

THE RUNTIME BEHAVIOR OF COMPOSITE SOAP WEB SERVICES

UNDER TRANSIENT LOADS

A Thesis Submitted to the College of

Graduate Studies and Research

In Partial Fulfillment of the Requirements

For the Degree of Master of Science

In the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Yuxuan Meng

 Copyright Yuxuan Meng, September 2008. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree

from the University of Saskatchewan, I agree that the Libraries of this University may make it

freely available for inspection. I further agree that permission for copying of this thesis in any

manner, in whole or in part, for scholarly purposes may be granted by the professor or professors

who supervised my thesis work or, in their absence, by the Head of the Department or the Dean

of the College in which my thesis work was done. It is understood that any copying or

publication or use of this thesis or parts thereof for financial gain shall not be allowed without

my written permission. It is also understood that due recognition shall be given to me and to

the University of Saskatchewan in any scholarly use which may be made of any material in my

thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part

should be addressed to:

 Head of the Department of Computer Science

 University of Saskatchewan

 Saskatoon, Saskatchewan

 Canada

S7N 5C

 i

ABSTRACT

Services are computational elements that expose functionality in a platform independent

manner. They are the basic building blocks of the service-oriented (SO) design/integration

paradigm. Composite Web Services (CWS) aggregate multiple Web Services (WSs), which is

typically achieved by use of a workflow language. A workflow coordinates services in a manner

that is consistent with the desired overall functionality (e.g. business process).

When the atomic and composite services are exposed to various users, the performance and

runtime behavior of WSs becomes important. To ensure wide deployment of CWS, the

performance issues must be studied.

This research focuses on the performance of atomic and composite SOAP (Simple Object

Access Protocol) WSs under transient overloads. This research includes conducting experiments

with WSs, studying the runtime behavior, and building simulation models of WSs workflow

patterns. Simulation models of different WSs workflow patterns are built to study different

situations. Timeout and network latency are added to the model to better simulate real systems.

The simulation models are used to predict the runtime behavior of WSs and CWS, as well as to

improve the performance with existing, limited resources.

ii

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. Ralph Deters for his support and supervision during

my M. Sc. program. I greatly appreciate for his help. Also I would like to thank the other

members of my thesis committee: Dr. Derek Eager, Dr. Julita Vassileva, and Dr. Chris Zhang.

Finally, I would like to thank my parents for their love and support.

 iii

CONTENTS

Permission to Use ………………………………………………………………………….i

Abstract …………………………………………………………………………………...ii

Acknowledgements ………………………………………………………………………iii

Contents………………………………………………………………………………….. iv

List of Tables ... vi

List of Figures ... vii

List of Abbreviations ... xi

1 Introduction..1

2 Problem Definition...4

3 Related Work ...7

3.1 WS and SOA……………………………………………………………………..7
3.2 Service under Load ……………………………………………………………..14

3.2.1 Queuing Network Modeling ... 14
3.2.2 Bottleneck Resources of HTTP Servers.. 16
3.2.3 Persistent and Transient Overload .. 16

3.3 Atomic WS under Loads………………………………………………………..17
3.4 Composite Services & Loads………………………………………………….. 18

3.4.1 Workflows... 18
3.4.2 WS Composition and BPEL ... 20
3.4.3 Workflows Performance ... 24

3.4.3.1 Centralized orchestration ...24
3.4.3.2 Decentralized orchestration ...25

3.5 Summary ... 28

4 Experiments..30

4.1 Experiment A…………………………………………………………………...31
4.1.1 Java 6 Platform.. 34
4.1.2 Axis 1.4 Platform .. 36
4.1.3 Axis 2 Platform ... 39

4.2 CWS’s Experiments…………………………………………………………….42

 iv

4.2.1 Experiment B and Experiment C .. 42
4.2.1.1 Experiment B and experiment C on Axis 1 ...42
4.2.1.2 Experiment B on Java 6 ...45

4.2.2 Experiment D and E.. 51
4.3 Experiment D on Axis 1.4 Platform…………………………………………….51

5 Simulation Model ...54

5.1 Model for Experiment A………………………………………………………..55
5.1.1 Basic Model .. 55
5.1.2 Modified Model .. 59

5.2 Composite Web Services……………………………………………………….64
5.2.1 CWS’s Basic Model.. 64

5.2.1.1 Basic model for experiment B and C...64
5.2.1.2 Basic model for experiment D – exponentially distributed

interarrival time..68
5.2.1.3 Basic model for experiment E –5 services in a sequential

workflow with loops ..71
5.2.1.4 CWS’s basic model for performance optimizing.................................83

5.2.2 Modified Model for Experiment B, C, D, E ... 87
5.3 Simulation Experiments with Timeouts………………………………………...87
5.4 Simulation Experiments with Network Latency………………………………..90

5.4.1 Simulation Model of Atomic WS with Network Latency 91
5.4.2 Simulation Model of CWS with Network Latency................................... 98

6 Conclusions and Future Work..101

References ...106

 v

LIST OF TABLES

Table 3.1: The summary of related work...29

Table 4.1: The summary of the experiments ...30

Table 4.2: Results of S1 when using different interarrival times and fib(n)......................48

Table 5.1: The summary of the simulation experiments..54

Table 5.2: The completion time of different workflows with loops82

Table 5.3: Simulation experiments’ parameter settings and results for timeout................89

Table 5.4: The summary of parameters in experiment 1, 2, 3, 4, and 595

vi

LIST OF FIGURES

Figure 1.1: A sequential workflow ..2

Figure 2.1: Service behavior under various loads [14] [15] [22]...4

Figure 3.1: The service-oriented architecture ..8

Figure 3.2: Web Services technologies..9

Figure 3.3: An SOAP message example..10

Figure 3.4: SOAP 1.1 Request/Response via HTTP..13

Figure 3.5: A single service center ..14

Figure 3.6: Workflow for online shopping [24]...19

Figure 3.7: The activities in BPEL ..22

Figure 3.8: An example of BPEL process [32]..23

Figure 4.1: The experiment setting of atomic WS...33

Figure 4.2: Interdeparture time ..34

Figure 4.3: Distribution of interdeparture time..35

Figure 4.4: 1st Axis 1.4 experiment result..36

Figure 4.5: 2nd Axis 1.4 experiment result...37

Figure 4.6: 3rd Axis 1.4 experiment result ...37

Figure 4.7: Distribution of 1st Axis 1.4 experiment result ...38

Figure 4.8: Distribution of 2nd Axis 1.4 experiment result ..38

Figure 4.9: Distribution of 3rd Axis 1.4 experiment result...39

Figure 4.10: 1st Axis 2 experiment result...40

Figure 4.11: 2nd Axis 2 experiment result..40

Figure 4.12: Distribution of 1st Axis 2 experiment result ..41

Figure 4.13: Distribution of 2nd Axis 2 experiment result ...41

 vii

Figure 4.14: A sequential workflow ..42

Figure 4.15: First WS’s result in a sequential workflow ...43

Figure 4.16: Second WS’s result in a sequential workflow...44

Figure 4.17: Third WS’s result in a sequential workflow..44

Figure 4.18: The sequential workflow of two services with a workflow server................46

Figure 4.19: S1’s result (result 1) with fib (42) and using 1700 milliseconds as

the interarrival time..47

Figure 4.20: Axis 1.4 experiment result with exponentially distributed interarrival

times...53

Figure 4.21: Distribution of Axis 1.4 experiment result with exponentially distributed

interarrival times ..53

Figure 5.1: AnyLogic model of atomic WS...55

Figure 5.2: Simulated interdeparture time of atomic WS..56

Figure 5.3: Simulated throughput of atomic WS...57

Figure 5.4: Simulated interdeparture time of atomic WS under different loads................58

Figure 5.5: Simulated result 1 of atomic WS when noise is 0.035....................................60

Figure 5.6: Distribution of simulated result 1 of atomic WS when noise is 0.035............60

Figure 5.7: Simulated result 1 of atomic WS when noise is 0.04......................................61

Figure 5.8: Distribution of simulated result 1 of atomic WS when noise is 0.04..............61

Figure 5.9: Simulated result 2 of atomic WS when noise is 0.035....................................62

Figure 5.10: Distribution of simulated result 2 of atomic WS when noise is 0.035..........63

Figure 5.11: Simulated result 2 of atomic WS when noise is 0.04....................................63

Figure 5.12: Distribution of simulated result 2 of atomic WS when noise is 0.04............64

Figure 5.13: Simulation model of three services in sequential workflow in AnyLogic65

Figure 5.14: Simulated result of two WSs in a sequential workflow66

 viii

Figure 5.15: Simulated result of three WSs in a sequential workflow67

Figure 5.16: The interdeparture time of the first experiment...69

Figure 5.17: Distribution of interdeparture time of the first experiment69

Figure 5.18: The interdeparture time of the second experiment..70

Figure 5.19: Distribution of interdeparture time of the second experiment71

Figure 5.20: The interdeparture times of the 5 services in the experiment 0.....................73

Figure 5.21: The interdeparture times of the 5 services in the experiment 1-174

Figure 5.22: The interdeparture times of the 5 services in the experiment 1-274

Figure 5.23: The interdeparture times of the 5 services in the experiment 1-375

Figure 5.24: The interdeparture times of the 5 services in the experiment 2-175

Figure 5.25: The interdeparture times of the 5 services in the experiment 2-276

Figure 5.26: The interdeparture times of the 5 services in the experiment 2-376

Figure 5.27: The interdeparture times of the 5 services in the experiment 3-177

Figure 5.28: The interdeparture times of the 5 services in the experiment 3-277

Figure 5.29: The interdeparture times of the 5 services in the experiment 3-378

Figure 5.30: The interdeparture times of the 5 services in the experiment 4-178

Figure 5.31: The interdeparture times of the 5 services in the experiment 4-279

Figure 5.32: The interdeparture times of the 5 services in the experiment 4-379

Figure 5.33: The interdeparture times of the 5 services in the experiment 5-180

Figure 5.34: The interdeparture times of the 5 services in the experiment 5-280

Figure 5.35: The interdeparture times of the 5 services in the experiment 5-381

Figure 5.36: Result 1 - when the network latency is 1 second ..95

Figure 5.37: Result2 - when the network latency is 0.5 second ..96

Figure 5.38: Result 3 - when the network latency is 0.1 second96

Figure 5.39: Result 4 - network latency is 1 second, but interarrival time is twice...........97

 ix

Figure 5.40: Result 5 - network latency is 1 second, but capacity is 1000........................97

Figure 5.41: The distribution of results 5 when network latency is 1 second98

 x

LIST OF ABBREVIATIONS

ALWKR Augmented Least Work Remaining

BPEL Business Process Execution Language

BPWS4J Business Process Execution Language for Web Services JavaTM Run Time

BPEL4WS Business Process Execution Language for Web Services

CWS Composite Web Services

EJB Enterprise Java Bean

HTTP Hypertext Transfer Protocol

JMS Java Message Service

LWKR Least Work Remaining

SJF Shortest Job First

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

UDDI Universal Description, Discovery, and Integration

WAN Wide Area Network

WS Web Service

WSDL Web Service Definition Language

XML Extensible Markup Language

xi

CHAPTER 1

INTRODUCTION

Services are computational elements that expose functionality in a platform independent

manner. They can be described, published, discovered, orchestrated and consumed across

language, platform and organizational borders. Services are the basic building blocks of the

service-oriented (SO) design/integration paradigm [14].

“The service-oriented architecture (SOA) defines how services are deployed and managed,

and facilitates the composition of services across disparate pieces of software, whether new or

old; departmental, enterprise-wide, or inter-enterprise; mainframe, mid-tier, PC, or mobile

device” [30]. Well-defined services in SOA expose functionality in a platform independent

manner. With SOA, developers focus on composing Web Services (WSs) instead of dealing with

the complexity of incompatible applications on multiple computers, programming languages, and

application packages. Developers can combine the existing services in different environments

and add if necessary new services to meet the rapidly changing requirements. As a result, SOA

increases reuse, lowers overall costs, and improves the ability to rapidly change and evolve IT

systems [30].

Composite Web Services (CWS) aggregate multiple WSs, which is typically achieved by use

of a workflow language. A workflow coordinates services in a manner that is consistent with the

desired overall functionality. In a workflow (an example of a workflow is shown in Figure 1.1.),

services work together to fulfill a complex task (e.g. business process).

 1

Service 1

Service 3

Service 2

Figure 1.1: A sequential workflow

A CWS itself can be used as a unit in another workflow, and be part of even larger CWS with

other atomic services and CWS [14]. In this way, existing services as well as newly built ones

from different providers can be aggregated into a CWS, and provide services that meet specified

requirements. Workflows facilitate the process of aggregating existing atomic WS and other

CWS into new service layers.

When the atomic and composite services are exposed to various users, the performance and

runtime behavior of WSs becomes important. To ensure wide deployment of CWS, the

performance issues must be studied.

This research focuses on the performance of atomic and composite SOAP (Simple Object

Access Protocol [12], [27]) WSs under transient overloads. This research includes conducting

experiments with WSs, studying the runtime behavior, and building simulation models of WSs

workflow patterns. Simulation models of different WSs workflow patterns are built to study the

feature in different situations. Timeout and network latency are added to the model to better

 2

simulate real system. The simulation models are used to predict the runtime behavior of WSs and

CWS, as well as to improve the performance with existing, limited resources.

The rest of the thesis is organized as follows. Section two presents the problem definition.

Section three presents related work on WSs and performance. Section four provides the outline

of experiments and some results. Section five provides the outline of simulation models and the

results from simulation runs. Section six presents conclusions and future work.

 3

CHAPTER 2

PROBLEM DEFINITION

This research focuses on the behavior of WSs that are exposed to transient overloads.

For traditional HTTP servers, overload is defined as the point when the demand on at least one

of the HTTP server’s resources exceeds the capacity of that resource [19].

The typical standard behavior of services under various loads is shown in Figure 2.1 ([14],

[15], [22]).

Figure 2.1: Service behavior under various loads [14] [15] [22]

It is not unusual for HTTP servers to experience transient overloads. For example, the traffic

increase at the server can lead to a transient period of overload. Transient overload is difficult to

 4

predict, for example, the amount of traffic at a Web site might rise due to an unexpected increase

of the site’s popularity.

Server overload typically happens when jobs enters the server at a greater rate than the HTTP

server can process, which causes the number of jobs at the HTTP server to build up. Soon, the

HTTP server reaches the maximum number of connections that it can handle. From the client’s

perspective, the request for a connection will either never be accepted or will succeed only after

several trials. Even when the client’s request for a connection does get accepted, the service time

may be very long because the request has to share the service with all the other requests at the

server [19].

A WS can also experience transient overload. For WSs, the XML processing of the SOAP

message can be time-consuming, and the time spent in processing the tasks within the service

might not be trivial. When various users frequently invoke the WSs together, it can result in

heavy CPU loads, and overload the WSs.

A service that is gradually exposed to an ever-increasing number of service requests

experiences three distinct stages, which are “underload”, “saturation” and “overload” ([14], [15],

[22]). The first phase is the “underload” stage: when handling a load that is below its capacity,

the service is not fully utilized. When the number of requests keeps increasing, it leads to an

increase of the throughput (number of completed jobs per time unit). As the rate of incoming

requests keeps increasing, the server reaches its saturation point (peak load). In the “saturation”

stage, the service is fully utilized. As the load continues to increase, the throughput starts to drop

and ultimately the “thrashing effect” [22] appears. Thrashing emerges as a result of an overload

of physical resources (resource contention) like processor or memory or because of locking (data

contention).

 5

A WS can be modeled as a server with a queue according to queuing network modeling [26].

The server’s maximum thread number and queue size are limited, that is, the server has limited

resources. The service has also timeout limits in its queue. Administrators can use the default

value or set the value of these parameters in WSs implementations. When modeling WSs, these

parameters can also be defined and initialized to simulate real systems. For a WS that is under

transient overload, the jobs arrive faster into the server than the server can handle. The capacity

of the server is defined by “service time”, and the job rate is defined as “arrival rate”. “Arrival

rate” can be constant, or follow a certain distribution.

While an atomic WS is a single WS that exposes some functionality, a CWS is more complex,

since it can contain atomic WS and other CWS as its components. Those WSs components in

CWS are aggregated in certain workflow patterns, such as sequences, loops, and so on. BPEL

(business process execution language) is usually used to define workflows, which is an

XML-based standard for describing a business process.

 6

CHAPTER 3

RELATED WORK

This chapter reviews the WS and SOA, general behavior of services under load, behavior of

atomic WS under loads, and related work of CWS’ performance issue.

3.1 WS and SOA

Gartner introduced the Service-Oriented Architecture (SOA) in 1996 as a conceptual framework.

(WS is the de facto standard technology for implementing SOA.) SOA defines services as a

collection of components. Services have the following features ([20], [30]):

y Services are self contained and modular.

y Services are discoverable and dynamically bound.

y Services are interoperable.

y Services are loosely coupled, reduction of artificial dependencies to their minimum.

y Services have a network-addressable interface.

y Services have coarse-grained interfaces in comparison to finer-grained interfaces of software
components and objects.

y Services can be composed.

This research focuses on SOAP based WSs. Therefore, HTTP based WSs (“REST” services)

are being ignored.

SOA defines three roles, a Service Consumer, a Service Registry, and Service-Provider. They

communicate in the way as shown in Figure 3.1.

7

Service Registry

PUBLISH LOOK UP

Request SOAP message

Response SOAP message

Service Consumer Service Provider

Figure 3.1: The service-oriented architecture

A Service Provider offers an implementation of a WS, and publishes the service in a Service

Registry.

The Service Registry acts as a Service Broker, which provides a public listing of registries

using UDDI (Universal Description, Discovery, and Integration [37], [38]), so that Service

Providers can register their services. Service Brokers within the environment can also replicate

their service registries.

The Service Consumer that is also called Service Requester [19] finds a WS, and connects to

the service. Service consumers can search for services and get information on how to connect to

those services using the Service Providers.

WS technologies include: XML (Extensible Markup Language), SOAP (Simple Object

Access Protocol [12], [27]), WSDL (Web Services Description Language [11]), and UDDI

(Universal Description, Discovery, and Integration [37], [38]).

8

The WS and its underlying technologies can be described as shown in the following figure:

 Soap Call

 Sends Message (XML)

Location of WSDL

Find Web
Service Results

Location of
Web Services

Described by

Web

Services

Service

Consumers

WSDL

Documents
UDDI

Registry

Figure 3.2: Web Services technologies

The uniform data marshaling protocol (SOAP) removes data integration problems, the

standard communication infrastructure (WSDL and HTTP) allows incorporating the functions of

any services without worrying about their location, and the service query facility (UDDI) further

leverages the discovery of desired functions. These features enable rapid service composition to

fulfill new functional and nonfunctional (such as reliability [36]) requirements [24].

XML (Extensible Markup Language) is used for data storage. All SOA entities use it as a

common language for service description, messaging and service registration, to achieve high

interoperability [19];

SOAP (Simple Object Access Protocol [12], [27]) defines the format for registration,

searching, and messages in XML (which are sent over HTTP).

9

Figure 3.3 is a SOAP message example, which uses the HTTP POST request. It includes a

SOAP Envelope element and a SOAP Body element.

The SOAP Envelope includes: its "local name"; a "namespace name" of

"http://www.w3.org/2003/05/soap-envelope"; none or more information items amongst its

"attributes" property; one or two element information items in its "children" property in the

following order: an optional Header element; a mandatory Body element [27].

 The SOAP body provides a mechanism for transmitting information to a SOAP receiver.

In this message, it requests the server to add 25 and 20 (invoke the method “ADD (25,20)”).

Figure 3.3: An SOAP message example.

10

The WSDL (Web Services Description Language [11]) is an XML document that describes a

WS. This description includes all the information needed for invoking service methods from

other nodes [19].

A WSDL document uses the following elements in the definition of network services [43]:

y Types– a container for data type definitions that uses some type system (such as XSD).

y Message– a typed definition of the data that are being communicated.

y Operation– a description of an action that is supported by the service.

y Port Type–an abstract set of operations that is supported by one or more endpoints.

y Binding– a protocol and data format specification for a particular port type.

y Port– a single endpoint that is defined as a combination of a binding and a network address.

y Service– a collection of endpoints that are related.

Below is an example that shows the WSDL definition of a simple service. The service

provides stock quotes, and supports a single operation called GetLastTradePrice, which is

deployed using the SOAP 1.1 protocol over HTTP. This example uses a fixed XML format

instead of the SOAP encoding [43].

<?xml version="1.0"?>

<definitions name="StockQuote"

targetNamespace="http://example.com/stockquote.wsdl"

 xmlns:tns="http://example.com/stockquote.wsdl"

 xmlns:xsd1="http://example.com/stockquote.xsd"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>

11

 <schema targetNamespace="http://example.com/stockquote.xsd"

 xmlns="http://www.w3.org/2000/10/XMLSchema">

 <element name="TradePriceRequest">

 <complexType>

 <all>

 <element name="tickerSymbol" type="string"/>

 </all>

 </complexType>

 </element>

 <element name="TradePrice">

 <complexType>

 <all>

 <element name="price" type="float"/>

 </all>

 </complexType>

 </element>

 </schema>

 </types>

 <message name="GetLastTradePriceInput">

 <part name="body" element="xsd1:TradePriceRequest"/>

 </message>

 <message name="GetLastTradePriceOutput">

 <part name="body" element="xsd1:TradePrice"/>

 </message>

 <portType name="StockQuotePortType">

 <operation name="GetLastTradePrice">

 <input message="tns:GetLastTradePriceInput"/>

 <output message="tns:GetLastTradePriceOutput"/>

 </operation>

 </portType>

12

 <binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">

 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="GetLastTradePrice">

 <soap:operation soapAction="http://example.com/GetLastTradePrice"/>

 <input>

 <soap:body use="literal"/>

 </input>

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

 </binding>

 <service name="StockQuoteService">

 <documentation>My first service</documentation>

 <port name="StockQuotePort" binding="tns:StockQuoteBinding">

 <soap:address location="http://example.com/stockquote"/>

 </port>

 </service>

</definitions>

Figure 3.4: SOAP 1.1 Request/Response via HTTP

The UDDI (Universal Description, Discovery, and Integration) keeps registry listing of

companies, WSs offered, and information on how to connect to those WSs ([37], [38]). Each

registry entry is an XML document. It is a directory model, providing a yellow page service for

WSs. Its entries consist of three parts: the “white pages” that contain information about the WS

provider, the “yellow pages” that include industrial categories based on standard taxonomies, and

the “green pages” that describe the interface of the service, e.g. by integrating the WSDL file

[19].

13

3.2 Service under Load

3.2.1 Queuing Network Modeling

Queuing network modeling [26] is an approach for computer system modeling in which the

computer system is represented as a network of queues, which can be evaluated analytically. A

network of queues is a collection of service centers, which represent system resources, and

customers, which represent users or transactions. Figure 3.5 [26] shows a queuing service center:

Arriving
customers

Departing
customers

Queue Server

Figure 3.5: A single service center

This model has two parameters. The first one specifies the workload intensity, which in this

model is the average rate of customers. The second one specifies the service demand, which is

the average service requirement of a customer [26].

In this research, the first parameter is named “inter-arrival time”. For example, if the

inter-arrival time is 2 seconds, this means that the customers arrive at the server every 2 seconds.

In this example the “arrival rate” is 0.5 customers/second, which is noted as “λ”. The second

parameter is named as “service time”, and noted as “S”. For example, the service time is 1.25

seconds for one customer. Their measurement and definitions are discussed in more detail as

below:

14

For an “open system” that has customers arriving and departing, the following quantities can

be measured [26]:

y T, the length of time observed.

y A, the number of request arrivals observed.

y C, the number of request completions observed.

From these measurements, the following additional quantities can be defined [26]:

y λ, the arrival rate: λ=A/T. For example, if 8 arrivals are observed during an observation

interval of 4 minutes, then the arrival rate is 8/4 = 2 requests/minute.

y X, the throughput: X =C/T. For example, if 8 completions are observed during an

observation interval of 4 minutes, then the throughput is 8/4 = 2 requests/minute.

If the system consists of a single resource, the following quantities can also be measured [26]:

y B, the length of time in which the resource was observed to be busy.

Two more defined quantities now are meaningful [26]:

y U, the utilization: U=B/T. For example, if the resource is busy for 2 minutes during a 4

minute observation interval, then the utilization of the resource is 2/4, or 50%.

y S, the average service requirement per request: S=B/C. For example, during an observation

interval, if there are 8 completions and the resource is busy for 2 minutes during that interval,

then on the average each request requires 2/8 minutes of service.

The Utilization Law can be defined as: U = XS [26].

Queuing network modeling can be viewed as a small subset of the techniques of queuing

theory, which is selected and specialized for modeling computer systems. Queuing network

models achieve relatively high accuracy at relatively low cost [24].

15

3.2.2 Bottleneck Resources of HTTP Servers

In a HTTP server, bottleneck resources are defined as the resources that have the biggest impact

on the performance of a HTTP server that is under load, and the resources in a HTTP server that

experience overload first. The three important bottleneck resources for traditional HTTP servers

are the CPU, the disk to memory bandwidth and the server’s limited fraction of its ISP’s

bandwidth [33]. On a web site that consists primarily of static content, a common performance

bottleneck is the limited bandwidth that the server gets from its ISP. Therefore, buying more

bandwidth is more costly than upgrading memory or CPU. Schroeder et al. [33] assume that the

bottleneck resource is the limited bandwidth that the server has purchased from its ISP, and

model the limited bandwidth by placing a limitation on the server’s uplink.

For traditional HTTP servers with static workloads, CPU load is typically not an issue, and the

main bottleneck resource is the limited bandwidth [33]. However, the CPU can be the bottleneck

resource of WS. For WS, the XML processing of the SOAP message is time-consuming, and the

time cost in calculation within the service can be non-trivial. When various users frequently

invoke the WSs together, it can spend much CPU time, cause heavy CPU loads, and make WSs

overloaded.

3.2.3 Persistent and Transient Overload

There are two types of overloads, persistent overload and transient overload. Persistent overload

is used to describe a situation where the server is run under a fixed load ρ > 1 during the whole

experiment [26]. The motivation behind experiments with persistent overload is mainly to gain

insight into what happens under overload.

16

The overloaded state is unlikely to persist for too long in practice due to system upgrades.

However, there are bursts in Web traffic, even in the case of regular upgrades. Therefore, a

popular HTTP server is still likely to experience transient periods of overload [33].

3.3 Atomic WS under Loads

The performance of WSs is similar to that of other general servers or HTTP servers in computer

systems. As introduced in the previous part of the thesis, the concepts and conclusions in the

issue of servers under loads can usually be applied to this domain.

The WS testing domain is relatively new. Most of the current work focuses on functional

testing. Performance related WS testing usually focused on comparing different SOAP

implementations, rather than application-specific performance [45]. However, such

application-specific performance is very important in situations like service level driven

management and QoS-aware WS.

Zhu et al. [45] used the Axis 1.4 package and Java to develop services that performed simple

processor bound tasks [3]. A lightweight WS that returns its single argument was used. Zhu et al.

[45] got samples of response time distribution from experiments, and average response time and

throughput in an incremental requests simulation of open model. The experimental runs revealed

that every WS provider exhibits thrashing either due to the costs of parsing XML messages or

the resource/data contention issues of its underlying business logic [45].

Zhu et al. ’s work has some limitations. The default implementation of the load-testing suite is

still relatively simple. It covers only successful test scenarios and does not produce more

interesting stress testing data.

17

3.4 Composite Services & Loads

3.4.1 Workflows

Services are different from objects or components in traditional Object-Oriented or

Component-Based development paradigms. As described in Huang et al. [24], some universally

accepted features of services are:

1. Every service is an entity consisting of data, and operations over the data. Both objects and

components share this feature, too.

2. Every service has its own processes. This may not be true for either objects or components.

3. Every service can interact with other services. The interaction may have different meaning

for objects and components because they may not have stand-alone processes.

As described in Huang et al. [24], researchers may choose to impose some of the following

assumptions:

I. That the standard communication infrastructure among services is well established. For

example, it can imply reliable, synchronous, ordered communication, etc.

II. That the execution of every service is an atomic operation: it is either an entire success or

nothing happens, and is “ACID” transaction.

III. There is no real-time requirement over the execution of services.

IV. The services admit a two-segment ownership. The service vendors own the services, the

hardware, and the resources that the services are being executed upon. The application

developers own the applications composed by the services, the hardware, and the resources that

the applications are being executed upon.

V. The service discovery facility is well established.

18

The vision of workflows is formed by accepting all assumption I, II, and III, and not affected

by assumptions IV and V [24].

The complexity of the model, and hence the verification, is significantly reduced, by

accepting assumptions I, II, and III [24]. The interactions among services can be simplified to be

atomic method calls. Thus, the business logic of the application is simplified to be a workflow of

activities, which is connected by various control flow constructs, such as sequence, branch, loop,

and concurrency, where an activity is either a local computation or a method call [24].

Figure 1.1 showed a very simple workflow of three sequential WSs. Here, Figure 3.6 gives

another practical example (Figure 1 in [24]), which is a typical workflow of a WS performing

online shopping.

Figure 3.6: Workflow for online shopping [24]

19

Workflows are designed for concealing the implementation details of the application, and for

better understanding the business logic [24]. The introduction of workflows is to help users

without specific software engineering training to design and develop WSs. It assumes that

common functional activities are already available, and thus users can compose new services by

simply connecting together those building blocks. This assumption matches some known

industrial best practices, such as Google Map and Amazon Web Services [2].

3.4.2 WS Composition and BPEL

WS composition aims to create a Web process from individual WS. Web processes facilitate

expanding the utility of WSs. WS composition can be static or dynamic. In a static composition,

the services are predetermined when designing the Web process. In a dynamic composition, the

WS is decided at run-time by, for example, the process enactment engine. Dynamic composition

needs to find services by searching registries at run-time [10].

WS composition can be represented as a workflow graph that has activities (services) and

transition links (control and data)[10]. Data links and control links are used to specify the data

flow and control flow respectively among the services. Standard constructs like XOR splits,

AND splits, XOR joins, AND joins are used to capture the execution logic. For example, an

XOR split can indicate the branching of the control flow in one of the outgoing control links, and

an AND split indicates the branching of the control flow in all of the outgoing control links in

parallel; an AND join indicates synchronizing on all incoming controls links, while an XOR join

indicates waiting on one of the indicated incoming control links [10].

CWS can contain atomic WS and other CWS as components. Those WS components in CWS

are aggregated in certain workflow, such as sequences, loops, and so on.

20

BPEL (business process execution language) [7], [42] is usually used to define workflows.

BPEL is an XML-based standard for describing a business process, which defines a notation for

specifying a business process behavior based on WS [7]. BPEL files are executed on workflow

servers (server executes scripts).

The BPEL basic structure is as following:

<process>

 <partners> … </partners>

 <variables> … </variables>

 <correlationSets> … </correlationSets>

 <faultHandler> … <faultHandler>

 <compensationHandler> … </compensationHandler>

 <eventHandler> … </eventHandler>

 (activities)*

</process>

BPEL defines the following activities: receive, reply, invoke, assign, throw, terminate, wait,

empty, sequence, switch, while, pick, flow, scope, compensation. These activities have shown to

enable easy workflow development. Figure 3.7 shows the activities that are defined in BPEL:

21

Figure 3.7: The activities in BPEL

Figure 3.8 is a code example of “partnerLink” elements in a BPEL process that invokes a

Synchronous Partner:

<process>

 <partnerLinks>

 <!-- Interaction between client and this BPEL process-->

 <partnerLink name="ClientPartnerLinkABC"

 partnerLinkType="ClientPartnerLinkType"

 myRole="HelloService"/>

 <!-- Interaction between this BPEL process and the external web service -->

 <partnerLink name="ExternalPartner"

 partnerLinkType="MyPartnerLinkType"

 partnerRole="GreetingServiceProvider"/>

 </partnerLinks>

22

 <!-- Receive a request via ClientPartnerLinkABC partnerLink -->

 <receive partnerLink="ClientPartnerLinkABC"

 portType="portTypeA"

 operation="sayHello"

 variable="inputVar">

 </receive>

 . . .

 <!-- Invoke the partner via the ExternalPartner partnerLink -->

 <invoke partnerLink="ExternalPartner"

 portType="GreetingPortType"

 operation="getGreeting"

 inputVariable="inputVar"

 outputVariable="outputVar"/>

 . . .

 <!-- Send a reply via ClientPartnerLinkABC partnerLink -->

 <reply partnerLink="ClientPartnerLinkABC"

 portType="portTypeA"

 operation="sayHello"

 variable="outputVar"/>

</process>

Figure 3.8: An example of BPEL process [32]

A BPEL process can define a business protocol role, using the notion of abstract process. For

example, in a supply-chain protocol, the buyer and the seller are two different roles; each has its

own abstract process. Abstract processes describe public aspects of the business protocol;

specifically, they handle only protocol-relevant data. BPEL also provides a method to identify

protocol-relevant data as message properties [42].

23

BPEL can also define an executable business process [42]. “The logic and state of the process

determine the nature and sequence of the WSs interactions conducted at each business partner,

and thus the interaction protocols” [42].

In summary, BPEL is used to model the behavior of both executable and abstract processes.

The scope includes [7]:

y Sequencing of process activities, especially WSs interactions.

y Correlation of messages and process instances.

y Recovery behavior in case of failures and exceptional conditions.

y Bilateral WSs based relationships between process roles.

3.4.3 Workflows Performance

Huang et al. [24] defined different WSs based on the assumptions used for them, and build

state-transition models for workflow as well as for other services. No experimental results were

given in Huang et al. [24]. However the work gives a guide when selecting model-checking

technologies for verifying WSs.

3.4.3.1 Centralized orchestration

Typically, a single coordinator node executes a CWS specification. It receives the client requests,

makes the required data transformations and invokes the component WS as defined in the

specification. This mode of execution is called “centralized orchestration” [8]. The coordinator

node is responsible for coordination of all data and control flow between the components;

therefore it becomes a performance bottleneck. All data is transferred between the various

components via the coordinator node, instead of being transferred directly from the point of

generation to the point of consumption, which leads to unnecessary traffic on the network.

24

3.4.3.2 Decentralized orchestration

When specifying a composite service using a language like BPEL4WS, the specification can be

analyzed using techniques such as program analysis [28], petri-nets [39], etc. The data and

control dependences between the components can be analyzed, and the code can be partitioned

into smaller components that execute at distributed locations. This mode of execution is called

“decentralized orchestration” [8], which has multiple engines, each executing a CWS

specification (a portion of the original CWS specification but complete in itself) at distributed

locations. The engines communicate directly with each other (instead of through a central

coordinator) to transfer data and control when necessary in an asynchronous manner. The

decentralized execution brings performance benefits for the following reasons [8]:

y It has no centralized coordinator that is a potential bottleneck.

y Distributing the data reduces network traffic and improves transfer time.

y Distributing the control improves concurrency.

y Asynchronous messaging between engines allows better throughput and graceful

degradation [21].

Chafle et al. [8] discussed Centralized Orchestration and Decentralized Orchestration of CWS,

and mainly investigate build time and runtime issues related to the “decentralized orchestration”

of CWS. They provided a detailed discussion of the servers that participate in decentralized

execution: their thread pool design, as well as communication protocols. They experimentally

reconfirmed the performance benefits that decentralization provides, and also evaluated two

different decentralization schemes, showing that JMS (Java Message Service) [8] is a more

efficient communication protocol than HTTP for engine-to-engine communication in a

25

decentralized setup. They also showed that at very high loads, there is a trade-off between

throughput and response time with the two schemes.

Similar to the previous paper [8], Chafle et al. [9] also discussed “centralized orchestration”

and “decentralized orchestration” of CWS. Chafle et al. [9] focused on improving performance

of CWS over a Wide Area Network (WAN), and they mainly investigated how different

topologies generated by decentralized orchestration are affected differently by variations in

WAN conditions. CWS with components distributed over a WAN pose performance problems

due to changing WAN conditions. Chafle et al. [9] tried to address this problem by proposing an

adaptive system based on decentralized orchestration.

A decentralized orchestration runtime consists of multiple flow engines running at distinct

nodes. Chafle et al. [9] use the BPWS4J [6] engine to execute the CWS partitions written in

BPEL4WS. These partitions interact with the corresponding WSs using SOAP over HTTP.

Chafle et al. [9] described a model for estimating the throughput of a topology. The

performance model builds on the basic principles of queuing theory and the characteristics of

decentralized CWS, using some monitored parameters. With the model, one can calculate the

throughput of all competing topologies at the start of each run, and select the topology with

highest throughput, and build an “adaptive” orchestration system that adapts to changes in WAN

conditions by varying the communication pattern between the coordinator node and the

component WS at runtime in response to fluctuations in available bandwidth. This “adaptive”

decentralized orchestration system makes use of the tool developed in Nanda et al. [28] to

generate decentralized orchestration topologies for a given CWS. Such an adaptive orchestration

system is later proved by experiments to improve performance of CWS.

26

The system presented in Chafle et al. [9] still has some limitations. For example, if the wide

area network conditions deteriorate due to congestion or link failure at the last hop (an edge

router), instead of in the Internet backbone, a partition hosted on such a node (that is being

served by the affected edge router) could be equally affected in all decentralized topologies. In

such situations, all decentralized topologies will show performance degradation. Another

limitation of this system is that, this “adaptive” orchestration system relies on a switch

component, which can become a single point of failure. Furthermore, the performance model in

Chafle et al. [9] makes simplistic assumptions, such as: a separate queue for each link at the

application level, same bandwidth for both incoming and outgoing messages, large message size,

moderate request rates, and so on, so the model still needs to be improved to represent real WAN

behavior.

Dyachuk et al. ([15], [16]) discuss the performance issue of CWS when services are

overloaded, and use scheduling of service requests to improve the overall CWS performance in

overloads situations. Different scheduling policies are evaluated for the CWS workflow patterns

sequence and split-synchronization. Besides, Dyachuk et al. [15] present a heuristic based

scheduling policy, named Augmented Least Work Remaining (ALWKR), which extends Least

Work Remaining (LWKR [13], [16]) by taking advantage of existing workflow topology

information.

Some assumptions used in Dyachuk et al. [15] include: CWS are composed according to the

“Sequence and Parallel Split & Synchronization” patterns [40] with a static structure; size of the

sub-requests is known a priori or can be estimated ([16], [17]). SJF is the optimal non-

preemptive scheduling policy for minimizing average service time if accurate information on job

27

sizes is available, which is proved by Smith [34]. (SJF is optimal only if there is no preemption

possible, or if there are only static sets of jobs.)

Dyachuk et al. [15] use the simulation tool AnyLogic [44] to build models that describe the

way WSs and CWS respond to various loads, and run simulations to compare the performance

with different ways of request scheduling. The experiments results show that ALWKR improves

the performance, but requires placing a proxy in front of each component; SJF scheduling

improves performance only for simple structures orchestrating up to three services; while for

bigger and more complex structures, SJF does not make any noticeable optimizations; ALWKR

outperforms SJF in average by 20-40%.

Dyachuk et al. [15] show promising results of applying scheduling. However, the current work

only focused on a very simplified SOA architecture, more complex CWS need be modeled to

simulate real SOA implementations well.

3.5 Summary

WSs and SOA are still relatively new research areas. Though a lot of work has been done on the

performance issue of traditional HTTP servers, the performance of WSs is not well studied yet.

Some studies have been done on the experiment of atomic WS, or the performance comparison

of different implementations for CWS.

More work need to be done on the performance of CWS, that is overloaded and under

different kinds of load, and on the impact of different workflow patterns. Also, experiments and

simulation models can be combined to study the run time behavior of CWS. The experiment

results can validate simulation models, and validated simulation models can predict the run time

behavior of CWS. The Table 3.1 is a summary of the related work listed in this chapter:

28

Table 3.1: The summary of related work

Reference paper Work and contributions Limitations
Zhu et al. [45] They used Axis 1.4 package and Java

to develop services, got samples of
response time distribution from
experiments. The experiments revealed
that every WS provider exhibits
thrashing either due to the costs of
parsing XML messages or the
resource/data contention issues.

The implementation of the
load-testing suite is still
relatively simple. It covers
only successful test scenario
generation and does not
produce more interesting
stress testing data.

Huang et al. [24] They defined WS into different visions
based on the assumptions used for
them, and build state-transition models
for workflow as well as for other
services. It gives a guide when
selecting model-checking technologies
for verifying WSs

No experiment results were
given.

Chafle et al. [8] They discussed the servers that
participate in decentralized execution:
their thread pool design and
communication protocols;
experimentally reconfirmed the
performance benefits that
decentralization provides, and showed
that JMS is a more efficient
communication protocol than HTTP in
a decentralized setup.

They focus mainly on
decentralized execution.
They did not examine
different workflow patterns
and their influence on the
performance of CWS.

Chafle et al. [9] They discussed improving
performance of CWS over a Wide
Area Network (WAN); investigated
how different topologies generated by
decentralized orchestration are affected
differently by variations in WAN
conditions; and proposed an adaptive
system based on decentralized
orchestration.

The system depends on the
Switch component, which
could act as a single point of
failure. The performance
model makes simplistic
assumptions, so the model
still needs to be improved to
represent real WAN
behavior.

Dyachuk et al. ([15],
[16])

They discussed the performance issue
of CWS when services are overloaded,
and evaluated different scheduling
policies, aiming to employing
scheduling service requests to improve
the overall CWS performance. They
showed promising experiment and
simulation results of applying
scheduling.

The work only focused on
a very simplified SOA
architecture, more complex
CWS need be modeled to
simulate real SOA
implementations well.

29

CHAPTER 4

EXPERIMENTS

This thesis focuses on studying the performance of atomic WS and CWS, when they are

exposed to transient overloads.

In this and the following two chapters, experiments and simulation results are shown.

Different experiments were done in order to study the WS’ behavior when slightly overloaded.

Experiment platforms, workflow types, and workload types divide different experiments setups.

Experiment platforms include Java 6, Axis 1, and Axis 2. Workflow types include atomic WS

and CWS. Workload types include constant load, and non-constant load (for example, the

interarrival time can be exponentially distributed, or be certain kind of “burst”, and so on). A

subset of all experiment settings is studied. The following table is a summary of the experiments

in this chapter:

Table 4.1: The summary of the experiments
Experiment Type of workflow Load Experiments

platforms
Experiment A An atomic WS Constant load Java 6, Axis 1,

Axis 2
Experiment B Two WSs in sequential

workflow
Constant load Axis 1, and

Java 6
Experiment C Three WSs in sequential

workflow
Constant load Axis 1

Experiment D Atomic WS or CWS in a
sequential workflow

Non-constant
(e.g., exponentially
distributed, “burst”)

Axis 1

Experiment E CWS in a workflow that
has loops or switches

Constant and non-constant
load

Only
implemented in
AnyLogic models

30

The experiment A examines the behavior of an atomic WS that is exposed to transient

overloads. The experiment B aims to study the behavior of CWS in short sequential workflows,

while the experiment C aims to study the behavior of CWS in longer sequential workflows. The

experiments A, B, C focus on constant workload.

 As the experiments A, B, C, the experiment D aims to study the behavior of atomic WS and

CWS in sequential workflows. The experiments D focus on non-constant workload.

The experiment E aims to study the behavior of CWS in more complex workflows, such as the

workflow of loops or switches. Both constant and non-constant load can be studied in

experiment E.

4.1 Experiment A

The WS is built with the Apache Tomcat Servlet/JSP container [5]. Apache Tomcat version 5.5

is used. Apache Tomcat is the servlet container that is used in the official Reference

Implementation for the Java Servlet and JavaServer Pages technologies. The Java Servlet and

JavaServer Pages specifications are developed by Sun under the Java Community Process.

The atomic WS is built on Java SE 6 platform [25], with the NetBeans IDE 5.5 [29]; the same

atomic WS is also built on Apache Axis 1.4 [3] and Apache Axis2/Java Version 1.2 [4], with the

NetBeans IDE 5.0 [29].

A lab computer is used as server, which receives and processes requests; and an experiment

computer is used as client, which sends requests.

The configuration of the computer that serves as the server is as follows:

HP workstation xw6200, Intel(R) Xeon (TM) CPU 3.20 GHz, 2.0 GB of RAM, Windows XP

Professional.

31

The configuration of the computer that serves as the client is as follows:

Intel Pentium III processor, 803MHz, 1.0 GB of RAM, Windows XP Professional.

The server implements a WS, which calculates Fibonacci numbers [35]. Calculating

Fibonacci numbers is simple, and it uses small amount of memory, so it is chosen in this research.

Fibonacci numbers are defined as follows:

f(n) =1, for n=1 and n=2,

and f(n) = f(n-1)+ f(n-2), for n>2.

Thus, the sequence is 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584,

and so on.

The well-known recursive algorithms for computing f(n) is used for the WS:

f(n):

if n = 1 or n = 2 then the answer is 1;

if n > 2 then {compute FN1 = f(n - 1);

compute FN2 = f(n - 2);

the answer is FN1 + FN2}.

The recursive algorithm for computing Fibonacci numbers has exponential time complexity

[35], and can be used to simulate different job-sizes.

In the experiments, 1000 requests are sent in each experiment with constant interarrival time.

Each request includes the parameter n. After receiving requests from the client, the service

calculates the value of fibonacci (n) recursively. When the server completes calculating the

results, it records the current time as “departure time” (the time when the jobs are completed and

departure from the server), and sends this time to the client as the return value. (The return value

is not the calculated value of fibonacci (n), but the “departure time”. The server also records the

32

“departure time”. In this way, the time is recorded more accurately, since the client can be very

busy when it receives the results, it may not record the correct time. It also eliminates some of

the impact from network delay.)

The experiment setting is shown as below (Figure 4.1):

nClient

 f(n) time

Server

return departure time

Figure 4.1: The experiment setting of atomic WS

When n is larger, the calculation of its fibonacci (n) is more time-consuming, and requires

more processor time. In this research, the parameter n is chosen as 42. The service calculates the

value of fibonacci (42). The service time of calculating fibonacci (42) is about 1.9 seconds, so it

can simulate some load on the service.

In the experiments, the interarrival time is set slightly smaller than the server’s service time;

therefore, the server is slightly overloaded.

The atomic WS’s experiment’s setup is noted as “setup A”, which has one client and one

server, with constant inter-arrival time. “Experiment A” uses setup A, and is done on different

platforms.

33

4.1.1 Java 6 Platform

The atomic WS is built on the Java SE 6 platform with the NetBeans IDE 5.5. Java SE 6 is the

current major release of the Java SE platform, which has full support from NetBeans IDE 5.5.

The client sends 1000 requests in each experiment with constant interarrival time. The server

processes requests, calculating the value of fibonacci (42). The interarrival time is slightly

smaller than the server’s service time; therefore, the server is slightly overloaded. The

interarrival time is 1700 milliseconds, and the server’s service time should be near 1900

milliseconds or more.

The experiment results are very similar to simulation ones (shown in Section 5.1.1, Figure

5.2), except of “noise” in real systems. The simulation results have almost constant

interdeparture time; while the experiment results has fluctuating interdeparture time and “noise”.

Figure 4.2: Interdeparture time

Moreover, the interdeparture time should be normal distributed, since its distribution fits

normal distribution quite well. Its average value is almost constant in each small period, and the

34

value fits the simulation results. Its variation increases as the “noise” in the system increases,

which can be shown in modified models (shown in Section 5.1.2).

Figure 4.3: Distribution of interdeparture time

In Figure 4.3, the distribution function D (x) of the interdeparture time in experiment is

compared to the distribution function of normal distribution and exponential distribution [31].

The distribution function D (x) [31] (also called the cumulative distribution function (CDF) or

probability distribution function), describes the probability that a random variable x takes on a

value less than or equal to a number x. The distribution function is sometimes also denoted F (x).

The distribution function of the interdeparture time observed in the experiment are shown in

the curve, which is compared to the distribution function of normal and exponential distribution,

in order to identify the distribution of the result. The x-axis represents the interdeparture time,

and the y-axis is its distribution function D (x).

The result shows that the interdeparture time fits the normal distribution well. This conclusion

also holds in other results with Axis 1 and Axis2, which can be simulated in modified models

35

that has simulated “noise” in experiment results (shown in Section 5.1.2).

4.1.2 Axis 1.4 Platform

The atomic WS is built on Apache Axis 1.4. The experiment’s setting and parameter are the

same as the experiments with Java SE 6.

The interarrival time is 1700 milliseconds, and the server’s service time should be near 1900

milliseconds or more.

The result is shown in Figure 4.4.

Figure 4.4: 1st Axis 1.4 experiment result

The same experiment is done repeatedly on the same computer. Each experiment was done

after rebooting the computer, in order to make sure that the experiment environments are exactly

the same. Figure 4.5 and 4.6 shows more results when repeated the same experiments.

36

Figure 4.5: 2nd Axis 1.4 experiment result

Figure 4.6: 3rd Axis 1.4 experiment result

37

The three experiments’ results show similar distributions to normal distribution:

Figure 4.7: Distribution of 1st Axis 1.4 experiment result

Figure 4.8: Distribution of 2nd Axis 1.4 experiment result

38

Figure 4.9: Distribution of 3rd Axis 1.4 experiment result

Notice that the incremental garbage collection is used instead of the default one. The default

setting of garbage collection in Java is to do it periodically. We changed this way into

incremental garbage collection, which reduces garbage collection pauses at the expense of

throughput [23]. It reduced periodical noise and reduced about 10% of CPU capacity.

4.1.3 Axis 2 Platform

An atomic WS is built on Apache Axis 2/Java Version 1.2 [4]. The experiment is also using

setup A, with a different interarrival time. When running experiments on Axis 2 platform, the

loads that is used in the experiments on Java 6 and Axis 1.4 causes timeouts [25], which may

indicate that the timeout limit in Axis 2 is stricter. Therefore, in the experiments on Axis 2, larger

interarrival time is used, to form lighter load (but still overloaded). That means the interarrival

time is just a little smaller than the server’s service time. The interarrival time is 1840

milliseconds, and the server’s service time should be near 1850 milliseconds or more.

39

The results are shown in Figure 4.10 and 4.11. They are slightly different from the results in

Java 6, but still show the similar runtime behavior feature of overloaded WS. With lighter load,

the “noise” shown in Axis 2 seems to be smaller than the results of experiments on Java 6 and

Axis 1.4

Figure 4.10: 1st Axis 2 experiment result

Figure 4.11: 2nd Axis 2 experiment result

40

Besides, the interdeparture time seems to be normal distributed, and its distribution function

fits normal distribution function quite well; the following figures also show obviously that the

results are not exponentially distributed:

Figure 4.12: Distribution of 1st Axis 2 experiment result

Figure 4.13: Distribution of 2nd Axis 2 experiment result

41

4.2 CWS’s Experiments

4.2.1 Experiment B and Experiment C

4.2.1.1 Experiment B and experiment C on Axis 1

The behavior of CWS in a sequential workflow can be studied by implementing it. However

using existing atomic WS and its result, we can also simulate a CWS.

In the previous experiments with atomic WS, the “departure time” was recorded in a file. Next,

the file data is copied to Excel to calculate the “interdeparture time”. The “interarrival time” is

constant.

The “interdeparture time” is saved as “interarrival time” in a file, and the client code is

changed to read the “interarrival time” from this file. In this way, the first WS’s “interdeparture

time” can be as the second WS’s “interarrival time”, and the second service’s “interdeparture

time” can be recorded. Thus, the first and second WSs simulate the behavior of CWS in a

sequential workflow: the request from the client comes into the first service; when a request is

processed by the first service, the first service sends requests to the second service. Such

experiment setting of sequential workflow is noted as “setup B”, with two sequential WSs and

constant load (constant inter-arrival time). Experiment B uses setup B, and is done on the

platform of Axis 1.

The sequential workflow is shown as below:

Server1 Server2 Client

Figure 4.14: A sequential workflow

42

If using the second service’s “interdeparture time” as the third service’s “interarrival time”,

the third service’s “interdeparture time” can be recorded, and a workflow with three services

can be simulated with three atomic WS. Such experiment setting of sequential workflow is noted

as “setup C”, with three sequential WSs and constant load (constant inter-arrival time).

Experiment C uses setup C, and is done on the platform of Axis 1.

The “interdeparture times” of the first, second, and third WS in a sequential workflow are

recorded. Note that experiment B’s results are only the “interdeparture times” of the first and

second WS, which is included in the results of experiment C.

The experiment results of experiment C with three WSs in sequential workflow are as below:

Figure 4.15: First WS’s result in a sequential workflow

43

Figure 4.16: Second WS’s result in a sequential workflow

Figure 4.17: Third WS’s result in a sequential workflow

44

The black curve is the trend line of the average value, which can show the features of results

obviously, and can be easier compared to the simulation results.

The similar results can be seen in the simulation. The simulation has no “noise”, and can

reflect the features obviously. See section 5.2.1.1 for more detail.

4.2.1.2 Experiment B on Java 6

To build more realistic CWS, a workflow server is added. Now the client does not send requests

directly to the services; instead, the client sends the requests to the workflow server, and receives

results from it, too. The workflow server receives the requests from the client, sends the request

to each service in a certain order as defined in the workflow pattern, receives the results from

each service, and sends them back to the client.

In the experiment B, there are two services in a sequential workflow. The two services are

implemented separately on two computers. A workflow server is also used in the workflow,

which receives requests from the client and sends messages to each service. The workflow server

is implemented on the third computer. The sequential workflow with a workflow server works as

following: The client sends request to the workflow server. The workflow server first sends the

request to the first service, gets the result from the first service; then sends a request to the

second service, and gets the result from the second service. Finally, the workflow server sends

the result from the second service back to the client.

In this research, the experiment B is implemented on Java 6. Three computers are used: two

computers are used for implementing the two services in a sequential workflow, noted as S1, S3;

a client noted as C2 and a workflow server noted as S2 are both implemented on one computer,

since S2 does not do time-consuming job. The S1 and S3 are the same WS, which calculate

45

Fibonacci numbers “fib (n)”, and return the finish time. Here, the S2 just receives the parameter

“n” from C2, sends it to S1 and S3 sequentially, and sends the result from S3 back to C2. The

implemented sequential workflow is as following:

 n

result

S1

S2C2

S3

Figure 4.18: The sequential workflow of two services with a workflow server

The configuration of the computer that serves as server (S1) is as follows:

Intel Pentium III processor, 803MHz, 1.0 GB of RAM, Windows XP Professional.

The configuration of the computer that serves as server (S2) and the client (C2) is as follows:

HP workstation xw6200, Intel(R) Xeon (TM) CPU 3.20 GHz, 2.0 GB of RAM, Windows XP

Professional.

The configuration of the computer that serves as server (S3) is as follows:

Intel Pentium III processor, 803MHz, 1.0 GB of RAM, Windows XP Professional.

In the experiment, the finish time (departure time of jobs) of S1 and S3 are recorded. The

interdeparture times of S1 and S3 are calculated from the results, which shows the run time

behavior of the CWS.

There are 1000 requests in the experiments. Fib (42) and fib (44) are used in different

experiments. When calculating fib (42), and using 1700 milliseconds as the interarrival time, the

result (result 1) of S1 w is as follows:

46

Figure 4.19: S1’s result (result 1) with fib (42) and using 1700 milliseconds as the interarrival
time

In this experiment, timeouts happened, and only 906 results of interdeparture times were

recorded (although 1000 requests were sent in total). The average value of interdeparture times,

the average value from the 100th to 800th results, is 10573 milliseconds, which is much larger

than the interarrival time (1700 milliseconds).

For calculating fib(42), different interarrival times are tried in different experiments. Here are

the results of S1 when using different interarrival times and fib(n):

47

Table 4.2: Results of S1 when using different interarrival times and fib(n)

Result number Fib(n) Interarrival time Average interdeparture
time (100th to 800th)

Number of
records

Result 1 42 1700 10573 906
Result 2 42 1500 10302 950
Result 3 42 1400 10232 929
Result 4 42 1200 10551 913
Result 5 42 800 10208 989
Result 6 42 400 10383 971
Result 7 42 200 10280 960
Result 8 42 100 10811

(100th to 700th)
788

Result 9 42 2000 10601 988
Result 10 42 3000 10089 995
Result 11 44 8000 27136 999
Result 12 44 4000 25789 1001
Result 13 44 2000 25917 1000
Result 14 42 2000 10482 980

Result 15
(repeat
experiment 1
after restarting)

42 1700 10966 966

Experiment 1 is done after a few other experiments without restarting the computer, while

experiment 15 repeats experiment 1 after restarting. Their results are similar, although the

average value of interdeparture time in result 15 is a little larger, and the number of successfully

processed jobs in result 15 is a little larger.

Result 12 and 13 may include a couple of requests that are being resent, which makes the

number of recorded results a little larger than 999 (999 is the maximum value of the number of

interdeparture times recorded, when 1000 requests are sent).

The average interdeparture times are similar when calculating the same fib(n) (n is 42 or 44).

The results do not change with the interarrival time obviously.

For fib(42), the average interdeparture times are almost 10200 to 10600 milliseconds,

although the interarrival times change from 100 to 3000 milliseconds. Also, the recorded

48

numbers of results are almost above 900 (only when the interarrival times is 100 milliseconds,

the number is 788).

For fib(44), the average interdeparture times are almost 25000 to 27000 milliseconds,

although the interarrival times change from 2000 to 8000 milliseconds. Also, the recorded

numbers of results are above 900, near to 1000.

In summary, the experiments are run with different interarrival times. The services are

overloaded. A few of the requests fail to be processed in most of experiments. The errors exist

because timeouts happens. When the interarrival times are larger, the load of the service is

lighter. A feature of the results when the workflow server is added in the workflow is: the

number of errors (timeouts) does not change with the interarrival times (the load) obviously;

instead, the interdeparture times are similar in all the results with the same fib(n). Another

feature is that, the results of interdeparture times did not show the decreasing period as in

previous results when overloaded.

Also, in the results of this section, the interdeparture times are very large, much larger than in

previous results. In previous experiments of atomic WS on both Axis 1 and Java 6 (see Section

4.1.1 and 4.1.2), fib (42) is used, the interarrival time is 1700 milliseconds, and the server’s

service time should be near 1900 milliseconds or more. Therefore, the service is only slightly

overloaded, and the interdeparture time is about 2000 milliseconds in the stable period before it

begins to decrease. However, the interdeparture time of fib (42) in this section is much larger

than 2000 milliseconds. This is because the service time is larger, and the load of the service is

heavier than before. Although the services still calculate fib (42), they are implemented on

slower computers, which makes the service time of them larger than before (when implemented

on faster computers before, the service time is about 1900 milliseconds). For fib(42), the average

49

interdeparture times in the results of this section are almost 10200 to 10600 milliseconds, the

service time can be concluded as about 5000 to 8000 milliseconds. Comparing the possible

service time to the interarrival time used, the load of service in this section’s previous

experiments is quite heavy. For the previous experiments of CWS without a workflow server,

when the load is quite heavy, lots of timeouts happen, and only a few results can be recorded;

while in this section with a workflow server added to the CWS, when the load is heavy, more

than 900 results are recorded out of 1000 expected results, the timeouts happens but it is not a

very serious problem. The conclusion is that, when we add a workflow server to the CWS, the

number of timeouts is small and similar when the services are slightly overloaded or under a

quite heavy load. A workflow server can help prevent too many timeouts when the load is heavy.

To better study the behavior of CWS with a workflow server, more experiments are done, that

calculates fib (39) instead of fib (42). Calculating fib (39) is less time-consuming than

calculating fib (42), which makes the service time relatively small even when the services are

implemented on slower computers. The services’ load is lighter now, but it is still slightly

overloaded. Each experiment is run after restarting the computer and the services. When the

interarrival time is 1200 milliseconds, 946 results are recorded, and the average value of

interdeparture time (from the 1st to 800th results) is 2560 milliseconds. When the interarrival time

is 900 milliseconds, 999 results are recorded, and the average value of interdeparture time (from

the 1st to 800th results) is 2525 milliseconds. However, when the interarrival time is 600

milliseconds, the load is so heavy that lots of timeouts happen, and only 57 results are recorded

(the average of the 57 results is 2737 milliseconds). Therefore, it is concluded that, when

interarrival time (the load) changes in a certain range, the number of errors (timeouts) does not

change with it obviously. The results also show no obvious decreasing of the curve of

50

interdeparture time at the end of the experiment. In summary, the new experiments show similar

results to the results with heavier load, and show the same feature when CWS has a workflow

server.

4.2.2 Experiment D and E

For atomic WSs or WSs in sequential workflow, the workflows load can be constant or

non-constant. When the load is non-constant, it can be exponentially distributed, “burst”, and so

on. Such experiment settings are noted as setup D. Experiment D uses setup D, and can be

implemented on the platform of Axis 1, or other platforms.

Besides sequential workflows, there are CWS in other kinds of workflows, such as workflows

that have loops, switches, and so on. Such experiment settings are noted as setup E. Experiment

E uses setup E, and can be implemented on the platform of Axis 1, or other platforms. In this

research, experiment E is only implemented in simulation models with AnyLogic, and the

simulation experiments results will be shown in Chapter 5.

4.3 Experiment D on Axis 1.4 Platform

In the previous experiments, the job requests are sent with constant interarrival time. For

example, a job request is sent in every 1700 milliseconds. 1700 milliseconds is the interarrival

time used in the experiment, which is constant. The constant interarrival time are also used in the

simulation model in AnyLogic.

However, in real systems, the job requests rate may not be constant. The load can be

exponentially distributed, or following other distributions. The load can also be a kind of “burst”.

For example, burst may have a period of 10 seconds: in the first 5 seconds, the job requests have

a constant rate of 1 job per second; and in the last 5 seconds, there is no job request sent.

51

Experiment setting with non-constant load for atomic WS or CWS in sequential workflow is

noted as “setup D”. Experiment D uses setup D, and can be implemented on the platform of Axis

1, or other platforms. (Constant and non-constant load for CWS in workflow of loops or switches

are more complex, which is noted as “setup E”, and studied with simulation experiments.)

We did experiment with exponentially distributed interarrival time on the platform of Axis 1.4.

The atomic WS that is used in experiment A is used here. An experiment computer is used as

server, which receives and processes requests; and a lab computer is used as client, which sends

requests.

The configuration of the computer that serves as server is as follows:

Intel Pentium III processor, 803MHz, 1.0 GB of RAM, Windows XP Professional.

The configuration of the computer that serves as the client is as follows:

HP workstation xw6200, Intel(R) Xeon (TM) CPU 3.20 GHz, 2.0 GB of RAM, Windows XP

Professional.

The WS calculates Fibonacci numbers [35]. In this experiments, the client requests for

calculating fibonacci (39). The interarrival time is exponential (1.7) seconds (the average value

of interarrival time is 1.7 seconds, and it is exponentially distributed). The server is slightly

overloaded with such parameters. The server’s service time should be a little more than 1.9

seconds.

Default setting of Axis 1.4 are used in the server, so the maximum number of threads is 150.

Totally 1000 requests are sent by the client.

The result is: no timeouts happens since the server is only slightly overloaded. The

interdeparture times are exponentially distributed, and their average value is larger than the

interarrival time since overloaded. The interdeparture times fit exponential distribution quite well,

52

which is the same as in simulation results; while “noise” is shown when the interarrival time is

constant, and the interdeparture times are normally distributed, instead of constant as in

simulation results.

The result of interdeparture times that fit exponential distribution are shown as following:

Figure 4.20: Axis 1.4 experiment result with exponentially distributed interarrival times

Figure 4.21: Distribution of Axis 1.4 experiment result with exponentially distributed interarrival
times

53

CHAPTER 5

SIMULATION MODEL

In Chapter 4, basic behaviors of WSs were discussed. In order to examine more complex

behaviors of WSs, simulation models are used.

Experiment A, B, C, D, E were discussed in Chapter 4. In this chapter, some of those

experiments are modeled as basic model (which has no “noise”) and modified model (which

simulated the “noise” in real system). The following table is a summary of the simulation

experiments in this chapter:

Table 5.1: The summary of the simulation experiments

Experiment If has basic model? If has modified model?
Experiment A Yes Yes
Experiment B Yes No
Experiment C Yes No
Experiment D Yes, of atomic WS with

exponentially distributed interarrival
time

Not needed, simulated results
fit experiment results well

Experiment E Yes, of CWS in workflow that has
loops

No

The simulation models of WSs are built in AnyLogic [44], which is software to build

simulation models and run simulation experiments.

54

5.1 Model for Experiment A

5.1.1 Basic Model

In this research, the simulation models of atomic WSs were developed in AnyLogic [44].

Figure 5.1: AnyLogic model of atomic WS

In the model, the queuing network model is used, and the atomic WS is modeled as a server.

The server has a constant service time. A client is used to send requests to the server.

In the model, the client sends 1000 requests in each experiment run with a constant

interarrival time. The maximum number of threads in the server is 1000. The CPU time is

distributed evenly among all the threads; that is, every thread gets the same share of CPU time.

The interarrival time is slightly smaller than the server’s service time, so that the server is

slightly overloaded. Here, the interarrival time is 1 second, and the service time is 1.2 seconds.

The simulation experiments run in AnyLogic. The model and its simulation results do not

exhibit “noise” found in real systems. Therefore, the simulation results show only the basic

behavior of an overloaded WS.

55

Figure 5.2: Simulated interdeparture time of atomic WS

The interdeparture time fluctuates for a very short period at the beginning of the simulation

experiment, which is called a “warm-up” period. Then, the interdeparture time is almost constant

for a long period in the simulation experiment, which is called a “stable” period. At the end, the

interdeparture time suddenly decreases after a single point, which is called a “decreasing” period.

The interdeparture time suddenly decreases after a single point, because after that point, there

is no new request (job) coming into the server. The remaining jobs in the server can enjoy more

and more processing resource, and be done faster.

The “stable” period and following “decreasing” period, show important behavior of

overloaded WS.

Throughput is another way to show the behavior of a WS:

56

The throughput can be noted as X: X =C/T. T is the length of time observed. C is the number

of request completions observed. For example, if 8 completions are observed during an

observation interval of 4 minutes, then the throughput is 8/4 = 2 requests/minute. In the

AnyLogic model, a timer is set to get the throughput. The timer has a time interval of 30 seconds,

which is used as a unit of length of time for observing the system. Therefore, T is 30 seconds.

The throughput shown in the results is the number of request completions observed in every 30

seconds, the throughput can be noted as X: X =C/T=C/30 seconds.

Figure 5.3 shows the throughput of the simulation result. In this figure, the x-axis is the

“count times”, that is, the number of time intervals. The timer counts the number of request

completions in every 30 seconds, and the experiment lasts for about 60*30 senconds=1800

seconds in total, so the maximum “count times” is 60. The y-axis is the “throughput”, noted as X:

X =C/T.

Figure 5.3 shows that, at the beginning of the experiment, the throughput is almost stable,

which shows the same feature as the “interdeparture time” figure does.

Figure 5.3: Simulated throughput of atomic WS

57

It can be seen that at the end of the experiment, the throughput becomes higher, which means

the jobs are completed fast at the end. This is the same as what is shown in the “interdeparture”

time figure.

The simulation experiment is also done under different loads. In the following results, I

compared the behavior of two services; the loads of the servers are 120% and 140%. The 120%

load server has interarrival time as 1 second and service time as 1.2 seconds, and the 140% load

server has interarrival time as 1 second and service time as 1.4 seconds:

Figure 5.4: Simulated interdeparture time of atomic WS under different loads

The results still have the fluctuating warm-up period, stable period, and fast departure period.

Under different loads, the length of stable and the fast departure period is different. Under

58

heavier loads, in the stable period, the inter-departure time is larger with larger service time.

Dyachuk et al. also represented similar simulation results [14].

5.1.2 Modified Model

It is known from the experiment results (in Chapter 4) of the real system that, the system has

“noise”. Therefore, “noise” is added in the basic model. The interdeparture time in real system

experiment results is normal distributed, and the modified model has results that are very similar

to experiment results. This model also simulates the system setup of experiment A.

The “noise” in experiment results can be simulated in a modified model. Again the

interdeparture time is normally distributed. The average value of interdeparture time is almost

constant in each small period, and the value fits the simulation results with the basic model.

Moreover, it is known from simulation results that, the variation of interdeparture time

increases as the “noise” in the system increases.

The interarrival time in the model is 1.7 seconds, and the service time is 1.8 seconds. The

uniform distributed noise is added into the server, every 2 seconds, and the server’s performance

is decreased by some “noise”.

The function is: every 2 seconds, the server’s performance is changed to (1 +

uniform(-noise,0)). For example, when the parameter of “noise” is set as 0.04, the

“uniform(-noise,0)” is a random variant that is uniform distributed with an average value of

(-0.04/2). Every 2 seconds, the “uniform(-noise,0)” will generate a random value, such as –0.017,

and the server’s performance is changed to (1+(-0.017)), that is 98.3%. This kind of “noise” is

used to simulate the real systems; for example, the real systems may execute other jobs in the

background, with only 98.3% of the resources processing the WS jobs; at other moment, the

number may change.

59

There are two groups of results; the first one has smaller “noise” than the second one. For the

first one, the noise is 0.035; for the second one, the noise is 0.04. The simulation results with

modified model are shown as below:

Figure 5.5: Simulated result 1 of atomic WS when noise is 0.035

Figure 5.6: Distribution of simulated result 1 of atomic WS when noise is 0.035

60

Figure 5.7: Simulated result 1 of atomic WS when noise is 0.04

Figure 5.8: Distribution of simulated result 1 of atomic WS when noise is 0.04

61

Other simulation experiments were performed with the following parameters: the interarrival

time in the model is 1.7 seconds, and service time is 1.8 seconds. The uniform distributed noise

is added into the server, in each second, the server’s performance is added by some “noise”. The

function is: in every second, server.performance = 1 + uniform(-noise,0); or the performance is

1.

Note that the only difference from the previous simulation experiments is that the noise’s time

interval is changed from 2 seconds to 1 second. The smaller time interval to add noise, makes the

simulation results’ distribution curve smoother and more similar to normal distribution curve.

There are also two groups of results. As the previous simulation experiments, the first one has

smaller “noise” than the second one. For the first one, the noise is 0.035; for the second one, the

noise is 0.04. The simulation results with modified model are shown as below:

Figure 5.9: Simulated result 2 of atomic WS when noise is 0.035

62

Figure 5.10: Distribution of simulated result 2 of atomic WS when noise is 0.035

Figure 5.11: Simulated result 2 of atomic WS when noise is 0.04

63

Figure 5.12: Distribution of simulated result 2 of atomic WS when noise is 0.04

5.2 Composite Web Services

5.2.1 CWS’s Basic Model

CWS are built by combining multiple WSs in a certain kind of workflow, for example,

sequential workflow, loops, and so on.

5.2.1.1 Basic model for experiment B and C

CWS in a sequential workflow are modeled in AnyLogic. These models are simulating the

experiment B and C. Here is the model of experiment C with three services in sequential

workflow (similarly, model for experiment B with two services in sequential workflow is also

built):

64

Figure 5.13: Simulation model of three services in sequential workflow in AnyLogic

In this model, the queuing network model is used, and the atomic WS is modeled as a server.

The server has constant service time. A client sends requests to the server.

In this basic model, no admission control is considered, that is, the service’s maximum

number of thread is considered unlimited, and the queue size is considered unlimited. Here, the

client sends 1000 requests in each experiment with constant rate (constant interarrival time), and

the service’s maximum number of thread is set as 1000, which is as large as the maximum

number of jobs. Therefore, no jobs will wait in the queue, and the queues in front of the second

and third service are omitted.

The model and its simulation results do not have “noise”. Therefore, the simulation results

show only the basic behavior of overloaded WS. The simulation results are the figures of

interdeparture time and requests.

In section 4.2.1.1, the experiment results have been shown, and compared with the simulated

results. The experiment results’ trend is similar to the simulated results, but the experiment

results have “noise” that makes the results fluctuating; while the simulated results can show the

features of runtime behavior of WSs obviously, since it has no “noise”. Figure 5.14 shows the

simulated results of two WSs in a sequential workflow:

65

Figure 5.14: Simulated result of two WSs in a sequential workflow

In this model, there are two WSs in a sequential workflow. Every service has the same service

time: 1.2 seconds. The interarrival time of the first service is 1 second, which is slightly smaller

than the server’s service time: 1.2 seconds. Therefore, the first server is slightly overloaded. At

first, the first service’s interdeparture time is about 1.4 seconds, which is used as the interarrival

time of the second service, and is larger than the second service’s service time. Therefore, at the

beginning, the second service is not overloaded; its interdeparture time is equal to its interarrival

time, which is also the first service’s interdeparture time. Thus, at the first part of the experiment,

the departure rate of the 2nd services is the same as the 1st one, and they are both about 1.4

seconds, which is almost stable.

The departure rate of the first service suddenly becomes faster when no new jobs come to the

first service. Then the remaining jobs in the first service are less and less, and each can share

66

more resource in the first service. The departure rate decreases from about 1.4 seconds to 1.2

seconds/job (1.2 second is the service time), and continues decreasing to 0. This process is also

shown in the previous section in the results of atomic WS.

The departure rate of the second service provider differs from the first one, only after the

point when the jobs departure from the 1st provider faster than 1.2 seconds/job (1.2 second is the

service time). After this point, the second service’s interarrival time is smaller than its service

time, so it is overloaded. The 2nd provider begins to experience a gradual overload that leads to

slowdown in the departure rate (> 1.2) [14].

The departure rate of the second service slows down after the point it becomes overloaded,

which is shown in the figure as the increasing departure time of second service. When no new

jobs come to the second service, the departure rate start decreasing to 0.

Figure 5.15 shows the simulated results of three WSs in a sequential workflow:

Figure 5.15: Simulated result of three WSs in a sequential workflow

67

In the simulation experiment of Figure 5.15, every service has the same service time: 1.2

seconds. The interarrival time of the first service is 1 second, which is slightly smaller than the

server’s service time: 1.2 seconds. The first service and second service has similar behavior as it

is shown in the previous result of only two services. The 3rd provider adds an additional spike

with the similar reason. When the jobs departure from the second provider faster than 1.2

seconds/job, the third provider begins to experience a sudden overload that leads first to a

slowdown in the departure rate (> 1.2) [14].

5.2.1.2 Basic model for experiment D – exponentially distributed interarrival time

The previous basic model uses constant load. The workload can also be non-constant, which is

discussed in experiment D. This can be set in the model’s parameter.

In this section, simulation models were built in AnyLogic with exponentially distributed

interarrival time. The results are the interdeparture time and its distribution (Only the 1st to 350th

jobs’ results that are in the “stable” period are used in the analyze, the results when the

interdeparture time begins to decrease are not used).

The first experiment’s setting is as following:

interarrival time=exponential(1), service time=1.2.

The first experiment’s result is as following:

68

Figure 5.16: The interdeparture time of the first experiment

Figure 5.17: Distribution of interdeparture time of the first experiment

69

The interdeparture time of the first experiment is exponentially distributed, and its average

value is 1.371141827.

The second experiment’s setting is as following:

interarrival time=exponential(1), service time=1.4.

The second experiment’s result is as following:

Figure 5.18: The interdeparture time of the second experiment

70

Figure 5.19: Distribution of interdeparture time of the second experiment

The interdeparture time of the second experiment is also exponentially distributed, and its

average value is 2.117381528.

In summary, when the interarrival time is exponentially distributed, the interdeparture time is

exponentially distributed, too. When the load increases with the service time, the average

interdeparture time is larger. The interdeparture time decreases after a time when no new jobs

arrives at the server, which is the same as what happens when the interarrival time is constant.

5.2.1.3 Basic model for experiment E –5 services in a sequential workflow with loops

CWS can also be built in other kinds of workflows, for example, loops, split, synchronization,

and so on. Such CWS are included in “experiment E”.

In this simulation model, there are 5 services in a sequential workflow with loops. The

interdeparture times of 5 services are recorded, as well as the completion time of the workflow.

The simulation experiments settings are as following:

71

Totally 1000 requests are sent to the workflow.

Interarrival time = 1 second.

Service time = 1.2 seconds. (5 services are the same.)

(In service x, if: y>0, then: service x has y loop(s).

int x=1,2,3,4,5.

int y=0,1,2,3.

The simulation experiment x-y means service x has y loop(s), while others have no loops.

In detail, such experiments are done:

0: 5 services all have no loops. It is a sequential workflow.

1-1: service 1 has 1 loop, while others have no loops.

1-2: service 1 has 2 loops, while others have no loops.

1-3: service 1 has 3 loops, while others have no loops.

2-1: service 2 has 1 loop, while others have no loops.

2-2: service 2 has 2 loops, while others have no loops.

2-3: service 2 has 3 loops, while others have no loops.

3-1: service 3 has 1 loop, while others have no loops.

3-2: service 3 has 2 loops, while others have no loops.

3-3: service 3 has 3 loops, while others have no loops.

4-1: service 4 has 1 loop, while others have no loops.

4-2: service 4 has 2 loops, while others have no loops.

4-3: service 4 has 3 loops, while others have no loops.

5-1: service 5 has 1 loop, while others have no loops.

5-2: service 5 has 2 loops, while others have no loops.

72

5-3: service 5 has 3 loops, while others have no loops.

In this research, the “completion time” is recorded to represent the performance of CWS. The

“completion time” is the time for all the requests to be completed is called, which is the time

from the first request comes into the first service, to the last request departure from the last

service.

In the results for the experiment 0, the completion time of the workflow is 1699.17 seconds,

which is the smallest, since no loops are in this experiment to have impact on the performance of

the workflow. The curves of interdeparture times of the 5 services show the same feature as in

the result of sequential workflow of only 2 or 3 services (in section 5.2.1.1), that is, the 2nd, 3rd,

4th, 5th service adds an additional spike to the curve.

Here are the interdeparture times of the 5 services in the experiment 0

Figure 5.20: The interdeparture times of the 5 services in the experiment 0

73

The following experiment results are the results of the experiment 1-1, 1-2, 1-3, 2-1, 2-2, 2-3,

3-1, 3-2, 3-3, 4-1, 4-2, 4-3, 5-1, 5-2, 5-3. Those results are different from the result when there is

no loop, and they are different from each other.

Here are the interdeparture times of the 5 services in the experiment 1-1:

Figure 5.21: The interdeparture times of the 5 services in the experiment 1-1

Here are the interdeparture times of the 5 services in the experiment 1-2:

Figure 5.22: The interdeparture times of the 5 services in the experiment 1-2

74

Here are the interdeparture times of the 5 services in the experiment 1-3:

Figure 5.23: The interdeparture times of the 5 services in the experiment 1-3

Here are the interdeparture times of the 5 services in the experiment 2-1:

Figure 5.24: The interdeparture times of the 5 services in the experiment 2-1

75

Here are the interdeparture times of the 5 services in the experiment 2-2:

Figure 5.25: The interdeparture times of the 5 services in the experiment 2-2

Here are the interdeparture times of the 5 services in the experiment 2-3:

Figure 5.26: The interdeparture times of the 5 services in the experiment 2-3

76

Here are the interdeparture times of the 5 services in the experiment 3-1:

Figure 5.27: The interdeparture times of the 5 services in the experiment 3-1

Here are the interdeparture times of the 5 services in the experiment 3-2:

Figure 5.28: The interdeparture times of the 5 services in the experiment 3-2

77

Here are the interdeparture times of the 5 services in the experiment 3-3:

Figure 5.29: The interdeparture times of the 5 services in the experiment 3-3

Here are the interdeparture times of the 5 services in the experiment 4-1:

Figure 5.30: The interdeparture times of the 5 services in the experiment 4-1

78

Here are the interdeparture times of the 5 services in the experiment 4-2:

Figure 5.31: The interdeparture times of the 5 services in the experiment 4-2

Here are the interdeparture times of the 5 services in the experiment 4-3:

Figure 5.32: The interdeparture times of the 5 services in the experiment 4-3

79

Here are the interdeparture times of the 5 services in the experiment 5-1:

Figure 5.33: The interdeparture times of the 5 services in the experiment 5-1

Here are the interdeparture times of the 5 services in the experiment 5-2:

Figure 5.34: The interdeparture times of the 5 services in the experiment 5-2

80

Here are the interdeparture times of the 5 services in the experiment 5-3:

Figure 5.35: The interdeparture times of the 5 services in the experiment 5-3

In those results above, as discussed in section 5.2.1.1, the departure rate of the next service

provider differs from the previous one, only after the point when the jobs depart from the

previous provider faster than 1.2 seconds/job (1.2 second is the service time). After this point,

the next service’s interarrival time is smaller than its service time, so it is overloaded, which

leads to slowdown in the departure rate (> 1.2) [14]. This situation is shown as a spike in the

results. In Summary, the service 1 is overloaded at first, while the service 2, 3, 4, 5 are not fully

utilized (“underload”) for some period until the middle or the end of the experiment.

When a service is included in loops, its load is heavier. When a service loops for once, twice,

and three times, the load increases when the number of loops increases. For example, in the

results of experiments1-1, 1-2, 1-3, when the service 1 loops for once, twice, and three times, the

81

completion time of the workflow is larger than when no loop exists, the curves of interdeparture

times of the 5 services are different, too.

As will be discussed in Section 5.2.1.4, the service 1 is the most important service in

sequential workflow, and the service 2, 3, 4, 5 are less and less important on the performance of

the whole workflow. This is also because that the service 1 is overloaded at first, while the

service 2, 3, 4, and 5 are not fully utilized (under load) at the beginning of the experiments for

some period, if there is no loop. This feature still holds when the sequential workflow has loops:

when the most overloaded service (service 1) is included in loops, the performance of the whole

workflow is affected most seriously; while when not fully utilized services (service 2, 3, 4, and 5)

are included in loops, the load on them is relatively lighter.

The completion times of the workflow with different parameters are as following:

Table 5.2: The completion time of different workflows with loops
Simulation experiments of
loops

The completion time of the
workflow (second)

0 1699.17
1-1 3451.91
1-2 4718.09
1-3 5933.39
2-1 3103.02
2-2 4400.22
2-3 5629.22
3-1 2803.76
3-2 4085.57
3-3 5310.22
4-1 2604.88
4-2 3873.75
4-3 5091.91
5-1 2405.00
5-2 3605.00
5-3 4805.00

82

The results reconfirmed the feature in conclusion above, e.g., the result of experiment 4-2 is

slightly larger than in experiment 5-2, and the result of experiment 4-3 is slightly larger than in

experiment 5-3, and so on. In summary, the completion time of the workflow is longer when

there are more loops in a certain service; and when the service 1 is included in loops, it has the

largest completion time and shows the most important impact on the performance of the whole

workflow.

5.2.1.4 CWS’s basic model for performance optimizing

The sequential workflow is modeled not only for simulation experiments, but also for

performance optimizing as described in this section.

CWS are built in AnyLogic, and are run in simulation experiments with different parameters.

The performance of CWS are compared in different experiments with different parameters, to

find the most suitable parameter which lead to best performance. Therefore, CWS could be

configured optimally in a real system according to simulated best configuration. Developers can

either get the best performance with limited resource, or use less resource to get the same

performance.

In this research, the “CPU processing capacity”, or “processor power”, is used to describe the

model parameter, and to represent the resource used for WS. For example, when the CPU

processing capacity is 100% at first, the WS’s service time is 1 second; when the CPU

processing capacity is reduced to 70%, the WS’s service time is increased to 1/70%= 1.429

seconds. In real system, such reduces means using a slower machine or a busy machine that has

to do other jobs for deploying WS.

In this research, the “completion time” is used to represent the performance of CWS. When

the “completion time” is small, the performance is considered as good.

83

Such simulations experiments have already been done with CWS in sequential workflows,

and simulation experiments in other workflows, such as, loops and split, are going to be done.

The simulation model with a CWS in sequential workflow is built with 5 services (this system

setup is similar to experiment B and C, but with longer sequential workflow). Totally 1000

requests are sent to the CWS with a constant interarriveral time. At first, all services are the same,

suppose each service is using 100% CPU processing capacity. Therefore the total CPU

processing capacity is 500%, and all services have the same service time for same jobs. Running

simulation experiments get the results in the form of “completion time”. At first, with five 100%

CPU processing capacity servers, the “completion time” is 17.5084 seconds.

The simulation experiments aim to reduce resource consumption, without reducing too much

performance, i.e., without increasing “completion time” too much; or get better performance

with less resource. These changes are made to model parameter in different simulation

experiments, by using parameter variation experiments in AnyLogic. The results with changed

parameters are usually compared to the original results with five 100% CPU processing capacity

servers.

The simulation results with CWS in sequential workflow are as below:

(a) When the first service has 100% power, while the other four have 86%, the time cost is

19.1255 seconds. Total CPU processing capacity is (1+4*0.86)=4.44=444%, save total CPU

processing capacity (5-4.44)/5=11.2%, cost (19.1255-17.5084)/17.5084=9.24% more completion

time.

(b) When the first four services have 100% power, while only the fifth service has 86%, the

time cost is 17.6842 seconds. Total CPU processing capacity is (4+0.86)=4.86=486%, save total

84

CPU processing capacity (5-4.86)/5=2.8%, cost (17.6842-17.5084)/17.5084=1.004% more

completion time.

Those two results prove that one can reduce some resources without reducing too much

performance. For example, in (a), the resource is reduced by 11.2%, with the performance

reduced by only 9.24%.

Other simulation experiments were also performed. In each experiment only one service’s

resource is reduced (to 84% for example), and other four services’ resource are kept as 100%;

the weakened service is different in each experiment. From the results, a useful performance rule

is concluded as following: for sequential workflow, the first service is the most important, and it

should have as enough resource as possible; then the 2nd, 3rd, 4th, 5th service is less and less

important. Therefore, reducing the fifth service’s resource is most practical, and then is the

fourth, third, second one.

In simulation experiment (a) and (b), we already followed such rule, and succeeded in

reducing some recourse without decreasing the performance that much.

Such rule is also used to get better performance with the same total resource. The results are

shown here as (c), (d):

(c) In the model, the first service's CPU processing capacity is 1+c, and fifth service’s CPU

processing capacity is 1-c.

When c is 0, every service has 100% resource; time cost (completion time) is 17.5084 second.

When c is set larger than 0, the total resource is still 500%. Different values of c were tested,

and the results proved that the time cost could be reduced.

85

When c is 0.0972, the time cost is 14.4916 seconds, which is the smallest value. It cost no

more total CPU power (still be 500%), but can save (17.5084-14.4916)/17.5084=17.23%

completion time.

(d) In the model, the first service's CPU processing capacity is 1+c/2, the second, third, forth

service’s CPU processing capacity is 1+c/6, and the fifth service’s CPU processing capacity is

1-c.

When we set c as larger than 0, the total resource is still 500%. Different values of c are tested,

and results prove that the time cost can be reduced.

When c is 0.16, the time cost is smallest, about 15.

For (c) and (d), the total resource is still 500%, but with shorter completion time. The

performance of the workflow is improved without adding additional resources. The best result of

(c) is even better than the best result of (d), which also reconfirms the performance rule for

sequential workflow. The reason is that: in (c), all the reduced resource from the fifth service has

been added to the first service, which has the most important impact on a sequential workflow’s

performance; while in (d), half of the reduced resource from the fifth service has been added to

the second, third, forth service, and the second, third, forth service have less important impact on

in sequential workflow performance than the first service. In (d), some of the resources are used

to improve the performance of the second, third, forth service; while in (c), all the resources are

used to improve the performance of the first service, which has better effect on improving the

performance of the workflow.

In summary, for sequential workflows, the first service’s performance is the most important

one for the workflow’s performance, and the first service should have as enough resource as

possible; then the 2nd, 3rd, 4th, and 5th service is less and less important. Therefore, reducing

86

the fifth (the last) service’s resource is most practical, and then is the fourth, third, second one.

This rule helps to reduce some recourse without decreasing the performance that much, or

improve the performance with the same or even less resource.

5.2.2 Modified Model for Experiment B, C, D, E

In a modified model, a server with “noise” presents each WS in AnyLogic.

The atomic WS’s modified model is discussed in the previous sections. It is known that this

modified model can simulate the “noise” in real systems, and its results are similar to experiment

results.

The CWS could be also built in AnyLogic with the modified model. The CWS can be built in

a certain kind of workflow, for example, sequential workflow, loops, and so on. The simulation

experiments run in AnyLogic to simulate the performance of different kinds of workflows. The

workloads can be constant or non-constant.

5.3 Simulation Experiments with Timeouts

In the previous experiments, we set the “interarrival” time only a little smaller than the service

time of the WS. Therefore, the WS is only slightly overloaded, and no “timeout” happens.

If the WS is overloaded, it may timeout.

The timeout limit and queue size for the queue can be set in the AnyLogic model, according to

a real system. Also, the maximum number of threads in the WS is limited, which is defined as

the capacity of the server in AnyLogic. With such improvement, the model will be closer to real

WSs. Timeout or overload may happen with the limited resources.

Six simulation experiments are done for studying timeout. Totally 1000 requests are sent to an

atomic WS in all the simulation experiments. Queue size is 100 in all the simulation experiments,

87

since only less than 40 requests will be waiting in the queue according to simulation experiments

results. The queue size is enough since the service is only slightly overloaded.

The parameter settings of the simulation experiments are: the interarrival time, service time,

server's capacity (maximum number of threads), queue sizes, timeout limit (the time limit set in

the queue). Those (except for queue sizes) are different in each simulation experiment.

Timeout happens in all the simulation experiments, but the numbers of requests that are

successfully processed (noted as “success_num” for short) are different, that is, the number of

requests that are discarded after timeout happens (noted as “timeout_num for short) are different,

too. Those are recorded as the results of the simulation experiments. Also, “outnum” is used as a

notation for all the requests that departure, both successfully processed and timeout. Note that:

outnum=success_num+timeout_num, and outnum=999 in all the results, since total number of

requests is 1000, and only 999 are recorded in the model. Therefore, “success_num” and

“timeout_num” are related. After all the requests departured, the “completion time” is also

recorded in the results of the simulation experiments.

All simulation experiments’ parameter settings and results are in Table 5.3 (the interarrival

time, service time, timeout limit, and completion time are recorded in the unit of second(s)).

In Table 5.3, experiment 1’s parameter settings and its results are referred to by every other

experiment. Compared to experiment 1, only one parameter’s value is changed in experiment 2

to 6, and the results changed, too.

In detail, compared to experiment 1, experiment 2’s server's capacity is smaller, experiment

3’s timeout limit is smaller, experiment 4’s interarrival time is exponentially distributed with the

same average value, experiment 5’s service time is smaller, and experiment 6’s interarrival time

is smaller. As a result, experiment 2 to 6 has larger number of timeouts than experiment 1.

88

From all the results, it can be concluded that: interarrival time, service time, server's capacity,

timeout limit all have affect on the “timeout_num”. The “timeout_num” shows how many the

timeouts happens, and reflects the performance of the system in a perspective.

Table 5.3: Simulation experiments’ parameter settings and results for timeout

No. of
experiment

Interarrival
time

Service
time

Server's
capacity

Timeout
limit

success
_num

time-
out_
num

Completion
time

Experiment
1

1.7
(constant)

2.0
(constant)

200 60 976 23 1954

Experiment
2

1.7
(constant)

2.0
(constant)

100 60 928 71 1858

Experiment
3

1.7
(constant)

2.0
(constant)

200 50 972 28 1858

Experiment
4

1.7
(exponential)

2.0
(constant)

200 60 924 75 1866.79

Experiment
5

1.7
(constant)

2.2
(constant)

200 60 901 98 1984.4

Experiment
6

1.6
(constant)

2.0
(constant)

200 60 936 63 1874

Note that: here, the “completion time” does not means the performance of the system is very

good, since when timeout happens, some of the requests are discarded directly without being

processed, which shortened the overall “completion time”. In the results, experiment 2 to 4, 6 has

smaller “completion time” than experiment 1; while only experiment 5 has larger “completion

time” than experiment 1, since the service time increased.

The simulation of timeout is done as following:

Since a service is overloaded, the requests cannot be processed in time, some of them have to

wait in the service. More and more requests wait in the service, which happens from the

beginning of the experiments.

89

Since the server's capacity (maximum number of threads) is limited, for example, is 200, and

the service is overloaded, the service will be full of waiting requests soon. Then newly arrived

requests have to wait in the queue after the server is full, which usually happens in the middle of

the experiments.

When the requests have waited in the queue for a long time, a timeout happens, the requests

are discarded by the queue, which usually happens near the end of simulation.

In conclusion, when the load is the same, reduced server's capacity or timeout limit causes

more timeouts. Large service time or smaller interarrival time causes heavier load, and causes

more timeouts. Compared to constant interarrival time, interarrival time that is exponentially

distributed with the same average value causes more timeouts.

5.4 Simulation Experiments with Network Latency

Network latency exits on real systems. It is the time it takes for information to be transferred

between computers in a network. A minimum bound on latency is determined by the distance

between communicating devices and the speed at which the signal propagates in the circuits

(typically 70-95% of the speed of light). Actual latency is much higher, due to packet processing

in networking equipment, and other traffic.

For atomic WS or CWS, the network latency can be included in the model in AnyLogic. A

new component named as “delay” is added between different WSs and clients. Therefore, the

network latency can be simulated.

The new model with “delay” used different interarrival time, different network latency in the

“delay” component, and different capacity of the “delay” component. The results show the

effects of network latency.

90

5.4.1 Simulation Model of Atomic WS with Network Latency

A simulation model of atomic WS with constant network latency is built. When network latency

is non-constant, the rate at which requests arrive at the server is different from the rate at which

requests are sent from the client. For example, when the interarrival time is constant, and the

network latency follows exponential distribution, the rate at which requests arrive at the server is

not constant anymore. A new arriving rate can be used to replace the old rate from the client and

the latency in models, or non-constant network latency component can be added to the model. In

this section, we focus on constant network latency.

In the model, the “delay” component is used to represent network latency. The “delay”

component has two main parameters: the delay time that defines how long the network latency is,

and the capacity of the “delay” component that means how many jobs can stay in the component

at the same time. The capacity of the “delay” component should be large enough to simulate only

network latency without considering packet processing in networking equipment, but it can also

be small in models and be used to simulate some component that between the client and server

that makes jobs delay in it and only has limited capacity. Such “delay” component with small

capacity can be routers or some switch components in the network. In this section, both the delay

time and the capacity of the “delay” component will be discussed.

When the capacity of the “delay” component is large enough, the constant network latency do

not make results different from the results when there is no network latency. For example, when

the capacity of the “delay” component is 1000, which is equal to the maximum number of

requests being sent in an experiment, the results are the same as with no latency. (In fact, for the

experiments in this section, the maximum number of jobs that are staying in the “delay”

component is always no more than 5, according to the observation of simulation results.)

91

When the capacity of the “delay” component is not large enough, the results are different from

results when there is no network latency. When the interarrival time is constant, if the time of

network latency is equal or smaller than the interarrival time, the results that with network

latency are the same as the results that do not include network latency; while if the time of

network latency is larger than the interarrival time, the results that with network latency are

different. For example, when the interarrival time is 1 second, if the time of network latency is

0.1 second, 0.5 second, 1 second, the results are the same as with no latency; if the time of

network latency is 1.1 second, 1.2 second, 1.5 second, 2 second, and the capacity is only 1, the

“new” interarrival time at the server end is actually changed into 1.1 second, 1.2 second, 1.5

second, 2 second, which is equal to the latency, and the interdeparture time changed into 1.3

second, 1.2 second, 1.5 second, 2 second, depending on the service time and the “new”

interarrival time.

When the capacity of the “delay” component is not large enough, and the capacity is only 1

(additionally, if the capacity of the “delay” component is larger than 1, more than 1 requests can

stay at the “delay” component, which makes things more complex), and then only one request

can stay at the “delay” component at a time. If the time of network latency is smaller than or

equal to the interarrival time, the newly arrived request can always come into the “delay”

component immediately; while if the time of network latency is larger than the interarrival time,

the newly arrived request have to wait for the request that already in the “delay” component to

leave. If the time of network latency is noted as L, and the constant interarrival time is noted as

A (A<L), the first request arrive at the “delay” component at time T, then the second request

arrive at the “delay” component at time T+A. The second request has to wait until the time T+L

(T+L>T+A) to enter the “delay” component, after the second request left the “delay” component.

92

The second request is delayed for time L before leave the “delay” component. Therefore, the first

request leaves the “delay” component and arrives at the server at time T+L, and the second one

arrives at (T+L)+L. The “new” interarrival time at the server end is actually changed into L

(L>A), instead of A.

In summary, when the capacity of the “delay” component is only 1, and when the time of

network latency is larger than the constant interarrival time, the “new” interarrival time at the

server end is actually changed into the time of network latency, which makes the results different.

While when the capacity of the “delay” component is large enough, or when the time of network

latency is smaller than or equal to the constant interarrival time, the results are the same as with

no latency.

When the interarrival time is exponentially distributed, the rule concluded above still holds,

although the detail of results looks slightly different. For example, when the average value of

interarrival time is 1 second, and the time of network latency is 1 second (with capacity is only

1), since the interarrival time is exponentially distributed, it can be smaller than, equal to, or

larger than 1 at a certain time between two adjacent requests. When the interarrival time at a

certain time is smaller than 1 second, “new” interarrival time at the server end is actually

changed into the time of network latency, which is constant as 1 second; when the interarrival

time at a certain time is equal to, or larger than 1 second, it remain unchanged and is still

exponentially distributed. For the result of interdeparture time, when “new” interarrival time at

the server end is 1 second, it is almost stable; when “new” interarrival time at the server end is

still exponentially distributed, it is also exponentially distributed. Therefore, the result has some

stable parts that is similar to the result when interarrival time is 1 second (then the result should

be about 1.4 seconds), and also has some exponentially distributed parts that has different high

93

spikes that above 1.4 second. This can be shown in the result of experiment 1 below in this

section (in Figure 5.36).

If the average value of interarrival time is still 1 second, and the time of network latency is

only 0.5 second (with capacity is only 1), the probability that interarrival time at a certain time is

below 0.5 second is smaller than it is below 1 second. Therefore, the probability that “new”

interarrival time at the server end remains exponentially distributed is larger. This can be shown

in the result of experiment 2 below in this section (in Figure 5.37).

Experiment 1, 2, and 3 shows the time of delay has effect on the result of interdeparture time.

In experiment 1, 2, and 3, the average value of interarrival time is always 1 second, while the

time of network latency is set as 1 second, 0.5 second, and 0.1 second, and the results of

interdeparture time are different. When there is no network latency, the interdeparture time fits

exponential distribution quite well. In experiment 1, the network latency is as large as 1 second,

and the interdeparture time has many small parts that are almost stable. In experiment 2, the

network latency is 0.5 second; the interdeparture time is still different from the result when it has

no network latency. In experiment 3, the network latency is as small as 0.1 second; the

interdeparture time looks more similar to the result when it has no network latency.

In experiment 4, I keep the time of delay as 1 second, but increase both the average value of

interarrival time and the service time to twice the value as before. Therefore, the load is still

120% as in experiment 1, and the time of delay is half of the average value of interarrival time.

As a result, the curve of interdeparture time of experiment 4 is very similar to experiment 1, too,

except that the value of it is about twice the value in experiment 1.

In experiment 1, 2, 3, and 4, the capacity of the “delay” component is 1. That is, only one job

can stay in the “delay” component. In experiment 5, the capacity of the “delay” component is

94

changed from 1 into 1000. Other parameters in experiment 5 are the same as in experiment 1: the

interarrival time is exponential(1), service time is 1.2 seconds, and time of delay is 1 second. The

result of experiment 5 is similar to the result when it has no network latency. The interdeparture

time fit the exponential distribution quite well (in fact, it fits exponential(1.398741374)).

Here are the summary of parameters in experiment 1, 2, 3, 4, and 5:

Table 5.4: The summary of parameters in experiment 1, 2, 3, 4, and 5

Simulation
experiment

Interarrival time
(second)

Service time
(second)

Time of delay
(second)

Capacity of
delay
component

Experiment 1 Exponential(1) 1.2 1 1
Experiment 2 Exponential(1) 1.2 0.5 1
Experiment 3 Exponential(1) 1.2 0.1 1
Experiment 4 Exponential(2) 2.4 1 1
Experiment 5 Exponential(1) 1.2 1 1000

Here are the result of experiment 1, 2, 3, 4, and 5:

Figure 5.36: Result 1 - when the network latency is 1 second

95

Figure 5.37: Result2 - when the network latency is 0.5 second

Figure 5.38: Result 3 - when the network latency is 0.1 second

96

Figure 5.39: Result 4 - network latency is 1 second, but interarrival time is twice

Figure 5.40: Result 5 - network latency is 1 second, but capacity is 1000

97

Figure 5.41: The distribution of results 5 when network latency is 1 second

5.4.2 Simulation Model of CWS with Network Latency

A simulation model of CWS with constant network latency is also built. The model of CWS has

5 WSs in a sequential workflow. Each WS’s service time is 1.2 seconds. The interarrival time is

constant as 1 second. Totally 1000 requests are sent to the workflow. Therefore, the model is

similar to the CWS model of sequential workflow in previous sections; the only difference is:

between the client and the service 1, and between service n and service n+1 (n=1, 2, 3, 4), there

is a “delay” component.

The rule concluded in section 5.4.2 with atomic WS still holds. When the capacity of the

“delay” component is large enough (such as 1000), or when the time of network latency is

smaller than or equal to the constant interarrival time, the results are the same as with no latency;

while when the capacity of the “delay” component is 1, and when the time of network latency is

98

larger than the constant interarrival time, the “new” interarrival time at the server end is actually

changed into the time of network latency, which makes the results different.

The first experiment setting has 5 WSs in a sequential workflow, the capacity of the “delay”

component is 1 only for the 1st service, and the capacity of the other “delay” components is 1000

for the 2nd, 3rd, 4th, and 5th service. The time of network latency for the 5 WSs is 1 second, and

the interarrival time at the client end is constant at 0.5 second. In the result of the experiment, the

“new” interarrival time at the 1st server is actually changed into the time of network latency,

which is 1. This result is the same as the result that has constant interarrival time of 1 second,

with a result of stable interdeparture time that is about 1.45 seconds at the beginning of the

experiment.

The second experiment setting is similar to the first one, but the interarrival time at the client

end is constant at only 0.1 second, the result is the same as that of the first experiment, since the

“new” interarrival time at the 1st server is still actually changed into the time of network latency.

The third experiment setting is similar to the first one, but the capacity of the “delay”

component is 1 only for the 2nd service, and the capacity of the other “delay” components is 1000

for the 1st, 3rd, 4th, and 5th service. The result is the same as that of the first experiment.

The fourth experiment setting is similar to the first one, but the interarrival time at the client

end is exponentially distributed, with average value of 1 second. The result of the 1st service is

very similar to the result shown in section 5.4.1 (in Figure 5.36), and the results of the 2nd, 3rd, 4th,

and 5th service are changed with the result of the 1st service.

In summary, the results of CWS reconfirmed the rule concluded in section 5.4.2 with atomic

WS.

99

Additionally, in this section, the model allows the requests will wait in other component, but

not to be lost or discarded, even the capacity of the “delay” component is not large enough.

Some complex situations such as discarding request packages are not included in this research.

When the capacity of the “delay” component is larger than 1, but not enough, the “new”

interarrival time can be different from the time of network latency, which need to be calculated

according to detailed value of parameters. Such situations are not included in this section, too.

100

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The WS technology allows creating new dynamic applications. With the emerging languages

(like BPEL), CWSs can be defined in different ways. However, since WSs can experience

transient overload, the performance of CWS is difficult to predict.

This research aims to find the features of runtime behavior of WSs that are under transient

load, build models that can simulate WSs well, and predict the performance of CWS. Also, the

model parameters can be varied in order to find best setting of resources in CWS, which helps to

design CWS, and to improve the performance with limited resources.

In this research, atomic WS as well as CWS are implemented on Java 6, Axis 1.4, Axis 2. The

services are slightly overloaded with constant or exponentially distributed load. Sequential

workflow is tested.

Models are built for atomic WS and CWS in AnyLogic to get simulation results. CWS in

sequential workflow and with loops are built and tested. Constant or exponentially distributed

load are used for the WSs.

From the result of experiments and simulation results, the following run time behavior of

atomic WS and CWS are observed:

When the interarrival time is constant, and the total number of request is certain, the

interdeparture time is not a constant. The interdeparture time has very short warm-up period, a

stable period and a decreasing period. In simulation experiments results, the stable period has

almost constant interdeparture time; while in real systems, the results in the stable period are

101

normally distributed. The results’ average value is similar to the simulation results. “Noise”

exists in real systems, and it can be added to the simulation models. Modified simulation models

with “noise” in uniform distribution have results similar to experiments results, which is also

normally distributed.

When the interdeparture time decreases, the next WS in a sequential workflow or loops will

have jobs that arrive very fast, and experience heavy load. At this time, the next WS’s job

departures slow down, and a high strike of interdeparture time is shown in the results.

When the WSs in a sequential workflow have equal service time, the first WS experience

heaviest load in most of the period of the experiments, and has most important impact on the

performance of the workflow. The second, third, fourth, fifth services have less and less

important impact on the performance of the workflow. Therefore, with limited resources for all

the WSs in a sequential workflow, the first WS should have more resources, to improve the

performance of the workflow. The best amount of resources that should be added to the first WS

can be tested from simulation experiments with different parameters.

Loops in a workflow add additional load to the service that has loops. A CWS of 5 WSs in

sequential workflow and with loops is studied. Since the first WS has most important impact on

the performance of the workflow, and the second, third, fourth, fifth services have less and less

important impact on the performance of the workflow, loops on the first WS has most important

impact, too. However, when the second, third, fourth, fifth WS loops for only a couple of times,

the results can be the same as the results when there is no loop. When the second, third, fourth,

fifth WS loops for many times, the results are different from the results when there is no loop.

102

When the interarrival time of atomic WS is exponentially distributed, the result of

interdeparture time is also exponentially distributed. The experiments results and simulation

results are similar. No “noise” needs to be added to the simulation model.

The experiments results with “noise” show chaotic behavior of WSs. For atomic WSs, the

simulation results are simple and clear, and the experiment result can be identified as normally

distributed, and its average value is similar to the simulation results. For a CWS with three or

more WSs in a sequential workflow, the simulation results have a few spikes, and the pattern of

experiments results with “noise” are not very easy to identify. When loops are added to the CWS,

the simulation results are complex, and the experiments results with “noise” are more difficult to

understand. When the number of WSs in a CWS is larger, and when the load is exponentially

distributed or “bursts”, the behavior of WSs can be quite complex. In summary, the WSs have

chaotic behaviors when they are overloaded. When the workflow is longer with more WSs, and

when loops exist in the workflow, the situation is even worse. Therefore, it is important to avoid

overload in some important situations.

When the queue of the WS has timeout limit and limited queue size, and when the maximum

number of threads in the server is limited, timeout can happen when the WS is overloaded.

Timeout limit, queue size, maximum number of threads in the server, and load can change to

number of timeouts that happen in an experiment.

When there is no workflow server in a CWS, if the WS is only slightly overloaded, no timeout

happens or only a few of timeouts happen; while if the WS is in quite heavy load, the number of

timeouts is very large. When adding a workflow server to the sequential workflow, the number

of timeouts is relatively small, when the WS is slightly overloaded or in quite heavy load.

103

However, when WS is overloaded, the expected decreasing period of the interdeparture time is

not shown in the results of CWS with a workflow server.

Network latency is studied with models in AnyLogic. It has no impact on the atomic WS and

CWS when their load is constant or exponentially distributed load. However, when the load is

exponentially distributed, if the network latency is simulated with a “delay” component with

limited capacity, a few of the request may be stocked, and the results are different from the

results when no network latency exists.

The experiments results are compared to simulation results for validation, and were found to

be similar. Some complex situation of CWS is not implemented in real systems, but some of

them are implemented and tested in simulation models, and get simulation results. More

simulation models can be built and run in AnyLogic, and the results can be used to predict the

behavior of CWS.

Based on the above, the most valuable contributions of the thesis are:

y Studying the features of runtime behavior of WSs that are under transient load.

y Building models that can simulate WSs well and predict their performance.

y Finding best settings for CWS to improve the performance with limited resources.

y Identifying chaotic behaviors in CWS.

In the future, more complex scenarios of CWS need to be studied. More services will be used

in the workflow, and the workflow can be more complex patterns with loops and split. The

services can be implemented on the same computer, or computers that are far away from each

other. The requests to a service may come from N (N can be a large number, e.g., 20 or even

larger) clients, and the arrival rate of each client can be different. Therefore, the load will be

heavier and more complex. The time when timeout happens in real systems can be recorded, and

104

studied. The platform of services in a workflow can be different, and the timeout limits and

queue sizes can be different, too.

105

REFERENCES

[1] The ActiveBPEL engine. http://www.active-endpoints.com/active-bpel-engine-overview.htm.

[2] Amazon Web Services, http://www.amazon.com/gp/aws/landing.html.

[3] Apache Axis 1.4. http://ws.apache.org/axis/.

[4] Apache Axis2/Java Version 1.2. http://ws.apache.org/axis2/.

[5] Apache Tomcat. http://tomcat.apache.org/.

[6] BPWS4J engine. http://www.alphaworks.ibm.com/tech/bpws4j.

[7] Business Process Execution Language (BPEL). http://www.service-architecture.com/web-

services/articles/business_process_execution_language_for_web_services_bpel4ws.html.

[8] G. Chafle, S. Chandra, V. Mann, and M. G. Nanda. Decentralized orchestration of Composite

Web Services. In Proceedings of the 13th international World Wide Web conference on

Alternate track papers & posters, pages 134-143, May 17–22, 2004.

[9] G. Chafle, S. Chandra, N. Karnik, V. Mann, and M. G. Nanda. Improving performance of

Composite Web Services over a wide area network. In Proceedings of the 2007 IEEE

Congress on Services, pages 292-299, July 9-13, 2007.

[10] S. Chandrasekaran, G. Silver, J. A. Miller, J. Cardoso, and A. P. Sheth. Web Service

technologies and their synergy with simulation. In Proceedings of the Winter Simulation

Conference, Vol. 1, pages 606 – 615, Dec. 8-11, 2002.

[11] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana. Web Services Description

Language (WSDL) Version 2.0. http://www.w3.org/TR/wsdl20/, June 2007.

[12] T. Clements. Overview of Soap. http://java.sun.com/developer/technicalArticles/xml/

webservices/, Jan. 2002.

[13] R. W. Conway, W.L. Maxwell, and L. W. Miller. Theory of Scheduling. Addison-Wesley,

1967.

106

http://java.sun.com/developer/technicalArticles/xml/

[14] D. Dyachuk and R. Deters. The impact of transient loads on the performance of service

ecologies. In Proceedings of the 2007 Inaugural IEEE International Conference on Digital

Ecosystems and Technologies, pages 245 – 250, Feb. 21-23, 2007.

[15] D. Dyachuk and R. Deters. Improving performance of Composite Web Services. In

Proceedings of IEEE International Conference on Service-Oriented Computing and

Applications, pages 147 – 154, June 19-20, 2007

[16] D. Dyachuk and R. Deters. Optimizing performance of Web Service providers. In

Proceedings of 21st International Conference on Advanced Information Networking and

Applications, pages 46 – 53, May 21-23, 2007.

[17] D. Dyachuk and R. Deters. Transparent scheduling of Web Services. In Proceedings of

Web Information Systems & Technology, pages 112-119, 2007.

[18] Enterprise Java Beans Specification (EJB) 2.1. http://java.sun.com/products/ejb/.

[19] G. Gehlen and L. Pham. Mobile Web Services for peer-to-peer applications. In Proceedings

of the Consumer Communications and Networking Conference, pages 427-433, Jan. 3-6,

2005.

[20] J. M. Govern, S. Tyagi, M. Stevens, and S. Mathew. Java Web Service Architecture.

Morgan Kaufmann, 2003.

[21] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler. Scalable, distributed data

structures for internet service construction. In Proceedings of the 4th Conference on

Symposium on Operating System Design & Implementation, Volume 4, pages 22-22,

October 22 - 25, 2000.

[22] H.–U. Hess and R. Wagner. Adaptive load control in transaction processing systems. In

Proceedings of the 17th International Conference on Very Large Databases, pages 47-54,

Barcelona, Spain, September 1991.

[23] http://www.ibm.com/developerworks/java/library/j-jtp11253/.

[24] H. Huang and R. A. Mason. Model checking technologies for Web Services. In Proceedings

of the Fourth IEEE Workshop on Software Technologies for Future Embedded and

Ubiquitous Systems and the 2006 Second International Workshop on Collaborative

Computing, Integration, and Assurance. 6 pages, April 27-28, 2006

107

[25] Java SE 6. http://java.sun.com/javase/6/.

[26] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik. Quantitative System

Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall,

1984.

[27] N. Mitra. Y. Lafon. Soap Version 1.2 Part 0: Primer (Second Edition). http://www.w3.org/

TR/soap12-part0/, April 27, 2007.

[28] M. G. Nanda, S. Chandra, and V. Sarkar. Decentralizing execution of Composite Web

Services, In Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-oriented

Programming, Systems, Languages, and Applications, pages 170 – 187, October 24-28,

2004.

[29] NetBeans IDE. http://www.netbeans.org/.

[30] E. Newcomer and G. Lomow. Understanding SOA with Web Services. Addison-Wesley,

2004.

[31] Probability and Statistics. http://mathworld.wolfram.com/.

[32] P. Savur and M. Sum. Business Process Execution Language, Part 2: partnerLinkType and

partnerLink. http://developers.sun.com/jsenterprise/nb_enterprise_pack/reference/techart/

bpel2.html, October 30, 2006

[33] B. Schroeder and M. Harchol-Balter. Web servers under overload: How scheduling can help.

ACM Transactions on Internet Technology, 6(1): 20–52, February 2006.

[34] W. E. Smith. Various optimizers for single-state production. Naval Research Logistics

Quarterly, 1956.

[35] I. Stojmenovic. Recursive algorithms in computer science courses: Fibonacci numbers and

binomial coefficients. IEEE Transactions on Education, 43(3): 273-276, August 2000.

[36] W. T. Tsai, D. Zhang, Y. Chen, H. Huang, R. Paul, and N. Liao. A software reliability

model for Web Services, SEA 2004, pages 144-149, 2004.

[37] UDDI data structure reference v1.0. http://uddi.org/pubs/DataStructure-V1.00-Published-

20020628.pdf, Jun 2002.

[38] UDDI version 3.0.2, http://uddi.org/pubs/uddi_v3.htm, Oct. 2004.

108

http://java.sun.com/javase/6/
http://uddi.org/pubs/DataStructure-V1.00-Published-

[39] W. M. van der Aalst. Workflow verification: finding control-flow errors using

Petri-net-based techniques. Business Process Management, pages 161–183, 2000.

[40] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.

Workflow patterns. Distributed and Parallel Databases, 14(3): 5-51, 2003.

[41] B. Wassermann. Business Process Execution Language, http://sse.cs.ucl.ac.uk/.

[42] Web Services Business Process Execution Language Version 2.0, Committee Draft, 01.

http://www.oasis-open.org/committees/download.php/14616/wsbpel-specification-draft.htm,

September 2005.

[43] Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl#_wsdl

[44] XJ Techologies. AnyLogic 5.5. http://www.xjtek.com/.

[45] L. Zhu, I. Gorton, Y. Liu, and N. B. Bui. Model driven benchmark generation for Web

Services. In Proceedings of the 2006 International Workshop on Service-oriented Software

Engineering, pages 33-39, May 27–28, 2006.

109

