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ABSTRACT 

Web forms (eForms) and databases are at present widely used for data handling in most 

web applications. While eForms are used for data gathering and display, databases are 

used for data storage. To connect and interface an eForm to a database, an eForm 

processor is used. The eForm processor supports data saving, retrieval, update, and 

delete. In most web applications, eForms, eForm processors, and databases are designed 

and implemented separately. This leads to two main challenges: One, complexity in the 

manipulation of eForms and their associated database; and two, difficulty in the 

reproduction and reuse of existing eForms. 

To address the above-identified challenges, this thesis proposes the use of 

metadata in the creation and implementation of both eForms and their associated 

databases. Our approach comprises a two-part solution: One, modeling domain‘s 

metadata and two, creating a tool, called Delk eForm Creator. To model domain 

metadata, Resource Description Framework Schema (RDFS) was used. However, to 

analyse the tool‘s requirement, Putting Usability First (PUF) approach was used.  

In order to demonstrate the applicability of our solution approach, Delk eForm 

Creator was used to create a set of Metadata and three specific eForms based on a generic 

eForm. The created eForms were rendered in different web browsers and used to enter 

data into the associated databases. It was observed that Delk eForm Creator successfully 

generated a Generic eForm based on the Domain Metadata. Moreover, three different 

Specific eForms were successfully generated based on one Generic eForm, thereby 

leading to a reusable Generic eForm.  

We conclude that the metadata-based approach of implementing eForms, as 

proposed in this thesis, is a viable technique to creating eForms and their associated 

databases. The approach enables users to easily create, maintain, and reuse eForms and 

databases. 
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CHAPTER 1 INTRODUCTION 

The main goal of this thesis is to illustrate an approach of using metadata to create 

eForms and their associated databases. Section 1.1 provides a discussion on the introduction to 

the use of eForms and databases. In section 1.2, a summary of the main goals and methodologies 

used in this thesis are presented. Section 1.3 presents the thesis outline and structural overview. 

1.1 Introduction to the use of eForms and database 

Web applications used in different domains increasingly make use of eForms to perform 

data handling. A domain is an environment that defines a set of common requirements, 

terminology, and functionality. An example of a domain is ecommerce. Data handling includes 

input (i.e. gathering), output (i.e. displaying), processing, and storage of data. In the past, the use 

of paper forms and databases was important in accomplishing data handling. The paper forms 

were used for gathering and displaying data. Data gathered using the paper forms would then be 

entered and stored in the databases.  

With increased use of the Internet and the advancement in technology, there is a shift 

from the use of paper forms to the use of web (digital) forms [15, 45]. In this thesis, web forms 

are referred to as eForms.  EForms serve the same purpose of data handling as paper forms do; 

however, they appear on the display screen. The display screen can be that of a traditional 

computer or other devices, such as personal digital assistants or cell phones, devices used to 

access data.  

The various tasks a user can accomplish using eForms include but are not limited to data 

entry, data searching and data comparing. To enter data, the user fills in the eForm by either 

selecting options provided on the eForm with a pointing device i.e. a mouse or the user types in 
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data in form of text using the device keyboard. The data is then sent directly to an eForm 

processing application, which then transfers the data into a database.   

Data collected using eForms are mostly checked against data constraints before being 

stored in the databases. Once the data is stored, they can be retrieved from the databases and 

displayed on appropriate eForms using retrieval mechanisms present in the eForm processors 

[43]. Checking and retrieval of data are part of the eForm processor‘s task. Data handling can be 

grouped into three major web application components: the user interface component, the 

processing component, and the storage component. Figure 1.1 shows these three web application 

components. The figure also shows how the data flow through the three components.  

 

Figure 1.1: Data handling process 

EForms help reduce printing costs, save time, and problems most often encountered 

while using paper-based forms. For example, lack of feedback and data validation, unreadable 

handwriting, delay in data entry to database system [2]. Furthermore, when used for data 

handling, eForms offer more flexibility and functionality. It is possible to automate eForms so as 

to be used for complex business processes. EForm automation reduces the need for manual 

eForm processing. EForms are used to deal with large amounts of data electronically [46]. The 

use of eForms helps the eForm user to become more productive, efficient and swift in using data 

since there are few input errors, thanks to validation checks. The data can also be accessed and 

reused easily [16]. 
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The advantages of eForms over paper forms have led to a rising need for and adoption of 

eForms within web applications. This has made eForms an important part of today‘s information 

systems [7, 46]. The need and adoption of eForms has created a huge demand for eForms use. 

There is a need to create eForms to serve this demand. This need has led to emergence of 

vendors to satisfy this demand for creating eForms and their associated databases.  

EForms and their associated databases can be created separately from web applications, 

but more often than not, eForms are created within web applications and the databases created 

separately. There are three current approaches (ways) of creating these eForms. These 

approaches are; 1) an application developer can choose to create eForms and databases by 

themselves; 2) an application developer can employ a vendor to create both eForms and 

databases; or 3) an application developer can employ different specialized vendors to create 

eForms and databases separately.  When there is high need to create and maintain large number 

of eForms to satisfy a large number of users‘ needs, application developers are pushed to employ 

vendors to create eForms and databases for them.  

These current approaches of creating eForms and databases used within web applications 

have some challenges. This thesis examines the challenges related to these current eForm 

creation approaches and provides a possible solution that is implemented and tested. The 

challenges of the current approaches arise from how the eForms and their associated databases 

are created and integrated within a web application.  

Most of the time when web application developers develop a web application, they 

develop different range of applications in terms of size. The web application might be huge such 

as ebay.com and amazon.com. However, sometimes these developers are asked to create small 

application e.g. registration web application. The application could either be registration for 
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membership or registration for participation. While these applications are similar they require 

different functionality. With current approaches developers cannot reuse eForm (code) already 

developed. Modifying existing code requires more work because changes have to be made to the 

form, eform processor and the database. Moreover, if the big application supports service 

providers, if comes a point in time when they need to create and used similar eForms as those 

created by the application developers. This thesis identifies the following two challenges related 

to these scenarios:  

 Difficulty in the manipulation of eForms and their associated database.  

 Difficulty in the reuse and reproduction of existing eForms.  

1.2 Summary of the main goals and methodologies used 

The main concerns that distinguish the approach of this thesis in illustrating the creation 

of eForms, eForm processors, and their associated database are: 

1. Creation of eForms and their databases using metadata. 

2. Creation of easy to manipulate eForms and databases. 

3. Creation of reusable eForms and eForms components by maximizing reusability of 

metadata. 

4. When eForms are created, their databases should be automatically generated. 

Generally, metadata is defined as data that describes or provides information about other 

data entity [25]. The metadata makes the described data entity easy to search and reuse. In this 

thesis, metadata is used to maintain the association between the eForm and the database entities 

in a semantic manner based on a domain.  The metadata is also used to control the creation and 

manipulation of the eForms, eForm processors, and the databases.  
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There are diverse domains where eForms and databases could be used, the focus in this 

thesis is on the ecommerce domain in general and online art ecommerce application in specific. 

Keeping in mind the core aims stated above, the methodologies used in this thesis are as follows: 

 Problem definition. The two main challenges to be addressed in this thesis are 

discussed. First, difficulty in the manipulation of eForms and their associated 

databases; second, difficulty in eForms reuse and reproduction. Causes of these 

challenges are also discussed.  

 Methodology. A solution of using metadata in the creation process of eForms and 

databases is presented. This solution is broken down into two parts for better 

understanding. The parts are, 1) finding a way of modeling domain‘s metadata geared 

towards eForm creation and 2) creating a tool that is used to model the Domain 

Metadata and create eForms and their associated databases based on the Domain 

Metadata. An XML based technology; Resource Description Framework Schema 

(RDFS) [37] is used to model Domain Metadata. By doing this, the reusability of the 

Domain Metadata and the resulting eForms is achieved.Putting Usability First (PUF) 

methodology [10] is used to help in the analysis of the tools requirements. Based on 

the requirement analysis and ideas presented in this thesis, a tool has been developed. 

The tool is called Delk eForm Creator (DeC). This tool currently supports the 

following operations: (1) the modelling and manipulation (i.e. create, modify, and 

search) of metadata; (2) the manipulation of simple eForms; (3) automatic creation of 

databases associated to created eForms; (4) automatic creation of eForm processors 

that enable interfacing between eForms and databases by providing the CRUD 
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methods (i.e. Create, Retrieve, Update, and Delete); (5) provides an interface to setup 

and manage the created databases.  

 Evaluation. To illustrate the concept of this thesis, the tool (DeC) is used to create a 

set of Metadata (Domain, Generic eForm, and Specific eForm metadata) and some 

eForms. A documented demonstration of how to create metadata for a Generic eForm 

and how the resulting Generic eForm is rendered on a web browser and used by a 

typical user is provided. Moreover, a demonstration of how to create metadata for 3 

Specific eForms based on one Generic eForm and how the resulting Specific eForms 

are rendered on different web browsers and used by a typical user is provided. in 

addition a documented demonstration of how to create metadata for an eForm based 

on some real world ecommerce webpage and then how the eForm is rendered on a 

web browser and used by a typical user is provided.  

1.3 Thesis outline and structural overview 

The thesis is organized in seven chapters. The challenges are identified, a solution is 

identified, an implementation of the solution is shown, and finally a conclusion is provided. 

Chapter 1 (Introduction). In this chapter an introduction of the thesis work is presented. The 

main goal of the thesis is identified and discussed. A brief discussion on the focus of the 

thesis and what has been done to fulfill the requirements of the thesis is provided. 

Chapter 2 (Background and Problem Definition). In this chapter a background study on 

other approaches and tools used in creating eForms and databases is presented. The 

challenges of these approaches are identified and discussed. The identified solution is also 

introduced. 
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Chapter 3 (Analysis and Uses of eForms). In this chapter analysis of eForms and databases 

is presented. Example of ecommerce scenarios are used to help in the analysis. The analysis 

discussion on ecommerce covers use cases, uses of eForms, operations on eForms, and 

attributes of eForms. 

Chapter 4 (Metadata Modeling and Tool High Level Design). This chapter presents and 

discuss in more details about this thesis approach of using metadata as an approach of 

creating eForms and their associated database. A way of modeling and structuring the 

metadata in a manner that is useful in eForm creation is presented. The system requirements 

and high level design of the tool is presented. 

Chapter 5 (Tool Detailed Design and Implementation). In this chapter a detailed design and 

implementation of the tool components is presented. The functionalities supported by Delk 

eForm Creator are also discussed. 

Chapter 6 (Testing and Evaluation). This chapter presents the test result of using Delk 

eForm Creator. This chapter also provides evaluation derived from examining Delk eForm 

Creator‘s functionality to see if it fulfills the requirements of this thesis and provide a 

solution to the identified challenges and proves the concept of this thesis. 

Chapter 7 (Conclusion and Future Work). This chapter summarizes the main ideas of this 

thesis, and suggests directions for future work.   
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CHAPTER 2 BACKGROUND AND PROBLEM DEFINITION 

In this chapter, a background study on other approaches and tools used in creating 

eForms and their associated databases is presented. This background study is useful in identify 

the causes of the challenges in the current eForms and databases implementation approaches. 

Finally this chapter introduces this thesis solution to the identified challenges.  

2.1 Existing eForms systems and the different technologies 

2.1.1 Existing eForm systems 

Many vendors have sprung up to exploit the profitable opportunities offered by the great 

demand for eForms.  Most of these vendors provide batch services; because, they do not produce 

only one or two web application systems for one enterprise, but usually are involved in 

producing hundreds of different eForms application for different web application developers and 

enterprises [46].  

Some of the vendors that are currently involved in the creation of multi-context of use 

eForms include; IBM Workplace Forms [46], EZ-Forms [19], and FormDocs [22]. There are also 

vendors that are involved in creation of specific context of use eForms, they include: APEH [24], 

ACORD [45], and Admin Tool [33].  While these vendors have their benefits, they also have 

limitations. This section describes these eForm systems briefly and identifies their benefits and 

limitations. 

IBM Workplace Forms is one of the implementations of XForms standard, which is 

supported by W3C organization. IBM Workplace Forms helps accomplish eForm related tasks 

and services. The main service they offer is to convert the original forms (either paper or 

electronic) format to Workplace Forms format. It then refines the converted results to share some 

common properties. When application developers change any of these properties, ―the change 
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applies to all eForms, both finished and unfinished‖ [46]. The creation process involves the 

application developer providing sample eForms with all requirements they need.  

IBM Workplace Forms vendor then creates sample eForms that need to be reviewed 

before being finalized. The limitations of this approach are: first, any change on a single eForm 

affects other eForms, second, the database and the eForms are created using different programs 

hence increasing the possibility of incompatibility, and third, the application developer cannot 

make changes to the eForms without the help of an IBM Workplace Forms vendor. 

EZ-Forms provide eForm and database solution for the desktop and internet based 

applications for application developers [19]. With EZ-Forms it is possible to create database 

enabled or stand-alone eForms for use with EZ-Forms Filler. It is also possible to share eForms 

created by using EZ-Forms viewer. EZ-Forms enable the application developers to simply scan 

their forms into EZ-Forms ULTRA Designer. EZ-Forms also allow the creation of a database 

using a wizard. The limitation of this approach is that separate programs are essentially used to 

create eForms and the databases causing possibilities of incompatibility. 

FormDocs is software that enables application developers to create eForms. In its 

description it seems there is no need for a database to be used with the resulting eForms. 

―FormDocs is much simpler to use than database or spreadsheet programs so your users don't 

need special skills to get the job done [22].‖ The application developers can easily design the 

eForms exactly the way they want it. This approach has the same limitation as EZ-Forms, i.e. the 

creation of eForms and databases is done by different programming tools hence the possibility of 

incompatibility. There is less regard for the use of databases for data storage. 

The Hungarian Tax and Financial Control Administration system was developed by 

APEH to provide government services that include e-payment to the community [24]. The initial 
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idea was to develop general purpose e-communication software that would be used by citizens 

and businesses, regardless of the cause of communication. According to [24] there exist more 

than 160 downloadable eForms that are currently supported on the portal of APEH servers. 

These eForms are used to serve different purposes. The system is divided into three sections 

developed to ensure safe communication.  

The sections are: the form designer and generator section, the client section for filling, 

signing and sending eForms, and the server section including a portal and a processing part. The 

system provides general services including: form filling support, client programs to sign and 

send eForms, support for data collection, interface for registration, time-stamp, and support for 

certification control.  The designer works on MS Windows panels. The different versions of the 

form under construction are stored in an Oracle database. To support the standardization of 

forms, APEH defines libraries of components and supports the use of sub-forms. The form 

designer generates a code interpretable for the form-filling program from the stored form-plans 

[24]. One limitation of this approach is that the system works only on one operating system 

hence would be incompatible with systems that do not run on windows. Another limitation is that 

changes to the already stored components and sub-forms might be hard to achieve.  

ACORD [45] provides a description of how eForms used by a group of insurance 

companies are created. ―ACORD (Association for Cooperative Operations Research and 

Development) maintains more than 450 standard forms to meet the requirements of the industry 

and government regulators‖ [45]. Lately, ACORD are moving away from use of paper forms 

towards the use of eForms. They use programs managed by IBM that includes files based on 

Lotus Forms pure XML technology, which allows the XML data captured in the ACORD 

eForms to be submitted, processed, filed, archived and digitally signed. The current ACORD 



 

11 

 

Standard forms are usually used as static forms. XML is only used to formalize the form 

presentation layer. XML is not being used to express data metadata. There is no mapping 

between ACORD Data schema and ACORD eForms [45].  The limitations with ACORD eForms 

are that they are not dynamic and non-reusable in reproducing similar eForms.  

The Administration CASE Tool created by USERLab [33] is used to create eForms for 

multiple methodologies used in software engineering (SE), usability engineering (UE) and their 

related projects. It is designed to be used to ―explore the requirements of new UE methodologies, 

support existing methodologies and support their translation into SE requirements‖ [33]. The 

limitation of this approach is that, its use is limited to specific domain of methodologies. A 

domain is an environment that defines a set of common requirements, terminology, and 

functionality. 

2.1.2  Different technologies used 

The eForm system described in section 2.1.1 uses different programming technologies to 

create the eforms. The increase in the number of these programming technologies increases the 

difficulty of creating eForm applications. This difficulty is increased by the complexity involved 

in the interactions between the older generation of technologies and the newer generation of 

technologies. There are many technologies used for every aspects of the web application thanks 

to generational development of these web technologies. These technologies, if not used well 

might contribute further to the complications presented by incompatibility issues between 

different technologies. 

When dealing with web applications, the first generation web technology used HTML to 

help render data and eForms as user interface on the web [9, 5]. HTML provided the basic 

document and eForm formatting and hyperlinks for online browsing [8]. A major challenge of 
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the first generation web technology (HTML) is the fact that all its eForms are manually hard-

coded on the page. This type of user-interface is too inflexible when dealing with content that is 

stored in existing databases or that is subject to frequent changes and should be displayed on 

eForms. 

The second generation web technology ushered in a more dynamic, interactive web by 

defining ways to automate eForms to collect or display data to web application users [7]. The 

dynamic capabilities of second generation web technologies though they solve the challenges 

posed by manual coding of eForms, they do not offer ways of searching and comparing data 

easily. 

2.2 Challenges with current implementation approaches 

The shift towards the use of dynamic web data manipulation has improved the "web‘s 

utility and the experience of web users" [9]. This shift has led to new ways of creating and 

programming eForm based web applications. Such new ways include use of eForm systems to 

create eForms as discussed in Section 2.1. Each the described systems have one or both of the 

following challenges:  

 Difficulty in the manipulation (i.e. creation, modification) of eForms and their associated 

database.  

 Difficulty in the reproduction and reuse of existing eForms.  

2.2.1 Difficulty in manipulation of eForms and their associated databases 

There is certain level of difficulty involved in creating new eForms. There is even more 

difficulty in making changes to existing eForms to accommodate eForm attributes which were 

not earlier identified. The difficulty increases where the eForms have associated databases. This 

requires that changes on the eForm have to be reflected on the associated databases and eForm 
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processor. This scenario requires some eForm, eForm processor, and database programming 

expertise.   

In some cases, eForms are implemented in such way that it is difficult to make minimal 

needed changes on the entities of the eForm. A situation where minor changes to the eForm 

entities would have solved the problem, might require that the existing eForm be gotten rid of 

and a new one created. A new set of eForm entities are created and existing database structure 

and entities are changed. This practice take time, resources to accomplish, and might require 

complex operations to be done on both the eForm entity structure and the already existing 

database entity structure. These cases often might require the intervention of the vendors initially 

contracted to create the databases or the eForms. This practice might prove costly and inefficient 

where a change is needed to address an urgent need. 

2.2.2 Difficulty in eForms reuse and reproduction 

It is difficult to reuse code for already created eForm for reproduction of similar eForms 

with minor. New eForms are created each time there are new needs to either add or delete fields 

from existing eForms. Lack of reproduction means reuse of existing eForm entities and their 

structure to produce new eForms is not possible.  

2.3 Causes of the challenges 

Some of the factors that contribute to the challenges identified in section 2.2 include use of 

incompatible programming technologies to create eForms and their associated databases and 

emergence of multiple vendors who implement eForms in different structural ways. 

2.3.1 Use of incompatible tools and technologies 

When application developers want to create their web application they can either develop 

it themselves or employ external vendors. The development might use different technologies to 
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create the different parts and components. When the vendors are chosen to create different 

components (i.e. the eForms or the databases) of the application, there is a high chance that the 

different vendors will use different technological approaches to build the application component 

they are assigned. Figure 2.1 show different technologies used to create eForms and databases 

separately. 

 

Figure 2.1: EForm and database implementation 

There are numerous programming tools used for creating eForms, eForm processors, and 

databases separately. Often, eForms, eForms processors, and databases created using different 

technologies eventually are combined together to create one web application. This approach 

contributes to the challenge concerning difficulty in eForm manipulation because of the 

incompatibility issues that might exist between programming tools used. The interoperability and 

incompatibility issues are addressed during the merging of eForms and databases within the web 

application being developed. If there are changes to be done in the eForm structure, it often 

requires a change to be made in the databases and the eForm processor. 
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2.3.2 Different vendor structural approaches 

More often than not, eForms and their associated databases are developed without 

encapsulating the domain information. When different vendors are employed to create eForms, it 

might be difficult for the vendors to encapsulate the domain expertise into the eForm creation 

process. The reason for lack of domain encapsulation is that, often the web application developer 

implicitly assumes that the vendors know about the domain‘s knowledge. The domain 

knowledge is implicit to the web application developer, yet the knowledge is not passed on 

explicitly to the vendors who create eForms [42] and the databases.  

There is also a likelihood that the different vendors will never directly communicate. This 

is because they each communicate to the application developer directly. Because of the lack of 

direct communication between vendors, there is no way of establishing common parameters 

needed for the components to work together hence their work resulting in incompatible 

components.  

Even if the vendors were provided with the same component requirements, there are 

possibilities that the vendors would come up with different entity structures to address the 

requirements presented to them. Hence, the resulting eForms and databases would have different 

entity structures. This leads to eForms and databases that have interoperability and 

incompatibility issues within the web application. The limitations of the current eForm 

implementation approaches calls for change on how these eForms and their associated databases 

are designed and implemented. 

2.4 Introduction of a solution to the causes of challenges 

 The development of the Web has created demand for machine computable information 

[40]. To make the Web and web applications more accessible, there is a need to use the metadata 
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in building components of these web applications. Metadata can be used to implement 

―intelligent‖ eForms and databases used within web applications.  

 To implement the eForms and the databases using metadata as part of web application, 

a two part solution is presented in this thesis.  The first part is the modeling of the metadata and 

the second part is the use of a manipulation tool called Delk eForm Creator (DeC) in the creation 

of the metadata, the eForms and the databases.  

The use of metadata to control the creation of both the eForms and the database is a 

possible solution to the challenges concerning difficulty in eForm reuse. The use of DeC is a 

possible solution to the challenges caused by the use of incompatible programming tools and 

technologies. The DeC would be used to create the metadata used for both creating eForms and 

databases, thus harmonizing the difference in tools and technologies used.  
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CHAPTER 3 ANALYSIS AND USES OF EFORMS 

This chapter presents an analysis of eForms and databases. EForms are used widely in 

different web application domains. Some examples of domains include but not limited to the 

software engineering domain, the usability engineering domain, the ecommerce domain, and the 

education domain. In this thesis, the focus is on the ecommerce domain in general and art 

ecommerce application specifically. Art ecommerce application is an application used for buying 

and selling with art products. In order to understand how eForms and databases are created and 

used in an art ecommerce domain, a requirement analysis is done. 

The Putting Usability First (PUF) methodology is used to help in analyzing of the use 

cases, users of the use cases (actors), objects of the use cases, operations on the objects, and 

attributes of the objects. PUF is a usability engineering methodology that attempts to balance 

usability concerns for both users and developers for a given system [10]. It is a methodology that 

is under development in USERLab at the University of Saskatchewan.  

The basic concept behind PUF is that the right consideration is given to usability issues in 

each activity of application development life cycle [32]. Such issues include (all main scenarios 

(use cases), user groups, tasks (operations), content (attributes), and tools related to the 

application systems, which are identified and briefly described. Usability is defined by ISO 

9241-11[30] as the ―extent to which a product can be used by specified users to achieve specified 

goals with effectiveness, efficiency, and satisfaction in a specified context of use‖. ISO 9241-11 

[30] defines context of use as the ―users, tasks, equipment (hardware, software and materials), 

and the physical and social environments in which a product is used‖.  
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3.1 Use cases 

  A use case is a description of sets of interactions between users and the web application 

system. Use cases used in the UML approach are comparable to scenarios used in usability 

engineering [32]. A scenario is mostly taken as an instance of a use case. Scenarios like use cases 

might be simple or complex involving multiple different types of users, tasks, content, and tools. 

In the following sections, a general ecommerce domain use case is described to illustrate the 

different roles played by different user groups in the creation and use of eForms and databases 

within ecommerce web applications.  

3.1.1 Ecommerce applications use case 

In general, ecommerce consists of the buying and selling of products or services via 

electronic systems such as the Internet and other computer networks. At present there are various 

web applications that support ecommerce. In most ecommerce web applications eForms are used 

as user interfaces, means of gathering and displaying data and databases are used for the storage 

of the data.  

There are lots of user groups that interact with ecommerce web applications:  buyers, 

sellers, agents, product suppliers, wholesalers, auditors, and customer service representatives. In 

this general use case the focus is on the three general grouping of users: application developers, 

sellers, and buyers. Figure 3.1 shows how different users interact with eForms and databases 

within the ecommerce domain. 
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Figure 3.1: Ecommerce use case 

In the following sections, examples of the general use cases where eForms and databases 

are used are described. These examples include Amazon.com, eBay.com, and art shop use cases. 

3.1.1.1  Amazon.com use case 

Amazon.com started out as a bookseller and now serves as a sales platform for almost 

any product that could be sold. In Amazon.com use case, there are 3 general grouping of users 

identified in this thesis: the Amazon.com application developers, the partner stores, and the 

customers. Amazon.com application developers provide eForms and databases as part of their 

ecommerce web application. The partner stores use the eForms provided by Amazon.com to 

support their tasks in using the Amazon.com web application. The partner stores could customize 

the use of eForms by filling or not fill all the fields that are provided on the eForm. However, 

they cannot customize on the number or the types of field to be on the eForm. 
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The partner stores use the Amazon.com databases to store data gathered using the 

customized eForms. The partner stores need customizable eForms that its fields could easily be 

added or deleted. Such customizable eForms could easily be customized to capture specific data 

from customers and other partner stores.  

It is expected that each customer accesses the web application and perform tasks that help 

them fulfill their goal of finding a desired product. A customer uses Amazon.com application to 

purchase different products. The customer searches the ecommerce web application for the 

product that meets their needs using the eForms. The customer can also search for a partner store 

that provides the product that the customer desires. After searching and browsing, the customer 

can request more information about the product before ordering it. The customer can then place 

orders on an already existing product using the eForms. The customer can use the eForm to 

communicate their needs, complaints or suggestion to the partner store.  

3.1.1.2 EBay.com use case  

EBay.com started as a place for individuals to auction off their collectibles. While the 

selling model is considerably different between EBay.com and Amazon.com, their use cases are 

very similar. EBay.com has three general groups of users: eBay.com application developers, 

sellers, and buyers which have the same meaning as amazon.com developers, partner store and 

customer respectively.  

3.1.1.3 Art Shop use case 

Art Shop unlike eBay.com and Amazon.com is a web application used to sell and buy 

custom art products (e.g. paintings, sculptures, and photos). While the selling model of Art Shop 

would be considerably different from that of EBay.com and Amazon.com, the use of eForms and 

databases is mostly similar except for specific instances (e.g. eForms used to order customized 
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painting might be used within art shop use case and not on eBay or Amazon.com). Art Shop has 

three general groups of users: Art Shop application developers, artists, and art customers, which 

have the same meaning as Amazon.com developers, partner store and customers respectively.  

To support their different selling models, EBay.com and Amazon.com provide different 

sets of eForms to their users (both the individuals who use their sites to sell products and the 

individuals who use their sites as customers). While both EBay.com and Amazon.com started 

with a single set of eForms, for all types of products that they help to sell, the wider the variety 

of products that are sold within their application, the greater the diversity of how those eForms 

are used and the greater the pressures to provide product specific variants of the eForms. In 

addition to the product specific eForms, web application developers need to provide specialized 

eForms to address needs such as that of negotiation that might arise during product 

customization process in the case of art shop use case. 

From the three use cases examples provided, there are three different user groups that 

perform similar roles in each use case. For the purposes of this thesis, the following terms will be 

used to represent the different groupings.  

 Administrators: represent application developers described in the 3 use cases. 

 Service providers: represent the partner stores, sellers, and artists in the Amazon.com, 

eBay, and art shop use cases respectively.  

 Customers: represent the customers, buyers, and art customers in the Amazon.com, eBay, 

and art shop use cases respectively.  

3.1.2 Uses of EForms within the ecommerce domain  

Ecommerce domain contexts require customers to interact with service providers in 

various different ways regarding services or products offered and available data. The web 
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application eForms offer a different dimension on how the data might be provided or changed to 

suit its users‘ desire. There exist different interactive systems that might be used to either retrieve 

or provide information. This section describes what eForms could be used for within web 

application systems. Figure 3.2 shows the uses of eForms. 

 

Figure 3.2: Uses of eForms 

3.1.2.1 User interface 

EForms can serve as part of the user interface for the web application, i.e. what the user 

sees and interacts with on the computer or other display device screen [1]. At the same time, it is 

more than just an interface since it is the medium that the customers can use to communicate 

their needs to other users of the web application system or perform other tasks. The content of 

the eForm may have some impact on how these tasks are achieved. 

3.1.2.2 Data searching tool 

The users of ecommerce web applications should be able to search for product data using 

the eForms.  Electronic interaction between sellers and customers from different parts of the 

world increases the size of the market and purchasing efficiency. The use of eForms has changed 

how product information and services can be accessed. Instead of searching through huge 

volumes of catalogue pages, a simple search on a service provider web application for any 

product using eForms can be done.  
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The searching experience could sometimes turn out to be tiresome if the customers do not 

find what they want [35]. The difficulty in precise searching might depend on the degree of 

flexibility of product or service description provided [7]. Such inflexible description might result 

in difficulty while searching or matching products or services. The challenge with current eForm 

implementation is that, the ―intelligence‖ of these eForms is often limited [41].  

3.1.2.3 Data display 

 EForms can be used to display most comprehensive and current content in order to keep 

the users of the application well updated with the latest content. The eForms used by the 

customers to add products to the shopping cart should automatically display the total cost of the 

products as the customers adds or removes products from the cart. 

3.1.2.4 Data gathering 

EForms are used to collect data from customers using a web application. EForms can be 

used to collect various kinds of information (e.g. surveys, personal information) from the 

customers. The eForms are faster in information collection, delivery, and have greater ease-of-

use than with paper forms service. The need for and the presence of data validity allows correct 

entry of information. 

3.1.2.5 Communication (Negotiation) 

We live in electronic times where text messaging, emailing, and video conferencing are 

frequently used ways of communication. For this reason most organizations are adopting these 

quicker means of exchanging information.  Through eForms, ecommerce organizations could 

change their eForms entity structure and content on the fly. EForms could be seen as tool for 

communication through which ecommerce web application users could perform different 

communicative actions between each other [1]. The eForm can be used to facilitate negotiations. 
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The eForm can be used to make initial enquires on products or services: the same eForms could 

used to respond back on the inquiries and report any changes deemed necessary during the 

process of creating the product.  

3.2 Objects for the use cases  

In the ecommerce use cases, the administrators are expected to provide eForms for all types 

of products that are sold by the service providers using the ecommerce web application. The 

wider the variety of products that are sold via the application, the greater the need to provide 

eForm elements that support the entire list of products attributes on the eForms.  

Different service providers provide different amount of data and information to be used for 

describing the products or services they offer. Some service providers might provide all the data 

for all the product attributes on the eForm while others provide data for some attributes. This 

necessitates the need for customization of the eForm used by individual service providers. 

3.2.1 Generic eForms, Specific eForms, and eForm elements 

Since different service providers using the same web application might provide 

information on various product attributes to be captured on the eForms using eForm elements, it 

is clear that two types of eForms (i.e. Generic and the Specific) could be used and therefore need 

to be created. A Generic eForm is an eForm created by the developers to include all possible 

attributes for a product or service. A Specific eForm is an eForm customized to meet the needs of 

a specific service provider. The Specific eForms are based on Generic eForms.  

Both Generic and Specific eForms are created based on the attributes of the product that 

need to be gathered or presented based on a specific ecommerce domain. An eForm element is a 

special control component (e.g. checkbox, radio button, menu...) and label on the component that 

helps build the eForm presentation [18]. The eForm elements can represent containers for eForm 
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data. They specify the layout of the eForm depending on the content and type of the eForm 

element used. They also allow users to interact with the eForm (i.e. entering text, selecting menu 

items). Figure 3.3 illustrates how different Specific eForms can be generated from the same 

generic eForm based on same eForm elements and their labels. The Generic eForms, Specific 

eForms, and eForm elements are identified as the three objects for the use cases described in 

Section 3.1. 

 

Figure 3.3: Use cases objects 

3.3 Users of the use cases and objects 

Figure 3.4 shows the roles and the interactive relationship between user groups identified 

in the use cases described earlier in Sections 3.1. It also shows the interaction flow between the 

different user groups. In discussing the user groups, it is important to describe users according to 

different criteria. The identified criteria are: roles and interactions.  



 

26 

 

 

Figure 3.4: Users 

3.3.1 Administrators 

3.3.1.1 Roles:  

An administrator is the individual or organization that provides eForms and databases as 

part of the web application used within the ecommerce domain. They use the eForms to perform 

some of their tasks (e.g. interacting with other users). They create and manage generic eForms 

and databases based on the domain description the eForms are created for. They also analyze 

opportunities to add new types of products and their associated attributes to the existing set of 

products hence identifying needs for new eForm elements.  

3.3.1.2 Interactions with other Groups 

There is a constant interaction between the administrators and the service providers. The 

service providers‘ suggestions and input are important for the administrators in their tasks of 

creating new or manipulating existing generic eForms to accommodate the service providers‘ 

needs. The administrator might also be in contact with customers both to encourage them to use 

the ecommerce web application and to identify additional eForm elements that they might be 

interested in having added to one or more eForms. For example: Amazon.com and ebay.com 

undertake various initiatives to recruit customers and to keep them satisfied.  



 

27 

 

3.3.2 Service Providers 

3.3.2.1 Roles: 

A service provider is the individual or organization that provides services using the 

ecommerce web application. They might require customized specific eForms to use in offering 

their services. They provide product or service related data used to fill the eForm element and 

facilitate the various eForms tasks. They also use the eForms to perform some of their tasks (e.g. 

interacting with other users). They use the generic eForm elements to create customized specific 

eForms. The service providers decide on the functionality to be added on the specific eForms 

that would help in accomplishing various tasks. 

3.3.2.2 Interaction with other Groups 

Service providers are expected to be in constant interaction with both administrators and 

customers. If a service provider feels they have needs that are not currently addressed by the 

eForms, they can suggest to the administrators new eForm elements to be added to existing 

eForms entity structure. They fulfill the needs of the customers by interacting with them via the 

specialized eForms. They examine customer‘s complaints about eForms to identify need for 

structural improvements. They could ask for help from the administrators on any tasks related to 

eForms. 

3.3.3 Customers 

3.3.3.1 Roles: 

A customer is the individual or organization that consumes the services provided on the 

ecommerce web application. The customers use the eForms to perform most of their tasks on the 

web application (e.g. interacting with other users or place orders by entering text, selecting menu 
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items). The customers access and use products data provided by the service providers on the 

eForms. They provide data that is required of them by the service providers. 

3.3.3.2 Interaction with other Groups  

The customers interact with administrators and service providers. The customers are 

expected to complain about eForms and the web application if there are usability problems with 

the eForm. Such complaints are useful in improving the system. 

3.4 Operations/Tasks on the objects 

Operations on the objects can also be referred to as tasks for the users. The tasks for users 

identify the high level operations on the set of objects. To keep a user-centered focus, operations 

on the objects are referred to as tasks in this section, but recognize that these tasks will later need 

to be implemented as operations on the objects. Tasks are specific accomplishment of individual 

users or a group of users using the web application system [32].  

Figure 3.5 shows the relationship between tasks and user groups associated with eForms. 

It also shows the communication flow between different user groups that help determine users‘ 

needs on eForms. The administrators are responsible for creating, maintaining, and providing 

generic eForms and specific eForms.  

The service providers create their own customized specific eForms based on the generic 

eForms or other specific eForms. Maintenance of eForm elements, generic eForms, and specific 

eForms involves one or more of the following: searching, creating, changing, approving, and 

deleting. The customers use the generic or specific eForm to perform most of their task on the 

application i.e. search to identify products or service providers or provide data. 
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Figure 3.5: Users and tasks relationship 

3.4.1 Maintaining EForm Elements 

Figure 3.6 shows tasks that can be done to maintain eForm elements. It also shows the 

relationships that exist between the different tasks.  

 

Figure 3.6: Maintaining eForm elements 

3.4.1.1 Searching for eForm elements  

The administrators should be able to search and find existing eForm elements in the 

eForm element list. Searching can help determine if there is an existing eForm element or if there 

is need to create a new one.  
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3.4.1.2 Creating the eForm element 

New eForms elements can be created by either creating a new element or cloning an 

existing eForm element. 

3.4.1.2.1 Creating new eForm element  

The administrators can create an eForm element by taking an eForm control component 

(e.g. textbox, checkbox) and assigning a named label. The new eForm element attributes are also 

defined. Once the eForm element has been created, it is saved within the eForm elements list. 

3.4.1.2.2 Cloning existing eForm element 

The administrators can also create an eForm element by cloning an existing eForm 

element and changing their attributes. 

3.4.1.3 Changing the eForm elements  

The administrators can change already existing eForm elements by changing one or more 

of their attributes.  

3.4.2 Maintaining Generic EForms 

Figure 3.7 shows tasks that can be done to maintain generic eForms. It also shows the 

relationships that exist between the different tasks.  

 

Figure 3.7: Maintaining generic eForm 
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3.4.2.1 Searching for the generic eForms  

The administrators should be able to search and find existing saved generic eForms in 

their respective databases. Searching can help determine if there is an existing type of eForm or 

if there is need to create a new one.  

3.4.2.2 Creating the generic eForms 

New generic eForms can be created by either creating a new generic eForm or cloning an 

existing generic eForm. 

3.4.2.2.1 Creating new generic eForms  

The administrators can create a generic eForm by identifying the product attributes and 

creating eForm elements for each of the attributes. Once the generic eForm has been created, it is 

saved and approved so it can be reused. 

3.4.2.2.2 Cloning existing generic eForms 

The administrators can also create a generic eForm by cloning an existing generic eForm. 

They can then rename some of the eForm elements attributes of the copy as the basis of creating 

a new eForm and provide a new name for the generic eForm. 

3.4.2.3 Changing the generic eForms  

The administrators can change an already existing generic eForm by adding new eForm 

elements, by moving, or deleting eForm elements within the eForm. These changes can be done 

to both approved and unapproved generic eForms to fulfill the needs of the tasks for which the 

eForms would be used. Figure 3.8 shows two possible ways of accomplishing the task of 

changing the generic eForms. 
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Figure3.8: Changing generic eForm 

 

3.4.2.4 Approving the generic eForms 

The completed generic eForms and their elements should be accessible to be used to 

create specific eForms or other generic eForms. Since both completed and uncompleted generic 

eForm are saved, the completed ones should be approved by administrators hence it can be 

copied and be used to create specific eForms and generic eForms.  

3.4.2.5 Deleting the generic eForms   

The administrators can delete a generic eForm that is no longer needed to support 

creation of specific eForms. A generic eForm that is considered no longer useful could be 

transfer into a repository database used for historical storage.  

3.4.3 Maintaining Specific EForms 

Figure 3.9 shows tasks that can be done to maintain specific eForms. It also shows the 

relationships that exist between the different tasks. 
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Figure 3.8: Maintaining specific eForm 

3.4.3.1 Searching for specific eForms  

The administrators should be able to search and find already existing specific eForms.  

Searching for specific eForms can help determine if there is an existing a specific eForm or if 

there is need to create a new one.  

3.4.3.2 Creating specific eForms 

New specific eForms can be created by either customizing an existing generic eForm or 

cloning an existing specific eForm. 

3.4.3.2.1 Customizing generic eForms 

Administrators and service providers create the specific eForms by customizing the 

generic eForm i.e. cloning the existing generic eForm then selecting elements that they want to 

retain in the new specific eForm while deleting the elements that would not be needed.  

3.4.3.2.2 Cloning existing specific eForms  

The administrators and service providers can also create a specific eForm by cloning an 

existing specific eForm. They can then delete the elements they don‘t want in the existing 

specific eForm, add new elements from the eForm elements list hence creating a new specific 
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eForm. The service providers can also rename eForm elements, add data, and add functionality 

to the new eForm. 

3.4.3.3 Changing the specific eForms 

Figure 3.10 shows possible ways of accomplishing the task of changing the specific 

eForms. 

 

Figure 3.9: Changing specific eForm 

The changes that apply to generic eForms can also apply to specific eForms: add eForm 

elements and move eForm elements. Their description is similar to those of generic eForms 

except here it applies to specific eForms (see section 3.4.2.3). In addition, three other ways that 

changes can be made to specific eForms are identified: delete eForm elements, change eForm 

data, and change eForm functionality. 

3.4.3.3.1 Delete specific eForm elements 

The administrators or the service providers can delete eForm elements from a specific 

eForm if the elements are deemed not necessary in accomplishing the task the eForm is used for.  

3.4.3.3.2 Changing specific eForms’ data 

After creating the specific eForms, the service providers can add, move, or delete data 

that would be used by the customers in accomplishing the different tasks that the specific eForms 
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are used to accomplish. The service provider decides on the information content that is provided 

and in what way this content is presented. A change in data might include a change on eForm 

elements attributes. 

3.4.3.3.3 Changing specific eForms’ functionality 

The administrators and the service providers can add, move, or delete constraints and 

functionality to the specific eForms. In order to accomplish some tasks, the specific eForms 

might require some functionality and constraints to be added to them. 

3.4.3.4 Approving the specific eForms   

The description of this task is similar to that for generic eForms (see section 3.4.2.4) 

except that it is directed to specific eForms. 

3.4.3.5 Deleting the specific eForms   

The description of this task is similar to that for generic eForms (see section 3.4.2.5) 

except that it is directed to specific eForms. 

3.5 Attributes for the objects 

Attributes (properties) of the objects are the content that facilitates the accomplishment of 

various tasks on the objects. All application systems and their tasks involve the presentation and 

manipulation of content [32]. Most interactions between the eForms and its users are based on 

the content presented on eForm. The content should therefore serve the users‘ needs in 

accomplishing their tasks using the eForm. 

Different chunks of content serve varying user groups in performing different tasks. 

Often specific user groups use specific content to perform specific tasks [32]. It is also important 

to note, while some content could be predefined and fixed, most content is subject to change in a 

variety of ways due to data processing and updating to meet the needs of its users. 
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3.5.1 EForm Elements Attributes  

3.5.1.1 EForm elements identification  

The eForm elements are used to build the layout of generic and specific eForm objects. 

These eForm elements should have attributes that is used to identify them. The ISO 11179 

―Specification and Standardization of Data Elements‖ standard [31] and the World Wide Web 

Consortium (W3C) "XML Schema" standard [11] identify the different attributes for describing 

elements in varying domains. 

ISO/IEC 11179 [31] identifies the following basic attributes for a data element. 

 Name: the primary identifier of an element. 

 Id: unique identifier assigned to an element. 

 Version: the attribute that specifies the version of the element. 

 Definition:  statement that clearly describes the element and its use. 

 Data type: the type of data that can be represented using the element. 

3.5.1.2 Types of EForm control components (elements)  

The layout of most eForms could consist of one or more of the following eForm control 

components and their labels. These controls are based on the commonly used web applications 

form elements. The eForm control components used to layout the eForm is not limited to the 

provided list. Service providers can use specialized widget (e.g. date widget) in their eForm 

layout. 

 Text field: This control is used to collect a small amount of data from the web application 

user. 

 Radio buttons: Radio buttons are used when the application user is expected to choose 

one of a limited number of choices. 
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 Checkboxes: Checkboxes are used when the application user is expected to choose one or 

more options of a limited number of choices. 

 Passwords: This control is used to collect data used for authentication of the user with 

either registering or logging in to use the application. 

 Buttons: Simple buttons have no predefined behavior: the buttons can be set to call 

functions or trigger other behavior when a relevant event occurs. 

3.5.2 Generic EForm Attributes 

3.5.2.1 Generic eForm elements 

The creation of generic eForm layout requires the use of eForm elements. Different 

combinations of these eForm elements are used to create different eForm layouts. The use of 

consistent eForm elements would allow easy control of the eForm layout, can lead to common 

control elements of different specific eForms can be identified and be combined to form a single 

generic eForm [23]. 

3.5.2.2 Generic eForm identification  

Multiple generic eForms are created to meet the needs of a given domain. In addition, 

there are tasks that need to be done on existing generic eForms i.e. cloning them, changing them, 

and reusing them. In order to accomplish these tasks, the administrators need to search for the 

relevant generic eForm to be changed or cloned. Searching is therefore important in 

accomplishing these tasks on the eForms. It is an essential issue to consider while determining 

the identification attributes of an eForm. Domain name, eForm name, and eForm id are identified 

as attributes that a generic eForm layout should have to help make searching easy. 

 Domain name: This is the identifier of the main purpose and the domain for which the 

eForm is created for.  
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 EForm id: This would be the unique identifier given to generic eForms created by the 

administrators.   

 EForm name: This is the identifier given to different types of generic eForms created by 

the administrators. The names could be given to eForms based on the format or the layout 

difference they possess. This would help distinguish eForms that have similar 

functionality but different layout.  

3.5.3 Specific EForm Attributes 

3.5.3.1 Specific eForm elements 

The specific eForms are created by customizing generic eForms (i.e. choosing needed 

elements to retain and rename while deleting the unwanted elements). The specific eForms like 

the generic eForms has eForm elements as part of their content.   The control elements would be 

based on the context of use environment and identify what content will be displayed on the 

specific eForms.  

3.5.3.2 Specific eForm data constraints 

Constraints and integrity elements are added at the specialization domain. The integrity 

of the data collected using eForms is important. Integrity includes user authentication and data 

validation. The service provider needs to collect correct data and from the right users. Validation 

helps detect errors in data input and check that correct data types are entered in their respective 

eForm elements. 

3.5.3.3 Specific eForm purpose data 

Specialization domain identifies the information being presented on the eForms without 

referring to how it is presented. There are specific purpose data that might be presented on a 

specific eForm as helpful information in accomplishing some tasks in a given domain. Specific 
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eForms are used to collect data related to the specific purpose of the web application as input. 

Some information to be collected might require instructions on how to provide the response. 

Specific eForms tailored for different purpose might require different data. The specific purpose 

data does not change the structural looks of the eForm but only deals with content.  The service 

providers would follow the domain rules to create data content for the specific eForms to be used 

by their customers in need of their services. 

3.5.3.4 Specific eForm identification 

In the same manner searching is important while dealing with generic eForms, it is 

important for dealing with specific eForms as well. Domain name, eForm name, eForm id, and 

service provider name are identified as attributes that a generic eForm layout should have to help 

make searching easy. 

 Domain name: This is the identifier of the domain for which the eForm is created for. 

This name would be based on the generic or specific eForm the new specific eForm is 

customized from. 

 Specific eForm id: This would be the unique identifier given to specific eForms created 

by the administrators.   

 Specific eForm name: This is the identifier given to different specific eForms.  

 Service provider name: This is the name of the service provider for which the specific 

eForm is created for. This service provider name would be useful in searching for 

specific eForms associated to a given specific service provider. 
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CHAPTER 4 METADATA MODELLING AND TOOL HIGH LEVEL DESIGN 

This chapter presents and discusses a way of modeling and structuring the metadata in a 

manner that is useful in eForm creation as a solution to the challenges identified in section 2.2. 

The system requirements and high level design for DeC as a tool used to manipulate the 

metadata is presented. The usability and acceptance of eForms on web applications is determined 

by their design, therefore, the process of eForm design is important.  

The main goal of creating eForms and their associated databases using metadata is to 

provide solutions to the challenges identified in Section 2.2. As earlier mentioned in the 

introduction, metadata is data used to describe other data entities, making the described data 

entities easy to relocate and reuse [25]. The resulting eForms should be reusable, easy to 

manipulate, and have Domain Metadata for better search results. To illustrate this approach as a 

solution, metadata is used in the eForm creation process. When using metadata to create eForms 

and databases for a given domain, it is essential to create the metadata based on the domain 

description (i.e. how terminology is defined and used within the given domain context).  

4.1 Metadata and Delk eForm Creator 

Metadata and Delk eForm Creator are essential in the design and implementation of 

eForms and their associated databases. In web domain, metadata is machine understandable 

information about web resources (data entities) [3].  The data entities being described should be 

based on a domain where they are used (e.g. sculptures, pictures, paintings are for art ecommerce 

domain). Metadata is often referred to as ―data about data‖ [36]. Metadata generally has three 

broad categories [25]: the administrative, which provides information to help manage an entity; 

the structural, which describes the structure of entity; and the descriptive, which describe an 

entity for a purpose as used in the domain. 
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4.1.1 Advantages of using metadata 

 Using metadata to create eForms, helps achieve scalability, reusability of eForms‘ 

components, and a high level of eForm consistency. The ability to control the entity structure of 

an eForm using metadata, allows the web application administrator to create new eForms and 

reuse existing ones. The metadata-based eForms are different from the custom-coded eForm 

applications in that, the metadata-based eForms contain declarative metadata, and they can be 

accessed and processed by metadata driven applications [5]. 

The data provided on the eForms are easily understandable by both the computer and 

human. This allows and facilitates information exchange between different web based 

applications. The use of metadata to create eForms make precise searching and comparing of 

such information‘s attributes and elements easier across different varieties of eForm entity 

structures used to present the information [35]. The use of metadata help users find information 

relatively easy, enable reuse of data, and facilitate better data management [21].  

4.1.2 Use of metadata 

Using metadata for create and maintain the eForms, eForm processors, and their 

associated databases provides a solution to the challenge concerning vendor using different 

structural approaches. This necessitates the creation of metadata for domain within which the 

eForms will be used (e.g. art ecommerce domain). Figure 4.1 is a diagram showing how 

metadata can be created and used to create the eForms and their associated database. 

Figure 4.1 extends Figure 2.1 by replacing programming tools and technologies used to 

create eForms and database with creator tools that use metadata to create the eForms and their 

databases. In addition, two tools that are used to create the metadata used by the creator tools are 

shown. It is important to provide easy to use tools to create metadata and a repository to store 
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metadata. The metadata used to create eForms and their databases needs to be structured such 

that if and when there is change on the eForms, the change is performed synchronously and with 

integrity to both eForms and databases. That is, whenever there is change on the eForm 

metadata, corresponding changes are reflected in their associated database metadata. However, in 

Figure 4.1, the eForm and database metadata implementation remain separate, which would 

place the burden of synchronizing the metadata for eForm and metadata for database on the 

administrator. 

 

Figure 4.1: EForm and database implementation using metadata  

4.1.3 Using Delk eForm Creator  

Using a single manipulation tool is a solution to the challenge caused by the use of 

multiple incompatible programming tools and technologies to create eForms and their databases. 

Figure 4.2 expands on Figure 4.1 by combining the four tools into a single tool (i.e. DeC) with 

three component tools. The tools used to create eForm and database metadata are combined into 
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a single component tool (i.e. metadata creator) that maintains synchronicity and integrity 

between eForm metadata and database metadata. The metadata creator tool would be used by the 

administrators to create and maintain sets of metadata used to drive the creation of eForms and 

their associated databases.  

 

Figure 4.2: EForm and database creation using Delk eForm Creator  

4.2 Metadata for eForms and databases creation  

4.2.1 Use of metadata in eForm and database creation 

 Creating eForms and databases using metadata calls for the creation of an  architecture 

that would be used to format eForms in a way that is both understandable to humans and 

computers. The process of creating eForms and databases using metadata could be augmented 

with the help of Semantic Web technologies. Semantic Web technologies mostly ―concentrate on 

the definition, discovery, orchestration and execution of Semantic Web services‖. More often 
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than not, their focus is on ―system-to-system communication and less on human-computer 

interaction‖ [41].  

 However, in this thesis, a way to create eForms using metadata (i.e. semantic 

description) of an art ecommerce domain is presented. The metadata description utilizes 

Semantic Web technologies to provide a logic description of the domain. Semantic Web is an 

evolving extension of the World Wide Web in which the semantics of information and services 

on the web is defined, making it possible for the web to understand and satisfy the requests of 

people and machines using the web content [40].  

 To create the metadata, it is important to use technologies that are platform 

independent. Technologies that can be used to create data formats; describe different kinds of 

data, store data, transport and share data on the web; and reduce the raising complexity of web 

technologies. XML is a technology with the mentioned qualities. XML can be used as a 

―standard for exchanging data between different systems, platforms, applications, and 

organizations‖ [39]. XML is vendor and platform independent, flexible, and can be used to 

format data to varying structures because new XML tags can be defined as needed. 

4.2.2 Types of metadata used in a domain 

As earlier mentioned in Section 3.2.1, there are two types of eForm objects: generic and 

specific are identified. Their associated databases that are used to store the information gathered 

using the eForms is also identified. To create the generic and specific eForms using metadata, 

each eForm object type needs its metadata description (i.e. Generic eForm metadata and specific 

eForm metadata). In the same way the specific eForm are created based on generic eForm, the 

specific eForm metadata are created based on the Generic eForm Metadata. To create databases 

using metadata, there is a need for database metadata.  
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The idea of augmenting eForms and their associated databases creation with metadata 

necessitates the definition of a general metadata vocabulary to be used within a domain (i.e. 

Domain Metadata). Using the art ecommerce domain as an example, Domain Metadata define 

entities (e.g. sculptures, pictures, paintings) and provide their semantic descriptions as used 

within a domain in a general manner (e.g. a sculpture is three-dimensional artwork created by 

shaping or combining hard materials).  

Based on the Domain Metadata, sets of Generic eForm Metadata, Specific eForm 

Metadata, and database metadata are created. This is achieved by first transforming the Domain 

Metadata into the Generic eForm Metadata. The transformation is done by grouping together 

attributes (e.g. the dimensions, the material of the sculpture) that are related to one entity an 

eForm is being created for. The grouped attributes are also assigned a data type (e.g. integer, 

string) each during the transformation process. Generic eForm metadata is therefore a structured 

set of entities derived from Domain Metadata geared towards concrete eForm creation. 

Database metadata is be derived from the Generic eForm Metadata. In this thesis, each 

Generic eForm and Specific eForm will be mapped to a table within a database. Each entity 

attribute in the Generic eForm metadata will be transformed to associated database metadata. 

The varying types of Specific eForm metadata will be derived from the Generic eForm Metadata. 

The process will involve choosing entities that meet the specific need to create specialized 

eForm. The semantics and constraints of the entities can then be modified by either adding or 

deleting from the main eForm.  

4.2.3 Capturing and representing metadata in a domain  

Based on the metadata definition in Section 4.1, metadata used to describe entities 

consists of a specific entity and description concepts that are based on a specific domain. In the 
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case of art ecommerce as example of a domain, it is essential to identify the entities and 

understand how these entities and their attributes are used or described within art ecommerce 

context before specifying the Domain Metadata. After identification, the entities, their 

description, and attributes have to be specified and represented in a semantic way.  

Metadata for the entities can be represented in semantic way using various formatting 

technologies. The technologies include but are not limited to RDF [37], Dublin Core Metadata 

Element Set [13], and Web Ontology Language [14]. The Resource Description Framework 

(RDF) is a foundation for processing metadata [37], it is a W3C standard and a general-purpose 

language for representing information in the Web [44, 6]. RDF uses XML to exchange 

descriptions of Web resources of any type. The RDF data model, defines a simple model for 

describing interrelationships among resources (i.e. entities) in terms of two properties; attributes-

properties of resources which correspond to attribute-value pairs and resource-properties which 

represent relationships between resources. RDF Schema (RDFS) provides a mechanism for 

defining the relationships between these properties and the resources. RDF Schema is a set of 

RDF resources (i.e. classes/entity), their properties, and constraints on their relationships.  

The Dublin Core Metadata Element Set is a vocabulary of fifteen properties for use in 

resource description. Dublin Core elements are ―broad and generic, usable for describing a wide 

range of resources‖ [13]. Ontology is a "formal, explicit specification of a shared 

conceptualization"[26]. Ontology is a formal representation of the knowledge using a set of 

concepts within a domain and the relationships between those concepts. It may be used to 

describe the domain and the domain properties. OWL Web Ontology Language is created for use 

by applications that do not only present information to humans but also need to process the 
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content of information [14]. Additional information vocabulary provided alongside formal 

semantics, allows OWL to facilitate greater machine interpretability of Web content. 

For the purposes of this thesis, the main concepts of RDFS are used to help to model the 

concepts used with metadata. Entity is used to represent resources, entity properties to represent 

resources properties, and entity constraints to represent constraints attached to the resources. The 

entities are domain objects being modeled (e.g. products, users), while properties are description 

of entities‘ attributes (e.g. age, gender, name for users).  

Three types of entity properties are identified: entity-property, data type-property, and 

description-property. Entity-property is a property that links different entities (classes, e.g. a 

customer buys a product). Data type-property is a property that links entities to data values (e.g. 

product‘s price = $10). Description property is a property that provides a brief explanation about 

the entity (e.g. the product is elegant). RDFS has a similar property called comment. While 

RDFS uses comment-property to provide a human-readable description of a resource, the 

description-property will be used to aid searching. 

The first step identified in this thesis is to describe the art ecommerce‘s domain entities, 

entities‘ description, and entities‘ properties (i.e. attribute value, attribute description and 

attribute constraints (represented as data type) in a semantic way using RDFS. The second step is 

to find a way of transforming the RDFS semantic description into a simpler semantic language 

(i.e. XSD format) as the basis for concrete eForm and database creation. This requires the 

transformation of the Domain Metadata to create Generic eForm Metadata (i.e. transform RDFS 

to XSD). The transformation process could be achieved by using the XSL technology (i.e. an 

XML based language used to transform XML files to a desired file type). Creation of new 

specific eForm metadata from the Domain Metadata should trigger creation of corresponding 



 

48 

 

database metadata. The creation of database metadata and concrete database is automated; the 

database elements (e.g. column) are added to the database metadata. Any changes to the existing 

specific eForm metadata should be reflected in the corresponding database metadata and the 

actual databases.  

The next step is the creation of a concrete generic eForm entity structure that is rendered 

by the web browsers. This involves transforming the XSD by adding the relevant eForm 

elements the Generic eForm Metadata. XForms is a W3C recommendation web technology [35] 

that can be used to create and structure web forms using XML. XForms is based on XML [17]. 

XForms acts as markup language for eForms and was designed to be the next generation of 

HTML forms. It is used for specifying eForms in a way that separates eForm use, eForm 

presentation, and eForm data, clearly separating the content, structure and user input [42, 39]. 

The separation of content and presentation allows for reuse [4] of the eForm. For a detailed pre-

prototype example with code see appendix II. 

4.3 Using Delk eForm Creator to create eForms and databases  

4.3.1 System requirements 

In this section, the analysis of system requirements for Delk eForm Creator (DeC) are 

introduced and discussed. This tool supports the creation of metadata for eForms and metadata 

belonging to art ecommerce domain. In order to support the projects from the different domains, 

DeC qualities include and are not limited to the ones identified below:  

 It provides a web-based user interface for interaction with domain administrators and 

service providers.  
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 It has the ability to support the operations involved in creating and maintaining Domain 

Metadata, generic and specific metadata, database metadata, and concrete eForms (i.e. 

generic and specific). 

 It provides a storage database used to save the created eForms and databases. 

 It has a searching mechanism that enables the administrators and service providers to 

access the saved metadata and eForms.  

 It provides a mechanism that allows the administrators and service providers to integrate 

the created eForms to a web application. 

The creation of eForms and their associated databases using DeC includes one or more of 

the following operations: creating new, searching, or changing (modifying) of metadata or 

eForms. The metadata and eForms created are saved in storage databases. The storage database 

is different from the databases generated by the using metadata. Searching is done against the 

storage database to check if metadata or eForm for a given issue within a given domain has been 

created or not. In addition, the tool creates a script that enables communication and data transfer 

between the created eForms and their databases.  

Figure 4.6 expands on by modifying the metadata creator tool component into two 

components: Metadata Creator and eForm Metadata Creator. Further expansion includes the 

addition of the Script Creator. This component is deemed necessary because it will be used to 

create the eForm processors that would enable data processing and communication between the 

created eForms and their databases.  Figure 4.3 to shows an overview of the proposed metadata 

based eForms and database creation process.  
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Figure 4.3: EForm and database metadata creation flow 

4.3.2 System components  

DeC is implemented around five major components as shown in Figure 4.7. To support 

its functionalities, addition five supportive components are also implemented. These components 

are modeled based on Figure 4.6 and the qualities of the tool identified in section 4.3.1. The 

major components are; Domain Metadata Creator, eForm Metadata Creator, eForm Creator, 

Database Creator, and Script Creator components.  
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Figure 4.4: DeC major components 

4.3.2.1 Domain Metadata Creator component 

The Domain Metadata Creator component is only accessible by administrators.  As the 

name suggests, this component is used to create Domain Metadata that is described and 

formatted using RDFS as described in section 4.2.3. The Domain Metadata is created by 

identifying and specifying all the attributes of entities in a domain. This name, data type, and 

domain based description of the attributes is needed to create Domain Metadata. After the 

Domain Metadata has been created, they are available to the eForm Metadata Creator 

component. The Domain Metadata Creator component allows the saving of created Domain 

Metadata, the saved Domain Metadata could be searched, retrieved, and be modified. The input 

for the Domain Metadata Creator component is the domain description (i.e. entity attribute name, 

data type, and description) entered by the administrator. The output is a list of domain based 

attributes (Domain Metadata) represented and formatted using RDFS.  
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4.3.2.2 EForm Metadata Creator component 

The eForm Metadata Creator component is accessible by administrators and service 

providers. This component creates and maintains new and existing copies of Generic eForm 

Metadata (i.e. XSD) and database metadata. The input for the eForm Metadata Creator 

component is the Domain Metadata from the Domain Metadata Creator. The outputs are the 

Generic eForm Metadata and database metadata. 

After the Generic eForm Metadata have been created, they are available to the eForm 

Creator and the Database Creator components. The eForm Metadata Creator is also used to 

create specific eForm metadata based on the Generic eForm Metadata. The eForm Metadata 

Creator component allows the saving of generic and specific eForm metadata, the saved Domain 

Metadata could be searched, retrieved, and be modified..  

4.3.2.3 EForm Creator component 

The eForm Creator component is accessible by administrators and the service providers. 

The eForm Creator uses the eForm elements identified in Chapter 3 to create the generic and 

specific eForms. A Generic eForm is created by combining a product‘s attributes with the 

appropriate eForm elements. The attributes are selected from the list defined as Domain 

Metadata. The eForm Creator can also be used to customize Generic eForms to create Specific 

eForms by deleting the attributes that are not deemed require in a Specific eForm or adding 

specific data to the eForm. Eform creator can also be used to enter fixed data on the eForms (e.g. 

default data). The inputs for the eForm Creator component are the generic and specific eForm 

metadata from the eForm Metadata Creator and eForm elements. The outputs are the generic 

eForm and specific eForms. The eForm Creator component would be used to update, edit, 

change, and add content and structure to generic and specific eForms.  
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4.3.2.4 Script Creator component 

The script creator component creates the eForm processor (script) that will enable the 

communication, the processing, and transfer of data between the created Forms and databases. 

The inputs for the Script Creator component are eForm and database metadata from the eForm 

Metadata Creator. The output is a script that provides a connection between the eForms and 

databases created based on the metadata. 

The Script Creator produces script files which have Create, Read, Update and Delete 

(CRUD) methods, i.e. the four basic functions of persistent storage [27, 73]. These four basic 

provides ways to a set and manipulate data in the databases when using the created eForms and 

databases. CRUD supports all major functions that need to be implemented in a relational 

database application to consider it complete. Each CRUD function can be mapped to a standard 

SQL statement: (Create: INSERT, Read (Retrieve): SELECT, Update: UPDATE, Delete 

(Destroy): DELETE). 

4.3.2.5 Database Creator component 

This component uses the database metadata from the eForm Metadata Creator and creates 

a database that will hold the data for the eForm. The input for the Database Creator component is 

the database metadata from the eForm Metadata Creator. It is essential to automate functions of 

this component so that changes made to the Generic eForm Metadata are reflected in their 

associated databases. The input has the constraint included in the Domain Metadata. The 

constraints could be modified while creating Generic eForm Metadata; modifications are 

automatically reflected on the database metadata. The output is a concrete database. The 

Database Creator will operate like a Database Management System (DBMS). It will control the 

creation, management and use of the database storage structure.      
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4.3.2.6 User Interface component 

The user interface component will provide the graphical user interface that would enable 

the user (i.e. administrator and service provider) to perform all the operations on the system, 

access and interact with some DeC components (i.e. Domain and eForm Metadata Creators and 

Integration components). It will also support an authentication mechanism which will help 

identify if the administrator or service provider is logged in. 

4.3.2.7 Database component  

DeC has databases for storage. The currently identified databases are: Domain Metadata 

DB, eForm metadata DB, eForm DB, and users DB. The inputs for the Database component are 

any data that need to be saved (i.e. eForms, metadata, or user information) created by any of the 

DeC component. The output is save storage of the data. These will be used as follows: 

Domain Metadata DB: used to store the Domain Metadata created by the Metadata Creator. 

EForms Metadata DB: used to store Generic eForm Metadata and specific eForm metadata 

created by the eForm Metadata Creator.  

EForms DB: be used to store concrete generic eForm and specific eForm created by the eForm 

Creator.  

Users DB: used to store the users of the delk eForm creator, i.e. the administrators and the 

service providers. 

4.3.2.8 Database Connection component 

 The database connection component allows the communication between the front end 

(i.e. user interface) and the back end (i.e. database) of the delk eForm creator. The inputs for the 

Database Connection component are the username, password, and database name to connect to; 

data provided by the administrator or service provider. The process is automated, so the data can 



 

55 

 

be fetched and connection be established when the user logs in. The output is an established 

connection to the database. 

4.3.2.9  Search component 

The search component is used to search the database for existing domain, generic or 

specific eForm metadata. It is used to search saved generic and specific eForms that an 

administrator or a service provider might be interested to reuse. This component supports the 

administrators and service providers in searching the following databases: Domain Metadata, 

eForm metadata, eForm, and users. The input for the Search component is some phrase from the 

administrator or service provider. The outputs are metadata or eForms associated with the phrase 

or null result. 

4.3.2.10 Application Integrator  

The application integrator component is used to setup and integrate (incorporate) the 

created eForms and their databases within a web application. The inputs for the Application 

Integrator component are the eForms, scripts, and their databases from the eForm Creator and 

server information for the web application hosting. The output is an eForm being integrated 

within a web application and database being setup.  

4.3.3 System use cases 

The eForm creation involves the creation and maintenance of Domain Metadata, eForm 

metadata, eForms, eForms elements and their associated databases. Figure 4.8 is a diagram that 

shows the general use case for creation of eForms and databases. (UML diagrams use a stick 

person to represent any interactive entity within the use case, including both humans and the 

system.) This section describes briefly some general high level use cases. More detailed use 

cases are presented in Chapter 5. 
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Figure 4.5: General use for creating eForms 

4.3.3.1 Log in use case 

At the start of the metadata manipulation operations, the administrator will be required to 

log in by entering a user name and a password, both of which will be sent to the database for 

validation. A successful log-in operation starts a session. The administrator will then be able to 

perform one of more operations using the system. 

4.3.3.2 Log out use case 

The session will terminate when the administrator logs off.   

4.3.3.3 Perform setup 

This use case will enable the administrator to setup the eForms created with the web 

applications. The administrator will be required to provide the servers authentication 

information. 
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4.3.3.4 Session use case   

If the administrator‘s log in data is valid, a logged in session for the user will be created. 

This session will be maintained until the administrator logs off. Else if the administrator‘s log in 

data is invalid, a message is displayed requiring the administrator to re-enter the data before a 

session can be started. While the session is on, the system should allow the administrator to 

perform the following operations. Maintain Domain Metadata, maintain eForm metadata, 

maintain eForms, maintain database metadata and maintain databases.  

4.3.3.5 Operation use case 

 The operation use case is an abstract generalization of the specific operations use cases 

that the administrator can perform using the system. Each specific operation implements the 

administrator‘s tasks in an appropriate way. The operations use case includes the search, 

create_New, and modify use cases. The operation use case is associated with the object 

maintenance use case. An operation use case is started within a session when the administrator 

chooses a specific object maintenance use case from a menu of options.  

4.3.3.6 Object maintenance use case 

 The object maintenance use case is an abstract generalization of specific object 

maintenance use cases that the administrator can perform using the system. A specific object 

maintenance use case implements one or more of the operation use cases on a specific object 

(e.g. maintain domain eForm implements operations on domain eForm). The object maintenance 

use case describes a general common event flow for the different operations. The flow of events 

for each individual type of use case gives detailed operations that are specific to that use case. 

The object maintenance use case is started within a session when the administrator 

chooses an operation type from a menu of options. The administrator accesses the appropriate 



 

58 

 

user interface generated depending on the chosen option from a menu (e.g. the user interface to 

create Domain Metadata if the administrator choose ‗maintain Domain Metadata‘ from the menu 

option). The administrator should be able to abort the use case in progress by pressing the Cancel 

button.  

The object maintenance use case will be considered complete once it has been approved. 

In the case of creating Domain Metadata, a Boolean value in the table storing Domain Metadata 

in database is changed and an email is send to the administrator to confirm the operation.   If an 

operation fails for any reason, the system will display a message related to the problem. The 

administrator is then asked whether they want to do another operation. 
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CHAPTER 5 TOOL DETAILED DESIGN AND IMPLEMENTATION 

 This chapter describes the detailed design for Delk eForm Creator.  It expands on use 

cases described in section 4.3.3 by providing descriptions for user interfaces used to fulfill the 

needs of the use cases. Description of class implementation and responsibilities that support 

functionality of the major system components identified section 4.3.2 is also provided. Further 

description of the database implementation is provided.  

 Considering all the features and components identified in the analysis and high level 

design (i.e. chapter 3 and chapter 4 respectively), Delk eForm Creator (DeC) is a complex 

system. For the purposes of this thesis and proof of concept most but not all of the identified 

features are implemented. As earlier identified in the introduction section of Chapter 4, the main 

goal for using metadata is to create eForms that are reusable, easy to manipulate, and encapsulate 

Domain Metadata that is expected to aid data searching.  

DeC is used to create simple eForms. Its functionality and use illustrates that use of 

metadata is a possible solution to the issues identified in section 2.2. DeC produces eForms that 

could be used for user interface, data display, and data gathering. The implementation is based 

on 3 tier architecture. The presentation (user interface) tier, application (functional) tier, and data 

(database backend) tier.  

5.1 Delk eForm Creator Use cases and their interfaces (presentation tier) 

This section describes the presentation tier (user interface). This presentation tier 

provides a communication interface that enables the user of DeC to manipulate, navigate, and 

use the functionalities provided by the other tiers of DeC tool as a whole. The following 

implementations of user interfaces are for the uses cases described earlier in section 4.3.2. Figure 

5.1 shows the general user interface layout.  
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The Home Page is the default interface that is first accessed whenever DeC is started. 

From the Home Page the user is able to navigate to four interfaces that would enable them to 

manage the eForm objects indentified in Section 3.2 and expanded in Section 4.2.2. The four 

interfaces are Create Domain Metadata, Create Generic eForm, Create Specific eForm, and Log 

In. The user is able to access ‗Log In‘ directly from the default interface. In order to access the 

‗Create Domain Metadata‘, ‗Create Generic eForm‘, and ‗Create Specific eForm‘, the user will 

have to be logged-in.  

In case the user is not logged-in and they tried to access any of the other interfaces, they 

will be redirected to the ‗Log In‘ interface. The log-in information is provided by the 

administrator who is in charge of user registration. From each of the three interfaces (Create 

Domain Metadata, Create Generic eForm, and Create Specific eForm), the user is able to access 

the operations they can perform on that specific interface. The operations accessible are: 

create_New, modify, and search. 

 

Figure 5.1: DeC general User Interface Layout 
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Figure 5.2 shows the default (Home Page) interface. This is the first interface the user 

encounters when the system starts. The Home Page interface provides a layout that enables the 

user to choose which eForm object they want to work on. The three eForm objects the user can 

work on are the Domain Metadata, Generic eForm, and Specific eForm. In Section 3.4, six 

operations on each eForm object were identified (i.e. search, create_New, clone, change, 

approve, and delete). For the purposes of this thesis, three of six operations that are implemented 

are create_New, modify, and search. The rest of the identified operations (clone, approve, and 

delete) will be implemented before the tool is deployed.  

  

Figure 5.2: DeC Default Interface 

Figure 5.3 shows the log in interface within the default home interface that implements 

log in use case described in section 4.3.3.1. The Log in interface is activated when the user clicks 
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on the log in tab on the Home Page or when the user tries to access the other interface and they 

are not logged-in. Successful log-in starts a session use case and takes the administrator to the 

Home Page (see Figure 5.2). The user has to be logged-in in order to use the DeC tool, therefore 

this Log in interface is needed. 

  

Figure 5.3: DeC Log-In Interface 

Some common features for the all user interfaces are the operation menu and instance 

help buttons. Just below the main menu that allows the user to navigate and work between 

different eForms objects, are buttons that allows the user to navigate between the operations they 

can do on the eForm object (i.e. create_New, modify, and search). Instant help that explains the 

element functional description and shows an example are provided by using a question mark 

image as shown in Figure 5.4. When a user moves the mouse over the question mark image, a 

balloon containing the help message is displayed. This is useful when a user needs help on the 

functionality of the element. 

5.1.1 Create Domain Metadata interface 

This interface allows the administrator to carry out the following activities supported by 

Delk eForm Creator prototype: search for, create_New, or modify Domain Metadata. This 

section focuses on create_New activity for Domain Metadata. For more information on search 

and modify activities see appendix V.  

Figure 5.4 shows an interface an administrator is presented with when they access the 

Create Domain Metadata interface and select create_New from the drop-down menu. This 
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interface provides text eForm elements called the Domain Metadata Name that the administrator 

enters the name of the Domain Metadata (e.g. ecommerceArt). The interface also provides a text 

area eForm element called Domain Description where the administrator enters a description on 

the domain the attributes are created for (e.g. Information related to art products sold via 

internet/online shops).  

  

Figure 5.4: Default DeC Create Domain Metadata Interface 

Figure 5.5 shows Create Domain Metadata user interface with some attributes added. A 

Domain Metadata without any entities cannot be created. To add the first entity, the interface 

provides a mechanism to add new attributes to the identified list by using the Add Attribute 

button. The interface also provides text eForm elements to add data about the attribute name (e.g. 

price), attribute‘s data type (e.g. decimal), and attribute‘s description (e.g. the price of the item).  

The tool provides and populates the dropdown menu with data types supported by 

MySQL databases. Specifying data type is important for data validation when using the eForm 

that would be created based on the Domain Metadata. The attribute description provides more 

information on how the attribute is used within a specific domain which might be different from 

how the same attribute is used in another domain. To remove or delete any of the added 

attributes, the interface provides a button represented by the recycle bin image on the left side of 
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the attribute. To trigger the tool to create the Domain Metadata; the interface provides the 

Produce Domain Metadata button. 

  

Figure 5.5: Using DeC Create Domain Metadata Interface 

This section provides a step by step instruction on how to manage Domain Metadata. For 

a detailed pre-prototype example with code see appendix II. 

5.1.1.1 Create New Domain Metadata 

1. The first step is to access DeC Home Page, see Figure 5.2.  

2. The next step is to click on the Log In tab on the right side of the page. An interface with a 

log in interface is presented as a result of this step (2), see Figure 5.3. 

3. Next is to enter the username and password into their respective text input boxes on the 

interface, then press Log In button (the administrator should be registered as a user to have 
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log-in information). The Home Page will re-load if the log in process was successful, if not, 

the administrator will be asked to re-enter the log-in information. 

4. To create a new Domain Metadata, the administrator has to click on the Create Domain 

Metadata at the top of the interface, and then choose create_New from the resulting 

dropdown menu.  

5. The resulting interface from step 4 is the interface that will allow the administrator to enter 

the content of the Domain Metadata. Note from this interface the administrator can access 

other operations (i.e. modify and search) Domain Metadata. 

6.  Next step is to specify the name of the domain in the Domain Metadata name section (e.g. 

ecommerceArt). Provide domain description. 

7. A Domain Metadata without any attribute cannot be created. To add the first attribute, the 

administrator clicks on the Add Attribute button. When this button is pressed, an interface 

that allows the administrator to the enter attribute name is provided.  

8. The attributes would have name (e.g. name, age), data type (characters (i.e. char (255)), 

integer (i.e. Int) and their descriptions. To choose the appropriate data type for the attribute, 

the administrator chooses one data type from the drop-down list offered. The tool provides 

and populates the dropdown menu with data types supported by MySQL databases. 

Specifying data type is important for data validation when using the eForm that would be 

created based on the Domain Metadata.     

9. It is expected that each Domain Metadata would have more than one entity attribute. To add 

more entities attributes repeat steps 7- 8. To remove or delete any of the added attributes, the 

administrator clicks on the button represented by the recycle bin image on the left side of the 

attribute. 
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10. When the administrator is done adding entity attributes, they click on the Generate Domain 

Metadata button. When this button is pressed, the system takes the data entered in the 

interface and transformed them into Domain Metadata represented and structured as RDFS as 

specified in the requirements (refer to capturing and representing metadata section 4.2.3).   

11. Creating a new domain is a onetime process. Addition and modification of domain‘s 

properties (entities) can be done multiple times (see modify Domain Metadata in appendix 

V).   

5.1.2 Create Generic eForm interface 

This interface allows the user (i.e. administrator or the service provider) to carry out the 

following activities supported by Delk eForm Creator prototype: search for, create_New, and 

modify. This section focuses on create_New activity for Generic eForm for more information on 

search and modify activities see appendix V.  

  

Figure 5.6: DeC Create Generic eForm Interface 

Figure 5.6 shows an interface a user is presented with when they access the Create 

Generic eForm interface and select create_New from the ‗Create Generic eForm‘ drop-down 

menu. This interface provides a drop-down select option called Domain Metadata Name that is 

populated with the names of Domain Metadata already created. The user is to select one Domain 

Metadata (e.g. ecommerceArt) as the basis for creating a Generic eForm. This interface also 
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provides a text eForm element called Generic eForm Name that the user enters a name for the 

Generic eForm (e.g. artistModel). 

When the user chooses a Domain Metadata as the basis for creating Generic eForm and 

clicks the Add Entity button, the interface is populated with all the attributes defined within 

chosen Domain Metadata as shown in Figure 5.7. The interface provides a mechanism to 

customize the entities and their attributes based on the eForms elements identified earlier in 

section 3.5.2. The interface also provides text eForm elements for entering the entity name (e.g. 

painting, drawing, and artist) for the Generic eForm creation. The interface provides a 

mechanism to customize the attributes for each entity added using the delete button represented 

by the red image with the 'minus' sign. 

  

Figure 5.7: DeC Interface Populated with Domain Metadata attributes 
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The interface provides a text eForm element called Label for each attribute to add label 

data (e.g. Name) displayed when rendering the Generic eForm. The interface also provides a 

mechanism to add the eForm elements (e.g. text box, input, or button) and submission element to 

the Generic eForm. The eForm elements are provided on the interface in a drop-down select 

element called Control. The eForm element selected affects how the Generic eForm will be 

rendered and the Field Options. For example if a check box eForm element is chosen, the Field 

Options provides an interface that allows the user to enter the different options related to the 

attribute. The Field Options also allows the user to specify whether the attribute will be required 

or not. This will affect the functionality of the Generic eForm, that is, if the attribute is assigned 

required, then the eform cannot be submitted with the specified attribute as empty. 

As the elements of the Generic eForms are specified, the Generic eForm Metadata is 

simultaneously created.  The creation of the Generic eForm Metadata from the Domain Metadata 

triggers an automated creation of corresponding database metadata and script file with CRUD 

methods described earlier in section 4.3.2.4. Any changes to the Generic eForm Metadata should 

trigger an automated change to the database metadata.  

The database elements (e.g. column) are added to the Generic eForm Metadata and 

represented as SQL commands (see appendix II Figure 4). The sizes of the different elements are 

allocated by default (e.g. varchar is defaulted to size 255). Each element in the XSD file is 

transformed into an element of SQL statement. For example, artist element is transformed into 

(‗artist‘ CHAR (255) NOT NULL). Each data input eForm element is expected to map to a given 

column of a table in a database. For example, text boxes for inputting name on the product 

eForm will be mapped to a column for storing names in a table (product-table) within a database.   
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This section provides step by step instruction on how to create Generic eForm and their 

Metadata. For a detailed pre-prototype example with code see appendix II. 

5.1.2.1 Create New Generic eForm Metadata 

1. The first step is to access DeC Home Page.  

2. If the user is logged in, then the next step is 4. Else the next step is to click on the Log In tab 

on the right side of the page. An interface with a log in interface is presented as a result of 

this step (2) 

3. Next the user enters the username and password into their respective text input boxes on the 

interface, then press Log In button (the user should be registered as a user to have log-in 

information). The Home Page will re-load if the log in process was successful. 

4. To create a new Generic eForm, the user clicks on the Create Generic eForm then choose 

create_New from the dropdown menu.  

5. The resulting interface from step 4 is the interface that will allow the user to choose the 

Domain Metadata to base the Generic eForm on. The names of the Domain Metadata created 

are presented using a dropdown menu from which the user can choose. Note that from this 

interface the user can access other operations (i.e. modify and search) Generic eForm 

Metadata. 

6. The next step is to specify the name of new Generic eForm (e.g. artistModel). 

7. A Generic eForm without any entities cannot be created. To add the first entity, the user 

chooses the Domain Metadata to base Generic eForm creation on. When this is done, the 

attributes specified for the Domain Metadata chosen populate the user interface.    

8. Next is to specify the Entity name (e.g. seller) and customize its attributes by deleting the 

unwanted attributes.  
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9. If there is need to delete some of the entity‘s attributes, the attribute to be deleted is identified 

and the red button with the ―minus‖ sign is pressed. 

10. The user then specifies the label name for each attribute.  

11. For presentation purposes, the user has to also specify the eForm element type (e.g. radio 

button, text box) from the drop-down menu provided. When a user chooses eForm element 

types e.g. radio button or check boxes an interface to specify data options that is related to 

the given attribute. 

12. To add more entities to the Generic eForm, the user repeats steps 7-11. 

13. When the user is done adding entities, the user clicks on the Generate Generic eForm button. 

When this button is pressed, the tool generated Generic eForm Metadata represented as XSD 

based on the requirements (refer to capturing and representing metadata section 4.2.3) by 

transforming the RDFS into XSD and a Generic eForm represented as a XHTML file.  

5.1.3 Create Specific eForm interface  

This interface allows the user to carry out the following activities supported by the Delk 

eForm Creator prototype: search for, create_New, or modify. This section focuses on 

create_New activity for Specific eForm. For more information on search and modify activities 

see appendix V.  This interface is intended to be a proof of concept hence it currently does not 

support all the activities that could be done to specify the styling of a Specific eForm. One of the 

features to be included in the future development is the presentation metadata. The presentation 

metadata would help in specifying the feel and look of the eForm e.g. the location of the eForm 

elements. Other features are identified in the future work section. 

Figure 5.8 shows an interface a user is presented with when they access the Create 

Specific eForm interface and select create_New from the ‗Create Specific eForm‘ drop-down 



 

71 

 

menu. This interface provides a drop-down select option called Generic eForm Name that is 

populated with the name of the Generic eForms already created. The user is to select one Generic 

eForm Name (e.g. artistModel) as a basis for creating Specific eForm. This interface also 

provides a text eForm element called Specific eForm Name that the user enters a name for the 

Specific eForm (e.g. artistInfo). 

  

Figure 5.8: DeC Create Specific eForm Interface 

DeC tool at the moment allows the user to create three simple types of Specific eForms 

(i.e. Registration eForms, data collection eForms, and order eForms). This interface also 

provides a user a drop-down menu called Types of eForms to choose the type of eForm to create. 

The type of the eForm chosen helps DeC in deciding what functionality to implement and 

support in when creating the Specific eForm and the eForm processor. The user selects what type 

of eForm to create based on their need for the eForm. This interface also provides a text area 

eForm element called eForm Title that allows the user to enter the title of the Specific eForm. 

The interface also provides editorial features that a user uses to format the title of the Specific 

eForm.  

When the user chooses a Generic eForm as the basis for creating Specific eForm, the 

interface is populated with all entities and their attributes defined within the chosen Generic 
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eForm as shown in Figure 5.9. The interface provides a mechanism to customize the entities and 

their attributes based on the eForms elements identified earlier in section 3.5.3. The user can 

delete unwanted entity attributes from the eForm using the delete button represented by the waste 

bin image.  The interface provides text eForm elements called Label for each attribute to add 

label data (e.g. Artist Name) displayed when rendering the Specific eForm. 

  

Figure 5.9: DeC Interface Populated with entity attributes  
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The interface also provides a mechanism to customize the eForm elements (e.g. text box, 

input, or button) and submission element to the Specific eForm. The eForm elements are 

provided on the interface in a drop-down select element called Control. The eForm element 

selected affects how the Specific eForm will be rendered and the Field Options. For example if a 

check box eForm element is chosen, the Field Options provides an interface that allows the user 

to enter the different options related to the attribute. This mechanism also allows the user to 

customize and make changes to the attributes specified on the Generic eForm. 

The interface also provides a mechanism to specify the relationship that exists between 

entities in different Specific eForms because each Specific eForm is mapped to a table, hence 

establishing a relationship (cardinality) between tables in the database. On the interface, this 

mechanism is provided by the drop-down menu called ‗Entity Relation‘ which provides three 

types of relationships (i.e. Parent, Child, and Sibling). Parent and Child relationship are used for 

entities that have many to 1 or 1 to many relations. Sibling relation is used for many to many 

entity relations. For the relationship to work, the relationship has to be specified in both ways i.e. 

when creating both entities. For example, when creating an eForm for an Artist, attribute 

artistPaintings is set as Child.  

When creating an eForm for related Paintings eForm, with multiple attributes e.g. Color, 

the Paintings is set as Parent and the Color as the Child. The two entities (Paintings and Color) 

can be related by the definition: A Painting has many Colors or even this color belongs to this 

Painting entity. This relationship illustrates a 1 to many entity relationships. When defining the 

Painting entity attributes‘, the Color entity is simply add as one of Painting‘s attributes and 

assign the attribute type ‗Child‘. This tells DeC that Painting is a parent entity and will be 

connected to a child entity, the Color entity. Therefore DeC will create two tables associated 
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with the two entities (Painting and Color) database. The Color table will store the repeating data 

while the Painting table will store the information for every unique painting entered. When any 

user is using the Specific eForm for searching, the data from the Color will be retrieved 

recursively. This mechanism is also useful when dealing with order eForm issues (e.g. a sales 

slip form that has multiple lines for items ordered).  

The Field Options also allows the user to specify whether the attribute will be required or 

not. This will affect the functionality of the Specific eForm, that is, if the attribute is assigned 

required, then the eform cannot be submitted with the specified as empty. In addition to the 

required option, this interface provides two text eForm elements for Hint and default data. Hint 

provides an opportunity for the eForm creator to provide helpful information that will help the 

eForm user while providing data. Default element provides an interface to enter data that is 

expected to shown on a Specific eForm as default data. 

The creation of the Specific eForm Metadata from the Generic eForm triggers an 

automated creation of corresponding database metadata and script file with CRUD methods 

described earlier in section 4.3.2.4. The database created during Specific eForm creation is 

related to that of the Generic eForm used as the basis.  

The database elements are acquired from the Generic eForm process used as the basis for 

creating Specific eForm. The sizes of the different elements are allocated by default (e.g. varchar 

is defaulted to size 255). Each element in the XSD file is transformed into an element of SQL 

statement. For example, artist element is transformed into (‗artist‘ CHAR (255) NOT NULL). 

Each data input eForm element is expected to map to a given column of a table in a database. 

Just as is the case with Generic eForm, each data input in Specific eForm element is expected to 

map to a given column of a table in a database (refer to Section 5.1.2).  For example, a text boxes 
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for inputting name on the artist eForm, will be mapped to a column for storing names in a table 

(artist-table) within a database.  

This section provides a step by step instruction on how to manage Specific eForm 

Metadata. For a detailed pre-prototype example with code see appendix II. 

5.1.3.1 Create New Specific eForm Metadata 

1. The first step is to access DeC Home Page.  

2. If the user is logged in then the next step is step 4. The next step is to click on the Log In tab 

on the right side of the page. An interface with a log in interface is presented as a result of 

this step (2) 

3. The user the enters the username and password into their respective text input boxes on the 

interface, then press Log In button (the user should be registered as a user to have log-in 

information). The Home Page will re-load if the log in process was successful. 

4. To create a new Specific eForm Metadata, the user clicks on the Create Specific eForm then 

choose create_New from the dropdown menu. 

5. The next step is to choose the name of the Generic eForm (e.g. artistModel) to base Specific 

eForm on.  

6. The user then provides the Specific eForm name  

7. The user then specifies the type of the eForm (e.g. order, survey, or registration) to create 

from a list provided as a dropdown menu called ‗Type of eForm‘.  

8. The user can then provide and format the Title of the eForm. 

9. Based on the Generic eForm chosen, the interface is populated with the entity attributes from 

the Generic eForm. 
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10. The next step is to customize the Specific eForm by choosing which Entities to delete and 

those to retain as part of the Specific eForm. 

11. Next is to specify the Entity relation attribute (e.g. Parent) if the eForm is expected to be 

related with other eForms. If there is no relationship, it is not expected that this attribute is 

left empty.  

12. Next is to specify what type of eForm element (e.g. radio button, check box) will be required 

to capture the data for the entity attribute being customized. 

13. The next step is to specify the field options. The field specifies whether the field will be 

required or optional when customer is entering data, and provide a hint that will help the 

customer to enter the correct data. The user provides a default value that will be displayed 

when the eForm is first loaded. The field option features are eForm specific because two 

eForms implementing the same Generic eForm Metadata may be required to have different 

hints or default values.   

14. If there is need to delete some of the eForm element options added, identify the element to 

delete and press the red image with a ‗minus‘ sign on the right side of the element. 

15. The user repeats steps 11-14 as many times as the number of entity attributes specified on the 

Specific eForm. 

16. When the user is done choosing and editing eForm elements, they click on the Generate 

Specific eForm. When this button is pressed, DeC creates an eForm within XHTML file that 

will be rendered using web browsers, a MySQL database, and PHP script file with CRUD 

methods to support the manipulation of data to and from the database.  

17. Resulting eForm is rendered in a Firefox web browser 
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5.2 Delk eForm Creator Classes and component functionality (application tier) 

This section provides an overview of all the classes and all their responsibilities. This 

application tier provides and controls the functionality of the tool by performing detailed 

processing based on defined functions for the application. 

5.2.1 System Overview Diagram 

 Based on the components identified in Section 4.3.2, using object oriented design the 

following classes were identified. A controller class that represents the system itself (i.e. delk 

eForm creator) is identified.  This class manages other object classes that correspond to 

components within the system. The object classes identified map to system components, use 

cases, and the output of components of the system.  

The classes that represent the components of DeC are: User Interface, Metadata Creator, 

eForm Metadata Creator, eForm Creator, Database Creator, Script Creator, Search, Application 

Integrator, and Databases classes. The object classes that corresponding to the output of system 

components are: Domain Metadata, eForm Metadata, eForm Generic Metadata, eForm Specific 

Metadata, Database Metadata, eForm, Generic eForm, Specific eForm, Script, and Database.  
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Figure 5.10: DeC System Overview diagram 

Figure 5.10 is a diagram showing the system overview diagram for DeC tool. The 

structure of the diagram arises from the responsibilities description of each chosen class and 

expected collaboration (communication) between the classes. The classes that corresponding to 

use cases are: Log In, Log Out, Session, Operation, and Object maintenances. The classes that 

correspond to operations on object classes are: Maintain Domain Metadata, Maintain eForm 

Metadata, Maintain Generic eForm Metadata, Maintain Specific eForm Metadata, Maintain 

eForms, Maintain Generic eForms, Maintain Specific eForms, Maintain Integration, Maintain 

Script, Maintain Database Metadata and Maintain Database classes. More detailed description of 

each of the classes is provided in the appendix (see appendix III).  

5.2.2 Major Components step by step Functionality 

This section provides a step by step explanation of how each component works. Each of 

the components communicates with relevant classes to perform their operations. 

5.2.2.1 Domain Metadata Creator Component 

1 Receive the data to be used to create Domain Metadata from DeC user interface (Create 

Domain Metadata). 

2 Create the RDF file (Domain Metadata) from the data. 

3 Save data in the database with reference to the Domain Metadata. 

5.2.2.2 EForm Metadata Creator Component 

1 Receive the data to be used to create eForm Metadata from DeC user interface (Create 

Generic eForm). 

2 Based on the Domain Metadata name chosen, access and get relevant Domain Metadata 

RDF file. 
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3  Create the XSD file (eForm Metadata) from the resulting combination of data and RDF 

file. 

4 Save the resulting data in the relevant database with reference to the eForm Metadata. 

5.2.2.3 EForm Creator Component 

1 This component is used by more than one user interface. 

2 Based on the interface interacting with the component, receive the data from the user 

interface. 

3 Create the eForm elements based on the entered data. 

4 Create the XHTML to host the created eForm elements. 

5 Trigger the Database Creator Component. 

6 Trigger the Script Creator Component. 

7 Save the data to the relevant database with reference to the eForm created. 

5.2.2.4 Database Creator Component  

1 Receive the data from the eForm Creator Component. 

2 Create the data elements that map to the eForm elements.  

3 Create the CRUD functionality. 

4 Create the database file (SQL file). 

5.2.2.5 Script Creator Component 

1 Receive the data from the eForm Creator Component. 

2 Based on the type of eForm create the functionalities to be supported. 

3 Create the elements that map to the eForm elements and database elements. 

4 Create the script file. 
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5.3 Database Backend (data tier) 

 This section describes a database that would be used to store all the metadata, eForms, 

and their related information. The data tier keeps data neutral and independent from application 

and presentation tiers. The ability to store data free of other tiers, improves scalability and 

performance of the data storage [20]. This section implements what was discussed briefly in 

4.3.2.7 that in turn was based on requirements identified in sections 4.3.1 that the tool should 

have a storage database. 

Figure 5.11 shows an entity relational (ER) diagram of the database that would be used to 

store Domain Metadata, eForm metadata, and the eForms created. The database consists of 10 

tables namely: domain_metadata, domain_class, domain_attribute, domain_model, 

domain_model_class, domain_model_attribute, domain_eForm, domain_eForm_attribute, 

domain_eForm_option, and domain_user. The tables are named based on the name of the object 

it will store prefixed with the word ‗domain_‘. 
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Figure 5.11: DeC backend database E-R diagram 

 

5.3.1 Table and their attributes 

 This section provides descriptions of each table and their attributes. The attributes are 

named based of the information it will store and are prefixed with the abbreviation of the table 

name and a hyphen. Detailed description with the column information of each table is provided 

in the appendix (see appendix IV). 

5.3.1.1 domain_metadata 

 This table is used for storing Domain Metadata.  
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5.3.1.2 domain_class  

 This table is used for storing classes for each Domain Metadata. The cl_domain acts as a 

foreign key to the domain table and consist of the Domain Metadata (domain) name combined 

with domain id.  

5.3.1.3 domain_attribute 

 This table is used for storing the attributes of classes for each Domain Metadata. The 

att_domain acts as a foreign key to the Domain Metadata and consist of the domain name 

combined with domain ID. The att_class links the class and their attributes.  

5.3.1.4 domain_model 

 This table is used for storing eForm metadata. It has md_domain attribute which acts as a 

foreign key to the domain table and consist of the Domain Metadata (domain) name combined 

with domain id.  

5.3.1.5 domain_model_class 

 This table is used for storing model classes for each eForm metadata. The mdc_domain 

acts as a foreign key to the domain table and consist of the Domain Metadata (domain) name 

combined with domain id. The mdc_model acts as a foreign key to the model table and consist of 

the eForm metadata (model) name combined with model id.  

5.3.1.6 domain_model_attribute 

 This table is used for storing the attributes of classes for each eForm metadata. The 

mda_domain acts as a foreign key to the Domain Metadata and consist of the domain name 

combined with domain ID. The mda_model links the eForm metadata (model) and their 

attributes. The mda_class links the class and their attributes.  
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5.3.1.7 domain_eForm 

 This table is used for storing eForms. The ef_domain acts as a foreign key to the domain 

table and consist of the domain name combined with domain id. The ef_model acts as a foreign 

key to the model table and consist of the eForm metadata (model) name combined with model id.  

5.3.1.8 domain_eForm_attribute 

 This table is used for storing the attributes (fields) for each eForm. The efa_eForm links 

the eForm and their attributes.  

5.3.1.9 domain_eForm_option 

 This table is used for storing the options of attributes (fields) for each eForm that required 

options, for example the case of check boxes. The efo_eForm links the eForm and the options. 

The efo_attribute links the attribute with the options.  

5.3.1.10  domain_user 

 This table is used for storing the user information. The us_administrator column with be 

used to state whether the user is an administrator or not.  
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CHAPTER 6 TESTING AND EVALUATION 

In this chapter, Delk eForm Creator(DeC) tool is examined and evaluated to see if it 

fulfills the requirements of this thesis to provide solutions to the identified challenges by creating 

functional eForms using metadata. To prove the concept of this thesis, different sets of simple 

eForms are created. This chapter provides documented demonstrations of how DeC is used to 

create the various eForm objects based on the following activities; 

 An illustration of how DeC is used to create metadata for a Generic eForm and how 

the resulting Generic eForm is rendered from the metadata and used by a typical user 

is provided.  

 An illustration of how DeC is used to create metadata for 3 Specific eForms based on 

the Generic eForm and how the resulting Specific eForms are rendered from the 

metadata and used by a typical user is provided.  

 An illustration of how DeC is used to create metadata for a Specific eForm based on 

some real world e-Commerce page (e.g. ARTshops - http://www.artshops.com) and 

how the eForm is rendered from the metadata and used by a typical user is provided. 

Based on the evaluation requirements, above, the following sections provide a 

documented demonstration of the creation and usage of the eForm objects. The approach taken 

in this thesis evaluation is to first show how the eForms are created and then secondly show how 

they are rendered and used. 

6.1 Creating eForm objects 

For evaluation purposes, a simple eForm that could be used to specify or collect data 

about a painting is developed. Figure 6.1 shows what a simple illustration of the targeted eForm 
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output of the DeC looks like. Figure 6.1 shows, in the chrome browser, an eForm document that 

could be used for a painting attributes. 

 
 

Figure 6.1: Generic eForm example created by DeC 

6.1.1 Create Domain Metadata 

The first step in the process of creating eForms using metadata is to create the Domain 

Metadata based on requirements in section 4.2.3. This step includes the identification of relevant 

domain (i.e. ecommerceArt), entities (e.g. painting, sculpture, drawing), and the attributes of the 

entities. Possible list of attributes include but are not limited to: artist/painter‘s name, style, 

theme, medium, size, price, color, and texture. Using the Create Domain Metadata interface, the 

Domain Metadata is created by providing Domain Metadata Name, Description, and Entity 

attributes. The attributes involves specification of the attribute name, its data type and its 

description. Figure 6.2 shows an interface of the Domain Metadata creation process. 
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Figure 6.2: Specifying Domain Metadata attributes   
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 Once the Domain Metadata is created, it is represented and stored in a RDFS format as 

shown in Figure 6.3 and described in section 4.2.3. This RDFS documents serves as the Domain 

Metadata template and framework for creating eForm metadata and eForm objects in the domain. 

 
 

Figure 6.3: Domain Metadata represented and formatted in RDFS 

6.1.2 Create Generic eForm Metadata 

The second step is to create Generic eForm Metadata. Using the Create Generic eForm 

Metadata interface, the Domain Metadata which is the basis for creating the Generic eForm 

Metadata is chosen (e.g. ecommerceArt); the name for the Generic eForm Metadata is also 

specified in this step. The entities to be on the Generic eForm Metadata are identified and the 

relevant entity‘s attributes data from the Domain Metadata are identified. Different renderings of 

eForm elements are specified depending on the data to be collected. Figure 6.4 shows an 
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interface of the Generic eForm creation process. Generic eForm Metadata itself does not define 

the file format. Instead, a host language such as XHTML combined with the eForm elements and 

styling, are used. 

 
 

Figure 6.4: Customizing Generic eForm Metadata entities and their attributes  

 

 To create Generic eForm Metadata, the Domain Metadata represented in RDFS format 

are transformed into XSD format as shown in Figure 6.5, a transformation process is described in 
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section 4.2.3. This XSD documents serves as the template and framework for creating eForms 

and databases.  

 
 

Figure 6.5: Generic eForm Metadata represented and formatted in XSD 

6.1.3 Create Specific eForm Metadata 

The next step is to use the Create Specific eForm Metadata interface to create the 

Specific eForm file. The different rendering eForm elements are specified depending on the data 

to be collected. Specific eForm Metadata itself does not define the file format. Instead, a host 

language such as XHTML combined with the eForm elements and styling, are used. XHTML is 

used in this thesis with eForm elements inserted the appropriate places. Currently DeC does not 

support styling except for eForm title; hence the resulting eForms files are rendered using web 

browsers with less concern for their presentation, look and feel.  
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Figure 6.6: Customizing Specific eForm Metadata entities and their attributes  
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Figure 6.6 shows an interface for creating Specific eForm Metadata. Figure 6.6 shows the 

different eForm elements required to create the Specific eForm Metadata used to create the 

Generic eForm shown in Figure 6.1. These Specific eForm Metadata are transformed into 

XForms formatted using XHTML. This Generic eForm is used as the basis for creating 3 specific 

eForms. 

Figure 6.7 shows the first specific eForm created based on Figure 6.1 Generic eForm 

rendered using chrome web browser. To create Specific eForm 1, the attributes (i.e. Painter, 

Theme, Price, and Size) are identified based on the attributes present in the Generic eForm. 

Specific eForm 1 is rendered in chrome web browser. The red star besides the eForm element 

indicates that the field is required; the red circle with a cross indicates data needs to be entered in 

the field, and the blue diamond provides the user of the eForm with useful hint will filling the 

eForm with data. 

 
 

Figure 6.7: Specific eForm 1 example created by DeC rendered using Chrome browser 

Figure 6.8 shows the second specific eForm created based on Figure 6.1 Generic eForm. 

To create Specific eForm 2, the attributes needed (i.e. Painter, Price, Size, Width, Length, and 

Material) are identified based on the attributes present in the Generic eForm. Specific eForm 2 is 

rendered in Firefox web browser. 
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Figure 6.8: Specific eForm 2 example created by DeC rendered using Firefox browser  

Figure 6.9 shows the third specific eForm created based on Figure 6.1 Generic eForm. To 

create Specific eForm 3, the Painting attributes needed (i.e. Painter, Price, Size, Material, Color, 

and Texture) are identified based on the attributes present in the Generic eForm. Specific eForm 

3 is rendered in internet explorer web browser.  

Figure 6.10 shows a real world ecommerce eForm from ARTshops ecommerce website. 

This eForm is rendered in chrome web browser. It contains the following entity attributes: a 

photo, Artist, Title, Medium, Date, Size, and Price. Attributes that were already defined in the 

Generic eForm Metadata (Figure 6.4) and the Generic eForm (Figure 6.1).   
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Figure 6.9: Specific eForm 3 example created by DeC rendered using internet explorer browser 

 
 

Figure 6.10: A real world eForm example shown in an e-Commerce page  
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Figure 6.11 shows an eForm created based on a real world ecommerce eForm shown in 

Figure 6.10. The eForm is rendered using the chrome web browser. It contains the following 

entity attributes: a photo, Artist, Title, Medium, Date, Size, and Price. The eForm created by 

DeC does not have the photo because currently DeC functionality does not support creation of 

uploading mechanism. This mechanism is complex and is not require illustrating the concepts of 

this thesis. 

 
 

Figure 6.11: eForm example created by DeC based on a real world eForm 

6.2 Using eForm objects 

Before the created eForms are used by typical users, the eForms and their associated 

databases need to be integrated within web applications. This step includes the setting up of the 

database created when the Generic eForm was created. For the evaluation purposes, the eForms 

created were not integrated to any web application. To use the eForms the database needs to be 

setup. Currently this step is accomplished by using the interface shown by Figure 6.12. 

6.2.1 EForm and database setup 

Figure 6.12 shows an interface for database setup. The user is not expected to change any 

of the data when setting up the database within the same server as the web application. This 
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interface enables the user to specify database name, server, user name, password, and whether 

there is need to create new table or align with existing. For the purposes of this thesis, the user is 

not expected to change any information. The user is to press the ―proceed‖ button to setup the 

database.  

 
 

Figure 6.12: Interface for setting up the created database 

Figure 6.13 shows an interface for database setup results. The interface provides the 

information status of the Database setup, Scripting file structure and Essentials showing if all the 

CRUD (Create, Retrieve, Update and Delete) functions of the Script file are ok. If everything is 

setup properly, the user then presses the proceed button. 
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Figure 6.13: Interface showing the database setup results  

Figure 6.14 shows an interface for database management. The interface shows the 

database table name created (paintingsTable) and manipulation options. The interface also shows 

the number of data entries in the database, currently at 0 because the eForms and the databases 

have not been used to collect or save any data yet. 

 
 

Figure 6.14: Interface for database management 
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6.2.2 Using eForms 

Figure 6.15 shows how a Generic eForm is used and rendered using the chrome web 

browser. A typical user enters information required in the different fields. In the field where the 

correct data type is entered, the red circle with a cross mark displayed in Figure 6.1 is no longer 

displayed. If wrong data type is entered in a field the red circle does not disappear and remains as 

a warning (e.g. the Date field in Figure 6.15). Depending on the type of eForm element used, 

some data requires the user to enter text while others requires the user to select, such is the case 

for menu, check boxes and radio buttons elements. After entering the data on the eForm, the user 

is expected to press the submit button for the data to be entered in the database. 

 
 

Figure 6.15: eForm example created by delk eForm creator 

Figure 6.16 shows how Specific eForm 1 is used and rendered in chrome web browser. A 

typical user enters information required in the different fields. In the field where the correct data 

type is entered, the red circle with a cross mark displayed in Figure 6.7 is no longer displayed. 
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After entering the data on the eForm, the user is expected to press the submit button for the data 

to be entered in the database. 

 
 

Figure 6.16: Specific eForm 1 usage 

Figure 6.17 shows how a Specific eForm 2 is used and rendered using the Firefox web 

browser. A typical user enters information required in the different fields. In the field where the 

correct data type is entered, the red circle with a cross mark displayed in Figure 6.8 is no longer 

displayed. If no data type is entered or selected in a field the red circle does not disappear and 

remains as a warning (e.g. the Material field in Figure 6.17). After entering the data on the 

eForm, the user is expected to press the submit button for the data to be entered in the database. 

 
 

Figure 6.17: Specific eForm 2 usage 
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Figure 6.18 shows how a Specific eForm 3 is used and rendered using the chrome web 

browser. A typical user enters information required in the different fields. In the field where the 

correct data type is entered, the red circle with a cross mark displayed in Figure 6.1 is no longer 

displayed. If no data type is selected in a field the red circle does not disappear and remains as a 

warning (e.g. the Colors field in Figure 6.18). Figure 6.18 also illustrates how the hint is used 

and displayed to the user. After entering the data on the eForm, the user is expected to press the 

submit button for the data to be entered in the database. 

 
 

Figure 6.18: Specific eForm 3 usage 

6.2.3 Checking database 

The database management interface introduced in Figure 6.14 is used to check if the data 

entered by the typical user were entered into the database. Figure 6.19 shows a database 

management interface showing four records. This illustrates that the data entered in the 4 eForms 

(Generic eForm, Specific eForm 1, Specific eForm 2, and Specific eForm 3). 
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Figure 6.19: Database management interface showing number of data rows entered 

To check the real data that was entered into the database, phpMyAdmin is used. 

phpMyAdmin is a tool used for managing databases and is not part of delk eForm created. It is 

just used to evaluate the results of using eForms created by delk eForm creator. Figure 6.20 

shows the rows of data that were entered using the eForms. 

 
 

Figure 6.19: phpMyAdmin interface showing the actual data entered in the database  

 

6.3 Evaluation 

This section describes how documented demonstrations in chapter 6 section 6.1 and 6.2 

help illustrate the concept and idea of this thesis. The evaluation requirements established at the 

beginning of the chapter created a basis for illustrating how the Delk eForm Creator fulfils the 

requirements identified in chapter 3 and 4. 

Section 6.1.1 shows how DeC is used to create Domain Metadata by capturing and 

representing it in RDFS format. This fulfils the requirement to have a tool for manipulating 
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Domain Metadata identified in section 4.1.3 and the requirement to represent Domain Metadata 

in RDFS indentified in section 4.2.3.  

Section 6.1.2 shows how DeC is used to create Generic eForm Metadata based on 

Domain Metadata and representing it in XSD format. This fulfils the requirement to have a tool 

for manipulating Generic eForm Metadata identified in section 4.1.3 and the requirement to 

represent Generic eForm Metadata in XSD indentified in section 4.2.3.  

Section 6.1.3 shows how DeC is used to create Specific eForm Metadata based on 

Generic eForm Metadata and representing it in XForms and XHTML format. This fulfils the 

requirement to have a tool for manipulating Specific eForm Metadata identified in section 4.1.3 

and the requirement to represent Specific eForm Metadata in XForms indentified in section 

4.2.3.  

A documented illustration of how 3 specific eForms based on a Generic eForm is 

provided in section 6.1.3. Section 6.2.2 illustrates how each of the 3 eForms are used by typical 

users and rendered in web browsers. Section 6.1.3 also illustrates how DeC is use to create 

eForm based on real world ecommerce eForms.  

6.3.1 Comparison between DeC tools and other tools 

This section provides a comparison between the functionalities supported by DeC tool 

and those of other tools earlier analyzed in the background study section. The comparisons 

concentrate more on the tools used to create eForms. There is less concern on the tools used to 

create the databases. The functionalities for the comparison are;  

1. Using metadata to create eForms 

2. Create generic and specific eForms 

3. Platform independent  
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4. Reuse existing eForms to create new eForms  

5. Scan paper forms 

6. Create database tables  

7. Create mapping between eForms and database tables 

8. Support digital sign 

9. Allow downloads 

10. Provides eForm Interface formatting 

11. Provides what you see is what you get (WYSIWYG) 

12. Provide spam security 

13. Create different types of eForms 

14. Allow printing  

Table 6.1 shows the comparison for the first seven functionalities. This Table shows how 

DeC tool is superior to other tools by supporting functionalities generating and maintaining both 

the eForms and their associated databases. Most eForm tools concentrate only on creating the 

eForms, while DeC tool goes beyond these functionalities and adds the creation of databases to 

its features. DeC tool helps generate and map eForms to their associated databases as described 

in section 4.2.3 and section 5.1.3.  

Another functionality that makes DeC stand out is the ability to have automated changes 

on the tables where necessary. The DeC interface for creating eForms could also be used to 

change the eForms and their associated tables. If the user what to add more attributes to the 

eForm, similar number of attributes would be added to the corresponding table in the databases. 

This allows for easy maintenance for eForms and their associated databases. 
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Table 6-1: Comparison of the functionalities concerning the eForm and database creation  

 
 eForm creation related functionalities  Database functionalities 

 Use metadata Generic to 

specific 

approach 

Platform 

independent 

Reuse 

existing 

eForms 

Scan paper 

form to eForm 

Create 

database(DB) 

tables 

eForm-DB 

tables 

mapping 

DeC tool Yes Yes Yes Yes No  Yes Yes  

IBM 

Workplace 

forms 

No No Yes  No Yes    

FormDocs  No No No No Yes  No No 

EZ-Forms No No No No Yes  No No 

 

Table 6.2 shows comparison for the other seven functionalities. Generally, the 

comparison shows that other tools perform more specialized and advanced features for creating 

eForms. This Table helps demonstrate that DeC tool could be improved further. The features that 

are currently not supported by DeC are interesting future work opportunities and directions. 

Chapter 7 provides some suggestions that could be done to improve the functionalities of DeC 

tool. 

Table 6-2: Comparison on advanced functionalities concerning the eForm creation 

 

 eForm creation related functionalities  

 Support 

digital sign 

Allow 

downloads 

Formatting 

user interface 

Support 

WYSIWYG 

Provides spam 

protection 

Different 

type of 

eForms 

Allow 

printing 

DeC tool No Yes No No No  no No 

IBM 

Workplace 

forms 

No Yes Yes  Yes Yes  Yes Yes 

FormDocs  Yes No Yes Yes No Yes Yes 

EZ-Forms No Yes Yes Yes No Yes Yes 
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6.3.2 Description of an experimental evaluation  

This section tries to go beyond the evaluation on the test and the use of the prototype 

DeC tool to providing an experimental description for user testing. The one low points of this 

thesis work is that, user testing and evaluation has not been done yet. There are some statistical 

data that when collected during user testing would provide a compelling case for or against the 

DeC tool. This section provides a description of an experiment that would be interesting to 

address as part of the future works resulting from this thesis work. 

One of the challenges in developing and describing an experiment for this tool is 

identifying the parameters to test. One of the advantages of using metadata in describing data 

elements is the reusability of the describe data element. Reusability is one aspect that would be 

in interesting to test in this experiment. Domain metadata is used to capture and describe the 

overall vocabulary of a given business domain. Domain metadata therefore focuses on the 

patterns that can encompass generic business model. Domain metadata enables the users (service 

providers) to understand their business better. These two aspects concerning the metadata form 

the basis for this experiment. 

The main goal of this experiment is to study the effects of using metadata to create 

eForms on the service providers (mom and pop business). The two questions (effects) that this 

experiment concentrates on are; first, does using metadata help the service provider reuse 

existing eForms, and second, does using metadata and drill down (Generic to Specific) 

description helps the service provider understand their business better.  

The requirements for the experiment are; presence of experimenters, two sets of users 

(representing service providers), the DeC tool, a venue, and a simple ecommerce web 

application. For the experiment to flow, the DeC tool has to be improved to include some domain 
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metadata based on the ecommerce application. It would be more interesting if the service 

providers are randomly selected and place on the different groups. The service providers will be 

placed in different groups. They will be introduced to the general purpose of the simple 

ecommerce web application. The service providers would then be required to create eForms for 

the different services they would have to support within the web application. Only one group will 

be given access to the DeC tool. The service providers will be required to create several eForms 

that would require reuse of their own and other service provider‘s eForms. Questionnaire could 

be used to collect data from the service providers based on their experience. A set of 5 to 7 

questions concerning the two issues could be arranged. 

By contrasting the results from the two user groups, the data collected will go a long way 

in illustrating the usefulness of the tool, both in affecting how service providers can reuse 

existing eForms to create new ones and understanding the business model better. The aim of this 

thesis work is not to produce a tool that is useful by the developers. Instead, the aim is producing 

a tool usable by the service providers. It is aimed that this experiment illustrates this point as it 

answers the main two questions of this experiment. 
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CHAPTER 7 CONCLUSION AND FUTURE WORK 

This chapter concludes this thesis work. A discussion on concluding remarks is provided 

on section 7.1. Contributions are presented in section 7.2. Suggestion of a list of areas for future 

research work is presented in section 7.3. 

7.1 Conclusion 

In this thesis two challenges concerning eForms and database implementation approaches 

are identified: complexity in the manipulation of eForms and their associated database, and 

difficulty in the reproduction and reuse of existing eForms. Based on these challenges, a solution 

to use metadata in the implementation of eForms and databases was implemented. To illustrate 

our solution, we identified a way of modeling the metadata so it can be used in creating eForms 

and databases. We further created a tool (Delk eForm Creator) to both model the metadata and 

manipulate eForms, databases, and their associated scripts. 

Resource Description Framework Schema (RDFS) was used to model the metadata based 

on domain context. A three level categorization approach was used to model the metadata. First, 

Domain Metadata: a general vocabulary used with a domain derived from domain description, 

second, Generic eForm Metadata: metadata derived from Domain Metadata geared towards 

structuring Generic eForms, third, specific eForm metadata: metadata derived from generic 

metadata geared towards creating Specific eForms. 

Delk eForm Creator (DeC) was used to model Domain Metadata, Generic eForm 

Metadata, and specific eForm metadata. Based on the metadata modeled, DeC was used to create 

Generic eForms and their associated databases. Based on the Generic eForm metadata, DeC was 

used to create Specific eForms and their associated databases. DeC automatically creates 

databases. Once the eForms and the databases were implemented, the eForms elements (e.g. 
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input text field) are mapped to the database elements (i.e. columns of a table) in the database. To 

fulfill the requirements of this thesis, DeC has been tested by using it to create simple eForms 

(see section 6.1). The resulting eForms rendered in web browsers are used to enter data into their 

associated databases. This result shows that the idea of using metadata to implement eForm is a 

viable solution to the identified challenges. 

As stated in the evaluation section, one low point in this thesis is work is the lack of user 

testing and evaluation. The experiment description in 6.3.3, should however pave way for 

possibilities for future work. The approach of using drill down approach (i.e. having domain 

metadata to specific metadata) is good in modeling business patterns at the domain metadata 

level. One interesting aspect to study from this case is whether the service providers would use 

the domain and generic metadata as useful information to understand the business model they are 

involved in. 

Furthermore, it would be interesting to compare the functionalities of the DeC tool 

against how eBay.com and amazon.com create their own eForms. But because of the competition 

in the market place, eBay.com and amazon.com might not be in a position to reveal how they 

create their eForms to other competitors. 

7.2 Contributions  

The work of this thesis contributes an approach of using metadata to implement eForms 

and their associated databases. The approach includes modeling and reusing metadata models 

(i.e. Domain, Generic eForm, and Specific eForm Metadata).  

The solution presented in this thesis could help service provider reuse existing eForms to 

create new ones. The metadata could help in maintenance of eForms. For example, when using a 

tax system and there are changes to be made, changing the domain metadata model can percolate 
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through the eForms and avoid lots of further working in changing the rest of the eForms. Though 

other approaches for example, copy & paste may seem faster and useful, it only works for those 

people who know what copy and paste.  

 Finally, this work can also be applied to improving XForm eForms and how their data 

could be stored in a relational database. Most application using XForms use XML databases [7, 

9, and 37]. In this thesis, we implemented XForms and MySQL databases.  

7.3 Future work 

There is no doubt that the work presented in this thesis can be improved upon in 

numerous ways. We offer the following suggestions as interesting future work and areas of 

further research: 

1. Using metadata to track changes. Beyond using metadata to generate eForms and their 

associated databases, it would be interesting to pursue a research on how the metadata 

could be used to help in tracking changes and working across eForms. This could help 

illustrate how metadata could be used in the maintenance and rechecks on eForms. This 

will involve getting the underlining metadata and semantics right. Though identified as 

another future direction opportunity, metadata might be used in usability related issues 

e.g. eForm layout. 

2. Improvement of the query results. The eForms generated by DeC tool provide a simple 

querying mechanism, hence, the presence of an opportunity for future work. The eForm 

querying is somewhat restrictive, i.e., they only support precise set of queries set while 

generating the eForm. This requires multiple eForms to allow users to ask and perform 

different types of queries. If a user wishes to perform a query that is not supported, they 

may leave unsatisfied. The interesting opportunity here is look at mechanism of 
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improving the query mechanism produced DeC tool to satisfy a diverse group of users 

that would use the resulting eForm. This could be done by analyzing how the database, 

its schema, and its content are created. The database schema and content of the database 

provide a reasonable staring point to estimate these needs. For instance, an Art database 

is likely to have art pieces as the most important and highest populated entity. It should 

be no surprise that users accessing such a database will most likely look for information 

about art pieces and less likely search for information about artist, sellers, or galleries. 

3. Usability test for DeC tool. A usability test for DeC tool is an interesting future work. An 

evaluation comparing the automatically-generated eForms with human created eForms 

side would give a clear illustration of the relative usability of eForms generated by DeC 

tool. Such an evaluation could potentially be expensive as it will require hiring of and 

expert who can develop eForms and databases similar to those that DeC tool will 

generate. Even with the potential cost, it is certainly worth pursuing this usability test in 

the future to extend the work of this research.       

4. Improve the functionality of the tool to create specialized eForms. In the analysis Section 

3.1.2 various uses of eForms are identified. These include but are not limited to user 

interface, data searching, data display, data gathering, and communication. EForms can 

further be used for specialized cases in ecommerce: e.g. order eForms, feedback eForms, 

and shopping cart eForms. These specialized eForms require advanced mathematical 

functions in order to perform their tasks. The mathematical metadata can be added to the 

eForm Creator component. Metadata concerning the types of currencies could be added 

to the eForm Creator component. 



 

110 

 

5. Improve the tool to allow inclusion of presentation metadata. Presentation is an issue to 

consider while creating eForms. The ability to render eForms elements on different parts 

of the eForm page is important for different presentation styles. Currently DeC supports 

the creation of eForms which are rendered with less consideration to their presentation. 

The presentation metadata could be added to the eForm Creator Component. 

6. Improving the tool to allow inclusion of security metadata. Use of security features (e.g. 

CAPTCHA) is important in countering spamming. These features are important to the 

functionality and use of the eForms within ecommerce. These features (security 

metadata) could be added to the eForm Creator Component. 

7. Improve the tool allow manipulation of eForms for other domains. This thesis focused on 

creating eForms, and creating Domain Metadata based on an ecommerce domain. The 

tool could be improved to accommodate the creation of metadata and eForms belonging 

to different domains. 

8. Investigate the effect metadata has on the ‘visibility’ of the eForms with metadata in the 

search engines. A number of approaches towards meta-search have been proposed stating 

that using metadata improves in searching results [28]. Most of them ―focus on deep web 

query probing and general information retrieval from documents accessible only via form 

submission‖ [29]. For example, in ecommerce the customers should be able to find the 

products or the services they are looking for in the web application using the eForms. It 

would be interesting research work to identify methodologies to use in testing how the 

‗visibility‘ of eForms with metadata compare to that without metadata. This research 

could include developing methodology to prove that using metadata on eForms will make 

it both easier and faster to search for data stored in eForms with metadata.   
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9. Develop a step by step methodology for Domain Metadata modeling. The Domain 

Metadata approach that has been presented in this thesis is not yet equipped with step by 

step instructions on how to create Domain Metadata from a given domain description. 

Such a step by step methodology is meant to help the administrators in creating and 

modeling the Domain Metadata by providing a set of guidelines. The methodology 

should maintain the simplicity of the tool, not make the tool usage complex, and creation 

of reusable metadata.  

10. Investigating the usability and acceptance rate of the tool among the different user 

groups (administrators and service providers). It would be interesting to test the usability 

and acceptance of the tool in regards to the metadata used to aid the eForm and database 

creation. The Technology Acceptance Model (TAM) [12] ―is an information systems 

theory that models how users come to accept and use a technology‖ that could be used in 

this investigation. According to the model, when users are presented with a new 

technology, there are factors that influence their decision about how and when they will 

use it, notably: Perceived usefulness (PU) [12]; defined by Fred Davis as "the degree to 

which a person believes that using a particular system would enhance his or her job 

performance". Perceived ease-of-use (PEOU) [12]; also defined by Davis this as "the 

degree to which a person believes that using a particular system would be free from 

effort". 
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APPENDIX I 

Administrator: is the individual or organization that provides, maintain, and create the eForms, 

the databases, and the web application used in a given domain. 

Application developer: a person, group or organization with an interest in development of a web 

application. 

Context of use: is the users, tasks, equipment (hardware, software and materials), and the 

physical and social environments in which a product is used. 

Database metadata: is modified Domain Metadata geared towards the database creation. 

Domain: is an environment that defines a set of common requirements, terminology, and 

functionality 

Domain metadata: The Domain Metadata represents common vocabulary of terms used within a 

given domain. It provides terms (classes) and describes their syntax and semantics as used within 

a domain in a general manner 

EForm element: component that helps build the eForm presentation. 

EForm metadata: is modified Domain Metadata geared towards eForms creation. 

Customer: is the individual or organization that consumes the services provided on the web 

application. 

Generic eForm: an eForm created by the administrators to gather for all possible eForm 

elements for product or a term within a given domain. 

Metadata: in general, refer to data used to describe other data entities, making the described data 

entities easy to reuse and relocate. 

Scenario: describes the sequences of events that occur during one particular execution of a 

system 
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Schema: a way to define structure, content, and semantics of data model within a domain. 

Semantic Web: an evolving development of the World Wide Web in which the meaning of 

information and services on the web are defined 

Semantics: meaning or information that provide meaning 

Service provider: is the individual or organization that provides services using the web 

application and the eForms in a given domain. 

Specific eForm: an eForm customized to meet the needs of specific service provider within a 

given domain. 

Usability: is the extent to which a product can be used by specified users to achieve specified 

goals with effectiveness, efficiency, and satisfaction in a specified context of use.  

Use case: is a description of sets of interactions between users and the web application system. 
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APPENDIX II 

Ecommerce domain example 
 

  

Figure 1: Example of ecommerce scenario 

This section provides more details information about the ecommerce example provided in 

Chapter 4 section 4.2.4. The code and eForm show in this section were used during the analysis 

and design of delk eForm creator, there are not the results of the tool but prototype examples. 

This is a description of an example showing how to create Domain Metadata for an ecommerce 

domain. In this example, a customer uses an ecommerce web application to buy products. Figure 

1 is a diagram showing a simple ecommerce scenario. There are five entities in this scenario: 

administrators, web application, service provider, product, and customer. The object-properties 

(i.e. relationship between the entities) are shown by the linkages between the entities, e.g. the 

web application entity has property that it is related to all other entities. The constraints on their 

relationship are shown, e.g. many administrators can maintain the web application. Though not 

shown in the diagram, possible data type properties for a product include but are not limited to: 

name and price. 
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Simple domain description that could be derived from this scenario is as follows. The 

administrator maintains the web application. The customer and the service provider use the web 

application. The service provider provides product. The customer has a need for a product. The 

product is sold via the web application and is provided by the service provider. The product has 

name, price, description, and dimension as its data properties. The product is good for human 

consumption. The customer has property name and address. Hence, the entity product has object-

properties web application, service provider, and customer; data type-properties, name, price, 

type, size, and dimensions; and description-property, good for human consumption.  

The first step in creating eForm and their associated databases using metadata is to 

represent the domain description in a structured format (i.e. Domain Metadata) using RDFS as 

shown in Figure 2. After the Domain Metadata has been created, it can be maintained (i.e. add to 

it, change it, or delete from it). 

<?xml version="1.0" encoding="iso-8859-1"?>  
<rdf:RDF > 
<rdfs:Class rdf:ID="Product" xsi:type="xsd:string" > 
 <rdfs:comment>The product is good for human consumption</rdfs:comment> 
 <rdf:Property rdf:ID="Product"> 
   <rdfs:Class rdf:ID=“Service_Provider" xsi:type="xsd:string" >  
     <rdfs:comment>Artist who sell art products</rdfs:comment> 
     <rdfs:Property rdf:resource="#Product"/> 
   </rdfs:Class>        
 </rdf:Property> 
 <rdf:Property rdf:ID="Product"> 
   <rdfs:Class rdf:ID="Customer" xsi:type="xsd:string" > 
     <rdfs:comment>customer who needs the product</rdfs:comment> 
     <customer xsi:type="xsd:string" ></customer> 
   </rdfs:Class>        
 </rdf:Property> 
 <rdf:Property rdf:ID="Product"> 
  <rdfs:comment>Name of product</rdfs:comment>        
     <prod_name xsi:type="xsd:string" ></prod_name>        
 </rdf:Property> 
 <rdf:Property rdf:ID="Product"> 
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  <rdfs:comment>Price of the product</rdfs:comment>        
    <prod_price xsi:type="xsd:float" ></prod_price>        
 </rdf:Property> 
 <rdf:Property rdf:ID="Product"> 
  <rdfs:comment>Type of product</rdfs:comment>        
     <prod_type xsi:type="xsd:string" ></prod_type>        
 </rdf:Property> 
 <rdf:Property rdf:ID="Product"> 
  <rdfs:comment>Size of the product</rdfs:comment>        
    <prod_size xsi:type="xsd:string" ></prod_size>        
 </rdf:Property> 
 <rdf:Property rdf:ID="Product"> 
  <rdfs:comment>Dimensions of product</rdfs:comment>        
     <prod_width xsi:type="xsd:float" ></prod_width>        
 </rdf:Property> 
 . 
. 
.  
</rdfs:Class> 
</rdf:RDF > 

Figure 2: Example of RDFS description of a Domain Metadata 

The next step is to identify the entity (e.g. product) to base the eForm creation. The 

entity`s attributes described within the Domain Metadata are also identified. Possible attributes 

from the predefined Domain Metadata for the product are listed below. These attributes have 

been defined in the Domain Metadata even though Figure 2 only shows the definition of some of 

them. The data type definition helps validate and restrict on the kind of data type that can be 

entered on eForm field. 

 Web application: to show where it is sold   

 Service provider: to show its provider  

 Customer: to show the buyer of the product  

 Product Name  

 Product Description  

 Product Price  
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 Product Type  

 Product Size  

 Product Width  

 Product Length  

The entity and its attributes description has to then be represented as a Specific eForm 

Metadata in a simpler semantic language (i.e. XSD format). This requires the transformation of 

RDFS to XSD. Expected Specific eForm Metadata with data-types derived from the Domain 

Metadata would resemble the diagram shown in Figure 3.  

<?xml version="1.0" encoding="iso-8859-1"?> 

<product description = "good for human consumption"> 

 <web_application xsi:type="xsd:string"/> 

 <service_provider xsi:type="xsd:string"/>  

 <customer xsi:type="xsd:string"/> 

 <prod_name xsi:type="xsd:string"/>  

 <prod_price xsi:type="xsd:float"/>  

 <prod_type xsi:type="xsd:string"/>  

 <prod_size xsi:type="xsd:string"/>  

 <prod_width xsi:type="xsd:float"/>  

 <prod_length xsi:type="xsd:float"/>  

</product>  
Figure 3: Example of Specific eForm Metadata structure 

The next step is the creation of an instance of the Specific eForm Metadata. This 

achieved by adding the eForm elements (e.g. text box, input, or button) and submission element 

to the Specific eForm Metadata. The creation of the Specific eForm Metadata from the Specific 

eForm Metadata should trigger an automated creation of corresponding database metadata. Any 

changes to the specific eForm should trigger an automated change to the database metadata. The 

database elements (e.g. column) are added to the Specific eForm Metadata and represented as 

SQL commands as shown in Figure 4. The sizes of the different elements are allocated by default 
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(e.g. varchar is defaulted to size 255). Each element in the XSD file is transformed into an 

element of SQL statement. For example, customer element is transformed into (‗customer‘ 

VARCHAR(255) NOT NULL).  

CREATE TABLE 'product' ( 
 'id' int(11) NOT NULL auto_increment, 
 'web_application' VARCHAR(255) NOT NULL, 
 'service_provider' VARCHAR(255) NOT NULL, 
 'customer' VARCHAR(255) NOT NULL, 
 'prod_name' VARCHAR(255) NOT NULL, 
 'prod_price' FLOAT NOT NULL, 
 'prod_type' VARCHAR(255) NOT NULL, 
 'prod_size' VARCHAR(255) NOT NULL, 
 'prod_width'  FLOAT  NOT NULL, 
 'prod_length' FLOAT NOT NULL,  
PRIMARY KEY  ('id')); 

Figure 4: Example of database eForm metadata represented in SQL commands 

Each data input (i.e. eForm element) is expected to map to a given column of a table in a 

database. For example, a text boxes for inputting name on the product eForm, will be mapped to 

a column for storing names in a table (product-table) within a database.   

Figure 5 is shows an example of how the eForm elements and Specific eForm Metadata 

are used to create Specific eForm Metadata structure. The eFormModel element defines the 

whole structure of the eForm which includes eForm elements and how the data collected is to be 

handled. The eFormInstance element is defined within the eFormModel, eFormInstance helps 

defines an XML template for data to be collected. The eFormInstance element also identifies the 

various elements that would be present in the eForm. The submission element is also defined 

within the eFormModel, submission is used to describe how the data will be submitted. This 

description is based on XForms elements.  

<?xml version="1.0" encoding="iso-8859-1"?> 

<eForm> 

   <eFormModel> 
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        <eFormInstance description = "good for human consumption"> 

   <formName>Product</formName> 

   <web_application xsi:type="xsd:string"/> 

   <service_provider xsi:type="xsd:string"/>  

   <customer xsi:type="xsd:string"/> 

   <prod_name xsi:type="xsd:string"/>  

   <prod_price xsi:type="xsd:float"/>  

   <prod_type xsi:type="xsd:string"/>  

   <prod_size xsi:type="xsd:string"/>  

   <prod_dimensions xsi:type="xsd:string"/>  

        </eFormInstance> 

      <submission id="product_form" action="product.php" method="get"/>      

 </eFormModel>  

 <label ref="formName">Product</label> 

 <input ref="web_application"><label>web application Name</label></input> 

 <input ref="service_provider"><label>Provider Name</label></input> 

 <input ref="customer"><label>Customer Name</label></input> 

 <input ref="prod_name"><label>Product Name</label></input>  

 <input ref="prod_price"><label>Product price</label></input> 

 <input ref="prod_type"><label>Product Type</label></input> 

 <input ref="prod_size"><label>Product Size</label></input>  

 <input ref="prod_width"><label>Product Width</label></input>  

 <input ref="prod_length"><label>Product Length</label></input> 

 <submit submission="form1"><label>Submit</label></submit> 

</eForm>  

Figure 5: Example of generic eForm implementation 

The different eForm elements (e.g. text area or input text box) placed on the Specific 

eForm Metadata could be used to render the individual data elements. The next step is to create 

Generic and Specific eForms based on the Specific eForm Metadata. The Specific eForm 

metadata would be used to describe the meaning of the data entered regardless of how the data is 

rendered by an eForm element on a specific Web page (or browser). The choice of the eForm 

element to use for specific eForms depends on the service provider because they can change 

from what was initially used by the administrator to describe the generic eForm structure. Figure 
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6 shows an example of expected generic eForm that could be generated based on the generic 

eForm structure described in Figure 5. This is a simple example with less consideration to the 

layout presentation details. 

  

Figure 6: Implementation of generic eForm example 

After the generic eForm has been created, the specific eForm can then be created by 

choosing needed elements from the generic eForm and modifying them to fulfill the service 

provider‘s specific needs.  For example, a service provider wants to customize the above generic 

eForm into a specific eForm showing attributes customer name, product price, product name, and 

dimensions using a different select eForm element (e.g. changing input box into a dropdown list) 

as shown in Figure 7. Additional constraints can be added to the one existing on the copied 

element. The eForms created will be used as the user interface for collecting data that would then 

need to be stored. While the generic eForms are created using eForm metadata, the databases are 

created using the database metadata are created. The creation of database would be automated. 
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The creation of generic eForms is to trigger the creation of databases and tables to work with the 

created eForms. 

  

Figure 7: Implementation of Specific eForm example 
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APPENDIX III 

Classes and their Responsibilities  

This section expands on the classes identified and briefly discussed in chapter 5 section 

5.2.2. The following tables show the expected responsibilities and methods of the various object 

classes. The table also shows the classes for which each class collaborates with other classes. 

The methods for each class are derived from the responsibilities assigned to each object class.   

Class Delk_eFormSystem 

 This class represents the delk eForm creator. Table 1 shows its methods and collaborating 

classes. It is activated when a user starts the system. It starts a new session when a user logs in. It 

also provides access to all components. 

Methods Collaborators 

+Delk_eFormSystem(int: id, systemName: 

String) 

+run() 

+logIn() 

+logOff() 

+sessionStart() 

+getID(): int 

+getSystemName: String 

 

Class UserInterface 

Class MetadataCreator 

Class MetadataManipulator 

Class eFormCreator 

Class DatabaseCreator 

Class ScriptCreator 

Class Database 

Class Search 

Class DatabaseConnection 

Class ApplicationIntegrator 

Class LogIn 

Class LogOut 

Class Session 

Class Operation 
Table 1: Class Delk_eFormSystem’s Methods and collaborating classes 

Class UserInterface 

 This class represents the User Interface component. Table 2 shows its methods and 

collaborating classes. It provides the graphical user interface used by users to interact with all the 

components. It supports the authentication mechanism. It displays messages and response to user 

interactions. 
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Methods Collaborators 

+UserInterface() 

+display(message: String) 

+readUserName(userName: String) 

+readPassword(password: String) 

+readMenuChoice(menu: String[]) 

+readCancel(cancel: Event) 

Class Delk_eFormSystem 

Table 2: Class UserInterface’s Methods and collaborating classes 

Class MetadataCreator 

This class represents the Metadata Creator component is only accessible by 

administrators. Table 3 shows its methods and collaborating classes. It creates and maintains 

general Domain Metadata. It approves general metadata and allows saving of uncompleted 

Domain Metadata. 

Methods Collaborators 

+maintain(domainMetadata) Class Delk_eFormSystem 

Class Database 

Class Search 
Table 3: Class MetadataCreator’s Methods and collaborating classes 

Class eFormMetadataCreator 

This class represents the eForm Metadata Creator component. Table 4 shows its methods 

and collaborating classes. It is only accessible by administrators. It creates and maintains 

database, Generic eForm Metadata, and specific eForm metadata.  

Methods Collaborators 

+maintain(databaseMetadata) 

+maintain(eFormMetadata) 

Class Delk_eFormSystem 

Class Database 

Class Search 
Table 4: Class eFormMetadataCreator’s Methods and collaborating classes 

Class eFormCreator 

This class represents eForm Creator component. Table 5 shows its methods and 

collaborating classes. It creates and maintains instances of generic eForms and instances of 

specific eForms from specific eForm. 
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Methods Collaborators 

+maintain(eForm) Class Delk_eFormSystem 

Class Database 

Class Search 
Table 5: Class eFormCreator’s Methods and collaborating classes 

Class DatabaseCreator 

This class represents the Database Creator component. Table 6 shows its methods and 

collaborating classes used to create and maintain database. 

Methods Collaborators 

+maintain(database) Class Delk_eFormSystem 

Class Search 
Table 6: Class DatabaseCreator’s Methods and collaborating classes 

Class StorageDatabase 

This class represents the Database component that provides storage for the output of 

other components, i.e. to store Domain Metadata and eForm metadata. Table 7 shows its 

methods and collaborating classes. 

Methods Collaborators 

+store(domainMetadata) 

+store(eFormMetadata) 

+store(eForms) 

+store(usersInformation) 

Class Delk_eFormSystem 

Class Search 

Table 7: Class StorageDatabase’s Methods and collaborating classes 

Class DatabaseConnection 

This class represents Database Connection component. Table 8 shows its methods and 

collaborating classes. It initiates connection to the storage database. It sends the log in data for 

validation, sends data to be saved on the database, and it terminates the connection to database. 

Methods Collaborators 

+openConnection() 

+closeConnection() 

+sendData() 

Class Delk_eFormSystem 

Class Database 

Table 8: Class DatabaseConnection’s Methods and collaborating classes 

Class Search 
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This class represents the Search component. Table 9 shows its methods and collaborating 

classes. It searches the database component for existing domain, generic or specific eForm 

metadata. 

Methods Collaborators 

+search(database) Class Delk_eFormSystem 

Class Database 
Table 9: Class Search’s Methods and collaborating classes 

Class ScriptCreator 

This class represents the Script Creator component. Table 10 shows its methods and 

collaborating classes. It creates the script. 

Methods Collaborators 

+maintain(script)  

 

Class Delk_eFormSystem 

Class Database 
Table 10: Class ScriptCreator’s Methods and collaborating classes 

Class ApplicationIntegrator 

This class represents the Application Integrator component. Table 11 shows its methods 

and collaborating classes. It integrates the created eForms to a web application. 

Methods Collaborators 

+performIntegration() Class Delk_eFormSystem 
Table 11: Class ApplicationIntegrator’s Methods and collaborating classes 

Class LogIn 

This class represents the Log In use case. Table 12 shows its methods and collaborating 

classes. It receives the log in data entered by the user and it starts the session. 

Methods Collaborators 

+performLogIn() 

+readLogInData() 

+startSession() 

Class Delk_eFormSystem 

Class Session 

Table 12: Class LogIn’s Methods and collaborating classes 

Class LogOff 
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This class represents the Log Off use case. Table 13 shows its methods and collaborating 

classes. It terminates the session. 

 

Methods Collaborators 

+performLogOff() 

+terminateSession() 

Class Delk_eFormSystem 

Class Session 
Table 13: Class LogOff’s Methods and collaborating classes 

Class Session 

This class represents the Session use case. Table 14 shows its methods and collaborating 

classes. It sends message to user interface if the log in data is invalid. 

 

Methods Collaborators 

+performSession() 

+sendErrorMessage() 

Class Delk_eFormSystem 

Class LogIn 

Class LogOut 

Class Session 

Class Operation 
Table 14: Class Session’s Methods and collaborating classes 

Abstract Class Operation 

This class represents the Abstract Operation use case. Table 15 shows its methods and 

collaborating classes. It allows the user to choose a type of operation, sends email if operation is 

approved, and sends message to user interface if problem occurs. 

 

Methods Collaborators 

+performOperation() 

+sendEmail() 

+sendErrorMessage() 

Class Delk_eFormSystem 

Class Session 

Class Operation 
Table 15: Abstract Class Operation’s Methods and collaborating classes 

Abstract Class MaintainObjects 

This class represents the Abstract Maintain Objects use case. Table 16 shows its methods 

and collaborating classes. It allows the user to choose a type of object to maintain. 
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Methods Collaborators 

 Class MaintainDomainMetadata 

Class MaintaineFormMetadata 

Class MaintainDatabaseMetadata 

Class MaintaineForm 

Class MaintainDatabase 

Class MaintainScript 
Table 16: Abstracts Class MaintainObject’s Methods and collaborating classes 

Class MaintainDomainMetadata 

This class represents the Maintain Domain Metadata use case. Table 17 shows its 

methods and collaborating classes. It checks (i.e. search) for existence of Domain Metadata on 

storage database. It creates Domain Metadata, clones, modifies, approves, and deletes Domain 

Metadata. It also loads the Domain Metadata to user interface. 

 

Methods Collaborators 

+search(domainMetadata) 

+create(domainMetadata) 

+load(domainMetadata) 

+clone(domainMetadata) 

+modify(domainMetadata) 

+approve(domainMetadata) 

+save(domainMetadata) 

+delete(domainMetadata) 

Class MaintainObjects 

 

Table 17: Class MaintainDomainMetadata’s Methods and collaborating classes 

Super Class MaintaineFormMetadata 

This class represents the Maintain eForm Metadata use case. Table 18 shows its methods 

and collaborating classes. It allows administrator to maintain the eForm metadata. 

 

Methods Collaborators 

+search(genericeFormMetadata) 

+search(domainMetadata) 

+create(genericeFormMetadata) 

+load(genericeFormMetadata) 

+clone(genericeFormMetadata) 

+modify(genericeFormMetadata) 

+approve(genericeFormMetadata) 

+save(genericeFormMetadata) 

Class MaintainObjects 

Class MaintainGenericeFormMetadata 

Class MaintainSpecificeFormMetadata 
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+delete(genericeFormMetadata) 

+maintain(databaseMetadata) 
Table 18: Class MaintaineFormMetadata’s Methods and collaborating classes 

Class MaintainGenericeFormMetadata 

This class represents the Maintain Generic eForm Metadata use case. Table 19 shows its 

methods and collaborating classes. It checks (i.e. search) for existence of Generic eForm 

Metadata. It checks if Domain Metadata exists, creates new, clones, modifies, approves, and 

delete Generic eForm Metadata. It also loads the Generic eForm Metadata to user interface. 

Methods Collaborators 

+search(specificeFormMetadata) 

+search(genericeFormMetadata) 

+create(specificeFormMetadata) 

+load(specificeFormMetadata) 

+clone(specificeFormMetadata) 

+modify(specificeFormMetadata) 

+approve(specificeFormMetadata) 

+save(specificeFormMetadata) 

+delete(specificeFormMetadata) 

Class MaintainObjects 

Class MaintaineFormMetadata 

 

Table 19: Class MaintainGenericeFormMetadata’s Methods and collaborating classes 

Class MaintainSpecificeFormMetadata 

This class represents the Maintain Specific eForm Metadata use case. Table 20 shows its 

methods and collaborating classes. It checks (i.e. search) for existence of specific eForm 

metadata. It checks if Generic eForm Metadata exist, create_New, clones, modifies, approves, 

and delete Generic eForm Metadata. It also loads the specific eForm metadata to user interface. 

Methods Collaborators 

+create(databaseMetadata() 

+modify(databaseMetadata() 

Class MaintainObjects 

Class MaintaineFormMetadata 

 
Table 20: Class MaintainSpecificeFormMetadata’s Methods and collaborating classes 

Class MaintainDatabaseMetadata 
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This class represents the Maintain Database Metadata use case. Table 21 shows its 

methods and collaborating classes. It creates the database metadata and modifies the database 

metadata. 

 

Methods Collaborators 

+search(eForm) 

+maintain(eForm) 

+load(eForm) 

Class MaintainObjects 

 

Table 21: Class MaintainDatabaseMetadata’s Methods and collaborating classes 

Super Class MaintaineForm 

This class represents the Maintain eForm use case. Table 22 shows its methods and 

collaborating classes. It allows administrator to allow its subclasses. 

Methods Collaborators 

 Class MaintainObjects 

Class MaintainGenericeForm 

Class MaintainSpecificeForm 
Table 22: Super Class MaintaineForm’s collaborating classes 

Class MaintainGenericeForm 

This class represents the Maintain Generic eForm use case. Table 23 shows its methods 

and collaborating classes. It checks (i.e. search) for existence of generic eForm. It checks if 

Generic eForm Metadata exist, creates new, clones, modifies, approves, and delete generic 

eForm. It also loads the generic eForm to user interface. 

Methods Collaborators 

+search(genericeForm) 

+search(gomainMetadata) 

+create(genericeForm) 

+load(genericeForm) 

+clone(genericeForm) 

+modify(genericeForm) 

+approve(genericeForm) 

+save(genericeForm) 

+delete(genericeForm) 

+maintain(database) 

Class MaintaineForm 
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Table 23: Class MaintainGenericeForm’s Methods and collaborating classes 

Class MaintainSpecificeForm 

This class represents the Maintain eForm use case. Table 24 shows its methods and 

collaborating classes. It checks (i.e. search) the existence of specific eForm and generic eForm. It 

checks if specific eForm metadata exist. It creates new, clones, modifies, approves, and deletes 

specific eForm. It also loads the specific eForm to user interface. 

Methods Collaborators 

+search(specificeForm) 

+search(genericeForm) 

+create(specificeForm) 

+load(specificeForm) 

+clone(specificeForm) 

+modify(specificeForm) 

+approve(specificeForm) 

+save(specificeForm) 

+delete(specificeForm) 

Class MaintaineForm 

 

Table 24: Class MaintainSpecificeForm’s Methods and collaborating classes 

Class MaintainDatabase 

This class represents the Maintain Database use case. Table 25 shows its methods and 

collaborating classes. It creates and modifies the database.  

Methods Collaborators 

+create(database) 

+modify(database) 

Class MaintainObjects 

 
Table 25: Class MaintainDatabase’s Methods and collaborating classes 

Class MaintainScript 

This class represents the Maintain Script use case. Table 26 shows its methods and 

collaborating classes. It creates and modifies scripts. 

 

Methods Collaborators 

+create(script) 

+modify(script) 

Class MaintainObjects 
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Table 26: Class MaintainScript’s Methods and collaborating classes 

Class MaintainIntegration 

This class represents the Maintain Integration use case. Table 27 shows its methods and 

collaborating classes. It integrates the eForms to the web application. 

Methods Collaborators 

+integrate(eForm, webapplication, script, 

database) 

 

Table 27: Class MaintainIntegration’s Methods and collaborating classes 

Class DomainMetadata 

This class represents output of metadata creator i.e. Domain Metadata. Table 27 shows its 

methods and collaborating classes. 

Methods Collaborators 

+setDomainId() 

+setDomainName() 

+setDomainMetadataId() 

+setDomainMetadataName() 

+addTerm() 

+addTermDescription() 

+setTermDatatype() 

+getDomainId() 

+getDomainName() 

+getDomainMetadataId() 

+getDomainMetadataName() 

+getTerm() 

+getTermDescription() 

+getTermDatatype() 

+editTermDescription() 

+changeTermDatatype() 

Class MetadataCreator 

Class MetadataManipulator 

Table 27: Class DomainMetadata’s Methods and collaborating classes 

Super Class eFormMetadata 

This class represents the output of eForm Metadata Creator i.e. eForm Metadata. Table 

28 shows its methods and collaborating classes. 

Methods Collaborators 

 Class MetadataManipulator  

Class eFormCreator 
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Class MaintainGenericeFormMetadata 

Class MaintainSpecificeFormMetadata 
Table 28: Class eFormMetadata’s Methods and collaborating classes 

Class GenericeFormMetadata 

This class represents the output of eForm Metadata Creator i.e. Generic eForm Metadata. 

Table 29 shows its methods and collaborating classes. 

Methods Collaborators 

+setDomainId() 

+setDomainMetadataId() 

+setScriptId() 

+setGenericeFormMetadataId() 

+setGenericeFormMetadataName() 

+addGenericeFormMetadataTerms() 

+addGenericeFormMetadataTermDescription() 

+setGenericeFormMetadataTermDatatype() 

+getDomainId() 

+getDomainMetadataId() 

+getScriptId() 

+getGenericeFormMetadataId() 

+getGenericeFormMetadataName() 

+getGenericeFormMetadataTerms() 

+getGenericeFormMetadataTermDescription() 

+getGenericeFormMetadataTermDatatype() 

+editGenericeFormMetadataTermDescription() 

+changeGenericeFormMetadataTermDatatype() 

Class MetadataManipulator  

Class eFormCreator 

Class MaintainGenericeFormMetadata 

Class MaintainSpecificeFormMetadata 

Table 29: Class GenericeFormMetadata’s Methods and collaborating classes 

Class SpecificeFormMetadata 

This class represents the output of eForm Metadata Creator i.e. Specific eForm Metadata. 

Table 30 shows its methods and collaborating classes. 

Methods Collaborators 

+setDomainId() 

+setDomainMetadataId() 

+setScriptId() 

+setGenericeFormMetadataId() 

+setSpecificeFormMetadataId() 

+setSpecificeFormMetadataName() 

+addSpecificeFormMetadataTerms() 

+addSpecificeFormMetadataTermDescription() 

+setSpecificeFormMetadataTermDatatype() 

Class MetadataManipulator  

Class eFormCreator 

Class MaintainGenericeFormMetadata 

Class MaintainSpecificeFormMetadata 
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+getDomainId() 

+getDomainMetadataId() 

+getScriptId() 

+getSpecificeFormMetadataId() 

+getSpecificeFormMetadataName() 

+getSpecificeFormMetadataTerms() 

+getSpecificeFormMetadataTermDescription() 

+getSpecificeFormMetadataTermDatatype() 

+editSpecificeFormMetadataTermDescription() 

+changeSpecificeFormMetadataTermDatatype() 
Table 30: Class SpecificeFormMetadata’s Methods and collaborating classes 

Class DatabaseMetadata 

This class represents the output of eForm Metadata Creator i.e. Database Metadata. Table 

31 shows its methods and collaborating classes. 

Methods Collaborators 

+setDomainId() 

+setDomainMetadataId() 

+setScriptId() 

+setDatabaseMetadataId() 

+setDatabaseMetadataName() 

+setDatabaseMetadataTerms() 

+setDatabaseTermDescription() 

+setDatabaseTermDatatype() 

+getDomainId() 

+getDomainMetadataId() 

+getScriptId() 

+getDatabaseMetadataId() 

+getDatabaseMetadataName() 

+getDatabaseMetadataTerms() 

+getDatabaseMetadataTermDescription() 

+getDatabaseMetadataTermDatatype() 

+editDatabaseMetadataTermDescription() 

+changeDatabaseMetadataTermDatatype() 

Class MetadataManipulator 

Class DatabaseCreator 

Table 31: Class DatabaseMetadata’s Methods and collaborating classes 

Super Class eForm 

This class represents Abstract eForm. Table 32 shows its collaborating classes. 

Methods Collaborators 

 Class eFormCreator 

Class MaintainGenericeForm 

Class MaintainSpecificeForm 
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Table 32: Class eForm’s Methods and collaborating classes 

Class GenericeForm 

This class represents the output of eForm creator i.e. Generic eForm. Table 33 shows its 

methods and collaborating classes. 

Methods Collaborators 

+setDomainId() 

+setDomainMetadataId() 

+setGenericeFormMetadataId() 

+setScriptId() 

+setGenericeFormId() 

+setGenericeFormName() 

+addGenericeFormTerms() 

+addGenericeFormTermDescription() 

+setGenericeFormTermDatatype() 

+setGenericeFormTermeFormElement() 

+getDomainId() 

+getDomainMetadataId() 

+getScriptId() 

+getGenericeFormId() 

+getGenericeFormName() 

+getGenericeFormTerms() 

+getGenericeFormTermDescription() 

+getGenericeFormTermDatatype() 

+getGenericeFormTermeFormElement() 

+editGenericeFormTermDescription() 

+changeGenericeFormTermDatatype() 

+changeGenericeFormTermeFormElement() 

Class eFormCreator 

Class MaintainGenericeForm 

Class MaintainSpecificeForm 

Table 33: Class GenericeForm’s Methods and collaborating classes 

Class SpecificeForm 

This class represents the output of eForm creator i.e. Specific eForm. Table 34 shows its 

methods and collaborating classes. 

Methods Collaborators 

+setDomainId() 

+setDomainMetadataId() 

+setGenericeFormMetadataId() 

+setSpecificeFormMetadataId() 

+setScriptId() 

+setGenericeFormId() 

+setSpecificeFormId() 

Class eFormCreator 

Class MaintainGenericeForm 

Class MaintainSpecificeForm  
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+setSpecificeFormName() 

+addSpecificeFormTerms() 

+addSpecificeFormTermDescription() 

+setSpecificeFormTermDatatype() 

+setSpecificeFormTermeFormElement() 

+getDomainId() 

+getDomainMetadataId() 

+getGenericeFormMetadataId() 

+setSpecificeFormMetadataId() 

+getScriptId() 

+getSpecificeFormId() 

+getSpecificeFormName() 

+getSpecificeFormTerms() 

+getSpecificeFormTermDescription() 

+getSpecificeFormTermeFormElement() 

+getSpecificeFormTermDatatype() 

+editSpecificeFormTermDescription() 

+changeSpecificeFormTermDatatype() 

+changeSpecificeFormTermeFormElement() 
Table 34: Class SpecificeForm’s Methods and collaborating classes 

Class Database 

This class represents the output of database creator i.e. Database. Table 35 shows its 

methods and collaborating classes. 

Methods Collaborators 

+setDomainId() 

+setDomainMetadataId() 

+setDatabaseMetadataId() 

+setScriptId() 

+setDatabaseId() 

+setDatabaseName() 

+setDatabaseTerms() 

+setDatabaseTermDescription() 

+setDatabaseTermDatatype() 

+getDomainId() 

+getDomainMetadataId() 

+getDatabaseMetadataId() 

+getScriptId() 

+getDatabaseMetadataId() 

+getDatabaseMetadataName() 

+getDatabaseMetadataTerms() 

+getDatabaseMetadataTermDescription() 

+getDatabaseMetadataTermDatatype() 

+editDatabaseMetadataTermDescription() 

Class DatabaseCreator 
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+changeDatabaseMetadataTermDatatype() 
Table 35: Class Database’s Methods and collaborating classes 

Class Script 

This class represents the output of script creator i.e. Script. Table 36 shows its methods 

and collaborating classes. 

Methods Collaborators 

+setGenericeFormId() 

+setDatabaseId() 

+setScriptId() 

+getGenericeFormId() 

+getDatabaseId() 

+getScriptId() 

Class MetadataManipulator  

Class ScriptCreator 

Table 36: Class Script’s Methods and collaborating classes 

Class WebApplication 

This class represents the web application for which the eForms are integrated with. Table 

37 shows its methods and collaborating classes. 

Methods Collaborators 

+getURL() Class eForm 

Class Database 

Class ApplicationIntegrator 
Table 37: Class WebApplication’s Methods and collaborating classes 
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APPENDIX IV 

Delk eForm creator database backend (data tier) 

This section describes a database that would be used to store all the metadata, eForms, 

and their related information. This section provides more detailed information on the E-R 

diagram shown in Chapter 5 section 5.3. 

Table and their attributes 

 This section provides description of each table and their attributes identified in Chapter 5 

Section 5.3.1. The attributes are named based of the information it will store and are prefixed 

with the abbreviation of the table name and a hyphen. 

domain_metadata 

 This table is used for storing Domain Metadata. Table 38 shows its fields (columns):  

Attribute name Constraints, datatype Primary or Foreign Key 

dm_ID Not null, int PK 

dm_name Not null, varchar(50)  

dm_namespace Not null, varchar(100)  

dm_description Not null, text  
Table 38: domain_metadata’s Fields (columns) 

domain_class  

 This table is used for storing classes for each Domain Metadata. The cl_domain acts as a 

foreign key to the domain table and consist of the Domain Metadata (domain) name combined 

with domain id. Table 39 shows its fields (columns):  

Attribute name Constraints, datatype Primary or Foreign Key 

cl_ID Not null, int PK 

cl_name Not null, varchar(50)  

cl_description Not null, text  

cl_domain Not null, varchar(60) FK 
Table 39: domain_class’s Fields (columns) 

 domain_attribute 
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 This table is used for storing the attributes of classes for each Domain Metadata. The 

att_domain acts as a foreign key to the Domain Metadata and consist of the domain name 

combined with domain ID. The att_class links the class and their attributes. Table 40 shows its 

fields (columns):  

Attribute name Constraints, datatype Primary or Foreign Key 

att_ID Not null, int PK 

att_name Not null, varchar(50)  

att_datatype Not null, varchar(15)  

att_description Not null, text  

att_class Not null, varchar(60) FK 

att_domain Not null, varchar(60) FK 
Table 40: domain_attribute’s Fields (columns) 

 domain_model 

 This table is used for storing eForm metadata. The md_domain acts as a foreign key to 

the domain table and consist of the Domain Metadata (domain) name combined with domain id. 

Table 41 shows its fields (columns):  

Attribute name Constraints, datatype Primary or Foreign Key 

md_ID Not null, int PK 

md_name Not null, varchar(50)  

md_script Not null, varchar(100)  

att_domain Not null, varchar(60) FK 
Table 41: domain_model’s Fields (columns) 

 domain_model_class 

 This table is used for storing model classes for each eForm metadata. The mdc_domain 

acts as a foreign key to the domain table and consist of the Domain Metadata (domain) name 

combined with domain ID. The mdc_model acts as a foreign key to the model table and consist 

of the eForm metadata (model) name combined with model id. Table 42 shows its fields 

(columns):   

Attribute name Constraints, datatype Primary or Foreign Key 

mdc_ID Not null, int PK 
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mdc_name Not null, varchar(50)  

mdc_desc Not null, text  

mdc_domain Not null, varchar(60) FK 

mdc_model Not null, varchar(60) FK 
Table 42: domain_model_class’s Fields (columns) 

 domain_model_attribute 

 This table is used for storing the attributes of classes for each eForm metadata. The 

mda_domain acts as a foreign key to the Domain Metadata and consist of the domain name 

combined with domain ID. The mda_model links the eForm metadata (model) and their 

attributes. The mda_class links the class and their attributes. Table 43 shows its fields (columns):  

Attribute name Constraints, datatype Primary or Foreign Key 

mda_ID Not null, int PK 

mda_name Not null, varchar(50)  

mda_datatype Not null, varchar(15)  

mda_desc Not null, text  

mda_domain Not null, varchar(60) FK 

mda_model Not null, varchar(60) FK 

mda_class Not null, varchar(60) FK 
Table 43: domain_model_attribute’s Fields (columns) 

 domain_eForm 

 This table is used for storing eForms. The ef_domain acts as a foreign key to the domain 

table and consist of the domain name combined with domain id. The ef_model acts as a foreign 

key to the model table and consist of the eForm metadata (model) name combined with model id. 

Table 44 shows its fields (columns):  

Attribute name Constraints, datatype Primary or Foreign Key 

ef_ID Not null, int PK 

ef_name Not null, varchar(50)  

ef_title Not null, varchar(60)  

ef_DB Not null, varchar(60)  

ef_language Not null, varchar(60)  

ef_wrapper Not null, varchar(60)  

ef_pdoDriver Not null, text  

ef_domain Not null, varchar(60) FK 

ef_model Not null, varchar(60) FK 
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Table 44: domain_eForm’s Fields (columns) 

domain_eForm_attribute 

 This table is used for storing the attributes (fields) for each eForm. The efa_eForm links 

the eForm and their attributes. Table 45 shows its fields (columns):  

Attribute name Constraints, datatype Primary or Foreign Key 

efa_ID Not null, int PK 

efa_name Not null, varchar(50)  

efa_class Not null, varchar(60)  

efa_rqd Not null, char(3)  

efa_type Not null, varchar(60)  

efa_hint Not null, text  

efa_datatype Not null, varchar(15)  

efa_label Not null, varchar(60)  

efa_eForm Not null, varchar(60) FK 

Table 45: domain_eForm_attribute’s Fields (columns) 

 domain_eForm_option 

 This table is used for storing the options of attributes (fields) for each eForm that required 

options, for example the case of check boxes. The efo_eForm links the eForm and the options. 

The efo_attribute links the attribute with the options. Table 46 shows its fields (columns):  

Attribute name Constraints, datatype Primary or Foreign Key 

efo_ID Not null, int PK 

efo_name Not null, varchar(50)  

efo_eForm Not null, varchar(100) FK 

efo_class Not null, varchar(60) FK 
Table 46: domain_eForm_option’s Fields (columns) 

 domain_user 

 This table is used for storing the user information. The us_administrator column with be 

used to state whether the user is an administrator or not. Table 47 shows its fields (columns):  

Attribute name Constraints, datatype Primary or Foreign Key 

us_ID Not null, int PK 

us_name Not null, varchar(20)  

us_datatype Not null, varchar(20)  
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us_administrator Not null, char(3)  
Table 47: domain_user’s Fields (columns) 
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APPENDIX V 

Modify Domain Metadata  

1. The first step is to access DeC Home Page.  

2. If you are logged in move to step 4. If you are not logged in, the next step is to click on the 

Log In tab on the right side of the page. A interface with a log in interface is presented as a 

result of this step (2) 

3. Enter the username and password their respective text input boxes on the interface, then press 

Log In button (you should be registered as a user to have log-in information). The Home 

Page will load if your log in was successful. 

4. To modify Domain Metadata, click on the Create Domain Metadata then choose modify from 

the dropdown menu.  

5. The resulting interface from step 4 is the interface that will allow you to choose the name of 

the Domain Metadata you want to modify. 

6. After selecting the name of the domain to be modified, click the modify button. All the 

information (entities, their description and their attributes) are loaded to the interface.  

7. To add the first entity click on the Add Entity button.  

8. Specify the further entity name (e.g. seller), its description, and its attributes 

9. The attributes would have name (e.g. name, age), data type (characters (i.e. char (255)), 

integer (i.e. Int)) and their descriptions. To choose the appropriate data type for the attribute 

from the drop-down of the different data types. 

10. After specifying the attribute name, data type and its description, click on the button with the 

tick sign to add the attribute. 
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11. To add Entity attributes to existing Entities, identify the Entity for which add the attributes 

and repeat steps 9 and 10. 

12. To remove or delete an entity from the Domain Metadata, click of the waste bin image on the 

right side of Entity you want to delete. 

13. To delete the Entity attribute, identify the attribute you want to delete and press the image 

with the minus sign beside the attribute. 

Search for Domain Metadata   

1. The first step is to access DeC Home Page.  

2. To search for Domain Metadata, click on the Create Domain Metadata then choose search 

from the dropdown menu.  

3. The resulting interface from step 2 is the interface that will allow you to type in the name of 

the Domain Metadata you want to search. 

4. You will be provided with the results present in the database based on the text you typed into 

the search box. 

5. Clicking on the modify button, redirects you to an interface that will enable you to modify 

the Domain Metadata (i.e. step 6 of section 6.2.1.3) 

6. Clicking on the Debug button, results in an interface that will enable you to see that code 

implementation of the Domain Metadata. 

Modify Generic eForm Metadata 

(The interfaces are the same as those of modifying Domain Metadata; the difference 

would be the content.) 

1. The first step is to access DeC Home Page.  
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2. If you are logged in move to step 4. If you are not logged in, the next step is to click on 

the Log In tab on the right side of the page. A interface with a log in interface is 

presented as a result of this step (2) 

3. Enter the username and password their respective text input boxes on the interface, then 

press Log In button (you should be registered as a user to have log-in information). The 

Home Page will load if your log in was successful. 

4. To modify Generic eForm Metadata, click on the Manage Generic eForm Metadata then 

choose modify from the dropdown menu.  

5. The resulting interface from step 4 is the interface that will allow you to choose the name 

of the Generic eForm Metadata you want to modify. 

6. After selecting the name of the generic eForm to be modified, click the modify button. 

All the information (entities, their description and their attributes) of the chosen Generic 

eForm Metadata are loaded onto the interface.  

7. To add an entity click on the Add Entity button.  

8. Specify the Entity name (e.g. seller) from the drop-down menu showing the entities 

related to the Domain Metadata.  

9. If there is need to delete some of the entity‘s attributes, identify the attribute to delete and 

press the image with a minus sign beside that attribute. 

10. To add more entities repeat steps 7- 9. 

11. When you are done adding entities, click on the Modify Generic eForm Metadata button 

to implement changes on the Generic eForm Metadata. 

Search for Generic eForm Metadata  
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(The interfaces are the same as those of modifying Domain Metadata; the difference would be 

the content.) 

1. The first step is to access DeC Home Page.  

2. To search for Generic eForm Metadata, click on the Manage Generic eForm Metadata 

then choose search from the dropdown menu.  

3. The resulting interface from step 2 is the interface that will allow you to type in the name 

of the Generic eForm Metadata you want to search. 

4. You will be provided with the results present in the database based on the text you typed 

into the search box. 

5. Clicking on the modify button, redirects you to an interface that will enable you to 

modify the Generic eForm Metadata (i.e. step 6 of section 6.2.2.3).  

6. Clicking on the Debug button, results in an interface that will enable you to see that code 

implementation of the Generic eForm Metadata. 

Modify Specific eForm Metadata 

(The interfaces are the same as those of modifying Domain Metadata; the difference 

would be the content.) 

1. The first step is to access DeC Home Page.  

2. If you are logged in move to step 4. If you are not logged in, the next step is to click on 

the Log In tab on the right side of the page. A interface with a log in interface is 

presented as a result of this step (2) 

3. Enter the username and password their respective text input boxes on the interface, then 

press Log In button (you should be registered as a user to have log-in information). The 

Home Page will load if your log in was successful. 
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4. To modify Specific eForm Metadata, click on the Manage Specific eForm Metadata then 

choose modify from the dropdown menu.  

5. The resulting interface from step 4 is the interface that will allow you to choose the name 

of the Specific eForm Metadata you want to modify. 

6. After selecting the name of the Specific eForm to be modified, click the modify button. 

All the information (entity names, field names, field label, data type, and field options) of 

the chosen Specific eForm Metadata are loaded onto the interface.  

7. To add the first eForm element, choose the type of eForm element you want to add from 

the drop-down menu of eForm elements and click on the Add Element button.  

8. Choose the Entity name (e.g. seller) form the drop-down menu showing the entities 

related to the Domain Metadata chosen in step 5. 

9. Choose the Entity attribute (e.g. age) from the drop-down menu under the Field name 

label. 

10. Specify the label name. 

11. Specify the field options; specify whether the field will be required or optional when 

customer is entering data, and provide a hint will help the customer to enter the correct 

data. Note other options like read only are yet to be implemented. 

12. If there is need to delete some of the eForm element added, identify the element to delete 

and press the waste bin image on the left side of the element.  

13. To add more elements repeat steps 7 - 11.  

14. If there is need to delete some of the eForm element‘s options (i.e. checkbox, radio, or 

menus), identify the options to delete and press the image with a minus sign beside that 

attribute. 
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Search for Specific eForm Metadata  

(The interfaces are the same as those of modifying Domain Metadata; the difference 

would be the content.) 

1. The first step is to access DeC Home Page.  

2. To search for Specific eForm Metadata, click on the Manage Specific eForm Metadata 

then choose search from the dropdown menu.  

3. The resulting interface from step 2 is the interface that will allow you to type in the name 

of the Specific eForm Metadata you want to search. 

4. You will be provided with the results present in the database based on the text you typed 

into the search box. 

5. Clicking on the modify button, redirects you to an interface that will enable you to 

modify the Specific eForm Metadata (i.e. step 6 of section 6.2.2.3). 

6. Clicking on the View button to view the created Specific eForm. 
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