
Performance Analysis of 

Hardware/Software Co-Design of Matrix 

Solvers 

 
 

A Thesis Presented to the   

College of Graduate Studies and Research 

In Fulfillment of the Requirement  

For the Degree of Master of Science 

In the Department of 

Electrical and Computer Engineering 

University of Saskatchewan 

Saskatoon, Saskatchewan 

Canada 

 

By 

 

 

 

Peng Huang 
 

© Copyright Peng Huang, November 2008. All rights reserved.



PERMISSION TO USE 

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate 

degree from the University of Saskatchewan, I agree that the Libraries of this University may 

make it freely available for inspection.  I further agree that permission for copying of this 

thesis in any manner, in whole or in part, for scholarly purposes may be granted by the 

professor or professors who supervised my thesis work or, in their absence, by the Head of 

the Department or the Dean of the College in which my thesis work was done.  It is 

understood that any copying or publication or use of this thesis or parts thereof for financial 

gain shall not be allowed without my written permission.  It is also understood that due 

recognition shall be given to me and to the University of Saskatchewan in any scholarly use 

which may be made of any material in my thesis. 

Requests for permission to copy or to make other use of material in this thesis in whole or 

part should be addressed to: 

 

Head of the Department of Electrical and Computer Engineering 

57 Campus Drive 

University of Saskatchewan 

Saskatoon, Saskatchewan, Canada 

S7N 5A9 

 



 

ACKNOWLEDGEMENTS 

First, I would like to express my sincere gratitude and appreciation to my supervisor, Dr. 

Daniel Teng, for his tremendous support, invaluable guidance and constant encouragement 

during the course of my studies. The completion of this thesis would not have been possible 

without Dr. Teng’s exceptional supervision and ever lasting support. I am also grateful to 

him for providing me with various opportunities to pursue a dynamic and fascinating area of 

digital systems as well as explore opportunities out of the lab. 

I also wish to thank all the members of VLSI lab; working with them made my time during 

graduate study a wonderful experience.  

A countless and sincere thanks goes to my family, especially my wife, Zhang Bei, and my 

parents, Huang Peikuan and Qiu Sufang, for their continuous support and encouragement 

throughout my studies. 

 

 

 

 

 

 

  ii



 

ABSTRACT 

Solving a system of linear and nonlinear equations lies at the heart of many scientific and 

engineering applications such as circuit simulation, applications in electric power networks, 

and structural analysis. The exponentially increasing complexity of these computing 

applications and the high cost of supercomputing force us to explore affordable high 

performance computing platforms. The ultimate goal of this research is to develop hardware 

friendly parallel processing algorithms and build cost effective high performance parallel 

systems using hardware in order to enable the solution of large linear systems. 

In this thesis, FPGA-based general hardware architectures of selected iterative methods 

and direct methods are discussed. Xilinx Embedded Development Kit (EDK) 

hardware/software (HW/SW) codesigns of these methods are also presented. For iterative 

methods, FPGA based hardware architectures of Jacobi, combined Jacobi and Gauss-Seidel, 

and conjugate gradient (CG) are proposed. The convergence analysis of the LNS-based 

Jacobi processor demonstrates to what extent the hardware resource constraints and 

additional conversion error affect the convergence of Jacobi iterative method. Matlab 

simulations were performed to compare the performance of three iterative methods in three 

ways, i.e., number of iterations for any given tolerance, number of iterations for different 

matrix sizes, and computation time for different matrix sizes. The simulation results indicate 

that the key to a fast implementation of the three methods is a fast implementation of matrix 

multiplication. The simulation results also show that CG method takes less number of 

iterations for any given tolerance, but more computation time as matrix size increases 

compared to other two methods, since matrix-vector multiplication is a more dominant factor 

in CG method than in the other two methods. By implementing matrix multiplications of the 

three methods in hardware with Xilinx EDK HW/SW codesign, the performance is 

significantly improved over pure software Power PC (PPC) based implementation. The EDK 

implementation results show that CG takes less computation time for any size of matrices 

compared to other two methods in HW/SW codesign, due to that fact that matrix 
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multiplications dominate the computation time of all three methods while CG requires less 

number of iterations to converge compared to other two methods. 

For direct methods, FPGA-based general hardware architecture and Xilinx EDK HW/SW 

codesign of WZ factorization are presented. Single unit and scalable hardware architectures 

of WZ factorization are proposed and analyzed under different constraints. The results of 

Matlab simulations show that WZ runs faster than the LU on parallel processors but slower 

on a single processor. The simulation results also indicate that the most time consuming part 

of WZ factorization is matrix update. By implementing the matrix update of WZ 

factorization in hardware with Xilinx EDK HW/SW codesign, the performance is also 

apparently improved over PPC based pure software implementation.  
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Chapter 1

 

 

Introduction 

Many scientific and engineering problems, such as circuit simulation, applications in 

electric power networks, and structural analysis [1, 2, 3], involve solving large systems of 

simultaneous linear equations. Parallel implementations of these computation intensive 

processes were limited primarily to multiprocessor computers. However due to the 

exponentially increasing complexity of these applications, the high cost of supercomputing 

forces us to explore new, sustainable, and affordable high performance computing platforms. 

Configurable computing , where hardware resources are configured appropriately to match 

specific hardware designs, has recently demonstrated its ability to significantly improve 

performance for computing intensive applications. With steady advances in silicon 

technology, as predicted by Moore’s Law, Field Programmable Gate Array (FPGA) 

technologies  have enabled the implementation of System-on-a-Chip (SOC)  computing 

platforms, which, in turn, have given a significant boost to the field of configurable 

computing. 

[4]

[5] [6]

1.1 Motivation 

Driven by the advanced fabrication technology of semiconductor and market demand, 

complexities of sub 200,000 logic gates on a single chip are now moving to 10 million-plus 

logic gates with 50 million logic gates in sight . The productivity of semiconductor 

fabrication over the last twenty years has seen a 58% compounded annual growth; however 

the productivity of chip design has lagged behind, with only a 21% compounded annual rate. 

This clearly shows the widening productivity gap between design and fabrication. As product 

life time is decreasing form 3-5 years to 1-2 years, in many cases as short as a few months, 

[7]
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chip design cycles of months or years are no longer acceptable, since time-to-market is of 

critical importance in the semiconductor industry. 

One of the major goals in semiconductor industry is to increase design productivity, which 

requires improvements in design methodology. Design methodology is a combination of 

design software, design flow and design techniques by which designers can follow step-by-

step to produce a design that meets its functional specification. Functional verifications are 

very important steps during a design cycle. It is estimated that the functional verification of a 

design requires up to 70% of all design time . Digital simulator is one of the verification 

tools which provide faster simulation results but do not guarantee the performance 

requirements because many of the essential features are not taken into account, for example: 

power consumption, non-linearity of load capacitors, parasitic feedbacks, and the influence of 

temperature. Additional steps and software tools are required for verifying these important 

effects of design, which increase the complexity of design methodology. Circuit simulation 

such as Simulation Program with Integrated Circuit Emphasis (SPICE)  is able to provide 

much more accurate results by taking those effects into account, but the existing circuit 

simulators are time consuming when dealing with large size circuits containing millions of 

components.  

[7]

[8]

It is known that the most time-consuming task in computer simulation of large systems, 

such as electronic circuits and power systems, is solving large linear systems. Some efforts  

have been made to exploit the power of parallel computers in speeding up matrix 

computations. However, case studies [6, 10, 11] showed hardware accelerator can be 1,000 to 

10,000 faster than a software simulator core. The research results did not catch much attention 

mostly because the industry at that time did not have the design challenges as they are facing 

today. The motivation of this research is to build cost-effective high performance parallel 

systems using hardware in order to enable the solution of large linear systems, i.e. the solution 

of matrices. 

[9]

Matrix solving methods contains two categories: iterative methods  and direct methods 

. Gaussian elimination (GE) and Lower-Upper (LU) factorization [12, 13] are two of 

[17]

[16]
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direct methods used in SPICE simulation to solve matrices. Even though these matrix solving 

methods have been parallelized to run on parallel computers due to the advent of parallel 

computers, their performance is not satisfactory since both methods are essentially algorithms 

in which elimination and factorization are performed serially. Most iterative methods such as 

Jacobi and conjugate gradient (CG) aim at parallel processing, but accuracy is not guaranteed 

for limited iterations. Direct methods such as WZ factorization  and parallel elimination 

method (PIE)  are able to achieve exact solutions without considering rounding off error 

and solve matrices in parallel compared to LU and GE but mainly target on dense matrices. 

Since applications like circuit simulation and power systems produce large size sparse 

matrices, in order to extend parallel properties of these direct methods, reordering technique 

like minimum fill-in  should be used to transform the sparse matrices into bordered-

diagonal-block (BDB) forms where submatrices are dense and can be factorized by 

multiprocessor in parallel.  

[14]

[15]

[16]

One possible solution for improving the performance of matrix solving is to develop 

hardware friendly matrix solving algorithms which can be efficiently implemented in 

hardware. Hardware friendly algorithms are normally parallel in nature. The independent 

evaluation procedures of these algorithms are increased over methods like GE and LU, which 

makes them well suited for hardware design. The success of the proposed solution for matrix 

solving will simplify the design methodology, narrow the design productivity gap, and also 

reduce the design cost. 

1.2 Thesis Overview and Objectives 

This thesis focuses on the development of hardware friendly parallel processing algorithms 

and “sea-of-processor” architectures for the hardware accelerator to replace the software 

simulator core. The algorithms and architectures are verified by building a prototype using 

Matlab simulation and FPGA-based hardware device respectively. The detailed objectives are 

listed as follows: 

I. Iterative methods  
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a. Propose FPGA-based general hardware architectures of Jacobi, combined Jacobi and 

Gauss-Seidel, and CG methods. 

b. Compare the performance of three iterative methods based on the results of Matlab 

simulations and FPGA-based HW/SW codesigns.  

c. Convergence analysis of a logarithmic number system (LNS) [19, 20, 21, 22] based 

Jacobi processor: Due to the complexity of hardware designs of arithmetic units such 

as multiplier and divider, LNS provides an alternative to floating point with the 

possibility to simplify arithmetic operations. For matrix solvers, fast multiplication 

and division operations can be achieved by using addition and subtraction operations 

on the logarithms of the input data. It is interested to know how the simplified error 

correction circuit is related to the convergence of Jacobi method. 

II. Direct methods 

a. Investigate other factorization algorithms, i.e., ZW factorization and X factorization, 

as alternatives to WZ factorization and PIE respectively.  

b. Propose FPGA-based general single unit and scalable hardware architectures of WZ 

factorization. Analyze the architectures under different constraints.  

c. Analyze the performance of WZ factorization based on the results of Matlab 

simulations and FPGA-based HW/SW codesigns. Extend the BDB form to WZ 

factorization for parallel processing. 

1.3 Thesis Outline 

There are four primary topics of interest discussed in this thesis, including hardware 

implementation of iterative methods, hardware implementation of direct methods, 

performance analysis and suggestions for future work.  

Chapter 2 describes the background of circuit simulation, selected iterative and direct 

methods (i.e., Jacobi, combined Jacobi and Gauss-Seidel, CG, PIE and WZ factorization) 

targeting on their parallel property for solving sparse and dense matrices,  and several existing 
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hardware architectures for general applications. Chapter 3 discusses FPGA-based general 

hardware architectures and LNS-based hardware architectures of Jacobi, combined Jacobi and 

Gauss-Seidel, and CG, followed by HW/SW codesigns of three iterative methods by using 

Xilinx Embedded Development Kit (EDK) [18]. In Chapter 4, an implementation of WZ 

factorization is presented. Firstly, ZW factorization and X factorization are introduced as 

alternatives to WZ factorization and PIE respectively. Single unit and scalable hardware 

architectures of WZ factorization are proposed and analyzed under different constraints. 

Xilinx EDK HW/SW codesign of WZ factorization is also presented followed by reordering 

techniques [16] dealing with large size sparse matrices. This will lead into Chapter 5 where 

performance of design simulations is analyzed. Finally, the conclusion and suggestions for 

future work will be given in Chapter 6. 
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Chapter 2

 

 

Background 

The algorithms used in SPICE define the traditional approach to circuit simulation. The goal 

of this chapter is to provide a brief background of  basic concepts of SPICE and major matrix 

solving methods (i.e., GE and LU factorization) used in SPICE. Since evaluation procedures 

of GE and LU are not processed in parallel, selected iterative and direct methods (i.e., Jacobi, 

combined Jacobi and Gauss-Seidel, conjugate gradient, PIE and WZ factorization) which are 

parallel in nature are introduced for solving sparse and dense matrices. Several existing FPGA 

based hardware architectures targeting on general applications are also reviewed.  

2.1 SPICE Algorithm Overview 

SPICE [24, 25] is a general purpose analog electronic circuit simulator and is used to 

provide analysis of circuits containing active components such as bipolar transistors, field 

effect transistors, diodes and passive components such as resistors, capacitors and inductors. 

The program originates from the University of California, Berkeley. SPICE is a powerful 

program which allows designers to evaluate designs without actually building them. 

Most of SPICE algorithms [25] can be explained by the following block diagram shown in 

Figure 2.1. The key of all algorithms inside SPICE is nodal analysis (blocks 3 and 4) 

including formulating the nodal matrix and solving the nodal matrix for the circuit voltages. 

The inner loop (blocks 2-6) finds the solution for nonlinear circuits where nonlinear devices 

are replaced by equivalent linear models. The solution process starts with an initial guess 

(block 1), goes through the inner loop (blocks 2-6), and repeats until it reaches convergence. 

The time domain solution is represented by the outer loop (blocks 7-9), together with the inner 
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Figure 2.1: Flow chart of SPICE algorithms 

loop, it  performs  a  transient  analysis creating equivalent linear models for energy-storage 

components such as capacitors, inductors, etc. 

SPICE begins an analysis by reading elements from the input file. Using matrix 

construction by inspection and a set of predefined element templates [25], system equations 

are described in a set of linear matrices. SPICE has two solution algorithms, one for linear 

circuits and one for nonlinear circuits. For linear circuits, only two of the blocks are needed: 

load the Nodal Matrix (block 3) using Kirchhoff’s current law [26] and solve the nodal matrix 

(block 4) using GE or LU factorization. For Non-Linear circuits, SPICE needs to create 

equivalent linear models for the non-linear devices such as diode. The loop (blocks 1-6) 
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2.2.1 

iteratively finds the exact solution as follows: guess an operating point, create equivalent 

linear models and solve the nodal matrix for the circuit voltages. Then, choose a new 

operating point (block 6) based on the new voltages and start the loop again until the voltage 

and current reach convergence.  

2.2 Matrix Solving Methods Used in SPICE 

Gaussian Elimination (GE) 

GE and LU factorization [12, 13] are two major methods used in SPICE to solve matrix. GE 

contains forward elimination and backward substitution. Forward elimination uses scaling of 

each equation followed by subtraction from the remaining equations in order to eliminate 

unknowns one by one until matrix A is reduced to an upper triangular matrix. The final 

solution can then be found by backward substitution which computes each element of x in 

reverse order. Using GE method, any linear system equation can be solved in at most cubic 

time. Consider the system of linear equations Ax = b shown in Equation 2.1. 

                                               (2.1) 

11 12 1 1 1

21 22 2 2 2

1 2

. .

. .
. . . . . .
. . . . . .

. .

n

n

n n nn n n

a a a x b
a a a x b

a a a x b

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Assume solution 1 2, ,..., ,k k k
nx x x x⎡= ⎣ ⎤⎦ , which can be obtained in two steps: 

First step: column elimination. 

1 2
( )

( )

 ( ,  ,...,  ),

( / ) ,

( / ) ,

i i i in
j

i ij jj ji

j
i ij jj ji

e a a a

e e a a e

b b a a b

=

= −

= −

                                                   (2.2) 
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b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

where j = 1, 2,…, n-1 representing jth column elimination stages and i = j+1, j+2,…, n 

representing ith row of matrix A. The first step repeats for j = 1, 2,…, n-1 until the system is 

transformed into a right triangular matrix shown in Equation 2.3. 

11 12 1 11
(1) (1) (1)

222 2 2

( 1) ( 1)

. .

0 . .
.. . . . .
.. . . . .

0 0 . .

n

n

n nnnn n

a a a bx
xa a

xa b− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

                               (2.3) 

Second step: back-substitution process. x is solved starting from xn using Equation 2.4 

upwards to x1 using Equation 2.5. The entire process is done serially. 

( 1)

1 .
n

k n
n n

nn

bx
a

−

−=                                                            (2.4) 

( 1) ( 1)
,( 1)

1

1 for  = 1, 2,..., 1.
n

i ik k
i ji i ji

j iii
x b a x i n n

a
− −

−
= +

⎡ ⎤
= − − −⎢ ⎥

⎢ ⎥⎣ ⎦
∑                       (2.5) 

2.2.2 LU Factorization 

The LU factorization decomposes matrix as the product of a lower and upper triangular 

matrices. There are several ways for LU factorization such as Doolittle’s method and 

Crout’s methods [12]. Doolittle’s method has all 1’s in the diagonal of lower triangular 

matrix as showed in Equations 2.6. The factorization process begins with the first row of 

upper triangular matrix U using Equation 2.7 followed by the first column of lower 

triangular matrix L using Equation 2.8. The evaluation process repeats with second row of 

matrix U followed by the second column of matrix L until the last row of matrix U and the 

last column of matrix L are found. The Crout’s method is similar to Doolittle’s except that 

Ukk = 1 instead of Lkk = 1 and the factorization process begins with first column of matrix L 

followed by the first row of matrix U. 
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⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

+

11 12 1 11 12 1

21 22 2 22 221

1 2 n1 n 2

. . . .1 0 . . 0

. . 0 . .1 0
. . . . . . . .. . . .
. . . . . . . .. . . .

. . 0 0 . .. . 1

n n

n n

n n nn nn

a a a U U U
a a a U UL

a a a UL L

⎡ ⎤ ⎡⎡ ⎤
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥=
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥⎣ ⎦⎣ ⎦ ⎣

        (2.6) 

-1

1
-               for  = 1, 2,...,  and    ,  1,...,  .

i

ij ij ik kj
k

U a L U i n j i i n
=

= =∑               (2.7) 

-1

1

1( - )     for    1,  2,...,  -1 and  = +1, +2,..., .
j

ij ij ik kj
jjk

L a L U j n i j j
U=

= =∑ n

2.3.1 

            (2.8) 

After factorization of matrix A, Equation 2.1 can be rewritten as Ax = LUx = b. For given 

A and b, the solution x can be obtained in two steps: Firstly, solving the equation Ly = b for y; 

Secondly, solving Ux = y for x. In these two steps, y and x can be solved directly using 

forward and backward substitution due to factorized lower and upper triangular matrices. The 

algorithm description shows that LU factorization is more trivial and requires twice 

substitution in order to solve x, but it is computationally efficient when a matrix equation is 

solved for multiple times for different b as compared to GE.  

GE and LU factorization have been modified for parallel processing due to the advent of 

parallel computing [9], their performance is still not satisfactory since both methods are 

essentially algorithms in which elimination and factorization are processed in serial, i.e., only 

one row or one column is solved at a time. In next section, selected matrix solving methods 

which are more suitable for parallel computation and aim at a parallel machine will be 

introduced. 

2.3 Parallel Iterative Matrix Solving Methods 

Jacobi Iterative Method 

The Jacobi method [12] is an algorithm in linear algebra for determining the solutions of 

linear systems with largest absolute values in each row and column dominated by the 
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diagonal elements. Each diagonal element is solved for, and an approximate value plugged 

in. The process is then iterated until it converges. The solution to set of linear equations, 

expressed in matrix terms as Equation 2.1, where A is an n×n matrix, is obtained as follows: 

Let A = L + D + U, where L is the lower triangular matrix containing all elements of A below 

the diagonal, U is the upper triangular matrix containing all elements of A above the 

diagonal, and D is the diagonal matrix consisting of only the diagonal elements. Substituting 

A = L + D + U into Equation 2.1 yields 

[ ]1 ( )x D b L U x−= − +                                                     (2.9) 

The Jacobi method can be expressed as: 

1 1  for  = 1, 2,..., .k k
i i ij j

j iii

x b a x i
a

+

≠

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑ n                                 (2.10) 

Initially guess 0 0 0 0
1 2, ,... nx x x x⎡= ⎣ ⎤⎦ , substitute x0 into the right-hand side of Equation 2.10 to 

calculate new, possibly more accurate, values of xi. This evaluation process repeats until the 

convergence condition is met. Jacobi will always converge if the matrix A is strictly 

diagonally dominant, which means that for each row, the absolute value of the diagonal term 

is greater than the sum of absolute values of other terms shown in Equation 2.11. 

ii ij
i j

a
≠

> a∑                                                           (2.11) 

The Jacobi method sometimes converges even if this condition is not satisfied. It is 

necessary, however, that the diagonal terms in the matrix are greater (in magnitude) than the 

other terms. Furthermore, Jacobi is barely used as a stand-alone solver, but rather as a 

preconditioner to reduce the condition number, thus increase the rate of convergence for more 

advanced iterative methods like conjugate gradient [27]. 
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2.3.2 

1
2

Combined Jacobi and Gauss-Seidel 

Unlike Jacobi method, Gauss-Seidel method [12] uses new values of xi as soon as they 

become available. For example, when calculating x , the new value 1
1x is used instead of the 

old value of 0
1x . The Gauss-Seidel can be expressed as: 

1 ( 1)1k k
i i ij j ij

j i j iii

( )k
jx b a x a x

a
+ +

< >

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∑ ∑                                    (2.12) 

There are two important characteristics of the Gauss-Seidel method. Firstly, the 

computations are processed in serial. Since each component of the new iterate depends upon 

all previously computed components, the updates cannot be done simultaneously as in the 

Jacobi method. Secondly, the new iterate xk+1 depends upon the order in which the equations 

are examined. If this ordering is changed, the components of new iterates will also change. A 

more hardware friendly approach is to combine Jacobi and Gauss-Seidel methods. In this 

combined method, a number of variables, x, are calculated in parallel dependent upon 

available hardware resource. If the hardware resource allows maximum p variables to be 

calculated in parallel, x1, x2… xp are calculated first. The new values are used for calculating 

the next p variables, xp+1, xp+2… x2p, and so on. 

2.3.3 Conjugate Gradient (CG) 

Conjugate gradient (CG) [27, 28] is an algorithm for finding the nearest local minimum of a 

system of n variables which assumes that the gradient of the function can be computed. CG 

derives its name from the fact that it generates a sequence of conjugate (or orthogonal) vectors 

and uses conjugate vectors as search directions instead of the local gradient for going downhill 

until the final solution is reached. CG is effective for the numerical solution of particular 

linear systems, namely those whose matrix is symmetric and positive-definite, since storage 

for only a limited number of vectors is required [29, 30, 31].  

CG proceeds by generating vector sequences xk+1 of iterates, i.e., successive 

approximations to the solution, residuals rk+1corresponding to iterates,  and  search  directions  



 

  13
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δ
δ
δ

=
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%End

 

Figure 2.2: Algorithm description of CG 

dk+1 used in updating iterates and residuals. Considering the linear system  in Equation 

2.1, denote the initial guess for x by x

Ax b=
0. The resulting algorithm is summarized in Figure 2.2. 

The input vector x0 can be an approximate initial solution or zero. 

CG method can also be applied to an arbitrary system where A is not symmetric, not 

positive-definite, and even not square by transforming A into normal equations ATA and 

right-hand side vector b into ATb shown in Equation 2.13, since ATA is a symmetric positive 
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T

2.4.1 

definite matrix for any A. The result is called conjugate gradient on the normal equations 

(CGNR).     

,TA Ax A b=                                                         (2.13) 

However, the downside of forming the normal equations is that the condition number κ(ATA) 

is equal to κ(A)2 and so the rate of convergence of CGNR may be very slow. 

2.4 Parallel Direct Matrix Solving Methods 

Parallel Implicit Elimination (PIE) 

PIE method for the solution of linear system was introduced by Evans and Abdullah [14, 

32]. This method simultaneously eliminates two matrix elements, in stead of just one in GE. 

Thus, PIE is suitable for parallel implementation. Considering the linear system Ax b=  in 

Equation 2.1, the basis of PIE method is to transform matrix A into butterfly form Z as shown 

in Equation 2.14 by multiplying matrix A with transformation matrix W. This transformation 

process is called parallel elimination. 

11 12 1, 1 1,

22 2, 1

( 1)/2.( 1)/2

1,2 1, 1

,1 ,2 , 1 ,

. . .

. . .

. . .
 for  odd.

. . .

. . .

. . .

n n

n

n n

n n n

n n n n n n

a a a a
a a

aZ n

a a
a a a a

−

−

+ +

− − −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

            (2.14) 0 0

By combining WA=Z and Ax=b, WAx=Wb is obtained, which can be rewritten as 'bZx = , 

where . Vector b is also updated once matrix Z is obtained. The solution process of 

PIE is similar to the solution procedure shown in WZ factorization. In this section, only the 

transformation process will be introduced, which is summarized as follows: Matrix A is 

denoted in shorthand form in Equation 2.15. 

Wbb ='
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−
11 1 1

1

1

for , 2,  3,...,  1.
j n

i ij in

n nj nn

a a a
A a A a i j n

a a a

⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦

                                   (2.15) 

For the first evaluation stage, the transformation matrix W is shown in Equation 2.16. 

1 1 2

1 0 0

0 0 1
i n inW w I w−

⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

                                                    (2.16) 

where i = 2, 3,…, n-1 and In-2 is the unit matrix of order n-2. Elimination is achieved by 

taking product of W1 and A. 

11 1 1

1 1 2 1

1

11 1 1

11 1 1 2 1 1 1 1 1 2

1

1 0 0

0 0 1

j n

i n in i ij in

n nj nn

j n

i i n n in i j ij in nj n i in n nn in

n nj nn

a a a
W A w I w a A a

a a a

a a a
a w a I a w w a A w a a w a I a w

a a a

−

− −

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= − − ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥= − + − − + − − + −⎢ ⎥
⎢ ⎥⎣ ⎦

  (2.17) 

Referring to Equation 2.14, in order to meet ZAW =1 , 11 1 1 2 1i i n na w a I a w− in− + − and 

 shown in Equation 2.17 need to be equal to zero. By solving n-2 sets 

of 2×2 equations, matrix Z

innnninin waIawa −+ −211

1 can be obtained in the form of Equation 2.18. 

11 1 1

1 2

1

0 ' 0  for    2,3 ... -1.
j n

n

n nj nn

a a a
Z A j

a a a
−

⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦

n

nj

                             (2.18) 

An-2 is the remaining matrix of order n-2, which is updated by Equation 2.19. 

2 1 1 2'n i j n inA w a A w a− −= − + −                                                                   (2.19) 

This evaluation process recursively repeats for (n-1)/2 stages. The final matrix Z is obtained 

in the form of Equation 2.14. An example of PIE is given in Appendix A. 
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2.4.2 WZ Factorization 

WZ factorization was introduced by Evans and Hatzopoulos in 1973 [15, 33]. A method 

using WZ factorization to solve matrix is called quadrant interlocking factorization (QIF) 

[14]. WZ method decomposes coefficient matrix A into two interlocking quadrant factors of 

butterfly form denoted by W and Z or as 

A WZ=                                                             (2.20) 

where W and Z are shown in Equations 2.21 and 2.22, 

21 2

31 32 3, 1 3

2,1 2,2 2, 1 2,

1,1 1,

1 0
1 0

1 .. 0
.. .. .. .. .. .. ..

0 .. 1
0 1

0 1

n

n n

n n n n n n

n n

w w
w w w w

W
w w w w
w w

−

− − − − −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0

n

n

               (2.21) 

0
and 

 

11 12 13 1, 2 1, 1 1

22 23 2, 2 2, 1

33 3, 2

2,3 2, 2

1,2 1,3 1, 2 1, 1

1 2 3 , 2 , 1

..

..

..
.. .. ..

..

..

..

n n

n n

n

n n n

n n n n n n

n n n n n n n nn

z z z z z z
z z z z

z z
Z

z z
z z z z

z z z z z z

− −

− −

−

− − −

− − − − − −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

                        (2.22) 0 0

Equation 2.20 can be rewritten as  

11 1 1 11 1 1

1 2 1 2 2

1 1

1 0 0
0

0 0 1

i n i n

i n in i n in n

n ni n ni nn

a a a z z z
a A a w W w Z
a a ann z z z

− −

⎡ ⎤ ⎡⎡ ⎤
⎢ ⎥ ⎢⎢ ⎥=⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥⎣ ⎦⎣ ⎦ ⎣

0−

⎤
⎥
⎥
⎥⎦

                   (2.23) 

The elements of matrices W and A can be evaluated in (n-1)/2 distinct stages. The basic steps 

are summarized as follows.  
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At the first stage, it can be observed that the elements of first and last rows of the matrix Z 

are obtained by 

11 11 1 1 1 1

1 1

 ,    ,   
 ,    ,     for   2,  3,...,  -1.

i i n n

n n ni ni nn nn

a z a z a z
a z a z a z i n

= = =

= = = =
             (2.24) 

The elements of the first and last columns of the matrix W are evaluated by solving (n-2) sets 

of 2×2 linear systems given by  

11 1 1 1

1 1

  
     for 2,  3,...,  -1.

i n in i

n i nn in in

z w z w a
z w z w a i n

+ =

+ = =
                                     (2.25) 

In general, each 2×2 linear system is solved by Cramer’s rule using Equation 2.26. 

2
1 1, 1 1, , 1

1
2 1, 1 1, , 1

3
, 13 , 1 , 1

1

,

,

,

ii n i n i n i i i n i ji

ji n i n i n i i j n i

j n iii j n i ji i n i

xx z z z z W
x

x a z z a
xWx z a a z x

− + − + − + − +

− + − + − + − +

− +− + − +

⎫= − =
⎪⎪= − →⎬
⎪ == − ⎪⎭

                 (2.26) 

The remaining matrix An-2 is then updated by Equation 2.27. 

                                  (2.27) 1 1  for ,    2,  3.... -1ij ij i j in nja a w z w z i j n= − − =

For the following evaluation stages, this evaluation process is recursively repeated for the 

remaining matrices An-2i (i.e. An-2, An-4…2 for n is even and An-2, An-4…1 for n is odd.). 

In order to solve the system by the QIF method, Ax=b can be rewritten as (WZ)x = b. Only 

two related and simpler linear systems of forms Wy = b and Z x = y need to be solved. The 

solution procedure for y is carried out in pairs from top and bottom. In general, at ith stage, 

1 and i i n i n iy b y b 1− + − += =                                           (2.28) 

Then update bi using Equation 2.29. 

'
, 1 1  for  1,  2 ..... .j j ji i j n i n ib b w y w y j i i n i− + − += − − = + + −                      (2.29) 
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The final solution x is computed from the middle of matrix Z. This process can be 

distinguished into two cases: n is odd and n is even. If n is odd, x(n+1)/2 is obtained by 

Equation 2.30. 

1
2

1
2

1 1
2 2

( 1)
( 1)

( 1) , ( 1)

n
n

n n

y
x

z
+

+
+ +

=                                             (2.30) 

Update y for next stage, 

1 1
2 2

' 1
( 1) ( 1) 2,  for  1, 2... , ( 1)j j n ny y x z j n j n− + += = ≠ +

1

                        (2.31) 

The remaining elements of x can be obtained in pairs by solving (n-1)/2 sets of 2×2 linear 

equations. If n is even, x can be evaluated directly by solving n/2 sets of 2×2 linear equations 

starting with x(n-1)/2 and x(n+1)/2. In general, at ith stage, solve Equation 2.32 to obtain the values 

of x, 

, 1 1

1 1 1

ii i i n i n i i

n i i zn i n i n i

z x z x y

z x x y
− + − +

− + + − + − + − +

+ =

=
                                              (2.32) 

and update yj in Equation 2.33. 

1 , 1j j i ji n i j n iy y x z x z− + − += − − .                                          (2.33) 

An example of WZ factorization is given in Appendix A. 

2.4.3 Comparison of Direct Methods 

As LU factorization compared to GE, WZ factorization is more trivial and requires twice 

substitution in order to solve x, but is computationally efficient to solve a matrix equation 

multiple times for different b compared to PIE. According to the similarity of evaluation 

processes, the first type of comparison can be made between PIE and GE. During the 

elimination stage of PIE method, two columns of transformation matrix W are solved or two 

rows of matrix Z are eliminated simultaneously. The solution stage of PIE starts from the 

middle of vector x being completed bi-directionally in parallel resulting in increased stability. 

GE is only able to eliminate one column and solve one x at a time. In general, the timings on 

multiprocessor for PIE are better than GE. For the larger matrices the gains of speed up vary 
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2.5.1 

from 6% for 1 processor to 10% for 10 processors [14]. These gains will increase for larger 

matrices and larger number of processors. 

The second type of comparison can be made between WZ and LU. The WZ factorization 

solves W elements from left and right and Z elements from top and bottom bi-directionally 

which is similar as PIE method. The solution stage of WZ solves two values simultaneously 

from the top and bottom moving inwards bi-directionally for vector y and from the middle 

moving outwards bi-directionally for vector x. LU is only able to solve one row of U followed 

by one column of L at a time. The solution stage of LU is also processed in serial. The timings 

on the sequent multiprocessor show that the WZ factorization is faster than LU and for larger 

matrices, the gains appear to be 20% for all values of processor [33]. 

2.5 Hardware Architectures for General Applications 

The flexibility, re-programmability and run-time reconfigurability of FPGAs have great 

potential to offer an alternative computing platform for high performance computing. Recent 

significant advances in FPGA technology and the inherent advantages of configurable logic 

have brought new research efforts in the configurable computing field: parallel processing on 

configurable chips [34, 35]. In this section, three FPGA based hardware architectures are 

reviewed for general applications.  

Toronto Molecular Dynamic (TMD) Architecture 

TMD was designed for molecular dynamics simulations [36, 37]. This architecture can also 

be used to solve other computing-intensive problems. The architecture is built entirely using 

FPGA computing nodes which are implemented by Virtex-II Pro XC2VP100 FPGAs [38]. 

The machine enables designers to implement large-scale computing applications using a 

heterogeneous combination of hardware accelerators and embedded microprocessors spread 

across many FPGAs, all interconnected by three levels communication networks. 

The TMD architecture is divided into there hierarchical tiers shown in Figure 2.3, allowing 

it to scale up to reconfigurable machine containing many FPGAs. The lowest tier exists within  
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Figure 2.3: TMD architecture hierarchy [36]. 

FPGA, where different topologies can be specified for interconnecting computing engines and 

embedded processors. The middle tier is based on cluster printed circuit board (PCB) level 

which consists of 8 FPGAs for computing purpose and 1 FPGA for communicating with other 

clusters. The highest tier is the large network by interconnecting multiple clusters. 

TMD communications networks can be divided into there levels. The first level is intra-

FPGA communication which is implemented using point-to-point unidirectional FIFOs. The 

second level is inter-FPGA communication which uses multi-gigabit transceiver (MGT) [39] 

hardware to implement communication between FPGAs. The third level is inter-cluster 

communication by aggregating four MGT links, enabling the use of infiniband switches for 

implementing global interconnection between clusters. 

2.5.2 Hardware/Software (HW/SW) Partitioned Computing System 

Usually, a reconfigurable computing system has multiple nodes which can be implemented 

by processors, FPGAs, or both. This hybrid architecture [40] utilized both the processors and 

the FPGAs in the system for computing purpose, as shown in Figure 2.4. The design is based 

on Cray XD1 [41]. The basic unit is a computing blade, which consists of two AMD 2.2 GHz 

processors and one Xilinx Virtex-II Pro XC2VP50 [38]. Six computing blades fit into one 

chassis, interconnected by a non-blocking cross-bar switching fabric which provides two 

2GB/s links to each node. The nodes communicate using Message Passing Interface (MPI) 

[42]. In this system, only the processors of the blades (nodes) are connected through 

communication network. 
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Figure 2.4: HW/SW partitioned system architecture [40]. 

For different applications, tasks capable of different functions need to be specified. The 

HW/SW partition is based on the workload of the task so that processor and FPGA are both 

fully utilized. In other word, the computation times of processor and FPGA need to be equal 

considering the data transfer time and communication costs. Other than workload partition, 

the coordination between processor and FPGA is also very important. 

2.5.3 Mixed-Mode Heterogeneous Reconfigurable Machine (HERA) 
Architecture 

The HERA machine [43] is based on Xilinx Virtex-II and Virtex-II pro platform FPGAs. 

This machine can implement the single-instruction, multiple-data (SIMD), multiple-

instruction, multiple-data (MIMD) and multiple-SIMD (M-SIMD) execution modes in one 

machine.  

Figure 2.5 shows the general architecture of HERA machine with m×n processing elements 

(PEs) interconnected by a 2-D mesh network. The architecture employs fast, direct North, 

East, West and South (NEWS) connections for communications between nearest neighbors. 

The global communication is achieved by the Cbus and column bus. Every column has a Cbus 

and all the Cbuses are connected to the column bus. Every PE is built on a single-precision 

IEEE 754 FPU [44, 45] with tightly-coupled local memory shown in Figure 2.6, and  supports 
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Cbus Cbus 

Figure 2.5: HERA system architecture [43]. 

dynamic switching among SIMD, MIMD and M-SIMD at runtime. Most of the instruction 

decoding is carried out by the local control unit within PE. The computing process is 

controlled by a system sequencer that communicates with the host processor via the peripheral 

component interface (PCI) bus. The capabilities of each PE and the number of PEs can be 

reconfigured on the basis of the application’s requirements and available resources in target 

FPGA devices respectively. The operating mode of each PE is configured dynamically by the 

host processor through the operating mode register of PE.  

In this chapter, background related to SPICE, selected parallel matrix solving methods and 

the existing FPGA-based hardware architectures for general applications have been reviewed. 

GE and LU are two major direct matrix solving methods used in SPICE, which are processed 

in  serial.  To  improve  the  performance  of  matrix  solving  process,  FPGA-based  hardware  
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Figure 2.6: HERA PE architecture [43]

implementations of parallel matrix solving methods are desired. Most iterative methods such 

as Jacobi and CG aim at parallel processing for solving large sparse matrices. In Chapter 3, 

FPGA-based general hardware architectures, LNS-based hardware designs and FPGA-based 

HW/SW codesigns of Jacobi, combined Jacobi and Gauss-Seidel, and CG are presented. 
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Chapter 3

3.1.1 

 

 

General Hardware Architectures and HW/SW Codesigns 

of Iterative Methods 

In computational mathematics, an iterative method attempts to solve a problem (for 

example an equation or a linear system) by using successive approximations to obtain more 

accurate solutions at each step starting from an initial guess.  The goal of this chapter is to 

provide detailed approaches to FPGA-based hardware design including FPGA-based general 

hardware architectures, LNS based hardware designs and FPGA-based HW/SW codesigns to 

Jacobi, combined Jacobi and Gauss-Seidel, and CG for solving sparse matrices. 

3.1 FPGA-based Hardware Architectures 

Jacobi Iterative Method 

Assume no memory constraint. An ideal hardware architecture for Jacobi method would 

consists of n Jacobi processor units (JPU) for n-vector x, where JPU is the basic unit of 

Jacobi hardware architecture. Within each JPU there are n-1 multipliers, 1 divider, and binary 

tree adders/subtractors as showed in Figure 3.1. This architecture requires n×(n-1) multipliers 

in total. Multiplication of inputs aij and xj are processed in parallel for each xi and new n-

vector x is updated in parallel as well, where i, j = 1, 2,…, n and j i. Considering the 

hardware resource, several other possible cases have been considered, where different case 

has different JPU. 

≠

1. n JPUs, 1 multiplier in each JPU: Multiplications of inputs aij and xj are processed 

serially in each JPU. For each iteration, output for each x will be obtained and updated 
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in parallel which means new value for each x is updated once all the outputs new xi are 

available. 

2. 1 JPU and n-1 multipliers in the JPU: Multiplication of inputs aij and xj are processed 

in parallel for each x. Output x’s will be obtained and updated serially. This 

architecture is actually equivalent to an ideal architecture for Gauss-Seidel method.  

3. p (p<n) JPUs and 1 multiplier in each JPU: A subset of n-vector x are processed in 

parallel at a time which requires /n p⎡ ⎤⎢ ⎥  number of times to process the n-vector x, 

where  is a ceiling function. Inside each JPU, multiplications of inputs a⎡ ⎤⎢ ⎥ ij and xj 

are processed serially.  

4. 1 JPU and l multipliers in each JPU: A subset of multiplications of inputs aij and xj are 

processed in parallel at a time which requires ( 1) /n l−⎡ ⎤⎢ ⎥  number of times to process 

one xi. 

 

Figure 3.1: Ideal hardware architecture for Jacobi method 
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Figure 3.2: Hardware architecture for Jacobi method (case 3) 

 

Figure 3.3: Hardware architecture for Jacobi method (case 4) 
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Cases 1 and 2 are applicable to small linear systems which require less hardware resource 

for implementation. Cases 3 and 4 have scalable architectures and can be applied to large 

linear systems considering the available hardware resource in reality. Figure 3.2 shows a 

hardware architecture which implements case 3. For each iteration, a set of coefficients, 

ap+1,q, ap+2,q,…, a2p,q from A and xq from x are placed at the inputs of JPU 1 to p. After n clock 

cycles (i.e. for q = 1 to n), a total of p number of new xi are generated and loaded into x. The 

first set of new xi are x1, x2,…,xp, the second set of new xi are xp+1, xp+2,…,x2p, and so on. The 

second iteration repeats from x1, x2,…,xp until convergence has been reached.  

Figure 3.3 shows a hardware architecture which implements case 4. This architecture 

parallelizes multiplications inside each JPU instead of having multiple JPUs processed in 

parallel. For each iteration, a set of coefficients, ak,l+1, ak,l+2,…,ak,2l from A and xl+1, xl+2,…,x2l 

from x are placed at the inputs of multiplier 1 to l. After ( 1) /n l−⎡ ⎤⎢ ⎥  clock cycles, a new xi is 

generated and loaded into x. All new xi’s will be generated in serial. The second iteration 

again repeats from x1 until convergence has been reached.  

One major difference between cases 3 and 4 is that how new values of xi are updated. In 

case 3, a total of p new values of xi can be updated at a time with inputs processed in serial, 

while in case 4 only one new value of xi will be updated at time but at a faster rate of update 

of each new xi compared to case 3. Also, case 3 requires one accumulator for the product of 

aij and xj in each JPU, while case 4 requires additional binary tree adders/subtractors in order 

to take advantage of parallel multipliers [46].  

3.1.2 Combined Jacobi and Gauss-Seidel Method 

Assume no memory constraint. The ideal hardware architecture of Gauss-Seidel method is 

equivalent to case 2 of hardware architectures of Jacobi, which consists of 1 JPU for updating 

xi. Within JPU, there are n-1 multipliers, 1 divider, and binary tree adders/subtractors. This 

architecture is able to process the multiplication of aij and xj in parallel inside JPU, but only 

update one new xi at a time. However, considering the hardware resource constraint, it is 

difficult to realize completely parallel multiplications inside JPU in particular for large  linear 
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Figure 3.4: Hardware architecture for combined Jacobi and Gauss-Seidel method 

systems. A more realistic approach is to combine Jacobi and Gauss-Seidel method which 

requires p×q multipliers in total, where p is the number of JPUs and q is the number of 

multipliers inside each JPU. Given limited hardware resource, there is a trade off between the 

number of JPUs and multipliers (i.e. p and q). In this combined method, a subset of variables, 

x, are calculated in parallel dependent upon available hardware resource. If the hardware 

resource allows maximum p variables to be calculated in parallel, x1, x2,…,xp are calculated 

first. The new values are used for calculating the next p variables, xp+1, xp+2,…,x2p, and so on. 

Figure 3.4 shows a hardware architecture which implements the combined Jacobi and 

Gauss-Seidel method. This architecture contains p JPUs processed in parallel and q 

multipliers inside each JPU. For each iteration, a set of coefficients, ai,q+1, ai,q+2,…,ai,2q from 

A and xq+1, xq+2,…,x2q from x are placed at the inputs of multiplier 1 to q inside JPU. After 

 clock cycles, a total of p number of new x( 1) /n q−⎡⎢ ⎤⎥ i are generated and loaded into x. The 
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3.1.3 

d

first set of new xi are x1, x2,…,xp, the second set of new xi are xp+1, xp+2,…,x2p, and so on. The 

second iteration again repeats from x1, x2,…,xp until convergence has been reached.  

Conjugate Gradient Method 

As described in Chapter 2, CG used as iterative method is memory-efficient and runs 

quickly with sparse matrices. Figure 3.5 shows one way to implement CG in hardware. This 

architecture consists of four matrix-multiplication blocks (MMB), two dividers, and two 

adder/subtractors. Matrix-vector multiplication, vector-vector multiplication and scalar-

vector multiplication are implemented in the same block, i.e., MMB. Scalar-vector 

multiplication is treated as matrix-vector multiplication by transforming the scalar into a 

diagonal matrix with all diagonal values equal to the scalar value, where a diagonal matrix is 

a square matrix in which the entries outside the main diagonal are all zero.  

In this realization, there are five global signals. The first global signal, sel_r0, is used to 

determine when to select b and Ax− r Aα−  associated with ro and rk, where r0 is the 

initialized residual, rk is the new residual and k is the number of current iteration. The second 

global signal, sel_d0, is used to determine when to select d0 and dk, where d0 is the initialized 

search direction and dk is the current search direction. The third global signal, sel_accu, is 

used to accumulate multiplications to obtain dTAd. The fourth global signal, sel_αβ, is used to 

determine when to select x dα+ and r dβ+  associated with xk+1 and dk+1, where xk+1 is the 

new approximation to solution x. The last global signal, sel_x0, is used to determine when to 

select x0 and xk. Divider_1 and Divider_2 perform scalar divisions to obtain α and β 

respectively, where α and β are associated with calculations of x, r and d.  

This architecture can be divided into three blocks including BLOCK_A, BLOCK_B and 

BLOCK_C shown in Figure 3.5. Only one block will be enabled at a time. For the first 

iteration, BLOCK_A is enabled at the beginning, where sel_r0 selects b, A, and x0 to calculate 

the initial residual r0 which is also equal to the initial search direction d0, and δnew is 

obtained by multiplying r0 with (r0)T. Then BLOCK_B is enabled, where sel_d0 selects d0, 

sel_accu is used to accumulate the multiplication results, (d0)TAd0, and Divider_1 performs a 

scalar division between δnew and (d0)TAd0 to obtain α0. Then BLOCK_C is enabled, where 
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k

sel_x0 selects x0 and sel_αβ selects x0 and α0 to calculate x1. After x1 is obtained, BLOCK_A 

is enabled again, where sel_r0 selects r0, α0, and Ad0 to calculate the second residual r1, δold 

is set to δnew, and δnew is renewed by multiplying r1 with (r1)T. Divider_2 performs a scalar 

division between δnew and δold to obtain β0.  At the end of this iteration, BLOCK_ C is 

enabled again, where sel_αβ selects r1 and β0 to calculate d1.  

For second iteration, BLOCK_B is enabled at the beginning, where sel_d0 selects d1, 

sel_accu is used to accumulate the multiplication results, (d1)TAd1 and Divider_1 performs a 

scalar division between δnew and (d1)TA d1 to obtain α1. Then BLOCK_C is enabled, where 

sel_x0 selects x1 and sel_αβ selects x1 and α1 to calculate x2. After x2 is obtained, BLOCK_A 

is enabled, where sel_r0 selects r1, α1, and Ad1 to calculate the third residual r2, δold is set to 

δnew and δnew is renewed by multiplying r2 with (r2)T. Divider_2 performs a scalar division 

between δnew and δold to obtain β1.  At the end of this iteration, BLOCK_ C is enabled again, 

where sel_αβ selects r2 and β1 to calculate d2. For following iterations, the process repeats as 

second iteration until convergence has been reached.  

The above analysis shows that the key to a fast implementation of CG is a fast 

implementation of MMB. A simplified multiplication and accumulation (MAC) unit for 

matrix multiplication is shown in Figure 3.6. Assume aij and xj can be available as inputs data 

simultaneously, the MAC unit computes aij×xj, and then adds aijxj to the accumulate register, 

where accumulate register is initialized to zero. The MAC unit accumulates the products of 

inputs fed every cycle. After n (matrix size) cycles, one element of resulted vectors will be 

obtained and stored into memory until all of inputs are processed. CG is usually completed 

after n iterations. In practice, the recursive formula for the residual, , results 

in accumulated floating point round off error which will cause the residual r to gradually lose 

accuracy. The evaluation process will be terminated early due to this floating point round off 

error. This problem can be corrected by recalculating the exact residual, , where 

global signal sel_r

1k k kr r Adα+ = −

1k kr b Ax+ = −
0 selects b, A, and xk to calculate rk+1 in BLOCK_A. 
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Figure 3.5: General hardware architecture for CG algorithm 
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Figure 3.6: Hardware architecture for multiplication unit 

3.2 LNS-based Hardware Design of Jacobi Processor 

Due to the complexity of hardware designs of arithmetic units such as multiplier and divider, 

LNS has been studied in an effect to simplify arithmetic computations for lower computation 

complexity, higher computation speed, and smaller counts size [19, 20, 21, 22]. In LNS, fast 

multiplication and division operations can be achieved by using addition and subtraction 

operations on the logarithms of the input data; i.e., the hardware cost of multiplications and 

divisions are similar in LNS. The reduced circuit size and possibly increased speed of 

multiplication and division make LNS becomes a viable solution to many computational 

intensive applications such as hardware implementation of matrix solving.  

Figure 3.7 shows one way to implement LNS-based JPU unit [51] for case 3 described in 

Section 3.1.1, where logarithm and antilogarithm converters can be implemented according 

to [19, 21]. In this realization, two logarithm converters are used for the multiplications of aij 

and xj as well as the division of m
i ij

j i
b a x

≠

− j∑  and aii. The global signal, sel_div, is used to 

determine when to select and am
i ij

j i
b a x

≠

−∑ j

j

ii to perform LNS-based division. A second global 

signal, sel_bi, is used to determine when the accumulator is used for executing additions and 

subtractions  associated  with  and m
ij j

j i

a x
≠
∑ m

i ij
j i

b a x
≠

−∑ .  An  external  signal,  aii_en,  from a  
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Figure 3.7: Hardware architecture for LNS-based Jacobi processor 

diagonal element detector (DED) (not shown in Figure 3.7), is used to pick and store the 

diagonal element, aii for individual JPUs.  Each JPU has a DED as showed in Figure 3.8, 

where input_addr is the base address of certain row corresponding to that JPU. An initial 

address denoted as init_addr is obtained by input_addr + (p-1), where p is the sequence 

number of JPU. For first subset of xi, sel_init_addr is set to high and the diagonal element 

address diag_addr is equal to init_addr. For second subset of xi, the sel_init_addr is set to 

low the diag_addr is obtained by adding init_addr with np(n+1), where np is the total number 

of JPU, n is the size of matrix A, and np(n+1) is a pre-calculated number. For the following 

subsets of  xi,  sel_init_addr  is  set  to  low  and  the  diag_addr  is  obtained  by  adding  the  
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Figure 3.8: Hardware architecture for DED 

diag_addr again with np(n+1). This process repeats until the first iteration is done. The 

following iteration begins again by setting sel_init_addr to high, thus diag_addr is reset to 0 

and init_addr is selected for the first subset of xi. The obtained diag_addr will be compared 

with aij_addr, where aij_addr is the address of matrix element. If diag_addr is equal to 

aij_addr, matrix element aij will be chosen and stored as diagonal element by aii_en.  

LNS-based combined Jacobi and Gauss-Seidel can be implemented in a similar way as 

LNS-based Jacobi Processor where multiplication and division are replaced with LNS-based 

design. For CG method, MMB takes up the major part of multiplication which can also be 

replaced with a LNS-based block. 

3.3 Xilinx EDK HW/SW Codesign of Iterative Methods 

Xilinx EDK [18] is a suite of tools and IP blocks that designs a complete embedded 

processor system for implementation in a Xilinx FPGA device. The suite includes Xilinx 

platform studio (XPS), software development kit (SDK), hardware IP for the Xilinx 
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embedded processors, drivers and libraries for embedded software development, and GNU 

compiler and debugger for C/C++ software development. XPS is the development 

environment used for designing the hardware portion of embedded processor system and 

SDK is an integrated development environment, complimentary to XPS, that is used for 

C/C++ embedded software application creation and verification. Xilinx EDK tools are able to 

design a system using embedded MicroBlazeTM soft processor cores implemented using 

FPGA fabric, and/or PowerPCTM (PPC) hard processor cores, i.e., the fixed CPU cores 

incorporated into FPGA fabric. The MicroBlaze soft processor core has access to a high-

speed serial interface called the Fast Simplex Link (FSL) which is an on-chip interconnect 

that provides a high-performance data channel between the MicroBlaze processor and the 

surrounding FPGA fabric. Similarly, the PowerPC hard processor core provides high-

performance communication channels through the processor local bus (PLB) and on-chip 

memory (OCM) interfaces.  

To use EDK, integrated software environment (ISE) [52] must be installed as well. ISE is 

the foundation for Xilinx FPGA logic design, which includes tools related to embedded 

processor systems and their design. Because FPGA design can be an involved process, Xilinx 

has provided ISE that allow the designer to circumvent some of this complexity such as 

constraints entry, timing analysis, logic placement and routing, and device programming 

have all been integrated into ISE. 

A simplified design flow for an embedded design using Xilinx EDK tools is showed in 

Figure 3.9 [18]. The design enables the integration of both hardware and software 

components of an embedded system. Typically, the ISE FPGA development software runs 

behind the scene. The XPS tools make function calls to the utilities provided by the ISE 

software. XPS is used primarily for embedded processor hardware system development, 

where specification of the microprocessor, peripherals, and the interconnection of these 

components, along with their respective property assignments takes place. Simple software 

development can also be accomplished from within XPS, but for more complex application 

development and debug, Xilinx recommends using the SDK tool. Verifying the correct 

functionality of  hardware  platform  can  be  accomplished  by  running  the design through a 
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Figure 3.9: Basic embedded design process flow [18]. 

 

 

Figure 3.10: EDK design simulation stages [18]. 

hardware description language (HDL) simulator. XPS facilitates three types of simulation 

including behavioral, structural and timing-accurate. Verification through behavioral, 

structural, and timing simulation can be performed at specific points in design process, as 

illustrated in Figure 3.10 [18]. After completing the design, FPGA bitstream along with the 

software executable and linkable format file (ELF) are downloaded into target board to 

configure the target device. 
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The Xilinx EDK design is implemented in Xilinx Virtex-II Pro XC2VP30 based platform 

FPGA. The HW/SW codesign architecture for Jacobi, Gauss-Seidel and CG is shown in 

Figure 3.11. This architecture includes the following hardware components: 

 PPC 405: The brain of the system, the microprocessor. 

 PLB_BUS: The processor local bus. PLB_BUS is the higher hierarchy bus, the one 

closer to the processor. Primary instruction and data memory are transferred through this 

bus. 

 OPB_BUS: The on-chip-peripheral bus. Slow and non-critical peripheral is attached to 

this bus. 

 MMB: The matrix multiplication block, which implements matrix multiplications of 

three iterative methods in FPGA.  

 PLB_BRAM_IF_CNTRL: The controller for the memory which is attached to the PLB 

bus. 

 PLB_BRAM: Memories for storing data and instructions. 

 PLB2OPB_BRIDGE: This bridge connects the PLB and the OPB bus in a master-slave 

(PLB-OPB) schema. This is a one-way bridge. Therefore, as an OPB-PLB schema is 

needed an opb2plb_bridge will be required. 

 OPB_UART: Universal asynchronous receiver/transmitter, this is attached to the OPB 

bus and allows the design system to display information on PC. 

 DDR_CLOCK_MODULE_REF: The design system requires several different clocks, 

for the bus, for the CPU, for peripherals, etc.  

 PROC_SYS_RESET: The system has different types of resets (i.e. chip reset, system 

reset, core reset, etc).  
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Figure 3.11: EDK design architecture of Jacobi, Gauss-Seidel, and CG. 
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Figure 3.12: Hardware architecture of MMB 
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As described in Section 3.1.1, the key to a fast implementation of three iterative methods is 

a fast implementation of matrix multiplication. Hence, Xilinx EDK HW/SW codesign of 

three iterative methods has matrix multiplications implemented in hardware, and the rest 

operations implemented in software and stored in instruction RAM. The MMB is able to 

execute matrix-vector multiplication, vector-vector multiplication and vector-scalar 

multiplication in one block. Figure 3.12 shows the hardware architecture of MMB including 

one single precision floating point multiplier, one accumulator containing one single 

precision floating point adder, and five 32-bit user control registers (not shown in Figure 

3.12) which can be accessed by both software and hardware. Functions of five user control 

registers are listed in Table 3.1. As showed in Figure 3.11, one port of MMB is connected to 

PLB bus, and another port is connected to data RAM to fetch data. Thus, MMB is only able 

to fetch one of inputs at a time. Therefore, a global signal, sel_aijxj, shown in Figure 3.12 is 

used to determine when to select aijxj so that only aijxj or 0 is selected. The MMB computes 

aij×xj, and then adds aijxj to accumulate register, where the accumulate register is initialized 

to zero. The MMB accumulates the products of inputs fed every two cycle. After 2n cycles, 

one element of resulted vectors will be obtained and stored into memory until all of inputs 

are processed. In order to simplify the design, MMB shares the same clock as PLB bus and is 

able to run with a max frequency of 41.2MHz due to the limitation of floating point adder, 

thus 25 MHz is chosen for PLB bus clock frequency selections and frequency of PPC is set 

to100 MHz. 

The write function: MYIP_mWriteReg(BaseAddress, RegOffset, Data) and read function: 

MYIP_mReadReg(BaseAddress, RegOffset) are used as interfaces between software and 

hardware, where BaseAddress is the base address of MMB on PLB bus , RegOffset is the 

register address offset in MMB and Data is 32-bits data written into five user register. The 

write function writes the base address of matrix A and x, the numbers of rows and columns of 

matrix A, the base address of matrix result, and the status of flag into five user registers 

respectively. The read function reads the status of flag for PPC to decide when the software 

process will start to run.  
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Table 3.1 Functions of five user control registers for CG 

User Control Register Function 

Register_1 Store the base address of matrix A. 

Register_2 Store the base address of matrix x (column vector). 

Register_3 Store the numbers of rows and columns of matrix A (high 16 bits 
for row and low 16 bits for column); 

Register_4 Store the base address of matrix result; 

Register_5 Store the status of flag, i.e. start or end of matrix multiplication. 
 

The overall EDK HW/SW codesign flow of three iterative methods is summarized as 

follows: PPC runs software implemented operations at the beginning. When matrix 

multiplication starts, PPC writes five user control registers with base addresses of matrices, 

numbers of rows and columns, and status of flag. Once flag is set to start, MMB fetches data 

from data RAM and start multiplication. At the same time, a clock counter begins to count 

clock cycles and PPC keeps checking the flag register in MMB which shows the status of 

matrix multiplication. Once matrix multiplications are finished, the flag is set to end, and 

PPC continues to do other jobs implemented in software until another matrix multiplication 

occurs. Once all of the evaluation process has been done, PPC reads the register in the clock 

counter and prints the total time displayed in the number of clock cycles. All three iterative 

methods are designed in a similar way which use the same MMB, but have different software 

descriptions corresponding to each method. 

So far, FPGA-based hardware architectures, LNS-based hardware designs, and Xilinx 

EDK HW/SW codesigns of Jacobi, combined Jacobi and Gauss-Seidel and CG have been 

discussed. Most iterative methods aim at parallel processing and are able to find solution in 

fewer steps compared to direct methods, but accuracy is not guaranteed for limited iterations. 

Selected direct methods such as PIE and WZ are able to achieve the required accuracy and 

solve matrices in parallel compared to GE and LU but mainly target on dense matrices. In 

Chapter 4, FPGA-based hardware architectures and Xilinx EDK based HW/SW codesign of 
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WZ factorization is presented followed by the reordering technique dealing with large sparse 

matrices. 
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Chapter 4

 

 

General Hardware Architectures and HW/SW Codesign of 

Direct Methods 

Since mid-1950s some of direct methods solve matrices by transferring them into block 

forms [23, 32]. Instead of solving a matrix one element at a time, the matrix is regrouped and 

solved as sub-blocks. By doing this, matrix can be factorized and solved from two sides 

simultaneously. WZ factorization and PIE are two of these methods which are more suitable 

for parallel computation. The goal of this chapter is to provide FPGA-based hardware 

implementations of WZ factorization. Single unit and scalable hardware architectures of WZ 

factorization are proposed and analyzed under different constraints. Xilinx EDK HW/SW 

codesign of WZ factorization is presented targeting on hardware implementation of the 

matrix update, followed by the reordering technique extended to WZ factorization for solving 

large sparse systems. 

4.1 Alternative Methods of WZ factorization and PIE 

As described in chapter 2, Doolittle’s method and Crout’s method are two alternatives to 

LU factorization. Two methods are slightly different, where the Doolittle's method returns a 

unit lower triangular matrix and an upper triangular matrix, while the Crout’s method returns 

a lower triangular matrix and a unit upper triangular matrix. Two methods decompose 

matrices in a similar process but with different sequence. Similarly, ZW factorization and X 

factorization can be used as alternatives of WZ factorization and PIE respectively, where 

matrices are factorized in a similar way but from different directions. 
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4.1.1 
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ZW Factorization 

An alternative of WZ factorization is to decompose matrix in a reverse way into ZW form, 

called ZW factorization. Let  where ' '  A Z W=
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ZW factorization solves two columns and two rows from the middle of matrices 'Z  and 

toward outside instead of solving them from outsides of matrices toward inside. The 

evaluation procedure is distinguished into two cases. 

'W

Case1: If n is odd, at the first evaluation stage, the elements of (n+1)/2th row of matrix W  

are obtained by: 

'

 ( 1)/2, ( 1)/2,     for  1, 2 ... -1, .n j n jw a j n+ + n= = , ,                                     (4.3) 

The elements of (n+1)/2th column of matrix 'Z  are evaluated by 

,( 1)/2
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i n
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= ，                                                    (4.4) 
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where The remaining matrix is 

then updated by 

 1,  2,...,  ( 1) / 2,  ( 3) / 2,...,  -1,   and ( 1) / 2.i n n n n i n= − + ≠ +

,( 1)/2 ( 1)/2, ,ij ij i n n ja a z w+ += −                                              (4.5) 

where  At the second evaluation stage, the elements 

of (n-1)/2

 ,    1, 2,  3,...,   and , ( 1) / 2.i j n i j n= ≠ +

th and (n+3)/2th rows of matrix  are obtained by: 'W

( 1)/2, ( 1)/2, ( 3)/2, ( 3)/2,and  , n j n j n j n jw a w a− − + += =                                 (4.6)  

where  The elements of (n-1)/21,  2 ...,  -1,   and ( 1) / 2.j n n j n= ≠, + th and (n+3)/2th columns 

of matrix 'Z  are evaluated by solving (n-3) sets of 2×2 linear equations given by 

,( 1)/2 ( 1)/2,( 1)/2 ,( 3)/2 ( 3)/2,( 1)/2 ,( 1)/2

,( 1)/2 ( 1)/2,( 3)/2 ,( 3)/2 ( 3)/2,( 5)/2 ,( 3)/2
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              (4.7) 

where  The remaining matrix is 

updated by 

1,  2,...,  -1,   and  ( -1) / 2,  ( 1) / 2 and ( 3) / 2.i n n i n n n= ≠ + +

+

                                 (4.8) ,( 1)/2 ( 1)/2, ,( 3)/2 ( 3)/2, ,ij ij i n n j i n n ja a z w z w− − + += − −

where  For following 

stages, this process repeats until the matrix 

,    1, 2,...,  -1,  and , ( 1) / 2,  ( 1) / 2 and ( 3) / 2.i j n n i j n n n= ≠ − +

'Z  and  are found in the forms of Equations 

4.1 and 4.2.  

'W

Case 2: If n is even, at first evaluation stage, two rows of  and two columns of 'W 'Z  (i.e. 

n/2th and (n+2)/2th rows, and columns) are obtained by using Equations 4.6 and 4.7. This 

process repeats for the following stages until the elements of first and last rows, and columns 

of matrix  and 'W 'Z  are found. 

During the solution process, Ax b=  can be rewritten as ( ' ')Z W x b= . Two related and 

simpler linear systems of forms 'Z y b=  and 'W x y= are required to be solved. Vector y is 

obtained by solving 'Z y b=  and final solution x is obtained by solving 'W x y= . The 
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solution process begins by solving elements of y in pairs from the middle of vector y. For odd 

case, the process starts with y(n-1)/2 and y(n+3)/2. In general, at ith stage,  

- 1 - 1and  ,i i n i n iy b y b+ += =                                                   (4.9) 

where  Vector b is then updated by Equation 4.10. 1,  2 ...,  -1,  and ( 1) / 2.i n n i n= ≠, +

'
, 1 1,j j ji i j n i n ib b z y z y− + − += − −                                                 (4.10) 

where The final solution x is 

solved from the top and bottom of matrix W , which is evaluated in pairs by solving (n-1)/2 

sets of 2×2 linear equations ending with x

1,  2,...,  2,  1 and  2,  3,...,  1,  .j i i j n i n i n n= − − = − + − + −

'

(n-1)/2 and x(n+3)/2. The last equation to be solved is 

( 1) / 2
( 1) / 2

( 1) / 2 ,( 1) / 2

n
n

n n

y
x

w
+

+
+ +

=                                           (4.11) 

Even case is similar as odd case, where x is evaluated by solving n/2 sets of 2×2 linear 

equations ending with xn/2 and x(n+2)/2. An example of ZW is given in Appendix A.  

4.1.2 

n

n

X Factorization 

Another modification scheme of PIE method is named as X factorization. The final matrix 

X is showed as follows. 

11 1

22 2, 1

33 3, 2

2,3 2, 2

1,2 1, 1

1

...

n

n

n

n n n

n n

n n

x x
x x

x x
X

x x
x x

x x

−

−

− − −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0

0
−

                       (4.12) 0

0
Matrix X is achieved by taking product of matrix 'Z  in the form of Equation 4.13 with 

matrix Z in the form of 2.14, where matrix Z is obtained by PIE method. 
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By transforming matrix Z into X form, final solution x can be obtained by solving multiple 

sets of 2×2 equations simultaneously. The cross diagonal elements of matrix X are same as 

those in matrix Z. By equalizing 'Z Z with X, matrix 'Z  is obtained and used to update 

vector , where vector is the updated vector b from PIE method. The relationship 

between PIE and X factorization is showed as follows: First, multiply both sides of Equation 

2.1 with matrix W to obtain Equation 4.14. 

'b 'b

 WAx Wb=                                                         (4.14) 

As described in PIE scheme, WA Z= , substitute this equation into Equation 4.14 to 

obtain Equation 4.15      

  'Zx b=                                                            (4.15) 

where . Then multiply both sides of Equation 4.15 with Z’ to obtain the 

following equation.  

'b Wb=

 ''Z 'Zx Z b=                                                      (4.16) 

Substitute 'Z Z X=  into Equation 4.16 to obtain Equation 4.17 

 ''Xx b=                                                        (4.17) 

where . '' ' 'b Z b= 'Z Z  can be written in Equation 4.18. 
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                              (4.18) 

0 0

Considering the case when n is odd, at the first evaluation stage, the elements of 2nd and (n-

1)th columns of matrix 'Z  are obtained by solving two sets of 2×2 equations given by 

 12 22 1, 1 1,2 12

12 2, 1 1, 1 1, 1 1, 1

' '
' '

n n

n n n n

z z z z z
z z z z z

− −

n− − − − −

+ =
+ =

                                         (4.19) 

and 

,2 22 , 1 1,2 ,2

,2 2, 1 , 1 1, 1 , 1

' '
.

' '
n n n n n

n n n n n n n n

z z z z z
z z z z z

− −

− − − − −

+ =
+ =

                                      (4.19) 

The remaining elements of Z are updated using 'Z  values from the previous step. For 

following evaluation stages, this procedure repeats until the elements of middle column of 

matrix 'Z  are found. An example of X factorization is given in Appendix A. 

4.2 FPGA-based Hardware Architectures of WZ factorization 

As described in chapter 2, WZ factorization solves matrices by transferring them into block 

forms, where the matrix is regrouped and solved as sub-blocks. In FPGA-based hardware 

design of WZ factorization, pairs of elements of matrix W can be solved in serial by single 
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4.2.1 

unit architecture and multiple pairs of matrix W can be solved in parallel by a scalable 

architecture.  

Single Unit Architecture  

Figure 4.1 shows the single unit hardware architecture of WZ factorization. This 

architecture consists of a 2×2 solver and one update block which are used to solve a pair of W 

values and update one row of the remaining matrix An-2i respectively. The 2×2_solver contains 

three Wsolvers, where sub/adder functioned as subtractor in these Wsolvers. The update 

block contains several Aupdate units. Each Aupdate unit contains one Wsolver and one 

sub/adder functioned as an adder.  Each Aupdate unit is used to update certain elements of 

the An-2i based on the position of Aupdate unit. Hardware architectures of Wsolver and 

Aupdate unit are shown in Figure 4.2, where i represents each distinct evaluation stage for i 

=1, 2,…,(n+1)/2, j represents elements of the first and last columns of matrix W for j =i+1, 

i+2,…,n-i, and k represents row elements of the remaining matrix An-2i for k =i+1, i =2,…,n-i.

In this architecture, the 2×2_solver applies Cramer’s rule under the non-singularity 

constraint imposed for their determinants. Three Wsolvers compute a pair of W values 

simultaneously and fed them into the update block. Ideally, the update block consists of (n-

2i) Aupdate units. It is unlikely to implement this ideal case in reality, since the number of 

Aupdate units will increase significantly as matrix size increases. Therefore, the number of 

Aupdate units should be determined according to the available hardware resource. Assume 

two ram modules are allocated to 2×2_solver and Aupdate respectively. During the 

initialization phase, matrix A can be stored into matrix Z to save memory and accelerate the 

calculation process. By doing so, the elements of first and last rows of matrix Z are not 

necessary to be evaluated and the process of the update of the An-2i is carried out directly in 

matrix Z. There are six different inputs for the 2×2_solver, and five inputs for each Aupdate 

unit where two of them are W values coming from the 2×2_solver. The modification block 

could start loading data once the 2×2_solver finishes loading data from memory. Only one 

Wsolver’s processing time is counted since three Wsolvers are processed simultaneously. 

Assume each Wsolver and divider take α and β cycles  to  process  respectively. Thus the 2×2 
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Figure 4.1: Block diagram of a single unit for WZ factorization method. 

 
Figure 4.2: Block diagrams of Wsolver and Aupdate. 
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_solver requires (α+β) cycles to process. Memory is equally divided into λ portions satisfying 

the bandwidth required for one 2×2_solver. The loading cycle for p Aupdate units is 3p/λ. By 

equalizing these two items, p can be evaluated as 

3 (( )      3
p p ) .λ α βα β λ

++ = ⇒ =                                 (4.20) 

From the data distribution aspect, four of inputs data of the 2×2_solver are located at four 

corners of matrix Z (e.g. z11, zn1, zn1, znn for first stage). The other two are located at the first 

and last columns and same row as W values located. For example, if wji and wj, n-i+1 are 

evaluated by 2×2_solver, the rest two inputs are located at jth row of matrix Z (e.g. zji and zjn 

for the first stage). Inputs data to each Aupdate are located at the same column of the element 

which required to be updated. For example, in order to update aik, the inputs data are 

retrieved from kth column of matrix Z (e.g. z1k and znk for first stage). Therefore, memory can 

be divided into 4 portions according to data distribution and each portion is able to store a 

quarter of matrix Z.  

4.2.2 Scalable Architecture  

To achieve complete parallel process, n-2 WZ_solvers can be parallized in WZ hardware 

architecture. Each WZ_solver is responsible for evaluating a pair of W values and updating 

elements of one row of the remaining matrix An-2i. To extend the parallelism, n-2 Aupdate 

units can be parallized in each WZ_solver for the first iteration. For the following iterations, 

both the numbers of WZ_solvers and Aupdate units will be decreased by 2, thus some of the 

hardware resource are wasted at later stages. Considering the available hardware resource, 

several possible cases are proposed as follows, where single unit is denoted as WZ_solver 

here. 

1. 1 WZ_solver with 1 2×2_solver and 1 Aupdate unit. Pairs of W values are solved in 

serial by 2×2_solver and elements of one row of the remaining matrix An-2 are also 

updated in serial by Aupdate unit.  
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2. 1 WZ_solver with 1 2×2_solver and k (k<n-2) Aupdate units. A subset of one row of 

An-2i is updated in parallel at a time which requires ( 2 ) /n i k−⎡ ⎤⎢ ⎥  number of times to 

update one row of the remaining matrix An-2i. But pairs of W values are solved in serial 

by 2×2_solver.  

3. l (l<n–2) WZ_solvers with 1 2×2_solver and 1 Aupdate in each WZ_solver. 1 

WZ_solver is corresponding to solve one pair of W values and update one row of the 

remaining matrix An-2i. Inside each WZ_solver, the elements of one row of An-2i are 

updated in serial, but a subset of W are solved in parallel at a time which requires 

 number of times to obtain two columns of matrix W. ( 2 ) /n i l−⎡⎢ ⎤⎥

⎤⎥

4. p (p<n-2) WZ_solvers with 1 2×2_solver and q (q<n-2) Aupdate units in each 

WZ_solver. A subset of one row of An-2i is updated in parallel inside each WZ_solver, 

which requires  number of times to process. A subset of W values are also 

solved in parallel at a time among p WZ_solvers which requires  number 

of times to obtain two columns of matrix W.  

( 2 ) /n i q−⎡⎢

( 2 ) /n i p−⎡ ⎤⎢ ⎥

Case 4 is considered here for scalable hardware architecture. In order to evenly distribute 

the data, assume the memory allocated to 2×2 solver is divided into η portions and the 

memory allocated to the update block is divided in to δ portions. Assume each Wsolver and 

divider take α and β cycles to process respectively. As showed in Figure 4.3, first WZ_solver 

has six inputs data for 2×2_solver and three inputs data for each Aupdate unit. Each extra 

WZ_solver adds two more inputs data for 2×2_solver and one more input data for each 

Aupdate unit. The numbers shown in Figure 4.3 represent the numbers of inputs data. The 

numbers of WZ_solvers and Aupdate units (i.e. p and q) are obtained as follows. By 

equalizing the number of inputs data of 2×2_solvers with memory portions η, p can be 

evaluated as: 

( - 4)(6 2( 1))   2p p ηη+ − = ⇒ =                                        (4.21) 

where 6  is the number of inputs data of 2×2_solver. 2( 1)p+ −
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Figure 4.3: Scalable architecture of WZ factorization(case 4). 

By equalizing the total number of inputs data of Aupdate units with the loading cycle for q 

Aupdate units, q can be evaluated as:  

( 1 3) ( )( )   ( 2
p q q p )

α β δα β δ
− + ++ = ⇒ = +                           (4.22) 

where ( 1 3)p q− + is the number of inputs data of Aupdate units. Substitute Equation 

4.21 into Equation 4.22, q is obtained by 

 2( )q α β δ
η

+=                                                      (4.23) 

In this architecture, both parts of memory are initialized with matrix Z and are divided into 

η and δ portions respectively, which make data distribution more dynamical according to the 

requirements. The evaluation of next pairs of W values requires updating the remaining 

matrix An-2i in the previous iteration. This dependence hinders the parallelization of the WZ 
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factorization. This drawback can be improved by adjusting data input sequences. During the 

update process, control signals are used to pick the Z values required to be updated first. In 

this case, the elements of first and last columns in An-2i should be updated first since those 

values are required by 2×2 solvers for next iteration. 

4.3 Xilinx EDK HW/SW Codesign of WZ Factorization 

As described in chapter 3, Xilinx EDK tools for HW/SW codesign enable the integration of 

both hardware and software components of an embedded system. Xilinx EDK HW/SW 

codesign architecture for WZ factorization is shown in Figure 4.4, which has the same 

architecture as HW/SW codesign of CG except the hardware implemented block, i.e. the 

update of one row of the remaining matrix An-2i instead of MMB is implemented in hardware. 

The Update block shown in Figure 4.5 consists of one single precision floating point 

multiplier, one single precision floating point adder/subtractor, and three 32-bit user control 

registers (not shown in Figure 4.5) which can be accessed by both hardware and software. 

Functions of three user control registers are listed in Table 4.1. As shown in Figure 4.4, 

Update block is only able to fetch one of inputs at a time. Therefore, a global signal, sel_wz, 

shown in Figure 4.5 is used to determine when to select wz so that only wz or 0 is selected. 

The Update block computes wz, and then subtracts wz from aij and stores the result, , into 

accumulate register. The second global signal, sel_a

'ija

ij, is used to determine when to select the 

accumulated result , and subtracts second wz from . 'ija 'ija

Table 4.2 Functions of three user control registers for WZ 

User Control Register Function 

Register_1 Store the base address of the remaining matrix An-2i, which is 
same as the base address of updated results 

Register_2 Store the number of columns of the remaining matrix An-2i. 

Register_3 Store the status of flag, i.e. start or end of matrix multiplication. 



 

  54

PPC405

JTAG

IPLBDPLB

PORTASPLB

PLB_BRAM_IF_
CNTRL_1

PORTASPLB

Instruction RAM Data RAM

PORTAPORTA

PLB2OPB
BRIDGE

MPLBSPLB Update
Block

PCRS232
UART

PLB BUS

OPB BUS

PLB_BRAM_IF_
CNTRL_2

 

Figure 4.4: EDK design architecture of WZ factorization 

 

 

Figure 4.5: Hardware architecture of Update block 
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The write function: MYIP_mWriteReg(BaseAddress, RegOffset, Data) and read function: 

MYIP_mReadReg(BaseAddress, RegOffset) are used as interfaces to software, where 

BaseAddress is the base address of the Update block on PLB bus, RegOffset is the user 

register address offset in the Update block and Data is 32-bits data written into three user 

registers. Write function writes the base address of the remaining matrix An-2i, the number of 

columns of the remaining matrix An-2i, and the status of flag into three user registers 

respectively. Read function reads the status of flag for PPC to decide when the software 

implemented processes will start to run.  

The overall EDK HW/SW codesign flow of WZ factorization is summarized as follows: 

PPC runs software implemented operations at the beginning. When the row update starts, 

PPC writes three user control registers with the base address of An-2i, the number of columns 

of An-2i, and the status of flag. Once flag is set to start, Update block fetches data from data 

RAM and start update. At the same time, a clock counter begins to count clock cycles and 

PPC keeps checking the flag register in update block. Once the update is finished, flag will 

be set to end, and PPC continues to do other jobs implemented in software until another row 

update occurs. Once all of the evaluation process has been done, PPC reads the register in the 

clock counter and prints the total time displayed in clock cycles. 

4.4 Reordering Techniques for Sparse Matrix 

If a matrix is dense, the best choice is probably to factor the matrix and solve the equation 

by back substitution. The time spent on factoring a dense matrix is roughly equivalent to the 

time spent on solving the matrix iteratively. But for applications like power network and 

circuit simulation, the larger the network is, the more sparse the matrix. For example, the 

non-zero elements in a 3000×3000 power network matrix occupy only about two percent of 

total elements. Even though a sparse matrix offers the advantage of reduced storage space for 

data storage, factoring sparse matrix produces more nonzeros than matrix itself, resulting in 

several fill-ins, which might be impossible to implement due to limited memory, and will be 
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time consuming as well. Iterative methods are memory-efficient and run quickly with sparse 

matrices, but direct methods are still preferred choices if more accurate results are desired.  

A dynamic data structure [53] is discussed as follows to take care of the fill-ins during 

factorizations of direct methods, where a sparse matrix can be reordered into bordered-

diagonal-block (BDB) form shown in Figure 7 to reduce the number of fill-ins. The most 

widely used reordering techniques are minimum degree and minimum fill-in [54]. The idea is 

to generate a permutation of the original matrix so that the permuted matrix results in a stable 

solution that also increases parallelism. As showed in Figure 7, Aij’s are matrix blocks; Aii’s 

are referred to as the diagonal blocks; Ain and Anj are called right border blocks and bottom 

border blocks, respectively, where [ ], 1,i j n 1∈ −  and Ann is known as the last block. The 

blocks Aii, Ain, and Ani are said to form a 3-block group [55], where [ ]1, 1i n∈ − and n N≤ . 

Since all non-border off diagonal blocks contain only 0’s, there will be no fill-ins in these 

blocks during factorization and the resulting factorized matrix keeps the same BDB structure. 

In this BDB form, there is no data dependence among the factorization of the 3-block groups 

until the last block. Hence, the factorization of the 3-block groups can be carried out 

independently from each other and no inter-processor communication is required during this 

procedure. In order to factor the last block Ann, pairs of blocks from right border and bottom 

border are multiplied in parallel to produce *
nj nj jnA A A= , where [ ]1, 1j n∈ − . The resulting 

products can be stored in the bottom blocks and the summation of these products is required 

to factor the last block. The summation of these products is carried out along a binary tree in 

parallel and the results are sent to the processor assigned to the last diagonal block. Upon 

above description, the BDB matrix algorithm shows distinct advantages for parallel 

implementation. 

Same technique can be applied to WZ factorization shown in Figure 8. This BDB-based 

WZ factorization involves four steps: (1) WZ factorization of the independent blocks. (2) 

Multiplication of the right and bottom border blocks to generate the partial sums. (3) The 

accumulation of the partial results for the last diagonal block. (4) WZ factorization of the last 

diagonal block using the accumulated partial results from the previous steps. 
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Figure 7: Sparse matrix in BDB form 
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Figure 8: Parallel WZ factorization of a sparse BDB matrix 

This chapter discussed FPGA-based hardware architectures and Xilinx EDK HW/SW 

codesign of WZ factorization. So far, FPGA-based general hardware architectures of three 

iterative methods and WZ factorization have been discussed, and Xilinx EDK HW/SW 

codesign of three iterative methods and WZ factorization have been done. Performance 

analysis and comparison of each method are showed in next chapter. 
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Chapter 5

5.1.1 

 

 

Performance Analysis 

After realization of FPGA-based general hardware architectures, LNS based hardware 

designs, and Xilinx EDK HW/SW codesigns of selected matrix solving methods, 

performance analysis of each method are discussed under their own category (i.e., iterative 

methods or direct methods) based on the results of Matlab simulations and Xilinx EDK 

HW/SW codesigns. Convergence analysis of LNS-based Jacobi processor is also given to 

show that how the simplified error correction circuit for logarithm/antilogarithm conversion 

is related to the convergence of Jacobi method.  

5.1 Performance Analysis of Iterative Methods 

Matlab Comparison of Jacobi, Gauss-Seidel and Conjugate 
Gradient 

Single-processor computer based Matlab simulations were performed to evaluate three 

iterative methods. This computer has IBM IntelliStation Z Pro with a 3.6 GHz Intel Xeon 

processor, 2MB L2 cache and 2.75 GB of system memory. Symmetric, positive-definite 

linear systems are used for testing. Those matrices are generated by Poisson equation [56], 

which is a partial differential equation with broad utility in electrostatics, mechanical 

engineering and theoretical physics. The Matlab simulation results for the three methods are 

showed in Figures 5.1, 5.2 and 5.3 with different specifications of matrices and tolerance. 

Figure 5.1 shows that given a specific matrix, CG always takes less numbers of iterations to 

converge for any tolerance values. The result also verifies that CG converges in at most n 

steps, where n is the size of matrix. Figure 5.2 shows that CG  always  converges  at  a  faster  

http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Electrostatics
http://en.wikipedia.org/wiki/Mechanical_engineering
http://en.wikipedia.org/wiki/Mechanical_engineering
http://en.wikipedia.org/wiki/Theoretical_physics
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Figure 5.1: Number of iterations required for solving specific size of linear systems for 

different tolerance values according to Jacobi, GS and CG methods. 
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Figure 5.2: Number of iterations required for solving different size of linear systems for 

specified tolerance value according to Jacobi, GS and CG methods. 
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Figure 5.3: Total computation time required for solving different size of linear systems for 

specified tolerance values according to Jacobi, GS and CG methods. 

rate for a given tolerance and different size of matrix. The result also shows that Gauss-

Seidel takes about half numbers of iterations of Jacobi method taken to converge. Therefore, 

in term of iteration, CG is a better choice to solve given linear systems.  However, the total 

computation times of the three methods indicate different results. A Matlab function named 

as tic-toc is used to calculate the average computation time of the three iterative methods for 

different matrices in terms of CPU time. Figure 5.3 shows that CG takes less computation 

time than Jacobi at the beginning, but requires more time as the size of matrix grows over 

400. This result is caused by the increasing number of matrix-vector multiplications as 

described in Chapter 2, which is the dominant factor of the evaluation processes of three 

methods as matrix increases, and matrix multiplication is more dominant compared with 

Jacobi and Gauss-Seidel method. Therefore, this part has been implemented in hardware to 

improve overall performance. 
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5.1.2 Convergence Analysis of LNS-based Jacobi Processor 

Jacobi method will always converge if A is diagonally dominant [57], i.e., 

ii
ij

ij aa <∑
≠

                                                            (5.1) 

Jacobi sometimes converges even if this condition is not satisfied. It is necessary, however, 

that the diagonal terms in the matrix are greater (in magnitude) than the other terms. When 

LNS is used, logarithm and antilogarithm conversions introduce additional errors. It is 

important to know whether these additional errors affect the convergence of Jacobi method. 

Matlab simulations were carried out to study how error introduced by logarithm conversion 

in a LNS-based Jacobi processor could affect the convergence. The matrices generated by 

Matlab that satisfy Equation 5.1 are chosen, i.e. the matrices are all convergent according to 

Jacobi method. Firstly, non-diagonal values are randomly generated within a range of [10 20]; 

then diagonal values are chosen according Equation 5.1. For performance comparison, these 

diagonal values are scaled up to 10 times and 100 times of the original one. Equations of 

linear systems based on the chosen matrices are then solved by using Jacobi method with and 

without using LNS.  

Figure 5.4 shows the results of Matlab simulations of matrices with and without using LNS. 

Two types of error correction approaches are used with LNS; one is 6-region error correction 

according to [21] and the other is 8-region error correction according to [58]. Figure 5.5 

shows similar Matlab simulation results with 10-times larger diagonal values than the ones 

used in Figure 5.4. It should be noted that LNS with 6 regions error correction has accuracy 

between 10-2 and 10-3 while LNS with 8 regions error correction has accuracy between 

around 10-3. By comparing the numbers of iterations in Figures 5.4, 5.5 and 5.6, it shows that 

larger diagonal values result in less number of iterations to obtain solutions, which is 

consistent with Equation 5.1. Since data less than 10-8 can not be represented in binary 

format with limited range of the fraction part of logarithm, for some cases, LNS-based Jacobi 

processor is not able to converge for tolerance less than 10-8. The limited range of the fraction 

part  also  causes  degraded  accuracy.  In  order  to  improve  the   convergence   for   smaller  
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Figure 5.4 Number of iterations required for solving different size of linear systems for 

different diagonal values according to Jacobi method with and without using LNS. Scale 

factors for diagonal values are ×1. 

 

Figure 5.5 Number of iterations required for solving different size of linear systems for 

different diagonal values according to Jacobi method with and without using LNS. Scale 

factors for diagonal values are ×10. 
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Figure 5.6 Number of iterations required for solving different size of linear systems for 

different diagonal values according to Jacobi method with and without using LNS. Scale 

factors for diagonal values are ×100. 

 

Figure 5.7 Number of iterations required for solving different size of linear systems 

according to Jacobi method with and without using LNS under different initial values. 
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i

tolerances and increase the data accuracy, the range of the fraction part of logarithm can be 

increased. Figure 5.7 shows that LNS have similar iterations as multiplication when different 

initial values for x are applied. It can be seen that different initial values for x do not have 

significant impact on convergence. 

The relationship between of convergence and LNS can be expressed in the following 

mathematic form. Let  be the difference between the im m
i ie x x= − th component of the exact 

solution xi and the ith component of the mth iterate, m≥ 0.   

1( )
m

ij jm m
i i i

j i j iii ii

a
e x x

a a
ε m

iε
−

≠ ≠

= − − − +∑ ∑                                        (5.2) 

where 1 1mm
i i ix e− − = m

j
− , x ε  is the error cause by the logarithm and antilogarithm conversions 

associated the multiplication of andija jx  at mth iteration, and m
iε  is the error caused by the 

logarithm and antilogarithm division associated with 1  at m/ iia th iteration. Let 
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Let  

max ij

j i ii

a
K

a≠

= ∑                                                      (5.4) 

Then Equation 5.3 becomes  

1
( 1) m

jm m
i i

ii

n
e K

a
mε− ∞

∞

−
≤ + +

ε
e                                      (5.5) 

The first term is same as the sufficient condition for Jacobi method to converge without 

using LNS; i.e. if K < 1, e  as 0m → m →∞ . For example, will be multiplied by 1
ie /ij ii

j i

a a
≠
∑  
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for m–1 times at the mth iteration. However, every iteration also generates a new second term 

and third term. At the mth iteration, the accumulated errors caused by logarithm and 

antilogarithm conversions can be expressed as: 

1

( 1)
(

km
jm k k

i
k ii

n
K

a
)ε− ∞

=

−
+∑

ε
                                         (5.6) 

Equation 5.6 shows the errors accumulate with the number of iterations (m) and is also 

proportional to the size of matrix (n). In order for LNS-based Jacobi method to absolutely 

converge, both Equation 5.1 and 5.6 must be satisfied. The accumulated errors expressed by 

Equation 5.6 can be kept less than the convergence tolerance by including proper error 

correction circuits in the logarithm and antilogarithm converters. Asume 

ε ε ε maxk k
j i

k
iε∞ ∞ ∞

= = =                                           (5.7) 

Equation 5.6 can be simplified as: 

( )
( )

/ 1   when 

  / 1    when 0
ii

ii

m n a K

n a K

ε

ε
∞

∞

⎧ 1+ →⎪
⎨

+ →⎪⎩
                                       (5.8) 

Equation 5.8 matches the Matlab simulations in Figure 5.4, Figure 5.5 and Figure 5.6. 

When m and ε
∞

 are small, the numbers of iterations are similar for Jacobi method with or 

without using LNS. If current error correction algorithms where ε
∞

is large, LNS must be 

used with caution when Jacobi method needs more iterations to converge. 

5.1.3 Xilinx EDK Implementation of Three Iterative Methods 

Xilinx EDK implementation was performed to show the performance of the three iterative 

methods, where the three iterative methods were implemented in pure software running on 

PPC and also implemented in HW/SW codesign using PPC and FPGA. The comparison of 

speeds of Jacobi, Gauss-Seidel and CG are shown in Figures 5.8, 5.9 and 5.10 respectively. 

Since different microprocessors might have different frequency specifications, clock cycle is 
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used to represent the speed instead of using actual time within this HW/SW codesign. In this 

HW/SW codesign, MMB block is implemented in hardware while the rest is unchanged (i.e., 

implemented in PPC based software). As matrix increases, the computation time of the 

software implemented designs grows exponentially, but HW/SW codesigns are almost linear 

lines with comparable smaller slopes. These results also indicate that all three iterative 

methods are matrix multiplication dominant, since only the MMB is implemented in 

hardware. Figure 5.1 shows that CG runs faster than Jacobi method in HW/SW codesign for 

a given tolerance (i.e., 10-6 in this case) , since both methods are matrix multiplication 

dominant and CG takes less number of iterations to converge compared to Jacobi. However, 

this result is also dependent on the matrix given for testing.  If a matrix is highly diagonal 

dominant, where the diagonal values are 10 times or even 100 times larger the sum of non-

diagonal values, Jacobi will take less number of iterations to converge and the difference of 

clock cycles between Jacobi and CG within HW/SW codesigns will also be reduced.  

Three methods implemented in software and HW/SW codesign are also compared for same 

number of iterations (i.e. 6 iterations in this case). Figure 5.1 shows that CG runs slower than  
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Figure 5.8: Speed comparison of EDK SW design and HW/SW codesign of Jacobi method 
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Gauss-Seidel (HW/SW vs SW)
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Figure 5.9: Speed comparison of EDK SW design and HW/SW codesign of GS method 
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Figure 5.10: Speed comparison of EDK SW design and HW/SW codesign of CG method 
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HW/SW vs SW of Jacobi, GS and CG until convergence
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Figure 5.11: Speed comparison of Jacobi, Gauss-Seidel and CG method implemented in 

EDK SW design and HW/SW codesign for different iterations until convergence. 

HW/SW vs SW of Jacobi, GS and CG with same iterations
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Figure 5.12: Speed comparison of Jacobi, Gauss-Seidel and CG method implemented in 

EDK SW design and HW/SW codesign for same numbers of iterations. 
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5.1.4 

both Jacobi and Gauss-Seidel in software, but the differences of clock cycles among three 

methods are apparently reduced in HW/SW codesign. This result also indicates that CG is 

more matrix multiplication dominant compared to other two iterative methods. 

Memory Consideration 

Memory is one of the most important concerns in processing large linear systems. With 

proposed hardware architectures of iterative methods, memory space is proportional to the 

size of linear system. For example, for Jacobi method, every JPU must have read access to 

memories of vector b, coefficient matrix A, vector x and write access to memory of new 

vector x. For smaller size systems, the simplest form of the design is based on using build-in 

FPGA block RAMs (BRAM), which allows the circuit to run at maximum frequency. For 

example, the XC5VLX50 FPGA has 96×18 Kb BRAM which can provide enough memory 

space for a system with 160 equations. With four XC5VLX50 FPGAs, the maximum system 

size will be doubled. 

 Every JPU requires read access to certain rows in matrix A and corresponding elements 

from vector b based on the position of JPU. These elements can be loaded once into the 

appropriate FPGAs and used until the end of the process. Every FPGA also should have an 

identical image of the vector x. However, new elements of vector x (depending on the 

number of JPUs) are generated after an iteration. In this case, using a shared bus and an 

arbitration method, new elements of x can be distributed and shared among FPGAs during 

the next iteration. Assuming there are four FPGAs with 8 JPUs in total, at the end of each 

iteration eight new elements of vector x will be created. Eight write accesses to the shared 

bus will be required to distribute the new elements.  

In Xilinx EDK HW/SW codesigns of selected iterative methods, on-chip dual-port BRAM 

is used for storing instructions and data in order to simplify the design. For larger systems, 

where internal BRAM is not adequate, using single port external memory with large number 

of JPUs is able to compare the performance of larger size matrices. However, data needs to 

be fetched from external memory through PLB bus, and also PLB bus is always occupied by 

PPC for checking the status of MMB block at the same time. This situation causes time 
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5.2.1 

confliction due to limited ports of external memory. Nevertheless, there are other ways to use 

external memory. One of them is to use interrupt signal of PPC to check the status of MMB 

block, but will take more time for exploring EDK and debugging.  

5.2 Performance Analysis of Direct Methods 

Matlab Comparison of LU and WZ 

The well-known LU factorization is one of the most commonly used algorithms to solve 

linear systems on sequential computers nowadays. Unlike WZ factorization, LU algorithm 

essentially processes elimination and factorization serially. For an n×n matrix, it takes (n-1) 

steps to factorize in LU, but only n/2 steps if n is even and (n-1)/2 steps if n is odd in WZ.  
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Figure 5.13: Computation time for WZ and LU factorization, time difference between WZ, 

and LU and computation time for the update of An-2i in WZ. 
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5.2.2 

Hence, WZ is more suitable for parallel computation compared to LU. Research made by 

Yalamov [15, 33] showed that WZ based matrix solving method has obtained a 20% gain in 

execution time compared to LU method when processed on a parallel computer. 

In single-processor computer based Matlab simulations, however, WZ doesn’t exhibit any 

advantage since every step is done in serial. The Matlab function function tic-toc is again 

used to calculate the average computation times of WZ and LU in terms of CPU time. Figure 

5.1 shows that the computation time of both methods is increased exponentially but WZ 

increases faster than LU as matrix increases. The time difference between them is also 

increased exponentially as matrix increases. The simulation results also shows that the major 

computation time cost in WZ is from the update of A , which takes up to more than 90% of 

total time and is close to 99% when matrix increases over 300. Therefore, it is expected that 

the performance will be improved if the update of A  is implemented in hardware with 

HW/SW codesign.

n-2i

n-2i

Xilinx EDK Implementation of WZ Factorization 

Xilinx EDK implementation was also performed to show the performance of WZ 

factorization, where WZ factorization was implemented in pure software running on PPC and 

also implemented in HW/SW codesign using PPC and FPGA. The comparison of speeds 

between these two implementations is shown in Figure 5.1. In this figure, clock cycle is again 

used to represent the speed instead of using actual time. In this HW/SW codesign, Aupdate 

block is implemented in hardware while the rest is unchanged (i.e., implemented in software). 

The matrices generated based on Poisson equation are also used in these simulations. When 

matrix size is small (e.g. less than 9), the time difference of HW/SW codesign and software 

implementation is not obvious. As matrix size increases, the computation time of both 

designs increase exponentially, the software implementation increases faster than HW/SW 

codesign, and the time difference between two implementations also increases exponentially. 

The simulation results show that the performance of WZ improves when the update of An-2i  

is  implemented  in  hardware,  which  
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Figure 5.14: Speed comparison of EDK based SW design and HW/SW codesign of WZ 

factorization 

indicates that the update of the remaining matrix An-2i is the most time consuming part in WZ 

factorization.  

In this HW/SW codesign of WZ factorization, only the inner loop k, i.e., the update of one 

row of the remaining matrix An-2i as described in Chapter 4, is implemented in hardware. The 

performance will be improved if loop j is also implemented in hardware, which means the 

update of the entire remaining matrix An-2i is processed in hardware. The performance will be 

further improved if loop i is also replaced by hardware. This HW/SW codesign is also tested 

with other matrices, where matrices A is randomly generated within range of [10 20] and 

vector b is generated from matrix A and a given vector x. The simulation results are similar 

with Figure 5.1. The implementation with these matrices shows the generality of this design. 

This chapter discussed performance comparison of selected iterative methods and direct 

method under each category. The most time consuming parts, i.e. the matrix multiplication of 
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iterative methods and the update of WZ factorization, are implemented in hardware with 

HW/SW codesigns. The EDK implementation results show that HW/SW codesigns achieve 

significant improvement over pure software design. Convergence analysis of LNS-based 

Jacobi processor shows the error caused by logarithm and antilogarithm conversion 

accumulates as the number of iterations grows. The accumulated error is also proportional to 

the size of a linear system.  
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Chapter 6

 

 

Conclusions and Future Work 

6.1 Conclusions 

This thesis focuses on the development of parallel processing of matrix solving algorithms 

and hardware architectures for the selected algorithms including Jacobi, Gauss-Seidel, CG and 

WZ factorization. Several matrix solving methods were discussed targeting on their parallel 

property. The FPGA-based general hardware architectures of these methods were proposed 

considering the hardware resource. The performance comparisons of these methods were 

analyzed based on the results of Matlab simulations and Xilinx EDK HW/SW codesign 

simulations. For iterative methods, Matlab simulations were performed to compare the Jacobi, 

Gauss-Seidel and CG methods. The simulation results indicate that the key to a fast 

implementation of the three methods is a fast implementation of matrix multiplication. The 

simulation results also show that CG method takes less number of iterations for any given 

tolerance. For different sizes of matrices, CG method also takes less number of iterations to 

reach a given tolerance compared with other two methods. Thus, in terms of iterations, CG is 

a better algorithm to solve given linear systems. However, the total computation time of the 

three methods indicates the different results. The simulation results show that CG takes more 

computation time than other two methods as matrix size increases over certain size (e.g. 

400×400 in this case), since matrix-vector multiplication is a more dominant factor in CG 

method than in the other two methods. In order to improve the speed of matrix multiplication, 

two approaches are used. The first approach is to use LNS instead of matrix multiplication. In 

LNS, fast multiplication and division operations can be achieved by using addition and 

subtraction operations on the logarithms of the input data. Convergence analysis of a LNS 
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based Jacobi processor was discussed. Two major factors were identified and considered in 

this convergence analysis. Firstly, in any hardware architecture for the Jacobi iterative 

method, only a set of unknowns can be processed in parallel due to the constraint of 

hardware resources. Secondly, the conversions of logarithm-to-floating point and floating-to-

logarithm introduce additional error. On the other hand, the convergence analysis also shows 

that the proper error correction algorithm does not necessarily to be highly accurate for a 

linear system with considerably smaller matrix or extremely diagonally dominated matrix. 

The second approach is to implement matrix multiplications of the three methods in 

hardware. The three iterative methods were implemented with Xilinx EDK HW/SW codesign 

where MMB is implemented in hardware and the rest is unchanged (i.e. implemented in 

software). The EDK testing results show that, as the size of matrix increases, the computation 

time of software implemented designs grow exponentially, but the computation time of 

HW/SW codesigns are relatively linear as compared to software implementation, which 

proves that all three methods are matrix-multiplication dominant. CG runs faster than Jacobi 

method in the HW/SW codesign for a given tolerance, due to that fact that matrix 

multiplications dominate the computation time of all three methods while CG requires less 

number of iterations to converge comparing to other two methods. The EDK testing results 

also show that with software implementation, CG method is slower than both Jacobi and GS 

methods for the same number of iterations. However, the differences in computation time are 

improved significantly in HW/SW codesign, which is evidence that CG method is more 

matrix-multiplication dominant comparing to the other two methods. 

For direct methods, FPGA-based hardware architecture and Xilinx EDK HW/SW codesign 

of WZ factorization are also presented. Single unit and scalable architectures of WZ 

factorization are proposed and analyzed under different constraints. Matlab simulations were 

performed to compare the performance of LU and WZ. The simulation results show that the 

WZ factorization runs faster than the LU factorization on parallel processors but slower on 

single processor. The simulation results also indicate that the most time consuming part of 

WZ comes from the update of the remaining matrix An-2i. Hence, the matrix update is 

implemented in hardware with Xilinx EDK HW/SW codesign of WZ factorization to 
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improve the overall performance. The EDK simulation results show that the performance of 

HW/SW codesign is apparently improved over pure software implementation.  

6.2 Suggestions for Future Work 

The implementation of the selected matrix solving methods remains for future work. Some 

of future work is suggested as follows.  

1. Performance comparison of LU and WZ on FPGA-based design: In order to compare LU 

with WZ in hardware implementation, hardware architecture of LU needs to be designed 

in a similar way as WZ. Figure 6.1 shows one way to implement hardware architecture 

of LU factorization. This architecture has one L_decomposer and one U_decomposer to 

solve matrices L and U respectively. Two decomposers process alternatively to 

decompose a row and column of L and U respectively. At the beginning, the memory is 

initialized with matrix A, where all three matrices can be stored in matrix A. During the 

factorization, the modified elements in matrix A are deleted and replaced with matrices L 

and U. The diagonal of matrix L or U contains all 1’s and is not stored explicitly. From 

Equations 2.7, all nonzero elements on the preceding rows and columns have to be 

available before the kth loop step begins. This relationship hinders the parallel property of 

LU, although the elements of kth row or column can be calculated in parallel, which 

means multiple multipliers can be paralleled at the input. The numbers of multipliers and 

adders need to be determined according to the available hardware resource for pure 

FPGA-based hardware implementation. Considering available hardware resource, the 

comparison of LU and WZ can be simplified in HW/SW codesign. Matlab simulation of 

LU factorization shows that the most time consuming part comes from the multipliers 

and accumulators of L_decomposer and U_decomposer shown in Figure 6.1 respectively. 

Therefore, those parts can be implemented in hardware with HW/SW codesign.  
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Figure 6.1: General hardware architecture of LU factorization 

2. FPGA-based hardware implementation of the proposed hardware architectures of 

selected iterative methods and direct methods. In particular, multi-FPGA implementation 

of matrix solving methods according to TMD architecture can be further investigated. 

The implementation results should be compared with the performance of other 

multiprocessor-based computing. 

3. HW/SW implementation of circuit simulators. The most time consuming parts of circuit 

simulation are matrix solving and model evaluation. These parts can be implemented in 

hardware with HW/SW codesign. 



 

4. Hardware implementation of reordering techniques. The reordering of sparse matrix into 

dense matrix is usually implemented in software for simplicity purpose. If the available 

hardware resource allows, these techniques can be implemented in hardware to improve 

the overall performance. 
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Appendix A 
Numerical Examples 

1. Parallel Implicit Elimination (PIE) 

Consider the following 5×5 dense matrix. 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

61121
16112
11511
21281
12116

A  

Stage 1: i = 1 

Step 1: The first and last rows of matrix Z are obtained as follows: 

11 11 12 12 13 13 14 14 15 15

51 51 52 52 53 53 54 55 55 55

6,   1,   1,   2,   1.
1,   2,   1,   1.  6.

z a z a z a z a z a
z a z a z a z a z a

= = = = = = = = = =

= = = = = = = = = =
 

Step 2: Solve three sets of 2×2 linear systems to eliminate elements of first and last 

columns in matrix Z. 

4
2111 21 51 25 21 21 25 35

11
15 21 55 25 25 21 25 25 35

5
3111 31 51 35 31 31 35 35

5
15 31 55 35 35 31 35 35 35

11 41 51 45 41

15

For  2 :

6 1
6 2

For  3 :

6 1
6 1

For  4 :

j

wa w a w a w w
a w a w a w w w

j

wa w a w a w w
a w a w a w w w

j

a w a w a
a

=

=+ = + =⎫ ⎫
→ →⎬ ⎬+ = + = =⎭ ⎭

=

=+ = + =⎫ ⎫
→ →⎬ ⎬+ = + = =⎭ ⎭

=

+ = 11
4121 25 35

4
41 55 45 45 21 25 45 35

6 2
6 1

ww w
w a w a w w w

=+ =⎫ ⎫
→ →⎬ ⎬+ = + = =⎭ ⎭

 

Step 3: Update An-2 
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254
22 3522 22 21 12 25 52

55
23 23 21 13 25 53 23 35

1624 24 21 14 25 54 24 35

32 32 31 12 35 52

33 33 31 13 35 53

34 34 31 14 35 5

For  2 and 2,  3,  4

For  3 and 2,  3,  4

j k

aa a w z w z
a a w z w z a
a a w z w z a

j k

a a w z w z
a a w z w z
a a w z w z

= =

== − − ⎫
⎪= − − → =⎬
⎪= − − =⎭

= =

= − −
= − −
= − −

20
32 35

165
33 35

204 34 35

16
42 3542 42 41 12 45 52

20
43 43 41 13 45 53 43 35

18444 44 41 14 45 54 44 35

For  4 and 2,  3,  4

a

a

a

j k

aa a w z w z
a a w z w z a
a a w z w z a

=⎫
⎪→ =⎬
⎪ =⎭

= =

== − − ⎫
⎪= − − → =⎬
⎪= − − =⎭

 

Stage 2: i = 2 

Step 1: The 2nd and 4th rows of matrix Z are obtained as follows: 

254 55 16
22 22 23 23 24 2435 35 35

16 20 184
42 52 43 43 44 4535 35 35

,   ,   .

,   ,   . 

z a z a z a

z a z a z a

= = = = = =

= = = = = =
 

Step 2: Solve one set of 2×2 linear system to eliminate elements of 2nd and 4th 

columns in matrix Z. 

254 16 20 762
31 35 3222 32 42 34 32 35 35 35 10541

16 184 20 17
24 32 44 34 34 31 35 3435 35 35 166

For  3 :j

w w wa w a w a
a w a w a w w w

=

⎫+ = =+ = ⎫ ⎪→ →⎬ ⎬+ = + = =⎭ ⎪⎭

 

Step 3: Update An-4  

47879
33 33 32 23 34 43 33 10541

For  3  3j and k

a a w a w a a

= =

= − − → =
 

The matrices Z is obtained as follows 
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254 55 16
35 35 35

47879
10541

16 20 184
35 35 35

6 1 1 2 1

1 2 1 1 6

Z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

2. WZ Factorization 

Consider the following 4×4 dense matrix. 

5 1 2 1 9
1 6 1 2 10

  and  
2 1 7 1 11
1 2 1 4 8

A b

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Factorize matrix A into W and Z in the forms of Equations 2.21 and 2.22. 

Stage1: i=1 

Step 1: Obtain first and last rows of matrix Z as follows: 

11 11 12 12 13 13 14 14

41 41 42 42 43 43 44 44

5,   1,   2,   1,
1,   2,   1,   4.

z a z a z a z a
z a z a z a z a

= = = = = = = =

= = = = = = = =
 

Step 2: Solve two sets of 2×2 linear systems to obtain elements of first and last 

columns of matrix W. 

2
2111 21 41 24 21 21 24 19

9
14 21 44 24 24 21 24 24 19

7
3111 31 41 34 31 31 34 19

3
14 31 44 34 34 31 34 34 19

For  2 :

5 1
4 2

For  3 :

5 2
4 1

j

wz w z w a w w
z w z w a w w w

j

wz w z w a w w
z w z w a w w w

=

=+ = + =⎫ ⎫
→ →⎬ ⎬+ = + = =⎭ ⎭

=

=+ = + =⎫ ⎫
→ →⎬ ⎬+ = + = =⎭ ⎭
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Step 3: Update An-2  

94
2222 22 21 12 24 42 19

6
23 23 21 13 24 43 23 19

6
3232 32 31 12 34 42 19

116
33 33 31 13 34 43 33 19

For  2 and 2,  3

For  3 and 2,  3

j k

aa a w z w z
a a w z w z a

j k

aa a w z w z
a a w z w z a

= =

== − − ⎫
→⎬= − − =⎭

= =

== − − ⎫
→⎬= − − =⎭

 

The matrices W and Z are obtained as follows 

9 942
19 19 19 19
7 3 6 116

19 19 19 19

1 0 0 0 5 1 2 1
1 0 0 0

  and  
0 1 0 0

0 0 0 1 1 2 1 4

W Z

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢= =⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

6
⎤
⎥
⎥
⎥
⎥
⎥⎦

 

Solution procedure of system: Wy = b: 

Stage 1: Obtain y1 and y4,

1 1

4 4

9,
8.

y b
y b
= =
= =

 

Then update the remaining elements of vector b, 

100
2 2 21 1 24 4 2 19

122
3 3 31 1 34 4 3 19

2 :   ,
4 :   .

j b b w y w y b
j b b w y w y b
= = − − → =

= = − − → =
 

Stage 2: 

100
2 2 19

122
3 3 19

,
.

y b
y b
= =

= =
 

Solution procedure for system: Zx = y 

Stage 1: n is even,  
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94 6 100
22 2 23 3 2 2 3 219 19 19

6 116 122
32 2 33 3 3 2 3 319 19 19

1
1

z x z x y x x x
z x z x y x x x

+ = + = =⎫⎫
→ →⎬ ⎬+ = + = =⎭ ⎭

 

Then, update the remaining elements of vector y 

1 1 2 12 3 13 1

4 4 2 42 3 13 4

1:   6,
4 :   5.

j y y x z x z y
j y y x z x z y
= = − − → =
= = − − → =

 

Stage 2:  

11 1 14 4 1 1 4 1

41 1 44 4 4 1 4 4

5 6
4 5

z x z x y x x x
z x z x y x x x

+ = + = =⎫ ⎫
→ →⎬ ⎬+ = + = =⎭ ⎭

1
1

 

The final solution of x is [ ]T1 1 1 1x = . 

 

3. ZW Factorization 

Consider the same 4×4 dense matrix as showed in the numerical example of WZ 

factorization. 

5 1 2 1
1 6 1 2
2 1 7 1
1 2 1 4

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Factorize matrix A into 'Z and  in the forms of Equations 4.1 and 4.2. 'W

Stage1: i=1 

Step 1:The 2nd and 3rd
  rows of matrix are obtained as follows: 'W

2,1 2,1 2,2 2,2 2,3 2,3 2,4 2,4

3,1 3,1 3,2 3,2 3,3 3,3 3,4 3,4

1,   6,   1,   2;

2,   1,   7,   1.

w a w a w a w a

w a w a w a w a

= = = = = = = =

= = = = = = = =
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Step 2: Solve two sets of 2×2 linear equations to obtain elements of first and last 

columns of matrix 'Z . 

5
1222 12 32 13 12 12 13 41

11
23 12 33 13 13 12 13 13 41

13
4222 42 32 43 42 42 43 41

4
23 42 33 43 43 42 43 43 41

For  1:

6 1
7 2

For  4 :

6 2
7 1

j

zw z w z a z z
w z w z a z z z

j

zw z w z a z z
w z w z a z z z

=

=+ = + =⎫ ⎫
→ →⎬ ⎬+ = + = =⎭ ⎭

=

=+ = + =⎫ ⎫
→ →⎬ ⎬+ = + = =⎭ ⎭

 

Step 3: Update the remaining matrix. 

178
1111 11 12 21 13 31 41

20
14 14 12 24 13 34 14 41

20
4141 41 42 21 43 31 41

134
44 44 42 24 43 34 44 41

For  1 and 1,  4

For  4 and 1,  4

j k

aa a z w z w
a a z w z w a

j k

aa a z w z w
a a z w z w a

= =

== − − ⎫
→⎬= − − =⎭

= =

== − − ⎫
→⎬= − − =⎭

 

The matrices 'Z  and  are obtained as follows 'W

5 178 2011
41 41 41 41

13 20 1344
41 41 41 41

1 0 0 0

0 1 0 0 1 6 1 2'   and  '
0 0 1 0 2 1 7 1
0 1 0 0

Z W

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢= =⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎥⎦

 

The solution part is very similar to WZ method. Refer to the solution part of the 

numerical example as showed in WZ factorization. 

 

4. X Factorization 

Considering the matrix Z obtained from the numerical example of PIE. 
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254 55 16
35 35 35

47879
10541

16 20 184
35 35 35

6 1 1 2 1

1 2 1 1 6

Z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The matrix X is obtained as

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

61

16

35
184

35
16

10541
47879

35
16

35
254

X . 

Solve matrix 'Z  in order to update the vector . 'b

Stage1: i=1 

Step 1: The 2nd and 4th columns of matrix 'Z  are obtained by solving two sets of 2×2 

linear equations. 

254 16 532
12 14 1212 22 14 42 12 35 35 4648

16 184 1772
12 14 1412 24 14 44 14 35 35 4648

254 16
52 22 54 42 52 52 5435 35

16
52 24 54 44 54 52 35

For 1:
' ' 1 '' '
' ' 2 '' '

For 5 :
' ' ' ' 2
' ' ' '

j
z z zz z z z z
z z zz z z z z

j
z z z z z z z
z z z z z z z

=

+ = =+ = ⎫⎫
→ →⎬ ⎬+ = =+ = ⎭ ⎭

=

+ = + =⎫
→⎬+ = +⎭

1232
52 4648

184 777
54 5435 4648

'
1 '

z
z

=⎫
→⎬= =⎭

 

Step 2: Update the remaining matrix of Z. 

532 55 1772 20 9798
13 13 12 23 14 43 4648 35 4648 35 16268

1232 55 777 20 7938
53 53 52 23 54 43 4648 35 4648 35 16268

For 1
' ' 1 ( ) ( )

For 5
' ' 1 ( ) ( )

k
z z z z z z

k
z z z z z z

=
= − − = − − =

=
= − − = − − =

 

Stage 2: i=2 
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The 3rd column of matrix 'Z  is obtained by 

491621572
83674458

47879
10541

16268
7938

335353

491621572
210820

47879
10541

35
20

334343

491621572
579755

47879
10541

35
55

332323

491621572
103280718

47879
10541

16268
9798

331313

)(/'
)(/'
)(/'

)(/'

===

===

===

===

zzz
zzz
zzz
zzz

 

The matrices 'Z  is obtained as follows 

10
0100
00100
0010
01

'

4648
777

491621572
83674458

4648
1232

491621572
210820

491621572
579755

4648
1772

491621572
103280718

4648
532

=Z

 

Once matrix 'Z  is solved, vector is updated into . Then final solution of x is 

evaluated by solving 2 sets of 2×2 linear equations simultaneously. 

'b ''b
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