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ABSTRACT

Interaction techniques that use the layers above the display surface to extend the functionality 

of pen-based digitized surfaces continue to emerge. In such techniques, stylus movements are 

constrained by the bounds of a layer inside which the interaction is active, as well as constraints 

on the direction of movement within the layer. The problem addressed in this thesis is that 

designers currently have no model to predict movement time (MT) or quantify the difficulty, for 

movement (steering) in layers above the display surface constrained by thickness of the layer, its 

height above the display, and the width and length of the path. The problem has two main parts: 

first, how to model steering in layers, and second, how to visualize the layers to provide 

feedback for the steering task. The solution described is a model that predicts movement time 

and that quantifies the difficulty of steering through constrained and unconstrained paths in 

layers above the display surface. Through a series of experiments we validated the derivation and 

applicability of the proposed models. A predictive model is necessary because the model serves 

as the basis for design of interaction techniques in the design space; and predictive models can be 

used for quantitative evaluation of interaction techniques. The predictive models are important as 

they allow researchers to evaluate potential solutions independent of experimental conditions. 

Addressing the second part of the problem, we describe four visualization designs using cursors. 

We evaluated the effectiveness of the visualization by conducting a controlled experiment. 
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CHAPTER 1 

INTRODUCTION 

Pen-based systems offer a number of advantages over the traditional mouse-based desktop 

metaphor, such as allowing for fluid input and the direct manipulation of underlying data. With 

the rapid development of display technology, such systems now come in many forms, and HCI 

researchers are designing interfaces for a variety of pen-based systems such as PDAs [10], Tablet 

PCs [9, 23, 31, 32], tabletops [59], and large displays [29, 47]. 

 
 
 

Figure 1.1. Above-the-surface interaction. (a) A Hover Widget [28] is used by making a 
gesture with the pen in the tracking state. (b) Multi-layer interaction [59] divides the space 
above a tabletop display into multiple interaction layers 

Many such systems can also be called digitized surfaces, meaning they are able to sense the 

location of the input device even when it is above the display surface, that is, in the tracking 

state. Recent research has investigated how this tracking state can be used in the design of pen-
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based interaction techniques [12, 23, 28, 31, 59]. For example, Hover Widgets [28] allow users 

to invoke localized widgets by making gestures in the tracking state (Figure 1.1a). 

The interactive area above the display surface is called an above-the-surface interaction layer. 

In many systems, there will only be one such layer; but in an increasing number of systems, there 

are multiple discrete interaction layers which allow for multi-layer interaction techniques [59] 

(Figure 1.1b). 

While above-the-surface interaction layers increase the functionality of pen-based systems, 

they require users to steer the tip of the stylus through a constrained space. For example, if the 

layer is the tracking state, the stylus must remain above the display surface without touching the 

display, and not extend so far from the display surface that it is out of range. Currently, our 

understanding of human abilities to perform such a steering task is based on the Steering Law 

proposed by Accot and Zhai [1]. However, this model applies to a 2D desktop environment, and 

it is not clear if and how this model can be applied to user movements in above-the-surface 

interaction layers.  

 
 

Figure 1.2. a) Multi-layered tabletop showing virtual boundaries. b) An interaction 
technique on a Tablet PC [23] 
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1.1 The Problem 

The problem addressed in this thesis is that designers currently have no model to predict 

movement time (MT) for steering tasks constrained by thickness, width, and length of the path, 

in above-surface-interaction layers. The problem has two main parts: first, modeling steering in 

layers; and second, visualizing the layers to provide feedback for the steering task.   

 

1.1.1 Modeling 

Modeling steering in above-the-surface layers is based on steering in 2D, which is well 

understood. Steering in 2D is constrained by the width and length of the path. For example, 

navigating items in a cascading menu is an example of a steering task. However in above-the-

surface layers, steering is additionally constrained by thickness of the layer (see Figure 1.2) as 

well as the height of the layer from the display surface. Thus the modeling problem is one of 

finding the relation between several constraints: the length, and width of the steering path, the 

thickness of the steering layer, the height of the layer from the display surface, and the movement 

time for steering tasks.  

 

1.1.2 Layer Visualization 

Interaction in above-the-surface layers involves moving within layers of certain thickness or 

moving up and down between the layers. This requires that users know which layer the pen is in 

and where in the layer the pen is positioned. For above-the-surface layer interaction to be 

effective, visualizations embodying this information as feedback have to be designed. The 
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problem is one of visualizing three-dimensional input space on a two-dimensional display, 

giving feedback about the position of the pen. Apart from its use in experimental validation of 

the model for steering in layers, these visualizations can also be used in new interaction 

techniques for above-the-surface layers.  

 

1.2 Motivation and Importance 

This research presents a predictive model of movement time for steering in layers above the 

display. Predictive models are important as they allow researchers to evaluate potential solutions 

independent of experimental conditions. There are two reasons why a predictive model is 

necessary: first, the model serves as the basis for design of interaction techniques in the design 

space; and second, predictive models can be used for quantitative evaluation of interaction 

techniques.   

In HCI research, user performance is measured using both qualitative and quantitative studies. 

Although more precise and reliable, there are very few quantitative tools available for 

researchers. If two experiments use different values for experimental parameters in measuring a 

predominant interaction, performance results of the two experiments can not be directly 

compared. Models such as Fitts’ law and the Steering Law have been successfully applied to 

benchmark pointing and steering, two of the predominant interactions, demonstrating the 

usefulness of quantitative models as well as enhancing the quality of evaluations.  

Thus it is necessary that a steering model specific to above-the-surface layers be derived, 

establishing the relation between the constraints affecting steering and the time required to steer. 

This model will enable comparison of the interaction techniques in above-the-surface layers even 

though the techniques are evaluated under different experimental conditions. The model also 
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serves as the benchmark for the performance of new interaction techniques in above-the-surface 

interaction layers.  

 

1.3 Solution and Validation 

The solution is a predictive model of movement time for steering through above-the-surface 

interaction layers. We review Accot and Zhai’s original 2D steering model and then show how 

this model can be extended and applied to steering through above-the-surface layers with an 

additional constraint: layer thickness. Through a series of four formal experiments we validate 

the derivation and applicability of the model. Further, we introduce the height constraint to study 

human capabilities when steering in layers positioned at different heights above the display 

surface. We extend the steering law to steering in above-the-surface interaction layers positioned 

at different heights above the display, and derive a model based on the steering law and its 

variants. The proposed model is validated by conducting a controlled experiment. The 

application of the results of the experiments to the design of above-the-surface pen-based 

interaction systems is discussed.  

Any layer-based interaction technique that uses these models must also provide feedback. 

Traditional 2D desktops use cursors to give feedback about various aspects of the interaction. 

For example, in painting applications, the cursor is used to indicate the type of tool in use. Using 

a similar approach, we visualize above-the-surface input space and the input state of the pointing 

devices using cursors. We study several cursor designs for the above-the-surface design space 

and present a quantitative analysis of their performance.  

These studies provide a tool to compare the performance of applications in above-the-surface 

input space. These studies also open several questions, such as the possibility of a generalized 
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model for steering in curved tunnels, and the effect of motor and visual space expansion in multi-

layer visualization. 

 

1.4 Steps in the Solution 

This research provides a solution to the problem in three steps. First, a model to predict the 

movement time for steering in layers immediately above the display is derived and validated. 

Second, the model is extended to predict movement time for steering in layers positioned at 

different heights from the display. Lastly, different layer visualization designs are studied using 

controlled experiments and implications for visualization design for above-the-surface 

interaction layers are discussed. 

1.4.1 Modeling Steering within Above-the-Surface Interaction Layers 

The above-the-surface steering model is derived in four steps. To begin with, Fitt’s law and 

the Steering Law are applied to interaction in layers where the only constraint is thickness. 

Subsequently, the bivariate pointing model by Mackenzie and Buxton [42] is applied to 

incorporate the width constraint. Application of width, length and thickness constraints in effect 

makes the task a steering task inside a 3D tunnel positioned immediately above but not touching 

the display. The model for steering within above-the-surface layers is validated by controlled 

experiments. Experiments recorded the movement time for interaction under different 

constraints. Recorded movement time values were correlated with the values predicted by the 

derived models. The high correlations show that the models are valid. 
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1.4.2 Modeling Steering within Layers at Different Heights above the Surface 

The height of the layer from the display surface becomes a constraint when layers are 

positioned at different heights above the display surface. The height constraint is incorporated 

into the model based on the bivariate pointing model of Mackenzie and Buxton [41]. This model 

is capable of predicting movement time for steering in tunnels above the surface, and is validated 

by a controlled experiment. There is a high correlation between recorded values for movement 

time and the values predicted by the derived model. 

    

1.4.3 Above-the-Surface Layer Visualization Using Cursors 

The final part of the solution provides designs and empirical evidence as to which 

visualization is most appropriate for multilayer input space. Four different visualizations are 

designed using cursors, and their performance in tasks involving switching layers is studied 

through a controlled experiment. The study shows that: direct mapping of input and output 

allows faster interaction, users prefer direct mapping of input and output closely followed by a 

visualization that combines an overview and direct mapping, and the visualization that also 

provides an overview has stable error rates across layer thicknesses.  

 

1.5 Contributions 

This research makes three main contributions: 

• A model to predict movement time for steering in above-the-surface interaction 

layers. 
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• A model to predict movement time for steering in layers positioned at different 

heights above the display surface. 

• Evaluation of designs for visualizing the position of the pen in layers above the 

display surface. 

Other contributions of this research include: 

• Design recommendations related to upper and lower limits for tunnel lengths, 

thickness and height, in above-the-surface input space, for interactions involving 

steering and layer switching. 

• Design recommendations related to, Control to Display ratio for layer switching 

interaction in above-the-surface interaction layers. 

 

1.6 Thesis Outline 

Chapter 2 of the thesis reviews literature related to layered interaction, models of pointing and 

steering performance, and layer visualization. Layered interactions are surveyed followed by 

approaches to modeling interactions in different input spaces. Reviewing related work in layer 

visualization, the use of cursors in visualization is discussed, followed by perception of motor 

and visual space. Review makes observations which need to be considered when designing 

visualization for above-the-surface layers.   

Chapter 3 contains derivations of the models and their validation. First, the model for steering 

in above-the-surface interactions is derived based on certain assumptions. Then four different 

experiments are described that validated the assumptions, and the model for steering in above-

the-surface is explained. Second, the model for steering in above-the-surface layers positioned at 



 

 9  

different heights above the display is derived. Then the design and results of the experiment to 

validate the model are explained.  

Chapter 4 presents the design of layer visualization. The layer visualization design process is 

explained followed by the illustration of the controlled experiment studying the designs. Four 

different designs are examined. This is followed by the description and results of the experiment 

which studies these designs.  

Chapter 5 discusses the results of the validation of the models as well as the visualization 

designs. The observations made in experiments are discussed so that they can be incorporated to 

design applications in above-the-surface interaction layers. Then the implications of the study are 

described, starting with the steering model for above-the-surface followed by the steering model 

for above-the-surface positioned at different height above the display. Lastly, comparison of the 

layer visualization designs and its impact on visualization design is presented. 

Chapter 6 summarizes the findings in the research followed by a discussion of topics for 

further research, including possible improvements to the models and visualization designs, and 

limitations of the models presented in this thesis are discussed.    
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CHAPTER 2 

RELATED WORK 

The review of related work is divided into four sections. First, pen-based systems and work 

related to pen-based interaction is reviewed. Second, interaction techniques for above-the-surface 

layers are discussed. Third, we explain previous efforts to model human performance, in both 

pointing and steering tasks. Finally, we review research related to layer visualization, perception 

of motor and visual space, and mapping of motor space to visual space. 

 

2.1 Pen-Based Interaction 

Pen-based systems use a stylus to interact directly with the display surface. The RAND Tablet 

developed in 1964 was the first pen input device [16]. In the RAND Tablet, a pen was used to 

interact with a tablet which in turn controlled the position of cursor on a CRT monitor. 

Sketchpad, developed by Ivan Sutherland, also enabled direct interaction with the display using a 

pen [60]. Using Sketchpad, users could draw directly on the display. As technology improved 

and also became more affordable, pen-based interaction has become more prevalent. PDAs, 

Tablet PCs, tabletops, and large displays are some of the current examples of pen based systems. 

Researchers have invented many techniques to enable and improve pen-based interactions. 

We review some of the techniques for invoking menu items, selecting objects, and moving 

objects, on the display using a pen.  
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Marking Menus are a technique to select a menu item not only by invoking a localized menu 

but also by gesturing on the display in the direction of the required menu item [39]. Tracking 

Menus [23] stay under the pen cursor and close at hand, aiding activation of menu items. The 

user can reposition the menu by dragging past its edges.  

Radar View is a technique that creates a miniature of the large display. When the users select 

an object in the miniature view using a stylus, the corresponding object in the large display is 

selected [57, 56]. Tractor Beam is a hybrid point-touch interaction technique that facilitates 

reaching distant objects on a large tabletop. With this technique, users can select distant objects 

on a tabletop by casting an invisible ray from the tip of the stylus [49].  

The Drag-and-Pop technique helps in moving objects on the display [15]. When an object is 

dragged, proxies of objects in the direction of the drag are created close to the user. The proxies 

maintain the original spatial order, making the selection of the destination folder easier. 

Agrawala et al. [5] demonstrated Bumptop, a desktop organization structure optimized for pen 

input. Bumptop is a physically realistic virtual desktop that uses piles in place of folders. Objects 

in the virtual desktop simulate the real world effects such as friction and mass.  

  

2.2 Above-the-surface Interaction 

In many pen-based devices, space immediately above display is used to interact with the 

device. Interaction is active as long as the pen is within certain distance from display where state 

of the pen is tracked. Many pen-based interaction techniques use the tracking state of the pen to 

provide added functionality [10, 12, 23, 31, 28]. Most of the techniques require users to move a 

pen within the above-the-surface interaction layers without any width or length constraints. For 

example, the Vacuum [12] is a technique that supports reaching distant objects on a large display 
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with a pen. By moving the pen within the tracking state, the Vacuum widget can be used to 

interact with multiple objects. Exiting the layer into the out-of-range zone dismisses the widget. 

Stitching [31] uses pen gestures that span multiple displays to seamlessly connect displays for 

co-located collaboration. Users stitch displays by moving the pen across the displays while 

keeping the pen in the tracking state. Tracking menus [23] are menu widgets that stay under the 

pen cursor and are therefore close at hand. The user can reposition the menu by dragging past its 

edges while in the tracking state.  

Multi-layer interaction techniques [59] divide an enlarged tracking state into multiple 

interactive layers. Users can navigate within individual layers to access different tools, and 

perform various commands (Figure 2.1). 

 

Figure 2.1. Multilayer interaction technique with a schematic diagram of layers  

Hover Widgets [28] are an example of a technique which requires users to not only navigate 

within the tracking state, but to do so under imposed directional constraints. Gestures, defined by 

tunnels, are made in the tracking state to quickly access localized interface elements. 

In summary, a number of techniques use above-the-surface interactive layers, and require 

users to navigate within them. Despite this, there is little understanding as to human capabilities 
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when performing such a task. We now discuss related modeling techniques which will help us 

obtain a better understanding.  

 

2.3 Modeling Pointing and Steering 

We review predictive models for pointing followed by predictive models for steering. We 

begin by discussing the original model for pointing and corrections proposed to the model. We 

complete the review by explaining the work related to modeling of steering actions.  

The derivation of Accot and Zhai’s steering law is based on Fitts’ law, which models pointing 

[22]. The law states that pointing performance is limited by the capacity of the human motor 

system. The commonly used form of Fitts’ law [41] predicts the movement time MT to select a 

target of width W at a distance of A as follows:  
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where a and b are empirically determined constants specific to an input device. The logarithmic 

term is called the index of difficulty (ID).   

Mackenzie and Buxton [42] extended Fitts’ original model for a 2D target acquisition task. 

They examined several formulas for the index of difficulty for a rectangular target of width W 

and height H, and found the min model, which only considers the smaller of the two dimensions, 

to have the highest correlation with their experimental data. Addressing some of the difficulties 

associated with the min model, Accot and Zhai later refined this model into a weighted Euclidian 

model, expressed by: 
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where η is empirically determined. The addition of the parameter η allows the model to weight 

the effect of the height differently from the effect of the width. Figure 2.2 shows the variables in 

the Equation 2.1. Figure 2.3 shows the change in ID corresponding to change in the variables. 

 

Figure 2.2. Variables in the bivariate pointing model 

 
Figure 2.3. Width and Distance by ID for the Bivariate Pointing Model 

Another task prominent in graphical user interfaces is steering, or tunneling, which can be 

described as the task of moving through a constrained path, such as when a user navigates 

through hierarchical cascading menus [4]. To derive a model for this task, Accot and Zhai [1] 

first consider a goal crossing task, where a user must travel a distance A, and then cross a goal 

with width W.  They found that this task can be accurately modeled with Fitts’ Law (Equation 

2.1). 



 

 15  

Based on this initial study, they derived a model which predicts the time necessary to steer 

through a path. In the most basic case, the path has a constant width, W, and length, A. The law is 

derived by considering the task to be an infinite series of goal-crossing tasks [1]. The resulting 

model reduces to:  
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W
AbaMT      (2.3) 

 
where a and b are empirically determined constants A is the distance between the goals and W is 

the width of the goals. Figure 2.4 depicts variables in steering with a width constraint. Figure 2.5 

shows the change in ID corresponding to change in the variables A and W. 

 

 

Figure 2.4 Steering in a path of width W and length A 

 

Figure 2.5. Width and Distance by ID for the 2D Steering Model 
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In the more complex version of the task, the path width varies along its length. In this case, 

the task can be modeled by the equation: 

∫+=
C sW

dsbaMT
)(

     (2.4) 

 
where C is the path and W(s) is the width of the path at point s [1]. Follow-up studies have 

investigated the effects of scale [2] and sharp corners [50] on the steering task. 

 One contribution of Accot and Zhai’s original steering law work is that it has been used to 

model actual user interface tasks [6, 30]. The original work has also inspired new interaction 

techniques [3, 9]. Grossman and Balakrishnan [26] propose a model for trivariate pointing. It 

adds to the existing perspective in that it considers the orientation of the targets. Their model is 

given by:  
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where θ is the movement angle formed by the axis horizontal to the user and the line from the 

target to the starting point and W, H, D are the dimensions of the target. ƒ(θ) is function whose 

value is dependent on the movement angle θ. A is the distance to the target. It should be noted 

that the effect of the height of the target compared to the resting position of the hand has some 

role to play in pointing and steering. We elaborate on this in a context specific to steering in 

layers when the derivation of our model is discussed in Chapter 3. 

2.3.1 Other Formulations 

All the models discussed so far are derived from the perspective of information theory. There 

are similar formulations in Biophysics which bring different perspectives to performance 

modeling. The earliest known model for steering is given by Rashevsky [54]. In 1959 Rashevsky 
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modeled the maximum possible velocity V of a vehicle being steered on an empty highway. His 

model is given by: 

θτ
θδ °−−°−

=
lSSV 2

     (2.6) 

where τ  the reaction time of driver, S is the width of the path So and lo are width and length of 

the car, δ  is the minimum safe distance of the car from the edge and θ, the average angle by 

which the direction of car sometimes deviates from the true course. Figure 2.6 shows different 

parameters in the Equation 2.6. It can be shown that this reduces to Accot and Zhai formulation 

when S, So, lo,δ , θ  are ignored [1]. 

 

Figure 2.6. Variables in Rashevsky steering model [54] 

 

C. G. Drury, in 1971, working on the problem of the drawing task with a lateral constraint, 

derived a model to predict tl, the time required to move a distance l with the width of the 

tolerance zone being T [18]. The model is given by: 

T
tklktl
021=

     (2.7) 
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where k1,k2, are constants and t0 is the sampling interval of position. It can be shown this can be 

reduced to the Accot and Zhai formulation when k1,k2 and t0 are ignored [1]. Although the Drury 

and Rashevsky models incorporate more variables, their application to HCI remains unexplored. 

Therefore we base our research on the formulations of Accot and Zhai, which have been 

successfully applied to model steering tasks in HCI.  

 

2.4 Layer Visualization Using a Cursor 

We review the research related to layer visualization in three sub-sections. We discuss 

previous work on the use of cursors for visualization, followed by previous studies on perception 

of motor and visual space. We then explore previous work on mapping of motor space to visual 

space (CD ratio) in the context of visualization of layers in above-the-surface interaction. 

2.4.1 Cursors in Visualization  

Cursors are used to visualize aspects such as the state of an application and characterization of 

participants. Muller introduced multifunctional cursers for direct manipulation user interfaces 

[19, 48]. In his interface, the cursor not only indicated the position of the mouse but also 

provided clues about the state of applications. For example, the cursor could visualize a selected 

menu item, reducing the cognitive load in remembering the state of the application. Figure 2.7 

shows a screen shot of a paint application highlighting the cursor (shown in red rectangle) 

visualizing the color picking tool. 
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Figure 2.7. Screen shot of a paint application highlighting the color picking tool 

More recently, it has become a common practice to use different types of multifunctional 

cursors in graphical user interfaces. The Spider cursor, designed to interact with 3D surfaces 

further expands the functionality of cursors [46]. The cursor has the shape of a spider and runs on 

top of the 3D surfaces, facilitating perception of neighboring data points. The legs of the spider 

align themselves with edges of the 3D surface, allowing better identification of the local 

properties of the shape. Another use of cursor for visualization can be seen in the Silk Cursor 

[68]. The Silk Cursor introduces a semi-transparent volumetric cursor to enhance depth cues to 

aid 3D target acquisition. A study showed that volume and occlusion cues provided through 

cursors improve 3D target acquisition [62]. Studying the role of cursors in groupware, Greenberg 

et al. [25] overloaded cursors with semantic information. They found that semantic overloading 

enhances awareness among the participants. Taking this further, Stach et al. [58] show that rich 

embodiments can improve characterization and recognition of participants in a groupware 

system. One study successfully demonstrates the use of cursors to visualize thirteen information 

variables. Figure 2.8 shows an example of rich embodiment. 
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Figure 2.8. A cursor embodying information variables such as Name, Age, Gender, Brush 
Color [31] 

Visualizations using the cursors discussed so far are either for traditional desktop systems or 

systems that have input space similar to desktop systems. Hence, they can not be directly 

incorporated to 3D pen input devices and to above-the-surface interaction layers. Nevertheless, 

the idea of reducing cognitive load, increasing awareness by semantic overloading, and mapping 

cursors to underlying objects can be borrowed. 

Physical layering of the input space above the display was introduced by Subramanian et al. 

[59] through the Multilayer interaction technique. Multilayer interaction divides the input space 

of a tabletop into discrete horizontal layers. To enable interaction, the prototype of Multilayer 

interaction uses a rectangular cursor to visualize the layer in which the pen lies. The upper and 

lower halves of the rectangle are filled with red, yellow or green depending on whether the pen is 

drifting above or below a layer. However, this is a limited visualization where only one layer is 

visualized, and does not give either an overview of all virtual layers or show the position of the 

pen within a layer.  

Pressure Widgets [53], while presenting a comparison of different pressure techniques, 

proposed several visualizations using the cursor. The designs for Pressure Widgets couple 

pressure levels to a distinct visual element in the cursor. The authors suggest that directly 
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mapping pressure levels to a grid layout reduces interferences. Pressure input space is similar to 

above-the-surface interaction layers in that pressure levels can be considered virtual layers. We 

note that the pressure input space is completely virtual. However, above-the-surface interaction 

input space exists physically. Nevertheless, the cursor designs seen in Pressure Widgets 

successfully demonstrate the use of cursors in visualizing a dimension of input space.  

2.4.2 Perception of Motor and Visual Space 

Two spaces are involved in interacting with above-the-surface layers. They are visual space 

and motor space. Visual space consists of all display elements that aid visual perception and 

provide feedback for the user’s actions. Motor space is the physical space used to provide input 

to the pen-based system. In pen-based systems, motor space is actually the input space on the 

display as well as the space above the display. When a user provides input by moving a pen in 

motor space, feedback is observed on the display (visual space). A task where feedback is used 

to continually decide the next state of the task is called a closed-loop task. Two types of distance 

estimations considered in visual perception are egocentric and exocentric distance estimations. 

The user’s estimation of the distance to an object is called egocentric distance estimation 

(absolute distance from self). The user’s estimation of the relative distance between two objects 

is called exocentric distance. In this section, we review previous research to understand the 

perception of motor space and visual space. 

Previous research shows that feedback plays an important role in visually guided action [51]. 

It has been suggested that humans have two visual pathways: vision for action and vision for 

perception [45]. It is also proven that vision for action is more accurate, and that controlling hand 

movements is based heavily on binocular cues [40]. There is evidence to show that even in the 

absence of several important cues such as occlusion and relative size, retinal motion (binocular 
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cues) may be used to estimate egocentric distance [43]. Thus, integration of visual cues for 

action and distance estimation is based on both visual feedback and the action that is based on 

the feedback. Studies have shown that the organization of perceptual motor space is considerably 

biased by visual cues [51]. This emphasizes the role of cues in the use of visualization to guide 

action.  Thus previous research highlights the importance of the structure of information in the 

design of visual feedback for closed-loop tasks and the importance of mapping movement in 

motor space to corresponding changes in visual feedback [37, 43]. The structure of information 

is studied under the field of study called Structural Information theory (SIT) [34]. SIT is a theory 

of perceptual organization, emphasizing the perceptual information content in visualization 

rather than on the measurable information. A proven idea, central to SIT is the principle of 

simplicity, implying that the visual system prefers the simplest interpretation of all possible 

interpretations of a stimulus. Thus, it is imperative that the design for visualizing above-the-

surface layers should choose a structure to organize information consistent with the simplicity 

principle.    

We are interested in exocentric distance judgments in the closed-loop task of navigating 

within and between above-the-surface layers. Distance judgment in our research means the 

estimation of distance from the display to a target in the above-the-surface layers. Research on 

distance judgment suggests that issues in egocentric judgments, as discussed above, such as the 

importance of visual feedback and mapping for motor and visual space, will also be similar for 

exocentric distance judgments [2].  

Another important aspect to consider is the perception of objects on horizontal displays such 

as tabletops. Perception of results of comparison in horizontal displays is shown to be more 

accurate for graphical variables lateral length, upright length and position, than other graphical 
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variables [65]. This suggests that visualization of above-the-surface layers should use these 

variables to improve the efficiency of visual cues. 

2.4.3 Mapping Motor Space to Visual Space 

Mapping motor space to visual space refers to the coupling between movements in motor 

space and movement in visual space. The ratio of the amount of movement in motor space 

(control space) to the amount of movement in visual space (display) is called the Control Display 

ratio (CD ratio). CD ratios are represented in various ways such as using decimal fractions (0.5) 

and ratios (1:2). We use the ratio notation to represent CD ratios in the thesis. For example, an 

equal amount of movement in visual space for the same amount of movement in motor space 

will be represented as 1:1 ratio and the mapping will be referred to as the direct mapping or CD 

ratio without gain. Similarly, if the movement in visual space is double the amount of movement 

in motor space, the CD ratio will be 1:2 and we refer to it as CD ratio with gain. On a large pen-

based digital table any CD ratio other than 1:1 (CD ratio with gain) would mean that the cursor 

on the display will move an amount lesser or more than the pen movement. 

Previous research on pen input has investigated different CD ratios to map motor space to 

visual space [27, 13]. We know that the index of difficulty for pointing is determined by 

variables in motor space. Studies have shown that magnification of either motor or visual space 

(or both) yields improvements in performance [14, 44]. Because magnification of visual or motor 

space can be interpreted as a change in CD ratio, we can conclude that changes in CD ratio can 

improve performance. However, there is no agreement in the literature as to which type of CD 

ratio is best for pen based interactions. Design recommendations for interaction in large displays 

are in favour of CD ratio with gain (For example, CD ratio of 1:2) [33]. The Radar View 

technique applies CD ratio with gain to map motor space to Cartesian coordinates and is proven 
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to be better than other techniques [7]. However, Gutwin et al. [30] show that a CD ratio without 

gain is better for large steering tasks. The approach adapted in the Steady Click [63] technique 

may be interpreted as considering the end of the CD ratio continuum. Steady click changes CD 

ratio to infinity (1:0) by stopping cursor movement in visual space when the cursor is on the 

target. Similar dynamic CD ratio approaches, where CD ratios are varied in time, have proven to 

improve selection performance [27].  

Thus the structure of information, representation of overview and detail, and CD ratio need to 

be investigated to come up with an efficient design to visualize above-the-surface layers. In 

Chapter 3, the newly proposed predictive models for above-the-surface interaction are presented, 

which are validated in a series of four formal experiments. The design and evaluation of 

visualization techniques for above-the-surface layers are explained in Chapter 4.  
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CHAPTER 3 

MODELING STEERING IN LAYERS 

In this chapter predictive models for steering within above-the-surface interaction layers are 

derived and are experimentally validated. We begin with a derivation of the predictive model for 

steering in layers which are immediately above the display. After experimentally validating the 

initial model, we extend it to layers above the display at different heights, to arrive at the general 

model for steering within above-the-surface interaction layers.  

 

3.1 3D Steering Model 

The first task which we model is navigating within an above-the-surface layer, where the only 

constraint is the thickness of the layer. Examples of this scenario are seen in interaction 

techniques where the input device must stay within an above-the-surface layer while traveling 

from one point to another [12, 31].  We define the size of the layer, or thickness, T, as the distance 

between the bottom and top planes which define the layer. Figure 3.1a illustrates the task. 

To derive a model for this task, we first consider the analogous goal crossing task, in which 

the goal is defined as a plane perpendicular to the display surface, extending from the bottom to 

the top boundaries of the layer (Figure 3.1b).  
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Figure 3.1. (a) Steering through a layer, constrained only by the layer thickness, T. (b) The 
analogous goal crossing task 

We hypothesize that this task will be modeled by Accot and Zhai’s original goal crossing 

formulation, where we simply replace the width variable with our thickness variable T. This 

gives the equation: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++= 1log2 T
AbaMT .    (3.1) 

Assuming this model does accurately model the goal crossing task depicted in Figure 3.1b, 

then it is reasonable to assume that the tunneling task depicted in Figure 3.1a, can be derived 

using Accot and Zhai’s method, which would give the following model: 
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A more complex scenario is navigating through a tunnel within a layer, where the movement 

is constrained not only by the layer thickness, T, but also by a path which is imposing a 

directional constraint, W. An example of this scenario is seen when the user activates a Hover 

Widget [28], as the input device must make a specific gesture, defined by a tunnel, in the 

display’s tracking state. In this case, the size of the tracking state defines the layer thickness, and 

the width of the tunnel defines the directional constraint. Such a task is illustrated in Figure 3.2a. 
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Figure 3.2. (a) Steering through a layer, constrained by the layer thickness, T, and the 
directional constraint of the path, W. (b) The analogous goal crossing task. 

To derive a model for this scenario we again consider the analogous goal crossing task, in 

which the goal is defined by a rectangle, perpendicular to the display surface, with a height T, 

and width W (Figure 3.2b). It is interesting that we now have a bivariate, or two-dimensional, 

goal crossing task. Such a task has never been studied before, but we hypothesize that it can be 

modeled as a bivariate pointing task. We use the Euclidian model for bivariate pointing 

(Equation 2.2) to derive the following model: 
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Under the assumption that this model can accurately predict movement times for the 2D goal 

crossing task, depicted in Figure 3.3b, we can use it to derive a model for the 2D tunneling task 

depicted in Figure 3.3a. We again use the same methodology presented by Accot and Zhai [1]. 

We first break the tunneling task into a series of N goal crossing tasks Figure 3.3.  

 

Figure 3.3. A series of goal crossing tasks 
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By summing the associated ID values for each of these N tasks, which have distances of A/N, 

we get: 
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As N approaches infinity, the task becomes the desired 2D tunneling task. To obtain the index 

of difficulty for this tunneling task, we take the limit of IDN as N approaches infinity. Using a 

first order Taylor series expansion of log2(1 + x), we obtain: 
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These lead to our model for the movement time as: 
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This is the model to predict movement time for steering in above-the-surface layers when the 

layer is immediately above the display. 

 

3.2 Validating the Model  

In the following sections we describe a series of experiments, with the goal of understanding 

human capabilities when navigating within above-the-surface interaction layers. In doing so we 

also validate the proposed models presented here. 
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3.2.1 Apparatus for all Experiments 

All experiments described below were performed on the same apparatus. The experiments ran 

on an Intel Pentium 4 CPU 3.20 GHz PC with 1 GB RAM. Participants sat at a 124.5x158 sq.cm 

tabletop surface. A 1024x768 pixel image was projected onto the surface using a ceiling 

mounted projector. Figure 3.4 shows the apparatus. 

 

Figure 3.4. Apparatus used for the experiments 

 

The system used in the experiments in this research is a pen-based digital table that uses the 

Polhemus 3D motion tracking system. The system consists of a projector that projects the 

computer display on a table and a 3D motion tracker that tracks the position of the pens on and 

above the table. 3D motion tracking works by calculating location, orientation, and positioning 

information relative to coordinate system whose origin is an electromagnetic pulse generator, 

placed below the table. A motion sensor emits electromagnetic pulses. Both the strength of the 

pulse and attenuation of the strength of the pulse with distance are known. These values are used 

to calculate position and orientation of the pen [33]. XYZ co-ordinates calculated from the pen 

are used to interact with the projected display.  
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A stylus was used for input, and was tracked using the Polhemus Liberty Motion Tracker. The 

motion tracking system provided positional data at a rate of 240 Hz. The pen was calibrated to 

report X and Y values in pixels on the tabletop surface, and Z values in centimeters. Z values 

correspond to the height above the tabletop surface. All users were seated comfortably and 

controlled the pen with their dominant hand. Users were allowed to rest their hand while 

completing the task, much like the hand rests while writing with a pen. The pen controlled the 

displayed cursor position using a direct 1 to 1 mapping. In all experiments the bottom of the 

layer was 0.2cm above the display surface. 

 

3.3 EXPERIMENT 1: A Pilot Study of 1D Goal Passing 

In this experiment we investigate a goal passing task, where the goal to be passed is a vertical 

region extending above the display surface. The experimental parameters will be the thickness of 

this region, or layer, and the distance between the goals which are to be passed. 

We do not see this as being a task which will normally be carried out in pen-based interfaces. 

The reason for the experiment is for theoretical purposes, as the derivation of our model of the 

more applicable tunneling task is based on the model for this task. As such, we only ran two 

participants through this experiment, enough to ensure that the movement times will follow our 

proposed model (Equation 3.1). 

3.3.1 Participants 

Two volunteers (both male), aged 18 and 19 participated in the experiment. Both participants 

were right handed and controlled the stylus with the right hand. None of the subjects had 

previous experience with using large digital tables. Both subjects were tested individually. 
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3.3.2 Procedure  

The goal passing task was accomplished by passing a start goal and an end goal, from left to 

right. Each goal was depicted as a vertical red line spanning the display, separated by a distance 

of A (Figure 3.5a and 3.5b).  

 
Figure 3.5. The 1D goal crossing task used in Experiment 1. a) Top view b) Front view 

To begin a trial, participants had to position the stylus within 10 pixels to the left of the start 

goal, and above the surface, such that it was within the bounds of the current trial layer. Once 

this was done, participants had to dwell for 0.6s and then click a button on the stylus. At this 

point the color of the goals would turn green indicating that the participant could proceed to 

crossing the goals. These starting constraints were added to control the initial velocity of the pen 

when the trial began, and to prevent users from going from one trial to the next without regard to 

accuracy.  
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When the first goal was crossed it would change color and when the second goal was crossed 

the trial ended. Both goals had to be successfully crossed from left to right in the correct order 

for the trial to be completed.  An audio cue was given each time a goal was successfully crossed. 

The position of pen was visualized using cursor. Chapter 4 elaborates on the design and 

evaluation of the visualization. 

Because this was a goal crossing task, the stylus only had to be within the layer bounds when 

the goals were crossed. If the stylus was not in the layer when the starting goal was crossed, the 

participant would have to back-track and repeat the crossing for that goal. If this happened with 

the end goal, the trial would be counted as an error. The total error rate was displayed during the 

experiment, and participants were told to balance speed and accuracy such that their error rate 

remained at approximately 4%. 

3.3.3 Design 

A repeated measures within-participant design was used. The independent variables were 

layer thickness, T (1, 1.5, 2, and 2.5 centimeters), and the distance between the goals, or 

amplitude, A (5, 15, 25, and 35 centimeters). Subjects were treated as random effects. This 

design resulted in ID values ranging from 1.58 to 5.17 as determined by Equation 3.1. A fully 

crossed design resulted in 16 combinations of T and A. 

The experiment was divided into 4 blocks. Within each block all trials for one thickness were 

presented before moving on to the next. This was done to prevent confusion of constantly 

changing layer thicknesses. 

Within each block and for each thickness, trials for each of the 4 lengths were presented 9 

times in random order, resulting in a total of 576 trials. The ordering of layer thickness was 
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balanced by being reversed for the second participant. Before the first block, a practice session 

was given, consisting of each of the 16 conditions presented in random order.  

3.3.4 Results 

Movement time, MT, was the main measure for the experiment, defined as the time between 

crossing the start and end goals. In all experiments we used the mean of movement time for trials 

of same condition. In order to get a precise measurement of the time when the pen crossed each 

goal, we linearly interpolated between the last event when the pen was reported to be to the left 

of the goal, and the first event when the pen was reported to be to the right of the goal. In our 

analysis of movement time we removed trials in which errors occurred. We also removed 

outliers more than 3 standard deviations from the group mean movement time (2.5% of the data). 

In all experiments, we used SAS Software for Windows. Copyright © 2006. SAS Institute Inc. 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or 

trademarks of SAS Institute Inc., Cary, NC, USA.  

Repeated measures analysis of variance showed a main effect for T (F3,3 = 29, p < .0001) and 

A (F3,3 = 173, p < .0001). Movement times for each thickness were 1.2s for T = 1cm, 0.82s for T 

= 1.5cm, 0.81s for T = 2cm, and 0.67s for T = 2.5. This confirms our belief that movement times 

will be constrained by the layer thickness. 

Figure 3.6 plots the movement times by the index of difficulty, defined by Equation 3.1. 

Linear regression analysis showed that the data fit to the model with an R2 value of 0.83. The 

equation for MT is given by:  
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The R2 value is somewhat lower than desired, but it is reasonable to expect that with more 

participants, the movement times would continue to conform to our model, with a higher fit.  

The overall error rate for the experiment was 2.4%, which is slightly lower than the desired 

4% error rate. The condition that seemed to have the most effect on error rate was with A=5cm, 

where the error rate was 7.3%. This gives more explanation as to why our model did not have a 

higher fit to the data. Indeed if we remove this condition from the data, the R2 value increases to 

0.92. 

 

Figure 3.6. Movement times by ID for the 1D goal passing task 

Table 3.1. Mean and standard deviation of movement time for goal passing in layers 
 Mean Std. Deviation N 
MT 471.33 352.35 6732

 

Overall, the data provides the necessary confirmation that a goal crossing task for which the 

goal is constrained by a layer thickness can be modeled using Fitts’ Law. This validates the 

derivation of our model for a tunneling task that is constrained by a layer thickness (Equation 

3.2). We validate this model in the following experiment. 
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3.4 EXPERIMENT 2: 1D Tunneling 

In the previous experiment we found that the layer thickness will affect movement times in a 

goal crossing task as we would predict from Fitts’ Law. While we would expect to see the 

experimental tasks in actual applications, it was necessary to validate our derivations of the other 

models which we will be testing in this work. 

In this experiment, we focus on the task of steering within an above-the-surface interactive 

layer, without the presence of directional constraints. An example of such a task is seen when a 

user must move from one point to another while staying in the tracking state to maintain a mode 

[12, 31]. Along with investigating human capabilities when performing this task, we will also 

test the ability of our proposed model (Equation 3.2) to predict movement times.  

3.4.1 Participants 

Twelve volunteers (8 male, 4 female), aged 21 to 35 participated in the experiment. 

Participants were right handed and controlled the stylus with the right hand. Four subjects had 

previous experience with using large digital tables. All participants were tested individually.  

3.4.2 Procedure  

The general procedure was the same as in the previous experiment. In this case the task was to 

steer through a layer (tunnel) of thickness T, over a distance A. The task was again accomplished 

by passing a start and end goal from left to right, however in this case the stylus had to remain 

within the layer during the entire trial. The tunnel area was depicted as a solid red rectangle, 

spanning the extent of the display. The left edge of the rectangle was the start goal, and the right 

edge of the rectangle was the end goal. The goals were again centered with the participants 

seating position. Figure 3.7 illustrates the task. 
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The procedure to begin a trial was the same as in Experiment 1. When the trial could begin, 

the rectangle would turn green, and when the first goal was crossed the tunnel turned orange. As 

in experiment 1, both goals had to be successfully crossed from left to right in the correct order 

for the trial to be completed.   

 

 

Figure 3.7. The 1D tunneling task used for Experiment 2. a) Top view b) Front view 

Because this was now a tunneling task, the stylus had to be within the layer bounds through 

the entire trial. If the stylus left the layer at any time once the trial began then the trial would be 

counted as an error. 
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3.4.3 Design 

The design was the same as in Experiment 1. A repeated measures within-participant design 

was used. The independent variables were layer thickness, T (1, 1.5, 2, and 2.5 centimeters), and 

the distance between the goals, or amplitude, A (5, 15, 25, and 35 centimeters). Subjects were 

treated as random effects. This design resulted in ID values ranging from 2 to 35 as determined 

by Equation 3.2. A fully crossed design resulted in 16 combinations of T and A. 

The trials within each of the four blocks were again ordered by thickness, with all trials for 

one thickness being completed before moving on to the next. The ordering of layer thickness was 

counterbalanced between participants using a 4x4 balanced Latin Square design. Before the first 

block, a practice session was given, consisting of each of the 16 conditions.  

Time Measurement Design 

In order to keep the time measurement accurate and more reliable, we used linear 

interpolation to estimate the precise trial start time and the end time. We recorded the time, just 

before a trial began and as well as just after the trial started. Then the time is calculated as 

follows:   
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where W1 and W2 are weights. xa and xb are abscissa when the times Ta and Tb are recorded 

before and after a trial has begun. x is the abscissa of the start of the tunnel. We repeated the 

same method to estimate the end time as well. 
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3.4.4 Results 

Movement time, MT, was again the main dependent measure and had the same definition as in 

Experiment 1. We again removed trials in which errors occurred, as well as outliers which were 

more than 3 standard deviations from the group mean movement time, 1.6% of the data. 

Repeated measures analysis of variance showed a main effect for T (F3,33 = 243, p < .0001) 

and A (F3,33 = 2477, p < .0001), and a significant TxA interaction (F9,99 = 39.7, p < .0001). Mean 

movement times for each thickness were 0.61 for T = 1cm, 0.48s for T = 1.5cm, 0.42s for T = 

2cm, and 0.41s for T = 2.5. Post hoc analysis shows that all pairs of thickness are significantly 

different except for T = 2cm and T = 2.5cm. Figure 3.8 illustrates the interaction between T and 

A. It can be seen that the effect of T becomes stronger for higher values of A. Even so, there is 

little difference between T = 2 and T = 2.5 even for the largest distance. This suggests that the 

layer of thickness within 2 to 2.5cm can be used for design, when the steering distance is less 

than 35 cm.  

 

Figure 3.8. Movement times by amplitude and layer thickness 
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Figure 3.9 plots the movement times by the index of difficulty, defined by Equation 3.2. 

Linear regression analysis showed that the data fit to the model with an R2 value of 0.92. The 

movement time MT, is given by the equation: 
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Figure 3.9. Movement times by ID for the 1D steering task 

Table 3.2. Mean and standard deviation of movement time for 1D tunneling in layers 
 Minimum Maximum Mean Std. Deviation 
MT 19.00 1882.00 471.33 352.35 
Thickness 1.00 2.50 1.75 0.55 
Length 5.0 35.0 19.89 11.15 

 

The overall error rate for the experiment was only 1%. While this is lower than the desired 

4% level, it does indicate that our experimental setup allows participants to navigate within the 

layer boundaries. Error rates were slightly higher for larger values of A and smaller values of T, 

but remained under 3% across all conditions except for A = 35cm, T = 1cm, for which the error 

rate was 8.1%. 
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The results of Experiments 1 and 2 have provided useful information about navigating within 

above-the-surface interaction layers when the only constraint is the thickness of the layer. In the 

following experiments we investigate what happens when there are also directional constraints 

imposed on the movements. 

 

3.5 EXPERIMENT 3: A Pilot Study of 2D Goal Passing 

In the previous sections we have investigated a tunneling task when movements are 

constrained by the layer thickness. We validated that our model, which is based on Accot and 

Zhai’s steering law [1], can be used to predict movement times. We now turn our focus to the 

task of navigating within a layer along a path which imposes a directional constraint. Such a task 

is seen in previously developed interaction techniques, such as Hover Widgets, where users 

make specific gestures defined by tunnel boundaries in the tracking state of a pen based system 

[28].  

Before investigating this specific task, we will first look at the constrained version of the goal 

crossing task which was used in Experiment 1. It is again imperative to do this as the model for 

this task is used to derive the model for the tunneling task. In validating our proposed model for 

the constrained goal crossing task, we will also be validating our derivation of the model 

proposed for the more practical constrained tunneling task. As with Experiment 1, this task is 

theoretical in nature, so we again only ran two participants through the experiment (Figure 3.10). 

3.5.1 Participants 

Two volunteers (both males) aged 19 participated in the experiment. Both participants were 

right handed and controlled the stylus with the right hand. Neither of the subjects had previous 
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experience with using large digital tables. However, both of them had used a Tablet PC before. 

Both subjects were tested individually. 

 

Figure 3.10. The 2D goal passing task used for Experiment 3. a) Top view b) Front view  

3.5.2 Procedure 

The general procedure for this experiment was the same as in Experiment 1. However, in this 

case the goals had a finite width, W, as they were used to impose the directional constraint. 

Figure 3.10 illustrates the task. As with Experiment 1, users had to successfully cross both goals 

from left to right to complete the task. However, in this experiment, a successful cross required 

the pen to be within the layer bounds, and within the extents of the goal. As with the previous 
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experiments, if the cross was unsuccessful, then the participant would have to back-track and 

repeat the crossing for that goal. 

3.5.3 Design 

A repeated measures within-participant design was used. The independent variables were 

layer thickness, T (1, 1.5, 2, and 2.5 centimeters), goal width, W (1, 1.5, 2, and 2.5 centimeters), 

and the distance between the goals, or amplitude, A (5, 15, 25, and 35 centimeters). Subjects 

were treated as random effects. The resulting range of ID values, as calculated by Equation 3.3, 

will depend on the value of η, which will be determined by the results obtained in this 

experiment. A fully crossed design resulted in 64 combinations of T, A and W. 

The experiment was divided into 3 blocks. Within each block trials were ordered by 

thickness. Within each block and for each thickness, trials for each of the 16 W and A 

combinations were presented 5 times in random order, resulting in a total of 960 trials. The 

ordering of layer thickness was balanced by being reversed for the second participant. Before the 

first block, a short practice session was given. 

3.5.4 Results 

Movement time, MT, was again the main dependent measure, and we removed trials in which 

errors occurred, as well as outliers which were more than 3 standard deviations from the group 

mean movement time, 0.86% of the data. The overall error rate for the experiment was 3.3%, 

with higher error rates for smaller values of T and W and larger values of A. 

Repeated measures analysis of variance showed a main effect for T (F3,3 = 2.7, p < .05), W 

(F3,3 = 294, p < .0001) and A (F3,3 = 1380, p < .0001). The weaker significance for T indicates 

that the layer thickness may not have as much impact when a task is also constrained by tunnel 
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width. Movement times for the four values of T were between 0.61s and 0.65s, while they ranged 

from 0.19s to 1.1s for the values of A and 0.48s to 0.87s for the values of W.    

By least-squares fit method, we estimated the value of η for our model in Equation 3.3 to be 

0.002.  This indicates that the impact of T is almost negligible in comparison to the effect of W. 

Using this value of η, linear regression analysis gives an R2 value of 0.88. Because of the low 

value of η, if we ignore thickness constraint, Equation 3.3 reduces to a naïve model which only 

considers A and W: 
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The results of linear regression analysis are illustrated in Figure 3.11. The movement time 

MT, is given by the equation: 
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Figure 3.11. Movement times by ID for the 2D goal passing task
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Table 3.3. Mean and standard deviation of movement time for 2D goal passing in layers 

  Minimum Maximum Mean Std. Deviation 
Length 5.0 35.0 19.76 11.19 
Width 1.00 2.50 1.76 0.55 
MT 24.00 2109.00 615.62 410.66 
Thickness 1.00 2.50 1.75 0.55 

 

This result indicates that during the goal crossing task, it is much easier to control the height 

of the pen above the display surface, in comparison to staying within a directional constraint. We 

should take into account that this was only a 2-participant experiment, and in the next experiment 

we will revisit the issue. However, the result does tell us that for the 2D tunneling task, which 

will be presented in the next experiment, in addition to testing the model presented in Equation 

3.6, we should also consider the naive model which ignores the layer thickness: 

W
AID =       (3.12) 

 

3.6 EXPERIMENT 4: 2D Tunneling 

In this experiment, we investigate the 2D tunneling task, where the user must navigate 

through an above-the-surface layer, while following a specific path that imposes a directional 

constraint. As with the Experiment 2 task, this is an important task to understand, as it is an 

element of existing interaction techniques [23].  We hope to gain an understanding of how the 

layer thickness, T, and tunnel width, W, affect movement time, and how these effects compare to 

one another (Figure 3.12). The results of Experiment 3 indicate that W will be the dominantly 

constraining variable. We will also test the validity of our originally proposed model for this task 

(Equation 3.6), along with the naïve form of this model (Equation 3.12), proposed based on our 

results of Experiment 3.  



 

 45  

 

Figure 3.12. The 2D tunneling task used for Experiment 4. a) Top view b) Front view 

3.6.1 Participants 

Twelve volunteers (10 male, 2 female), aged 21 to 35 participated in the experiment. 

Participants were right handed and controlled the stylus with the right hand. Four subjects had 

previous experience with using large digital tables, and 3 of them had used a Tablet PC before.  

All participants were tested individually.  

3.6.2 Procedure 

The general procedure for this experiment was the same as in Experiment 2. However, in this 

case the tunnel had a finite width, W, imposing a directional constraint on the user’s movement. 
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For extra visual feedback, the starting area was rendered on both sides of the tunnel as 

rectangles. Figure 3.12 illustrates the task. Users had to successfully cross both goals from left to 

right, while staying within the bounds of the layer and tunnel. If a goal cross was unsuccessful, 

the participant would have to back-track and repeat the crossing for that goal. The trial was 

counted as an error if at any time during the trial pen exited the bounds of the layer, or the width 

of the tunnel. 

3.6.3 Design 

The design was the same as in Experiment 3. A repeated measures within-participant design 

was used. The independent variables were layer thickness, T (1, 1.5, 2, and 2.5 centimeters), goal 

width, W (1, 1.5, 2, and 2.5 centimeters), and the distance between the goals, or amplitude, A (5, 

15, 25, and 35 centimeters). Subjects were treated as random effects. The resulting range of ID 

values, as calculated by our originally proposed model (Equation 3.6), will depend on the value 

of η, which will be determined in this experiment.  

The trials in each of the three blocks were again ordered by thickness. Within each block and 

for each thickness, trials for each of the 16 W and A combinations were presented 5 times in 

random order, resulting in a total of 960 trials. The ordering of layer thickness was 

counterbalanced between participants using a 4x4 balanced Latin Square design. Before the first 

block, a practice session was given, consisting of 16 random trials.  

3.6.4 Results 

Movement time, MT, was again the main dependent measure, and we removed trials in which 

errors occurred, as well as outliers which were more than 3 standard deviations from the group 

mean movement time, 1.29% of the data. The overall error rate for the experiment was 2.6%, and 



 

 47  

as with the previous experiment higher error rates resulted from smaller values of T and W and 

larger values of A. 

 

Figure 3.13. Interaction effects observed in Experiment 4. a) TxA interaction. b) WxA 
interaction 

 

Repeated measures analysis of variance showed a main effect for T (F3,33 = 35.2, p < .0001), 

W (F3,33 = 1366, p < .0001) and A (F3,33 = 6544, p < .0001). We also found significant AxT  (F9,99 

= 4.48, p < .0001) and AxW (F9,99 = 199, p < .0001) interaction effects on MT. These effects are 

illustrated in Figure 3.13. It can be seen that the effect of both T and W become stronger when A 

is increased. However, by comparing the two figures we again see that the effect of W on MT is 

much stronger than T, especially for when A is greater than 5cm. Overall movement times for the 

four values of T were all between 0.75s and 0.84s, while they ranged from 0.21s to 1.4s for the 

four values of A and 0.59s to 1.1s for the four values of W. It is also interesting to compare 

Figure 3.13a to Figure 3.7 from Experiment 2. We see that the presence of the directional 

constraint in this task drastically reduces the effects of T.  
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By a least-squares fit method, we estimated η for our model in Equation 3.6 to be 0.1638. This 

is larger than its value for the goal crossing task discussed in the previous experiment, indicating 

that our Euclidian model may be more appropriate for this task. Using this value, linear 

regression analysis gives a high R2 value of 0.989 (Figure 3.14). The movement time, MT is 

given by the equation: 
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Figure 3.14. Movement time by ID for the 2D steering task 

Table 3.4. Mean and standard deviation of movement time for 2D tunneling in layers 
 

 Minimum Maximum Mean Std. Deviation 
Thickness 1 3 1.75 0.55 
Length 5 35 20.00 11.18 
Width 1 3 1.75 0.55 
MT 31.00 6015.00 810.07 638.21 
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We also tested the naïve model (Equation 3.12), proposed based on the results of Experiment- 

3. It also performed well, with slightly lower R2 value of 0.97. Even though the Euclidian model 

provides a higher R2 value, it is again interesting that the naïve model provides such a high fit. 

This may in part be due to the fact that participants were able to rest their hand on the display 

surface, which helps them physically constrain the stylus height. However, we must recall that in 

Experiment 2, T had a much stronger effect, with the same values being tested, so we have not 

just chosen values of T which were too “easy”. We have demonstrated that in the presence of a 

directional constraint, layer thickness has much less of an effect on movement time. 

 
3.7 3D Steering Model 

The experiments described above confirm the validity of the 2D steering model. Based on this 

model we derive a final model for steering in above-the-surface layers positioned at different 

heights above the display [13, 36]. We define the Height H as the distance between the bottom 

plane of the layer and the display surface (Figure 3.15). We know that steering in a layer 

constrained by the layer thickness is given by: 
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We have shown that 2D goal passing can be modeled by the Euclidian model for bivariate 

pointing (Equation 2.2) [18] given by: 
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2D goal passing can be described as crossing two goals of width W and thickness T placed 

perpendicular to the display surface. The goals are separated by a distance A (Figure 3.16). From 
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Equation 2.4 we can infer that if we neglect orientation we can extend the bivariate model.  By 

analogy we assume that the variable H is related as given by: 
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We employ the goal passing methodology used by Accot and Zhai[1] again. We break the 

tunneling task constrained by height into a series of N goal crossing tasks (Figure 3.16). By 

adding the IDs for each of the N tasks, where each goal is separated by a distance A\N, we get: 
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We can see that as N approaches infinity, the task converts into above-the-surface steering. To 

obtain ID for the steering task we take limits IDN as N tends to infinity. Using a first order Taylor 

series expansion of log2 (1 + x), we obtain: 
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By omitting 1\ln (2) for simplicity we arrive at the model shown below: 
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In the sections that follow we describe experiments, where we analyze motor performance 

when steering in layers above the surface. We examine the validity of the models based on the 

results of the experiments. 
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Figure 3.15. Steering through a tunnel, constrained by the layer thickness, T. width W and 
height H 

 

 

Figure 3.16. A series of goal crossing tasks at height H 

3.8 EXPERIMENT 5: 3D Steering 

In this experiment, we study 3D steering, where the users steer through a layer above the 

surface positioned at different heights. Users follow a path that imposes a directional constraint 

along with the height and thickness constraints. These types of tasks are common in multilayer 

interaction techniques [59]. We investigate these tasks to understand how the layer thickness, T, 

tunnel width, W, and height H affect movement time. We will also see how these independent 
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variables interact with each other. We will use the results to validate the model that we have 

proposed (Equation 3.19).  

 
Figure 3.17. The 3D steering task used in the experiment. a) Top view b) Front view 

3.7.1 Participants 

Eight volunteers (7 male, 1 female), aged 25 to 35 participated in the experiment. Participants 

were right handed and controlled the stylus with their right hand. Four subjects had previous 

experience with using large digital tables, and rest of them were first time users. All participants 

were tested individually. Their wrist length varied between 17.7cms to 20.3cms and their 

forearm length varied between 41.9cms to 50.8cms. The wrist and forearm length were defined 
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as the distance between tip of middle finger to wrist bone and the distance between tip of middle 

finger to forearm bone (radius and ulna).  

3.7.2 Procedure  

The  task was accomplished by steering through a tunnel of width W , thickness T, and a 

length of A, positioned at a height H (Figure 3.17). A trial began when the participants 

positioned the stylus beyond 10 pixels to the left of the start of the tunnel, and at an appropriate 

height, such that it was within the bounds of the current trial layer. Initially the tunnel was 

colored red. After positioning the stylus, participants had to click the button on the stylus. This 

turned the tunnel to a green color indicating that the participant could proceed steering through 

the tunnel. A dwell space of 10 pixels before the tunnel was provided to stop accidental 

crossings. This was done to control the initial velocity of the pen when the trial began. This also 

prevented the users going from one trial to the next without regard to constraints and accuracy.  

When the stylus entered the tunnel, it turned yellow to indicate that the trial had started and 

was in progress. The trial ended when the stylus reached the other end of the tunnel. The tunnel 

turned red again to indicate that the trial was over. An audio cue was given each time a task 

started and also when the task ended.  

The experiment was designed to present next trial after 0.6s when a trial ended, to stop 

ballistic movements from the user. If the user started the steering outside the starting point of the 

tunnel, the trial would not start. The user had to back-track and start the task again, being within 

the bounds of the tunnel. If the stylus left the bounds of the tunnel at any place when the trial was 

running, it would be counted as an error. The total error rate was displayed during the 

experiment, and participants were told to balance speed and accuracy such that their error rate 

remained at approximately 4%. 
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Audio cues were given when the height of the tunnel changed. Thickness and height of the 

tunnel were indicated using a bar next to the tunnel (Figure 3.17).  

3.7.3 Design 

A repeated measures within-participant design was used. The independent variables were 

layer thickness, T (1.5, 2.5, and 3.5 centimeters), the distance between the goals, or amplitude, A 

(5, and 25, centimeters), the width W (1.5 and 2.5 centimeters) and height H (5, 15 and 25 

centimeters). Subjects were treated as random effects. The ID values are dependent on the η and 

β that will be estimated based on the results of the experiment. A fully crossed design resulted in 

24 combinations of W, H, A and T. 

The experiment was divided into 2 blocks. The trials in each block were ordered by thickness, 

with all trials for one thickness being completed before moving on to the next. This was done to 

prevent confusion of constantly changing layer thicknesses. 

Within each block and for each thickness, trials for each of the 4 lengths were presented 5 

times in random order, resulting in a total of 360 trials. The ordering of layer thickness was 

counterbalanced between participants using a 4x4 balanced Latin Square design. Before the first 

block, a practice session was given, consisting of each of the 16 conditions presented in random 

order.  

3.7.4 Results 

We measured movement time for each of the trials in the experiment. MT was defined as the 

time between entering the tunnel and leaving the tunnel. To get the precise measurement of time, 

we linearly interpolated between the events before and after entering the tunnel. This was 

repeated also while ending the steering trial. Trials with errors were not considered for analysis. 
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Outliers, more than 4 standard deviations from the group mean MT, were removed and they 

constituted 4.5% of the data. By considering data within 4 standard deviations from the group 

mean prevents the excluding meaningful data points allowing us to consider more variation 

caused by H variable. In the experiments that follow analysis of data was carried out using SPSS 

Software, Version 14.0 for Windows. Copyright © 1989-2005 SPSS Inc. SPSS and all other 

SPSS Inc. product or service names are registered trademarks or trademarks of SPSS Inc., 

Chicago, Illinois, USA. The SPSS repeated measures ANOVA accounts for sphericity of data by 

applying the Geisser-Greenhouse correction. Geisser-Greenhouse corrects for the equality of 

variance ensuring the sphericity. 

Repeated measures analysis of variance (full factorial model) showed a main effect for H (F2, 

14 = 19.86, p < 0.0001), T (F2, 14 = 77.00, p < 0.0001), W (F1, 7 = 20.94, p < 0.003), and A (F1, 7 = 

70.59, p < 0.0001). The effects of H, T, W and A on MT were statistically significant. We also 

found significant AxT  (F2,14 = 33.81, p < 0.0001), AxH  (F2,14 = 24.21, p < 0.0001) and TxH 

(F4,28 = 6.91, p < 0.001) interaction effects on MT. However, interaction effects of WxH (F2,14 = 

0.48, p < 0.630) and TxW  (F2,14 = 0.414, p < 0.67) on MT were not significant. Post-hoc analysis 

with Games-Howell criterion reveals that there is no significant difference between MT for layer 

thickness 2.5 cm and 3.5 cm while the difference between MT for other layer thicknesses is 

significant. The difference between MT for all heights is significant. (The sample size for each 

condition was restricted to 5, to remove the effect of fatigue on the trials.) Mean movement times 

for each height were 1.325s for H = 5cm, 1.695s for H = 15cm, 2.012s for H = 25cm. We can see 

that movement times will be constrained by the height of the layer above the surface. 

Figure 3.18 plots the movement times by the index of difficulty, defined by Equation 3.19. 

Figure 3.19 depicts movement time for thickness and height combinations. Linear regression 
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analysis showed that the data fit to the model with an R2 value of 0.86. The equation for MT is 

given by: 
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The R2 value is lower than usual value for a good fit, but we believe that by increasing sample 

size the movement times would continue to conform to our model, with a higher fit. 

Table 3.5. Mean and standard deviation of movement time for steering in layers at 
different heights 
 

 N Minimum Maximum Mean Std. Deviation 
Thickness 2613 1.5 3.5 2.523345 0.809963
Height 2613 5 15 9.875622 4.082541
MT 2613 23 11562 1669.196 1642.908

 

 

Figure 3.18. Movement times by ID for the 3D Steering task 
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Figure 3.19. Movement times by Height for the 3D Steering task 
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CHAPTER 4 

LAYER VISUALIZATION 

This chapter discusses the visualization designs and experiment conducted to evaluate the 

designs for above-the-surface interaction. The chapter begins with a description of a single layer 

visualization design used to evaluate the models. Next, several multilayer visualizations designed 

from the perspective of the information visualization will be discussed.  Finally an experimental 

evaluation of the visualization designs is presented. 

For users to be able to efficiently navigate through an above-the-surface interaction layer, 

they must be aware of the position of their stylus within the layer, as well as the thickness of the 

layer. This is especially important for our experimental procedure, as the layer thickness is an 

independent variable, and thus changes from one trial to the next. We use a cursor visualization 

to provide this information to the user, similar to the way that pressure widgets can be used to 

convey pressure information [53]. Through informal usage observations and iterative design we 

converged on the following basic visualization approach. 

 

4.1 Basic Visualization Design 

Basic visualization design consists of a 5x20 pixel rectangle, with the top and bottom of this 

rectangle representing the top and bottom boundaries of the current layer. Within this rectangle, a 



 

 59  

small 5 pixel horizontal line extends from the base of the cursor to the right (Figure 4.a). This 

line represents the current height of the input device within the layer. The position never changes 

in relation to the position of the cursor. It is the position of the rectangle that changes with the 

height of the stylus, such that the position of the line relative to the rectangle always indicates the 

position of the stylus in relation to the top and bottom boundaries of the layer. Therefore, moving 

the pen down will move the rectangle upwards (Figure 4.b), and moving the pen up will move 

the rectangle downwards (Figure 4.d). If the cursor leaves the lower or upper bounds of the layer, 

then the rectangle will jump to be above or below the line accordingly (Figure 4.c, e), and the 

rectangle will be filled red. This was done because in our experiment, an error state is entered if 

the stylus leaves the layer. Outside of our experimental paradigm, other design approaches could 

be investigated, especially if multiple layers exist that the stylus could move between, such as in 

the work by Subramanian et al. [59]. 

 

Figure 4.1. Cursor visualization 

We used the basic visualization design in the all the experiments described in the Chapter 3. 

Users comfortably used the visualization to perform steering tasks. However, the basic design 

visualizes only one above-the-surface layer. To understand how well can this design be extend to 

multilayer above-the-surface interaction, we considered many visualization designs for 
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multilayer above-the-surface interactions and evaluated them through user experiments. The 

section below details the design and evaluation of these designs.    

4.2 Exploratory Study: Testing Variations on the Basic Design 

Visualizations coupled to cursors can embody large numbers of variables while letting the 

users focus on the task without having to switch attention [25]. The objective here is to design 

cursors coupled with a widget to visualize the multilayer input space. Using this, users should be 

able to know and control the position of the stylus above the display surface as well as within the 

layer. The first task is to arrive at an efficient information structure for visualization [64, 34]. 

Using this information structure, we have to design cursors types to visualize above-the-surface 

layers which include the elements CD ratio, overview and detail, and layer thickness, to study 

their effects.   

There were several design options based on previous research into Structural Information 

Theory (SIT) (See Section 2.4.2) and results of the pilot studies. All these designs had to 

consider two necessary elements: a widget to indicate the stylus position above the display and a 

traditional hotspot to facilitate pointing and selection. We considered three designs: Bull’s eye 

design, Arrow design, and Grid design. (See Figure 1.2). We designed an image selection 

application that used these designs. Two users used the application for ten minutes. Subjective 

feedback from the users and observations suggested that the designs based on a rectangular grid 

are preferable. This is also supported by the previous studies [53, 36] arguing that grid mapping 

is more intuitive for controlling discrete levels. This may be because a grid is likely to be 

interpreted as a side view of multiple layers. From SIT (See Section 2.4.2) we know that the 

visual system prefers the simplest interpretation of the visual stimuli [34]. Previous studies have 

also emphasized visual separation of the visualization widget and pointing hotspot [36]. Based 
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on these three perspectives we chose the rectangular grid design for the visualization element and 

a traditional arrow for pointing.   

  

Figure 4.2. a) Bull’s Eye cursor b) Grid cursor c) Arrow cursor 

4.3 A Study of the Layer Visualization Designs 

In this section, the general structure of the visualization design using a cursor is outlined, four 

visualization designs based on the structure are presented resulting in four types of cursors and 

the designs are evaluated through a user study, and the outcome and implications of the study are 

discussed.  

The visualization designs consist of an arrow which we call the pointing element and a 

rectangular grid which we call the layer element.  The layer element is a rectangle formed by 

smaller rectangles. Each small rectangle represents a layer. We designed layers with four such 

rectangles representing four layers above the display.  A horizontal line represents the position of 

the stylus above the active surface of the display as well as the position within the layer. The 

bottom and top of the each rectangle represents the bottom and top of the layer. 

The pointing element of the cursor is an arrow as in a traditional desktop cursor, with the tip 

of the arrow being the hotspot. The hotspot of the cursor always remained directly below the 

stylus. The bottom edge of the arrow was attached to the layer element next to the horizontal line 
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indicating the stylus position. The pointing element was always tied to the x-y position of the 

stylus. The layer element moved up and down indicating the position of the stylus in the layer 

above the display.  

Design factors such as CD ratio, overview and details were embedded in the cursor designs to 

obtain four variations on the general structure. The variations in the cursor design are depicted in 

Figure 4.3.  In all the visualizations, only the layer element differs; the pointing element remains 

the same.  

4.3.1 Cursor Designs 

Overview Cursor (OV) 

In this cursor, the layer element is a rectangular grid. The height of the small rectangles 

corresponding to the layers does not change when the thickness of the layers is changed. Instead 

the CD ratio changes when the thickness of layers changes. The visualization provides an 

overview but the details of the layer under use were not shown (see Figure 4.3a). 

Overview with Direct Mapping Cursor (ODM) 

This is a combination of the overview layer element with the direct mapped layer element. 

There are two rectangles in the layer element; one provides focus and the other provides an 

overview (Figure 4.3b). The overview portion of the layer element has a CD ratio relative to 

thickness while the focus portion has a CD ratio without gain. 

Partial Overview Cursor (PO) 

In this visualization design, the rectangle representing the layer under use is enlarged (see 

Figure 4.3c) to cover the most of the area of the layer element. The remaining layers are 
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represented by small rectangles. While the design shows details of the layer under use, the 

overview of the layers shrinks, reducing the full overview. 

Direct Mapped Cursor (DM) 

In this cursor, the layer element is a rectangular grid with a height of the smaller rectangles 

equal to the thickness of the layers. Each rectangle represents a layer and the horizontal line 

indicates the position of the stylus in the layer. The control is mapped to display without gain. 

Thus, as the thickness of the layer varied, the height of the rectangles also varied (Figure 4.3d). 

 

Figure 4.3. a) Overview (OV) (CD ratios 1:0.5 1:1.1 and 1:1.6) b) Overview with direct 
mapping (ODM)(CD ratios 1:1 with 1:0.5, 1:1.1 and 1:1.6) c) Partial overview (PO)(CD 
ratios 1:1.3, 1:2 and 1:2.8) d) Direct mapping (DM) (CD ratio 1:1) 

4.4 EXPERIMENT 6: Validation of Designs 

We ran an experiment to study the performance of the visualizations for layer switching tasks 

in multilayer input space. Three variables were considered: cursor type, layer switching 

combinations and layer thickness. We measured movement time and error rates for carrying out 

the task described below. 
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4.4.1 Participants 

Twelve volunteers, (four female, eight male), aged between 18 and 31, participated in the 

experiment. All the participants were right handed and controlled the stylus with their right 

hands. Five of the subjects had previous experience with using large digital tables. All subjects 

were tested individually. 

4.4.2 Procedure 

We designed a layer selection task by dividing the space above the display into four discrete 

horizontal layers of equal thickness. Each layer was represented by a color in the layer element. 

(see Figure 4.4). A square target was displayed in front of the participants at an easily reachable 

position on the table top display. A small square filled with one of the colors of the other layers 

(black, green, blue or red) was displayed above it as a target indicator. Subjects had to position 

the arrow element within the bounding square and move the stylus vertically to the layer 

corresponding to the color indicated by the target cue. The task started when subjects clicked the 

stylus button on the target. At this point the target indicator changed its color indicating which 

layer to switch to. The task finished when the subject clicked the stylus button after moving to 

the target layer.  
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Figure 4.4. A layer selection task. a) Top view b) Front view 

The task did not start if the subject clicked outside the bounding rectangle or in a layer not 

indicated by the target indicator. After starting the task, if the task ended with a click outside the 

target the task was counted as an error. The task was allowed to continue until the right selection 

was made. However, the data from error trials were discarded. 

Layer thickness information was displayed along-side the cursor and also printed above the 

target. Changes in layer thickness, visualization type and layer selection were clearly indicated 

by audio cues. 
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4.4.3 Experiment Design 

We used a repeated measures within-participant design. We controlled the variables type of 

cursor (Overview with direct mapping, Partial overview, Overview, Direct mapping), 8 layer 

switching combinations among the possible 12 layer switching combinations 

((0,1),(0,3),(1,0),(1,3),(2,1),(2,3),(3,0),(3,2)) and layer thickness (1, 2.5 and 3.5 cm). All the 

layers had the same thickness. Subjects were treated as random effects. The factors CD ratio and 

overview and detail were embedded into the type of the cursor. The choice of layer thicknesses is 

based on the previous steering experiments in layers [36].  

The experiment was divided into three blocks. Within each block, trials for each of the three 

thickness and eight combinations were presented two times in random order for four cursors, 

resulting in a total of 576 (3x3x8x2x4) trials. The ordering of type of cursors in each block was 

balanced by using a 4x4 Latin Square design. Subjects were trained by randomly presenting 16 

sample trials presenting all cursors and two combinations and layer thickness. We measured the 

task time and number of errors. We also recorded the vertical distance traversed to make the 

selection. Subjects were asked to rank visualizations based on ease of use, perceived accuracy, 

and perceived speed, after they completed all the trials.   

4.4.4 Results 

We recorded Movement Time (MT) from the beginning of the task to the end and also the 

error rate. We discarded data points more than 3 standard deviations away from the mean MT for 

the group. Discarded outliers constituted 3.46% of the data points.  

The overall error rate was 1.59%, which is similar to the previous studies in the input space. 

The Overview (OV), Overview with Direct Mapping (ODM), Partial Overview (PO), and Direct 
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Mapping (DM) visualizations had 1.25%, 1.5%, 1.71% and 1.9% error respectively. Figure 4.5 

shows the error rate for all four visualizations. There was a lot of variation in the error rate for 

different layer thickness across visualizations. The DM cursor had 3.6% error rate which was the 

highest for the layer thickness of 1.0 cm. The Overview Cursor had the smallest error rate for 1.0 

cm layer thickness. For 2.5 and 3.5 cm thick layers DM cursor had the smallest error rate. 

The overall error rates for different layer thicknesses are depicted in Figure 4.6 and Table 4.1. 

The Alpha level for all significance tests was 0.05. Repeated measures analysis of variance (full 

factorial model) showed a significant difference between error rates for different thicknesses 

(F2,22 =5.901, p<0.009). We did not find a significant difference between error rates for different 

visualizations or an interaction between visualization and layer thickness (F2,33 =0.513, p<0.676), 

(F6,67 =1.286, p<0.276). Post-hoc analysis with Games-Howell criterion reveals that there is no 

significant difference between error rates for layer thickness 2.5 cm and 3.5 cm while difference 

between error rates for other layer thicknesses are significant. 

 

 

Figure 4.5. Error rate of tasks using three cursors for different target sizes 
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Table 4.1. Error rate for layer switching visualizations 
 

 

 

 

 

Figure 4.6. Overall error rate for tasks with four different cursors 

Repeated measures analysis of variance (full factorial model) of the recorded MT showed an 

effect of cursor type on movement time (MT) (F3,33 = 10.197, p<0.001). The effect of thickness 

on movement time was also significant (F2,6 =16.415, p<0.001). Interaction between 

visualizations and layer thicknesses was also significant (F6,67 =11.741, p<0.001). Figure 4.7 

plots the mean movement time by visualization type. Post-hoc analysis using Games-Howell 

criterion for significance showed a significant effect between movement times for all 

visualizations. However, there was no significant difference between movement times for layers 

of thickness 2.5 cm and 3.5 cm (p<0.234). 

Thickness (in cm) OC  % ODMC % POC % DMC % 
1.00 1.40 2.20 3.04 3.60 
2.50 1.40 1.21 1.71 1.10 
3.50 0.90 1.00 0.90 0.80 
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Figure 4.7. Mean task time for tasks using four cursors 

The DM visualization was the fastest and the tasks with PO visualization were the slowest. 

ODM visualization closely follows DM visualization in terms of task time. Although Overview 

visualization out-performs ODM for the 1.0 cm layer, the difference is not significant.  

 

4.4.5 Subjective Evaluation 

All the subjects indicated that the visualizations were easy to use. Figure 4.8 shows the mean 

of the user rankings for visualizations in terms of ease of use, perceived accuracy and perceived 

speed. Lowest rank indicates the best choice. Users preferred the Direct Mapped cursor closely 

followed by the Overview with Direct Mapping. The Partial Overview was the least preferred 

visualization. We may note that user’s perception about visualization differs from quantitative 

results; more so in the case of error rates. 
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Figure 4.8. Mean rank for different visualizations (shorter bars mean better rank) 

Table 4.2. Mean and standard deviation of selection time for visualizations 
 

Dependent Variable: MT    
Cursor Type Thickness Mean Std. Dev N 
Overview 1 1885.21 523.88 545
 2.5 1899.85 505.94 550
 3.5 1983.69 515.24 531
Overview with Direct Map 1 1960.94 520.95 527
 2.5 1787.39 483.87 549
 3.5 1837.29 538.55 555
Partial Overview 1 2050.21 561.09 490
 2.5 1990.91 545.52 542
 3.5 2018.94 544.34 533
Direct Mapped 1 1787.19 524.79 551
 2.5 1732.01 444.10 522
 3.5 1684.38 470.90 577
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CHAPTER 5 

DISCUSSION 

In this chapter, the results of the modeling and the visualization are discussed. Second, we 

elaborate on the application of our model as well as the layer visualization designs. 

 

5.1 Summary of Findings 

5.1.1 The Model Predicts Movement Time for Steering within Layers 

The experimental results show that our models (Equation 3.6 and Equation 3.19) can be used 

to effectively predict movement time when steering through constrained paths in above-the-

surface interaction layers. Figure 5.1a graphically represents the relation between the ID and the 

constraints for steering based on the Accot and Zhai steering model (Equation 2.4). Figure 5.2b 

shows the relation between the ID and the constraints for steering in layers based on our model 

(Equation 3.6). A comparison of the graphs shows that the ID values in the models differ 

considerably for steering lengths more than 10 cm. We can see that the steering ID is more than 

30 bits for the tunnels of length is 32 cm when the tunnel is narrow (less than 2 cm). Thus the 

model clearly reflects the common notion that the difficulty and hence the delay is intrinsic to 

steering tasks involving narrow longer tunnels. The model clearly reflects the result which shows 

that there is no significant interaction between Width (W) and Thickness (T), on MT. In Equation 
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3.6, MT is non-linearly related to the ratio of the length of the steering path to the width of the 

steering path (A/W) and the ratio of the length of the steering path to the thickness of the steering 

path (A/T).  

 

Figure 5.1. a) ID by Width and Length for 2D steering model (Equation 2.3) b) ID by 
Width, Thickness and Length using model for steering in layers (Equation 3.6) 

The experiment also shows that when users are able to rest their hands on a physical surface, 

the thickness of the layer does not affect performance when a directional constraint is also 

present. The results of experiments might be dependent on hand being used as a guide. We also 

observed that there was no significant difference in user performance between layers of thickness 

2cm and 2.5 cm. This suggests that for interaction techniques that leverage multiple layers (E.g. 

Subramanian et al. [20]), the layers could be as small as 2cm when the layer is close to the 

display surface. 

Our results also show that users were more error prone when steering through tunnels of 

larger path lengths, particularly with a tunnel length of 35 cm. This indicates that if large 

movements within a layer are required, then designers should increase the thickness of the layer. 

For the most part however, overall error rates were quite low, indicating that users were able to 

comprehend the provided cursor visualization. The informal subjective feedback which we 
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received also indicated that the cursor visualization provided an effective indication of the stylus 

location.  

 
The results also show that the movement time increases as the height of the layer above the 

surface increases. The high error rate, when steering long tunnels at height more than 10cms, 

suggests that there is a trade off between the height of the layer and the length of the steering 

tunnel. When the layer was immediately above the surface, the difference in movement time 

between layers of thickness 2.5cm and 3.5cm was not significant. However as the height of the 

layer increased hand could not rest on display; the thickness of the layer had a significant effect 

on the movement time. Thus the study confirms that a layer thickness of 3.5cms is acceptable for 

heights up to 15cms. 

A η value of 0.16 in Equation 3.13 indicates that the effect layer thickness (T) on movement 

time is less than effect of tunnel width (W) (See also section 3.6.4). A lower η value may be due 

to users being allowed to rest their wrist/elbow on the display while performing a steering task. 

We have seen that in some cases, the effect of thickness (T) on movement time is significant, 

indicating that the effect of thickness on movement time may vary depending on factors such as 

height (H). Further work is needed to study steering under several common positions of wrist and 

elbow on or above the display. 

Results indicate that steering was error prone for longer and higher paths, particularly paths of 

25cm and paths at the height of 15cm. This indicates that, if height has to increase, thickness 

should also increase and the steering path should be kept shorter. 

 



 

 74  

5.1.2 Implications for Layer Visualization Design  

There are several implications of the layer visualization study:  

• The results show that the grid layout approach for multilayer visualization enables easy 

and efficient interaction.  

• Our results present the first empirical evidence to show that a CD ratio without gain 

enables faster and more accurate layer selection.  

An exception to this is the interaction in layers of 1.0 cm thickness. Higher error rates for 1.0 

cm layers appear to be because of motor precision issues rather than the visualization. This is 

supported by qualitative feedback from users who said they preferred a CD ratio with gain for 

1.0 cm layer thickness. While studies have suggested that layers should be at least 2.0 cm thick 

for steering interactions, our study showed that even the layer thickness of 1.0 cm is acceptable 

for interactions only involving layer switching. 

Although a CD ratio without gain is more efficient in visualization, it also causes occlusion by 

taking up a lot of display area. This renders the visualization less useful in applications. Going by 

the results of the experiment, we can see that the overall error rate for task completion with the 

Overview with Direct Mapping (ODM) visualization is close to the error rate of Direct Mapping 

(DM) visualization and has lesser error rate for 1.0 cm thick layer. 

Completion time of the ODM cursor was comparable to DM cursor and was preferred by the 

users next to the DM cursor. The ODM cursor represents variables such as overview, focus, and 

multiple CD ratios; therefore we believe that the ODM cursor is a good candidate for application 

designs in above-the-surface interaction layers (see Figure 5.2). 
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Figure 5.2. ODM Visualization that combines detail, overview and CD ratios 

 
5.2 Applications 

The 3D steering model lays a basis for design of interaction techniques using the space above 

the display surface. Analogous to Fitts’ law, the 3D steering model can be used to compare the 

performance of techniques such as Hover widgets [28], Multilayer interaction techniques [59] 

and Tracking Menus [23]. It may also be used in performance evaluation of input devices using b 

in Equation 3.6 to calculate the Index of Performance (IP). Interaction techniques can be 

benchmarked against the 3D Steering model so that they can be readily compared to newly 

implemented interaction techniques. 

Figure 5.2 shows a design that we believe is a good candidate for visualizing multiple above-

the-surface interaction layers. Visualization designs proposed in this thesis serve as a basis for 

custom visualization design requirements of systems such as Tabletops, Tablet PCs and PDAs. 
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The visualization study also confirms that the grid structure effectively captures the information 

required for the perception of layers. 

 



 

77 

CHAPTER 6 

CONCLUSION AND FUTURE WORK 

This chapter summarizes the solution to the problem addressed in this thesis and discusses the 

scope for future work. We begin by giving a brief summary of the solution. Then an outline of 

the main contributions of this research is presented. We conclude by discussing avenues for 

future work. 

 

6.1 Summary 

The problem addressed in this thesis was that designers currently have no model to predict 

movement time (MT) for steering tasks constrained by thickness, width, and length of the path, in 

above-surface-interaction layers. The problem had two main parts: first, modeling steering in 

layers; and second, visualizing the layers to provide feedback for the steering task. The solution 

offered in this thesis was a model to predict MT, given by Equation 3.6 and 3.19. The second part 

of the solution was a set of designs to visualize above-the-surface interaction layers. We 

designed a series of experiments to validate the predictive model. The experimental results show 

that our models (Equation 3.6 and Equation 3.19) can be used to effectively predict MT when 

steering through constrained paths in above-the-surface interaction layers. The evaluation of the 

visualization designs suggest that the grid layout design which combines overview and direct 

mapping is an effective candidate to visualize layers above the display surface. 
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6.2 Contributions 

Three main contributions of this research are: 

• A model to predict movement time for steering in above-the-surface interaction layers 

(Equation 3.6). 

• A model to predict movement time for steering in layers positioned at different 

heights above the display surface (Equation 3.19). 

• An evaluation of designs for visualizing the position of the pen in layers above the 

display surface. 

Other contributions of this research include following design recommendations. 

• The length of the steering tunnel in above-the-surface layers should be less than 35.0 

cm.  

• The tunnel thickness of 1.0 cm is acceptable for tunnel lengths less than 15.0 cm. 

However, a thickness of 3.5 cm is recommended for longer tunnels and tunnels at the 

height of 15.0 cm. 

• For layer switching interactions, use of layer thicknesses as small as 1.0 cm is 

acceptable. 

• For easy and efficient interaction, we recommend grid layout approach to visualize 

position of the pen in layers. 

• We believe that the CD ratio without gain should be preferred over the CD ratio with 

gain, to map the pen position for vertical movements, if occlusion due to the size of 

the visualization is not an issue. 
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• We recommend a combination of detail and overview, and CD ratio without gain and 

CD ratio with gain for visualization design in above-the-surface interaction layers, 

when a direct CD mapping causes occlusion due to the size of the visualization. 

  

6.3 Future work 

The intended future work is in two areas: research in modeling more general steering tasks, 

and research in visualizing above-the-surface layers.  

6.3.1 Future Work Related to the Modeling Steering 

As this was an initial study on human performance for above-the-surface interactions, we 

chose to limit our focus to the variables which allowed us to form and validate our theoretical 

models.  In the future, it would be useful to investigate how some of the unexplored factors 

would affect the results we obtained. For example, in our study we allowed users to rest their 

hand on the display and use of hand as a guide during the steering task. While using a Tablet PC 

or table top system, users may be able to do this, but with a vertical display such as an electronic 

whiteboard, or a small PDA, users may not be able to rest their hand. This would likely reduce 

the user’s ability to control the position of the input device.  

Other factors which should also be explored are the arm reach of the user, and the orientation 

and direction of the tunnel above the surface. Furthermore, it would be interesting to study how 

the shape of the required path affects performance. In this case when the path is not straight, as it 

was in our experimental task, the gesture may superimpose finger movements on the hand 

movement, resulting in increased steering difficulty. We have noted that as the number of 

variables increases, it gets harder to model interactions through simple relations. This is evident 
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in the large deviation in mean movement time in the experiment investigating the effects of 

height. Other factors such as wrist and forearm length affect movement time as the height of the 

layers increases. Understanding this could result in a generalized model of steering through 

paths, or tubes, in free 3D space [21]. Figure 6.1 shows a generalized steering task in free 3D 

space. 

 

Figure 6.1. A plot of the steering task in the space above the display surface  

Although the Accot and Zhai formulations, derived from the perspective of information 

theory, are successfully applied in HCI, the Drury and Rashevsky formulations approach the 

modeling problem from the perspective of Biophysics. Drury and Rashevsky consider factors 

such as reaction time of users, the average angle by which the direction of the car deviates from 

the true course and the average minimum safe distance from the edges of the steering path. 

Derivation of the models discussed in thesis is based on the Accot and Zhai formulations. We 

believe that reanalyzing the models from the perspective of Drury and Rashevsky models will 

increase our understanding of the performance models and contribute to the development of 

models capable of addressing limitations in efficiently modeling human-computer interactions. 
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The model described in this thesis also forms a basis for the design of interaction techniques 

in above-the-surface layers. Using our models to design new interaction techniques to perform 

real world tasks should be investigated through future research.  

6.3.2 Future Work Related to the Visualization of Layers above the Display  

The effect of increasing the size of visual and motor space on layer visualization is yet to be 

investigated. Research on other possible multilayer designs could result in a framework for layer 

visualization. We believe that investigation of optimal CD ratio for vertical selection task and 

layer switching will considerably improve visualization. It would be challenging to explore and 

design visualization techniques in such scenarios.  

Visualization designs explored in this thesis used a simple audio feedback mechanism and did 

not use audio to represent a layer. We believe that interaction in layers can be improved by 

designing effective audio feedback along with visualizations. Work is needed to explore the most 

effective way of providing audio feedback for tasks using our visualization designs. The 

visualization study described in this thesis explored the visualization designs using a layer 

selection task. Further research is required to visualize above-the-surface layers for specific real 

word tasks. We have seen that some visualization designs cause occlusion. It will be interesting 

to design layer visualizations for tasks with more variables and to address the problem of 

occlusion in such designs.   

In conclusion, we have taken a first step towards understanding human motor performance 

when steering through above-the-surface interaction layers. We have proposed several models, 

and validated them through a series of experiments. We explored different visualizations for 

above-the-surface interaction layers using cursors. Based on user studies and observations we 

converged on four types of designs to visualize above-the-surface interaction layers. Through 
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controlled experiments we quantitatively analyzed the performance of the visualization designs. 

We have also suggested a particular design for faster and accurate interaction. We believe that 

our work will be a significant contribution to the HCI field, as interaction techniques which use 

above-the-surface layers continue to emerge. 
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APPENDIX A 

MODELING SUDY – ONE: CONSENT FORM 

 

DEPARTMENT OF COMPUTER SCIENCE 

UNIVERSITY OF SASKATCHEWAN 
 
 This consent form, a copy of which has been given to you, is only part of the process of 
informed consent. It should give you the basic idea of what the research is about and what your 
participation will involve. If you would like more detail about something mentioned here, or 
information not included here, please ask. Please take the time to read this form carefully and to 
understand any accompanying information. 

Researcher(s): Sriram Subramanian, Department of Computer Science  
   Raghavendra S Kattinakere, Department of Computer Science 
 
Purpose and Procedure:  
This study is concerned with modeling movement time when steering through a tunnel of known 
thickness, width and length on the horizontal work-surface. Modeling movement time would 
help us design interaction techniques that benefit from the space above the work-surface.  

The goal of the research is to determine if there are patterns in tunnel width, length and time 
when using a stylus to move through a tunnel on a digital work-surface.  
The session will require 60 minutes, during which you will be asked to carry out several target 
acquisition tasks.  
At the end of the session, you will be given more information about the purpose and goals of the 
study, and there will be time for you to ask questions about the research. 
 
There is no known risk to you associated with this study. 
 
The data collected from this study will be used in articles for publication in journals and 
conference proceedings.  

As one way of thanking you for your time, we will be pleased to make available to you a 
summary of the results of this study once they have been compiled (probably in about four 
weeks). This summary will outline the research and discuss our findings and recommendations. 
If you would like to receive a copy of this summary, please write down your email address here. 
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Contact email address__________________________________________ 

 
Confidentiality: All of the information we collect from you (data logged by the computer, 
observations made by the experimenters, your questionnaire responses and video or audio 
recording) will be stored so that your name is not associated with it (using an arbitrary 
participant number). If audio or video recording is used for data collection, the recording will be 
such that your personal identity is not compromised. Any write-ups of the data will not include 
any information that can be linked directly to you. Please do not put your name or other 
identifying information on the questionnaire. The research materials will be stored with complete 
security throughout the entire investigation. Do you have any questions about this aspect of the 
study?  

Right to Withdraw: You are free to withdraw from the study at any time without penalty 
and without losing any advertised benefits. Withdrawal from the study will not affect your 
academic status or your access to services at the university. If you withdraw, your data will be 
deleted from the study and destroyed. If audio or video recording is used for data collection, you 
have the right to switch off the audio or video recorder at any time during the study. In addition, 
you are free to not answer specific items or questions on questionnaires.  

Your continued participation should be as informed as your initial consent, so you should feel 
free to ask for clarification or new information throughout your participation. If you have further 
questions concerning matters related to this research, please contact: Carl Gutwin 
 
Questions: If you have any questions concerning the study, please feel free to ask at any point; 
you are also free to contact the researchers at the numbers provided above if you have questions 
at a later time.  This study has been approved on ethical grounds by the University of 
Saskatchewan Behavioural Sciences Research Ethics Board on (insert date).  Any questions 
regarding your rights as a participant may be addressed to that committee through the Office of 
Research Services (966-2084).  Out of town participants may call collect.    
 
Consent to Participate:  I have read and understood the description provided above; I have 
been provided with an opportunity to ask questions and my questions have been answered 
satisfactorily.  I consent to participate in the study described above, understanding that I may 
withdraw this consent at any time.  A copy of this consent form has been given to me for my 
records.   
 
 
                                                                           _____________________                          
(Signature of Participant)          (Date) 
  
 
___________________________________                                                                  
(Signature of Researcher) 
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APPENDIX B 

MODELING STUDY - TWO: CONSENT FORM 

 

DEPARTMENT OF COMPUTER SCIENCE 

UNIVERSITY OF SASKATCHEWAN 
 
 This consent form, a copy of which has been given to you, is only part of the process of 
informed consent. It should give you the basic idea of what the research is about and what your 
participation will involve. If you would like more detail about something mentioned here, or 
information not included here, please ask. Please take the time to read this form carefully and to 
understand any accompanying information. 

Researcher(s): Carl Gutwin, Department of Computer Science (966-4888)  
   Raghavendra Kattinakere, Department of Computer Science 
 
Purpose and Procedure:  
This study is concerned with modeling movement time when steering through a tunnel of known 
thickness, width, height and length on the horizontal work-surface. Modeling movement time 
would help us design interaction techniques that benefit from the space above the work-surface.  

The goal of the research is to determine if there are patterns in tunnel width, height, length and 
time when using a stylus to move through a tunnel on a digital work-surface.  
The session will require 60 minutes, during which you will be asked to carry out several target 
acquisition tasks.  
At the end of the session, you will be given more information about the purpose and goals of the 
study, and there will be time for you to ask questions about the research. 
 
There is no known risk to you associated with this study. 
 
The data collected from this study will be used in articles for publication in journals and 
conference proceedings.  
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As one way of thanking you for your time, we will be pleased to make available to you a 
summary of the results of this study once they have been compiled (probably in about four 
weeks). This summary will outline the research and discuss our findings and recommendations. 
If you would like to receive a copy of this summary, please write down your email address here. 

Contact email address__________________________________________ 

 
Confidentiality: All of the information we collect from you (data logged by the computer, 
observations made by the experimenters, your questionnaire responses and video or audio 
recording) will be stored so that your name is not associated with it (using an arbitrary 
participant number). If audio or video recording is used for data collection, the recording will be 
such that your personal identity is not compromised. Any write-ups of the data will not include 
any information that can be linked directly to you. Please do not put your name or other 
identifying information on the questionnaire. The research materials will be stored with complete 
security throughout the entire investigation. Do you have any questions about this aspect of the 
study?  

Right to Withdraw: You are free to withdraw from the study at any time without penalty 
and without losing any advertised benefits. Withdrawal from the study will not affect your 
academic status or your access to services at the university. If you withdraw, your data will be 
deleted from the study and destroyed. If audio or video recording is used for data collection, you 
have the right to switch off the audio or video recorder at any time during the study. In addition, 
you are free to not answer specific items or questions on questionnaires.  

Your continued participation should be as informed as your initial consent, so you should feel 
free to ask for clarification or new information throughout your participation. If you have further 
questions concerning matters related to this research, please contact: Carl Gutwin 
 
Questions: If you have any questions concerning the study, please feel free to ask at any point; 
you are also free to contact the researchers at the numbers provided above if you have questions 
at a later time.  This study has been approved on ethical grounds by the University of 
Saskatchewan Behavioural Sciences Research Ethics Board on (insert date).  Any questions 
regarding your rights as a participant may be addressed to that committee through the Office of 
Research Services (966-2084).  Out of town participants may call collect.    
 
Consent to Participate:  I have read and understood the description provided above; I have 
been provided with an opportunity to ask questions and my questions have been answered 
satisfactorily.  I consent to participate in the study described above, understanding that I may 
withdraw this consent at any time.  A copy of this consent form has been given to me for my 
records.   
 
 
                                                                           _____________________                          
(Signature of Participant)          (Date) 
  
 
___________________________________                                                                  
(Signature of Researcher) 
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APPENDIX C 

LAYER VISUALIZATION STUDY: CONSENT FORM 
 

 

DEPARTMENT OF COMPUTER SCIENCE 

UNIVERSITY OF SASKATCHEWAN 
 

 
 This consent form, a copy of which has been given to you, is only part of the process of 
informed consent. It should give you the basic idea of what the research is about and what your 
participation will involve. If you would like more detail about something mentioned here, or 
information not included here, please ask. Please take the time to read this form carefully and to 
understand any accompanying information. 

Researcher(s): Carl Gutwin, Department of Computer Science (966-2327)  
              Raghavendra S Kattinakere, Department of Computer Science 
 
 
Purpose and Procedure:  
This study is concerned with understanding different layer visualizations for digital tables.  

The goal of the research is to determine the effects of different layer visualizations using cursors.  
The session will require 60 to 75 minutes, during which you will be asked to carry out several 
layer selection tasks. 
At the end of the session, you will be given more information about the purpose and goals of the 
study, and there will be time for you to ask questions about the research. 
 
There is no known risk to you associated with this study. 
 
The data collected from this study will be used in articles for publication in journals and 
conference proceedings.  
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As one way of thanking you for your time, we will be pleased to make available to you a 
summary of the results of this study once they have been compiled (probably in about four 
weeks). This summary will outline the research and discuss our findings and recommendations. 
If you would like to receive a copy of this summary, please write down your email address here. 

Contact email address__________________________________________ 

 
Confidentiality: All of the information we collect from you (data logged by the computer, 
observations made by the experimenters and your questionnaire responses) will be stored so that 
your name is not associated with it (using an arbitrary participant number). Any write-ups of the 
data will not include any information that can be linked directly to you. Please do not put your 
name or other identifying information on the questionnaire. The research materials will be stored 
with complete security throughout the entire investigation. Do you have any questions about this 
aspect of the study?  

Right to Withdraw: You are free to withdraw from the study at any time without penalty 
and without losing any advertised benefits, including the 10$. Withdrawal from the study will 
not affect your academic status or your access to services at the university. If you withdraw, your 
data will be deleted from the study and destroyed. If audio or video recording is used for data 
collection, you have the right to switch off the audio or video recorder at any time during the 
study. In addition, you are free to not answer specific items or questions on questionnaires.  

Your continued participation should be as informed as your initial consent, so you should feel 
free to ask for clarification or new information throughout your participation. If you have further 
questions concerning matters related to this research, please contact: Sriram Subramanian (966-
4888) 
 
Questions: If you have any questions concerning the study, please feel free to ask at any point; 
you are also free to contact the researchers at the numbers provided above if you have questions 
at a later time.  This study has been approved on ethical grounds by the University of 
Saskatchewan Behavioural Sciences Research Ethics Board on November 2003.  Any questions 
regarding your rights as a participant may be addressed to that committee through the Office of 
Research Services (966-2084).  Out of town participants may call collect.    
 
Consent to Participate:  I have read and understood the description provided above; I have 
been provided with an opportunity to ask questions and my questions have been answered 
satisfactorily.  I consent to participate in the study described above, understanding that I may 
withdraw this consent at any time.  A copy of this consent form has been given to me for my 
records.   
 
 
                                                                           _____________________                          
(Signature of Participant)          (Date) 
  
 
___________________________________                                                                  
(Signature of Researcher) 
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APPENDIX D 

LAYER VISUALIZATION STUDY: QUANTITATIVE 
QUESTIONS 

 
1) Overview Cursor   2) Partial Overview Cursor 
 

      
 
3) Direct Mapped Cursor   4) Magnified Layer Cursor 

      
 
Tick the most appropriate option. 
 

1) I found it easy to carry out the tasks using the visualizations. 
 

a) strongly agree  b) agree c) neutral  d) disagree e) strongly disagree 
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2) Rank the visualizations based on how easy you think they were to use. (One is easiest, 
four is less easier) 
 
a) Overview Cursor      
b) Partial Overview Cursor  
c) Direct Mapped Cursor  
d) Magnified Layer Cursor 
 
 
Why do think, a particular visualization was easy or less easy. Comment on the best and 
the worst.  
 
 
 
 
 

3) Rank the visualizations based on how accurate you think you were with visualizations. 
(One is most accurate, four is less accurate) 
 
a) Overview Cursor   
b) Partial Overview Cursor  
c) Direct Mapped Cursor  
d) Magnified Layer Cursor 
 
Why do you think, you were more accurate or less accurate with a particular 
visualization. Comment on the most accurate and least accurate visualization. 
 
 
 
 
 

4) Rank the visualizations based on how fast you think you were with a particular 
visualization. (One is fastest, four is slower) 

 
a) Overview Cursor 
b) Partial Overview Cursor  
c) Direct Mapped Cursor  
d) Magnified Layer Cursor 
 
Why do you think, you were fast or slow with a particular visualization. Comment on the 
fastest and the slowest. 
 
 

5) Comments 
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