

Z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

The matrix X is obtained as

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

61

16

35
184

35
16

10541
47879

35
16

35
254

X .

Solve matrix 'Z in order to update the vector . 'b

Stage1: i=1

Step 1: The 2nd and 4th columns of matrix 'Z are obtained by solving two sets of 2×2

linear equations.

254 16 532
12 14 1212 22 14 42 12 35 35 4648

16 184 1772
12 14 1412 24 14 44 14 35 35 4648

254 16
52 22 54 42 52 52 5435 35

16
52 24 54 44 54 52 35

For 1:
' ' 1 '' '
' ' 2 '' '

For 5 :
' ' ' ' 2
' ' ' '

j
z z zz z z z z
z z zz z z z z

j
z z z z z z z
z z z z z z z

=

+ = =+ = ⎫⎫
→ →⎬ ⎬+ = =+ = ⎭ ⎭

=

+ = + =⎫
→⎬+ = +⎭

1232
52 4648

184 777
54 5435 4648

'
1 '

z
z

=⎫
→⎬= =⎭

Step 2: Update the remaining matrix of Z.

532 55 1772 20 9798
13 13 12 23 14 43 4648 35 4648 35 16268

1232 55 777 20 7938
53 53 52 23 54 43 4648 35 4648 35 16268

For 1
' ' 1 () ()

For 5
' ' 1 () ()

k
z z z z z z

k
z z z z z z

=
= − − = − − =

=
= − − = − − =

Stage 2: i=2

 90

The 3rd column of matrix 'Z is obtained by

491621572
83674458

47879
10541

16268
7938

335353

491621572
210820

47879
10541

35
20

334343

491621572
579755

47879
10541

35
55

332323

491621572
103280718

47879
10541

16268
9798

331313

)(/'
)(/'
)(/'

)(/'

===

===

===

===

zzz
zzz
zzz
zzz

The matrices 'Z is obtained as follows

10
0100
00100
0010
01

'

4648
777

491621572
83674458

4648
1232

491621572
210820

491621572
579755

4648
1772

491621572
103280718

4648
532

=Z

Once matrix 'Z is solved, vector is updated into . Then final solution of x is

evaluated by solving 2 sets of 2×2 linear equations simultaneously.

'b ''b

 91

