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ABSTRACT 

Variations in Leaf Area Index (LAI) can greatly alter output values and patterns of various 

models that deal with energy flux exchange between the land surface and the atmosphere. 

Customarily, such models are initiated by LAI estimated from satellite-level Vegetation 

Indices (VIs) including routinely produced Normalized Difference Vegetation Index 

(NDVI) products. However, the accuracy from LAI-VI relationships greatly varies due to 

many factors, including temporal and spatial variations in LAI and a selected VI. In 

addition, NDVI products derived from various sensors have demonstrated variations in a 

certain degree on describing temporal and spatial variations in LAI, especially in semi-arid 

areas. This thesis therefore has three objectives: 1) determine a suitable VI for quantifying 

LAI temporal variation; 2) improve LAI estimation by considering both temporal and 

spatial variations in LAI; and 3) evaluate routinely produced NDVI products on 

monitoring temporal and spatial variations in LAI. 

  

The study site was set up in conserved semi-arid mixed grassland in St. Denis, 

Saskatchewan, Canada. One 600 m - long sampling transect was set up across the rolling 

typography, and six plots with a size of 40 × 40 m each were randomly designed and each 

was in a relatively homogenous area. Plant Area Index (PAI, which was validated to obtain 

LAI), ground hyperspectral reflectance, ground covers (grasses, forbs, standing dead, litter, 

and bare soil), and soil moisture data were collected over the sampling transect and plots 

from May through September, 2008. Satellite data used are SPOT 4/5 images and 16-day 

Moderate Resolution Imaging Spectroradiometer (MODIS) 250m, 1km as well as 10-day 

SPOT-vegetation (SPOT-VGT) NDVI products from May to October, 2007 and 2008. The 

results show that NDVI is the most suitable VI for quantifying temporal variation of LAI. 

LAI estimation is much improved by considering both temporal and spatial variations. 

Based on the ground reflectance data, the r
2
 value is increased by 0.05, 0.31, and 0.23 and 

an averaged relative error is decreased by 1.57, 1.62, and 0.67 in the early, maximum, and 

late growing season, respectively. MODIS 250m NDVI products are the most useful 

datasets and MODIS 1km NDVI products are superior to SPOT-VGT 1km composites for 

monitoring intra-annual spatiotemporal variations in LAI. The proposed LAI estimation 
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approach can be used in other studies to obtain more accurate LAI, and thus this research 

will be beneficial for grassland modeling.  
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CHAPTER 1 – INTRODUCTION 

1.1 Research Background 

Vegetation plays an important role in the energy, mass and momentum exchange between 

the land surface and the atmosphere. Leaf Area Index (LAI), defined as one-half the total 

green leaf area per unit of ground surface area (Chen and Black, 1992), is an indicator of 

the vertical structure of vegetation. It can reflect vegetation condition, and also can 

determine canopy water interception, radiation extinction, and water and carbon gas 

exchange between the land surface and the atmosphere. Therefore, LAI is a key parameter 

of the land surface-atmosphere interaction modeling (Knyazikhin et al., 1998). Currently, 

the models are initiated by either field validation of simulated LAI, remotely sensed LAI 

estimation (Running et al., 1999), or Normalized Difference Vegetation Index (NDVI, the 

ratio of difference and sum of reflectance of Near-infrared and red bands) data routinely 

derived from satellite imagery (Lu and Shuttleworth, 2002). However, the accuracy of LAI 

estimation greatly varies as methods, locations, and time vary, and differences in NDVI 

data from various remote sensors are observable. Practically, many models are very 

sensitive to LAI and its temporal and spatial variations (Bonan, 1993; Chase et al., 1996). 

Therefore, accurate LAI estimation and the most appropriate NDVI product, which can 

successfully monitor temporal and spatial variations in LAI, are needed for successful 

modeling. 

 

Thus, this research aims to improve LAI estimation and to determine the optimum NDVI 

product on monitoring LAI temporal and spatial variations. The purposes of this literature 

review therefore are to review: 1) LAI estimation approaches and their advantages and 

disadvantages; 2) the feasibility of LAI estimation at different temporal and spatial scales; 

3) the effect of different factors on LAI estimation; and 4) evaluation of routinely produced 

NDVI products on monitoring spatiotemporal variations of LAI. 
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1.1.1 LAI Estimation Approaches 

Direct and indirect methods are the two main categories for determining LAI. The former 

is a ground-based approach which involves destructive sampling, litterfall collection, and 

point contact sampling (Norman and Campbell, 1989; Daughtry et al., 1990; Andrieu and 

Sinoquet, 1993). It is the most accurate on a per plant or site basis (Jonckheere et al., 2004), 

but with the disadvantages of being extremely time consuming, tedious (Lang, 1985), and 

destructive to plants. As a consequence, a large-scale implementation is only marginally 

feasible (Jonckheere et al., 2004). The other drawback of direct methods is that the 

definition of LAI, the up-scaling method, or the error accumulation due to frequently 

repeating measurements can result in large errors (Jonckheere et al., 2004). Overall, direct 

LAI determination is not really compatible with the long-term monitoring of spatial and 

temporal dynamics of leaf area development (Chason et al., 1991).  

 

In contrast, indirect optical methods, consisting of the LAI instrument measurement and 

LAI estimation from remotely sensed data, hold the greatest potential to carry out quick 

and low-cost measurements. However, commercial optical instruments, such as LAI-2000 

plant canopy analyzer (LI-COR, Lincoln, Nebraska) and Sunfleck Ceptometer (Decagon 

Devices, Pullman, Washington), are sometimes constrained because of the complexity of 

natural canopy architecture. Several studies have drawn the conclusion that, compared to 

the direct measurements, indirect instrument measurements underestimate LAI (e.g., 

Chason et al., 1991; Lang et al., 1991; Smith et al., 1993; Fassnacht et al., 1994; Vertessy et 

al., 1995; Comeau et al., 1998; Küßner and Mosandl, 2000). About 25% - 50% 

underestimation is explored in different stands (Gower and Norman, 1991; Cutini et al., 

1998; Gardingen et al., 1999; Gower et al., 1999). The degree of error in the LAI 

measurement is mainly determined by „clumping‟, a term used to describe the canopy‟s 

deviation from the assumption of random dispersion (Nilson, 1971; Lang, 1986, 1987; 

Chen et al., 1997; Kucharik et al., 1997). The error is also influenced by the boundary and 

illumination conditions, data aggregation techniques, and sampling schemes. Many 

solutions have been introduced to lessen the clumping bias. For example, two new 
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instruments have been developed to measure the between-shoot clumping factor: the 

Tracing Radiation and Architecture of Canopies (TRAC) developed by Chen et al. (1997) 

and the Multiband Vegetation Imager (MVI) developed by Kucharik et al. (1997). Besides 

the underestimation problem of LAI instruments, it is also time consuming and impossible 

to acquire highly accurate and frequent LAI values across a large area. As a site-based 

measurement, it can impede the ability to input information into a grid-based model, such 

satellite images can do.  

 

The other indirect method is implemented by deriving LAI from remotely sensed data, 

which makes it possible to estimate LAI at local, regional, and global scales. The main 

approaches of retrieving LAI from remotely sensed reflectance data include a spectral 

mixture analysis (Peddle and Johnson, 2000; Pacheco et al., 2001; Hu et al., 2004), an 

inversion of Radiative Transfer Models (RTM) (Goel and Thompson, 1984; Running et al., 

1996), and empirical models of spectral vegetation indices (VIs, calculated from the 

combined information of two or more bands of remote sensing)-LAI relationships. The 

spectral mixture analysis has not been widely used due to the difficulty and uncertainty in 

obtaining end-members. The RTM approach is constrained by a long-time computation 

and complex inputs (Goel and Thompson, 1984; Running et al., 1996). To shorten the 

computation time, Look Up Table (LUT) (Knyazikhin et al., 1998; Weiss et al., 2000) and 

Neural Network (NN) (Danson et al., 2003) approaches have been developed. To reduce 

the complexity of inputs, the concept of canopy invariants (Huang et al., 2007) recently has 

been proposed. Although the LUT and NN approaches as well as the concept of canopy 

invariants make it more applicable, the RTM approach is more suitable for LAI estimation 

in a homogeneous area (Fang et al., 2003). Thus, establishing an empirical model from a 

LAI-VI relationship becomes the most commonly and widely used approach for LAI 

estimation (Chen and Cihlar, 1996; Fassnacht et al., 1997; Wulder et al., 1998). 

 

1.1.2 Feasibility of LAI Estimation at Different Temporal and Spatial Scales 

 

With the advent of the Earth Observation System (EOS) and other satellite systems, planet 

Earth can be closely watched by multiple sensors with various observing geometries and 
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spatial and temporal resolutions. The characteristics of hypertemporal images, which 

usually refer to daily acquired imagery, such as MODIS (the Moderate Resolution Imaging 

Spectroradiometer) and NOAA/AVHRR (the National Oceanic and Atmospheric 

Administration/Advanced Very High Resolution Radiometer), make it possible to estimate 

LAI over different time scales. However, it might be difficult to obtain daily LAI estimates 

with a good quality because the images are easily contaminated by clouds. Fortunately, 

vegetation does not change too much in a short time period, so the daily LAI estimates can 

be obtained by an interpolation or extrapolation from LAI collected on adjacent dates. At 

the same time, the multiple-spatial resolution satellite imagery (e.g., MODIS 250m, 

AVHRR 1km, SPOT 4 20m, SPOT 5 10m, and Landsat TM 30m), together with the 

LAI-VI relationships or radiative transfer models, make it theoretically feasible to estimate 

LAI over different spatial scales. 

 

In practice, however, it is difficult to obtain accurate LAI values over different scales 

especially on a heterogeneous land surface. The difficulty is caused by the 

scale-dependence of the factors affecting LAI estimation (Wu et al., 2002; He et al., 2006), 

the surface heterogeneity in terms of mixed cover types (Fernandes et al., 2004), and the 

development of downscaling or upscaling techniques. Pixels with mixed cover types are 

considered to be the main cause of random errors because radiative signals from different 

vegetation types are quite different at the same LAI. Accurate information about a subpixel 

mixture of various cover types is identified as the key to improving the accuracy of LAI 

estimates based on the satellite imagery (Chen, 1999; Tian et al., 2002; Fernandes et al., 

2004). Rahman et al. (2003) and He et al. (2006) suggested that an appropriate spatial scale 

for studying different variables can avoid the potential errors arising from heterogeneity 

and the patchiness from upscaling or downscaling physiological processes. Chen (1999) 

declared that the relation between LAI and NDVI was scale-dependent, although 

conflicting information was observed in the literature as to whether it was spatial resolution 

dependent or invariant (Hall et al., 1992; Friedl, 1996; Hu and Islam, 1997). Hence, it is 

necessary to determine the most suitable spatial resolution for LAI estimation to minimize 

the effects of a subpixel mixture of various cover types. 
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1.1.3 Major Factors Affecting the Accuracy of LAI Estimation  

LAI is determined by vegetation structures. Vegetation is highly related to its phenology, 

which is driven by either temperature in mid-latitude and high latitude zones (Zhang et al., 

2004) or the soil water budget in arid and semiarid areas (Loik et al., 2004). The soil water 

budget is influenced by precipitation and it determines soil moisture. At the same time, soil 

moisture is highly controlled by topography (Western et al., 1998). Thus, LAI is a function 

of vegetation condition, which further is a function of species composition, soil moisture, 

topography, temperature, and precipitation.  

 

Research has been carried out to investigate the relationships between LAI and ecological 

parameters (e.g. soil moisture and topography) as well as environmental variables. The 

LAI values of both maritime pine (Pinus pinaster, Hort.Kew.3:367) and the understory of 

dwarf moor grass (Molinia caerulea, Methodus 183) depend on the moisture deficit in the 

soil (Loustau et al., 1992, 1996). A further study in the area shows that a linear LAI will 

decrease with the soil moisture deficit above a threshold and within the relevant period 

(Kramer et al., 2000). He et al. (2006) asserted that LAI within a 30m scale is controlled by 

soil moisture in semi-arid grasslands and it is determined by topography at a 110m scale. 

LAI as an important indicator of biomass, is also highly related to the climate variables, 

and is further strengthened by the close relationship between biomass and climate variables 

(e.g. Elliott et al., 2006). The accuracy of LAI estimation can be increased by considering 

the effects of factors, such as soil moisture and climate variables.  

 

The Vegetation Index (VI), a single value estimated from multispectral scanning 

measurements to assess and predict vegetative characteristics including LAI, is another 

factor to determine the accuracy of LAI estimation from remotely sensed data. A VI is 

usually associated with vegetation densities, species composition, background soil, 

atmospheric effects, as well as bandwidth and radiometric resolutions of the sensors. 

Normally Vegetation Indices (VIs) increase along with the vegetation density, which can 

be characterized by a LAI increase, until the density reaches a maximum threshold. 

Beyond the peak point, VIs remain relatively unchanged as the vegetation density 
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increases (e.g., Chen and Cihlar, 1996; Carlson and Riziley, 1997). This situation is called 

saturation, which limits the application of VIs for LAI estimation. Since the first 

well-known VI-the simple ratio, the ratio of reflectance of red band and near-infrared band 

(Jordan, 1969), was proposed, hundreds of VIs have been developed. These VIs establish 

the connections between LAI and remotely sensed data. However, various VIs perform 

differently for LAI estimation, and the performance of a certain VI varies with different 

ground cover and species composition. Furthermore, each VI has its own drawbacks and 

merits according to its own theoretical base. Therefore, evaluating VIs and selecting an 

appropriate VI are essential for improving LAI estimation.  

 

1.1.4 Evaluation of Routinely Produced NDVI Products  

Frequently and internally consistent remotely sensed information on spatial complexity 

and temporal dynamic is essential for successfully monitoring or quantifying spatial and 

temporal variability in LAI at a local, regional or global scale. Such information is now 

regularly processed into VIs (DeFries and Belward, 2000; Cracknell, 2001; Tarnavsky et 

al., 2008). NDVI, one of the most widely used VIs, has been routinely derived from 

NOAA/AVHRR satellite imagery since 1981 (Tarnavsky et al., 2008). The routinely 

produced NDVI products have since become one of the important data sources for 

monitoring LAI spatiotemporal variation (Huete et al., 1994; Leprieur et al., 2000). 

Recently, NDVI products have also been generated from MODIS and the 

SPOT-Vegetation (SPOT-VGT) imaging sensors that are improved upon the spectral, 

spatial, and radiometric properties of AVHRR (Myneni et al., 1995). MODIS and 

SPOT-VGT NDVI products therefore are considered to be the improved measurements of 

surface vegetation dynamic (Justice et al., 2000; Huete et al., 2002; Maisongrande et al., 

2004; Tarnavsky et al., 2008). Although their data records are about 20 years shorter than 

AVHRR NDVI products, which will hamper their use in climate change studies, both 

MODIS and SPOT-VGT NDVI products have a relatively long data record starting from 

2000 and 1998, respectively. Consequently, these NDVI products have been widely used 

as intermediaries in the assessment of various biophysical parameters, such as LAI, in 
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various models at different spatial scales (Van den Hurk et al., 2003). However, differences 

in diverse NDVI products are observable due to the differences in sensor characteristics, 

such as spectral response function (Trishchenko et al., 2002) and point spread function 

(Wolfe et al., 1998; Tan et al., 2006; Tarnavsky et al., 2008). Besides, the differences are 

also attributed to the compositing period (Fensholt et al., 2007) and methodology (Wolfe et 

al., 1998), and other factors including atmospheric correction (van Leeuwen et al., 2006) 

and geolocation accuracy (Wolfe et al., 2002). The difference in NDVI products from 

different sensors could result in 1.5% variations in averaged annual evapotranspiration in 

the Semi-distributed Land Use-based Runoff Processes (SLURP) model (Ha et al., 2008). 

Thus, close attention to the consistency of various NDVI products has been paid since they 

were routinely produced. Substantial efforts have been exerted to investigate the 

inter-annual consistency of NDVI products related to spectral differences (Goetz, 1997; 

Thomlinson et al., 1999; Justice et al., 2000; Steven et al., 2003; Tucker et al., 2005; Brown 

et al., 2006). Some studies have also been carried out on the assessment of the spatial 

consistency (Goodin and Henebry, 2002; Tarnavsky et al., 2008). These studies have made 

a significant contribution to combining various NDVI products from different sensors into 

a long data record.  

 

In conclusion, the directly measured LAI from destructive methods is important for 

validating LAI estimation from remotely sensed data, although it is practically impossible 

to be used in a large scale. The ground-based indirect approach, referring to LAI 

instrument measurements, is another important data source for validating LAI estimation. 

However, similar as direct measurements, it is also impractical in the use of large-scale. 

The other indirect methods related to remote sensing, mainly involving LAI-VI 

relationships, spectral mixture analysis, and RTM, are promising to estimate LAI over 

different scales as the advent of imagery with multiple temporal and spatial resolutions. 

Among the three methods, the LAI-VI relationship is the most commonly used and 

applicable approach. However, its accuracy is limited by the spatial and temporal 

variations in LAI controlled by ground cover, soil moisture and other factors, such as 

temperature and precipitation. It therefore is necessary to improve LAI estimation by 
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considering the most appropriate temporal and spatial scales. Besides, determining the 

optimum VI is also important to improve LAI estimation.  

 

Routinely produced NDVI products have become one of the most important spectral 

information resources for estimating biophysical parameters for the land 

surface-atmosphere interaction modeling. Nonetheless, performances of NDVI composites 

derived from different imaging sensors are different in a certain degree due to dissimilar 

intrinsic properties of sensors and post-processing methods. These differences in NDVI 

will ultimately alter model outputs. Hence, it is essential to determine the suitable NDVI 

products for modeling in which NDVI is used to estimate LAI or other biophysical 

parameters.     

 

1.1.5 Research Gaps  

A LAI-VI relationship is the most effective and practical approach to timely and efficiently 

obtain LAI data over multiple scales. The accuracy of LAI estimation from a VI derived 

from satellite imagery, however, varies a lot due to the spatial and temporal variations of 

LAI affected by ground cover, topography, soil moisture, temperature, and precipitation. 

Many studies have pinpointed that LAI estimation can be improved by selecting the 

optimum time, spatial resolution imagery, or a VI. Relatively few studies, however, have 

been accomplished to estimate LAI while taking all the three factors into account.  

 

NDVI products have been more and more widely used to be intermediaries of biophysical 

parameters, such as LAI, in various models. However, the difference in NDVI values from 

various sensors is observable, which thus results in different model outputs. Considerable 

efforts therefore have been exerted on investigating inter-annual and spatial agreements of 

NDVI products. However, relative little research has been done to evaluate NDVI products 

on monitoring or quantifying intra-annual temporal and spatial variations of LAI. In 

addition, performances of one specific NDVI product are changeable under different land 
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covers. Therefore, it is necessary to determine the optimum NDVI products for monitoring 

spatiotemporal variations in LAI in semi-arid mixed grassland.   

 

1.2 Research Objectives 

To fill up the research gaps and thus provide more accurate LAI data for the land 

surface-atmosphere interaction modeling, this thesis aims to  

      

 Determine a suitable VI for quantifying LAI temporal variation 

 Improve LAI estimation by considering both temporal and spatial variations in LAI 

 Evaluate routinely produced NDVI products on monitoring temporal and spatial 

variations in LAI 

 

1.3 Study Site and Field Data  

1.3.1 Study Site and Sampling Design 

To share the biophysical data and climatic data with other research groups in the university 

of Saskatchewan, the study site was selected in tamed and native grassland in St. Denis 

National Wildlife Reserve Area (NWA) (52
o
 12' 29" N, 106

o
 5'30" W), Saskatchewan, 

Canada. Tamed grassland was transformed from the previously cultivated land by seeding 

smooth brome grass (Bromus inermis, Fl. Halens. 16) and alfalfa (Medicago sativa, Sp. Pl. 

2: 778-779) for the nesting cover of birds. Native grassland is a typical mixed grass prairie 

with dominant vegetation of June grass (Koeleria spp., Ess. Agrostogr. 84, 166, 175), and 

forbs. Wheat grass (Agropyron spp., Novi Comment. Acad. Sci. Imp. Petrop. 14:540) was 

also observed in native grassland. Since neither grazing nor fire conservation has been 

applied since 1960‟s (Environment Canada, 2009), non-photosynthesis vegetation, 

including standing dead and litter, is predominant in the early and late growing season. The 

annual mean air temperature at the Saskatoon Airport is 2°C, with monthly means of 

–19°C in January and 18°C in July, and the mean annual precipitation in Saskatoon is 

360mm. 
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Figure 1.1 (a) A topography map of the study area with the sampling transect and plots, (b) 

plot design, and (c) topography profile of the transect derived from LiDAR DEM data.  

 

One sampling transect and six plots were set up for data collection. The approximate 600 

m-long transect was set up with 128 sampling points at a 4.7 m interval (Figure 1.1a) 

across the rolling topography (Figure 1.1c). It is paralleled to the transect used by Si and 

Farrell (2004), which was specifically designed for utilizing a wavelet approach to 

investigate spatial variation scales of soil moisture. The transect used in this study is 20 m 

away from Si‟s transect to avoid the trampled vegetation. Thus the two transects are across 

a similar topography with three rolling cycles. 

  

The six plots were randomly set up in different vegetation communities, and each plot 

covers a relatively homogenous area with a size of 40×40 m, which was specifically 

designed for the application of SPOT 4 and 5 images (McCoy, 2005). Five measurements 

were taken within each plot (Figure 1.1b), and each measurement was completed within a 
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50×50 cm quadrat. The five quadrat measurements were arithmetically averaged to 

represent the mean value of a measured variable within one plot for data analyses.  

 

1.3.2 Field Data Sampling and Post-processing 

Field data collected were Plant Area Index (PAI, the projected area of all vegetation parts 

normalized by subtending ground area, Zhang and Guo, 2008), soil moisture, ground 

covers and canopy reflectance. They were collected over the sampling transect and plots on 

19 May, 4 June, 17 June, 2 July, 21 July, 15 August, 29 August, and 15 September in 2008. 

The accuracy of the plot sampling design on LAI measurements was estimated by 

computing the relative error between the simulated NIR (790-870nm) reflectance from 

quadrats and NIR reflectance retrieved from SPOT 4/5 images from the entire plot. The 

accuracy can be estimated in this approach because LAI is highly associated with NIR 

reflectance. The estimated accuracy of the sampling design is 91.8% to 98.2%.  

 

PAI was measured by a LAI-2000 Plant Canopy Analyzer (LI-COR Inc., Lincoln, 

Nebraska, USA) through the inversion of a radiative transfer model based on the canopy 

light interception. The canopy light interception within each quadrat is the result of one 

above-canopy reading and six below-canopy readings. The term “PAI” was used instead of 

LAI due to the big contribution of dead vegetation and other parts of green vegetation 

except green leaves on the light interception. To obtain LAI, PAI was validated by a 

destructive sampling method (Appendix A). In this thesis, LAI refers to the validated PAI. 

 

Soil moisture was measured over a 6–cm depth using the ThetaProbe ML2X soil moisture 

meter (Delta–T Devices Ltd, Burwell, Cambridge, UK). The meter was validated 

following the procedures recorded in Appendix B. Ground cover was visually estimated 

on the basis of 100%.  

 

Canopy reflectance was measured via an ASD Spectroradiometer (Boulder, Colorado, 

USA) within two hours of solar noon on sunny days. The wavelength ranges from 350 to 

2500 nm with a spectral resolution of 3 nm at 700 nm and 10 nm at 1400 nm and 2100 nm. 
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The field of view of the probe was 25° and the sensor was pointing down to the canopy at 

1m above ground.  

 

1. 4 Thesis Structure 

This thesis was organized in five chapters. Chapter 1 consists of a general review of 

pertinent literature, research gaps, the research objectives, the study area and field data 

collection, and the thesis structure. The literature reviewed LAI estimation approaches and 

their advantages and disadvantages, LAI estimation at different spatial and temporal scales, 

major factors affecting the accuracy of LAI estimation, and evaluations of routinely 

produced NDVI products in a broad way. 

 

Chapter 2 focuses on determining a suitable VI for quantifying LAI temporal variation, 

which is the basis to achieve the objective 2 (to improve LAI estimation by considering 

both temporal and spatial variations). This chapter mainly consists of three sections. The 

first section is to investigate temporal variation of LAI and effects of ground cover. The 

second places an emphasis on determining a suitable VI for LAI estimation at each 

growing stage. Finally, a suitable VI for LAI estimation and quantifying LAI temporal 

variation is determined.  

 

Chaper 3 comprised of three sections is to achieve the objective 2. Section 1 is to find out 

the optimum spatial scale for LAI estimation. Section 2 is to estimate LAI by considering 

temporal and spatial variations using the ground hyperspectral NDVI. Section 3 validates 

the LAI estimation approach by determining LAI from SPOT 4 and SPOT 5 satellite 

imagery. 

 

Chapter 4 investigates performances of 16-day MODIS 250m and 1km, and 10-day 

SPOT-VGT 1km NDVI products on monitoring temporal and spatial variations in LAI in 

the study area.  
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In chapter 5, the conclusions of chapter 2, 3, and 4 are summarized and linked back to the 

literature review. In addition, potential applications and limitations of the present research 

are discussed, and recommendations for future work relating to this thesis are made. 
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CHAPTER 2 - A SUITABLE VEGETATION INDEX FOR 

QUANTIFYING TEMPORAL VARIATIONS OF LAI IN 

SEMI-ARID MIXED GRASSLAND  

2.1 Introduction 

Accurate LAI values and temporal variation are important for the land surface-atmosphere 

interaction processes (Sellers et al., 1986; Chen, 1996; Running et al., 1999; van den Hurk, 

2003) associated with evapotranspiration and photosynthesis (Gutman and Ignatov, 1998). 

Uncertainties on LAI estimates could result in 10-15% evaporation variations in the global 

circulation model (van den Hurk et al., 2003), and seasonal variations in LAI highly 

influence the temporal change of evaporation (Wever et al., 2002; van den Hurk et al., 

2003). Besides, seasonal variations in Gross Primary Production (GPP) are also closely 

and positively related to changes in LAI in grasslands (Xu et al., 2004; Risch and Frank, 

2006). Thus, it is important to accurately determine LAI and quantify temporal variations 

of LAI.  

 

Temporal variations in LAI can be timely and effectively quantified by remote sensing due 

to its ability to provide often-repeated observations and large coverage. VIs are commonly 

used to accomplish the task of monitoring or quantifying LAI (Huete et al., 2002). 

However, quantifying LAI variations through VIs in semi-arid mixed grasslands is 

challenging (Fava et al., 2009) due to the complex canopy architecture (Cho et al., 2007; 

Darvishzadeh et al., 2008; Numata et al., 2008) and the presence of a high fraction of dead 

vegetation (Guo, 2002; He et al., 2006; Beeri et al., 2007) and exposed soil (Boschetti et al., 

2007). At the same time, semi-arid grasslands, which cover about 11 percents of the earth‟s 

surface excluding Greenland and Antarctica (White et al., 2000), play an important role in 

modifying global climate through effects on carbon budget (Owensby, 1998) which is 

highly related to LAI (Xu et al., 2004; Risch and Frank, 2006). It therefore is essential to 

determine the most suitable VI for accurately quantifying LAI temporal variation.  
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Theoretically, the better VIs for LAI estimation should be more sensitive to canopy 

structure partially determined by species composition, and less sensitive to chlorophyll, 

dead materials, bare soil, and atmosphere. Numerous VIs have been developed in past 

decades, aiming to minimize the effects of litter (He et al., 2006), chlorophyll 

(Haboundane et al., 2004), bare soil (Huete, 1988; Baret et al., 1989; Baret and Guyot, 

1991; Qi et al., 1994; Chen, 1996), and the atmosphere (Kaufman and Tanré, 1992) on 

estimating vegetation biophysical parameters. However, most VIs, defined from both red 

and near Infrared (NIR) reflectance bands, are affected not only by LAI, but also by 

chlorophyll (Haboundane et al., 2004; Delalieux et al., 2008). LAI and chlorophyll have 

similar effects on canopy reflectance from the green (~ 550 nm) to the red-edge (~ 750 nm) 

region of the electromagnetic spectrum. Thus, Delalieux et al. (2008) specifically 

developed a new VI (Standardized LAI Determining Index, SLAID) based on the two NIR 

bands for LAI determination to eliminate the chlorophyll effect. Nonetheless, SLAID is 

specifically designed for green leaves in an experimental orchard. Its performance in 

semi-arid mixed grasslands needs to be investigated. 

 

Comprehensive comparisons of hyperspectral VIs on LAI estimation have been made 

through the simulated reflectance from the RTM (Goel, 1994; Chen, 1996; Broge and 

Leblanc, 2000; Haboudane et al., 2004). They have made a big contribution to select a 

suitable VI for LAI estimation. However, their comparisons only focused on the sensitivity 

of VIs to canopy architecture, soil background, and atmospheric conditions. The prediction 

power of VIs could be very different in semi-arid mixed grasslands characterized by a large 

amount of dead materials which have a significant contribution to the variation (Galvao et 

al., 2000).  He et al. (2006) has evaluated the performances of some selected VIs based on 

canopy hyperspectral data in mid and late June in Grasslands National Park (GNP (49˚ 10′ 

37″ N, 107˚ 25′33″ W)), a semi-arid grassland in southern Saskatchewan, Canada. 

However, the performance of each VI changes with time (Haboundane et al., 2004), and 

the temporal dynamics of VIs are different (Broge and Leblanc, 2000). So the main 
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purpose of this chapter is to determine a suitable VI for estimating LAI and quantifying 

LAI temporal variation in semi-arid mixed grassland.  

2.2 Materials and Methods  

2.2.1 Data        

Data used in this chapter are LAI, canopy reflectance, and ground covers of grass, forbs, 

standing dead, litter, and bare soil collected over the sampling transect from May to 

September in 2008.   

2.2.2 VIs Selected for the Study  

The selected VIs were classified into six categories and shown in Table 2.1. The 

advantages and disadvantages of the VIs were summarized by Haboudane et al. (2004), He 

et al. (2006), and Delalieux et al. (2008). The widely used Modified Triangular Vegetation 

Indices (MTVI1 and MTVI2) were not included, because I found that they share the same 

algorithm with the Modified Chlorophyll Absorption Ratio Indices (MCARI1 and 

MCARI2), respectively. Both MTVI1 and MCARI1 were defined to reduce the sensitivity 

to variations of pigment content, while increase the sensitivity to change of LAI. They 

were expressed as equation (2.1) and (2.2), respectively (Haboudane et al., 2004): 

 

                                                   (2.1) 

                                                   (2.2) 

 

Both the equation (2.1) and (2.2) can be transformed into: 

 

                                                              (2.3) 

 

At the same time, the expression of MTVI2 (equation (2.4)) shares the same numerator and 

denominator with MCARI2 (equation (2.5)) to decrease the effects of bare soil, while 
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preserving the high sensitivity to LAI and low sensitivity to chlorophyll influence 

(Haboudane et al., 2004). 

 

                   
                                  

          
                    

                       (2.4) 

                    
                                  

          
                    

                     (2.5) 

 

Table 2.1 Vegetation Indices (VIs) selected  

Categories VI Names VI Expressions Citations 

 

 

 

 

Ratio-based 

 

 

 

 

 

NDVI, Normalized 

difference vegetation 

index 

                        Rouse et al., 1974 

 

PVI, Perpendicular 

vegetation index 

RDVI, Renormalized 

difference vegetation 

index 

                         
Reujean and 

Breon, 1995 

 

MSR, Modified simple 

ratio 

 
    

    
      

    

    
                          

 

Chen, 1996 

 

 

 

 

 

 

Soil-line-related 

 

 

 

 

 

 

 

 

SAVI, Soil-adjusted 

vegetation index 

 

                

             
  

where   =0.5 

Huete, 1988 

MSAVI, Modified 

soil-adjusted vegetation 

index 

 

                                    

 
 

 

Qi et al., 1994 

TSAVI, Transformed 

soil-adjusted vegetation 

index 

               

               
 Baret et al., 1989 

 

ATSAVI, Adjusted 

transformed soil-adjusted 

vegetation index 

               

                      
 

 where         

Baret and Guyot, 

1991 
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Soil and 

atmospheric 

resistant 

 

 

SARVI,  

Soil and atmospheric 

resistant vegetation index  

               

            
  

where                       

Kaufman and 

Tanre, 1992 

Soil-line-litter-c

orrected 

L-ATSAVI,  

Litter-corrected ATSAVI 

               

                            
 

 

Where                 

                           

He et al., 2006 

 

 

Chlorophyll-corr

ected 

TVI ,Triangular vegetation 

index 
                                 ] 

Broge and 

Leblanc, 2000 

 

MCARI, Modified 

chlorophyll absorption 

ratio index 

                           ]( 
    

    
  

Daughtry et al., 

2000 

   
MCARI1,Modified 

chlorophyll absorption ratio 

index 1 

                                 ] 

 

Haboudane et al., 

2004 

 

MCARI2, Modified 

chlorophyll absorption ratio 

index 2 

                                  

          
                    

                                           
Haboudane et al., 

2004 

  

SLAID ,Standardized LAI 

Determining Index 

 

SLAIDI*,Modified 

standardized LAI 

Determining Index 

                             

 

              

             
       where     

Delalieux et al., 

2008 

 

Delalieux et al., 

2008 

Chlorophyll-in

dependent 

Note: a and b used in some VIs are the slope (1.95) and the intercept (-0.01) of the soil line (Appendix C) in 

the study area. 

 

2.2.3 Methods for Determining a Suitable VI at Each Growing Stage  

First, the spectral properties of green vegetation, dead vegetation, and bare soil and their 

effects on the selected VIs were investigated. Second, both VIs and LAI were scaled up by 

arithmetically averaging the values in the area within a 30 m-size window, which is the 
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spatial variation scale of LAI in the study area (Li and Guo, 2010), to minimize the effects 

of spatial autocorrelation. The correlation coefficient between LAI and each VI was then 

calculated to measure VIs‟ performances in the early, maximum, and late growing season, 

respectively. In addition, the analysis of variance (ANOVA) was implemented to account 

for the performances of VIs at each growing stage. It is a useful statistical approach for the 

sensitivity analysis of VIs to their effect factors (Rondeaux et al., 1996; Daughtry et al., 

2000), such as green vegetation, dead vegetation, and bare soil. 

 

2.2.4 Methods for Determining a Suitable VI for Quantifying LAI Temporal 

Variation  

A suitable VI for quantifying LAI temporal variation must have a good and stable 

performance throughout the growing season. Thus, the correlation coefficient of each VI 

and LAI at each growing stage was arithmetically averaged to measure the overall 

performance during the entire growing season. Also, standard deviation (SD) and 

coefficient of variation (CV) of the correlation coefficient between LAI and each VI were 

calculated to measure the stability of the performance of each VI. 

 

2.3 Results and Discussion 

2.3.1 Temporal Variation of LAI and Effects of Ground Covers  

As shown in Figure 2.1, LAI demonstrated a distinct temporal variation, varying from 0.14 

to 0.92 over the course of a season. Throughout the growing season, LAI rapidly increased 

and reached the maximum in late July. After that, LAI started decreasing and reached the 

minimum in the senescence season from late August to mid September.  

  

Both covers of grasses and forbs increased as LAI increased in the early growing season, 

and then reached the maximum. Subsequently, both decreased as LAI decreased, however, 

the cover of forbs changed more dramatically than did the cover of grasses. In contrast, 
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standing dead cover dramatically decreased as LAI increased, and then rapidly increased 

during the senescence season. Litter cover was relatively steady, as was bare ground.  

 

 
Figure 2.1 Temporal variations in LAI and ground covers from May to September 

 

Table 2.2 shows the correlation coefficient (r) and coefficient of determination (r
2
) 

between ground covers and LAI for the entire growing season. Temporal variations in 

covers of grasses, forbs, standing dead, and litter can significantly account for a total of 

91.2% of the variations in LAI. Variations in grass cover can only account for 11.9% of the 

temporal variations in LAI, while temporal variations in forbs can significantly (P<0.001) 

account for approximately 31.9% of the variations. In contrast, variations in standing dead 

cover and litter cover can explain 32.1% and 15.3% of the total variances of LAI, 

respectively, although the relationships with LAI are negative. Totally, dead vegetation 

covers (standing dead and litter) can account for 47.4% of the variances of LAI, while 

green covers can only explain 43.8%. 

Table 2.2 Correlation of coefficient (r) and coefficient of determination (r
2
) between 

canopy covers and LAI 

Canopy composition r r2 P 

Grass  0.345 0.119 0.000 

Forbs 0.565 0.319 0.000 

Standing dead -0.567 0.321 0.000 

Litter -0.391 0.153 0.000 

          Note: P is the significant value at the 99% interval. 
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The fact that variations in forbs‟ cover can explain more variances of LAI than grasses‟ 

cover indicates that species composition has a significant effect on LAI in semi-arid mixed 

grassland, similar to temperate mixed grasslands (Spehn et al., 2000). Thus, species 

composition would influence the performance of a VI. At the same time, litter and standing 

dead are often dominant in the above ground biomass in semi-arid grasslands (Asner et al., 

1998; Guo, 2002), and dead vegetation accounts for about 4% more variations in LAI than 

green vegetation in the study area. A large amount of dead materials would present a 

serious problem to the interpretation of VIs (Duncan et al., 1993; Galvao et al., 2000). 

Therefore, selecting a VI with less sensitivity to dead vegetation and bare soil but more 

sensitivity to green vegetation is a key to accurately quantify LAI temporal variations in 

semi-arid mixed grasslands. 

 

2.3.2 A Suitable VI for LAI Estimation at Each Growing Stage 

2.3.2.1 The spectral response curves of ground covers 

 

Reflectance spectra of dead vegetation, green vegetation, and their mixture with 40% green 

vegetation, as well as natural bare soil are shown in Figure 2.2. The other intermediate 

mixture rates of dead and green vegetation were not illustrated for clarity. Large 

differences are observed in spectral response curves of dead vegetation, green vegetation, 

and their mixture in the visible, NIR, and shortwave wavelength regions. Reflectivity of 

vegetation in a visible wavelength region is pigment dependent. Light absorption by 

chlorophyll in the blue (450 nm) and red (670 nm) wavelength regions is minimized in a 

dead vegetation reflectance response curve due to the lack of chlorophyll. Thus, higher 

reflectance of dead vegetation in blue and red wavelength than green vegetation is 

observed, whereas reflectivity of dead vegetation in the green (550 nm) wavelength region 

is lower. In the NIR (750-1400 nm) wavelength region, where vegetation reflectivity is 

structure dependent, reflectance of dead vegetation is much reduced compared to that of 

green vegetation. Also, water absorption zones at around 950 nm and 1150 nm wavelength 

regions, clearly shown in the spectral response curve of green vegetation, are smoothed in 
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the spectral response curve of dead vegetation due to the less water content. In the 

shortwave (1450-1750 nm in the chart) wavelength region, which is mainly used for the 

studies on vegetation water content, dead vegetation shows much more reflectivity than 

green vegetation due to less light absorption attributed to reduced water content within the 

vegetation. A mixture of dead and green vegetation demonstrates intermediate reflectivity 

in the wavelength regions (Figure 2.2). 

 

Reflectivity of bare soil demonstrates a similarity with dead vegetation in visible 

wavelength (450 nm-750 nm) regions. Thus, the spectral response curve of bare soil, with 

lower reflectance in green wavelength region and higher reflectivity in blue and red 

wavelength regions, is different from green vegetation. However, bare soil has much lower 

reflectivity in one portion of NIR wavelength (750 nm-1150 nm) region than green, dead 

vegetation, and their mixture. In the shortwave wavelength region, bare soil demonstrates 

the highest reflectivity among the demonstrated ground covers. Nonetheless, reflectivity of 

bare soil is subjected to change depending on its water content.  

   

 
Figure 2.2 The spectral response curves of dead vegetation (Dead veg), green vegetation 

(green veg), and their mixture (40% green veg) as well as bare soil (The portion of 

1350-1450 nm which contains the primary water absorption region of 1361-1395 nm were 

deleted) 
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The similar reflectivity between dead vegetation and bare soil in the visible wavelength 

range indicates that they have similar influences on VIs which integrates peak green 

reflectance (550 nm) and chlorophyll absorption at 450nm and 670 nm. The dissimilarity 

in the spectral response curve of green vegetation from those of dead vegetation and bare 

soil indicates: 1) VIs combined all ρ550, ρ670, and ρ800 or either two of them are able to 

differentiate LAI from green vegetation, dead vegetation, and bare soil; and 2) VIs 

comprised of two NIR bands or together with shortwave bands also have the capability to 

identify variations in LAI. The differences in the reflectivity of ground covers further 

confirm that the composition of ground covers would influence the performances of VIs, 

and the influence is different for each VI due to the diverse bands and band combination 

approaches.     

 

 2.3.2.2 Performances of each VI  

 

The correlation coefficient between LAI and each selected VI, and the percentages of 

variations in spectral variables explained by the ground covers in different growing 

seasons are shown in Table 2.3. The r values indicate the performances of VIs, which can 

be accounted for by their sensitivity to variations of green vegetation and the resistance to 

the influence of dead vegetation and bare soil. The more variations of VIs explained by 

green vegetation, the greater sensitivity of VIs have. Contrarily, the fewer variations 

accounted by dead vegetation or bare soil, the greater resistance of VIs to their influence.  

 

In the early growing season (Jun 4-Jul 2), the r values in chlorophyll-independent VIs 

(0.51-0.53) and ratio-based VIs (0.46-0.54) are greater than those in soil-line-related VIs 

(0.41-0.51) and chlorophyll-corrected VIs (0.38-0.51). Within each category, the r values 

of SLAIDI* (0.53), NDVI (0.54), TSAVI (0.51), and MCARI (0.51) are slightly larger, 

whereas of SLAIDI (0.51), RDVI (0.46), MSAVI (0.41), and MCARI1 (0.38) are slightly 

smaller than those of the other VIs in their group. L-ATSAVI has a moderate r value of 

0.49. SARVI has the smallest r value (0.23), and the difference of the r value in the worst 

VI (SARVI) from the best VI (NDVI) is as large as 0.31.  
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The better performances of ratio-based VIs and chlorophyll-independent VIs are attributed 

to their comprehensive response to variations in the ground covers. The percentages of 

variations accounted for by green vegetation/dead vegetation in ratio-based VIs (39.0-40.5% 

/35-42.6%) and chlorophyll-independent VIs (35.8-43.6%/34.2-38.9%) are generally 

greater than the other selected VI categories. In addition, the percentages of variations 

contributed by bare soil in ratio-based VIs (8.7-11.4%) and chlorophyll-independent VIs 

(4.0-5.5%) are generally smaller than the other VIs.  Specifically, NDVI, with high 

sensitivity to green vegetation variation, and medium and high resistance to dead 

vegetation and bare ground influence, outperforms all the other selected VIs. Although 

SLAIDI is more sensitive to variations of green vegetation than NDVI, the lower resistance 

to dead vegetation influence limits its performance. SARVI, with the least sensitivity to 

green vegetation and the smallest resistance to bare soil, demonstrates the worst 

performance for LAI estimation.  

 

During the maximum growing season (Jul 21-Aug 15), the r values of 

chlorophyll-independent VIs (0.74-0.80) are slightly better than those of soil-line-related 

VIs (0.74-0.79), ratio-based VIs (0.71-0.78), L-ATSAVI (0.75), SARVI (0.66), and 

chlorophyll-corrected VIs (0.45-0.78). Within each category, the r values of SLAIDI (0.80), 

PVI (0.79), MSR (0.78), and MCARI2 (0.78) are larger, while of SLAIDI* (0.74), 

ATSAVI (0.74), NDVI (0.71), and TVI (0.46) are smaller than those of the other VIs in 

their groups. The r difference of TVI from SLAIDI is as large as 0.35.  NDVI, ranked the 

9
th

 among the selected VIs, however, the difference in performances of NDVI and SLAIDI 

is subtle with an r value of 0.04. The best performance of SLAIDI is supported by the 

second greatest sensitivity to green vegetation variation (75.9%) and medium resistance to 

the influence of dead vegetation (70.4%) and bare soil (15.9%). TVI demonstrates the 

worst performance for LAI estimation due to its low sensitivity to variations of green 

vegetation (18.4%), despite high resistance to the effects of dead vegetation (17.4%) and 

bare soil (6.0%).  The performances of the other VIs can also be well explained by the 

variations in the ground covers. 
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In the late growing season (Aug 29-Sep 15), the r values of ratio-based VIs (0.74-0.76), 

L-ATSAVI (0.76), soil-line-related (0.73-0.77), and chlorophyll-independent (0.68-0.73) 

are greater than those of SARVI (0.48) and chlorophyll-corrected (0.36-0.73). Within each 

category, the r values of MSR (0.76), TSAVI (0.77), SLAIDI (0.73), and MCARI 2 (0.73) 

are larger, whilst of RDVI (0.74), PVI (0.73), SLAIDI* (0.68), and TVI (0.36) are smaller 

than those of the others within their group. The r difference between TVI and TSAVI is 

0.41. NDVI is in the 5
th

 place among the selected VIs, however, the difference in the r 

values of NDVI and TSAVI is subtle (0.02). TSAVI becomes the optimal representative of 

LAI with a moderate sensitivity to green vegetation (69.2%) and medium to high resistance 

to dead vegetation (56.9%) and bare soil influence (3.0%), respectively. At the same time, 

TVI demonstrates the worst performance with the least sensitivity to green vegetation 

(22.9%), despite the high resistance to the influence of dead vegetation (18.1%) and bare 

soil (3.3%).  

 

Table 2.3 Correlation coefficients (r) between spectral vegetation indices (VIs) and LAI, 

and percentage of variations in VIs with bare ground reflectance (B), green vegetation 

(GV), dead vegetation (DV), and their interactions (* indicates that the r values are 

significant at the 0.05 level with 66, 44, 44 samples at each growing stage, respectively) 

Spectral Variable  r* 

Source of Variable 

B GV B*GV DV B*DV 

       Jun 4 - Jul 2 

NDVI 0.54 8.7 39.0 8.0 36.2 8.7 

MSR 0.51 11.4 40.5 5.0 42.6 11.5 

RDVI 0.46 9.7 39.7 5.6 35.0 11.6 

 

SLAIDI* 0.53 4.0 35.8 5.7 34.2 8.0 

SLAIDI 0.51 5.5 43.6 5.6 38.9 11.3 

 

TSAVI 0.51 10.1 33.8 6.3 35.5 6.2 

ATSAVI 0.5 9.2 37.3 7.2 33.7 8.9 

PVI 0.45 11.6 34.4 4.7 36.0 9.5 

SAVI 0.42 12.0 34.6 4.7 37.2 12.4 

MSAVI 0.41 12.9 35.4 4.8 37.7 15.0 

 0.49 1.7 22.6 7.7 12.1 7.9 
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L-ATSAVI 

 

SARVI 0.23 15.8 16.9 7.6 16.0 14.7 

 

MCARI 0.51 6.8 30.9 7.6 31.4 5.4 

TVI 0.44 3.9 38.0 11.6 35.1 8.2 

MCARI2 0.41 10.9 41.2 5.6 35.8 13.2 

MCARI1 0.38 12.8 33.0 5.3 34.8 14.1 

       Jul 21 - Aug 15 

MSR 0.78 10.9 47.5 7.3 68.6 57.0 

NDVI 0.76 13.9 75.1 13.8 73.5 26.2 

RDVI 0.71 9.9 70.8 14.5 68.0 11.0 

 

SLAIDI 0.80 15.9 75.9 20.8 70.4 20.7 

SLAIDI* 0.74 20.8 71.4 13.7 70.6 11.4 

 

PVI 0.79 12.6 52.6 8.2 61.8 39.0 

SAVI 0.79 11.8 53.7 7.2 62.1 37.0 

MSAVI 0.79 11.5 51.6 8.5 61.1 38.5 

TSAVI 0.78 15.0 56.9 5.4 62.4 38.9 

ATSAVI 0.74 13.5 73.7 12.7 70.4 17.2 

 

L-ATSAVI 0.75 13.4 76.7 9.9 74.8 19.6 

 

SARVI 0.66 10.7 34.0 10.9 42.3 28.9 

 

MCARI2 0.78 11.3 70.5 16.1 65.8 13.2 

MCARI1 0.77 11.6 51.3 9.0 58.3 35.2 

MCARI 0.76 12.1 43.0 19.8 59.4 49.5 

TVI 0.45 6.0 18.4 9.2 17.4 3.3 

       Aug 29- Sep 15 

MSR 0.76 13.0 47.9 15.6 35.6 12.7 

NDVI 0.75 13.2 79.0 19.3 59.6 15.4 

RDVI 0.74 11.4 53.8 20.0 36.6 9.7 

 

SLAIDI 0.73 16.2 81.6 20.8 53.8 10.9 
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SLAIDI* 0.68 17.3 75.6 10.2 58.5 12.7 

 

TSAVI 0.77 3.0 69.2 5.8 56.9 5.4 

SAVI 0.75 9.4 49.4 18.2 38.2 7.5 

MSAVI 0.74 9.3 49.4 17.6 37.1 6.9 

ATSAVI 0.74 15.0 56.7 19.8 38.6 13.1 

PVI 0.73 9.3 48.7 17.1 36.4 8.6 

 

L-ATSAVI 0.76 14.9 55.2 18.9 39.6 12.6 

 

SARVI 0.48 2.4 33.9 11.7 27.4 9.5 

 

MCARI2 0.73 10.9 55.7 19.1 36.0 7.7 

MCARI1 0.73 8.5 48.8 17.7 37.6 5.4 

MCARI 0.61 11.1 37.2 6.7 25.7 17.2 

TVI 0.36 3.3 22.9 9.9 18.1 3.7 

        

 The results in the early growing season were compared to the findings of He et al. (2006) 

in upland area of GNP. The similarity of my study area and their study area is 1) both are 

semi-arid mixed grasslands characterized by a large amount of dead materials and bare 

soil in the boreal climate region. Percentage of bare soil is even larger in GNP than that in 

my study area; 2) LAI and canopy reflectance data used in these two studies were 

measured by the same instruments and approaches, although, their measurements were 

done in mid and late June in 2004; and 3) the most VIs compared are the same, with only 

chlorophyll-independent VIs added and MTVI1 and MTVI2 excluded in my study. The 

difference in the two study areas is mainly in the different dominant vegetation and 

ground covers. The dominant vegetation of GNP is blue grama grass (Bouteloua gracilis, 

Contr. U.S. Natl. Herb. 14: 375), needlegrass (Nassella spp., Fl. Chil. 6: 263), and silver 

sagebrush (Artemisia cana, Fl. Amer. Sept. 2: 521), and moss (Lycopodiaceae, Hist. Nat. 

Vég. 4: 293) are also observed as ground covers. Both research found that the ratio-based 

VIs and soil-line-related VIs are better than chlorophyll-corrected VIs, and TSAVI and 

ATSAVI are superior to the other selected soil-line-related VIs. The inferiority of 

chlorophyll-corrected VIs may be attributed to the less influence of chlorophyll than dead 

http://www.tropicos.org/Name/42000401
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vegetation and bare soil. However, the superiority of each individual VI within the 

ratio-based and chlorophyll-corrected VIs is different. NDVI outperforms MSR and 

RDVI, and MCARI is the best within chlorophyll-corrected VIs in St. Denis, while RDVI 

is the best within the ratio-based VIs and MCARI2 is superior to the others within their 

group in their study.  In addition, NDVI is slightly better than L-ATSAVI, and SARVI is 

the worst VI amongst the selected VIs in St. Denis, while L-ATSAVI is better than NDVI 

and MCARI is the worst in GNP.  

2.3.3 A Suitable VI for LAI Temporal Variation Quantification 

Performances of VIs on quantifying temporal variation of LAI were evaluated by the 

averaged correlation coefficient, SD, and CV (Table 2.4). The averaged r values of 

chlorophyll-independent VIs (0.65-0.68), soil-line-related VIs (0.65-0.68), ratio-based VIs 

(0.64-0.68), and of L-ATSAVI (0.67) are larger than those of SARVI (0.46) and 

chlorophyll-corrected VIs (0.42-0.64).  Within each group, the r values of SLAIDI (0.68), 

TSAVI (0.68), NDVI (0.68), and MCARI2 (0.64) are larger, and of SLAIDI*(0.65), 

MSAVI (0.65), RDVI (0.64), and TVI (0.42) are smaller than those of the other VIs in their 

group. The r difference of TVI from NDVI is as large as 0.26. The CV values indicate the 

stability of the performances of VIs. The CV of SARVI (0.99) is much larger than those of 

chlorophyll-corrected VIs (0.32-0.37), soil-line-related (0.22-0.33), ratio-based 

(0.18-0.28), chlorophyll-independent (0.18-0.22), and of L-ATSVI (0.23). Within each 

category, the CV values of MCARI (0.37), SAVI (0.33), and of RDVI (0.28) are larger, 

while of TVI (0.32), ATSAVI (0.22), and of NDVI (0.18) are smaller than the others 

within their group. The CV (0.18) of chlorophyll-independent SLAIDI* is smaller than 

that of SLAIDI (0.22). The range between CV of SARVI and NDVI is as large as 0.81. The 

SD values indicate the same stability of the performances of VIs as the CV.  
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Table 2.4 Performances of VIs on quantifying temporal variation of LAI measured by the 

mean Pearson‟s r, standard deviation (SD), coefficient of variation (CV), and their ranges  

VIs r SD CV 

NDVI 0.68 0.12 0.18 

MSR 0.68 0.15 0.22 

RDVI 0.64 0.18 0.28 

 

SLAIDI 0.68 0.15 0.22 

SLAIDI* 0.65 0.12 0.18 

TSAVI 0.68 0.15 0.22 

PVI 0.66 0.19 0.29 

ATSAVI 0.66 0.14 0.22 

SAVI 0.65 0.21 0.33 

MSAVI 0.65 0.21 0.33 

 

L-ATSAVI 0.67 0.16 0.23 

 

SARVI 0.46 0.45 0.99 

 

MCARI2 0.64 0.21 0.33 

MCARI1 0.63 0.23 0.37 

MCARI 0.63 0.20 0.32 

TVI 0.42 0.13 0.32 

Range 0.26 0.33 0.81 

 

NDVI demonstrates the most stable and best performance on quantifying temporal 

variations in LAI in the semi-arid mixed grassland. This is confirmed by the assertion of 

Galvao et al. (2000) that a narrow red band at 670 nm and a narrow NIR band at 800 nm 
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can maximize the NDVI contrast between green vegetation and dead vegetation, or bare 

soil. It is consistent with the research of Broge and Leblanc (2000) that NDVI is the best 

index at low and medium LAIs. However, it is not in agreement with the finding of Chen 

(1996), which indicates that MSR is the best choice for LAI estimation in a forest area, nor 

of Haboudane et al. (2004) that MTVI2 and MCARI2 are the most robust indices to 

estimate LAI in croplands. The incongruence is due to the reasons that my study 

considered dead materials as an important effect factor while their research did not, and 

also the saturation issue of NDVI for dense vegetation is not a serious problem in semi-arid 

mixed grasslands where quadrat LAIs are typically lower than 4.  

 

2.4 Conclusions 

Distinct variations in LAI were observed throughout the growing season in the semi-arid 

mixed grassland. These temporal variations can largely be explained by the changes in 

covers of grasses, forbs, standing dead, and litter. Dead materials, including standing dead 

and litter, could account for 4% more of the variation in LAI than green vegetation could. 

Standing dead has the greatest effect on temporal variations in LAI, although the influence 

was negative. This information will be beneficial for modeling CO2 exchange, 

evapotranspiration, and other energy flux exchanges between the land surface and the 

atmosphere. 

 

The sensitivity of VIs to green vegetation and resistance to dead vegetation and bare soil 

influence are different as growing stages change. As a result, performances of VIs on LAI 

estimation vary as the vegetation growing stage changes. VIs demonstrate the most 

capability to be a representative of LAI during the time period of Jul 21-Aug 15, followed 

by Aug 29-Sep 15 and Jun 4-Jul 2. Also, VIs perform differently at each growing stage, 

and the difference between the best and the worst VI is quite large, ranging from 0.31 to 

0.41, although the discrepancy is small or even subtle among some VIs. NDVI, SLAIDI, 

and TSAVI demonstrate the best performances on LAI estimation in the early, maximum, 

and late growing season, respectively.  
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The performances of ratio-based, chlorophyll-independent, L-ATSVI, soil-line-related VIs 

are better and more stable than chlorophyll-corrected VIs and SARVI. Within each group, 

performances of NDVI, SLAIDI, TSAVI, and MCARI2 are better, while RDVI, SLAIDI*, 

MSAVI, and TVI are worse than those of the other VIs within their group. NDVI, 

SLAIDI*, ATSAVI, and TVI are more stable, while RDVI, SLAIDI, SAVI, and MCARI 

are less stable than the others within their group. Overall, NDVI is the most suitable VI for 

quantifying temporal variation in LAI in semi-arid mixed grassland. This makes it possible 

to parameterize routinely produced NDVI composites into models to be intermediaries of 

LAI.  
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CHAPTER 3 - LAI ESTIMATION IN SEMI-ARID MIXED 

GRASSLAND BY CONSIDERING BOTH TEMPORAL AND 

SPATIAL VARIATIONS  

3.1 Introduction 

As discussed in Chapter 1&2, accurate LAI estimates are urgently required for the land 

surface-atmosphere interaction modeling (Running et al., 1999) and a LAI-VI relationship 

is the most commonly used approach to determine LAI from remotely sensed data. 

However, the coefficient of determination (r
2
) of LAI estimation from VIs derived from 

satellite imagery (satellite-level VIs) has demonstrated a wide range from 0.05 to 0.66 

(Haboudane et al., 2002). The wide r
2 

range is partially attributed to the influence of the 

effect factors, namely LAI spatial (horizontal and vertical) and temporal variations 

controlled by land surface heterogeneity and ecological parameters, such as soil moisture 

and topography. Considerable research has concluded that the accuracy of LAI estimation 

can be improved by taking the effect factors into account. Wulder et al. (1998) integrated 

texture into the LAI-VI relationships to increase the accuracy of LAI estimation in forest 

area. Rahman et al. (2003) and He et al. (2006a) found that an appropriate spatial scale or a 

suitable spatial resolution image for estimating LAI can avoid the potential errors arising 

from land surface heterogeneity. In addition, Chen and Cihlar (1996) have declared that 

more accurate overstory LAI estimation in forest can be obtained in late spring rather than 

in summer. A similar spring-summer difference was observed by Badhwar et al. (1986). 

 

Aforementioned studies have demonstrated that LAI estimation could be improved by 

selecting the optimum spatial scale (or spatial resolution imagery) or the most appropriate 

estimation time. However, relatively few efforts have been made to improve LAI 

estimation by taking the comprehensive effects of land surface heterogeneity and 
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ecological parameters into account. Hence, this study aimed to estimate LAI via a LAI-VI 

relationship by taking both temporal and spatial variations into account. NDVI was chosen 

for LAI estimation, as it demonstrates a better and more stable performance than the other 

evaluated VIs, including the soil-line-related VIs in the study area (Li and Guo, 2010a). 

The procedures to achieve the objective are: 1) determining the optimum spatial scale for 

LAI estimation; 2) estimating LAI using ground NDVI by considering both temporal and 

spatial variations; and 3) validating the LAI estimation approach through satellite-level 

NDVI derived from satellite imagery.  

 

3.2 Materials and Methods  

3.2.1   Field Data  

Field data used were LAI, soil moisture, and canopy reflectance collected over the 

sampling transect and plots through May to September in 2008.  

3.2.2   Satellite Data and Preprocessing 

Two SPOT 4 HRVIR 20m images were acquired on 4 June and 19 August, and two SPOT 

5 HRV 10m images were collected on 30 August and 15 September 2008 for the study. 

Geometric correction was applied to all of the images based on the Saskatchewan road map 

and 18 ground control points around the study area taken by GPS with an accuracy of 

2.0-5.0 m. The accuracy of geometric correction is higher than 0.5 pixel (RMSE <10m) for 

SPOT 4 and (<5m) for SPOT 5. Atmospheric correction was implemented by the Dark 

Object Subtraction (DOS) method, which is the most widely used image-based approach 

(Song et al., 2001). It is applicable due to the large water body in the area.  
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3.2.3 Methods to Identify the Optimum Spatial Scale for LAI Estimation  

Logarithm10 transformation was made to make LAI and soil moisture collected over the 

sampling transect in or close to a normal distribution for the analyses. To determine the 

optimum spatial scale or suitable spatial resolution imagery for LAI estimation, the 

dominant co-variation scales of LAI and soil moisture were investigated through the 

wavelet approach. The spatial variation of soil moisture was considered, because He‟s et al. 

(2006a) research found that soil moisture and topography control two dominant spatial 

variation scales of LAI in semi-arid mixed grasslands. Besides, the spatial distribution of 

soil moisture is highly dependent on topography (Bindlish et al., 2008) in a natural 

landscape, thus the co-variation scale of soil moisture and LAI can partially represent the 

influence of topography on LAI spatial variation.  

 

Although the observed spatial patterns of LAI would be similar (He et al., 2006a) to the 

result of a semivariogram analysis, the wavelet approach, including Morlet Wavelet 

Analysis (MWA), Cross-Wavelet Transform (XWT), and Wavelet Coherence Transform 

(WCT), was used due to the following advantages. First, the wavelet approach allows users 

to investigate the spatial co-variation scales of LAI and soil moisture. Second, wavelet 

analysis can identify the ranges of main variation scales of LAI and soil moisture and their 

co-variation scales, and define the exact location of transition. Due to the merits, the 

wavelet approach has been widely used since 1990s in many research areas, such as 

grassland remote sensing (He et al., 2006a), ecological landscape (Saunders et al., 2005), 

and vegetation biomass and topography (Si and Farrell, 2004). Details on algorithms of 

MWA, XWT, and WCT approaches refer to Torrence and Webster (1999), Grinsted et al. 

(2004), and Yates et al. (2007). 

 

The wavelet analyses were conducted in the following procedure: 1) MWA was applied to 

the transformed data to investigate the spatial variation scales of LAI and soil moisture, 

respectively; 2) XWT was utilized to investigate spatial scales and locations where LAI 

and soil show high common power; and 3) WCT was performed to find the spatial scales 

and locations where LAI and soil moisture co-vary. The significance of wavelet spectra 
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was carried out against a Gaussian red noise (Pardo-Iguzquiza and Rodriguez-Tovar, 2000) 

due to the high spatial similarity of soil moisture (Si and Zeleke, 2005) and LAI at two 

adjacent locations in natural grasslands. The significant areas in their spectra are 

highlighted by black solid lines in the wavelet contour maps, which represent scales and 

locations at or above the 95% confidence interval.  

 

Finity of LAI or soil moisture data results in edge effects on the results of the wavelet 

analyses. To minimize the edge effects, additional 128 zeros were padded to the 128 LAI 

data prior to the analysis according to the suggestion of Torrence and Compo (1998), and 

to the soil moisture data. The boundary represented by the effects of zero padding is called 

the Cone of Influence (COI) (Yates et al., 2007). Anomalous coefficients outside the COI 

may not be significant due to the fact that the decrease in variances outside the COI could 

be the results of zero padding. To avoid type І errors in which some locations may actually 

be significant by coincidence, only those significant locations that constitute an area 

greater than 5% of the area of the spectrum were accepted (Yates et al., 2007). 

 

The spatial co-variation scales of LAI and soil moisture were determined based on the two 

criteria. First, the similar spatial variation scales of soil moisture and LAI at the same 

locations in the wavelet spectra of MWA are observable in their spatial distribution along 

the sampling transect (the profiles). Second, the spatial variation scales of LAI and soil 

moisture observed in MWA spectra can be supported by the XWT spectra, which can be 

further confirmed by the WCT spectra. Once the dominant spatial co-variation scale (s) 

between LAI and soil moisture is (are) observed, the suitable pixel size (s) of imagery and 

the optimum spatial scale (s) for LAI estimation can be determined to be one quarter of the 

spatial scale based on the sampling theorem (Yilmaz and Doherty, 1987). Spatial scales (or 

the pixel sizes of imagery), which are smaller than the optimum, cannot avoid the spatial 

autocorrelation issue on LAI estimation. Spatial scales, which are larger than the optimum, 

can eliminate the influence of spatial autocorrelation on LAI estimation. But they may 

introduce additional errors resulting from the effects of land surface heterogeneity (Chen, 

1999; Jin et al., 2007).   
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3.2.4 Methods for LAI Estimation from Ground NDVI  

LAI and canopy reflectance data over the sampling transect were utilized to investigate 

effects of spatial and temporal variations on LAI estimation at a ground-level. Canopy 

reflectance data were used to derive ground hyperspectral NDVI by calculating the ratio 

between the difference of Near Infrared (NIR, 800nm) and Red (670nm) reflectance to the 

sum of the two.  

 

Three steps were taken to estimate LAI. First, a linear regression was applied to all ground 

LAI and NDVI data to establish their relationship. Second, relationships between LAI and 

NDVI were developed by considering the temporal variations in LAI (Li and Guo, 2010a). 

Third, LAI was estimated based on NDVI while considering both temporal and spatial 

variations. The spatial variation was considered by scaling up both LAI and NDVI data to 

the suitable scale determined by the wavelet analyses. Accuracy of LAI estimation was 

measured by the coefficient of determination (r
2
), Average Relative Error (ARE), and Root 

Mean Squared Error (RMSE). 

3.2.5 Methods for LAI Estimation from Satellite-Level NDVI 

LAI data collected over the sampling transect and in each plot were arithmetically 

averaged, respectively, to estimate LAI from satellite-level NDVI data retrieved from NIR 

(band3) and Red (Band2) bands of SPOT 4/5 images. LAI zeros resulting from the 

senescence of vegetation in the late growing season were eliminated prior to the analyses. 

Relationships between LAI and NDVI were established via the linear regression approach 

with and without considering the temporal variation, respectively. The accuracy of LAI 

estimation was evaluated via the r
2
 values. 
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3.3 Results and Discussion  

3.3.1 The Optimum Spatial Scales for LAI Estimation  

The spatial co-variation scales of LAI and soil moisture were investigated for each 

individual data collection. The dominant spatial scale on 17 June and 2 July was similar to 

that on 4 June (the early growing season), and data sets collected on 29 August (the early 

senescence season) demonstrated the same dominant spatial scale as those collected on 21 

July and 15 August (the maximum growing season). Thus, to make the chapter readable, 

only results based on data collected on 4 June were illustrated.   

 

The profiles of LAI and soil moisture along the sampling transect on 4 June 2008 are 

shown on Figure 3.1. LAI ranges from 0.02 to 1.83, with a mean of 0.64. The majority of 

values are under 0.60, and no certain spatial pattern is observed. Soil moisture has a mean 

of 0.20 and a range of 0.29. One cyclic pattern of soil moisture with three peaks is observed 

over the sampling transect, which is largely in consistent with the topography variation 

(Figure 1.1c). Higher LAI tends to be associated with higher soil moisture except for the 

two locations of 330-380m and 470-560m, where are temporal wetlands. Thus, vegetation 

species in there is different from other locations and greens later.  

 

Figure 3.1 Profiles of LAI and soil moisture on 4 June 2008 in St. Denis, SK, Canada 

 

The local wavelet power spectra for LAI and soil moisture are demonstrated in Figure 3.2. 

The spectra indicate that LAI has a significant spatial variation scale (approximate 80- 
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144m) at a distance between 330 and 400m (Figure 3.2a). At a similar distance, a 

significant scale of an approximate 120 to160m is observed in the spectra of soil moisture 

(Figure 3.2b). The demonstrated scale is further confirmed by the large variation of LAI 

and soil moisture in the portion of the sampling transect (Figure 3.1). The other variation 

scales are either spurious or non-consistent scales between LAI and soil moisture.  

    

 

 

Figure 3.2 Spatial variations of (a) LAI and (b) soil moisture derived from Morlet wavelet 

analysis on 4 June 2008 in St. Denis, SK, Canada (Thin solid lines indicate the COI, and 

black solid lines indicate significant locations and scales at the 95% confidence interval) 

 

The cross-wavelet spectra indicate a strong covariance between LAI and soil moisture at a 

72-160m scale over a distance of 300-400m (Figure 3.3a). This is similar to the variation 

scale in the wavelet spectra for LAI and soil moisture (Figure 3.2). The arrows indicate 

that soil moisture and LAI covary in an opposite direction at this scale and distance. The 

other high covariance scales are either smaller than 5% of the spectral area or unobservable 

in the spectra of LAI or soil moisture, therefore are considered to be spurious.  

 

a. LAI 

b. Soil moisture 

Variance 

   Variance 
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As shown in Figure 3.3b, the wavelet coherency spectra confirm a significant relationship 

between LAI and soil moisture at a scale of 100-160m. The phase arrows point to the left, 

which indicates the relationship between LAI and soil moisture is negative due to the 

existing of temporal wetlands. All the other correlation scales observed in the spectra are 

considered to be spurious, because they are not observable in the spectra for LAI or soil 

moisture. Taking the spatial variation scales into account (Figure 3.2&3.3), the 

co-variation scale of LAI and soil moisture is 120-144m in the study area.  

 

 

Figure 3.3 The spectra of (a) cross-wavelet and (b) wavelet coherence analysis between 

LAI and soil moisture on 4 June 2008 in St. Denis, SK, Canada. Thin solid lines indicate 

the COI, and black solid lines indicate significant locations and scales at the 95% 

confidence interval. Arrows in coherency wavelet spectra shows phase angles, pointing to 

left means negative effects and pointing to right indicates positive relationships. 

 

Spatial variation scales of LAI controlled by soil moisture vary from a 120-144m scale in 

the early growing season to a 40-60m scale in the maximum growing season and early 

senescence season (not illustrated). However, no significant variation scale was observed 

in the late senescence season. According to the sampling theorem, the optimum spatial 

scale for LAI estimation is 30-38m in the early growing season and 10-15m in the 

maximum growing and early senescence seasons. Correspondingly, the current Earth 

Observing-1 (EO-1) 30m, the Satellite Disaster Monitoring Constellation (DMC)-1 32m, 

and Landsat TM/ETM+ 30m multispectral satellite images are the optimum spatial 

resolution imagery for LAI estimation in the early growing season in the study area. For 

LAI estimation in the maximum growing season and the early senescence seasons, 

however, the optimum satellite images are SPOT 5 10m, Advanced Spaceborne Thermal 

a. XWT b. WCT 

 

Covariance Covariation 
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Emission and Reflection Radiometer onboard on Terra (Terra-ASTER) 15m, and ALOS 

Advanced Visible and Near Infrared Radiometer type 2 (ALOS AVNIR-2) 10m 

multispectral images. Nonetheless, the suitable satellite images for LAI estimation in the 

late senescence season cannot be determined due to the lack of significant spatial variation 

scales. The nonsignificance is probably because LAI at that time is more controlled by 

vegetation phenology which is highly affected by local environment variables, such as 

temperature and precipitation. 

 

The optimum spatial scales for LAI estimation in the early, maximum growing season, and 

early senescence season fall into the range of 10-50 m for estimating the coverage of C4 

species in GNP (Davidson and Csillag, 2001). He et al. (2006a) concluded that 35m is the 

suitable spatial scale for the grassland heterogeneity study in the summer in GNP. 

However, research carried out in southern California grassland indicates that roughly 6m 

would be optimum for grassland greenness estimation (Rahman et al., 2003). The 

difference in St. Denis and GNP from the southern California grassland could be possibly 

attributed to various grassland ecosystems controlled by dissimilar climate, topography, 

and soil.  

 

3.3.2   LAI Estimation Based on Ground NDVI 

The r
2
 values of LAI-NDVI relationships from different approaches, and RMSE and ARE 

of LAI estimation while spatial variation is considered are listed in Table 3.1. Without 

considering temporal and spatial variation of LAI, the r
2
 of LAI estimation is only 0.13. 

While the temporal variation was taken into account, r
2
 increases to 0.20 and 0.22 in the 

maximum and the late growing season, respectively, while a slight decrease in r
2
 (0.11) is 

observed in the early growing season.  

 

An r
2
 of 0.27 is obtained when the spatial variation was considered, while temporal 

variation was not. With both temporal and spatial variation considered, the r
2 
increases to 

0.32, 0.59, and 0.50 in the early, maximum, and the late growing season. At the same time, 

RMSE is 0.25 in both the early and maximum growing seasons and 0.12 in the late growing 
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season, and ARE is 0.30, 0.25, and 1.20 in the early, maximum, and late growing season, 

respectively.  

 

Bivariate regression equations between NDVI and LAI at different growing stages are all 

formed by positive slopes (Table 3.1), which indicate an increase in LAI can be 

demonstrated by a rise in NDVI. However, the slopes are different in magnitude. The slope 

is the largest in the maximum growing season (3.47), followed by 1.84 in the late growing 

season, and 1.61 in the early growing season. Thus, a certain variation in LAI could cause a 

large variation in NDVI in the maximum growing season, moderate variation in the late 

growing season, and small variation in the early growing season.  

 

Table 3.1 The r
2
, root mean squared error (RMSE), averaged relative error (ARE), and 

bivariate regression equations between NDVI and LAI (r1
2
 is from LAI estimation 

equations considering no spatial variations, while r
2
, RMSE, ARE considered) 

Time Periods r1
2
 r

2
 RMSE ARE LAI-NDVI Equations   

entire growing season 0.13† 0.27† 0.36 1.87 LAI=2.07NDVI-0.40 (n=154)  

early Jun-early Jul 0.11† 0.32† 0.25 0.30 LAI=1.61NDVI+0.07 (n=66)  

mid Jul-mid Aug 0.20† 0.59† 0.25 0.25 LAI=3.47NDVI-1.17 (n=44)  

late Aug-mid Sep 0.22† 0.50† 0.12 1.20 LAI=1.84NDVI-0.71 (n=44)  

†
. The coefficient of determination is significant at the 0.05 level (2-tailed), and n is the sample size.  

 

The LAI-NDVI relationship can provide the vegetative characteristics of a grassland 

community. When each vegetation growing season is considered individually, the 

relationship between LAI and NDVI is stronger due to LAI and chlorophyll content related 

spectral similarity. When the spatial variation in LAI is considered, the LAI-NDVI 

relationship is also stronger because of the species related spectral similarity among 

communities. Therefore, simultaneous consideration of the entire growing season and all 

communities results in a small model coefficient of determination. However, by taking 

both temporal and spatial variation into account, the r
2 

values of LAI-NDVI models 

increase and prediction errors of models decrease.  

 

The best LAI estimation is observed in the maximum growing season, indicated by the r
2
 

value (0.59), due to the fact that an increase in vegetation vigor enhances the capability of 
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NDVI which is quite sensitive to greenness (Rouse et al., 1974). The r
2
 value is much 

higher than that (0.42) in GNP (He et al., 2006b), which might be attributed to the smaller 

percentage of exposed bare soil (3.5%) in St. Denis than that (19.3%) in GNP. It can also 

be accounted for by different vegetation species. The dominant vegetation along the 

sampling transect in St. Denis as stated in chapter 1 is different from the dominant 

vegetation in GNP discussed in Chapter 2. Besides, moss and lichen are also observed in 

GNP, but not in St. Denis. Additionally, the more complex terrain characteristic in GNP 

than St. Denis could also be responsible for the weaker LAI-NDVI relationship (Friedl et 

al., 1994).  

 

The r
2 
value of 0.32 in the early growing season in St. Denis is much smaller than that of 

0.70 obtained in early June in a tallgrass prairie site in USA (Wylie et al., 2002). The 

difference could be mainly attributed to different vegetation species and management 

practices. The dominant grass cover in St. Denis is represented by C3 species, while the 

tallgrass prairie is dominated by C4 species. Management practices can exert an influence 

on the NDVI-LAI relationships through the effects on the accumulation of dead vegetation 

in the early growing season (Price et al., 1993). In St. Denis, no burning or grazing 

management have been applied for a few decades, which results in a large amount of dead 

vegetation (67.6%) in the early growing season, and further lead to the smaller r
2
 value. 

Nonetheless, in the tallgass prairie, spring burning and subsequent cattle-grazing 

dramatically reduce the influence of dead vegetation on LAI estimation.  

 

By taking temporal and spatial variations of LAI into account, the ARE between LAI 

estimates and ground measurements is 0.25 in the maximum growing season. LAI quadrat 

measurements range from 0.02 to 3.7, thus the possible bias of LAI estimation could be 0.0 

to ±0.9. The accuracy of LAI estimation can meet the requirement (±0.2 to ±1.0) for 

terrestrial climate modeling of the Global Climate Observation System (GCOS) and the 

Global Terrestrial Observation System (GTOS) (GCOS/GTOS, 1998). In the early 

growing season, ARE is 0.30 and the quadrat LAI varies from 0.02 to 2.6. The difference 

of LAI estimation from measurements could be 0 to ±0.8, which can meet the requirement 

for terrestrial climate modeling as well. However, in the late growing season, ARE is as 
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large as 1.20, and the quadrat LAI ranges from 0.0 to 1.68. The large discrepancy (0 to ±2.0) 

of LAI estimation from measurements makes it less qualified for the climate modeling.  

3.3.3   LAI Estimation from Satellite-Level NDVI  

LAI estimation based on satellite-level NDVI derived from SPOT 4/5 imagery with and 

without taking the temporal variation into account are illustrated in Figure 3.4 and Figure 

3.5, respectively. The r
2
 is only 0.22, when the temporal variation was not considered 

(Figure 3.4). Taking the temporal variation of LAI into account, r
2
 values are improved by 

0.13 in early June, 0.15 in mid August, and 0.08 in late August to mid September (Figure 

3.5), although the relationships are nonsignificant at the 95% confidence interval except 

that in mid August. The slopes in LAI-NDVI equations decrease in the sequence, which 

indicates a reduced sensitivity of NDVI to LAI, of the maximum, early, and late growing 

season (Figure 3.5).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 The relationship between LAI and satellite-level NDVI derived from SPOT 4/5 

images at the 95% significance interval during the entire growing season (n is the sample 

number and P is the significant value) 
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Figure 3.5 Relationships between LAI (y) and NDVI (x) derived from SPOT 4/5 images at 

the 95% significance interval in different vegetation growing seasons (n is the sample 

number and P is the significant value)  

 

LAI estimation based on satellite-level NDVI confirmed the applicability of the proposed 

approach for LAI estimation. LAI estimation from the selected satellite imagery can be 

much improved by considering the temporal variations, although the r
2
 values are not 

beyond 0.66 which currently is the largest number between LAI and satellite-level VIs 

(Haboudane et al., 2002). The relatively lower r
2
 values may be resulting from the enlarged 

influence of dead vegetation and bare soil on NDVI derived from SPOT 4/5 images (Li and 

Guo, 2010b). Besides, the lower r
2
 value in early June may also be attributed to the smaller 

pixel size of SPOT 4 than the suitable scale (30-38m), which is more likely to exhibit the 

spatial autocorrelation between pixels. However, the lower r
2
 value in mid August is 

possibly influenced by the larger pixel size of SPOT 4 than the optimum (10-15m), which 

results in the mixture of ground covers within each pixel.  

 

3.4 Conclusions  
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The optimum spatial scale for LAI estimation varied from 30-38m in the early growing 

season to 10-15m in the maximum growing and early senescence season. However, no 

specific spatial scale or spatial resolution imagery can be determined in the late senescence 

season. 

 

LAI estimation can be greatly improved by taking the temporal and spatial variations of 

LAI into account to minimize spectral differences resulting from temporal variation of LAI 

and chlorophyll and the mixture of spatial species. The best LAI estimation can be obtained 

in the maximum growing season. Using ground data, the r
2
 is significantly increased by 

0.05 in the early growing season, 0.31 in the maximum growing season, and 0.23 in the late 

growing season. RMSE is dramatically decreased by 0.11, 0.11, and 0.24, while ARE is 

reduced by 1.57, 1.62, and 0.67 in the early, maximum, and late growing season, 

respectively. Based on the satellite data, the r
2
 is improved by 0.13, 0.15, and 0.08 in early 

June, mid August, and late August-mid September, respectively. The improved LAI 

estimation is able to provide more accurate biophysical information for land 

surface-atmosphere interaction modeling. 
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CHAPER 4 - EVALUATION OF NDVI PRODUCTS FOR 

MONITORING SPATIOTEMPORAL VARIATIONS OF LAI 

IN SEMI-ARID MIXED GRASSLAND  

4.1 Introduction 

The NDVI product is an important intermediary of biophysical parameters in modeling. 

The wide application of NDVI products have stimulated considerable research on the 

inter-annual consistency of NDVI products related to spectral differences and spatial 

consistency. However, the performance of NDVI products on monitoring intra-annual 

spatial variability in LAI was rarely discussed. In addition, inconsistency between MODIS 

and SPOT-VGT NDVI products is land cover-dependent and is higher in semi-arid regions 

than in some other moist areas (Brown et al., 2006). The inconsistency is possibly even 

higher in semi-arid mixed grassland, which is characterized by complex canopy covers, 

substantive dead materials, and exposed bare soil (Asner et al., 1998; Guo, 2002). Besides, 

NDVI demonstrates a quite good and stable performance on quantifying intra-annual 

variation of LAI in semi-arid mixed grassland (Li and Guo, 2010a). Therefore, it is 

necessary and feasible to determine a suitable NDVI product on monitoring spatial and 

temporal variations of LAI in semi-arid mixed grasslands for the purpose of improving 

grassland modeling.   

 

This study aims to evaluate the performances of version 5 (V5)16-day MODIS 250m, 1km, 

and 10-day SPOT-VGT NDVI products on monitoring spatiotemporal variations of LAI in 

semi-arid mixed grassland. More specifically, 1) the consistency between ground 

hyperspectral NDVI and satellite-level SPOT 4/5 NDVI, MODIS 250m, 1km, as well as 

SPOT-VGT 1km NDVI products was evaluated; 2) the capability of NDVI data in 

differentiating spatiotemporal variations of LAI was investigated based on the ground 

hyperspectral and SPOT 4/5 NDVI; 3) performances of MODIS 250m NDVI products on 

monitoring spatiotemporal variations of LAI were assessed; 4) performances of MODIS 

1km and SPOT-VGT 1km NDVI products on describing temporal variations of LAI in the 
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grassland were evaluated; and 5) a semivariogram analysis of the  SPOT 4/5 NDVI data 

was conducted to investigate a suitable spatial resolution for differentiating spatial 

variation of NDVI in the landscape.  

4.2 Materials and Methods  

 4.2.1 Ground-level Data 

Ground-level data used were LAI and canopy reflectance collected over the sampling 

transect and the plots. Canopy reflectance data were used to derive ground hyperspectral 

NDVI, which minimizes possible errors introduced by radiometric unreliability (Teillet et 

al., 2001) and other factors including topography, atmospheric conditions, and sun-sensor 

geometry (Steven et al., 2003). Therefore, it is a sound base for the comparison of NDVI 

datasets from different sensors at different time (Steven et al., 2003).  

 

4.2.3 Satellite-level Data 

Satellite-level data used are multispectral imagery and NDVI products (Table 4.1). 

Multispectral imagery includes SPOT 4 20m images and SPOT 5 10m images. Details on 

the data information and pre-processing were given in Chapter 3. NDVI was then derived 

over the sampling transect and plots from the calibrated images (Figure 4.1a), and was 

averaged for tamed and native grassland, respectively. The averaged NDVI data were 

compared to the ground hyperspectral NDVI obtained in the adjacent date. 
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Table 4.1 Characteristics for ground hyperspectral and satellite-level NDVI datasets  

Sensor 
Spectro-rad

iometer 
MODIS SPOT-VGT SPOT 4 SPOT 5 

Data Source field measure LP DAAC VITO 
purchased level-2 

scenes 

purchased 

level-2 scenes 

Nominal pixel size ~1m 250m, 1000m 1000m 20m 10m 

Compositing period \ 16-day 10-day \ \ 

Compositing method \ 
CV-MVC; 

MVC 
MVC \ \ 

Spectral wavelength 
Red: 670 nm 

NIR:800 nm 

Red: 620-670 

nm 

NIR:840-880 

nm 

Red: 610-680 

nm 

NIR:780-890 

nm 

Red: 610-680 nm 

NIR:780-890 nm 

Red: 610-680 

nm 

NIR:790-890 

nm 

Radiometric 

resolution 
\ 12 bit 10 bit 8 bit 8 bit 

Off-nadir view angle \ 65˚ 50.5˚ 27˚ 27˚ 

Date period 
Biweekly, 

Jun-Sep, 2008 

May 1-Oct 

1,2007,2008 

May 1-Oct 

1,2007,2008 

May 2, Jun 4,and 

Aug 19, 2008 

Aug 30 and Sep 

15, 2008 

 

The selected NDVI products are 10-day SPOT-VGT 1km NDVI products and V5 16-day 

MODIS 250m, 1km NDVI products due to their advantages over AVHRR NDVI 

composites in spectral and radiometric properties. MODIS 500m NDVI products were not 

evaluated because they demonstrate similar spatial variability with MODIS 1km NDVI 

products in grasslands (Tarnavsky et al., 2008). The characteristics of sensors and NDVI 

products are listed in Table 4.1. Full discussion of differences in the spectral properties (eg. 

waveband width) can be found from Trishchenko et al. (2002) and Van Leeuwen et al. 

(2006).  

 

The 10-day synthesis SPOT-VGT 1km NDVI products used covered May to October in 

both 2007 and 2008 and were downloaded from the website (http://free.vgt.vito.be/)  

hosted by VITO (Flemish Inst. Technological Research, Belgium). The products were 

produced in geographic coordination using the maximum value compositing (MVC) 

technique (Holben, 1986) to minimize effects of spectral properties, radiometric resolution, 

atmosphere, and most importantly, to minimize the effects of clouds (Brown et al., 2006). 
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The regional subsetting was implemented before the data retrieval based on the geographic 

coordination. 

   

The V5 16-day MODIS NDVI products from May to October in both 2007 and 2008 were 

downloaded from https://wist.echo.nasa.gov/api/, owned by the NASA Land Processes 

Distributed Active Center (LP DAAC). They were produced in a sinusoidal projection 

(SIN). A constrained-view MVC (CV-MVC) approach was used to minimize the off-nadir 

tendencies of the MVC when the input data were cloud free. However, MVC was used 

instead of the CV-MVC when the input data were affected by varied lighting attributed to 

different cloud conditions (Didan and Huete, 2006). Post-processing includes reprojection 

from SIN to Universal Transverse Mercator (UTM), regional sub-setting, and data retrieval.  

Both SPOT-VGT and MODIS NDVI products were compared to ground hyperspectral 

NDVI data in their corresponding compositing period. 

4.2.4 Methods 

4.2.4.1 Consistency between Satellite-Level and Ground Hyperspectral NDVI 

To measure the data consistency, the averaged SPOT 4/5 NDVI, MODIS 250m, 1km, and 

SPOT-VGT 1km NDVI in tamed and native grassland were plotted against the averaged 

ground hyperspectral NDVI. Pearson‟s r between them was also computed. If 

satellite-level NDVI products are highly consistent with ground-level NDVI, then they 

have a similar capability with ground NDVI to describe spatiotemporal variations of LAI.  

 

4.2.4.2 Ground Hyperspectral NDVI and SPOT 4/5 NDVI to Differentiate Spatiotemporal 

Variations of LAI  

Intra-annual spatial variations of ground hyperspectral NDVI and SPOT 4/5 NDVI were 

compared to the spatiotemporal variation of LAI in 2008 in tamed and native grassland. 

The capability of NDVI data was measured based on two criteria: 1) intra-annual NDVI 

variation is consistent with LAI temporal variation in both tamed and native grassland, and 

2) discrepancy of LAI in tamed and native grassland can be identified by the difference in 

NDVI. 
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4.2.4.3 MODIS 250m NDVI Products to Differentiate Spatiotemporal Variations of LAI 

Spatiotemporal variations of MODIS 250m NDVI products and LAI in 2008 were 

compared to evaluate performances of NDVI products based on the same criteria used for 

ground hyperspectral NDVI and SPOT 4/5 NDVI data. To evaluate the stability of the 

performance, spatiotemporal variations of MODIS 250m NDVI products in 2007 were 

also described.  

 

4.2.4.4 MODIS and SPOT-VGT 1km NDVI Products to Differentiate Temporal Variations 

of LAI 

Considering the size of tamed and native grassland is smaller than 1km × 1km, 

performances of MODIS and SPOT-VGT 1km NDVI products were evaluated only based 

on their temporal profiles in the entire grassland in 2007 and 2008. Also, their 

performances were compared to MODIS 250m NDVI products based on the calculated 

change rates (slopes) between two adjacent observation dates.   

 

4.2.4.5 A Suitable Spatial Resolution to Differentiate LAI Spatial Variations in the 

Landscape 

A semivariogram analysis of SPOT 4/5 NDVI data was conducted to determine a suitable 

spatial resolution for differentiating LAI spatial variations controlled by different land 

covers, such as tamed grassland, native grassland, wetlands, and croplands in the landscape.  

The finding was used to support the suitable NDVI product on describing spatiotemporal 

variations in LAI in tamed and native grassland. 

 

The semivariance between any two samples of )(hn pairs with an interval lag h  is 

expressed by: 

                            



n

i

ii hxzxz
n

h
1

2))()((
2

1
)(                         (4.1) 

where )( ixz is the NDVI derived at a geolocation x over the sampling transect from the 

SPOT 4/5 images. The 4500m-long transect was randomly set up across native and tamed 
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grassland, wetland, and cropland in the St. Denis area (Figure 4.1). )(h is an unbiased 

estimation of the population variance, which is a measure of similarity between spatially 

regionalized variables. The smaller the value of )(h , the greater is the similarity of the 

samples. A semivariogram for the population is demonstrated by the relationship between 

semivariance ( ) and lag vectors of h . Details on a semivariogram analysis were given by 

Rahman et al. (2003) and He et al. (2006).  

 

 

 

Figure 4.1 The NDVI sampling transect on the SPOT imagery with geographic 

coordinates of the four corners (T and N marks the location of tamed and native grassland, 

respectively) 

 

 

4.3 Results and Discussion 

4.3.1 Comparisons between Satellite-Level and Ground Hyperspectral NDVI  

The comparisons between SPOT 4/5, MODIS 250m, 1km, and SPOT-VGT 1km NDVI 

data and ground hyperspectral NDVI in the growing season of 2008 are shown in Figure 

4.2. The closer the satellite-level NDVI data sets are to the 1:1 line, the more similar they 

are to the ground NDVI. The satellite-level NDVI is moderately to highly consistent with 

the ground NDVI. The MODIS 250m NDVI shows the highest consistency with the 

N 

 (106.13˚W, 52.20˚N) (106.13˚W, 52.20˚N) 

(106.13˚W, 52.23˚N)     (106.06˚W, 52.23˚N) 

T 



65 

 

ground NDVI, especially when the ground NDVI is greater than 0.55. The MODIS 1km 

NDVI also demonstrates high consistency, while both the SPOT 4/5 and SPOT-VGT 

NDVI are in moderate agreement with ground NDVI. Despite the moderate to high 

consistency, the majority of satellite-level NDVI are smaller than the ground hyperspectral 

NDVI.  

 

All the satellite-level NDVI data are linearly correlated with the ground NDVI data, 

showing  moderate to high relationships, although the statistical significances cannot be 

tested due to the autocorrelation of NDVI determined by the overlapping of bandwidths 

(Steven et al., 2003). The MODIS 250m NDVI products have the strongest relationship 

with ground NDVI data with an r of 0.90, followed by the MODIS 1km NDVI, SPOT4/5 

NDVI, and SPOT-VGT 1km NDVI data in the decrease sequence of r values. The 

moderate to high linear relationships indicate that: 1) satellite-level NDVI data can be 

calibrated through ground hyperspectral NDVI to improve their performances; and 2) if 

ground NDVI data are able to differentiate spatiotemporal variations of LAI in the mixed 

grassland, then satellite-level NDVI data, especially MODIS 250m NDVI products, can 

also at least capture the variations to a certain degree.  

 

 
Figure 4.2 The scatter plot of satellite-level NDVI against  ground NDVI, with Pearson‟s 

r values 
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Deviation of satellite-level NDVI from ground hyperspectral NDVI could be due to: 1) 

large differences in spatial resolution; 2) large differences in the position and width of the 

NIR and red spectral bands which are used to calculate NDVI; 3) data acquisition date; and 

4) atmospheric effects related to viewing angle and  acquisition time. The consistency 

between V5 16-day MODIS 250m, 1km NDVI products and ground hyperspectral NDVI 

data is high, especially when ground NDVI is greater than 0.55. This finding is supported 

from another perspective by the conclusion of Goetz (1997) that the maximum NDVI 

compositing of low spatial resolution AVHRR 1km data are highly consistent with 

medium spatial resolution Landsat Thematic Mapper (Landsat TM) 5 NDVI. The possible 

reason for the high consistency is that the improved CV-MVC compositing method in V5 

data constrains the effects of a large viewing angle (65˚) of MODIS and minimizes the 

issues related to the consequent bidirectional reflectance distribution function (BRDF) 

(Didan and Huete, 2006). In addition, the improved Aerosol filtering (Didan and Huete, 

2006) and the 16-day compositing period (Fensholt et al., 2007) minimize the atmospheric 

effects related to the viewing angle and data acquisition time. The consistency between 

MODIS NDVI products and ground NDVI is reduced when the latter is smaller than 0.55. 

This could be due to the effects of large amounts of dead vegetation on ground during the 

early and late growing season in the study area (Li and Guo, 2010). Dead vegetation has a 

great contribution to the variation of NIR and red reflectance (Galvao et al., 2000; Steven et 

al., 2003), thus enlarges the spectral differences resulting from the different spectral and 

spatial resolution in MODIS NDVI products and ground hyperspectral NDVI.  

 

Comparatively, larger differences between SPOT 4/5 NDVI, SPOT-VGT NDVI, and 

ground NDVI were observed. The larger difference between SPOT 4/5 and ground NDVI 

is possibly attributed to the much broader bandwidth of red and NIR (lower spectral 

resolution) of SPOT sensors (Teillet et al., 1997; Galvao et al., 2000; Steven et al., 2003). 

Moreover, a large amount of dead vegetation could enlarge the NDVI difference resulted 

from the broader wavelength ranges of SPOT 4/5 images. The other possible reason is 

related to image acquisition dates. For example, variation in vegetation condition between 

the image acquisition and the ground measure collection day could partly account for the 

difference. Similarly, the larger difference of SPOT-VGT NDVI from ground NDVI could 
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be due to the much broader bandwidth (same as SPOT 4). The lower geolocation accuracy 

of about 300m at nadir (Carmona-Moreno, 2000) of SPOT-VGT could also contribute to 

the larger difference. In addition, the deficiency of cloud-screening algorithm (Saint, 1995; 

Brown et al., 2006; Fensholt et al., 2006) due to the lack of a thermal band of SPOT 

possibly results in the larger difference as well.  

 

The linear relationships between satellite-level NDVI and ground NDVI were consistent 

with the finding of Steven et al. (2003) that NDVI from different sensors are strongly 

linearly correlated base on the simulated NDVI from ground hyperspectral reflectance in 

cropland. Thus, satellite-level NDVI can be calibrated based on ground NDVI by a linear 

regression approach.  

 

4.3.2 Differentiating Spatiotemporal Variations of LAI  

4.3.2.1 Ground Hyperspectral and SPOT 4/5 NDVI Data  

Performances of ground hyperspectral and SPOT 4/5 NDVI in 2008 on monitoring 

spatiotemporal variations of LAI are demonstrated in Figure 4.3. Ground hyperspectral 

NDVI data can successfully differentiate the spatiotemporal variations of LAI caused by 

different vegetation communities in the study area. They can capture the earlier greenup, 

peak growing, and senescence of dominant vegetation in tamed grassland. Both LAI and 

NDVI in tamed grassland are larger than native grassland in early June due to the earlier 

vegetation greenup. They are smaller than native grassland in mid June due to the quick 

growth of forbs in native grassland. In early July, both LAI and NDVI in tamed grassland 

have reached their peaks, while native grassland did not reach the maximum until late July. 

From late August to mid September, both LAI and NDVI in tamed grassland are smaller 

than those in native grassland due to the earlier onset of senescence. The success of ground 

NDVI on monitoring spatiotemporal variations of LAI shows a promising capacity of 

satellite-level NDVI to describe LAI spatiotemporal variations based on the moderate to 

high consistencies between ground NDVI and satellite-level NDVI. Although differences 

in SPOT 4/5 and ground NDVI data are observable (Figure 4.2&4.3), SPOT 4/5 NDVI 
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data are able to basically capture spatiotemporal variations of LAI. This is supported by the 

moderate linear relationship between the two datasets. But one exception was observed in 

mid August when a lower LAI in native grassland was falsely indicated by a higher NDVI.    

 

 

Figure 4.3 Ground hyperspectral and SPOT 4/5 NDVI on monitoring spatiotemporal 

variations of LAI in semi-arid mixed grassland in 2008 (N and T indicate tamed and 

native grassland, respectively)  

 

4.3.2.2 Satellite-level MODIS 250m NDVI products  

The earlier greenup, peak growing and the corresponding higher LAI values, as well as the 

earlier senescence and the corresponding lower LAI values in tamed grassland can be 

basically represented by MODIS 250m NDVI data (Figure 4.4). The only exception 

occurred in early June when there was a larger LAI but a slightly smaller NDVI in tamed 

grassland. MODIS 250m NDVI products in 2007 are also able to capture the earlier 

vegetation phenology in tamed grassland than native grassland, which confirmed their 

capability to monitor spatiotemporal variations of LAI. Nonetheless, dissimilarities in the 

NDVI temporal profiles in tamed and native grassland was observed in 2007 and 2008 

attributed to different inter-annual vegetation condition determined by varied macro- and 

micro-environments.  

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2-May 19-May 4-Jun 17-Jun 2-Jul 21-Jul 15-Aug 29-Aug 15-Sep

L
A

I

N
D

V
I

Dates

LAI (N) 2008 LAI (T) 2008

Ground NDVI (N) Ground NDVI (T)

SPOT 4/5 (N) SPOT 4/5 (T)



69 

 

 

Figure 4.4 MODIS 250m NDVI products on monitoring spatiotemporal variations of 

LAI in the semi-arid mixed grassland in 2007 and 2008 (N and T indicate tamed and 

native grassland, respectively). 

 

4.3.2.3 MODIS and SPOT-VGT 1km NDVI Products   

Figure 4.5 illustrates the temporal variations of MODIS and SPOT-VGT 1km NDVI 

products in 2007 and 2008. MODIS 1km NDVI products demonstrate a similar temporal 

variation pattern with the peak values observed in late July in 2007 and 2008, although 

differences in NDVI values are noticeable. SPOT-VGT 1km NDVI products exhibit an 

analogous temporal variation profile with MODIS 1km NDVI products in 2007, although 

an obvious dissimilarity is observed in early June. Nonetheless, the temporal variation of 

SPOT-VGT 1km NDVI products in 2008 shows a distinct pattern from MODIS 1km 

NDVI products, with a peak value in early July and an abrupt decrease in mid-July. The 

temporal variation patterns of SPOT-VGT NDVI products in 2007 and 2008 are obviously 

different. The similarity of MODIS 1km NDVI products and dissimilarity of SPOT-VGT 

NDVI products in 2007 and 2008 indicate that MODIS 1km NDVI products have more 

stable performances in the semi-arid mixed grassland. 
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Figure 4.5 MODIS and SPOT-VGT 1km NDVI products on monitoring temporal 

variations of LAI in the semi-arid mixed grassland in 2007 and 2008. 

 

Besides, the performances of MODIS and SPOT-VGT 1km NDVI products were also 

compared against the MODIS 250m NDVI products through comparisons on NDVI 

change rates (slopes) at an approximately biweekly interval (Table 4.2). Slopes in 2008 

indicate that MODIS 250m NDVI products have the greatest ability to capture the temporal 

variations in LAI, although differences in their slopes are large from mid-August to 

mid-September. The large slopes of LAI during that time period are accounted for by a 

dramatic decrease possibly resulted from the validation procedure of PAI to obtain LAI. 

The procedure was developed based on vegetation clipped in the maximum growing 

season and could underestimate LAI in the late growing season (Appendix 1). 

 

Thus, the closer change rate of the 1km spatial resolution NDVI products to MODIS 250m 

NDVI products at each two adjacent observation dates, the better performances they would 

have on monitoring intra-annual variations in LAI. From Table 4.2, differences in slopes 

of MODIS 1km from MODIS 250m NDVI products are commonly much smaller than 

deviations in change rates of SPOT-VGT 1km from MODIS 250m NDVI products. The 
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similarity of MODIS 1km with MODIS 250m NDVI products can probably be attributed to 

the data processing procedure. MODIS 1km NDVI products are produced by aggregating 

red and NIR reflectance from MODIS 250m NDVI products through MODIS Gridding 

and Aggregation Process (Wolfe et al., 1998; Tarnavsky et al., 2008).  

 

Table 4.2 Change rates (Slopes) at each two adjacent observation dates of MODIS 250m, 

1km, and SPOT-VGT 1km NDVI products in 2007 and 2008 (with slopes of LAI included 

in 2008) 

Date Periods 

NDVI Composites in 2007 
 

NDVI Composites and LAI in 2008 

SPOT-

VGT 

MODIS 

1km 

MODIS 

250m  

SPOT-V

GT 

MODIS 

1km 

MODIS 

250m 
LAI 

May 1- May 19 0.13 0.08 0.06 
 

-0.01 0.22 0.17 \ 

May 19 - Jun 4 0.18 0.12 0.14 
 

0.21 0.03 0.10 0.16 

Jun 4 - Jun 17 0.02 0.18 0.14 
 

0.17 0.24 0.16 0.09 

Jun 17- Jul 2 0.12 0.05 0.09 
 

0.12 0.07 0.08 0.10 

Jul 2-Jul 21 0.06 0.07 0.02 
 

-0.11 0.04 0.00 0.03 

Jul 21 - Aug 15 -0.07 -0.06 -0.13 
 

0.00 -0.06 -0.03 -0.08 

Aug 15 - Aug 29 -0.05 -0.08 -0.07 
 

-0.02 -0.13 -0.07 -0.57 

Aug 29 - Sep 15 -0.08 -0.10 -0.04 
 

-0.08 -0.11 -0.08 -0.53 

Sep 15 - Oct 1 -0.23 -0.11 -0.08 
 

-0.11 -0.05 -0.07 \ 

Note: “\” means no LAI data obtained during those time periods.  

 

Sixteen-day MODIS 1km NDVI products are superior to 10-day SPOT-VGT 1km NDVI 

composites to monitor temporal variations in LAI. This observation contradicts the claim 

of Brown et al. (2006) that MODIS and SPOT-VGT NDVI time series products are capable 

of capturing the annual vegetation phenology to a similar degree. However, it is in 

agreement with Fensholt et al (2007)‟s conclusion that 16-day MVC MODIS NDVI 

composites outperform 10-day MVC NDVI composites in the semi-arid area of West 

Africa. The different performances of MODIS and SPOT-VGT 1km NDVI products could 

be due to differences in their compositing methods and periods, intrinsic properties 

including viewing angle, bandwidth (spectral resolution), radiometric resolution, spectral 

band response function (SRF), and the point spread function (PSF), as well as other factors, 

such as atmospheric correction and co-registration. 
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In terms of compositing methods and periods, the 16-day compositing period of MODIS 

1km NDVI products can reduce more noise induced by atmospheric effects (Fensholt et al., 

2007) than the 10-day period of SPOT-VGT NDVI products. The CV-MVC compositing 

approach is used for cloud-free pixels of MODIS NDVI products to address the inherent 

angular variations of most space-based imaging instruments. This is considered to be an 

advantage over the MVC method used for SPOT-VGT NDVI products and is able to 

increase the temporal continuities in the multi-day composites (Huete et al., 2002). 

 

As for the intrinsic properties, the narrower bandwidth (higher spectral resolution) of NIR 

and red of MODIS makes it less sensitive to atmospheric water vapor, compared to 

SPOT-VGT sensor. Besides, a large amount of dead vegetation in semi-arid mixed 

grasslands would possibly enlarge the effects of the lower spectral resolution of 

SPOT-VGT NDVI products. The higher radiometric resolution of MODIS means the 

higher capability to record the subtle differences of reflectivity than SPOT-VGT, which 

could account for the more accurate MODIS NDVI. The PSF characterizes the 

multi-directional blurring (Tarnavsky et al., 2008). MODIS uses the triangular and 

approximately rectangular PSF in along-scan and along-track direction, respectively 

(Wolfe et al., 1998; Tan et al, 2006), which makes the nominal pixel size approximate 1km. 

However, the SPOT-VGT PSF is non-rectangular, which makes the actual spatial support 

larger than 1km (Tarnavsky et al., 2008). The larger spatial support of SPOT-VGT 

increases the mixture of land surface covers and the multi-directional blurring. Besides, 

different SRFs of MODIS and SPOT-VGT sensors could also result in the differences in 

numeric values of NDVI (Trishchenko et al., 2002). 

 

In addition to the possible reasons discussed above, the atmospheric correction methods on 

Rayleigh scattering, ozone absorption, aerosol optical thickness, and water vapor content 

(Tanré et al., 1992; van Leeuwen et al., 2006) have some effects on NDVI comparisons 

from multiple sensors as well. Considering different spectral signatures of surface types 

(snow, vegetation cover, and soil), the uncertainties of atmospheric correction and SRFs 

can reduce or increase NDVI values by 20% (van Leeuwen et al., 2006). The improved 

aerosol filtering approach of MODIS NDVI products (Didan and Huete, 2006) make them 
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superior to SPOT- VGT NDVI products which have a deficiency in cloud-screening 

algorithm due to the lack of a thermal band (Saint, 1995; Brown et al., 2006; Fensholt et al., 

2006). The deficiency in cloud-screening of SPOT- VGT sensor could also be responsible 

for the abrupt decrease of NDVI observed in mid-July, 2008. Different view angles and sun 

geometry also possibly change NDVI values of MODIS and SPOT-VGT (Cihlar et al., 

2004). Besides, accuracy of co-registration is of importance for multiple sensor NDVI 

comparisons. Geolocation accuracy of MODIS is about 50m at nadir (Wolfe et al., 2002), 

which is more accurate than SPOT-VGT whose geolocation accuracy at nadir is about 

300m (Carmona-Moreno, 2004). All the discussed factors could possibly account for the 

superiority of MODIS 1km to SPOT-VGT 1km NDVI products. 

 

4.3.2.4 A suitable Spatial Resolution for Describing Spatial Variation of NDVI in the 

Landscape 

The results of the semivariogram analysis of SPOT 4/5 NDVI data are demonstrated in 

Figure 4.6. The experimental and modeled semivariance of SPOT 4 NDVI data on May 2 

is shown in Figure 4.6a. The range of the semivariogram is about 690m, which indicates 

that NDVI similarity exist within a 690m distance. According to the sampling theorems, 

the suitable spatial resolution of images for studying spatially distributed characteristics 

equals a half of the semivariogram range (Yilmaz and Doherty, 1987). Consequently, 

images with a spatial resolution higher than 345m are able to capture the spatial variations 

in LAI resulted from different land covers in early May.   

 

The semivariogram with NDVI derived from the SPOT 5 10m multispectral image on 

August 30, 2008, is also illustrated (Figure 4.6b). The largest semivariance indicates that 

spatial autocorrelation of NDVI is present within a range of around 500m. Besides, 

semivariogram analyses of NDVI derived from SPOT 4 images on June 4, August 19 and 

from SPOT 5 on September 15 all indicate a spatial autocorrelation range of an 

approximate 500m. Their results therefore are omitted from this chapter. Based on the 

sampling theorem, images having a spatial resolution higher than 250m are able to 

differentiate LAI spatial variations of varied land covers from June to September. In 

summary, images with a spatial resolution of 250m or higher can support NDVI 
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differentiation of LAI allowing the identification of land cover types during the entire 

growing season in the study area.  

a. May 2 

 

b. August 30 

 

Figure 4.6 Modeled and experimental variograms of NDVI from (a) SPOT 4 image on 

May 2 and (b) SPOT 5 image on August 30, 2008 

 

MODIS 250m NDVI composites can successfully monitor spatiotemporal variations of 

LAI in tamed and native grassland, although vegetation phenology and condition may be 

subjected to inter-annual change due to the high dependence on climatic variations. The 
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good performance of MODIS 250m NDVI products can be attributed to a higher spatial 

resolution which reduces effects of a mixture of land covers on NDVI than MODIS and 

SPOT-VGT 1km NDVI products (Stefanov et al., 2005). The performance is also 

supported by the finding that MODIS 250m NDVI products with a small nominal pixel 

size can capture higher spatial variations in the surface than lower spatial resolution 

products, such as MODIS and SPOT-VGT 1km NDVI products (Tarnavsky et al., 2008). It 

is also consistent with the conclusion of Kustas et al. (2004) that a 250m spatial resolution 

is adequate to discriminate evapotranspiration from individual crop fields of 100m×100m 

in size. However, MODIS 250m NDVI products are still inferior to ground NDVI data 

indicated by the bad performance in early June, 2008. Calibration of MODIS 250m NDVI 

products based on ground NDVI data, or data fusion with higher spatial and spectral 

resolution satellite-level NDVI data, would be considered in the future to further improve 

their capability.  

 

4.4 Conclusions 

There are moderate to high linear relationships between the satellite-level NDVI and 

ground hyperspectral NDVI. In a decrease sequence of the relationship, the satellite-level 

NDVI data are MODIS 250m, 1km, SPOT 4/5, and SPOT-VGT NDVI. The linear 

relationships indicate that satellite-level NDVI data can be calibrated using ground NDVI. 

The high correlation and the similarity to the numeric values of ground NDVI data 

demonstrate that MODIS 250m NDVI products have a similar capability to capture 

spatiotemporal variations of LAI as ground NDVI does. The success of ground NDVI to 

differentiating spatiotemporal variations of LAI in tamed and native grassland shows a 

promise of the application of MODIS 250m NDVI products.  

 

MODIS 250m NDVI products are the most qualified to describe spatiotemporal variations 

of LAI among the three evaluated NDVI Products, which is further confirmed by the 

semivariogram analysis of SPOT 4/5 NDVI data. MODIS 1km NDVI products slightly 

outperform SPOT-VGT 1km NDVI composites, although neither can successfully 
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distinguish the spatiotemporal differences in tamed and native grassland due to the low 

spatial resolution. The determined suitable NDVI product will contribute to more accurate 

LAI temporal and spatial variation quantification, which will further be beneficial for 

modeling in semi-arid mixed grassland. 

 

Further research is required to investigate the influence of effect factors on the difference 

of satellite-level NDVI from ground hyperspectral NDVI. It is also interesting to further 

investigate effects of viewing angle, PSF, SRF, length of compositing period, gridding 

method, and atmosphere on satellite-level NDVI products in dead vegetation dominated 

semi-arid mixed grassland. It would be useful to evaluate the possibility to combine 

long-term AVHRR NDVI datasets with MODIS and SPOT-VGT datasets to support 

climate change study in semi-arid mixed grassland. There may be a similar opportunity to 

combine the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) products with the 

MODIS and SPOT-VGT NDVI products.  
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CHAPTER 5 – SUMMARY 

LAI is the most important biophysical parameter to represent vegetation vertical structures. 

Therefore, it is a common input in climate, hydrology, biochemistry, and ecosystem 

models. Currently, VI-LAI relationships are the most widely used method for obtaining 

LAI data for modeling. However, the accuracy of LAI estimation greatly varied due to 

different performances of the selected VIs, the effects of soil moisture and topography, and 

the temporal and spatial variations in LAI. Thus, the first objective of this research was to 

determine a suitable VI for LAI estimation, and the second objective was to improve LAI 

estimation by taking both temporal and spatial variations in LAI into account. As NDVI 

has been routinely produced from NOAA/AVHRR images since 1981 (Cracknell, 2001; 

Tucker, 1979, 1980; Tarnavsky et al., 2008), the resulting products have been widely used 

in various models as an intermediary of biophysical parameters, including LAI. However, 

differences are observed in various NDVI products. Thus, the third objective was to 

evaluate 16-day MODIS 250m, 1km and 10-day SPOT-VGT 1km NDVI products on 

monitoring intra-annual and spatiotemporal variations in LAI in semi-arid mixed grassland. 

The findings, potential applications, and limitations of this research were summarized. 

 

5.1 Conclusions 

5.1.1 A Suitable Vegetation Index for Quantifying Temporal Variations of 

LAI in Semi-Arid Mixed Grassland 

LAI demonstrated a distinct temporal variation. The 91.2% of the variations in LAI can be 

accounted for by variations in grasses, forbs, standing dead, and litter. Standing dead has 

the most significant effect on LAI temporal variations although, the effect is negative. It, 

together with litter, can explain 47.4% variations in LAI, while grasses and forbs can only 

account for 43.8% temporal variations in LAI. The important roles of dead materials, 

including standing dead and litter, on LAI variations will cause a serious problem to an 

interpretation of a VI. Thus, an optimum VI is required for accurate LAI estimation. 
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Performances of VIs on LAI estimation vary as the vegetation growing stage changes. VIs 

demonstrate the most capability to be a representative of LAI during the time period of Jul 

21-Aug 15, followed by Aug 29-Sep 15 and Jun 4-Jul 2. Also, VIs perform differently at 

each growing stage, although the discrepancy is small or even subtle among some VIs. 

NDVI, SLAIDI, and TSAVI demonstrate the best performances, whereas SARVI and TVI 

have the worst performances on LAI estimation in the early, maximum, and late growing 

season, respectively. NDVI is competent for quantifying temporal variation of LAI in the 

study area, which is consistent with the research of Broge and Leblanc (2000) that NDVI is 

the best index at low and medium LAIs.  

5.1.2 Improved LAI Estimation While Considering Temporal and Spatial 

Variations 

This study revealed that spatial variations in LAI are highly associated with soil moisture. 

It also concluded that spatial relationships between LAI and soil moisture regularly varied 

throughout the growing season. Negative spatial relationships between soil moisture and 

LAI were observed in the early and maximum growing seasons, while positive 

relationships existed in the early senescence season and no obvious correlation in the late 

senescence season. Correspondingly, the most suitable spatial resolution for LAI 

estimation changed from 25-40m in the early growing season to the 10-15m in the 

maximum growing and early senescence season, and it is uncertain in the late senescence 

season. This is falling into the 10-50m range for C4 species coverage estimation and 35m 

for the grassland heterogeneity study in summer in GNP (Davidson and Csillag, 2001; He 

et al., 2006). However, this differs with Rahman‟s et al. (2003) finding that an approximate 

6m pixel size would capture variations in greenness in southern California grassland. 

 

LAI estimation can be much improved by taking both the temporal and spatial variations of 

LAI into account and the maximum growing season is the most appropriate time for LAI 

estimation in the semi-arid mixed grassland. Based on ground hyperspectral reflectance 

data, LAI estimation in the maximum growing season has an r
2
 of 0.59 and ARE of 0.25. 
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LAI estimation based on the satellite-level data also confirmed that more accurate LAI 

estimation can be obtained by taking both temporal and spatial variations into account. The 

r
2
 can be increased by 0.08, 0.10, and 0.02 in the early, maximum, and late growing season. 

This is supported by the conclusions that LAI estimation can be much improved based on 

an appropriate scale (Rahman et al., 2003; He et al., 2006) and time (Chen and Cihlar, 

1996). 

 

5.1.3 The Most Suitable NDVI Products on Monitoring Variations in LAI  

Moderate to high linear relationships are observed between the ground hyperspectral and 

satellite-level NDVI data, and a decrease sequence MODIS 250m, 1km, SPOT 4/5, and 

SPOT-VGT NDVI in. The similarity indicates that satellite-level NDVI data have a similar 

capability as ground NDVI data to identify spatiotemporal variations of LAI in semi-arid 

mixed grassland. However, MODIS 250m NDVI composites have advantages over 

MODIS and SPOT-VGT 1km NDVI data. This coincides with the conclusion of 

Tarnavsky et al. (2008) that MODIS 250m NDVI products can capture higher spatial 

variations than MODIS and SPOT-VGT 1km NDVI composites. This is also supported by 

the finding that a 250m spatial resolution can discriminate evapotranspiration from 

individual crop fields 100m×100m in size (Kustas et al., 2004).  

 

MODIS 1km NDVI composites are superior to SPOT-VGT NDVI products on the 

applications on LAI. This is in consistent with the research which has shown that spatial 

variations of MODIS and SPOT-VGT 1km NDVI products considerably differ (Tarnavsky 

et al., 2008). This is also in an agreement with the conclusion that 16-day MVC NDVI 

composites of MODIS outperform 10-day MVC NDVI composites in the semi-arid area of 

West Africa (Fensholt et al., 2007). However, this is contradictory with the assertion of 

Brown et al. (2006) that both MODIS and SPOT-VGT NDVI data can similarly capture the 

annual phenology.   
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5.2 Potential Applications 

Potentially, this research can be scientifically and ecologically applied. Scientifically, this 

research evaluated the influence of dead vegetation, green vegetation, and bare soil on the 

performances of selected VIs. This will contribute to the estimation of biophysical 

parameters in grasslands. In addition, this study discussed the constrained factors on LAI 

estimation from VIs, and then improved LAI estimation by taking the factors into account. 

The LAI estimation method and the approaches to identifying the effects of ecology factors 

on LAI spatial variations can be used in other studies, such as hydrological and 

biochemical modeling in grasslands, where annual vegetation is dominant.  

 

As for the ecological applications, the improved LAI estimation and the most suitable 

NDVI products will contribute to the modeling of interactions between land surface and 

atmosphere, such as climate, hydrology, and biochemistry. It also contributes to CO2 

estimation and prediction, which further benefits climate change study. In addition, the 

optimum spatial resolutions for LAI estimation at different growing stages are also useful 

for grassland productivity modeling and other ecological studies, such as hydrological 

modeling in grasslands.   

 

5.3 Limitations 

This research determined the optimum VI for estimating LAI, proposed and validated an 

approach to improving LAI estimation based on LAI-VI relationships and evaluated the 

current NDVI products for monitoring temporal and spatiotemporal variations in LAI. The 

results will be beneficial for modeling communities. However, some limitations still need 

to be addressed in future studies.  

 

5.3.1 Remote Sensing Products 

As explored in spatial relationships between LAI and soil moisture, the optimum spatial 

resolution of satellite imagery is 25-40m in early growing season. Higher spatial resolution 
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imagery, such as SPOT 4 20m is definitely able to capture the spatial variations of LAI 

controlled by soil moisture. However, higher spatial resolution images demonstrate a 

higher degree spatial autocorrelation of pixels (Stuckens et al., 2000), which introduces 

more errors on LAI estimation. Hence, it would be useful to try EO-1 30m, DMC-1 32m, 

and Landsat TM, ETM+ 30m multispectral images for LAI estimation in the early growing 

season in future study.  

 

Although MODIS and SPOT-VGT NDVI products have been perceived to have 

advantages over NOAA/AVHRR NDVI products, AVHRR NDVI products have their own 

unique advantage of being long-time data records. It is worth evaluating AVHRR and other 

NDVI products including SeaWiFS to combine a long-term data set for studies in future. 

 

5.3.2 Validation of LAI  

PAI measured from the LAI-2000 instrument was validated by the destructive clipping 

method to obtain LAI data. The clipping was done on July 21, 2008. The relationship 

between PAI and LAI was then used to validate PAI in the other growing stages. This 

validation will more or less affect the quantified LAI values. Corresponding destructive 

clippings for each field data collection in the future can resolve this problem. 

 

5.3.3 Accuracy of LAI Estimation in the Late Growing Season 

LAI estimation in the late growing season cannot meet the requirements of models using an 

ARE as a measure. The causation is worthy to be further investigated. Introduction of new 

technique to LAI estimation, such as Geographically Weighted Regression (GWR) 

(Propastin, 2009), possibly can increase the accuracy of LAI estimation.  
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APPENDIX A - THE VALIDATION OF PLANT AREA INDEX 

Vegetation clippings were done on July 21
st
, 2008 to determine green leaf area index (LAI) 

by a destructive sampling method. The LAI values were used to build a relationship with 

plant area index (PAI) measured with a LAI-2000 instrument. The relationship was then 

used to validate the measured PAI data over the sampling transect and plots to obtain LAI. 

 

A total of 30 samples were clipped from communities consisting of a mixture of grasses 

and forbs. Each clipping was done within one 25cm×50cm quadrat. Quadrats were placed 

on areas with different vegetation densities. PAI was measured before clipping within the 

quadrat.  

 

The clipped samples were put into paper bags immediately after cutting, and stored in 

coolers in the field and a fridge after coming back to campus. In the second day, each 

clipping sample was sorted out into green grass, green forbs, and dead materials. The green 

leaves were taken off from both grass and forbs and scanned by Li-Cor 3001 (LICOR, Inc., 

Lincoln, NewYork) with an accuracy of ±0.01 mm
2
.The LAI of each sample was then 

obtained by dividing the area of all green leaves by the area of one quadrat. The 

relationship between LAI and PAI was established and shown in Figure A1. There is a 

strong linear relationship between LAI and PAI, and 77% of variations in LAI are 

associated with variations in PAI. PAI was then validated by the equation (B1) to obtain 

LAI. 

         y=0.68x-0.54    (r
2
 =0.77, n=30)                        (A1) 

Where y is green leaf area index and x is plant area index, and n is the sample size.  
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Figure A.1 The relationship between green leaf area index and plant area index 

 

After validation, the differences between LAI and PAI were computed (Table A1). The 

results indicate that the PAI measured by LAI-2000 largely overestimates LAI. This is 

contrary with the conclusions that LAI-2000 instrument underestimates LAI in forest areas 

(e.g., Comeau et al., 1998; Küßner et al., 2000). The relative differences ((PAI-LAI)/ LAI) 

varied from 0.4 to 4.02. These variations may result from large quantities of dead materials 

in semi-arid mixed grasslands. The big differences make PAI less useful as validation data 

for space-level LAI products. In addition, parameterization of these PAI data into models 

as a substitute for LAI will definitely introduce extra uncertainties. Therefore, it is 

necessary to validate PAI by destructive sampling methods to obtain LAI.   
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Table A.1 Differences between plant area index (PAI) and green leaf area index (LAI) 

 

 

References: 

Comeau, P.G., Gendron, F., and Letchford, T. 1998. A comparison of several methods for 

estimating light under a paper birch mixed wood stand. Canadian Journal of Forest 

Research, Vol. 28, pp. 1843 -1850.  

 

Küßner, R. and Mosandl, R. 2000. Comparison of direct and indirect estimation of leaf area 

index in mature Norway spruce stands of eastern Germany. Canadian Journal of 

Forest Research, Vol. 30, pp. 440 - 447. 

 

 

Samples LAI PAI Differences Relative Differences 
1 0.98 2.64 1.66 1.70 
2 1.86 3.42 1.56 0.84 
3 1.89 2.76 0.87 0.46 
4 0.63 1.70 1.07 1.69 
5 0.92 2.45 1.53 1.66 
6 0.47 2.34 1.87 4.02 
7 0.65 2.09 1.44 2.19 
8 1.09 3.44 2.35 2.15 
9 0.31 2.11 1.80 5.90 
10 0.98 2.61 1.63 1.66 
11 0.45 2.05 1.60 3.58 
12 0.25 0.96 0.71 2.84 
13 0.38 1.38 1.00 2.67 
14 1.37 1.68 0.31 0.22 
15 0.54 1.36 0.82 1.51 
16 0.92 1.45 0.53 0.58 
17 0.69 1.62 0.93 1.35 
18 1.34 2.85 1.51 1.13 
19 1.62 2.77 1.15 0.72 
20 1.57 2.77 1.20 0.76 
21 0.70 1.75 1.05 1.51 
22 0.81 1.65 0.84 1.04 
23 0.76 2.94 2.18 2.84 
24 1.31 3.36 2.05 1.57 
25 2.35 4.69 2.34 1.00 
26 2.38 4.01 1.63 0.68 
27 1.86 3.29 1.43 0.77 
28 1.61 2.69 1.08 0.67 
29 2.68 3.76 1.08 0.40 
30 4.02 5.95 1.93 0.48 
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APPENDIX B - VALIDATION OF SOIL MOISTURE METER 

The Soil Moisture Meter used for measuring soil moisture content in this study is 

comprised of two major parts. One is the data logger which can show and save the 

collected data in the assigned format. The other is the ThetaProbe sensor (Dynamax Inc, 

Houston, USA) which is used to collect data. The type of ThetaProbe used in my measure 

is the ML2x.  

 

The sensor is sensing the dielectric constant of the soil ( ), which can be related to soil 

water content. However, a relationship between   and soil water content depends on the 

particular composition of soil. The ThetaProbe therefore requires a calibration for specific 

soils in order to minimize the errors in the process of converting Probe outputs (voltage) 

into soil water content. The accuracy of ML2x ThetaProbe for measuring volumetric soil 

moisture content is ±0.01m
3
/ m

3
 for a specific soil after calibration.  

 

According to the manual, a generalized calibration had been carried out with typical errors 

of ±0.05m
3
/ m

3
. The relationship between the complex refractive index (which is 

equivalent to  ) and volumetric water content ( ) is shown in the linear form (equation 

B1).  

 
  10 aa                                        (B1) 

while the relationship between ThetaProbe outputs (voltage) and   is shown as below, 

32 7.44.64.607.1 VVV      )998.0( 3 R       (B2) 

To obtain an accurate   for a specific soil, 0a , 1a  in equation (B1) are the only two 

coefficients need to be determined when the soil meter is validated. The following steps 

had been done to calibrate the soil meter for application in my study area. 

 

Steps 1 Five damp samples were randomly collected from the slope, elevation, and 

downfold close to wetlands. Before collecting each sample, the probe was inserted into soil 

to obtain the probe outputs ( wV ). This operation had been implemented three times for each 
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sample. The three measures were averaged to obtain an accurate wV . The wV  values were 

then introduced into the Equation (B2) to calculate w . After measuring, the sample was 

taken and immediately put into zipped bags, and then placed into the cooler. Each sample 

has an approximate 10cm width and length, and a 6cm height. This height is consistent 

with the depth that the soil moisture meter is able to measure. 

 

Step 2 The damp samples were put in Tins, immediately weighed and put into the dry-oven.  

In the oven, they were dried for 24 hours at 105℃. After that, the dried soil samples 

( )0 were weighed. The Soil moisture ( ) was then calculated by the following 

equation. 

        = (Wet-Dry)/Dry×soil Bulk Density×100                (B3) 

In St. Denis, soil Bulk Density ranges from 1.27 to 1.37 (Credit to X. Fang).  

 

Step 3 Voltages of the dry soil were measured using the same method as used for damp soil 

samples. Probe outputs from five samples were then obtained and averaged. The mean 

value was introduced into Equation (B2) and then 0  was calculated. In fact, 0  

equals 0a  based on Equation (B1). The calculated 0a is 1.35 which is within the 

recommended range from 1.0 to 2.0. 

 

Step 4 By introducing 0a
 , , and w  into Equation (B1), 1a  was calculated and it has 

a value of 8.6. This value is reasonable because it is within the recommended range 

from 7.6 to 8.6 given in the manual. After the two coefficients are determined, the 

volumetric soil water content can be calculated by the following equation. 

                

                                                                            (B4)                                                                                                                                                                            

 

  

 
6.8

35.17.44.64.607.1 32 


VVV

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APPENDIX C - THE SOIL LINE IN St. DENIS 

The soil line, defined as the linear relationship between NIR and red reflectance (R) of bare 

soil, is expressed as NIR=aR+b (Richardson and Wiegand, 1977; Fox et al., 2004), where 

“a” is the slope and “b” is the intercept. The slope (a) and intercept (b) are used extensively 

in developing VIs (Table 2.1).  

 

There are three ways to establish a soil line for a certain type of soil in a certain area. The 

first method is to develop a soil line from remotely sensed images (Fox et al., 2004). This is 

successful for a soil line development with 95% confidence intervals around the estimated 

actual soil line. However, this method really depends on the bandwidth parameters and the 

initial subset size which is arbitrarily defined (Fox et al., 2004). The second is modeling the 

soil line (Baret et al., 1993). It is too complex to be used in practice. The third method is 

what I used. I collected soil samples in the field, put them into zipped bags, and then put 

them into a cooler to keep the disturbance of samples minimized. Those samples were 

taken back to the laboratory, and their spectra were measured by an ASD 

SpectroRadiometer (the one used in the field for spectral measurements) using the indoor 

light source to minimize the atmospheric effects.   

 

C1. Descriptions on Soil Samples Collected in St. Denis, SK, Canada 

1) Quantity: 16  

2) Size: 10cm×10cm×6cm  

3) Soil type: dark brown Chernozem 

4) Sampling area: random distribution in the native grassland  

5) Sampling time: late October, 2008  

 

C2. Spectral Measures 

For each soil sample, three spectral measures were made from different view angles. The 

wavelength range of the SpectroRadiometer is 350-2500 nm with a spectral resolution of 

3nm at 700nm, and 10nm at 1400 and 2100nm. The reflectance between 790 and 890nm 
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was aggregated for NIR reflectance, and the 610-680nm reflectance was aggregated for 

Red reflectance. This aggregation is consistent with the wavelength ranges of NIR and red 

bands of SPOT 4 and SPOT 5 sensor, because they will be used for LAI estimation in my 

study. Finally, the NIR and red reflectance from three different views were averaged and 

used for establishing the soil line.  

 

C3. The Soil Line 

As shown in Fig. 1, the established soil line can be expressed as:  

NIR= 1.9534Red-0.0124 (r
2
=0.96, n=16)                (C1) 

Where the slope value is 1.9534, and the intercept is -0.0124. These two values were used 

in vegetation derivation in Chapter 2.  

 

Figure C.1 The soil line developed in St. Denis, Saskatchewan, Canada 
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