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Abstract

In practice, survival data are often grouped into clusters, such as clinical sites, geograph-

ical regions and so on. This clustering imposes correlation among individuals within each

cluster, which is known as within cluster correlation. For instance, in our motivating ex-

ample, within each long term care facility (LTCF), the elderly are likely from nearby areas

with similar quality of life and having access to similar health care. As such, individual

sharing the same hidden features may correlate with each other. The shared frailty model

is therefore often used to take into account the correlation among individuals from the same

cluster. In some applications, when the survival data are collected over geographical regions,

random effects corresponding to geographical regions in closer proximately to each other

might also be similar in magnitude, due to underlying environmental characteristics. There-

fore, shared spatial frailty model can be adopted to model the spatial correlation among the

clusters, which are often implemented using Bayesian Markov Chain Monte Carlo method.

This method comes at the price of slow mixing rates and heavy computational cost, which

may reader it impractical for data intensive application.

In this thesis, motivated by the computational challenges encountered in modelling spatial

correlation in a real application involving large scale survival data, we used simulations

to assess the efficiency loss in parameter estimates if residual spatial correlation is present

but using a spatially uncorrelated random effect term in the model. Our simulation study

indicates that the share frailty model with only the spatially correlated random effect term

may not be sufficient to govern the total residual variation, whereas the simpler model with

only the spatially uncorrelated random effect term performs surprisingly well in estimating
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the model parameters compared with the true model with both the spatially correlated and

uncorrelated random effect terms. As such, using the shared frailty model with independent

frailty term should be reliable for estimating the effects of covariates, especially when the

percentage of censoring is not high and the number of clusters is large. Also, such model

is advantageous, since it can be easily and efficiently implemented in a standard statistical

software. This is not to say that the shared frailty model with independent frailty term

should be preferred over the spatial frailty model in all cases. Indeed, when the primary goal

of inference is predicting the hazard for specific covariates group, additional care needs to be

given due to the bias in the scale parameter associated with the Weibull distribution, when

the correlation structure is misspecified.
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Chapter 1

Introduction

1.1 Background and Motivation

Hip fracture is a fracture of the proximal femur, either through the femoral cervix or through

the trochanteric region 1.1. In Canada, up to 28% and 37% of men and women, respectively,

die in the first year following hip fracture, mostly as a result of serious underlying medical

conditions [1]. Survivors, on the other hand, will barely regain the level of function they had

prior to the hip fracture as 44% of people discharge from hospital for a hip fracture return

home; of the rest, 10% go to another hospital, 27% go to rehabilitation care, and 17% go to

long-term care facilities (LTCFs) [1]. As well, one third of survivors re-fracture within one

year and half of them re-fracture within five years after the primary event of hip fracture.

Hip fracture incidence increases with age in elderly people over 65 such that more than 80%

of people who experience hip fracture are over 50 years of age. In Canada, around 30,000

people experience hip fracture which is more than incidence frequency of heart attack, stroke

and breast cancer combined, while currently only 14% of Canada’s population are over 65

[2]. Consequently, each hip fracture costs the health care system $21,285 in the first year

after hospitalization, and $44,156 if the patient is institutionalized [3]. The total health care

budget spent on hip fracture is $1.2 billion. It is estimated that the elderly population will

1



increase up to 24% in Canada’s population and hip fracture expenditure alone on health care

will cost $2.4 billion in 2041 [3].

Figure 1.1: A hip fracture is a break in the thigh bone or femur of the hip joint. The
left picture exhibits the Femoral neck fracture which is the most common type of hip
fracture and the right picture shows Intertrochanteric hip fracture.

Among geriatric population, those who cannot live independently at home due to chronic

illnesses, or decline in physical or cognitive functions are most likely brought to long term

care facilities (LTCFs) or other residential-based care facilities. LTCFs offer 24 hour, 7 day a

week nursing services to their residents, most of whom live permanently in the facility until

death. This population, thus, is more vulnerable than community with the same age such

that they tend to develop hip fracture 4 times more and fall 3 times more than elderly people

in community [4]. The estimated prevalence of hip fracture in LTCFs is approximately 20%,

and is even higher as residents approach 90 years of age or older [5]. Residents who suffer

from a hip fracture are less likely to regain function than elderly people in community, and

are twice as likely to die within 3 months as those without fracture [6]. Conclusively, hip
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fracture contributes in substantial suffering for the patient living in these facilities, as well

as a severe economic burden for society [7].

Despite much research has been conducted to identify the risk factors associated with

hip fracture, few research has been conducted to fully utilize the information on time from

entering into the LTCFs until the first time the elderly people got hip fracture [8, 9]. Such

information on time to event is critical to evaluate the quality of the health care delivered at

LTCFs. The shared frailty models can be utilized to incorporate the within cluster correla-

tion in modeling the time to event data [10, 11]. Furthermore, recent studies [12, 13, 14] have

suggested seniors from rural areas tend to have a higher risk of getting hip fracture compared

with those from urban areas, suggesting that risk of hip fracture could potentially be geo-

graphically dependent. If macro-environmental factors are contributing to the risk of getting

hip fracture among the elderly at the LTCFs, then differential risk of hip fracture should be

expected within a large geographic area in which variation in these factors is present. Hence,

for seniors residing in the LTCFs in close proximity to each other, we would expect some

degree of residual spatial correlation in the risk of getting hip fracture after adjustment for

patient-level characteristics known to be associated with hip fracture.

To date, no study has investigated spatial patterns of initial hip fracture in elderly re-

siding in LTCFs. The shared spatial frailty model [15, 16] controls for unmeasured spatial

confounders by including a flexible baseline that is spatially varying. This approach allows

us to borrow information across spatial units to estimate the baseline hazard, which is of-

ten implemented using Bayesian Markov Chain Monte Carlo method; however, this method

comes at the price of slow mixing rates and heavy computational cost, which may reader it

impractical for data intensive application. Therefore, the objectives of this thesis include:
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(1) modeling time to first hip fracture among elderly people from LTCFs in British Columbia

to determine the risk factors associated with the hazard of having the first hip fracture based

on the shared frailty survival model; (2) testing if there is any spatial correlation in the

residual after accounting for individual level risk factors; and (3) through simulation studies,

investigating if there is any bias and efficiency loss in the estimated regression coefficients

under the models with misspecified correlation structures and if the bias and efficiency loss

depend on the percentage of censoring, the number of clusters and relative strength of the

residual spatial correlation.

1.2 Survival Analysis

Survival analysis is a branch of statistics that focuses on modeling time duration between a

starting point until a specific endpoint, such as from birth until death in biological organisms,

time to recovery after being diagnosed with certain disease or time to failure in mechanical

systems [17].

In many situations, we do not observe the event for all individuals included in a study.

A survival time is right censored when the individual did not develop the disease of interest

by the end of study, or left the study due to immigration or death or other reasons than the

event of interest. Left censoring is when the event of interest has already occurred before

enrollment. Interval censored data arises when the failure time cannot be observed, but can

only be determined to lie in an interval obtained from a sequence of examination times. The

right censoring is the most common type of censoring in many applications [18].

The time interval between an individual entering in the study until experiencing the event
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of interest or loss to follow up (due to some reason other than the disease of interest) are

called survival time and censored time, respectively.

1.2.1 Survival and Hazard Functions

Let T denote the survival time following distribution f(t). Survival function is defined as the

probability of not experiencing the event between time t:

S(t) = P (T > t) = 1− P (T ≤ t) = 1− F (t). (1.1)

which is a non-increasing function of t with S(0) = 1, 0 < S(t) < 1.

The hazard function is another commonly used distribution function for describing the

survival time [19] which is defined as:

h(t) = lim
∆→0

P (t ≤ T < t+ ∆|T ≥ t)

∆
, (1.2)

which calculates the instantaneous failure rate at time t, given that the individual survives

until time. This function is simplified by applying the conditional probability formula:

h(t) = lim
∆→0

P (t ≤ T < t+ ∆)

∆

1

P (T ≥ t)
=

dF (t)
dt

S(t)
=
f(t)

S(t)
. (1.3)

The hazard function must be non-negative, h(t) ≥ 0, and its integral over [0,∞) must be

infinite, but is not otherwise constrained; it may be increasing or decreasing, non-monotonic,
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or discontinuous. One can also write

h(t) =
dF (t)
dt

1− F (t)
= −d log(1− F (t))

dt
. (1.4)

which implies

S(t) = e−
∫ t
0 h(s)ds. (1.5)

Cumulative hazard, H(t) is another important function in survival analysis which is defined

as

H(t) =

∫ t

0

h(s)ds, (1.6)

which implies that

S(t) = e−H(t). (1.7)

Therefore, by knowing either of f(t), F (t), h(t), S(t) or H(t), other functions can be derived.

1.2.2 Accelerated Failure Time Model

To model the effect of covariates on the survival time, popular choices of regression models to

incorporate the covariates are the proportional hazards model [20, 21], the additive hazards

model [22], the proportional odds model [23] and the accelerated failure time model [24].

This thesis will focus on accelerated failure time models.

In accelerated failure time (AFT) models, we assume that the effect of the covariates will

be a multiplication of the expected survival time. For AFT models, it is common to use the

log-linear representation

Yi = log(Ti) = µ+α′Xi + σεi, (1.8)
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where µ is the intercept, α are unknown regression coefficients reflecting the effect that each

explanatory variable has on the survival time and Xi is a vector of covariates, σ is the scale

parameter and εi is the error term, i = 1, · · · , n. The distribution of the error term, εi is

assumed to be known, and determines the distribution of T and vice versa.

Weibull is one of the mostly used distributions in survival analysis. It is the only distri-

bution that can be expressed as both an accelerated failure time model and a proportional

hazard model. If T follows a Weibull distribution, ε has a Gumbel distribution [19] with the

survival function e−e
ε
.

The probability distribution function of T under a Weibull distribution is specified by

f(ti) = λiρt
ρ−1
i e−λit

ρ
i . (1.9)

Assuming the log-linear form (1.8) for the survival times, the survival function can be

expressed as,

S(ti) = P (µ+α′Xi + σεi ≥ log(ti)) (1.10)

= P

(
εi ≥

log(ti)− µ−α′Xi

σ

)
(1.11)

= Sεi

(
log(ti)− µ−α′Xi

σ

)
(1.12)

= e−e
log(ti)−µ−α

′Xi
σ (1.13)

= e−λit
1/σ
i (1.14)

where λi = e

(
−µ−α′Xi

σ

)
, which is the scale parameter for the Weibull distribution, so the

covariates can be included within λi and the parameter ρ = 1/σ provides the shape of the
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distribution.

Therefore, the hazard function for the Weibull regression is expressed as:

h(ti) = f(ti)/S(ti) = ρtρ−1
i λi = ρtρ−1

i eβ
′Xi , (1.15)

where β = (β0, β1, ..., βp)
′ such that β0 = −µ

σ
and βi = −αi

σ
, for i = 1, ..., p and p is the number

of risk factors. Weibull regression also belongs to the proportional hazard family, since the

covariates are multiplicatively related to the hazard [25].

Let δi denote the event indicator for the ith subject, i = 1, · · · , n, where δi = 1 if the ith

individual experienced the event and δi = 0 if censored. The likelihood function can be then

written as

L(θ|t, δ,X) =
n∏
i=1

f(ti)
δi
(
S(ti)

)1−δi . (1.16)

where θ = (β, ρ)′ denotes the vector of parameters in the model, t = {ti}ni=1 denotes the

collection of times to event or censoring and δ = {δi}ni=1 is the collection of event indicators

for all subjects and X is the collection of all the covariates. The likelihood function can be

also written as,

L(θ|t, δ,X) =
n∏
i=1

h(ti)
δiS(ti). (1.17)

For the Weibull regression model, the likelihood function can be then expressed as,

L(θ|t, δ,X) =
n∏
i=1

(
ρtρ−1
i eβ

′Xi
)δi exp

(
−tρi eβ

′Xi
)
. (1.18)

The maximum likelihood estimators (MLE) of the parameters can be obtained by taking the

8



derivatives of the log likelihood with respect to the parameters, which are consistent and

asymptotically normal [26].

1.3 Overview

The remaining of the thesis is organized as follows: Chapter 2 introduces shared frailty model

and its mathematical formulation, maximum likelihood estimation and inference, which is

followed by an analysis of hip fracture data. Chapter 3 introduces the shared spatial frailty

model to test if there is any residual spatial correlation. In Chapter 4, we conduct a simula-

tion study to understand if there is any bias and efficiency loss in the estimated regression

coefficients under the models with misspecified correlation structure. Further, how the bias

and efficiency loss depend on the percentage of censoring, the number of clusters and the

relative strength of the spatial correlation. Chapter 5 concludes the thesis with conclusions

and future works.
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Chapter 2

Shared Frailty Model

In the first section of this chapter, an introduction to the hip fracture data and the

potential risk factors for hip fracture will be provided. In the next section, the shared frailty

model formulation will be presented, followed by application of this model on the hip fracture

data.

2.1 Hip Fracture Data

2.1.1 Study Population and Design

The cohort of the study includes 36629 seniors who are above 65 years of age and entered

LTCFs from January 2010 to December 2014 in the the province of British Columbia (BC),

Canada. The study population comes from 298 LTCFs. Canadian hospitals and acute care

facilities record information about admitted individuals. The individuals were assessed every

three months and the data were recorded. This information comprises demographic informa-

tion, diagnosis of related diseases, date of entry and discharge of the patients and so forth.

The information periodically is submitted to the Canadian Institute for Health Information

(CIHI) by acute care facilities and/or regional health authorities (RHAs) in all territories

and provinces except Quebec. CIHI, accordingly, records these data in databases such as
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Discharge Abstract Database (DAD), Continuing Care Reporting System (CCRS), Hospital

Morbidity Database (HMD) and National Ambulatory Care Reporting System (NACRS).

DAD and CCRS are the main sources used in this research to retrieve information for the

individuals.

2.1.2 Potential Risk Factors

For many years, osteoporosis was the only well-known cause of fractures in geriatric popula-

tion. Osteoporosis is a medical condition in which the bones become brittle and fragile from

loss of tissue. One way of diagnosing osteoporosis is to determine the bone mineral density

(BMD). If BMD is 2.5 or more below the BMD of a 30 years old healthy adult, the individual

has osteoporosis. Despite the osteoporotic people are extremely prone to fracture, majority

of fractures occur in people without osteoporosis [27]. The immediate conclusion, thus, is

that BMD score does not provide the only source for prediction of hip fracture and efforts

must be made to recognize all the risk factors which are independent from osteoporosis. On

the other hand, 90% of those who get hip fracture is due to falling [28]. That is, even if the

person has osteoporosis, hip fracture would not happen if the patient does not fall. If falls

can be prevented in LTCFs, the long-term survival and quality of life of seniors in LTCFs

can be extended [29]. Henceforth, risk factors which result in falls must be detected as well

as their contribution to hip fracture risk.

The potential demographic risk factors for hip fracture are age over 65, female gender

[30], geography region [31], and the possible non-demographic factors including low body

mass index (BMI) [32], falls [33], co-morbidities [34], and poly-pharmacy [35], calcium and

vitamin D deficiency [36, 37] and etc.
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A short review of these risk factors is presented as follows:

Osteoporosis

Annually, more than 8.9 million fractures occur worldwide due to osteoporosis [38]. Os-

teoporosis is a condition that causes bones to become thin and porous, decreasing bone

strength and leading to an increase in risk of breaking a bone [39]. In Canada, osteoporosis

causes 70-90% of 30,000 hip fractures annually. One of the reasons is that the osteoporosis

is undiagnosed. As an evidence for this, 80% of patients with a history of fractures are not

given osteoporosis diagnosis or therapies [1]. Therefore, the focus has increasingly been on

the identification of patients at high risk of fracture rather than the identification of people

with osteoporosis by BMD.

Age

Age is one the most important risk factors of osteoporosis, especially in women. In recent

decades, the incidence of hip fracture has gone up substantially partly due to the extended

life expectancy. Between 1990 and 2000, there was nearly a 25% grow in hip fractures world-

wide [40]. In Canada, 80% of hip fractures happen in people over 50 years of age [1] and 52%

of hip fractures occur in the age group 80 and over [41].

Sex

It is shown that women have higher chance of getting hip fracture than men due to higher

life expectancy and experiencing menopausal which both increase risk of osteoporosis [42].

Worldwide, 1 in 3 women over age 50 will experience osteoporotic fractures, as will 1 in 5

men aged over 50 [43]. Overall, 70% and 61% of hip and osteoporotic fractures occur in
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women.

BMI

Low body mass index (binomial) is a well-documented risk factor for future fracture,

whereas a high BMI is widely believed that obesity is protective against fracture [44]. BMI

is also one of determinants of bone mineral density (BMD) [45] so that the higher BMI, the

lower is the risk of osteoporosis. In obese people, a protective layer of fat padding around

the hip may protect the bone from fracture [46].

Falls

Although bone and muscle weaknesses, low bone mineral density (BMD) and osteoporosis

are most prominent predictors of hip fracture in literature, more than 90% of hip fractures

in elderly population take place as a consequence of falls [28]. The evidence highlight the

substantial negative impact of falls on the quality of life of Canadians and Canada’s health

care system [47]. Even a minor fall or injury can lead to a fracture for someone, especially

with osteoporosis highlighting the importance of fall predictors and fall prevention. Evidence

indicates that falls may interact with geographical regions, socio-economic status, so forth

[46, 48, 49, 50, 51]. Therefore, it is vital to identify risk factors of falls resulting in hip

fracture. Major risk factors of falls in the elderly include functional decline, musculoskeletal

problems, neurological diseases, psychosocial characteristics and medications [52].

Poly-pharmacy

Polypharmacy, usually defined as the concurrent use of multiple medications [53]. Elderly
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population are more prone to multiple medical conditions, such as hypertension, arthritis,

heart disease, cancer, and diabetes mellitus, which require multiple medications for proper

treatment [54]. Residents of LTCFs, also, are not exceptional and, as a matter of fact,

consume a relatively higher volume of medications while residing in LTCFs [55]. Studies

have demonstrated that the use of multiple medications enlarges the hazard of adverse drug

effects, drug-drug interactions, electrolyte imbalance, decreased drug clearance rates, and

impaired balance [56, 57]. The probability of potential drug interactions is markedly related

to the number of medications used. When 2 drugs are taken per day, the potential for drug

interactions is approximately 6%; however, the risk rises to 50% with 5 drugs per day and

is as high as 100% with 8 drugs per day [58]. The main group of drugs resulting in these

drug complications are benzodiazepines, antidepressants, antipsychotics and antiepileptics

[59]. As a result, polypharmacy increases the risk of falls higher than twofold [60, 61] and

consequently increases the risk of hip fracture [35]

Geographical Region

The incidence of hip fracture also varies throughout the world. Statistics show that

Scandinavian countries have the highest fracture rate comparing with other regions of the

globe [62, 63, 64, 65]. Within North America, the United States is categorized as ‘very high’

fracture risk, similar to the Scandinavian countries and Iceland and Canada is categorized

as ‘high’ fracture risk, similar to Great Britain [63].

The risk of hip fracture may also vary within a smaller geographic area. There is a general

trend of the risk of hip fracture being higher in urban areas [66], which might be attributed

to the longer life expectancy, more mobility and even poorer nutrition intake for the residents
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in the urban areas [67, 68]. However, evidence in literature is mixed with some reports that

reveal higher risk in urban areas. Some studies have reported higher risk in urban areas [69],

and other study report no significant difference [70].

Co-morbidities

Patients with hip fracture frequently have multiple illnesses [71]. Such people may take

multiple medications for the sicknesses they carry, they become depressed, get anxiety and

other possibilities may happen which inflate risk of falls. Various studies have shown impact

of certain diseases in inflation of hip fracture risk: rheumatoid arthritis [72], diabetes [73],

sedentary life style [74], cognitive impairment [75] and dementia [76], Alzheimer’s [77], hy-

potension and stroke [78], and Parkinson’s disease [79].

Size of LTCF

Size of an LTCF indicates the number of seniors living in the LTCFs and defined based

on the number of beds having three categories: small: ≤ 30 beds; medium: 30 > and ≤ 100;

large: > 100.

Small sized and medium facilities are more likely to suffer from the lack of expert nurses,

professional doctors and having access to high-level care their residents may need. As a re-

sult, incidence of different clinical outcomes may be higher in such facilities than large ones

[80].

Other Factors

Other factors, at individual, facility or even regional level, may be influential in developing
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hip fracture which may not be retrievable. Examples of such factors include socio-economic

status, Vitamin D and Calcium intake, glococorticoid, parental history of fracture, alcohol

consumption and smoking. WHO report (2008) [38] gives a comprehensive overview of these

risk factors along with other factors.

2.2 Shared Frailty Model

In practice, survival data are often collected from certain groups or clusters within which

individuals tend to share common characteristics, i.e. gene traits, environmental effects,

socio-economic status and so forth. For instance, in our motivating example, within each

LTCF, the elderly are likely from nearby areas with similar quality of life, having access to

the similar doctors, nurses and drug plans and even similar activities. As such, individuals

sharing the same hidden features may correlate with each other. The shared frailty models

[10, 11] are utilized in the hip fracture analysis to take into account the within cluster

correlation.

2.2.1 Model Formulation

Let tij be the time to event or censoring for subject j in stratum i, j = 1, · · · , ni, i = 1, · · · , n.

Let Xij be a vector of individual-specific covariates. The shared frailty model has the generic

form as follows:

h(tij) = h0(tij)e
β′Xij+Vi , (2.1)

where h0(tij) is the baseline hazard, which is affected only multiplicatively by the exponential

term involving the covariates and Vi is the stratum-specific random effect term capturing the
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correlation among the individuals within each cluster. Typically, Vi follows an independent

and identically distributed (iid) normal distribution, with mean zero and variance σ2
V . In this

thesis, the focus is on Weibull frailty model, which is one of the mostly used frailty model

in survival analysis. In Weibull frailty model, we assume the baseline survival time follows a

Weibull distribution:

h0(tij) = λρtρ−1
ij , (2.2)

where λ and ρ are the scale and shape parameters.

Hazard ratio (HR) is the ratio of hazards of the event of interest for two categories of a

risk factor, which is often used in survival analysis to describe to what extent the covariate

can shorten the time to event.

2.2.2 Statistical Inference

In this section, a quick review of the estimation and inference procedures for a full parametric

shared frailty model with Weibull baseline hazard will be given.

When positing the baseline time to follow the Weibull distribution with shape ρ, and

scale λ parameters, the likelihood function is given by

L(β, ρ, σ2
V |t, δ,X,V ) =

n∏
i=1

ni∏
j=1

(
ρtρ−1
ij eβ

′Xij+Vi
)δij exp

(
−tρijeβ

′Xij+Vi
)
, (2.3)

where λ being absorbed as the intercept in the fixed part of the regression, β0 = log(λ).

The random effects Vi are unobserved which cannot be estimated directly by the observed

data. Taking average of the likelihood function over the random effects will result in the
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unconditional or marginal likelihood (probably not in a closed form) which only depends on

the regression parameters, i.e. the Weibull shape and regression parameters and the variance

component. Therefore, the maximum likelihood estimates can be evaluated based on the

unconditional likelihood function.

The first step to approximate the parameters is to integrate out the unobserved terms.

Hence, the resulting unconditional likelihood will form

L(β, ρ, σ2
V |t, δ,X) =

∫
IRn

L(β, ρ, σ2
V |t, δ,X, V1, ..., Vn) dV1...dVn =

n∏
i=1

ni∏
j=1

∫ ∞
−∞

(
ρtρ−1
ij eβ

′Xij+Vi
)δij exp

(
−tρijeβ

′Xij+Vi
)
φ(Vi|σ2

V ) dVi, (2.4)

where Vi follow normal distribution with mean zero and variance σ2
V .

The solution to this integral is not in a closed form. Hence, methods such as Taylor series

expansion, importance sampling and adaptive quadrature Gaussian rules method have been

proposed to approximate the likelihood function [81, 82, 83]. In adaptive Gaussian quadrature

method, the summand is calculated at Q predetermined quadrature points z?q (q = 1, ..., Q)

over the random sample Vi. The Gauss-Hermite weights wq and quadrature points z?q can be

obtained from tables (e.g. Abramowitz and Stegun 1964, table 25.10) [84]. In this thesis, as

also recommended by [82], the adaptive Gaussian quadrature integral approximation will be

used. A short description of this method is presented in A.1. The NLMIXED procedure was

utilized in SAS to maximize an approximation to the likelihood integrated over the random

effects (2.4).

Once the approximation is performed, the maximum likelihood estimates of parameters

can be found by utilizing conventional optimization techniques such as quasi-Newton opti-
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mizations. This method is also computationally efficient for medium to large-scale problems

such as ours. This technique needs more steps to converge, but since there is no need to

calculate the second order derivatives, each step is evaluated much faster compared to the

Newton-Raphson method [85]. This method is also not sensitive to the initial values while

the Newton-Raphson and gradient descent may fail for non-convex problems with an inap-

propriate starting point [86].

2.3 Hip Fracture Data Analysis

2.3.1 Results

Descriptive statistics of potential risk factors for the first hip fracture since entering the

LTCFs in BC are given in Table 2.1. This table shows the distribution of seniors in LTCFs

across different categories of the risk factors considered in our analysis.

In our study, age was stratified into three categories: 65-79 as the youngest group, 80-89

as middle age, and ≥ 90 as the oldest group. The individual level income is not provided,

so neighborhoods after-tax income level categorized as below average (less than $26, 500),

average ($26, 500-$47, 700) and above average income (greater than $80, 200)[87], was used

as a proxy of the individual level income. To evaluate an overall effect of commodities on

hip fracture, a variable was constructed as to whether a senior suffers from at least two of

the diseases: diabetes, hypotension, arthritis, alzheimer’s, dementia, parkinson’s disease, and

seizure, which are shown to be significantly associated with hip fracture [71]. Polypharmacy

is another potential risk factor for hip fracture, but none of our databases contain reliable
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information regarding the prescription drugs. Nevertheless, CCRS records the number of

days in the last week on antipsychotic, antianxiety and antidepressant drugs, which were

used to create an indicator variable which compares more than 2 days on such drugs versus

less than 2 days. Having experienced hip fracture before entering an LTCF might also be

an indicator of a hip fracture after entering to the LTCF. In our study, we considered two

measurements of falls with one being defined as within one month prior to the first assessment

in a LTCF and the other being defined as fall in last five months before a month prior to

the first assessment in a LTCF. BMI was calculated based on self-reported information on

weights and heights measured during the assessments by the nurses in LTCFs, which was

categorized as under-weight (less than 18.5 kg/m2), normal (between 18.5 kg/m2 and 25

kg/m2), over-weight (between 25 kg/m2 and 30 kg/m2), and obese (over 30 kg/m2).

Overall, 3219 out of 36629 patients in our cohort (8.79%) experienced hip fracture during

the course of our retrospective study. The median years of residing in LTCFs for our cohort

is 2.03 (95% CI 2.00-2.05). Demographic and non-demographic characteristics of the study

population by hip fracture status are presented in Table 2.2. We have adopted Weibull

shared frailty model for this analysis and the Weibull assumption is examined by checking

the log(− log(S(t))) vs. log(t) plot. If the model is correct, the dots should fall into a straight

line. In Figure B.1, a slight curvature in the line can be observed, but is not strong enough to

seriously violate the Weibull assumption and such curvature may be explained by covariates.

Therefore, we also generated similar plots by stratifying the data according to the different

combinations of risk factors. For example, as depicted in Figure B.2, by stratifying the data

by age and sex, and further in Figure B.3, by stratifying the data by age, sex and fall history,

the curvatures are quite minor, which indicate satisfaction of Weibull assumption. As such,
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we proceed with the bivariate and multivariate analyses based on the Weibull frailty model.

Table 2.1: Distribution of the characteristics of the elderly over age 65 from the
LTCFs, BC, Canada, 2010− 2014.

Characteristics Levels N Percentage 95% CI
Age 65-79 7582 20.7 (20.28, 21.11)

80-89 17560 47.94 (47.43, 48.45)
≥90 11487 31.36 (30.89, 31.84)

Sex Male 12227 33.38 (32.9 , 33.86)
Female 24402 66.62 (66.14, 67.10)

Fall in last month No 30860 84.25 (83.88, 84.62)
Yes 5769 15.75 (15.38, 16.12)

Fall 6 months before No 29473 80.46 (80.06, 80.87)
until last month Yes 7156 19.54 (19.13, 19.94)
Prior hip fracture No 35108 95.85 (95.64, 96.05)

Yes 1521 4.15 (3.95 , 4.36)
Co-morbidities ≤1 23331 63.7 (63.2 , 64.19)

≥2 13298 36.3 (35.81, 36.80)
Number of days on ≤2 15254 41.64 (41.14, 42.15)
psychiatric medication ≥3 21375 58.36 (57.85, 58.86)
BMI Obese 4479 12.23 (11.89, 12.56)

Over weight 9533 26.03 (25.58, 26.48)
Normal weight 18244 49.81 (49.3 , 50.32)
Under weight 4373 11.94 (11.61, 12.27)

Income Above average 11106 30.32 (29.85, 30.79)
Average 8657 23.63 (23.20 , 24.07)
Below average 16866 46.05 (45.54, 46.56)

Rural-Urban Rural 2844 7.76 (7.49 , 8.04)
Urban 33785 92.24 (91.96, 92.51)

Facility size Large 21128 57.68 (57.18, 58.19)
Medium 14863 40.58 (40.07, 41.08)
Small 638 1.74 (1.61 , 1.88)
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Table 2.2: Distribution of the characteristics of the elderly over age 65 from the LTCFs
who developed hip fracture vs. those who did not, BC, Canada, 2010− 2014.

Characteristics Levels hip fracture
Yes No

N % 95% CI N % 95% CI
Age 65-79 525 1.43 (1.31, 1.56) 7057 19.27 (18.86, 19.67)

80-89 1681 4.59 (4.37, 4.80) 15879 43.35 (42.84, 43.86)
≥90 1013 2.77 (2.60, 2.93) 10474 28.59 (28.13, 29.06)

Sex Females 2388 6.52 (6.27, 6.77) 22014 60.1 (59.60, 60.60)
Males 831 2.27 (2.12, 2.42) 11396 31.11 (30.64, 31.59)

Fall in last month Yes 690 1.88 (1.74, 2.02) 5079 13.87 (13.51, 14.22)
No 2529 6.9 (6.64, 7.16) 28331 77.35 (76.92, 77.77)

Fall 6 months before Yes 715 1.95 (1.81, 2.09) 6441 17.58 (17.19, 17.97)
until last month No 2504 6.84 (6.58, 7.09) 26969 73.63 (73.18, 74.08)
Prior hip fracture Yes 188 0.51 (0.44, 0.59) 1333 3.64 (3.45, 3.83)

No 3031 8.27 (7.99, 8.56) 32077 87.57 (87.23, 87.91)
Co-morbidities ≤1 1999 5.46 (5.22, 5.69) 21332 58.24 (57.73, 58.74)

≥2 1220 3.33 (3.15, 3.51) 12078 32.97 (32.49, 33.46)
Number of days on ≤2 1210 3.3 (3.12, 3.49) 14044 38.34 (37.84, 38.84)
psychiatric medication ≥3 2009 5.48 (5.25, 5.72) 19366 52.87 (52.36, 53.38)
BMI Under weight 203 0.55 (0.48, 0.63) 4276 11.67 (11.34, 12.00)

Normal weight 664 1.81 (1.68, 1.95) 8869 24.21 (23.77, 24.65)
Over weight 1900 5.19 (4.96, 5.41) 16344 44.62 (44.11, 45.13)
Obese 452 1.23 (1.12, 1.35) 3921 10.7 (10.39, 11.02)

Income Below average 1442 3.94 (3.74, 4.14) 15424 42.11 (41.60, 42.61)
Average 749 2.04 (1.90, 2.19) 7908 21.59 (21.17, 22.01)
Above average 1028 2.81 (2.64, 2.98) 10078 27.51 (27.06, 27.97)

Rural-Urban Rural 286 0.78 (0.69, 0.87) 2558 6.98 (6.72, 7.24)
Urban 2933 8.01 (7.73, 8.29) 30852 84.23 (83.86, 84.60)

Facility size Small 58 0.16 (0.12, 0.20) 580 1.58 (1.46, 1.71)
Medium 1377 3.76 (3.56, 3.95) 13486 36.82 (36.32, 37.31)
Large 1784 4.87 (4.65, 5.09) 19344 52.81 (52.30, 53.32)

The bivariate relationships of the potential risk factors with the hazard of hip fracture

are shown in Table 2.3. All variables with p-values for the unconditional association was

< 0.20 were considered in building the final model. The results of the multivariate analysis

(Table 2.4) indicate that the risk of HF for the seniors who entered LTCFs between 80-90

years of age is 1.32 (95% CI: 1.19-1.45) times higher as compared with those who are 65-79.

22



Similarly, the hazard of getting HF for those over 90 years of age is 1.22 (95% CI: 1.09-1.36)

times higher as compared with those who are aged 65-79. In addition, risk of developing

HF among females is 1.24 (95% CI: 1.14-1.34) times higher than males. Risk of HF among

those who had experienced falls in last month before entering an LTCF vs. those who had

not experienced falls is 1.58 (95% CI: 1.45-1.73). Moreover, hazard of HF among those who

had experienced falls within last six-one months before entering an LTCF vs. those who had

not is 1.09 (95% CI: 1.000 -1.18). A prior HF almost doubles the risk of HF, 1.98 (95% CI:

1.71-2.30). The elderly with more than one Co-morbidities vs. at most one co-morbidity

carry more risk of HF with the hazard of HF elevated by 16% (95% CI: 1%-16%). Having

taken a psychiatric medication more than three days before entering a LTCFs vs. less than

three days inflates hazard by 8% (95% CI: 8%-25%). The hazard ratios for people who are

under-weight, normal and over-weight vs. obese people are 1.57 (95% CI: 1.34-1.83), 2.44

(95% CI: 2.11-2.83) and 2.86 (95% CI: 2.41-3.38), respectively, so being obese tends to have

a protective effect against hip fracture. Hazard of HF for seniors who registered to LTCFs

in rural areas vs. those who enter urban areas is 20% (95% CI: 10%-30%) more. Comparing

seniors living in average and high income neighborhoods reveals no significant difference (p-

value = 0.3720), while the hazard of HF in seniors living in low income neighborhoods is

almost 9% less than those who live in high income neighborhoods (95% CI: 1%-11%, p-value

= 0.0311).

To determine if the frailty term improves the model fit, we compared the Weibull frailty

model with the Weibull model without frailty term in terms of AIC. The Weibull frailty model

gives much lower AIC = 26633 than the Weibull model without the random effect term, AIC

= 26649. This implies that there is some unmeasured confounders at the LTCF level. The
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comparison is further confirmed by the likelihood ratio test (p-value = < 0.0001). Also, to

verify the Weibull assumption for the baseline survival time, log(− log(S(t))) versus log(t)

were plotted, stratified by several covariates including age and sex (B.1-B.3). Lines do not

fall perfectly on straight lines, but they are straight enough to confirm that this assumption

is not violated [19].

Table 2.3: The bivariate analysis reporting the estimated hazard ratios (HR), the
corresponding 95% confidence interval (CI) and p-values for all the potential risk factors
in the hip fracture analysis.

Characteristic Levels HR 95% CI P-value
Age 80-89 vs 65-79 1.43 (1.30, 1.58) < .0001

≥90 vs. 65-79 1.42 (1.28, 1.58) < .0001
Sex Females vs. Males 1.29 (1.19, 1.39) < .0001
Fall in last month Yes vs. No 1.68 (1.55, 1.83) < .0001
Fall 6 months before Yes vs. No 1.21 (1.11, 1.31) < .0001
until last month
Prior hip fracture Yes vs No 2.13 (1.83, 2.46) < .0001
Co-morbidities ≥2 vs. ≤1 1.09 (1.02, 1.17) 0.0133
Number of days on ≥3 vs. ≤2 1.15 (1.07, 1.23) < .0001
psychiatric medication
BMI Under weight vs. Obese 1.59 (1.35, 1.86) < .0001

Normal weight vs. Obese 2.55 (2.20, 2.94) < .0001
Over weight vs. Obese 3.05 (2.59, 3.60) < .0001

Income Average vs. High 0.95 (0.86, 1.04) 0.2420
Low vs. High 0.90 (0.83, 0.98) 0.0134

Rural-Urban Rural vs. Urban 1.21 (1.06, 1.35) 0.00032
Facility size Small or Medium vs. Large 1.10 (1.02, 1.17) 0.0102

2.3.2 Discussion

Results of the previous section shows that older ages, female sex, history of falls and hip

fracture, Co-morbidities, psychiatric drugs, higher income or socio-economic status, lower

BMI and being a resident of rural areas are significant predictors of hip fracture in seniors
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Table 2.4: The multivariate analysis of the the hip fracture data using the Weibull
model with independent frailty term. The table reports the estimated hazard ratio (HR)
and the corresponding 95% confidence intervals (CI) and p-values for all the significant
risk factors.

Characteristic Levels HR 95% CI P-value
Age 80-89 vs. 65-79 1.32 (1.19, 1.45) < .0001

≥90 vs. 65-79 1.22 (1.09, 1.36) < .0001
Sex Females vs. Males 1.24 (1.14, 1.34) < .0001
Fall in last month Yes vs. No 1.58 (1.45, 1.73) < .0001
Fall 6 months before Yes vs. No 1.09 (1.00, 1.18) 0.0485
until last month
Prior hip fracture Yes vs. No 1.98 (1.71, 2.30) < .0001
Co-morbidities ≥2 vs. ≤1 1.08 (1.01, 1.16) 0.0283
Number of days on ≥3 vs. ≤2 1.16 (1.08, 1.25) < .0001
psychiatric medication
BMI Under weight vs. Obese 1.57 (1.34, 1.83) < .0001

Normal weight vs. Obese 2.44 (2.11, 2.83) < .0001
Over weight vs. Obese 2.86 (2.41, 3.38) < .0001

Income Average vs. High 0.96 (0.86, 1.06) 0.3720
Low vs. High 0.91 (0.84, 0.99) 0.0311

Rural-Urban Rural vs. Urban 1.25 (1.11, 1.43) < .0001
σ2
V 1.09 (1.02, 1.16) 0.0145
λ 1.02 (1.01, 1.02) < .0001
ρ 2.14 (2.09, 2.19) < .0001
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after entering LTCFs. These results more or less confirm the findings of other researchers

for predicting hip fracture incidence, but the results vary in magnitude which reinforces the

importance of such an independent research on LTCFs’ dwellers rather than community

residents.

Our analysis showed that age group 80-89 is most prone to HF compared to 65-79 and over

90 groups. The literature showed the risk of HF increases by aging as a general trend. For

instance, in Canada, a report in 2005 showed that incidence of HF arises substantially with

age for both men and women [88]. However, for institutionalized residents, different results

have been reported. A systematic review [89] indicated small to no association between age

and hip fracture risk, whereas a study in Ontario revealed that risk of fracture is higher

among ≥85 age group. In another recent study from Ontario, a similar pattern as our study

revealed that HF incidence declines in the extremely older group. The less number of HF in

the extremely older group may be attributed to the prevalence of frailty and immobility in

this age group which bound seniors on bed, resulting in a decrease in risk of falls and sudden

movements.

With regards to the effect of gender on HF, our study revealed higher risk of hip fracture

among women. Similar findings were reported in other studies evaluating the HF risk for the

residents in the LTCFs from Ontario [8, 9]. As well, they identified higher rates among males,

but only in higher age group, which might be partly due to comparatively higher prevalence

of frailty among male 85 years and older. However, we did not observe a significant interac-

tion between age groups and sex in our study. The overall higher prevalence of HF among

females as compared to males is probably attributable to a significantly higher proportion of

women carrying conditions considered as risk factors for HF such as osteoporosis, dementia,
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fracture of extremities, and rheumatologic diseases as compared to men [90], while signifi-

cantly higher proportions of men have diabetes, respiratory, heart, and renal diseases that

have comparatively low risk for HF [91].

Fall is one of the most important factors associated with HF among the elderly population.

Evidence has shown that fall happens more frequent among institutionalized residents than

senior community dwellers [92, 93]. Our results revealed that the hazard of getting first HF

is 58% higher if fall occurred within one month prior to the first assessment in a LTCF, and

only 9% with the senior experienced fall in preceding six months excluding immediate last

30 days before the first assessment. These results are consistent with other studies, which

revealed that the frequency of falls is higher among institutionalized residents, e.g. half of

elderly individuals fall more than once in LTCFs [92, 93].

Our study also found that history of HF prior to entering LTCFs nearly doubles the hazard

of HF. Prior history of fracture has been reported among LTCFs residents as a moderate

risk factor, though [94, 95]. In a recent meta analysis on the general population [8], reported

prior HF is a moderate risk factor. Nevertheless, these results admit a lower risk than our

results probably due to conducting studies on general population and also due to variation

in methodology used in these studies.

Low BMI is a well-documented risk factor for HF, whereas a high BMI appears to be

protective [32, 38, 96]. Our findings indicate that risk of hip fracture decreases with the

increased BMI. A recent meta analysis based on 25 prospective cohorts also showed higher

BMI has a protective effect on HF[97]. From a clinical point of view, a protective layer of

fat padding around the hip may protect the bone from fracture [46]. We also speculate that

obese seniors are at lower risk of falls, since they tend to be less mobile than seniors with
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normal weights. [98].

In addition, to study the effect of drugs on hazard of hip fracture, we considered the

number of days on three psychiatric drugs, i.e. antipsychotic, antianxiety and antidepressant.

Although a wide spectrum of drugs being used may predict time-to-hip fracture, we only

considered use of psychotropic drugs alone due to limited information on all medications

taken. Moreover, psychiatric conditions such as dementia, Alzheimers, depression are very

common reason for LTCFs admission [55]. In our analysis, we found that the use of either

of the three psychiatric drugs for 3 or more days inflates the risk of hip fracture for about

18 percent compared to 2 or less days on these drug. Similar to our findings, several studies

have demonstrated that the use of multiple medications increases the risk of adverse drug

effects, drug-drug interactions, electrolyte imbalance, decreased drug clearance rates, and

impaired balance [56, 57]. The probability of potential drug interactions is markedly related

to the number of medications used. When 2 drugs are taken per day, the potential for drug

interactions is approximately 6%; however, the risk rises to 50% with 5 drugs per day and

is as high as 100% with 8 drugs per day [58]. The main group of drugs resulting in these

drug complications are benzodiazepines, antidepressants, antipsychotics and anti-epileptics

[59]. As a result, polypharmacy increases the risk of falls higher than twofold [60, 61] and

consequently increases the risk of hip fracture. However, our results do show only small

decrease (18%) of hazards among this vulnerable population. Considering differences in

methodology and geography, further studies are warranted to further explore the impact of

medications on HF in LTCFs.

In the context of geographical variation in HF epidemiology, various published reports

describe different role of urban or rural on incidence of HF. In literature, urban settings
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predominantly showed higher incidence rates of HF than rural settings [12, 13, 14]. These

findings are more sensible in large cities [66]. However, these reports are for general popula-

tion and not specific to elderly or LTCFs residents. Reports exploring link between HF and

urban and rural differences from Canadian jurisdictions are scarce for the community dwellers

and even not yet reported for the LTCFs. Urban-rural status may also result in different

health care outcomes which are indirectly correlated with incidence of HF [99, 100, 101, 102].

Despite general pattern of higher HF occurrence in urban areas, some studies revealed

mixed patterns. For example, Oslo, Norway, an urban city that shows high incidence rate of

HF compared to other rural Norwegian areas [103], whereas from the same country, another

study showed no significant difference in HF between urban and rural areas [12]. A study

from Poland with two third rural proportion revealed significantly contrasting result that

the risk of HF is higher in the rural areas than the urban areas [104]. In Asia, a study

in Shiraz, an Iranian city, showed that the HF rate was higher in the urban areas than

the rural areas[105], but a study from Shanghai city in China, which is a typical megapolis

center revealed relatively lower rates in the urban areas as compared to the rural areas. The

differences in methodology, recruitment criteria and the targeted study populations may lead

to the mixed findings [106]. In our study, residents from the LTCFs located in the rural

areas had higher risk of HF than those from the urban areas, which might implies the lack

of adequate health care provided in the LTCFs in the rural areas.
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Chapter 3

Shared Spatial Frailty Model

In practice, survival data are often collected over clinical sites or geographical regions. In

this case, random effects corresponding to geographical regions in closer proximity to each

other might also be similar in magnitude, due to environmental characteristics, necessitating

further epidemiology study [15, 16]. As shown in Chapter 2, the seniors from the rural areas

are at a higher risk of getting hip fracture as compared with the seniors from the urban areas.

This may imply a potential spatial effect among the LTCFs. The aim of the data analysis

in this chapter is to provide an illustrative example by applying shared spatial frailty model

on the hip fracture data. In order to model the spatial correlation among the LTCFs, only a

few covariates can be included in the model due to the limitation of computation rescouses

involved in Bayesian Markov Chain Monte Carlo inference approach, as introduced in Section

3.2. Here, we are particularly interested in studying the association of falls and the risk of

hip fracture; therefore, we chose falls as the primary risk factor of interests and age, prior

hip fracture and residential region (rural versus urban) as the confounding variables. We

conducted the analysis for males and females separately due to the computational burden in

modeling the large scale survival data.
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3.1 Model formulation

Let tij be the time to event or censoring for subject j in stratum i, j = 1, · · · , ni, i = 1, · · · , n.

Let X ij be a vector of individual-specific covariates. The general form of shared spatial and

non-spatial frailty model is then defined as,

h(tij) = h0(tij)e
β′Xij+Wi+Vi , (3.1)

where h0(tij) is the baseline hazard which can be assumed to be ρtρ−1
ij eβ0 and is affected

only multiplicatively by the exponential term involving the covariates and Wi is the stratum-

specific random effect term capturing the spatial correlation among the strata, which can be

modeled as a conditional autoregressive (CAR) structure (Besag et al, 1991) [107],

Wi|W∂i ∼ N(W ∂i , σ
2
W/mi), (3.2)

where ∂i represents the neighbours of the ith region, W ∂i is the average of Wi′ 6=i that are

adjacent to Wi and mi is the number of adjacent neighbors for region i and σ2
W is the

variance parameter. The joint probability distribution for W = (W1, · · · ,Wn)′ is expressed

as,

W |σ2
W ∼MVN(0, σ2

W

(
D −A

)−1
), (3.3)

where D is a diagonal matrix with Dii being the number of neighbours for the ith region and

A is a matrix, such that Aij = 1, if ith and jth regions are neighbors and Aij = 0, otherwise.

In model (2.1), Vi denotes the region-specific random effect capturing any residual varia-
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tion that are not spatially correlated,

Vi ∼ N(0, σ2
V ), (3.4)

where σ2
V represents the variance parameter for Vi, i = 1, · · · , n.

The shared spatial frailty model is a special case of the full model with reduced random

effect structure only including W as the random effect term.

3.2 Bayesian Inference

To take the spatial and/or nonspatial Weibull regression can be implemented in a Bayesian

framework using Markov chain Monte Carlo (MCMC) procedures. The likelihood function

L(θ|t, δ,X) corresponding to the full frailty model (3.1) is expressed as,

L(θ|t, δ,X) =
n∏
i=1

ni∏
j=1

(
ρtρ−1
ij eβ

′Xij+Wi+Vi
)δij

exp
(
−tρijeβ

′Xij+Wi+Vi
)
, (3.5)

where δij is the event indicator for the jth individual from the ith region, i = 1, · · · , n and

j = 1, · · · , ni; δij = 1 if the individual experienced the event and δij = 0 if censored.

Let θ = (ρ,β,W ,V , σ2
W , σ

2
V )′ denote the vector of all the parameters in the spatial

Weibull regression model and t = {tij} denote the collection of times to event or censoring,

X = {Xij} is the collection of covariate vectors and δ = {δij} is the collection of event

indicators for all subjects in all the geographical regions. The joint posterior distribution is
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then expressed as

p(θ|t, δ,X) ∝ L(θ|t, δ,X)p(W |σ2
W )p(V |σ2

V )p(ρ)p(β)p(σ2
W )p(σ2

V ), (3.6)

where the first term in the right hand-side is the Weibull likelihood, the second and third

terms are the distributions for the spatially correlated and uncorrelated random effect terms,

as defined in (3.3) and (3.4), respectively.

The model specification in the Bayesian setup is completed by assigning prior distributions

for β, ρ, σ2
W and σ2

V . The normal prior is chosen for β ∼ N(0, σ2
0), while vague but proper

priors are chosen for ρ ∼ G(a, b); σ2
W ∼ IG(c, d) and σ2

V ∼ IG(c′, d′), where G and IG denote

the Gamma and inverse (reciprocal) Gamma distributions, respectively.

3.2.1 Gibbs Sampling Formulation

The Gibbs sampler [108] is used to update the parameters in the model, which requires draw-

ing samples sequentially from the full conditional distributions. The conditional distributions
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required by Gibbs sampling are given as follows:

β(l) ∼ β|ρ(l−1), σ2
V

(l−1)
,V l−1, σ2

W
(l−1)

,W (l−1), t, δ,X

ρ(l) ∼ ρ|β(l), σ2
V

(l−1)
,V l−1, σ2

W
(l−1)

,W (l−1), t, δ,X

σ2
V

(l) ∼ σ2
V |β(l), ρ(l),V l−1, σ2

W
(l−1)

,W (l−1), t, δ,X

V (l) ∼ V |β(l), ρ(l), σ2
V

(l)
, σ2

W
(l−1)

,W (l−1), t, δ,X

σ2
W

(l) ∼ σ2
W |β(l), ρ(l), σ2

V
(l)
,V l,W (l−1), t, δ,X

W (l) ∼W |β(l), ρ(l), σ2
V

(l)
,V l, σ2

W
(l)
, t, δ,X. (3.7)

More specifically:

β ∼
[ n∏
i=1

ni∏
j=1

(eδijβ
′Xij)e−t

ρ
ije
β′Xij+Wi+Vi

]
e
− β2

2σ20

ρ ∼
[ n∏
i=1

ni∏
j=1

(ρtρ−1
ij )δije−t

ρ
ije
β′Xij+Wi+Vi

]
ρa−1e−bρ

σ2
V ∼

[ n∏
i=1

ni∏
j=1

eδijVie−t
ρ
ije
β′Xij+Wi+Vi

][ n∏
i=1

e
− (Vi)

2

2σ2
V

]
σ−c−1
V e

−d
σ2
V

Vk ∼
(
eδkjVke−t

ρ
kje

β′Xkj+Wk+Vk)
e
− V 2

k
2(σV

2)2 ; k = 1, 2, . . . , n

σ2
W ∼

[ n∏
i=1

ni∏
j=1

eδijWie−t
ρ
ije
β′Xij+Wi+Vi

]
σ−c

′−1
W e

−d′

σ2
W e
− 1

2σ2
W

W ′(D−A)W

W ∼
[ n∏
i=1

ni∏
j=1

eδijWie−t
ρ
ije
β′Xij+Wi+Vi

]
e
− 1

2(σW )2
W ′(D−A)W

. (3.8)

To implement Gibbs sampling, OpenBUGS software was utilized and the built-in function

car.normal was used to sample from the multivariate normal distribution for the spatial

random effect.
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3.2.2 Model Comparison Criteria

Deviance information criterion (DIC) is a Bayesian tool for model comparison. This criterion

was established by Spiegelhalter et al. (2002), and is an extension of frequentists’ criteria

which takes the number of parameters in the model into account [109]. This criterion is based

on the posterior distribution of the deviance statistic,

D(θ) = −2 log f(y|θ) + 2 log h(y), (3.9)

where f(y|θ) is the likelihood function for the observed data y, given the parameter vector

θ, and h(y) is the standardizing function of the data alone. The posterior mean of the de-

viance, D̄ = Eθ|y(D) measures the model adequacy and pD is effective number of parameters

measuring the model complexity, which is defined as

pD = Eθ|y(D)−D(Eθ|y(θ)) = D̄ −D(
¯̂
θ), (3.10)

The DIC is then defined as,

DIC = D̄ + pD. (3.11)

Models with lower DIC scores are preferred as they achieve a more optimal combination of

fit and parsimony [109].
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3.3 Bayesian Model Checking Strategies

Checking the model fit is one of the steps required to confirm if the model used is appropriate

and is not under-fitting the data. One way to check the model fit is to define a scalar ‘test

quantity’ which is able to measure the discrepancies of the model fitted and the observed data.

Unlike the frequentist approach in which the test statistics are independent of the parameter

of interest, test quantities depend on both the observed data and (posterior distribution of)

parameters in Bayesian statistics and are denoted by T (y,θ) here, where y is the observed

data, and θ is the set of parameters gained after the model fit. Noted that in the survival

analysis context y represents time:

T (y,θ) =
N∑
i=1

(yi − E(yi|θ))2

var(yi|θ)
, (3.12)

which is referred to as the Chi-square discrepancy measurement. Two other discrepancy

measurements can be defined as the minimum and maximum value of the observed survival

times,

T (y,θ) = ymin,

T (y,θ) = ymax.

(3.13)

Let y denote the observed data and yrep denote the replicated data. A posterior predic-

tive p-value is a summary measure which evaluates extremeness of T (y|θ) with respect to
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T (yrep|θ),

P (T (yrep,θ) ≥ T (y,θ)|y) =

∫
P (T (yrep,θ) ≥ T (y,θ)|θ)P (θ|y)dθ. (3.14)

The purpose of a p-value or diagnostic of fit is to reveal systematic differences between the

model prediction and the data. A p-value that is close to 0.50 represents adequate model fit,

whereas p-values near 0 or 1 indicate lack of fit [110].

3.4 Hip Fracture Data Analysis

In order to determine if there is any spatial correlation in the hazard of getting hip fracture

among the LTCFs at the FSA level after adjusting for various individual level risk factors,

we applied spatial frailty model to the hip fracture data. In our analysis, the geographic

unit is forward sortation area (FSA), since the exact spatial locations for the LTCFs are

not given due to the confidentiality issue. Post Canada defines an FSA as a geographical

region in which all postal codes start with the same three characters. The first letter of

an FSA code denotes a particular “postal district”, which, outside of Quebec and Ontario,

corresponds to an entire province or territory [111]. Our analysis includes 124 FSAs from

BC, while generalizations made at one level of spatial aggregation may not necessarily hold

at another level. Future work is needed to investigate the spatial effect at other levels of

spatial aggregation.

To determine if there is any spatial and/or non-spatial residual left unexplained by the

risk factors, we consider three competing models including the models: (1) with only the
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spatially correlated frailty term; (2) with only the spatial uncorrelated frailty term; and (3)

with both the spatially correlated and spatial uncorrelated frailty terms. The DIC goodness-

of-fit method is used to determine which model fits better and Bayesian model checking

strategies is used to examine the model fit. The computations were performed on a Windows

7 operator, with 8 Gigabyte ram and Core(Tm) i5-3337U CPU @ 1.80Hz system.

3.4.1 Models

The cohort comprises patients who meet the criteria outlined in Chapter 2. The covariates

include age, sex, urban-rural status, history of falls and hip fracture as well as start and end

points for patients inclusion, whether or not the elderly have developed hip fractures. The

models under comparison include the full model with Vi+Wi as the frailty, the spatial model

with Wi as the frailty and the non-spatial frailty model with Vi as the frailty. To be more

specific, the models are listed as follows:

(1) shared frailty model with independent frailty term:

h(tij) = ρtρ−1
ij eηij+Vi , (3.15)

(2) shared frailty model with spatially correlated frailty term:

h(tij) = ρtρ−1
ij eηij+Wi , (3.16)
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(3) shared frailty model with independent and spatially correlated frailty terms:

h(tij) = ρtρ−1
ij eηij+Vi+Wi , (3.17)

where ηij = β0 + β1Ageij + β2Fallsij + β3PriorHFij + β4UrbanRuralij, i = 1, 2, ..., n and

j = 1, 2, ..., ni such that n is the number of FSAs (n = 124) and ni is the number of patients in

the ith FSA. The priors for the parameters are specified as: βi ∼ N(0, 1), ρ, τV , τW ∼ G(1, 1)

such that σ2
V = 1/τV and σ2

W = 1/τW .

3.4.2 Results

Due to the computational burden analyzing the entire dataset (N = 36629), the dataset was

divided to two smaller datasets, one for males and another for females. Table 3.1 - 3.3 include

posterior means and posterior standard deviation (SD) along with the 95% credible intervals

of model parameter estimates, under the three competing models listed in the subsection

3.4.1, respectively.

Table 3.4 reports the Bayesian posterior predictive p-values when the discrepancy mea-

surements are Chi-square, min and max, as specified in (3.12) and (3.13). The results indicate

that all the models fit the data reasonably well with the Bayesian posterior predictive p-values

around 0.5. Table 3.5 reports the DICs for the three models. The comparison of the DICs

shows that the minimum value is cast by applying the non-spatial frailty model, which in-

dicates that the non-spatial frailty model performs the best as compared to the other two

competing models. As such, no spatial correlation in the hazard of hip fracture among the

FSAs were identified after accounting for known individual level risk factors. Further, the
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running time of non-spatial frailty was about the same as the running time of spatial frailty

and substantially smaller than the running time of the full model.
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Table 3.1: Posterior means (Mean), standard deviations (SD), 95% credible intervals
(CI) and the hazard ratios (HR) of the estimated parameters for the non-spatial frailty
model.

Females Males
Parameter Mean SD 95% CI HR Mean SD 95% CI HR
Age 0.04 0.04 (-0.04, 0.13) 1.04 0.13 0.07 (-0.01, 0.28) 1.14
Falls 0.39 0.05 (0.28, 0.49) 1.48 0.49 0.08 (0.32, 0.65) 1.63
Prior HF 0.51 0.09 (0.32, 0.68) 1.67 0.33 0.16 (0.000, 0.65) 1.39
Urban Rural -0.08 0.11 (-0.31, 0.12) 0.92 -0.02 0.18 (-0.37, 0.36) 0.98
σ2
V 0.07 0.01 (0.05, 0.10) - 0.11 0.03 (0.07, 0.17) -
λ 0.75 0.08 (0.61, 0.94) - 0.78 0.14 (0.53, 1.08) -
ρ 1.12 0.02 (1.09, 1.16) - 1.16 0.03 (1.10, 1.22) -

Table 3.2: Posterior means (Mean), standard deviations (SD), 95% credible intervals
(CI) and the hazard ratios (HR) of the estimated parameters for the spatial frailty
model.

Females Males
Parameter Mean SD 95% CI HR Mean SD 95% CI HR
Age 0.05 0.04 (-0.03, 0.13) 1.05 0.13 0.07 (-0.02, 0.27) 1.14
Falls 0.39 0.05 (0.28, 0.49) 1.48 0.48 0.08 (0.32, 0.63) 1.62
Prior HF 0.50 0.09 (0.33, 0.68) 1.65 0.30 0.16 (-0.01, 0.59) 1.35
Urban Rural -0.06 0.09 (-0.24, 0.11) 0.94 -0.07 0.15 (-0.36, 0.22) 0.93
σ2
W 0.09 0.02 (0.06, 0.14) - 0.15 0.04 (0.08, 0.24) -
λ 0.74 0.06 (0.62, 0.87) - 0.81 0.12 (0.60, 1.06) -
ρ 1.12 0.02 (1.08, 1.15) - 1.15 0.03 (1.09, 1.21) -

Table 3.3: Posterior means (Mean), standard deviations (SD), 95% credible intervals
(CI) and the hazard ratios (HR) of the estimated parameters for the full model.

Females Males
Parameter Mean SD 95% CI HR Mean SD 95% CI HR
Age 0.05 0.05 (-0.04, 0.13) 1.05 0.14 0.08 (-0.01, 0.28) 1.15
Falls 0.39 0.06 (0.28, 0.49) 1.48 0.50 0.09 (0.34, 0.67) 1.65
Prior HF 0.50 0.09 (0.33, 0.68) 1.65 0.35 0.16 (0.03, 0.65) 1.42
UrbanRural -0.05 0.12 (-0.29, 0.20) 0.95 -0.07 0.19 (-0.44, 0.30) 0.93
σ2
V 0.08 0.02 (0.05, 0.11) - 0.11 0.03 (0.07, 0.18) -
σ2
W 0.10 0.02 (0.06, 0.15) - 0.14 0.04 (0.08, 0.23) -
λ 0.73 0.09 (0.57, 0.91) - 0.79 0.15 (0.54, 1.11) -
ρ 1.13 0.02 (1.09, 1.16) - 1.17 0.03 (1.11, 1.24) -
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Table 3.4: Bayesian posterior predictive p-values for three discrepancy measurements
defined in (3.12) and (3.13).

Model Discrepancy Measures Bayesian p-value
T (yrep|θ) Females Males
Ch-Square 0.52 0.43

Non-spatial min 0.51 0.54
max 0.53 0.51
p-value 0.51 0.44

Spatial min 0.52 0.54
max 0.52 0.51
p-value 0.48 0.44

Full min 0.53 0.52
max 0.51 0.51

Table 3.5: Deviance information criterion (DIC) for competing models of in the hip
fracture data analysis.

Model DIC
Females Males

Non-spatial 5627.16 1681.36
Spatial 5628.46 1681.06
Full 5643.65 1693.64
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Chapter 4

Simulation Studies

In modeling a large scale survival data, it might be ideal to incorporate the spatial correla-

tion among the clusters in the model, when clusters exhibit spatial autocorrelation. However,

inference for these models is challenging. The Bayesian MCMC method, as the mostly com-

monly used inference procedure in spatial statistics, often poses computational challenges

modeling large scale spatially correlated data.

For example, in our data analysis presented in Chapter 2, more than 20 covariates can

be modeled through fitting an independent frailty model; however in order to model the

spatial correlation among the LTCFs, as presented in Chapter 3, only a few covariates can

be included in the model due to the limitation of computation rescouses. Additional, it only

takes a few minutes to fit an independent frailty model through generalized linear mixed

effect model in SAS (by selecting an efficient optimization algorithm), whereas it took at

least 10 hours to fit a spatial frailty model with only limited number of covariates.

In spite of the non-significance of the spatial autocorrelation in our motivating example,

we strive to understand how much benefit we can gain through modeling the spatial effect in

a large scale survival data. Further, we aim to investigate if there is any bias and efficiency

loss in the estimated regression coefficients under the misspecified correlation structure and

if the bias and efficiency loss depends on the percentage of censoring, the number of clusters
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and the relative strength of the residual spatial correlation.

4.1 Simulation Design

To examine the bias and efficiency loss in the estimated regression coefficients under mis-

specified residual correlation structure, we conducted a series of simulation studies.

First, we consider simulating the failure/censoring time from the full model as:

h(tij) = ρtρ−1
ij eβ0+β1X1ij+β2X2ij+Wi+Vi , (4.1)

where β0 = log(λ), where λ is the scale parameter of Weibull distribution, and

W |σ2
W ∼MVN(0, σ2

W

(
D −A

)−1
), (4.2)

where D −A is the neighborhood structure and

Vi ∼ N(0, σ2
V ). (4.3)

A simulated dataset was derived by dividing the area into 5×5 = 25 equally sized squares.

We also considered increase the number of areas as 10 × 10 = 100 and 16 × 16 = 196. The

covariates are simulated as X1ij ∼ N(0, 1) and X2ij ∼ Bernoulli(0.5) in order to make the

simulation studies general applicable. To evaluate the percentage of censoring on the bias

of the estimated regression coefficients, we considered varying the percentage of censoring

as 20%, 70%, 85%, 90% and 95% under the right censoring mechanism. These censoring
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variables are generated from binomial distribution. The fixed values for parameters other

than σ2
V have been chosen purposefully. The fixed values are: λ = eβ0 = .55, ρ = 1.5, β1 = 2,

β2 = 1.5, σ2
W = 5. To evaluate the impact of the residual spatial correlation on the estimated

regression coefficients, we specify σ2
V = 0, 1, 4, 15. That is, for σ2

V = 0, the model is reduced

to be model with only the spatially correlated random effect, and as σ2
V increases over 1, 4,

and 15, the spatial effect becomes less dominant compared with the overall residual variation.

We created 100 of the defined simulated datasets for each simulation scenario and on

each dataset, three models were fitted including: (1) the full model with the independent

and spatially correlated random effect terms, (2) the spatial model with only the spatially

correlated random effect term and (3) the non-spatial model with only the spatially uncor-

related random effect term.

We assigned a vague Normal prior with mean 0 and variance 1000, N(0, 1000), to βi’s, a

Gamma distribution prior with mean 0 and variance 1000, G(0.0001, 0.0001), for ρ, τV , τW ,

where τV = 1/σ2
V and τW = 1/σ2

W . Two independent sequences of Markov chain simula-

tion with overdispersed starting points were generated. Each chain ran for 15,000 MCMC

iterations using a burn-in of 5000, and thin number 10, which were sufficient to ensure con-

vergence based on trace plots and R̂ statistic. The simulation were carried out in R version

3.0.3, using parallel computing capabilities of a high performance computing system.
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4.2 Simulation Results

Tables 4.1- 4.6 show the percent relative bias (RB) [112] of posterior means, mean square

error (MSE) for the posterior means and the coverage probability (CP) of the 95% credible

interval for the parameter estimate for λ, ρ, β1, β2, σ
2
V , σ

2
W , respectively, with varying number

of clusters (25, 100 and 196) and percent of censorship (20, 70, 85, 90 and 95), when the

values for σ2
V and σ2

W are set as 4.

The results for λ as presented in Table 4.1 indicate that all the three models yield sub-

stantial bias in estimating λ when the number of clusters is small, i.e 25 clusters; however as

the number of clusters increases, the RB and MSE decrease at the same level of percentage

of censorship. By increasing the percentage of censorship given the same number of cluster

size, RB and MSE increases. Under all scenarios, the RB and MSE tends to be larger for the

spatial model and not much difference between non-spatial and the full models. Further, the

CP under the spatial model is substantially lower than the non-spatial and the full models,

especially when the percentage of censoring and the number of clusters is low.

The RB, MSE and CP for the posterior estimate of the parameter ρ are presented in

Table 4.2. The results indicate that as the percentage of censoring increases, the RB and

MSE increase and CP decreases for all three models. Nevertheless, when the percentage of

censoring is less than 90%, bias remains small and coverage probability were approximatively

0.95, especially when the number of clusters is large. The RB and MSE for the spatial model

appear to be larger than the full and non-spatial model; whereas the CP tends to be lower

for the spatial model as compared with the full and non-spatial model.

As for the posterior estimates of the regression coefficients β1 and β2, presented in Tables
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4.3 and 4.4. The patterns or RB, MSE and CP are consistent with the posterior estimate for

ρ (Table 4.2). When the percentage of censoring is not extremely high (> 90%), and when

the number of clusters is high, all the models perform reasonably well with the RB < 5%

and the CP is close to 95%; however, when the number of clusters is small, especially when

the percentage of censoring is high, the spatial model yield much larger RB, MSE and lower

CP. For example, when the number of clusters is 25 and the percentage of censoring is 95%,

the RB under the spatial model is 36.629 and the CP dropped to as low as 0.65. Although

the RB for the full and non-spatial models are also high in this scenario, the CPs are all over

80%.

Table 4.4 shows similar pattern for estimates for all the three models, but shows that

estimates are more sensitive to size of clusters and censorship. For instance, when number

of clusters is 25, the estimate of β2 are biased for censorship equal or greater than 70%; and

for larger clusters, censorship equal or over 85% and 90% result in relative bias over 5%. In

all scenarios, non-spatial and full model are not significantly different, but always perform

better than spatial model.

In general, under all scenarios, the RB, MSE and CP depend on the percentage of cen-

soring the the number of clusters in the data. The spatial model yields the most inaccurate

and unstable posterior estimates as compared to the full and the non-spatial models. The

performance of the non-spatial model and the full model are fairly comparable, which indi-

cates the gains of modeling the spatial correlation in addition to the non-spatial correlation

is only marginal.

Tables 4.5 and 4.6 present the RB, MSE and CP for the variance components σ2
W and σ2

V

for the spatially correlated random effect and spatially uncorrelated random effect, respec-
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tively. The results indicate that the full model performs reasonably well in estimating the

σ2
W and σ2

V when the percentage of censoring is lower than 90% and the number of clusters

is above 100. By contrast, the spatial model completely missed modeling the spatial random

effect with zero coverage probability and substantial RB and MSE. The 95% credible interval

for the variance component of the spatially uncorrelated effect also completely missed the

true parameter, but the RB (Table 4.6) is much smaller as compared with the RB for variance

component of the spatially correlated random effect term (Table 4.5). To better display the

results, we also generated the boxplots of the posterior mean estimates of λ, ρ, β1, β2, σ2
W

and σ2
V , as displayed in Figures 4.1-4.6.

Tables 4.7-4.12 contain the average of posterior means and their 95% credible intervals

along with the average of estimates for R̂ over the repeatedly simulated data. The results

show that by increasing the percentage of censorship and decreasing the number of clusters,

the posterior mean of λ tend to overestimate its true value and the posterior means of ρ, β1

and β2 tend to overestimate their true values, and the credible intervals for all parameters

become wider. By comparing the three competing models, when the percentage of censoring

is not overly high, i.e. < 95% and the number of clusters is not very low, i.e. > 25,

the parameter estimates based on the non-spatial model are fairly close to the parameter

estimates based on the full model (true model), as compared to the spatial model. The

R̂ estimates are all close to 1 and do not vary across different simulation scenarios, which

indicates the convergence of the MCMC chains.

48



Table 4.1: Percent relative bias (%RB), mean square error (MSE) and coverage prob-
ability (CP) of the estimated λ based on the non-spatial model, spatial model and the
full model, when the data is simulated from the full model. The true value for λ = 0.55.

Cluster 25 100 196
%Censor Model %RB MSE CP %RB MSE CP %RB MSE CP
20 non-spatial 35.440 0.122 0.960 6.840 0.016 0.990 3.169 0.001 1.000

Spatial 20.455 0.110 0.275 1.994 0.015 0.220 0.090 0.001 0.370
Full 30.514 0.114 0.940 6.498 0.017 0.940 2.391 0.001 0.960

70 non-spatial 40.000 0.133 0.960 1.722 0.000 0.990 3.293 0.001 0.980
Spatial 21.524 0.111 0.516 2.527 0.016 0.424 0.182 0.001 0.600
Full 36.092 0.131 0.940 7.016 0.018 0.960 2.529 0.001 0.970

85 non-spatial 45.590 0.163 0.950 12.255 0.026 0.960 5.568 0.001 0.990
Spatial 27.082 0.120 0.656 5.478 0.021 0.646 1.766 0.001 0.747
Full 42.373 0.159 0.930 10.943 0.026 0.920 4.612 0.001 0.959

90 non-spatial 54.506 0.217 0.950 12.452 0.022 0.990 7.718 0.013 0.970
Spatial 34.838 0.164 0.790 4.903 0.016 0.880 2.781 0.010 0.870
Full 51.981 0.218 0.930 10.562 0.020 0.960 6.548 0.012 0.930

95 non-spatial 73.380 0.337 0.920 27.983 0.066 0.960 11.051 0.016 1.000
Spatial 44.388 0.189 0.880 16.842 0.045 0.880 5.703 0.012 0.960
Full 77.557 0.389 0.900 25.209 0.061 0.930 10.260 0.015 0.990

Table 4.2: Percent relative bias (%RB), mean square error (MSE) and coverage prob-
ability (CP) of estimator of ρ based on the non-spatial model, spatial model and the
full model, when the data is simulated from the full model. The true value for ρ = 1.5.

Cluster 25 100 196
%Censor Model %RB MSE CP %RB MSE CP %RB MSE CP
20 non-spatial 1.383 0.000 0.960 0.288 0.000 0.960 0.174 0.000 0.960

Spatial 1.700 0.000 0.956 0.378 0.000 0.950 0.188 0.000 0.960
Full 1.370 0.000 0.960 0.377 0.000 0.950 0.194 0.000 0.960

70 non-spatial 3.107 0.011 0.930 0.568 0.000 0.960 0.543 0.000 0.970
Spatial 3.506 0.012 0.926 0.699 0.000 0.939 0.685 0.000 0.980
Full 3.070 0.011 0.940 0.573 0.000 0.940 0.601 0.000 0.990

85 non-spatial 5.642 0.028 0.910 2.014 0.001 0.930 0.824 0.000 0.940
Spatial 7.490 0.034 0.885 2.614 0.001 0.919 1.497 0.000 0.929
Full 5.271 0.026 0.910 2.145 0.001 0.930 0.892 0.000 0.948

90 non-spatial 11.853 0.055 0.890 2.731 0.014 0.920 1.591 0.001 0.950
Spatial 15.533 0.081 0.810 4.074 0.017 0.870 2.846 0.001 0.930
Full 11.106 0.049 0.920 2.881 0.014 0.910 1.794 0.001 0.950

95 non-spatial 19.250 0.113 0.850 8.140 0.034 0.930 5.500 0.022 0.930
Spatial 29.186 0.221 0.630 12.809 0.060 0.840 9.833 0.039 0.820
Full 16.295 0.089 0.890 8.408 0.034 0.910 5.908 0.022 0.900
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Table 4.3: Percent relative bias (%RB), mean square error (MSE) and coverage prob-
ability (CP) of estimator of β1 based on the non-spatial model, spatial model and the
full model, when the data is simulated from the full model. The true value for β1 = 2.

Cluster 25 100 196
%Censor Model %RB MSE CP %RB MSE CP %RB MSE CP
20 non-spatial 1.862 0.011 0.920 0.237 0.000 0.930 0.038 0.000 0.910

Spatial 2.325 0.010 0.945 0.364 0.000 0.950 0.052 0.000 0.910
Full 1.840 0.011 0.930 0.359 0.000 0.950 0.057 0.000 0.910

70 non-spatial 3.202 0.029 0.930 0.325 0.000 0.930 0.549 0.000 0.990
Spatial 3.534 0.030 0.926 1.015 0.001 0.949 0.683 0.000 1.000
Full 3.157 0.028 0.930 0.874 0.001 0.950 0.609 0.000 0.990

85 non-spatial 8.292 0.093 0.880 1.955 0.016 0.940 0.742 0.010 0.960
Spatial 10.075 0.101 0.865 2.590 0.018 0.939 1.349 0.011 0.949
Full 7.937 0.089 0.900 2.082 0.016 0.940 0.748 0.010 0.959

90 non-spatial 15.569 0.170 0.860 4.322 0.039 0.910 2.485 0.018 0.960
Spatial 19.437 0.225 0.830 5.611 0.044 0.850 3.719 0.022 0.950
Full 14.903 0.159 0.870 4.406 0.039 0.920 2.710 0.018 0.950

95 non-spatial 29.830 0.436 0.830 12.624 0.121 0.860 7.039 0.065 0.860
Spatial 36.629 0.618 0.650 16.787 0.177 0.780 11.113 0.098 0.830
Full 27.408 0.380 0.870 12.882 0.122 0.840 7.381 0.067 0.870

Table 4.4: Percent relative bias (%RB), mean square error (MSE) and coverage prob-
ability (CP) of the estimated β2 based on the non-spatial model, spatial model and the
full model, when the data is simulated from the full model. The true value for β2 = 1.5.

Cluster 25 100 196
%Censor Model %RB MSE CP %RB MSE CP %RB MSE CP
20 non-spatial 2.633 0.018 0.960 0.584 0.000 0.990 0.227 0.000 0.930

Spatial 2.989 0.018 0.934 0.723 0.000 0.990 0.250 0.000 0.930
Full 2.634 0.018 0.950 0.710 0.000 0.970 0.250 0.000 0.940

70 non-spatial 7.996 0.055 0.910 1.164 0.001 0.990 0.599 0.010 0.920
Spatial 8.826 0.055 0.916 1.844 0.014 0.919 0.720 0.010 0.930
Full 8.027 0.055 0.920 1.641 0.014 0.920 0.660 0.010 0.930

85 non-spatial 16.503 0.132 0.970 4.045 0.036 0.910 2.324 0.017 0.960
Spatial 18.620 0.150 0.938 4.960 0.038 0.889 2.774 0.017 0.970
Full 16.317 0.130 0.970 4.366 0.036 0.910 2.447 0.017 0.959

90 non-spatial 24.809 0.246 0.940 5.972 0.061 0.910 4.725 0.025 0.950
Spatial 27.354 0.274 0.920 7.470 0.064 0.900 5.673 0.027 0.950
Full 24.132 0.239 0.950 6.134 0.061 0.920 4.771 0.025 0.940

95 non-spatial 48.099 0.697 0.840 18.534 0.150 0.920 13.033 0.088 0.940
Spatial 51.381 0.768 0.780 22.133 0.187 0.900 16.786 0.115 0.870
Full 47.128 0.677 0.840 18.778 0.154 0.930 13.397 0.090 0.920
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Table 4.5: Percent relative bias (%RB), mean square error (MSE) and coverage prob-
ability (CP) of the estimated σ2

V based on the non-spatial model, spatial model and the
full model, when the data is simulated from the full model. The true value for σ2

W = 5.

Cluster 25 100 196
%Censor Model %RB MSE CP %RB MSE CP %RB MSE CP
20 Spatial 465.040 646.380 0.000 554.910 798.890 0.000 581.540 860.590 0.000

Full 18.340 18.450 0.970 3.450 15.770 0.950 1.840 10.960 0.930
70 Spatial 435.760 590.370 0.000 536.280 751.360 0.000 565.690 818.340 0.000

Full 10.450 13.260 0.930 4.080 17.590 0.930 2.260 10.800 0.950
85 Spatial 371.990 484.590 0.000 491.850 650.010 0.000 536.970 742.450 0.000

Full 6.540 12.280 0.930 3.660 16.310 0.930 1.500 12.010 0.980
90 Spatial 262.020 282.870 0.000 462.200 605.070 0.000 509.140 693.270 0.000

Full 5.740 10.240 0.940 6.520 24.100 0.950 1.310 13.680 0.920
95 Spatial 99.880 108.620 0.000 320.010 333.670 0.000 368.350 404.690 0.000

Full 24.810 5.480 0.950 1.280 12.640 0.930 2.190 13.300 0.960

Table 4.6: Percent relative bias (%RB), mean square error (MSE) and coverage prob-
ability (CP) of the estimated σ2

W based on the non-spatial model, spatial model and the
full model, when the data is simulated from the full model. The true value for σ2

V = 4.

Cluster 25 100 196
%Censor Model %RB MSE CP %RB MSE CP %RB MSE CP
20 Non-spatial 31.910 4.640 0.000 36.160 3.000 0.000 39.600 3.140 0.000

Full 5.650 2.320 1.000 1.570 1.010 0.920 1.850 0.510 0.900
70 Non-spatial 28.430 4.500 0.000 39.270 2.200 0.000 38.700 3.080 0.000

Full 6.530 2.430 1.000 0.280 1.120 0.960 2.060 0.570 0.910
85 Non-spatial 20.300 4.820 0.000 31.890 2.900 0.000 37.950 3.160 0.000

Full 11.910 2.950 0.990 4.140 1.370 0.960 1.870 0.600 0.920
90 Non-spatial 3.740 3.880 0.000 30.990 3.650 0.000 37.870 3.530 0.000

Full 23.690 3.090 0.990 5.160 1.890 0.950 1.540 1.410 0.920
95 Non-spatial 18.260 3.710 0.000 17.180 2.920 0.000 25.910 3.390 0.000

Full 31.550 3.810 0.990 17.620 2.350 0.990 10.690 1.970 0.940
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Table 4.7: Posterior mean, %95 credible interval (CI) and R̂ for the estimated λ based
on the non-spatial model, spatial model and the full model, when the data is simulated
from the full model. The true value for λ = 0.55.

Cluster 25 100 196

%Censor Model Mean %95 CI R̂ Mean %95 CI R̂ Mean %95 CI R̂
Non-spatial 0.74 0.30 - 1.56 1.003 0.59 0.36 - 0.90 1.003 0.57 0.40 - 0.78 1.003

20 Spatial 0.66 0.56 - 0.77 1.001 0.56 0.52 - 0.61 1.001 0.55 0.52 - 0.58 1.001
Full 0.72 0.33 - 1.41 1.003 0.59 0.39 - 0.86 1.002 0.56 0.42 - 0.74 1.002
Non-spatial 0.77 0.31 - 1.63 1.002 0.56 0.44 - 0.71 1.002 0.57 0.40 - 0.79 1.003

70 Spatial 0.67 0.49 - 0.87 1.001 0.56 0.48 - 0.65 1.001 0.55 0.49 - 0.61 1.001
Full 0.75 0.33 - 1.50 1.003 0.59 0.38 - 0.87 1.002 0.56 0.41 - 0.75 1.002
Non-spatial 0.80 0.31 - 1.75 1.002 0.62 0.36 - 0.98 1.002 0.58 0.39 - 0.83 1.003

85 Spatial 0.70 0.42 - 1.08 1.002 0.58 0.45 - 0.73 1.002 0.56 0.46 - 0.67 1.001
Full 0.78 0.33 - 1.62 1.003 0.61 0.38 - 0.92 1.003 0.58 0.41 - 0.79 1.002
Non-spatial 0.85 0.32 - 1.89 1.003 0.62 0.35 - 1.01 1.003 0.59 0.39 - 0.87 1.003

90 Spatial 0.74 0.39 - 1.27 1.002 0.58 0.41 - 0.78 1.002 0.57 0.44 - 0.71 1.002
Full 0.84 0.34 - 1.78 1.002 0.61 0.36 - 0.95 1.003 0.59 0.40 - 0.83 1.003
Non-spatial 0.95 0.33 - 2.31 1.003 0.70 0.36 - 1.26 1.004 0.61 0.36 - 0.96 1.004

95 Spatial 0.79 0.35 - 1.58 1.003 0.64 0.39 - 0.99 1.003 0.58 0.40 - 0.82 1.003
Full 0.98 0.34 - 2.35 1.003 0.69 0.37 - 1.19 1.003 0.61 0.38 - 0.93 1.004

Table 4.8: Posterior mean, %95 credible interval (CI) and R̂ for the the estiamted
ρ based on the non-spatial model, spatial model and the full model, when the data is
simulated from the full model. The true value of ρ = 1.5.

Cluster 25 100 196

%Censor Model Mean %95 CI R̂ Mean %95 CI R̂ Mean %95 CI R̂
Non-spatial 1.48 1.36 - 1.60 1.001 1.50 1.44 - 1.56 1.001 1.50 1.45 - 1.54 1.001

20 Spatial 1.47 1.35 - 1.60 1.001 1.49 1.43 - 1.56 1.001 1.50 1.45 - 1.54 1.001
Full 1.48 1.36 - 1.60 1.001 1.49 1.43 - 1.56 1.001 1.50 1.45 - 1.54 1.001
Non-spatial 1.45 1.25 - 1.67 1.001 1.49 1.41 - 1.57 1.001 1.49 1.41 - 1.57 1.001

70 Spatial 1.45 1.24 - 1.66 1.001 1.49 1.38 - 1.60 1.002 1.49 1.41 - 1.57 1.001
Full 1.45 1.25 - 1.67 1.001 1.49 1.39 - 1.60 1.001 1.49 1.41 - 1.57 1.001
Non-spatial 1.42 1.11 - 1.75 1.002 1.47 1.31 - 1.64 1.002 1.49 1.36 - 1.62 1.002

85 Spatial 1.39 1.08 - 1.72 1.003 1.46 1.30 - 1.63 1.002 1.48 1.35 - 1.61 1.002
Full 1.42 1.12 - 1.75 1.002 1.47 1.31 - 1.64 1.002 1.49 1.36 - 1.62 1.002
Non-spatial 1.32 0.96 - 1.73 1.003 1.46 1.25 - 1.69 1.004 1.48 1.31 - 1.65 1.004

90 Spatial 1.27 0.91 - 1.68 1.004 1.44 1.23 - 1.67 1.004 1.46 1.29 - 1.63 1.004
Full 1.33 0.98 - 1.74 1.003 1.46 1.24 - 1.68 1.003 1.47 1.31 - 1.64 1.004
Non-spatial 1.21 0.75 - 1.83 1.005 1.38 1.05 - 1.75 1.009 1.42 1.15 - 1.71 1.009

95 Spatial 1.06 0.65 - 1.65 1.006 1.31 0.98 - 1.68 1.009 1.35 1.09 - 1.65 1.009
Full 1.26 0.80 - 1.87 1.005 1.37 1.06 - 1.74 1.008 1.41 1.15 - 1.70 1.009
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Table 4.9: Posterior mean, %95 credible interval (CI) and R̂ for the estimated β1

based on the non-spatial model, spatial model and the full model, when the data is
simulated from the full model. The true value of β1 = 2.

Cluster 25 100 196

%Censor Model Mean %95 CI R̂ Mean %95 CI R̂ Mean %95 CI R̂
Non-spatial 1.96 1.77 - 2.16 1.001 2 1.90 - 2.09 1.001 2.00 1.93 - 2.07 1.001

20 Spatial 1.95 1.76 - 2.15 1.001 1.99 1.90 - 2.09 1.001 2.00 1.93 - 2.07 1.001
Full 1.96 1.77 - 2.16 1.001 1.99 1.90 - 2.09 1.001 2.00 1.93 - 2.07 1.001
Non-spatial 1.94 1.60 - 2.28 1.001 1.99 1.87 - 2.12 1.001 1.99 1.86 - 2.12 1.001

70 Spatial 1.93 1.60 - 2.27 1.001 1.98 1.81 - 2.15 1.001 1.99 1.86 - 2.12 1.001
Full 1.94 1.61 - 2.28 1.001 1.98 1.81 - 2.16 1.001 1.99 1.86 - 2.12 1.001
Non-spatial 1.83 1.33 - 2.37 1.002 1.96 1.70 - 2.24 1.002 1.99 1.78 - 2.19 1.002

85 Spatial 1.80 1.30 - 2.33 1.002 1.95 1.68 - 2.22 1.002 1.97 1.77 - 2.18 1.002
Full 1.84 1.34 - 2.37 1.002 1.96 1.69 - 2.23 1.002 1.99 1.78 - 2.19 1.002
Non-spatial 1.69 1.08 - 2.35 1.002 1.91 1.57 - 2.28 1.003 1.95 1.69 - 2.23 1.003

90 Spatial 1.61 1.01 - 2.28 1.003 1.89 1.54 - 2.25 1.003 1.93 1.66 - 2.20 1.003
Full 1.70 1.10 - 2.36 1.003 1.91 1.57 - 2.27 1.002 1.95 1.68 - 2.22 1.004
Non-spatial 1.40 0.59 - 2.32 1.004 1.75 1.23 - 2.32 1.007 1.86 1.44 - 2.32 1.007

95 Spatial 1.27 0.52 - 2.15 1.004 1.66 1.15 - 2.23 1.007 1.78 1.36 - 2.23 1.008
Full 1.45 0.63 - 2.38 1.004 1.74 1.23 - 2.31 1.007 1.85 1.44 - 2.30 1.008

Table 4.10: Posterior mean, %95 credible interval (CI) and R̂ for the estimated β2 =
1.5 based on the non-spatial model, spatial model and the full model, when the data is
simulated from the full model. The true value of β2 = 1.5.

Cluster 25 100 196

%Censor Model Mean %95 CI R̂ Mean %95 CI R̂ Mean %95 CI R̂
Non-spatial 1.46 1.21 - 1.71 1.001 1.49 1.37 - 1.62 1.001 1.50 1.40 - 1.59 1.001

20 Spatial 1.46 1.20 - 1.71 1.001 1.49 1.36 - 1.61 1.001 1.50 1.40 - 1.59 1.001
Full 1.46 1.21 - 1.71 1.001 1.49 1.36 - 1.61 1.001 1.50 1.40 - 1.59 1.001
Non-spatial 1.38 0.94 - 1.82 1.001 1.48 1.32 - 1.64 1.001 1.49 1.32 - 1.66 1.001

70 Spatial 1.37 0.93 - 1.81 1.001 1.47 1.25 - 1.69 1.001 1.49 1.32 - 1.66 1.001
Full 1.38 0.94 - 1.82 1.001 1.48 1.25 - 1.70 1.001 1.49 1.32 - 1.66 1.001
Non-spatial 1.25 0.59 - 1.93 1.001 1.44 1.09 - 1.79 1.002 1.47 1.20 - 1.73 1.002

85 Spatial 1.22 0.56 - 1.89 1.002 1.43 1.08 - 1.78 1.002 1.46 1.20 - 1.72 1.002
Full 1.26 0.59 - 1.93 1.001 1.43 1.09 - 1.78 1.001 1.46 1.20 - 1.73 1.002
Non-spatial 1.13 0.30 - 1.97 1.002 1.41 0.95 - 1.88 1.002 1.43 1.08 - 1.78 1.002

90 Spatial 1.09 0.27 - 1.93 1.002 1.39 0.93 - 1.85 1.002 1.41 1.07 - 1.76 1.002
Full 1.14 0.31 - 1.98 1.002 1.41 0.95 - 1.87 1.002 1.43 1.08 - 1.78 1.002
Non-spatial 0.78 -0.37 - 1.94 1.002 1.22 0.54 - 1.94 1.003 1.30 0.76 - 1.87 1.003

95 Spatial 0.73 -0.36 - 1.83 1.002 1.17 0.51 - 1.86 1.004 1.25 0.72 - 1.80 1.003
Full 0.79 -0.37 - 1.96 1.002 1.22 0.54 - 1.92 1.003 1.30 0.76 - 1.86 1.004
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Table 4.11: Posterior mean, %95 credible interval (CI) and R̂ for the estimated σ2
W

based on the spatial model and the full model, when the data is simulated from the full
model. The true value for σ2

W = 5.

Cluster 25 100 196

%Censor Model Mean %95 CI R̂ Mean %95 CI R̂ Mean %95 CI R̂
20 Spatial 28.25 15.41 - 50.30 1.001 32.75 24.31 - 43.82 1.001 34.08 27.52 - 42.05 1.001

Full 5.92 0.37 - 23.06 1.007 5.17 0.82 - 15.71 1.007 5.09 1.31 - 12.59 1.008
70 Spatial 26.79 13.05 - 50.63 1.001 31.81 22.54 - 44.08 1.001 33.28 25.93 - 42.27 1.001

Full 5.52 0.37 - 22.85 1.005 5.20 0.81 - 15.87 1.007 4.89 1.22 - 12.42 1.008
85 Spatial 23.60 8.66 - 51.13 1.002 29.59 18.92 - 44.12 1.002 31.85 22.96 - 42.95 1.002

Full 5.33 0.33 - 23.42 1.003 5.18 0.76 - 16.13 1.007 4.93 1.05 - 13.27 1.008
90 Spatial 18.10 4.65 - 45.56 1.003 28.11 15.89 - 45.33 1.003 30.46 20.11 - 43.81 1.003

Full 4.71 0.31 - 21.26 1.004 5.33 0.75 - 17.15 1.009 4.93 1.01 - 13.82 1.009
95 Spatial 9.99 0.85 - 38.02 1.006 21.00 7.48 - 43.12 1.008 23.42 10.94 - 41.69 1.008

Full 3.76 0.28 - 20.06 1.005 4.94 0.48 - 18.16 1.011 4.89 0.76 - 15.12 1.013

Table 4.12: Posterior mean, %95 credible interval (CI) and R̂ for the estimated σ2
V

based on the non-spatial model and the full model, when the data is simulated from
the full model. The true value of σ2

V = 4

Cluster 25 100 196

%Censor Model Mean %95 CI R̂ Mean %95 CI R̂ Mean %95 CI R̂
20 Non-spatial 5.28 2.90 - 9.35 1.001 5.45 4.05 - 7.28 1.001 5.58 4.52 - 6.88 1.001

Full 3.77 0.98 - 7.97 1.009 4.06 2.11 - 6.09 1.012 4.07 2.65 - 5.49 1.01
70 Non-spatial 5.14 2.56 - 9.60 1.001 2.43 1.88 - 3.10 1.001 5.55 4.35 - 7.02 1.001

Full 3.74 0.89 - 8.23 1.006 4.01 2.00 - 6.21 1.011 4.08 2.59 - 5.63 1.01
85 Non-spatial 4.81 1.91 - 10.11 1.002 5.28 3.45 - 7.74 1.002 5.52 4.04 - 7.36 1.002

Full 3.52 0.69 - 8.68 1.004 3.83 1.72 - 6.35 1.01 4.07 2.34 - 5.95 1.013
90 Non-spatial 4.15 1.30 - 9.74 1.002 5.24 3.09 - 8.26 1.003 5.51 3.75 - 7.78 1.003

Full 3.05 0.53 - 8.34 1.004 3.79 1.51 - 6.79 1.012 4.06 2.13 - 6.30 1.011
95 Non-spatial 3.27 0.54 - 10.70 1.005 4.69 1.97 - 9.00 1.007 5.04 2.66 - 8.41 1.008

Full 2.74 0.37 - 9.64 1.005 3.30 0.86 - 7.36 1.013 3.57 1.33 - 6.73 1.017
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Figure 4.1: Boxplots of the posterior mean estimates of λ from the 100 samples
generated from the full model. The reference line shows the true value of λ.
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Figure 4.2: Boxplots of the posterior mean estimates of ρ from the 100 samples
generated from the full model. The reference line shows the true value of ρ.
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Figure 4.3: Boxplots of the posterior mean estimates of β1 from the 100 samples
generated from the full model. The reference line shows the true value of β1.
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Figure 4.4: Boxplots of the posterior mean estimates of β2 from the 100 samples
generated from the full model. The reference line shows the true value of β2.
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Figure 4.5: Boxplots of the posterior mean estimates of σ2
V from the 100 samples

generated from the full model. The reference line shows the true value of σ2
V .
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Figure 4.6: Boxplots of the posterior mean estimates of σ2
W from the 100 samples

generated from the full model. The reference line shows the true value of σ2
W .
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Chapter 5

Conclusion and Future Work

In this thesis, motivated by the computational challenges encountered in modeling spatial

correlation in a real application with large scale survival data, we used simulations to assess

the efficiency loss in the parameter estimates if residual spatial correlation is present but

using the spatially uncorrelated random effect term in the model.

This is particularly relevant in many public health or medical studies in modeling large

scale survival data, when researchers strive to build complicated spatial frailty model to model

spatial correlation in the residuals. To model such complex statistical problems, Bayesian

MCMC methods are often used. The method comes at the price of slow mixing rates and

heavy computation cost, which may render it impractical for data intensive applications.

Further, the information on detailed neighboring structure is often not released to public due

to confidentiality or when it is not clear what sort of spatial or neighborhood structure may

be appropriate.

By simulating the data from the full model including the spatially correlated and iid

random effect terms and then fit the models with reduced random effect structures, our sim-

ulation study shows that under all the simulation scenarios, by increasing the percentage of

censorship, relative bias (RB) and mean square error (MSE) increase and the coverage prob-

ability (CP) become much lower than the nominal level. As well, as the number of clusters
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increases, the performances in all the models improve. In particular, when the percentage of

censoring is low and the number of clusters is high, all the competing models perform equiv-

alently well in estimating the regression and Weibull parameters. The performance of the

three models differs when the percentage of censoring is high with small number of clusters

or when estimating the variance components. To be more specific, the RB and MSE tend to

be larger for the model which only includes the spatial term and do not tend to differ that

much between the non-spatial and the full models. Further, the CP under the spatial model

is substantially lower than the nominal level as compared to the non-spatial and the full

models, especially when the percentage of censoring and the number of clusters are low. This

implies that the shared frailty model with only the spatially correlated random effect may not

be sufficient enough to govern the total residual variation, whereas the simpler model with

only the spatially uncorrelated random effect term performs surprisingly well in estimating

the regression and Weibull parameters compared with the true model. Noted that these

results are based on one specific adjacency matrix. It would be interesting to investigate

the impact of different adjacency structures on the parameter estimates in the spatial frailty

model through further simulation studies.

In short, the shared frailty model with the independent frailty term provides a straight-

forward method for estimating the covariate effects for large scale survival data, which is

computationally infeasible for the spatial frailty model, particularly when exploring the ef-

fects of a large number of covariates is of interests.

This is not to say that the shared frailty model with independent frailty term should be

preferred over the spatial frailty model in all cases. Indeed, when the primary goal of inference

is predicting the hazard for specific covariates group, additional care need to be given due
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to the bias in the scale parameter associated with the Weibull distribution. Future research

can be carried out to examine the frailty model with different random effect structures when

the primary goal is estimating the hazard functions.

One alternative to the shared frailty model is to simply use the random effect logistic

regression model for analyzing the dichotomized event outcome variable. In this case, com-

putations become remarkably cheap, but the interpretation of regression parameters differs.

However, when the disease of interest is rare, such as in our motivating example related to

hip fracture in LTCFs, the log odds and log relative risk (hazard ratio) become even more

similar [113]. Knowing that the percent of hip fracture in our data analysis was only around

8%, one potential future research is to apply a random effect logistic regression on the hip

fracture data to estimate hazard ratios.
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Appendix A

Appendix

A.1 Optimization Methods

A.1.1 Adaptive Gaussian Quadrature Optimization

Let β denote the vector of fixed-effects parameters and θ the vector of covariance parame-
ters. θ includes the G-side parameters and a possible scale parameter φ, provided that the
conditional distribution of the data contains such a scale parameter. θ−φ is the vector of the
G-side parameters. The marginal distribution of the data for subject i in a mixed model can
be expressed as

p(yi) =

∫
...

∫
p(yi|bi, β, φ)p(bi|θ−φ) dbi. (A.1)

Noted that this multi-dimensional integral will be reduced to a one-dimensional integral
in case of an intercept random model, or a shared frailty model.

Let Nq denote the number of quadrature points in each dimension (for each random effect)
and r denotes the number of random effects. The adaptive Gaussian quadrature approximate
to the multi-dimensional integral (A.1) is

∫
...

∫
p(yi|bi, β, φ)p(bi|θ−φ) dbi ≈ 2

n
2 |f ′′(yi, β, θ; b̂i)|−

1
2

Σ
Nq
j1=1...Σ

Nq
jr=1

[
p(yi|ai, β, φ)p(aj|θφ)

r∏
q=1

e
z2jqwjq

]
, (A.2)

where b̂i are called empirical Bayes estimates which minimize

− log(p(yi|ai, β, φ)p(aj|θ−φ)) = f(yi, β, θ; bi). (A.3)

Also

aj = b̂i +

√
1

2
|f ′′(yi, β, θ; b̂i)|−

1
2 z?j (A.4)

such that z?j = [zj1 , ..., zjr ] is a point on the r-dimensional quadrature grid, z = [z1, ..., zq ] are
standard quadrature points, w = [w1, ..., wNq ] are Gauss-Hermite weights, and

f ′′(yi, β, θ; b̂i) =
∂2f(yi, β, θ; bi)

∂bi∂b′i
|b̂i (A.5)

Having this approximation for the integral, we can estimate the likelihood function. Let

f(β, ρ,X, tij, δij, σ
2
V |Vi) =

(
ρtρ−1
ij eβ

′Xij+Vi
)δij exp

(
−tρijeβ

′Xij+Vi
)
. Hence,
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l(β, ρ,X, δ, σ2
V ) = log

(
L(β, ρ,X, δ, σ2

V )
)
≈

log n

2

n∑
i=1

ni∑
j=1

log

[
f ′′(β, ρ,X, tij, δij, σ

2
V |V̂i)

−1
2

Q∑
q=1

(
ρtρ−1
ij eβ

′Xij+ai,q
)δije−tρijeβ′Xij+ai,q e z?q 22 wq],

(A.6)

where ai,q = V̂i + σ2
V f
′′(β, ρ,X, tij, δij, σ

2
V |V̂ )−

1
2 z?q such that V̂i are empirical bayes estimates

which maximize

f ′′(β, ρ,X, tij, δij, σ
2
V |V̂ ) =

∂2f(β, ρ,X, tij, δij, σ
2
V |V̂ )

∂V 2
i

|V̂ . (A.7)

A.1.2 Quasi-Newton Optimization

Suppose f(x) is a function in IRp and one needs to maximize it. Let

pk = xk+1 − xk,
qk = ∇f(xk)−∇f(xk+1)

(A.8)

Then the Davidon-Fletcher-Powell (DFP) inverse-Hessian approximation is [86]:

Bk+1 = Bk +
pkp

T
k

pTk qk
− Bkqkq

T
kBk

qTkBkqk
, (A.9)

where B0 is usually Ip. If one defines δk = argminf(xk + δkRk) and rk = −Bk∇f(xk), the
update step is

xk+1 = xk + δkrk. (A.10)

65



Appendix B

Appendix

B.1 Verification of Weibull Assumption

The Weibull assumption for the Weibull frailty model is examined by checking the log(− log(S(t)))
vs. log(t) plot, which should give approximately a straightly line if the Weibull distributed
assumption of baseline survival time is satisfied.

66



Figure B.1: Plot of log(− log(S(t))) vs. log(t).
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Figure B.2: Plot of log(− log(S(t))) vs. log(t) stratified by age and sex variables.
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Figure B.3: Plot of log(− log(S(t))) vs. log(t) stratified by age, sex and falls history
variables.
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