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ABSTRACT 

 Increasing knowledge of long distance shorebird (order Charadriiformes) migrations may 

elucidate causes of shorebird declines and direct management within migratory routes. Migrating 

birds rely on staging sites, areas with reliably high food abundance, for rest and refueling. 

Stressors at these sites could have population level impacts and post-migration carry-over 

effects. My thesis research examined staging bird abundance and migratory movements to and 

from Chaplin and Reed Lakes, Saskatchewan, a major staging site of hemispheric importance in 

the Central Flyway used by over 100,000 shorebirds each year. My objectives were to 1) 

examine time of peak abundance by multiple migratory shorebird species using Chaplin and 

Reed Lakes during spring and fall migration, as well as estimate spring stopover duration and 

population size of Sanderling (Calidris alba) and 2) investigate movement patterns of migratory 

shorebirds as they arrive at and depart from Chaplin and Reed Lakes, and determine the extrinsic 

factors influencing observed flight patterns to inform risk from current and future wind energy 

developments.  

I used a combination of point count surveys and radio telemetry data to meet my 

objectives. Staging, arctic-breeding species at Chaplin and Reed Lakes were counted weekly 

during spring northward (2014 – 2017) and fall southward (2016 – 2017) migration by 

conducting point count surveys to examine temporal patterns and estimate population size. 

Detailed assessments of my focal species, Sanderling included capture, banding and radio-

tagging in the Gulf of Mexico and at Chaplin Lake (2015-2017) to track their migratory 

movements and stopover duration in relation to weather and time of day variables using 

automated radio telemetry.  

Spring migration involved larger numbers of species (including species at risk), larger 

numbers of individuals, and more concentrated timing among years than fall migration. 

Sanderlings staged for a mean of 11.1 (95% CI = 8.59 –13.6) days and population size averaged 

~75,000 birds, with estimates ranging from ~56,000 to ~91,000 among years. Population 

estimates were seven to 17 times larger than raw peak abundance counts, demonstrating the need 

to account for stopover duration in population estimates. Chaplin and Reed Lakes departures, but 

not arrivals, were significantly influenced by time and weather. Sanderlings were more likely to 

depart at sunset or sunrise when winds were blowing towards the northwest at intermediate 

speeds and less likely to depart when winds were blowing towards the southeast at high speeds. 
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Knowledge of when large numbers of birds are using the area and what environmental conditions 

are associated with migratory movements can be used to identify where and when birds are at the 

greatest risks of collision with wind energy turbines. My results have implications for shorebird 

conservation at Chaplin and Reed Lakes and other staging sites in the Central flyway, and my 

thesis provides recommendations for management and mitigation of threats from current and 

future wind energy developments. 
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CHAPTER 1: 

UNDERSTANDING SHOREBIRD MIGRATION IN A CHANGING WORLD 

1.1 A “Golden Age” of Migration Research  

1.1.1 General Knowledge   

 Migrations, defined here as regular seasonal movements between wintering and breeding 

grounds, are journeys undertaken by hundreds of bird species in the Americas (Berthold 2001). 

Birds migrate to take advantage of seasonal food and nesting conditions, and can migrate short to 

extremely long distances across continents and oceans (Berthold 2001). Migration is composed 

of two alternating phases: flight and fuel (fat) deposition (Alerstam 2011). How these two phases 

interact through migratory decisions to contribute to overall migration success remains a 

significant area of research as species-specific patterns and environmental influences are not 

fully understood.      

 Four main flyways (Atlantic, Mississippi, Central, and Pacific), generalized paths running 

north to south between the Americas, are used by millions of waterbirds (Boere and Stroud 

2006). There are different costs and benefits associated with each flyway; birds using the 

Atlantic or Pacific Flyways may navigate by following the coastline and save energy under 

stronger assisting spring winds (Atlantic Flyway only) (Åkesson 1993; La Sorte et al. 2014). 

Birds using the interior Mississippi and Central Flyways typically experience milder weather and 

are not at risk of being blown out over the ocean (Richardson 1990; Werner et al. 2013). 

Regardless of the flyway used, migrating birds stop to rest and refuel at multiple stopover or 

staging sites along the journey. Both stopover and staging sites are defined by abundant food, 

shelter, low competition, and low predation, but staging sites often have more stable food 

abundance, are larger than stopover sites, and may be located in otherwise inhospitable 

landscapes such as deserts. Birds using stopover sites typically use different migratory strategies 

than those at staging sites. Stopover sites are used by “hopping” migrants, flying short distances 

to then rest and refuel for short intervals of time (hours to days). Many passerines employ the 

stopover strategy. Staging sites are used by “jumping” migrants, flying longer distances to then 

rest and refuel for longer intervals of time (weeks). Many waterbirds utilize the staging strategy 

(Warnock 2010).   
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 Successful migration in both the flight and fuel phases requires migrants to 

opportunistically respond to a dynamic suite of extrinsic (e.g. weather) and intrinsic variables 

(e.g. body condition). Weather conditions such as low cloud cover, low precipitation, and light to 

intermediate winds blowing in the direction of travel (creating tailwinds) are conducive to flight 

(Richardson 1990). Wind appears to show the strongest effect on departure decisions across taxa; 

birds depart in energy-saving tailwinds significantly more often and in larger numbers than in 

headwinds (Schmaljohann and Naef-Daenzer 2011; Grönroos et al. 2012; Sjöberg et al. 2015). 

Migrating birds can synchronize fueling phases with seasonal peaks in resources, such as the use 

of spring emergence of spawning horseshoe crabs, which lay high calorie eggs, by shorebirds at 

Delaware Bay (Castro and Myers 1993).   

 Optimal migration theory predicts that migrating birds will respond as part of an overall 

strategy to minimize travel time, energy expenditure, and/or predation risk and maximize their 

chances of survival and reproduction on the breeding grounds (Alerstam and Lindström 1990). 

For example, raptors fly during the day, minimizing energy expenditure through thermal lift. 

Conversely, shorebirds and passerines minimize predation risk and maximize energy intake by 

flying at night when predators and foraging opportunities are few. While staging, shorebirds 

often have higher fuel deposition rates than passerines, reflecting a time minimization strategy 

which is expected given longer flights (“jumps”) and longer overall migration distance of many 

shorebirds (Warnock 2010; Alerstam 2011). However, multiple variables influence migratory 

behaviour; in reality strategies are more complicated and not mutually exclusive to species 

(Alerstam 2011).   

1.1.2 Importance of Migratory Phases in the Annual Cycle 

A migratory bird’s annual cycle in the Western Hemisphere includes multiple phases: 

wintering at lower latitudes, spring northward migration, breeding at higher latitudes, and fall 

southward migration. The migration phases may involve higher mortality rates than stationary 

periods (wintering and breeding) because of the high energetic requirements and risks associated 

with crossing broad, unfamiliar landscapes. Individually, high energetic requirements may 

compromise immune system function, predisposing migrating birds to disease (Altizer et al. 

2011). Mass-mortalities of flocking migrants are often due to problems from storms encountered 

during flights, leading to hypothermia, drowning (if forced down in altitude over water), or 
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collision with structures due to low visibility, hail, or electrocution by lightning strikes (Newton 

2007). When compared to the wintering and breeding (stationary) phases of the annual cycle, 

mortality rates during migration were 15 times higher in color-banded Black-throated Blue 

Warblers (Setophaga caerulescens) in North America (Sillett and Holmes 2002) and six times 

higher in raptors tracked using satellite transmitters in Europe and Africa (Klaassen et al. 2014).  

In addition to direct mortality in a single phase of the annual cycle, risks and success in 

one phase can affect the next through carry-over effects- events or conditions in one season that 

affect success and fitness in the next season (Newton 2006; Harrison et al. 2011). During 

migration, changes in food supply, food access, weather, predation, and disease at a staging site 

can have carry-over effects into the breeding season. For example, if food supplies at a staging 

site decline, birds might depart from the site later and with lower fuel stores, resulting in later 

arrival to the breeding grounds, lower clutch sizes, lower nest success, and lower survival 

(Newton 2006). This occurred in Red Knots (Calidris canutus rufa) staging at Delaware Bay in 

the springs of 1997 - 2002; knots arrived later and departed in poorer body condition, likely due 

to prey shortages from human overharvesting of horseshoe crab eggs and shoreline habitat 

destruction. This was followed by lower recruitment of young and lower adult survival on the 

wintering grounds (Baker et al. 2004). Because of these carry-over effects, habitat degradation or 

damage at stopover and staging sites (e.g. oil spills or wetland drainage) could have 

repercussions across seasons, locations, populations, and species (Henkel et al. 2012).  

1.1.3 Small Bird Tracking Techniques 

 Studies of migratory birds have long been limited by the difficulty of following small, 

highly mobile animals, but rapidly evolving technologies have initiated what has been called a 

“Golden Age” of migration science (Wilcove and Wikelski 2008). New technologies allow for 

more detailed tracking (more detections, finer spatial resolution, and inclusion of various sensors 

such as temperature, altitude, and light) over entire migratory routes and across seasons 

(Shamoun-Baranes et al. 2017). Tracking technologies include data loggers (e.g. solar 

geolocation, GPS loggers) that store information until retrieved from the animal carrying the 

device and data transmitters (e.g. radio telemetry, satellite or cellular transmitting devices) that 

transmit information to receivers (meaning that the animal does not have to be recaptured to 

access the data). A key challenge is in reducing the weight of transmitters while increasing 
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battery life for longer tracking. Bigger batteries add weight, but transmitters should weigh no 

more than 3 – 5% of a bird’s body weight (Barron et al. 2010). 

 Radio telemetry is a well-established, broadly applicable technology that has recently 

advanced with the availability of smaller transmitters and increased tracking range. Radio 

transmitters (tags) can be applied to birds weighing as little as 5 g; a 0.25 g radio transmitter 

called a nanotag is the smallest tracking technology currently available (Lotek Wireless Inc. 

2017). Establishment of automated receivers that continuously scan for nanotags rather than 

labor intensive manual tracking allows for the collection of datasets that are less limited by staff 

hours and availability. The Motus Wildlife Tracking System, established by researchers and Bird 

Studies Canada in 2012, is an expanding network of automated receivers (telemetry towers) 

across the Americas. Tags can be detected by any of the over 500 active automated receivers, 

enabling users to collaborate by monitoring a much larger area than would be possible with a 

single receiver or a local array of receivers. This has provided new insights into migratory 

connectivity, stopover behaviour, and departure decisions (Taylor et al. 2017). Continued 

development in low weight tracking technologies will allow even better understanding of the 

intricacies of migration by the smallest species over the longest distances.  

1.2 Shorebird Ecology 

1.2.1 Taxonomy and Ecology of Shorebirds 

Most species of shorebirds (also known as waders in Europe), of the order 

Charadriiformes, are migratory, some of which travel tens of thousands of kilometers such as 

between the southern tip of Argentina and the Arctic (Colwell 2010). Diverse in species, body 

sizes, bill sizes and shapes, and life histories, this group includes the sandpipers, plovers, 

oystercatchers, avocets, and stilts. Fifty shorebird species regularly migrate through North 

America (Sibley 2000). Shorebirds are typically associated with aquatic habitats, capitalizing on 

macroinvertebrates (e.g. small arthropods, crustaceans, mollusks) as food sources by using their 

bills which are specialized to probe through sediments at multiple depths, scoop up prey, 

overturn rocks, and more (Colwell 2010). They are generally long-lived with low reproductive 

rates, such that factors influencing adult mortality can increase the chance of population-level 

declines (Colwell 2010; Gratto-Trevor et al. 2010).   
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1.2.2 Declines and Threats 

In North America, 61% of shorebird populations have declined over the last 30 years, 

with many declining by over 50% in the same period (Gratto-Trevor et al. 2010; Andres et al. 

2012). There are additional concerns for 1) arctic-breeding species, which are collectively 

declining by 1.9% each year (Bart et al. 2007), and 2) populations (many arctic-breeding) 

migrating through the interior of North America, which are more prone to decline than coastal 

migrants (Thomas et al. 2006). Of the six species currently listed under the Species at Risk Act 

(SARA) as Special Concern, Threatened, or Endangered (Buff-breasted Sandpiper (Tryngites 

subruficollis), Eskimo Curlew (Numenius borealis) (may be extinct), Long-billed Curlew 

(Numenius americanus), Mountain Plover (Charadrius montanus) Piping Plover (Charadrius 

melodus) and Red Knot (Calidris canutus)), three are arctic breeders (Buff-breasted Sandpiper, 

Eskimo Curlew, and Red Knot) and all migrate through interior North America (Government of 

Canada 2017). 

Shorebirds may be more susceptible to anthropogenic threats and population declines 

than other bird groups because of their migration ecology (Gratto-Trevor et al. 2010).  Long 

migrations and specialization to shallow waters make shorebirds vulnerable to landscape-level 

habitat changes that may occur on wintering grounds, breeding grounds, and staging sites. These 

habitat changes include wetland drainage, coastal mudflat development, and sea level rise with 

climate change (Thomas et al. 2006; Sutherland et al. 2012). Additionally, large concentrations 

of shorebirds (sometimes over 50% of a given species’ continental population) often concentrate 

at specific staging sites, making entire populations vulnerable to extinction from local 

disturbances such as pollution or disease (Payne 2010).  

1.2.3 Research Needs 

Increasing knowledge of migratory movements will help us understand the threats 

shorebirds face at each stage of their annual cycle. Given that the migratory period often poses 

the greatest risk to annual survival, characterizing behavioural patterns of migrating birds in 

space and time together with monitoring of local population dynamics can help to identify threats 

and ensure management plans are designed to protect birds at critical staging sites. More 

research is needed in the interior flyways of the Western Hemisphere, where data are lacking. 

The freshwater and hypersaline wetlands and lakes used as staging sites by interior-migrating 
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shorebirds are different from coastal staging sites (i.e. different macroinvertebrate communities, 

no tides, different wind patterns), suggesting different staging and flight patterns and requiring 

different management needs (Lank 1989; Åkesson 1993; Payne 2010). 

Studying staging behaviour across sites may provide insights into causal factors related to 

population fluctuations. For example, changes in migration route or stopover duration (the 

amount of time a bird spends at a staging site), rather than population demography per se, may 

contribute to apparent population declines locally or regionally (Bart et al. 2007). A shift in 

migration route would mean that the strength of declines in one area should be matched by 

similar increases in another; however, this cannot be determined unless population size across 

sites is known. In contrast, migratory bird surveys typically rely on indices of population size 

based on raw abundance counts, which are not directly comparable across sites or regions. To 

estimate true passage population sizes for direct comparison, observer error and stopover 

duration must be included in analyses to correct raw abundance for over or underestimates of 

birds including double-counting over multiple surveys (Farmer and Durbian 2006). To 

complicate matters, increases or decreases in predator or prey populations may cause migrating 

birds to increase or decrease their stopover durations in response, which could again lead to 

apparent population decreases (or increases) when migration counts are used as an index of 

population size and are not corrected for stopover duration (Ydenberg et al. 2004). Thus, local 

stopover duration is a critical piece of information necessary for increasing the accuracy of 

migration monitoring data.  

At a local scale, understanding patterns of staging and flight behaviours of migrating 

shorebirds will aid in management and mitigation of human usage and development at staging 

sites. For example, any sites found to be used by at least 1% of a shorebird species’ population 

can be nominated as Western Hemispheric Shorebird Reserve Network (WHSRN) sites; formal 

recognition yields more consideration in development guidelines and land use plans (e.g. 

minimum distance buffers) (Donaldson et al. 2000; Saskatchewan Ministry of Environment 

2016b). Because staging populations use sites for a limited time each year, some threats can be 

mitigated by temporarily halting or decreasing human activity. For example, Red Knots used a 

significantly larger area of a New Jersey beach when the beach was closed for a six day period 

during fall migration (Burger and Niles 2013). Adaptive and time-sensitive mitigation efforts are 
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also relevant with increasing wind energy development in migratory flyways. If migratory 

movements show consistent patterns in flight direction, time, and weather conditions, then 

predictions could be made about when and where large numbers of birds will be in the air and 

collision risk could be mitigated.   

1.3 Wind Energy Developments and Potential Effects on Shorebirds  

 The need for renewable, clean energy to combat climate change from burning fossil fuels 

has resulted in an increasing array of alternative technologies to harness biofuel, solar, 

geothermal, hydro, ocean, and wind energies. Wind energy refers to the kinetic energy of moving 

air, which can be harnessed as electricity using large wind turbines onshore or offshore (IPCC 

2011). Wind turbines are typically erected in clusters, forming wind energy developments (also 

referred to as wind farms), over areas of land or water that are associated with strong and regular 

winds. Canada currently totals 285 wind energy developments with a collective 11,898 megawatt 

(MW) capacity. Growing at a mean of 18% a year and currently representing 5% of Canada’s 

domestic electricity demand, wind energy is among the fastest growing forms of renewable 

energy (CanWEA 2017a). Canada’s prairies in particular are targeted for wind energy 

development because of their strong, consistent winds (Fargione et al. 2012). Saskatchewan 

currently relies on wind energy for three percent of its electricity profile, and hopes to increase 

that to 30% by 2030 (CanWEA 2017b).  

 Birds face direct and indirect impacts from wind energy developments (Saidur et al. 

2011). Direct impacts occur when birds strike turbine blades.  Indirect impacts occur from 

habitat destruction and disturbance which may cause birds to avoid the area or lead to reduced 

reproductive success. Although fatalities due to collision with wind turbines usually do not 

significantly affect bird populations, increasing density of wind energy developments 

necessitates a better understanding of this issue. Risk of collision depends on a multitude of 

factors including: species, bird behaviour, weather conditions, turbine structure, and importantly, 

the location of wind energy developments (Drewitt and Langston 2006). There is a need to 

understand how areas that are valued for wind energy developments may also overlap or 

interfere with bird populations that use these sites as migration corridors, stopovers or staging 

sites, or breeding areas.     
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 Certain species are at greater risk of collision and declines because of their ecology. 

Behaviours such as aerial courtship displays (characteristic of grassland breeders), use of tall 

structures as perches (characteristic of raptors), and nocturnal migratory movements 

(characteristic of most landbirds and shorebirds) may increase risk of collision (Richardson 

1998; Kingsley and Whittam 2005). Raptors and waterbirds are more vulnerable to population 

declines from turbine mortalities than passerines because they are long-lived, have low rates of 

reproduction, are slow to mature, and have specialized habitat requirements (Heppell et al. 2000; 

Saether and Bakke 2000; Beston et al. 2016). In one study at the Nysted offshore wind farm in 

Denmark, raptors and waterbirds (divers, waterfowl, shorebirds, gulls, skuas, terns, and cranes) 

had the highest risk of collision because of high relative abundance and demographic sensitivity 

(i.e. how strongly population growth rate responds to changes in adult survival) (Desholm 2009). 

Similarly, Beston et al. (2016) developed a prioritization system to identify species with the 

highest risk of population level declines by incorporating conservation status, proportion of 

fatalities due to turbines, a Fatality Risk Index based on the percent of a population living near 

turbines and reproductive metrics, and an Indirect Risk Index based on how many habitats are 

used by a given species. They found that four orders: Accipitriformes (diurnal raptors), 

Strigiformes (owls and nocturnal raptors), Charadriiformes (shorebirds, gulls and auks), and 

Pelecaniformes (large waterbirds) were among the bird groups most at risk. Finally, a meta-

analysis of before and after control impact (BACI) bird abundance data from 19 wind energy 

developments, determined waterfowl (Anseriformes) to be the most sensitive group (experienced 

the most declines), followed by shorebirds, raptors, and then songbirds (Stewart et al. 2007). The 

authors note that it was not clear whether these declines were due to mortality or avoidance, or a 

combination of the two.   

Risk of collision for all migrating species is influenced by extrinsic factors such as 

weather and turbine design. For example, more birds typically depart from an area in favorable 

weather conditions (assisting winds) than in poor conditions; developments located near take-off 

locations (stopover and staging sites) may see greater numbers of collisions when winds are 

blowing northward in spring and southward in fall (Richardson 1998). Following take-off, 

migrating birds tend to fly lower when they encounter poor weather conditions (high winds, rain, 

and/or fog). Nocturnal migrants, which typically fly at much higher altitudes than turbine height, 

can be forced down to turbine height during storms (Richardson 1998; Newton 2007). Birds have 
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been documented circling turbines and other tall, lit structures in fog and most mass mortality 

events have occurred at these structures on stormy nights (Richardson 1998; Erickson et al. 

2005; Newton 2007). 

Turbine structure and turbine arrangement are important for understanding avian 

collisions. Birds are attracted to turbine lights when visibility is poor; lights are only 

recommended when required and should be flashing rather than constantly lit (Richardson 1998). 

Birds may be less likely to collide with turbines built during and after the 1990s, which are taller 

with lower rotation speeds than older lattice turbine models (birds may be less likely to be hit 

when flying between blades), and do not allow for perching (Erickson et al. 2001). Turbine 

arrangement may affect mortality risk based on the number of blades in a bird’s flight path. For 

example, a straight north – south line of turbines would concentrate risk in a small area for a bird 

flying northward through the development, whereas an east – west line would create a barrier 

over a larger area (Krijgsveld et al. 2009).   

Location of wind energy developments is often the single most important factor in 

determining risk of collision. The Altamont Pass Wind Resource Area (APWRA) in Northern 

California is a well-known example for high raptor mortality. APWRA is in an area of high 

raptor use due to a large prey base and proximity to a canyon birds frequent (Erickson et al. 

2001; Kingsley and Whittam 2005). Wind farms in areas supporting large numbers of migrating 

birds have reported similarly high mortality. For example, KW Tarifa has resulted in high 

mortality because it is located on the Strait of Gibraltar where thousands of migrating raptors and 

other birds are funneled (Kingsley and Whittam 2005). Researchers have concluded that siting 

wind energy developments in low bird use areas is the best way to prevent bird-turbine collisions 

(Erickson et al. 2001; Krijgveld et al. 2009; Obermeyer et al. 2011; Graff et al. 2016). 

Developers are recommended to avoid areas with high densities of wintering or migrating 

waterfowl and/or shorebirds, areas with high raptor activity (especially in breeding areas and 

where topography would funnel birds through the development area), and sites with breeding, 

wintering, or migrating species of conservation concern (Drewitt and Langston 2006).   

As described above, wind energy developments are not only associated with mortalities 

due to collision with turbines, but through habitat alteration and disturbance during both 

construction and operation phases. Habitat alteration occurs with installation of wind farm 
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infrastructure such as concrete foundations for turbines, electrical collection systems, electrical 

substations, transmission facilities, access roads, operation and maintenance buildings, and 

meteorological towers (Drewitt and Langston 2006). Birds may avoid areas altered by 

development or potentially experience lower reproductive success and survival (Drewitt and 

Langston 2006; Niemuth et al. 2013).  An earlier control-impact study from 12 wind farms in the 

UK showed breeding bird (passerines, raptors, grouse, and shorebirds) densities were reduced by 

15-53% within a 500 m radius of turbines (Pearce-Higgins et al. 2009). In a more recent, detailed 

BACI study on European Golden Plover (Pluvialis apricaria) at the Gordonbush wind farm in 

northern Scotland, plover abundance significantly declined by 79% in the wind farm area 

compared to the baseline counts (Sansom et al. 2016). No similar changes were observed in 

buffer or control areas indicating declines were most likely directly attributable to the wind 

energy development (Sansom et al. 2016).   

An additional type of disturbance known as the “barrier effect” occurs when migrating 

birds alter their flight path to avoid a development (Drewitt and Langston 2006). Altering flight 

paths to go around barriers increases distance flown and consequently energy expended, which 

may have carry-over effects on feeding, roosting, and molting. For example, Common Eiders 

significantly altered their course when flying near an offshore wind energy development, 

increasing their distance flown by approximately 500 m (Masden et al. 2009). Although this 

distance appears minimal compared to total migration distance, multiple wind energy 

developments in a flight path could theoretically have cumulative effects.  

Avian ecology must be considered when designing wind energy projects. Patterns in bird 

abundance and migratory movements are likely key predictors of mortality rates; areas with 

higher bird abundance would likely lead to greater numbers of collisions than areas with lower 

bird abundance. There is a need to evaluate risks on a site to site basis, which could then be 

incorporated more thoroughly into developing siting and mitigation guidelines.  

1.4 Study Site  

 The Prairie Pothole Region (PPR) is a 780,000 km2 ecoregion encompassing parts of the 

provinces of Manitoba, Saskatchewan, and Alberta and the states of North Dakota, South 

Dakota, Minnesota, and Montana (Mitsch and Hernandez 2013). Historically, it consisted of 

grasslands mixed with numerous seasonal to permanent wetlands created by glacial retreat 
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10,000 years ago during the Pleistocene (Ducks Unlimited 2016). These wetlands are rich in 

aquatic plant and animal life, providing excellent breeding and migratory stopover habitat for 

millions of waterfowl and shorebirds each year (Skagen et al. 2008; Ducks Unlimited 2016; 

Graff et al. 2016). This agricultural region is also characterized by rich soils, warm summers, 

periodic dry bouts, and some saline wetlands, caused by high evapotranspiration in comparison 

to precipitation (Mitsch and Hernandez 2013). 

 Chaplin Lake is a large saline wetland within the PPR located in southern Saskatchewan, 

covering 9,300 hectares (Beyersbergen and Duncan 2007). It is also an important migratory 

stopover in the Central Flyway. Large numbers of shorebirds stage at Chaplin Lake because of 

shallow water levels maintained by the Chaplin Minerals salt mine and high abundance of brine 

shrimp (Artemia salina) (a high energy food source) (Beyersbergen and Duncan 2007). More 

than 100,000 shorebirds use this area as a staging or breeding site each year (Beyersbergen and 

Duncan 2007). This includes Piping Plover (Charadrius melodus) and the rufa subspecies of Red 

Knot, which are listed as Endangered under SARA (Government of Canada 2017).   

Shorebirds frequent two other neighbouring lakes: Reed Lake, 18 km west of Chaplin 

Lake and 3,300 hectares in size, and Old Wives Lake, 40 km southeast of Chaplin Lake and 

33,020 hectares in size. Together these three lakes constitute a Western Hemispheric Shorebird 

Reserve (WHSRN) site and each lake is designated an Important Bird Area (IBA) (Beyersbergen 

and Duncan 2007). WHSRN sites and IBAs are areas designated as key habitat and high bird use 

by the non-profit organizations Manomet and BirdLife International. My research is focused on 

Chaplin and Reed Lakes, where an annual shorebird survey was established in 2014 (Rapolti 

Unpublished data). With large numbers of shorebirds using the lakes annually, changes in land 

use within the area such as agriculture and wind energy development may have significant 

implications for these populations.  

Wind energy development is increasing in the Chaplin and Reed Lakes area. The Morse 

Wind Facility, a 10 turbine, 23 MW wind energy development, was established just southeast of 

Reed Lake by SaskPower and Algonquin Power Co. in 2015 (SaskPower 2018). The Chaplin 

Wind Energy Project, a 79 turbine, 177 MW development, was planned < 5 km north of Chaplin 

Lake, but it was denied approval by the Saskatchewan Ministry of Environment, in part due to 

potential conflicts with the large numbers of migratory birds in the area (Saskatchewan Ministry 
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of Environment 2016a). The development (now the Blue Hill Wind Project) has been proposed 

to now occur south of Reed Lake pending environmental assessment and ministerial approval 

(Algonquin Power and Utilities Corp. 2017). It would be more than 5 km away from the 

shoreline of Reed Lake, in accordance with the provincial government’s recommended minimum 

5 km buffer around WHSRNs and IBAs, but the effectiveness of this buffer size has not been 

assessed (Saskatchewan Ministry of Environment 2016b).   

1.5 Study Species 

 I chose the Sanderling (Calidris alba) as my focal study species because it is the most 

common shorebird species recorded at Chaplin and Reed Lakes. Further, much is already known 

about the Sanderling’s ecology and biology and it is a long distance migrant, which makes it a 

good model to study migratory movements and staging ecology (Myers et al. 1990; Payne 2010). 

Sanderlings winter along the coasts of the Americas and breed in the Canadian Arctic, and 

individuals often exhibit an elliptical pattern of migration which takes them north through the 

Central Flyway and south through the Atlantic Flyway (Myers et al. 1990). Similar migration 

patterns are seen in other arctic-breeding shorebirds, with the result that shorebird numbers at 

Chaplin and Reed Lake are much larger during spring than during fall migration. Sanderlings are 

widespread and have a similar ecology to many other shorebird species; thus, research and 

management of this species at Chaplin and Reed Lakes may benefit other shorebirds which use 

the same flyway, habitat and resources (Payne 2010). 

1.6 Research Objectives 

 My thesis evaluates shorebird migration and staging ecology at Chaplin and Reed Lakes. 

Specifically, I studied multiple species’ temporal abundance patterns and Sanderling stopover 

duration, population size, and arrival and departure movements. My specific thesis objectives 

were to: 

 1)  Examine time of peak abundance by multiple migratory shorebird species using 

Chaplin and Reed Lakes during spring and fall migration, and spring stopover duration and 

population size of Sanderlings (chapter 2).  

 2)  Investigate arrival and departure movement patterns of migratory shorebirds at 

Chaplin and Reed Lakes, using the Sanderling as a model, and the extrinsic factors influencing 

observed flight patterns (chapter 3).   
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 By characterizing abundance and movement patterns, my project has implications for 

wind energy development siting and mitigation in the Chaplin and Reed Lakes area, a region 

with current and proposed wind development projects.   
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CHAPTER 2: 

SHOREBIRD MIGRATION TIMING AND STOPOVER DURATION AT AN 

IMPORTANT STAGING SITE IN THE CENTRAL FLYWAY 

 This chapter describes overall spring and fall shorebird migration chronology during 

2014-2017 at Chaplin and Reed Lakes, Saskatchewan, with focus on the staging ecology of 

Sanderlings (Calidris alba). This chapter is written in manuscript style. Data were analyzed and 

the manuscript writing was led by Jessica Howell, in consultation with and editing by Drs. 

Christy Morrissey, Ann McKellar, Rick Espie, and Kirsty Gurney and additional statistical 

consultation with Drs. Bob Clark and Mark Drever. Point count data were collected in the 

springs of 2014-2017 and falls of 2016-2017 by Jessica Howell with support from other field 

staff and partners. Birds were trapped and radio-tagged in 2015-2017 in both Chaplin and in the 

Gulf of Mexico with support from my supervisors and field staff as well as local expert, David 

Newstead (Texas Coastal Bays and Bends).   

2.1 Introduction 

 Migration is a crucial phase of many birds’ annual cycles, but a shortage of bird use data 

from many staging sites hinders its incorporation into management strategies. Migrating birds 

depend on resources at multiple staging sites within one or more continents, exacerbating 

impacts of habitat disturbance. High motility and transience at staging sites makes migrating 

birds difficult to study, but identification of temporal patterns of migratory activity and 

estimation of population sizes of staging birds are needed to highlight where habitat management 

should be focused.   

 Migratory birds are particularly vulnerable when concentrated at a single staging site. 

Events such as major storms, disease outbreaks or pollution could eliminate a significant portion 

of the global population (Payne 2010; Sutherland et al. 2012). Delays at migratory staging sites 

can strongly influence overall migration speed with carry-over effects for successful 

reproduction and survival (Newton 2006; Harrison et al. 2011). Shorebirds as a group are 

susceptible since they are known to use common staging sites in high densities employing a 

“jumping” strategy with long distance flights (often thousands of km) interspersed with staging 

periods of one or more weeks to refuel (Warnock 2010). Sixty-one percent of arctic-breeding 

shorebird populations in North America are exhibiting long term declines (declining for >30 
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years) (Andres et al. 2012). Therefore, factors influencing duration and timing of stopovers at 

important staging areas remains an important research area for species conservation.   

Stopover duration is influenced by time, weather, and predator and prey abundance. Birds 

arriving later in the season may accumulate fuel deposits two to three times faster than birds 

arriving earlier in the season to compensate for lost time (Atkinson et al. 2007a).  Poor weather 

(i.e. rain, strong headwinds) may delay departure and extend stopover duration even after birds 

have deposited enough fuel to undertake the next flight (Richardson 1990). Increased predation 

risk and decreased prey availability can decrease fueling rates and shorten or lengthen stopover 

duration (Ydenberg et al. 2004; Jonker et al. 2010). Changes in stopover duration (the amount of 

time a bird spends at a staging or stopover site) could be responsible for apparent shorebird 

declines if unaccounted for in population estimates (Ydenberg et al. 2004).  

Since migrating populations are transient, stopover duration must be considered along 

with raw abundance when estimating population size. For example, some birds will be double-

counted if a survey interval is shorter than stopover duration or abundance underestimated if a 

survey interval is longer (Farmer and Durbian 2006). Stopover duration is typically estimated by 

using mark and recapture techniques, but this poses a challenge because the length of time 

locally-marked birds were at the site prior to capture is typically unknown, and detectability may 

be low in large/inaccessible sites and when birds are marked with bands only. Radio telemetry is 

one of the most accurate options available for recording stopovers of small birds because 

detectability is not dependent on movement patterns within the site (Chernetsov 2012). Many 

analytical methods have been used to estimate stopover duration, including minimum stopover 

duration (number of days from capture to last resight) (e.g. Myers et al. 1990; Scott et al. 2004) 

and Cormack-Jolly-Seber models (e.g. Lehnen and Krementz 2007; Gillings et al. 2009; Gómez 

et al. 2017). While the best method is not universally agreed upon, comparing minimum stopover 

durations of birds tagged on site with true stopover durations from radio-tagged birds with 

known arrival dates (e.g. birds tagged elsewhere prior to arrival) would allow for more accurate 

estimates. 

 Many coastal shorebird staging sites in North America, such as Delaware Bay, the Bay of 

Fundy, the Fraser River Delta, and the Copper River Delta are well characterized in terms of bird 

usage, but many central interior sites are less well-studied. The Central Flyway is used by almost 
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40 species of shorebirds, with large percentages of certain species’ populations, including 

Sanderling (Calidris alba), Red-necked Phalarope (Phalaropus lobatus), and Semipalmated 

Sandpiper (Calidris pusilla), traveling through the Prairie Pothole Region (PPR) of the Central 

Flyway during migration (Morrison et al. 2001; Skagen et al. 2008; Gratto-Trevor et al. 2010). 

The total number of shorebirds migrating through the US PPR is estimated at 7.3 million in 

spring and 3.9 million in fall (Skagen et al. 2008); counts at single sites in the Canada PPR 

during the peak of spring migration are often over 25,000 and occasionally over 100,000 

(Alexander and Gratto-Trevor 1997; Beyersbergen and Duncan 2007; Beyersbergen 2009a; 

Beyersbergen 2009b).    

 Here, we used point count surveys and automated radio telemetry to examine staging 

behaviour and migration chronology at a major staging area of Chaplin and Reed Lakes in 

southern Saskatchewan, Canada. The lakes are an important staging site in the Central Flyway 

used by as many as 100,000 shorebirds or more each spring, but systematic survey data are 

lacking (Beyersbergen and Duncan 2007). The Sanderling served as our primary study species 

because it is the most common shorebird at Chaplin and Reed Lakes, is widely distributed on a 

global scale, and like many arctic-breeding shorebirds has experienced population declines 

(Payne 2010)- features that make it a good model for other arctic-breeding shorebirds. Our 

objectives were to characterize temporal patterns of shorebird abundance for multiple species 

during spring and fall migration and to estimate spring stopover duration and population size of 

Sanderling using radio-tagged birds. We specifically asked: what is the pattern of shorebird 

abundance and Sanderling stopover duration at Chaplin and Reed Lakes during spring and fall 

migration? We hypothesized that total shorebird abundance would be larger during spring 

migration than fall; that Sanderling peak abundance based on point counts would follow a 

unimodal distribution related to consistency in individuals’ arrival and departure dates based on 

telemetry; and that mean Sanderling stopover duration would be longer than the interval between 

point counts. We hope our results will demonstrate the value of tagging birds prior to arrival at 

staging sites in estimating stopover duration and highlight the importance of Chaplin and Reed 

Lakes as a key habitat in the Central Flyway to a globally significant number of shorebirds. 

2.2 Methods 
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2.2.1 Capture and Radio Telemetry 

 From 2015-2017, we captured Sanderlings in the Gulf of Mexico (GOM) at 3 locations 

early in spring migration (mid-April to mid-May): Grand Isle, Louisiana (29° 10' N, 90° 4' W), 

Bolivar Peninsula, Texas (29° 22' N, 94° 43' W), and North Padre Island, Texas (27° 20' N, 97° 

20' W). We also captured Sanderlings later in spring migration (mid-May to early-June), at 

Chaplin Lake, Saskatchewan, Canada (50°25' N, 106° 40' W) (Table 2.1). We used several 

capture techniques, depending on time of day and location: mist netting from dusk to dawn 

(Chaplin Lake only), and cannon net (GOM only) or noose carpets (Chaplin Lake and GOM) 

during daylight hours. We did not trap during adverse weather conditions (high winds and/or 

rain). We banded birds with one aluminum band, one colour band, and one alpha numeric coded 

plastic flag (green for USA, white for Canada), in a combination unique to each year. We glued 

coded radio transmitters (Lotek Avian NanoTag Model NTQB-3-2 (6 - 8 s burst rate, 0.67 g 

mass, and ~90 - 105 day battery life)) directly to the skin (beneath feathers) between the scapulae 

of each bird with a 5 min curing marine epoxy. Trapping, banding, and radio transmitter 

attachment protocols were approved by the University of Saskatchewan Animal Research Ethics 

Board as Animal Use Protocol 20120021 and by the Canadian Bird Banding Office as banding 

permit 10268.     

We used radio telemetry to monitor individual birds’ daily presence. Specifically, we 

made use of the Motus Wildlife Tracking System, developed by Bird Studies Canada, which 

consists of an expanding network of automated radio-telemetry towers (receivers) operated by 

researchers primarily in the Americas in combination with long life avian nano-tags 

(transmitters) (Taylor et al. 2017). Stations continuously scan for tags, logging data for the 

duration a tagged bird is in the area. Our local telemetry array consisted of six towers around 

Chaplin and Reed Lakes (Figs. A.1-A.3), each with three 9-element Yagi antennas (Model: Laird 

PLC1669) oriented 120˚ from one another and a SensorGnome receiver that scans for tags on all 

antennas continuously (www.sensorgnome.org). Towers operated from late-April to mid-

October of each year of the study. Towers were approximately 7 m tall, at elevations ranging 

from ~660 to 725 m above sea level. Two separate experiments (one using a helium-filled 

balloon and one using a UAV) yielded an approximately 12 km range of the front lobe (Taylor et 

al. 2011; Howell et al. Unpublished data) and a 3 km range of side and back lobes of each 

antenna (Fig. A.4) (Howell et al. Unpublished data); giving us substantial coverage of both lakes. 
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For each bird detected by the tower, the tag number (id), date and time (hh:mm:ss), antenna and 

signal strength (dBm) were automatically recorded. Analyses using raw radio telemetry data 

were restricted to the springs when tagging occurred (2015 – 2017), but the results (mean 

stopover duration) were applied to population size analysis of all years of the study (2014 – 

2017).   

2.2.2 Point Count Surveys 

 We conducted weekly point counts for all shorebird species (n = 32) at Chaplin and Reed 

Lakes during spring (2014 - 2017) and fall (2016 - 2017) migrations. Eighteen points were 

established along the shoreline and roads running through Chaplin Lake, and six along the 

shoreline of Reed Lake (Rapolti Unpublished data). Points had a 200 m observation radius, with 

some points including an additional 200-500 m observation radius, depending on topography and 

proximity to other points (Figs. A.5-A.6). Every point was surveyed weekly typically by two 

observers during spring migration, and surveys ran from the first week of May until the second 

week of June. All Chaplin Lake survey points were also surveyed during fall migration, with one 

Reed Lake point also surveyed in fall 2016. Fall surveys ran from mid-July through late 

August/early September. Spring and fall surveys were conducted any time between sunrise to 

sunset, wind speeds of zero to 40 kph, and zero to light precipitation.  

 We used a distance sampling method in 2016 to estimate shorebird detectability. Distance 

sampling better estimates animal densities as it assumes that detection probability decreases with 

increasing distance from the point center (Thomas et al. 2010). Distance sampling also includes 

the following assumptions: individual birds at the point center are detected with certainty, 

individuals do not move during the survey, and distance measures are exact. Distances from 

point center to birds (individuals or flocks (clusters)) were recorded using a Leupold RX-1000i 

laser rangefinder.   

2.2.3 Relative Abundance and General Chronology of Shorebird Migration 

 We obtained arrival and departure timing of birds at Chaplin and Reed Lakes from radio 

telemetry data, and relative abundance of staging birds from point count data. We isolated sets of 

detections from birds in flight using the following criteria: 1) most detections inside the set are 

separated from each other in time by the interval between transmitter signals (6 or 8 s in our 

case), 2) detections inside the set are separated from detections outside of the set by five or more 
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minutes, and 3) detections inside the set have a curved shape when plotted as signal strength vs. 

time (Mitchell et al. 2012). We defined an arrival as the moment of maximum signal strength 

during the first set of detections of a bird at the study site. We defined a departure as the moment 

of maximum signal strength during the last set of detections of an individual bird at the study site 

(Mitchell et al. 2012). We identified non-stop flight detections or “fly-overs” (birds that pass 

over the towers and site without stopping) as single sets of detections. We excluded these birds 

(n= 7) from our analyses of stopover duration.  

For data from each year of the study (spring migration = 2014 – 2017, fall migration = 

2016 – 2017), we identified peaks in migrating shorebird abundance using histograms of raw 

bird numbers over time (survey week). We averaged total abundance across all years with a 

LOESS-smoothing function in R (ggplot2) to identify patterns in arrival, staging and departure. 

We assessed consistency in temporal trends across years through visual inspection of confidence 

intervals; narrow confidence intervals indicate a more consistent trend. We assessed all 

migratory activities (arrival, staging and departure) for Sanderling (2015 – 2017). We also 

analyzed staging bird abundance for the two next most common arctic migrants (birds that stage 

at Chaplin and Reed Lakes and then breed in the Arctic): Red-necked Phalarope and 

Semipalmated Sandpiper, as well as for all arctic migrants combined.   

2.2.4 Sanderling Stopover Duration and Population Size 

Although towers were active through the fall, we focused on Sanderling spring migration 

only for the analysis of stopover duration (2015 – 2017), due to much larger sample sizes and 

staging abundance. We calculated true stopover duration (TSD) of birds tagged in the Gulf of 

Mexico and first detected at Chaplin/Reed Lake as: 

TSD = date of departure – date of arrival + 1   equation 2.1 

We calculated minimum stopover duration (MSD) of birds tagged at Chaplin Lake as: 

MSD = date of departure – date of capture + 1   equation 2.2 

Because birds tagged at Chaplin Lake were present prior to capture for an unknown 

period of time, MSD may not equal TSD. We tested for a difference between MSD of Chaplin-

tagged birds and TSD of Gulf-tagged birds using an analysis of variance (ANOVA). We 

estimated total stopover duration of Chaplin-tagged birds in program MARK using Pradel 
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Survival and Seniority models (Pradel 1996). Models estimate a survival (φ), recapture (p), and 

seniority parameter (γ). The survival parameter (φ) is equal to the product of probabilities true 

survival (S) * site fidelity (F). All radio-tagged birds successfully departed from Chaplin or Reed 

Lake (based on examination of signal strength vs. time plots), so we assumed S = 1. Therefore, 

we were able to define φ as equal to site fidelity (F), i.e. the probability of remaining at the site 

after capture (Sandercock 2006). Recapture probability (p) was assumed to be 1 because the 

telemetry towers detect any bird in the vicinity at any time. The seniority parameter γ was the 

probability of having been at the site before capture.   

Both φ and γ were held constant over time in models such that estimated stopover 

duration (ESD) could be calculated using equation 2.3 (Schaub et al. 2001). Data from each year 

(2015 – 2017) were analyzed separately, with all encounter histories beginning on the date that 

the first individual was captured and ending on the date after the last tagged bird departed the 

area. We included capture date as a covariate to test for an effect of capture date on φ; birds 

captured later in the season are likely to remain for a shorter period after capture. Top models 

were selected using ΔAICc (Burnham and Anderson 2003). 

𝐸𝑆𝐷 = −
1

ln 𝜑
+  −

1

ln 𝛾
   equation 2.3 

 To estimate population size of Sanderling at our study site (Chaplin and Reed Lakes, 

2014 - 2017) while accounting for population turnover throughout migration, we corrected raw 

point count abundance data with: 1) stopover duration of radio-tagged birds (see above) to 

account for birds arriving and departing between sampling dates, 2) detectability of shorebirds at 

each lake to account for birds not seen, and 3) an estimate of minimum usable area at the lakes to 

account for area not covered during surveys (Farmer and Durbian 2006).   

 To increase our sample size to estimate detectability (dj) for Sanderling, we used distance 

measurements of all short-legged, non-swimming shorebird species (because other long-legged 

or swimming species may be detected at different rates due to differential habitat use) taken 

during spring 2016 point counts, and we analyzed detectability rates in R (package Distance). 

Mean detectability is computed as the integral of the detectability function divided by the survey 

point radius. Our preliminary analyses resulted in a very low estimate of mean detectability: 

39±4% at Chaplin Lake and 20±8% at Reed Lake, and the Reed Lake detection function was 

poorly fit. The habitat at all point count stations was open and flat, providing high visibility and 
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consequently high detectability. We concluded that our detectability rates were biased low 

because birds were generally clustered near the point centers (shoreline). Detectability rates that 

are biased low would result in large overestimates of population size. Instead of using these 

rates, we researched the literature for detectability rates reported in other studies of shorebird 

migration in similar habitat. Based on the detectability rates reported by Farmer and Durbian 

(2006), Brown et al. (2007), and Ellis et al. (2014), we used 75% as our detectability rate for 

Sanderling in population estimates, which we judged would be a more conservative and realistic 

rate than the one computed in our distance analysis.   

 The sampled proportion of each lake (j) was calculated as:   

𝑝𝑗 =  
𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑗

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑢𝑠𝑎𝑏𝑙𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑗 
   equation 2.4 

 Minimum usable area for all short-legged, non-swimming shorebird species was 

calculated as the total area of the shoreline + 200 m into the water, excluding locations we 

considered non-habitat calculated using Google Earth Pro (Figs. A.7-A.8).   

 The estimated number of birds on survey date t (bt) was calculated as: 

𝑏𝑡  =  ∑
𝑠𝑡𝑗

𝑑𝑗

𝑚
𝑗=1 ∗

1

𝑝𝑗
    equation 2.5 

Where m = the total number of lakes (2), stj = the total survey count in lake j on survey date t. 

 Because not every day of the migration season was surveyed, we modeled the total 

number of birds over the season and then bootstrap-sampled to generate random numbers of 

birds for each day (Drever et al. 2014). We calculated a total number of bird-days (bd) by 

modeling number of birds by Julian day of the year for each year, generating random numbers of 

birds from the models, and then summing the predicted numbers for all days for each year. Julian 

date was centered on 145 for modeling. A random slopes and intercept linear mixed effects 

model included count as the response variable, with fixed effects of year, day of the year (DOY), 

and the polynomial term (DOY2), and with DOY and DOY2 as random slopes and year as a 

random intercept. This model assumes that migration chronology has a certain shape but allows 

for within-season temporal variation (Drever et al. 2014).  

 We divided bd estimates by mean TSD and used the percentile method for the median, 

0.025, and 0.975 percentiles as population estimates and confidence intervals.  These estimates 

assume that stopover duration is constant across the season and among years (Drever et al. 

2014). 
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𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 =  
𝑏𝑑

𝑇𝑆𝐷̅̅ ̅̅ ̅̅
    equation 2.6 

2.3 Results 

2.3.1 Relative Abundance and General Chronology of Shorebird Migration 

 Spring migration was characterized by high species richness (17 arctic-breeding species), 

high abundance (highest counts of most common species in thousands or tens of thousands), and 

consistency in timing among years (Fig. 2.1; Table B.1). The 3 most common species – 

Sanderling, Semipalmated Sandpiper, and Red-necked Phalarope – peaked in abundance at 

different times during spring migration, but total abundance of all arctic-breeding shorebirds 

consistently peaked during the third and fourth week of May (raw mean peak count = 13988 ± 

4336, predicted mean peak count = 13924 ± 2140, CI = 9423 - 18424).  

 Sanderling and Red-necked Phalarope contributed the most to the overall pattern, each 

being several times more abundant than any other species. Spring Sanderling numbers peaked 

(raw mean peak count = 7297 ± 1742, predicted mean peak count from LOESS-smoothed mean 

= 6584 ± 1264, CI = 3935 - 9232) during the third and fourth week of May. Nineteen of 24 

Sanderlings radio-tagged in the Gulf of Mexico arrived within a week of the Chaplin/Reed 

staging population peak. Departures based on data from radio-tagged birds were concentrated 

during the first week of June and corresponded with declines in numbers of staging birds 

detected using point counts. Departure timing of Sanderlings was consistent over the three years, 

with narrow confidence intervals and occurring over a short time window (Figs. 2.2 – 2.3).   

 Spring Red-necked Phalarope numbers showed a consistent peak, occurring during the 

third week of May of each year (raw mean peak count = 7720 ± 2007, predicted mean peak 

count from LOESS-smoothed mean = 7711 ± 1074, CI = 5461 - 9962). Semipalmated Sandpiper 

spring abundances were the most variable among years, occurring as one or two peaks between 

the first and fourth week of May (depending on year) (raw mean peak count = 964 ± 330, 

predicted mean peak count from LOESS-smoothed mean = 665 ± 226, CI = 191 - 1139).   

 Fall migration involved lower species richness (10 arctic-breeding species), lower 

abundance, and was less consistent in timing among years (Fig. 2.4, Table B.1). Semipalmated 

Sandpiper was the most abundant arctic migrant in fall 2016 and Red-necked Phalarope was the 

most abundant arctic migrant in 2017 (Table B.1). Total staging abundance during fall migration 

showed two peaks, one in late July (raw mean peak count = 1766 ± 709, predicted mean peak 
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count = 980 ± 293, CI = 327 - 1633) and the other in late August (raw mean peak count = 1343 ± 

132, predicted mean peak count = 983 ± 313, CI = 287 - 1679) (Fig. 2.4). Sanderling numbers 

peaked in the third week of August (raw mean peak count = 388 ± 253, predicted mean peak 

count = 344 ± 89, CI = 146 - 543). Red-necked Phalarope peaked in late July (raw mean peak 

count = 1007 ± 994, predicted mean peak count = 449 ± 249, CI = 0 - 1003). Semipalmated 

Sandpiper numbers peaked in early to mid-July that may not have been fully captured by our 

sampling window and a larger peak in late August (raw mean peak count = 745 ± 234, predicted 

mean peak count = 489 ± 133, CI = 192 - 786). The numbers of birds observed on the first and 

last surveys of spring and fall migration were on average 6% and 11% of the highest number of 

birds observed that season. Much lower numbers of birds on both ends versus the middle of our 

survey period are evidence that our surveys covered the majority of the migratory season.  

2.3.2 Sanderling Stopover Duration and Population Size 

 Mean TSD of Gulf-tagged birds was longer than mean MSD of Chaplin-tagged birds in 

2016 and 2017 but not 2015. However, the groups were not significantly different (F = 0.549, df 

=  139, p = 0.46). Mean ESD from Pradel models was 7 days longer than MSD (Table 2.2). 

Capture date as a covariate was in the top model of all years, and a regression of minimum 

stopover duration vs. capture/arrival date showed a significant, negative relationship (p < 0.001) 

for both Chaplin and Gulf-tagged birds suggesting that stopover duration was shorter for birds 

that arrived or were captured later in the season (Fig. 2.2).   

 Estimated Sanderling population size during spring was highly variable among years (as 

were raw counts) and had wide confidence intervals (Fig. 2.5; Table 2.3). The median population 

estimate was lowest in 2016 at 55,617 birds and highest in 2014 at 90,832 birds. Averaging all 

years to the nearest 1,000 gives a population size of 75,000 Sanderlings staging at Chaplin and 

Reed Lakes in spring.   

2.4 Discussion 

 Our hypotheses were supported by our data; total shorebird abundance was higher at 

Chaplin and Reed Lakes in spring than fall, Sanderling peak abundance followed a unimodal 

distribution with a peak that was consistent with arrival and departure dates from radio-tagged 

birds, and mean Sanderling stopover duration (11 days) was longer than the interval between 

point counts. In addition to an estimated total population of ~75,000 Sanderlings based on our 
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calculations, a large number of Red-necked Phalarope (over 13,000 recorded as the peak daily 

count during surveys in 2017) used the area each spring. More Semipalmated Sandpiper and 

Red-necked Phalarope used the lakes during fall migration than Sanderling, but peak counts of 

all species were only in the hundreds to low thousands, compared to upwards of thousands to 

tens of thousands in the spring. Consistent patterns in migrating shorebird abundance over time 

and large numbers of migrating shorebirds at Chaplin and Reed Lakes have implications for 

management of this site and conservation of the large number of species present.   

2.4.1 Relative Abundance and General Chronology of Shorebird Migration 

 The mean peak in total spring shorebird numbers at Chaplin and Reed Lakes occurred 

during the third week of May, but individual species peaks occurred from mid-May to early-

June. Timing of peak Sanderling, Semipalmated Sandpiper, and Red-necked Phalarope 

abundances are similar to past records from Chaplin and Reed Lakes as well as other lakes in 

Saskatchewan and Alberta (Alexander and Gratto-Trevor 1997; Beyersbergen and Duncan 2007; 

Beyersbergen 2009a; Beyersbergen 2009b), suggesting that migration chronology is not only 

consistent among years but also within the PPR. However, different temporal patterns in species 

abundances may indicate different migration origins and destinations both among species, and 

among individuals within species. 

 The unimodal migration pattern of Sanderling abundance extended over the entire six 

week survey period, and may indicate steady inflow and outflow from populations with varying 

migration distances. The majority of the Sanderling’s wintering range spans from the coasts of 

the US to southern South America (Myers et al. 1990; Sibley 2000). Cluster analysis of isotope 

samples from feathers, grown on the wintering grounds, of birds captured at Chaplin Lake in the 

springs of 2012 – 2015 resulted in three clusters which also had differing wing and tarsus sizes; 

this suggests different wintering populations with the largest birds wintering farthest south. 

However, there was no significant difference in peak or mean capture date among clusters 

(Labarrère 2016). Most of the Sanderling’s breeding range is directly north of Chaplin and Reed 

Lakes in the high Arctic.  A smaller portion is northwest on the North Slope of Alaska (Myers et 

al. 1990). Myers et al. (1990) banded almost 6,000 Sanderlings along the coasts of the US and 

Central and South America from 1983 and 1987 and the northern-most resighting was in the 

Northwest Territories (62 ˚ latitude). Although the exact breeding destinations of Sanderlings 
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tagged at Chaplin Lake are unknown, we have had detections of our birds at Motus network sites 

as far north as Southampton Island, NU (63˚ latitude) and near Churchill, MB (55˚ latitude) 

(Howell et al. Unpublished data). Whether birds stop at another site after Chaplin and Reed 

Lakes prior to reaching the breeding grounds is also unknown. Thus, it is not known whether 

different cohorts of arriving birds traveled to different breeding destinations, but it is likely that 

birds arrived from multiple wintering sites that overlapped in their arrival, staging, and departure 

times at Chaplin and Reed Lakes. 

 The shorter (two to three week) unimodal migration pattern of Red-necked Phalarope at 

Chaplin and Reed Lakes may indicate a single population. DNA from Red-necked Phalaropes 

across North America clustered those migrating through the Quill Lakes (approximately 230 km 

northwest of Chaplin Lake) in the fall to a breeding population in Prudhoe Bay, Alaska (Haig et 

al. 1997). The spring staging population at Chaplin and Reed Lakes may be part of the Prudhoe 

Bay breeding population; this could be investigated by assessing the stable isotope signatures of 

feathers, a method that has been used to differentiate between migratory populations of some 

species(Atkinson et al. 2007b). A brief, single peak in Red-necked Phalarope also means that the 

staging population is likely more vulnerable to decline or extinction by single catastrophic events 

(bottleneck situation) (Newton 2006).   

 In contrast with the unimodal temporal patterns of Sanderling and Red-necked Phalarope 

during spring migration, the almost bimodal trend in Semipalmated Sandpiper abundance could 

be indicative of separate populations. Semipalmated Sandpipers tracked using geolocation that 

staged at lakes in Saskatchewan and Alberta in spring and fall were from populations breeding in 

western Alaska, northern Alaska, and the Mackenzie Delta and wintering across Central 

America, the Caribbean, Western South America, and Northeastern South America (Brown et al. 

2017). Steeves and Holohan (1995) suggested that the early peaks on western Canadian prairie 

lakes could be composed of Alaska breeders, because earlier melt and thaw in southern Alaska 

allows for earlier arrivals on the breeding grounds. This could be confirmed via stable isotope 

analysis of feathers, moulted on the breeding grounds, from Semipalmated Sandpipers staging at 

Chaplin and Reed Lakes.  

 The apparent smaller and longer fall migration at Chaplin and Reed Lakes is typical of 

prairie staging sites (Alexander and Gratto-Trevor 1997; Beyersbergen and Duncan 2007; 



 

26 
 

Beyersbergen 2009a; Beyersbergen 2009b) and may be better explained by differences in 

behaviour and habitat availability between seasons than by differences in our sampling effort 

between fall and spring surveys. Although more points were surveyed in the spring, spring 

numbers were still much larger at the subset of points sampled in both seasons. Some species, 

such as Sanderling and Semipalmated Sandpiper, tend to undergo elliptical migration- taking the 

Central Flyway in the spring and the Atlantic Flyway in the fall (Myers et al. 1990; Gratto-

Trevor and Dickson 1994; Payne 2010). Elliptical migration is thought to occur because 1) 

tailwinds can be exploited on either flyway in the spring but headwinds are less severe on the 

Atlantic Flyway in fall (La Sorte et al. 2014) and 2) the sun compass, which is the only compass 

available when birds are leaving the high Arctic in the fall due to a distortion in the magnetic 

field, guides birds on a southerly arc to the Atlantic coast (Alerstam 2001). Indeed, more of the 

Sanderlings we tagged at Chaplin Lake in the spring were detected on Motus telemetry towers 

along the Atlantic coast than at our towers in Saskatchewan during the fall (Howell et al. 

Unpublished data). Drying of prairie ponds in the summer and fall is also associated with fewer 

birds at the local scale. Shorebirds preferentially use habitats with mud and shallow water, 

responding to dry periods by restricting use to the ponds that remain wet (Skagen and Knopf 

1994). We witnessed a contraction of available habitat and shorebird presence to the westerly, 

deeper portions of Chaplin Lake during the drier fall of 2017 (Howell, Personal observation), as 

was reported during fall surveys in 1994 (Beyersbergen and Duncan 2007). One potential cause 

of the greater length of fall migration is that fueling at individual staging sites may take longer 

because days are shorter than in spring, allowing less time each day for foraging. Juveniles 

migrating for the first time may take additional time to fuel due to lack of experience (Nilsson et 

al. 2013). 

2.4.2 Sanderling Stopover Duration and Population Size 

 The mean total stopover duration (TSD) of Gulf-tagged Sanderlings was more similar to 

the mean minimum stopover duration (MSD) than to mean estimated stopover duration (ESD) of 

Chaplin-tagged birds. TSD is the most accurate measure, for which the mean was 11.1 (95% CI 

= 8.59 –13.6) days (Table 2.2). Results for Sanderlings at other spring staging sites were 

somewhat longer than TSD, but considerably shorter than ESD. Gudmundsson and Lindström 

(1992) estimated 13-14 days from when 50% of birds had arrived to when 50% of birds departed 
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from southeast Iceland and Scott et al. (2004) estimated staging durations of 14-15 days based on 

radio-tagged birds in northeast England. Stopover durations of other shorebird species at other 

sites range from 11-12 days earlier in the season and 8-10 days later in the season for Red Knots 

(Calidris canutus) at Delaware Bay (Gillings et al. 2009), 10 days at wetlands for Pectoral 

(Calidris melanotos) and Least Sandpipers (Calidris minutilla) in northwestern Missouri (Farmer 

and Durbian 2006), and 6.7 days for Semipalmated Sandpipers at prairie sites (Brown et al. 

2017). 

 The fact that we observed similar TSD and MSD of Gulf- and Chaplin-tagged birds, 

when one would expect minimum stopover to be shorter, may have been caused by a local 

capture and handling effect on Chaplin-tagged birds. Stress of capture and handling could have 

short-term effects of slowed fuel deposition or mass loss (Schaub and Jenni 2000). There may be 

additional stress with radio transmitter attachment; both control birds (captured only) and birds 

fitted with a harness and radio-transmitter lost mass in a study on Common Yellowthroats 

(Geothlypis trichas), but experimental birds lost more mass (Sykes et al. 1990). Thus, short-term 

effects over a few days may have occurred at our site and contributed to slightly longer stopover 

durations of Chaplin-tagged birds than would be expected. Indeed, of 35 birds captured at 

Chaplin with a subcutaneous fat score of > 4 (scale of 0 – 5; lean to fat), only one bird departed 

the following day. These birds presumably had acquired enough fat at capture to depart soon 

after, as a regression of MSD vs. fat at capture showed a significant, negative relationship (p < 

0.001), but had a mean MSD of 9.43 (95% CI = 8.51 –10.3) days. However, we do not suspect 

any longer-term capture effects occurred in our study because birds tagged in the Gulf of Mexico 

(using the same methodology as at Chaplin) migrated to and staged at Chaplin Lake and other 

spring staging sites successfully, all birds detected at Chaplin and Reed Lakes departed the area 

(no mortality observed), and multiple spring-tagged birds were detected during fall migration at 

locations in the Central and Atlantic Flyways.  

 Rather than capture effects, another possible explanation for similar TSD and MSD is 

that our Chaplin Lake captures may have been biased towards birds early in their staging period. 

Exploratory flights, undertaken soon after arrival to identify the best habitat (best prey access, 

minimum predation risk) or find and join conspecifics, could result in a greater likelihood of 

capture (Moore and Aborn 2000; Paxton et al. 2008). Similarly, lean birds, which is typically the 
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condition upon arrival, move more each day than fat birds (Smith and McWilliams 2014). If our 

captures were biased towards birds early in their staging, fat score at capture should have been 

skewed towards lower scores, and yet fat score at capture was normally distributed (Howell et al. 

Unpublished data). 

 Despite a lack of direct evidence, a capture bias towards early staging birds deserves 

further consideration because Pradel models would have resulted in overestimates of stopover 

duration. Because the seniority parameter is estimated by inverting the capture history, it 

effectively assumes that birds are captured in the middle of their stopover rather than at or near 

the start. ESD from Pradel models were 30 – 40% longer than each year’s mean TSD (Table 

2.2). Although the use of Pradel models in estimating stopover duration is debated because birds 

arriving and departing between sampling times are ignored, this is not relevant in automated 

radiotelemetry studies where scanning for tags is continuous (Efford 2005; Pradel et al. 2005; 

Chernetsov 2012). Nonetheless, we suggest that Pradel survival and seniority modeling may not 

be an appropriate method regardless of data collection technique if probability of capture is 

biased towards either end of a stopover.    

 Median Sanderling population estimates ranged from a low of 55,617 in 2016 to a high of 

90,832 in 2014 (Table 2.3); large fluctuations may indicate interannual variation in migratory 

routes and staging sites (low fidelity). Myers et al. (1990) characterized Sanderling migration as 

heterogeneous, meaning that breeding and wintering areas are connected by many routes 

intersecting at sites rather than a few, well-defined paths. Within the PPR, the extreme 

fluctuations in water levels may make staging site fidelity maladaptive (Skagen and Knopf 

1994). In addition to Chaplin and Reed Lakes, Sanderlings tagged in the Gulf of Mexico were 

detected at other shorebird staging sites in Saskatchewan (the Quill Lakes, Last Mountain Lake, 

and Manitou Lake); it is possible that birds vary use of available sites among years (Howell et al. 

unpublished data). Although different prairie staging sites were used by individual Semipalmated 

Sandpipers in a multiyear study using geolocation, migration routes were distinct and consistent 

at the population level (Brown et al. 2017). Empirical evidence for broader geographic variation 

(e.g. alternating flyways used for spring migration) is lacking but cannot be ruled out (Myers et 

al. 1990; Bart et al. 2007).   
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 Differences in population sizes at staging sites may also be explained by population 

dynamics. Reproductive success, recruitment, predation on the breeding grounds, wintering 

grounds, and migration route, disease, and human disturbances all have direct impacts on 

population size (Bart et al. 2007; Sutherland et al. 2012; Drever et al. 2014). Our study was too 

short to examine long-term population trends, but the point counts used in our surveys are part of 

an annual monitoring program that could be used in the future to estimate local trends and/or 

contribute to larger-scale trend analyses based on migration monitoring sites across Canada and 

the United States (e.g. Andres et al. 2012).   

 Estimated mean Sanderling population size at Chaplin and Reed Lakes was ~75,000, 

which is significant from the local to global scale. This represents 58, 25, and 12% of the total 

estimated numbers of Sanderling using the Central Flyway, in North America’s population, and 

in the global population (Andres et al. 2012; Morrison et al. 2001). High numbers of staging 

Sanderling are part of the reason the Chaplin/Old Wives/Reed Lake complex was designated as a 

WHSRN site in 1997. Comprehensive surveys of all available habitat at Chaplin Lake 

(Beyersbergen and Duncan 2007) revealed peak counts of 51,084 and 52,984 birds in 1993 and 

1994. Our study shows that the area continues to support some of the largest numbers of 

Sanderling observed at any North American staging site (Beyersbergen and Duncan 2007; Payne 

2010).  

2.4.3 Conclusion 

 The transience of staging shorebird populations make stopover duration and population 

size difficult to estimate, but our study gives a novel perspective using birds radio-tagged prior to 

arrival at the study site. First, we were able to obtain full (true) stopover durations from 

Sanderlings tagged in the Gulf of Mexico. Second, comparison of TSD of Gulf-tagged birds with 

MSD and ESD of Chaplin-tagged birds informed us that Pradel Survival and Seniority models 

overestimated stopover duration. Observed variability of stopover duration among individuals 

and years opens new research questions into its causes. Weather at the staging site, weather 

between the wintering grounds and staging site, differential site use by multiple populations, 

arrival date, and interactions between these variables likely all affect stopover duration. This 

could be investigated with a larger sample size of birds tagged prior to arrival in order for 

stopover duration to be modeled as a function of weather, arrival date, and year. Accounting for 
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any interannual and intraseasonal variability in stopover duration (TSD of Gulf-tagged birds and 

MSD of Chaplin-tagged birds significantly differed when regressed on years at p < 0.05 and p < 

0.001 and arrival or capture date at p < 0.001 and p < 0.001), would refine Sanderling population 

size estimates. Population estimates could be further refined by verifying that detectability is 

close to 0.75 through a double-observer sampling method and inclusion of habitat covariates in 

detectability functions (see chapter 4). In addition to Sanderling, monitoring of Red-necked 

Phalarope - the population dynamics of which are poorly understood - at Chaplin and Reed 

Lakes as well as other Central Flyway staging sites may help elucidate whether declines 

observed on the Atlantic coast are due to true population declines or changes in distribution, 

where threats are occurring, and consequently where conservation efforts should be focused 

(Andres et al. 2012). Not only will continued use of the Motus telemetry array improve stopover 

duration estimates (and consequently staging population size estimates) of these and other 

species if more individuals are tagged prior to arrival at staging sites, it could also elucidate the 

breeding and wintering destinations if more telemetry towers are established in the Arctic and in 

South America. 

 Our population estimates affirm that Chaplin and Reed Lakes support a globally 

significant number of Sanderlings, which is important from a site management perspective. 

Habitat features at Chaplin Lake include shallow and reasonably stable water levels, brine 

shrimp, and generally uninterrupted airspace (few large structures that birds could collide with) – 

all ideal conditions for shorebirds. However, climate change predictions include increased 

drought and lower primary productivity in the PPR, with the most significant changes in the 

Canadian prairies (Werner et al. 2013). Increased water conflicts and intensified agriculture will 

exacerbate habitat loss (Payne 2010; Sutherland et al. 2012; Werner et al. 2013). Human use will 

need to be balanced with habitat needs of Sanderling and other species such as Red-necked 

Phalarope (designated as Special Concern under the Committee on the Status of Endangered 

Wildlife in Canada (COSEWIC  2014)) and Red Knot (listed as Endangered in Canada 

(Environment and Climate Change Canada 2017)), going forward if this and other Central 

Flyway staging sites are to continue to provide vital staging habitats for migratory shorebirds in a 

changing world.  
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Table 2.1. Summary of numbers (n), percentage, and Julian dates of tagging for radio-tagged 

Sanderlings by location and year.   

 Sanderling Sample Sizes and Trapping Dates 

 
2015 2016 2017 

Gulf of Mexico (n) 24 37 59 

n (%) of birds tagged in the Gulf of 

Mexico that staged at Chaplin Lake 
7 (29) 4 (11) 13 (22) 

Mean Gulf of Mexico Julian tagging dates 

(range)  
110 

(109 – 110) 

115 

(111 – 119) 

125 

(117 – 132) 

 

Chaplin Lake (n) 
 

38 

 

40 

 

39 

 

Mean Chaplin Lake Julian tagging dates 

(range) 

 

146 

(133 – 158) 

 

151 

(140 – 159) 

 

149 

(139 – 152) 
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Table 2.2. Total (TSD), minimum (MSD), and estimated (ESD) stopover durations of Sanderling 

staging at Chaplin and Reed Lakes by original radio-tagging location in the Gulf of Mexico or 

Chaplin Lake, SK for each year of the study (2015-2017). The mean is shown with 95% 

confidence intervals and sample size (n) in parentheses for total and minimum stopover 

durations.   

Year TSD Gulf-tagged 

Birds  

MSD Chaplin-tagged 

Birds 

ESD Chaplin-tagged 

Birds 

2015 6.29 

(3.28 – 9.31) 

(7) 

14.8 

(13.4 – 16.2) 

(38) 

23.2 

(17.2 – 31.3) 

2016 14.8 

(7.03 – 22.6) 

(4) 

11 

(9.58 – 12.4) 

(39) 

18.6 

(13.8 – 25.3) 

2017 12.6 

(9.57 – 15.6) 

(13) 

10 

(8.88 – 11.1) 

(39) 

16.4 

(12.3 – 22.1) 

All 

Years 

11.1 

(8.59 – 13.6) 

11.9 

(11.1 – 12.7) 

19.9 

(17.5 – 22.7) 
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Table 2.3. Median (0.5), lower (0.025), and upper (0.975) annual population size estimates for  

Sanderlings staging at Chaplin and Reed Lakes during spring 2014 – 2017, based on raw 

abundance from point count surveys, the sampled proportion of each lake, a detectability of 0.75, 

and a mean stopover duration of 11 days.  

Year Highest 

Raw Count 

Median (0.5) 

Population 

Estimate 

Lower (0.025) 

Population 

Estimate 

Upper (0.975) 

Population 

Estimate 

2014 9,303 90,832 70,005 120,477 

2015 5,583 71,591 58,003 89,858 

2016 3,316 55,617 45,309 68,441 

2017 10,987 81,698 61,483 148,639 

Mean 

(all 

years) 

7,297 74,935 58,700 106,854 
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Fig. 2.1. Numbers of staging shorebirds observed during spring migration point counts at 

Chaplin and Reed Lakes by week (1 = first week of May). A) Arctic-breeding species combined, 

B) Sanderling, C) Red-necked Phalarope, and D) Semipalmated Sandpiper are shown. Bars are 

colored by year (2014-2017).  The black line is a total (all years) LOESS-smoothed mean with 

surrounding 95% CI’s (gray).   

A 

B 

C 
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Fig. 2.2. Individual stopover durations of radio-tagged Sanderlings marked at Chaplin (light 

gray) and Gulf of Mexico (dark gray). Length of each horizontal line indicates time from 

capture/arrival date to departure date. Overlaid are total numbers of Sanderlings counted during 

weekly point counts (black line) at Chaplin and Reed Lakes for each year of the study.   
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Fig. 2.3. Numbers of A) arriving radio-tagged Sanderlings (top row), B) staging Sanderlings 

(point count abundance) (middle row, in thousands), and C) departing radio-tagged Sanderlings 

(bottom row) at Chaplin and Reed Lake in columns by week of migration (1 = first week of 

May).  Columns are by year (2015-2017). The black line is a total (all years) LOESS-smoothed 

mean with surrounding 95% CI’s (gray).   
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Fig. 2.4. Numbers of staging shorebirds observed during fall migration point counts at Chaplin 

and Reed Lakes by week (1 = first week of May). A) Arctic-breeding species combined, B) 

Sanderling, C) Red-necked Phalarope, and D) Semipalmated Sandpiper are shown. Bars are 

colored by year (2016-2017). The black line is a total (all years) LOESS-smoothed mean with 

surrounding 95% CI’s (gray).   
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Fig. 2.5. Median (0.5), lower (0.025), and upper (0.975) annual population size estimates for  

Sanderlings staging at Chaplin and Reed Lakes during spring 2014 – 2017. Estimates are based 

on raw abundance from point count surveys adjusted for the sampled proportion of each lake, a 

detectability of 0.75, and a mean stopover duration of 11 days.  
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CHAPTER 3: 

WEATHER AND TIME INFLUENCE SANDERLING (CALIDRIS ALBA) MIGRATORY 

MOVEMENTS AT AN IMPORTANT SPRING STAGING SITE IN THE CENTRAL 

FLYWAY 

 This chapter describes Sanderling migratory movements and flight patterns to assess the 

effects of time of day and weather at Chaplin and Reed Lakes, Saskatchewan, with implications 

for wind energy developments. This chapter is written in manuscript style. Data were analyzed 

and the manuscript was written by Jessica Howell, in consultation with and editing by Drs. 

Christy Morrissey, Ann McKellar, Rick Espie, and Kirsty Gurney. Birds were trapped and radio-

tagged in 2015-2017 by Christy Morrissey, Kristin Bianchini, David Newstead, Jessica Howell, 

Rick Espie, Laura Messett, Kirsty Gurney, Katelyn Luff, Carla Labarerre, Leanne Flahr, Alex 

Vien, Nicholas Shephard, Steve Simpson, and others.  

3.1 Introduction 

 Many shorebird species undergo long distance migrations, relying on a restricted set of 

staging sites for rest and refueling between flights (Warnock 2010). Shorebirds may be 

particularly vulnerable to threats during migration because of their reliance on multiple habitat 

patches across one or more continents, and because a large portion of a population may use the 

same staging sites (Gratto-Trevor et al. 2010). Thus, understanding factors influencing migratory 

movements at staging sites is important as an aspect of migratory behaviour and has implications 

for management of human activity (e.g. development, industry).  

Optimal migration theory predicts that migrating birds should minimize travel time, 

energy expenditure, or mortality risk in an attempt to maximize their chances of survival and 

reproductive success. Shorebirds may minimize both time and energy expenditure by flying in 

winds that blow in the desired direction of travel (assisting winds), drifting as much as possible, 

and compensating for lateral movement away from the destination when necessary (Alerstam 

and Lindström 1990). Flying at night can minimize energy expenditure because birds encounter 

less turbulence at night (the lower atmosphere is generally more stable than during the day), 

diurnal foraging opportunities are not wasted, and predation risk is lower (Richardson 1990; 

Alerstam 2009). Previous studies have indicated that shorebirds tend to depart on nocturnal 
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flights around sunset and in assisting winds (Gudmundsson and Lindström 1992; Gudmundsson 

1994; Butler et al. 1997; Ma et al. 2011; Grönroos et al. 2012). 

Many studies on shorebird migration to date have been conducted in the Eastern 

Hemisphere and on the coasts of the Americas in the Western Hemisphere; research is lacking on 

migration patterns in the Central Flyway, which runs through the interior of North America. 

Coastal staging sites such as Delaware Bay (Atlantic coast) and the Copper River Delta (Pacific 

coast) differ from interior sites in extrinsic factors (e.g. weather, landscape) potentially 

influencing migratory decisions. Atlantic coast sites often are associated with stronger tailwinds 

in spring and weaker headwinds in fall than interior sites, but also with more dangerous 

crosswinds that could force birds over the ocean and more severe weather events (La Sorte et al. 

2014; Richardson 1990). All coastal sites are characterized by tides and coastlines- absent from 

interior sites- which may be used as departure and navigational cues (Åkesson 1993; Lank 1989). 

These extrinsic factors may result in different behavioural responses between the coastal flyways 

and the Central Flyway.  

Radio telemetry is a suitable technology for studying migratory decisions because of its 

high temporal and spatial resolution. Recent developments in automated telemetry, such as the 

Motus Wildlife Tracking System (henceforth Motus), allow for continuous monitoring within 

~12 km of receivers (Howell et al. Unpublished data; Taylor et al. 2017). This enables a more 

precise indication of the timing, orientation, and ground speed of migratory movements at the 

local scale compared to other tracking techniques, features which can then be matched with local 

weather data (Mitchell et al. 2015; Taylor et al. 2017). 

 The Prairie Pothole Region (PPR) in the Central Flyway hosts millions of migrating 

shorebirds on its lakes and ponds each year (Skagen et al. 2008). Chaplin and Reed Lakes are 

part of a large, saline wetland complex in the PPR regularly used as a staging site by at least 15 

shorebird species that feed on abundant brine shrimp (Artemia salina) and other 

macroinvertebrates (Table B.1). Each lake is designated an Important Bird Area (IBA) and 

together with neighbouring Old Wives Lake constitutes a Western Hemispheric Shorebird 

Reserve Network (WHSRN) site of Hemispheric Importance. 

 We used radio-tagging and an automated radio telemetry array to examine arrivals and 

departures of Sanderlings (Calidris alba) from Chaplin and Reed Lakes. The Sanderling is a 
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good model species for studying migratory movements because it is the most common arctic-

breeding migrant staging at Chaplin and Reed Lakes, with an estimated 75,000 individuals using 

the area each year (see chapter 2) constituting 58% of the Central Flyway population as a whole 

(Payne 2010). Our objectives were to identify which extrinsic environmental cues (time of day, 

wind direction, wind speed, temperature, pressure, visibility) were related to Sanderling arrival 

and departure decisions on spring stopover. We hypothesized that arrivals would show weak or 

no relationships with environmental conditions, and that departures would be related to both time 

and weather - birds would depart around sunset and in winds blowing towards the north 

(assisting winds). We characterize bird movements on a fine temporal scale (minutes and hours) 

and hope our results will provide insight into migratory patterns that can be used in management 

of the Chaplin and Reed Lakes area. 

3.2 Methods 

3.2.1 Shorebird Capture and Radio Telemetry 

 From 2015-2017, we captured Sanderlings in the Gulf of Mexico (GOM) at 3 locations 

early in spring migration (mid-April to mid-May): Grand Isle, Louisiana (29° 10' N, 90° 4' W), 

Bolivar Peninsula, Texas (29° 22' N, 94° 43' W), and North Padre Island, Texas (27° 20' N, 97° 

20' W). We captured Sanderlings later in spring migration (mid-May to early-June), at Chaplin 

Lake, Saskatchewan, Canada (50°25' N, 106° 40' W) (Table 2.1). We used several capture 

techniques, depending on time of day and location: mist netting from dusk to dawn (Chaplin 

Lake only), and cannon net (GOM only) or noose carpets (Chaplin Lake and GOM) during 

daylight hours. We did not trap during adverse weather conditions (high winds and/or rain). We 

banded birds with one aluminum band, one colour band, and one alpha numeric coded plastic 

flag (green for USA, white for Canada), in a combination unique to each year. We glued coded 

radio transmitters (Lotek Avian NanoTag Model NTQB-3-2 (6 - 8 s burst rate, 0.67 g mass, and 

~90 - 105 day battery life)) directly to the skin (beneath feathers) between the scapulae of each 

bird with a 5 min curing marine epoxy. Trapping, banding, and radio transmitter attachment 

protocols were approved by the University of Saskatchewan Animal Research Ethics Board as 

Animal Use Protocol 20120021 and by the Canadian Bird Banding Office as banding permit 

10268.     
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We made use of the Motus Wildlife Tracking System (Taylor et al. 2017) to monitor 

individual birds’ daily presence. Stations (receivers) continuously scan for tags (transmitters), 

logging data for the duration a tagged bird is in the area. Our local telemetry array consisted of 

six towers around Chaplin and Reed Lakes (Figs. A.1-A.3), each with three 9-element Yagi 

antennas (Model: Laird PLC1669) oriented 120˚ from one another and a SensorGnome receiver 

that listens to all antennas continuously (www.sensorgnome.org). Towers operated from late-

April to mid-October of each year of the study. Towers were approximately 7 m tall, at 

elevations ranging from ~660 to 725 m above sea level. Two separate experiments (one using a 

helium-filled balloon and one using a UAV) yielded an approximately 12 km range of the front 

lobe (Taylor et al. 2011; Howell et al. Unpublished data) and a 3 km range of side and back lobes 

of each antenna (Fig. A.4) (Howell et al. Unpublished data); giving us adequate coverage of both 

lakes. For each detection of each tagged bird by the tower, the tag number (id), date and time 

(hh:mm:ss), antenna and signal strength (dBm) were automatically recorded.    

 We isolated sets of detections from birds in flight using the following criteria: 1) most 

detections inside the set are separated from each other in time by the interval between transmitter 

signals (6 or 8 s in our case), 2) detections inside the set are separated from detections outside of 

the set by five or more minutes, and 3) detections inside the set have a curved shape when 

plotted as signal strength vs. time (Mitchell et al. 2012). We identified an arrival as the moment 

of maximum signal strength during the first set of detections of a bird at either Chaplin or Reed 

Lake. We obtained arrival data from birds tagged farther south in the GOM that later were 

detected at the Chaplin and Reed Lakes study site. We identified a departure as the moment of 

maximum signal strength during the last set of detections of a bird at Chaplin or Reed Lake- 

which ever lake the bird initiated flight from (Mitchell et al. 2015). We obtained departure data 

from the birds tagged in the GOM and birds tagged at Chaplin Lake. Arrivals and departures 

were often captured on multiple towers simultaneously and in succession, but arrivals were often 

characterized by detections at southerly towers while departures were often characterized by 

detections at the northernmost towers. Departures were also often characterized by simultaneous 

detections on all antennas at towers, which indicates that the bird was very close (~3 km or less) 

to the tower (Howell et al., Unpublished data). We identified non-stop flight detections or “fly-

overs” (birds that pass over the towers and site without stopping) as single sets of brief 
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detections. We excluded these birds (n= 7) from our movement analyses (i.e. birds did not stage 

at the study site). 

3.2.2 Weather Data Compilation 

We compiled weather data for the hour preceding an arrival or departure from Chaplin 

Lake at the time and date that the movement occurred, and for the mean hour of all recorded 

arrivals or departures on each of the three days preceding the movement (Matthews and 

Rodewald 2010). Because departures tended to be clustered in morning and late evening, we 

used weather conditions for the days preceding each movement from either a morning (0:00 – 

12:00) or evening (12:00 – 23:59) mean time compiled from arrivals or departures (see sections 

3.3.1 and 3.3.2 of Results). Weather data were compiled from Environment Canada weather 

stations at Lucky Lake (50° 57' N, 107° 9' W), Moose Jaw (50° 19' N, 105° 32' W), and Swift 

Current, SK (50° 17' N, 107° 41' W) (http://climate.weather.gc.ca/), which are roughly 75 km 

North, East, and West of Chaplin Lake, respectively (Fig. A.9). Data included temperature (˚C), 

relative humidity (%), wind direction (10’s degrees), wind speed (km/h), visibility (km, available 

for Swift Current only), and pressure (kPa). Each variable was averaged among all locations for 

each hour. 

3.2.3 Analysis of Arrivals and Departures of Tagged Birds 

We tested whether a relationship existed between time of day and arrival through angle 

histograms and Rayleigh’s Uniformity Test. We examined whether birds responded to sun 

position by plotting minutes from sunrise or sunset for each observation. We assessed the 

relationship between time of arrival at Chaplin or Reed Lake and weather conditions using 

generalized linear mixed models (GLMMs) in R (lme4). Whether or not a bird arrived on a given 

date (1 = Yes, for the day of arrival; 0 = No, for the three days preceding arrival; see above) was 

the binomial dependent variable (Grönroos et al. 2012). Temperature, wind speed, wind speed2, 

visibility, barometric pressure, and year were independent fixed effects. We included the 

polynomial term “Wind speed2” to account for a non-linear relationship between arrival and 

wind speed, which improved model fit. We did not include relative humidity in analyses because 

it was highly negatively correlated with temperature (r = -0.76, p < 0.001). Because each bird 

was tracked repeatedly (see section 3.2.2), we included bird (individual) as a random effect. We 

ranked models using Akaike Information Criterion adjusted for small sample sizes (ΔAICc) 
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(Burnham and Anderson 2003). We analyzed wind direction separately using angle histograms. 

We plotted wind directions from the day of arrival and three days preceding arrival in individual 

angle histograms. Each wind direction observation was weighted by wind speed. We tested 

whether wind data were uniformly distributed (nonsignificant) with Rayleigh’s Uniformity Test. 

All times are reported in Saskatchewan local time (GMT – 6 h). We repeated the above 

processes (time of day, GLMMs and wind analysis) for departures.  

We inferred flight direction of departing tagged birds when birds were detected on 

multiple towers in succession, with different methods depending on the distance between towers. 

For departures in which a bird was detected in succession on two or more towers more than 15 

km apart, we inferred a coarse scale cardinal direction from the direction of travel required to 

make the movement between towers. We inferred finer scale intercardinal direction when the 

antenna on which the strongest signal was recorded at the first tower passed was angled on a 

different plane than of that on the subsequent tower. For example, if a departing bird was 

detected most strongly on the southeast facing antenna of Chaplin North then later detected most 

strongly on the southwest facing antenna of Halvorgate, the inferred departure direction would 

be northwest (Fig. A.10). For departures in which a bird was detected simultaneously or in 

succession on two or more towers less than 15 km apart, we performed bi-angulations between 

signals on two antennas on different towers, which was validated by the orientation of the last 

antenna the bird was detected on to infer the direction of travel (similar to a vanishing bearing) 

(Fig. A.11). We excluded departures during which the last detections of a bird were simultaneous 

on multiple opposing antennas on single or multiple towers from analyses of departure 

orientation (n = 22). We visualized flight direction using angular histograms in the circular 

statistics program Oriana (version 4). We tested whether there was a significant mean flight 

direction using Rayleigh’s Uniformity Test; a significant non-uniform result indicates the 

population is orienting in a particular direction (Zar 1998).  

3.2.4 Visual Tracking of Departing Flocks 

On nights when we trapped birds in 2017, we monitored flying shorebird flocks from a 

road going through the middle of Chaplin Lake (Fig. A.12) starting at 20:00 until it became too 

dark to see. We watched for flocks of > 10 birds coming from any direction, and flocks flying 

more than ~20 m above ground that were not seen to land were assumed to be departing. We 
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counted birds in each migrating flock and observed through binoculars until birds were no longer 

visible. Although we could not identify birds to species, most flocks appeared to consist of small 

shorebirds. We took compass bearings when the flock was first observed and as it vanished 

(Grönroos et al. 2012; Covino et al. 2014). For each flock, we recorded start and end time of 

observation, approximate horizontal distance from observer at start time, compass bearing at start 

time, compass bearing at end time, and number of birds. We calculated flight directions of 

visually observed migrating flocks with equations 3.1 – 3.2.  

𝑏2 +  𝛽  equation 3.1 

Where 𝑏2 is the compass bearing taken as a flock vanished (vanishing bearing), and β is the 

angle for parallax compensation, calculated by: 

𝛽 = arcsin [(
𝑑1

𝑑2
) sin(𝑏1 − 𝑏2)]  equation 3.2 

Where d1 is the horizontal distance of the flock from observer at start time, d2 is the distance 

flown by the flock during the observation period, and b1 is the compass bearing of the flock at 

start time (Grönroos et al. 2012). Distance flown by the flock (d2) was calculated by assuming a 

ground speed of 16 m/s  (Alerstam et al. 2007). We tested whether there was a significant mean 

flight direction using Rayleigh’s Uniformity Test. 

3.3 Results 

3.3.1 Arrival Conditions 

We could not estimate arrival direction given the low sample size. The mean hour of 

arrival was 22:00, but arrivals were not significantly influenced by time of day (95% CI = 17:00 

– 2:00, r = 0.22, p = 0.30, N = 24; Fig. 3.1). Morning arrivals (n = 10) averaged 25 ± 74 min 

before sunrise. Evening arrivals (n = 14) averaged 130 ± 64 min before sunset.   

The null model containing no weather variables was the top model (ΔAICc = 2.5) (Table 

3.1). Angle histograms showed that wind direction was not significantly different during arrivals 

than at other times (mean wind directions of 2˚ (95% CI = 147˚ – 218˚, r = 0.11, p = 0.74) vs. 

356˚ (95% CI = 58˚ – 294˚, r = 0.15, p = 0.20)); both sets of data were uniformly distributed 

(Fig. 3.2).   
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3.3.2 Departure Flight Direction and Conditions  

 We were able to infer flight direction from 73 departures of radio-tagged birds recorded 

on two or more towers more than 15 km apart and 24 departures recorded on two or more towers 

less than 15 km apart. Mean flight direction of departing radio-tagged birds was north and data 

were non-uniformly distributed (mean = 357˚, 95% CI = 349˚ – 5˚, r = 0.78, p < 0.001) (Fig. 

3.3). One bird (tag 123) was detected on 3 towers in succession, covering 90 km heading north 

(360˚).   

The mean hour of departure was 20:10, and departures were significantly influenced by 

time of day (95% CI = 19:40 – 20:40, r = 0.72, p = <0.001, N= 140; Fig. 3.4). Morning 

departures (n = 18) averaged 16 ± 23 min after sunrise. Evening departures (n = 122) averaged 

56 ± 7 min before sunset.   

We found a positive effect of temperature and a negative effect of wind speed on 

probability of departure. The top model included temperature (β = 0.24 ± 0.11, p = 0.02), wind 

speed (β = -0.52 ± 0.12, p < 0.001), and wind speed2 (β = 0.09 ± 0.09, p = 0.31). This model was 

supported over the next best model (ΔAICc = 3.1) (Table 3.2). Angle histograms showed that 

wind direction was significantly different during departures than at other times (mean wind 

directions of 297˚ (95% CI = 279˚ – 315˚, r = 0.37, p < 0.001) vs. 157˚ (95% CI = 146˚ – 167˚, r 

= 0.36, p < 0.001)); wind directions from both departure and non-departure times were non-

uniformly distributed (Fig. 3.5). Birds had a higher probability of departure when winds were 

blowing towards the northwest at intermediate speeds; whereas birds generally did not depart 

when winds were blowing towards the southeast at higher wind speeds.   

3.3.3 Flight Direction of Visually Observed Flocks 

 We calculated vanishing bearings from 18 flocks averaging 126±27 individuals. Flight 

directions averaged northwest and were non-uniformly distributed (mean = 317˚, 95% CI = 296˚ 

– 339˚, r = 0.72, p < 0.001) (Fig. 3.6).  

3.4 Discussion 

3.4.1 Characterization of Migratory Movements 

Our hypotheses were supported by our data; Sanderling arrivals showed no relationships 

with environmental conditions but departures took place primarily around sunset and in assisting 
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winds. Departing birds oriented north (radio tagged Sanderling) to northwest (visually observed 

small shorebird flocks). Thus, departures appeared to be controlled by extrinsic factors while 

arrivals may be a consequence of intrinsic factors (fat) and extrinsic factors experienced 

previously along the migratory route.  

Sanderlings took advantage of assisting tailwinds, generally departing towards the north 

when winds blew to the west-northwest at low or intermediate speeds but not departing when 

winds blew to the southeast and at higher speeds. Visually observed small shorebird flocks 

generally departed northwest, and the difference in mean flight direction between these and 

radio-tagged Sanderling flight directions could be due to greater resolution in visual observations 

or species behavioral differences. Flying in winds blowing at least partially in the desired 

direction (i.e. towards arctic breeding grounds) minimizes energy expended, whereas flying into 

headwinds is more energetically costly and potentially hazardous if accompanied by high wind 

speeds and/or storms (Alerstam and Lindström 1990; Newton 2007). Wind assistance may be 

essential to shorebird migration. Flying without wind assistance would theoretically require over 

three times as much fat (fuel) measured in staging birds to arrive on the breeding grounds in 

good body condition (Butler et al. 1997). Ma et al. (2011) observed more departing birds, fewer 

arriving birds, and fewer birds on the ground in tailwinds, and the reverse pattern in headwinds. 

Increased departures of shorebirds in tailwinds rather than cross or headwinds were also recorded 

by Gudmundsson and Lindström (1992), Gudmundsson (1994), and Grönoos et al. (2012), and 

similar patterns have been observed in passerines (e.g. Covino et al. 2014; Sjöberg et al. 2015).    

Whether a bird departed or not was significantly positively related to temperature, which 

parallels our results for wind given that winds blowing to the north are typically associated with 

increased temperature and decreased humidity (Richardson 1990). Temperature and humidity 

were significantly negatively correlated; thus, our tagged Sanderlings may have responded to 

either or both variables. Higher temperatures and lower humidity is often indicative of lower 

precipitation and better overall weather conditions (Richardson 1990).  

In addition to relationships with weather, tagged Sanderlings departed ~ one h before 

sunset on average, which agrees with the nocturnal migratory movements reported in other 

shorebird studies but highlights an important difference between shorebird and passerine 

migration. Spring departures of Sanderlings along the coast of southwest Iceland were primarily 
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in the hour approaching and slightly following sunset (Gudmundsson and Lindström 1992). The 

median departure time of Red Knots (Calidris c. canutus) leaving staging sites in spring along 

the southern Scandinavian coast was 1.5 h before sunset (Gudmundsson 1994). Fall departures of 

Semipalmated Sandpipers (Calidris pusilla) at a coastal site in New Brunswick peaked with both 

rising tides in the day and as sunset approached, while at an inland sight in North Dakota there 

was a single strong peak in the half hour before sunset (Lank 1989). These and other studies 

show that shorebirds depart more often before sunset in contrast to passerines which depart more 

often after sunset (Lank 1989; Gudmundsson and Lindström 1992; Gudmundsson 1994; Åkesson 

and Hedenström 2000; Mills et al. 2011; Sjöberg et al. 2015). Shorebirds may leave earlier in the 

evening to maximize their flight time during longer “jumps” associated with staging strategy 

while passerines often make shorter “hops” associated with stopover strategy (Warnock 2010). 

Shorebirds could also be relying more on the sun’s position and angle to calibrate their internal 

compass for successful navigation. For example, the migratory orientation of Sanderlings 

significantly improved (towards the direction of their breeding grounds) between clear (sun 

visible) and overcast (sun obscured) skies in caged experiments (Gudmundsson and Sandberg 

2000). The use of the sun as a navigation tool could explain why a subset of tagged birds (13%) 

left the staging site on average just after sunrise. Morning departures in a generally nocturnal 

migrant may be explained as a compensation for poor weather. If weather conditions are 

suboptimal for extended periods after a bird has gained the amount of fat needed to make its next 

flight, it may chose to leave as soon as weather improves (Alerstam and Lindström 1990). Birds 

departing in the morning may also fly shorter distances, enabling them to join flocks and find 

foraging opportunities at their next stop during daylight hours (Alerstam 2009).   

Arrivals to our study area did not show any consistent patterns with time or weather, 

which may indicate that either certain times and conditions are not selected for by arriving birds 

or that the arrivals we recorded were from birds already in the nearby area. While birds appeared 

to select optimal departing conditions, arrival patterns are likely a consequence of previous 

decisions and conditions at previous departure sites and along the migratory route. 

Environmental conditions as far south as the wintering grounds can affect arrival times as far 

north as the breeding grounds (Saino et al. 2004). Total travel time will also be influenced by 

weather conditions or other unanticipated obstacles (e.g. predators, human-made structures) 

along the route (Richardson 1990). As described above, assisting winds will decrease travel time, 
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opposing winds will increase travel time, and storms may force birds to land at least temporarily 

(Butler et al. 1997; Newton 2007). The distance a bird is capable of flying non-stop without 

consideration of weather is determined by internal fuel loads (Alerstam and Lindström 1990). 

Arriving birds typically have low mass and low fat, suggesting that they stop when they are out 

of fat reserves (Krapu et al. 2006). Indeed, the fly-overs that we observed at our study site (n = 7) 

presumably were by individuals that had enough fuel to continue on migration either to another 

more northerly staging site or to their breeding grounds. Alternatively, some of the arrivals we 

observed may have been birds already present in the area (i.e. not arriving from long distances), 

but not yet detected by our towers. Our towers were located north, east, and west of Chaplin 

Lake and east and west of Reed Lake, with partial coverage to the south from one antenna at 

each tower, as antennas face south, southeast, and southwest. Thus, a recorded “arrival” may be 

delayed until the bird is on the northern half, east, or west sides of Chaplin Lake or the east or 

west sides of Reed Lake. Similarly, arrivals may show no patterns with time or weather if birds 

originated from local sites, because these short flights would presumably be less energetically 

expensive and less dangerous.  

3.4.2 Conclusion 

 Our results suggest that different stages of a migratory flight are likely controlled by 

different extrinsic and intrinsic factors. Departures were significantly related to time and wind 

conditions, while arrivals were not related to any variables we examined. Broadly, the interplay 

of factors influencing migratory activities is important for understanding the evolution of 

migration and how migratory birds may respond to changes in extrinsic factors associated with 

climate change. As Arctic breeding grounds warm faster than southern wintering grounds, birds 

may reach breeding grounds late and have lower reproductive success if weather conditions 

farther south serve as cues to initiate movement. If approached in combination with genetics and 

physiology, behavioral research like in this study may show whether Arctic migrants such as 

many shorebirds have the plasticity to cope with climate change (Knudsen et al. 2011). At a 

smaller scale, the consistency we observed in migratory departures with flight direction, timing, 

and weather have implications for management of human activities that have the potential to 

negatively affect migrating shorebirds.   
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 Wind energy development is an increasing human activity in the area surrounding 

Chaplin and Reed Lakes. Risk of bird collisions with turbines is high when large numbers of 

migrating birds are moving through a development (Drewitt and Langston 2006; Aschwanden et 

al. 2018). The significant relationships between departures and time and weather can be used to 

predict when birds will be aloft. Developments operating near the staging site and in the flight 

path of departing birds (i.e. north during spring migration) could mitigate collision risk by 

temporarily shutting off turbines at times during migration when weather is advantageous for 

initiation of migratory movements (Subramanian 2012). As an example, a 79 turbine 

development to be sited < 5 km north of Chaplin Lake was proposed but denied approval 

(Saskatchewan Ministry of Environment 2016a). Had that development been approved, 

recommended mitigation would be to monitor weather conditions throughout spring migration 

(second week of May through the second week of June), curtailing turbine operation within two 

hours of sunset and sunrise when winds are blowing towards the northwest to north at light to 

intermediate wind speeds (<22 kph) during that time. The quality and quantity of data from 

migrating tagged birds will continue to improve as technologies advance, and ongoing research 

into the intricacies of shorebird migration ecology advance our understanding of migration 

ecology as well as yield applications for conservation and management. 
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Table 3.1. Model selection of  results of GLMMs assessing factors influencing the probability of 

radio-tagged Sanderlings arriving at Chaplin and Reed Lakes on a given date (yes or no; 

binomial dependent variable) with independent variables of temperature, wind speed, visibility, 

pressure, and year. Models were ranked by ΔAICc. 

Model AIC
c
 ΔAIC

c
 Deviance w

i 
 

Arrival ~  1 112.1 0 108 0.57 

Arrival ~ Wind Speed^2 + Wind Speed 114.6 2.5 106 0.16 

Arrival ~ Wind Speed^2 + Wind Speed + Visibility  114.7 2.6 104 0.16 

Arrival ~ Temperature + Wind Speed^2 + Wind Speed 

+ Visibility 
116.1 4 103 0.08 

Arrival ~ Temperature + Wind Speed^2 + Wind Speed 

+ Visibility + Pressure 
118.2 6.1 103 0.03 

Arrival ~ Temperature + Wind Speed^2 + Wind Speed 

+ Visibility + Pressure + Year 
123 10.9 103 0.0 
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Table 3.2. Model selection results from generalized mixed models assessing factors influencing 

the probability of radio-tagged Sanderlings departing from Chaplin and Reed Lakes on a given 

date (yes or no; binomial dependent variable) with independent variables of temperature, wind 

speed, visibility, pressure, and year. Models were ranked by ΔAICc. 

Model AIC
c
 ΔAIC

c
 Deviance w

i
 

Departure ~ Temperature + Wind Speed^2 + Wind 

Speed 
617.1 0 607 0.67 

Departure ~ Temperature + Wind Speed^2 + Wind 

Speed + Year 
620.2 3.1 606 0.14 

Departure ~ Wind Speed^2 + Wind Speed 620.6 3.5 613 0.12 

Departure ~ Temperature + Wind Speed^2 + Wind 

Speed + Pressure + Year 
622.1 5 606 0.05 

Departure ~ Temperature + Wind Speed^2 + Wind 

Speed + Visibility + Pressure + Year 
623.8 6.7 605 0.02 

Departure ~ 1  633.8 16.7 628 0.0 

Departure ~ Temperature 633.9 16.8 630 0.0 
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Fig. 3.1. Hour of arrival for each Gulf-tagged Sanderling at Chaplin and Reed Lakes is 

represented as a blue dot on the 24 hour clock (n = 24) (left). The mean hour (α) is shown as a 

black line from the center of the clock with confidence interval in red. Mean vector length (r), 

sample size, and the p value of Rayleigh’s test (p) are shown below and to the left of the clock. 

Individual birds’ arrival times in min prior to (- values) and following (+ values) sunrise (n = 10) 

and sunset(n = 14) are shown as bars at the top and bottom right.  
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Fig. 3.2. Wind direction weighted by wind speed for hours that tagged Sanderlings arrived  (n = 

24) (left) and hours that birds did not arrive (right) (n = 72) at Chaplin and Reed Lakes. The 

angular histogram is arranged as a compass (0˚ = North), the size of each wedge is equivalent to 

the number of observations in that direction, and wind speed categories are shown as different 

colors. Mean wind direction (α), mean vector length (r), sample size, and the p value of 

Rayleigh’s test (p) are shown below and to the left of the plots.   
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Fig. 3.3 Flight direction of departing radio-tagged Sanderlings (n = 97 birds) at Chaplin and 

Reed Lakes. The angular histogram is arranged as a compass (0˚ = North) and the size of each 

wedge is proportional to the number of observations of that direction.  
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Fig. 3.4. Hour of departure for radio tagged Sanderlings from Chaplin Lake are represented as 

blue dots (one dot = 3 birds) on the 24 hour clock (n = 140) (left). The mean hour (α) is shown as 

the black line stretching out from the center of the clock with surrounding confidence intervals in 

red. Mean vector length (r), sample size, and the p value of Rayleigh’s test (p) are shown below 

and to the left of the clock.  Individual departure times in min prior to (- values) and following (+ 

values) sunrise (n = 18) and sunset (n = 122) are shown as bars at the top and bottom right.  
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Fig. 3.5. Wind direction weighted by wind speed for hours that radio-tagged Sanderlings 

departed (n = 140) (left) and hours that birds did not depart (n = 420) (right) from Chaplin Lake. 

The angular histogram is arranged as a compass (0˚ = North), the size of each wedge is 

equivalent to the number of observations of that direction, and wind speed categories are shown 

as different colors. Mean wind direction (α), mean vector length (r), sample size, and the p value 

of Rayleigh’s test (p) are shown below and to the left of the plots.   
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Fig. 3.6 Flight direction of departing visually observed shorebird flocks (n = 18 flocks) at 

Chaplin Lake. The angular histogram is arranged as a compass (0˚ = North) and the size of each 

wedge is proportional to the number of observations of that direction.  
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CHAPTER 4: 

CONCLUSIONS AND RECOMMENDATIONS 

 My thesis demonstrates the importance of Chaplin and Reed Lakes as a staging site both 

at a local and global scale, and underscores the need for continued work in shorebird migration 

ecology. My thesis objectives were to 1) characterize general migration chronology for arctic-

breeding shorebird migrants in spring and fall at Chaplin and Reed Lakes, as well as estimate 

spring stopover duration and population size of Sanderling; and 2) investigate migratory 

movement and orientation patterns of Sanderlings and the influence of time and weather on those 

movements. My results show that Chaplin and Reed Lakes are consistently used as a staging site 

by a globally significant number of Sanderlings (estimated population of ~75,000, 12% of the 

global population) as well as large numbers of Red-necked Phalaropes (mean spring peak count 

= 7720 ± 2007) and Semipalmated Sandpipers (mean spring peak count = 964 ± 330). Eight 

times as many birds use the area during northward spring migration than southward fall 

migration; however, both spring raw counts of all migrants and estimated population size of 

Sanderling can vary by thousands of birds or more among years. Total stopover duration 

calculated using data from radio- tagged Sanderlings marked prior to arrival and raw abundance 

from systematic point counts at the lakes improved the population size estimates, but potentially 

uneven habitat usage by staging birds as well as site-specific detectability estimates should be 

accounted for in future models. Tagged Sanderlings staged for a mean of 11.1 (95% CI = 8.59 –

13.6) days, following which birds departed towards the north or northwest from Chaplin or Reed 

Lake with apparent wind assistance (winds towards the northwest at intermediate speeds) and 

most frequently around sunset and sunrise during the first two weeks of June. These predictable 

patterns of bird migration and staging behaviour may be used to direct management of this and 

other key staging sites in the Central Flyway, and continued research will elucidate migration 

risks that may affect conservation plans for arctic-breeding species.  

4.1 Implications for Wind Energy and Other Developments at Chaplin and Reed Lakes 

 Under the threat of climate change, wind is increasingly being harvested as a renewable 

form of energy. However, wind energy developments can create wildlife conflicts when sited 

near high bird usage areas, because large numbers of birds may fatally collide with turbines 

(Drewitt and Langston 2006). Wind energy development is increasing in the area surrounding 
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Chaplin and Reed Lakes because of the consistent and strong winds in this region (Fargione et al. 

2012). A 79 turbine development originally sited for less than 5 km north of Chaplin Lake 

(Chaplin Wind Energy Project) but denied approval by the Saskatchewan Ministry of 

Environment may now be developed more than 5 km south of Reed Lake (Blue Hill Wind 

Project), where a 10 turbine development is currently operating (Morse Wind Facility).  

 My departure orientation results showed that Sanderlings departing from Chaplin Lake 

flew through the area originally sited for the Chaplin Wind Energy Project (Fig. A.13). Although 

I did not have sufficient data to examine flight direction of arriving birds in spring or departing 

birds in fall, a large proportion of these birds would likely arrive from and depart towards the 

south in spring and fall respectively. These birds would be at risk of collision with turbines in the 

Blue Hill Wind Project south of Reed Lake. This would be particularly true for individuals and 

species (e.g. Red Knot and Black-bellied Plover (Pluvialis squatarola) in spring) that had 

consistently higher abundances at Reed Lake than Chaplin Lake. Collisions with turbines may be 

more likely to have a population-level impact in Red Knots (rufa subspecies) relative to other 

shorebird species because the population is already in decline and is relatively small (Beston et 

al. 2016).  

 I recommend that managers of this and other wind energy projects sited near high bird 

usage areas consider the following management and mitigation efforts: 1) in the siting stage, 

avoid siting north or south of any staging/stopover site, between two adjacent habitat patches 

within a staging/stopover site, or within 5 km of a staging/stopover site, and 2) in the operation 

stage of developments north or south of staging/stopover sites, shut off turbines within two hours 

before and after sunset and sunrise when winds are blowing at intermediate speeds in the 

direction of breeding or wintering grounds (north in spring, south in fall) during peak migration 

times (second week of May through the second week of June), and/or integrate an automatic shut 

down when large numbers of birds are in the air using radar. A minimum 5 km buffer around 

IBAs and WHSRN sites, as implemented by the Ministry of Saskatchewan in 2016, may be a 

crucial management effort (Saskatchewan Ministry of Environment 2016b). Using mean ground 

speed (21.4± 1.12 m/s) from this study’s radio-tagged Sanderlings and climb rates of Sanderlings 

and similarly sized shorebird species reported by Piersma et al. (1997), I calculated a 

Sanderling’s approximate altitude at various distances after taking off from the north shoreline of 
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Chaplin Lake (Table 4.1). Although birds with low climb rates (0.25 m/s) would need more than 

10 km to clear turbine height, birds with high (2.0 m/s) and medium (1.25 m/s) climb rates would 

clear turbine height (165 m) by 5 km. Although beyond the scope of this study, I also 

recommend that managers of this and other wind energy projects consider potential risks to 

breeding resident birds, migrating waterfowl, and migrating bats (Arnett and Baerwald 2013). 

 Similar mitigation strategies to those for wind energy developments could also be 

implemented in other development types in the Chaplin and Reed Lakes area. For example, a 

road running across Reed Lake, which was closed for the past three years due to erosion damage, 

has recently been reconstructed and reopened for public use (Howell Personal observation). Red 

Knots and other shorebird species roost in high densities on the road during the spring migration 

season (indeed, the northern and southern tips of the road form two of our point count stations at 

Reed Lake), which could be disturbed or killed by vehicles. Human disturbance of foraging and 

roosting could interfere with fuel deposition and cause staging birds to expend additional energy 

to avoid humans (Burger et al. 2004). Collisions with vehicles were recorded when the road was 

previously open (one Sanderling and 11 Red Knot carcasses were found on June 1, 2011) 

(Johnston 2011). The Red Knot population at Chaplin and Reed Lakes appears to be in the low 

hundreds by peak point count numbers, but numbers could be in the high hundreds or more by 

personal observations and those of local birders; which heightens the potential for a population 

level impact from disturbance and collisions. I recommend considering temporary road closures 

to vehicular traffic from the second week of May to the second week of June, thus providing 

habitat and protection for at risk shorebirds during the peak period of migration.  

4.2 Recommendations for Future Research at Chaplin and Reed Lakes 

 My study raised further questions and research needs regarding shorebird migration and 

stopover ecology at Chaplin and Reed Lakes. For example, future research could aim to improve 

Sanderling population estimates by directly measuring and incorporating habitat use and features 

affecting detectability. I calculated a minimum useable area to Sanderlings within 200 m of all 

shoreline, excluding areas Sanderlings did not occupy based on anecdotal observation. However, 

there is a further need to collect habitat data along with species presence, then model species 

habitat associations, and finally use the models to predict usable area over the entirety of the 

lakes. This would be a multi-year study, as models should also incorporate annual and seasonal 
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variability in water depth (and consequently available shoreline), which significantly fluctuates 

due to variation in precipitation and evapotranspiration in the PPR. In addition, historical satellite 

imagery of the area could be used to examine changes in habitat availability among years, which 

could be modeled to test for relationships with Sanderling population size. Furthermore, I also 

concluded in my study that program “Distance” detectability estimates were biased low because 

birds were clustered in shallow water near point count centers. Detectability estimates could be 

refined by measuring relationships between water depth and Sanderling presence and including 

these as a covariate in detectability functions. The above study would therefore fill an important 

research need regarding how habitat use and heterogeneity affect detectability and thus 

contribute to improved population estimates.  

 Further work on Sanderling will extend beyond Chaplin and Reed Lakes in a study of 

radio-tagged bird detections across the entire Motus network in combination with band resights. 

The network-wide data will be used to examine total migration speed, differences in routes taken 

by different individuals in spring and fall, and tag retention. In addition to providing insight into 

these finer details of migration, the study will serve as an update to the study by Myers et al. 

(1990) on Sanderling migration routes which used band resights only. By demonstrating the use 

of multiple staging sites by individuals on multiple migration routes, the study will highlight the 

importance of hemisphere-wide conservation of shorebird habitat.  

 In addition to Sanderling, large numbers of Red-necked Phalarope use Chaplin and Reed 

Lakes as a staging site and because population dynamics and migratory movements of this 

species are poorly understood (Andres et al. 2012), further research could examine migratory 

connectivity of Red-necked Phalarope between the wintering and breeding grounds. A pilot 

study was initiated at Chaplin and Reed Lakes in spring 2017, which could be expanded by 

establishing telemetry towers at Prudhoe Bay, Alaska (Haig et al. 1997), and other potential 

northern breeding locations. The population could be studied at both locations to examine 

migration speed and adult survival. This is particularly relevant in the context of anthropogenic 

threats throughout the annual cycle; while Chaplin and Reed Lakes are flagged for increasing 

wind development (potential for mortality from collisions and habitat loss), arctic breeding sites 

such as Prudhoe Bay are experiencing increasing oil development and predator pressure 

(Liebezeit et al. 2009). 
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4.3 Application of Motus Migration Network for Conservation 

 Long distance migrants can be difficult to study, but regular use of staging sites by 

shorebirds means that these sites can provide important information on population status. Several 

key challenges in shorebird research include distinguishing separate breeding populations at 

staging sites, incorporating stopover duration into population estimates, and determining where 

monitoring should be focused with limited funding and staffing (Thomas et al. 2006; Payne 

2010; Taylor et al. 2017). These challenges could be better met with standardization and 

synthesis of monitoring and tracking efforts. For example, the existing Program for Regional and 

International Shorebird Monitoring (PRISM) aims to establish standardized, annual surveys at 

key staging, breeding, and wintering sites across the Americas (Bart et al. 2002), while the 

Motus Wildlife Tracking System aims to identify migratory routes and stopover durations of 

individual tagged birds (Taylor et al. 2017). The data sets are complimentary; PRISM collects 

total bird abundance at sites while Motus collects information on stopover duration and 

migration route from individual birds.  

 Establishment of Motus towers at staging sites with simultaneous abundance counts 

could provide powerful datasets for more accurate population estimates. Indeed, studies 

estimating staging population size have relied on both count and telemetry data (i.e. Farmer and 

Durbian 2006; Drever et al. 2014). I was able to estimate a population size of ~75,000 

Sanderlings at Chaplin Lake by using a modeling approach combining data from abundance 

counts (which may become a part of PRISM in the future) and Motus tracking, which is 

important for Sanderling conservation as 25% of North America’s Sanderling population may 

depend on this site. Establishment of Motus towers at all staging and stopover sites may not be 

financially feasible, but species-specific, general estimates gleaned from sites with towers could 

be used as constants to calculate population sizes for smaller sites with resources for only 

abundance counts. For example, the estimated Sanderling spring stopover duration of 11 days 

from my study is similar to spring stopover durations of Sanderlings recorded at other staging 

sites, making this estimate potentially applicable to analyses of data from other northern 

locations (Gudmundsson and Lindström 1992; Scott et al. 2004).  However, population size 

estimates are extremely sensitive to stopover duration (Drever et al. 2014), and more work needs 

to be done to examine the degree of site and seasonal variation in stopover duration. 
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 My project addressed temporal use of Chaplin and Reed Lakes, a single major staging 

site, by arctic-breeding shorebirds with implications for mortality risk from increasing wind 

energy development. While there are many questions still to be answered regarding shorebird 

migration ecology at the hemispheric and global scale, shorebird conservation benefits from 

research at the local and regional scale. International collaboration among researchers, 

landowners, industry, and the public will be key to preserving migratory shorebird populations 

that are highly interconnected.   
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Table 4.1. Estimated flight height of departing shorebirds at increasing horizontal distances from 

the northern edge of Chaplin Lake, using our mean radio- tagged Sanderlings ground speed of 

21.4 m/s, and climb rates from Piersma et al. (1997). Flight heights under total turbine height 

(165 m, ground to blade tip) are shown in bold.   

Climb Rate (m/s) Flight Height (m) at various horizontal distances from water’s 

edge 

2.5 km 5 km 10 km 

Low (0.25) 29 58 117 

Medium (1.25) 146 292 467 

High (2.0) 234 467 935 
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Appendix A: Relevant Maps 

 

Fig. A.1. Telemetry towers around Chaplin and Reed Lakes, with arrangements of antennas in 

2015.  Five telemetry towers were established in 2015: 3 at Chaplin Lake and 2 at Reed Lake.  

Ovals represent the approximate horizontal beamwidth, or detection range, of each antenna.  The 

tower at the west end of Reed Lake (Reed West) was destroyed by cattle during fall of 2015 and 

orientations of antennas were not recorded.   
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Fig. A.2. Telemetry towers around Chaplin and Reed Lakes, with arrangements of antennas in 

2016.  A sixth telemetry tower was established north of Chaplin Lake (Halvorgate) in 2016, the 

Reed West tower was replaced, and the antenna orientations of Chaplin North were changed.  

Ovals represent the approximate radiation pattern, or detection range, of each antenna.   
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Fig. A.3. Telemetry towers around Chaplin and Reed Lakes, with arrangements of antennas in 

2017.  The antenna orientations of Halvorgate were changed in 2017.  Ovals represent the 

approximate radiation pattern, or detection range, of each antenna.   
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Fig. A.4. Theoretical radiation pattern of a 9-element Yagi as determined from calibration with a 

UAV, projected over the Halvorgate telemetry tower (Howell et al. Unpublished data).   
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Fig. A.5. Shorebird point count survey locations at Chaplin Lake (18).   
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Fig. A.6. Shorebird point count survey locations at Reed Lake (6).   
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Fig. A.7. Minimum usable area (shaded yellow) for short-legged, non-swimming shorebird 

species at Chaplin Lake. 
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Fig. A.8. Minimum usable area (shaded yellow) for short-legged, non-swimming shorebird 

species at Reed Lake. 
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Fig. A.9. Chaplin Lake and the three weather stations averaged for analysis during arrivals and 

departures in mixed models. 
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Fig. A.10.  Departure of tagged Sanderling 434 (June 8, 2017).  The map shows Chaplin Lake, 

telemetry towers, and 2017 antenna orientations (pink, blue, and green lines).  The plot 

superimposed on the bottom left over the map was created using the Shiny application (Mitchell, 

Unpublished data).  Each plot includes detections of the bird on a tower and each circle 

represents a signal detected on an antenna of matching colour.  Time is on the x-axis and signal 

strength is on the y-axis.  The yellow line shows the bird’s estimated flight path.   
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Fig. A.11.  Departure of tagged Sanderling 358 (June 8, 2015).  The map shows Chaplin Lake, 

telemetry towers, and 2015 antenna orientations (pink, blue, and green lines).  The plot 

superimposed on the bottom left over the map was created using the Shiny application (Mitchell, 

Unpublished data).  Each plot is detections of the bird on a tower and each circle represents a 

signal with colors matching the antennas detected on.  Time is on the x-axis and signal strength 

is on the y-axis.  The yellow line shows the bird’s projected flight path.   
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Fig. A.12. Location within Chaplin Lake where departing flocks of shorebirds were monitored.   
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Fig. A.13.  Proposed and active wind energy development locations with predicted flight paths 

of departing birds. Areas shaded white are the approximate areas of the proposed Chaplin Wind-

Energy Project (denied approval), the Blue Hill Wind Project study area (environmental 

assessment in progress), and Morse Wind Facility (active). The blue arrows are predicted flight 

paths of radio-tagged birds and visually-observed flocks based on average flight directions of 

each (357˚ and 317˚).   
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Appendix B: Point Count Survey Summary 

Table B.1:  List and maximum count of all shorebird species observed at Chaplin and Reed 

Lakes during spring (2014-2017) and fall (2016-2017) migration point count surveys. Local and 

boreal breeding species are in regular font and Arctic breeding species are in bold font.   

Species 2014  

Max 

Count 

(Spring 

Only)  

2015 

Max 

Count 

(Spring 

Only) 

2016  

Max Counts 

2017  

Max Count 

 

Spring Fall Spring Fall 

American Avocet (Recurvirostra 

americana) 

503 459 183 747 250 424 

American Golden Plover (Pluvialis 

dominica) 

0 0 0 0 10 0 

Baird’s Sandpiper (Calidris bairdii) 7 1 16 204 1 0 

Black Bellied Plover (Pluvialis 

squatarola) 

0 35 34 48 256 12 

Black-necked Stilt (Himantopus 

mexicanus) 

2 5 7 6 1 0 

Dunlin (Calidris alpina) 0 1 11 0 90 0 

Greater Yellowlegs (Tringa 

melanoleuca) 

1 0 1 23 0 1 

Hudsonian Godwit (Limosa 

haemastica) 

3 2 1 0 2 0 

Killdeer (Charadrius vociferus) 5 20 24 35 15 5 

Long-billed Dowitcher 

(Limnodromus scolopaceus) 

7 25 0 0 43 0 

Least Sandpiper (Calidris minutilla) 2 0 2 0 0 0 

Lesser Yellowlegs (Tringa flavipes) 0 0 7 6 1 1 

Marbled Godwit (Limosa fedoa) 14 24 87 64 15 6 
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Pectoral Sandpiper (Calidris 

melanotos) 

0 2 7 11 62 0 

Piping Plover (Charadrius melodus) 20 20 14 21 10 2 

Red Knot (Calidris canutus) 22 26 115 0 95 0 

Red-necked Phalarope (Phalaropus 

lobatus) 

5846 3788 8125 13 13123 2000 

Ruddy Turnstone (Arenaria 

interpres) 

0 2 17 1 11 0 

Sanderling (Calidris alba) 9303 5583 3316 135 10987 640 

Short-billed Dowitcher (Limnodromus 

griseus) 

8 0 39 1 0 0 

Semipalmated Plover (Charadrius 

semipalmatus) 

9 10 8 9 27 25 

Semipalmated Sandpiper (Calidris 

pusilla) 

702 1567 154 979 1434 511 

Snowy Plover (Charadrius nivosus) 1 0 0 0 0 0 

Solitary Sandpiper (Tringa solitaria) 0 1 4 0 0 0 

Spotted Sandpiper (Actitis 

macularius) 

8 4 5 1 0 0 

Stilt Sandpiper (Calidris 

himantopus) 

1000 147 78 18 2500  2 

Upland Sandpiper (Bartramia 

longicauda) 

3 4 0 1 5 0 

Whimbrel (Numenius phaeopus) 1 0 0 0 0 0 

Willet (Tringa semipalmata) 17 11 33 56 25 5 

Wilson’s Phalarope (Phalaropus 

tricolor) 

454 145 156 1077 123 6373 

Wilson’s Snipe (Gallinago delicata) 0 0 1 2 0 0 

White-rumped Sandpiper (Calidris 

fuscicollis) 

1 0 0 1 30 30 

 


