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ABSTRACT 

 
The purpose of this work was to design and to develop a high performance 

catalyst for the production of hydrogen from reforming of crude ethanol and also, to 

develop the kinetics and reactor model of crude ethanol reforming process. Crude ethanol 

reforming is an endothermic reaction of ethanol and other oxygenated hydrocarbons such 

as (lactic acid, glycerol and maltose) with water present in fermentation broth to produce 

hydrogen (H2) and carbon dioxide (CO2). Ni/Al2O3 catalysts were prepared using 

different preparation methods such as coprecipitation, precipitation and impregnation 

methods with different Ni loadings of 10 – 25 wt.%, 10-20 wt.%, and 10-20 wt.% 

respectively. 

All catalysts were characterised by thermogravimetric/differential scanning 

calorimetry (TG/DSC), X-ray diffraction (XRD), (including X-ray line broadening), 

temperature programmed reduction, BET surface area measurements, pore volume and 

pore size distribution analysis. TG/DSC analyses for the uncalcined catalysts showed the 

catalyst were stable up from 600oC. XRD analyses showed the presence of NiO, NiAl2O4 

and Al2O3 species on the calcined catalysts whereas Ni, NiAl2O4, and Al2O3 were present 

on reduced catalysts. BET surface area decreased and average pore diameter reached a 

maximum and then decreased as the Ni loading increased. The temperature programmed 

reduction profiles showed peaks corresponding to the reduction of NiO between 400-

600oC and reduction of NiAl2O4 between 700-800oC. 

Catalyst screening was performed in a micro reactor with calcination temperature, 

reaction temperature and the ratio of catalyst weight to crude ethanol flow rate (W/Fcrude-
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C2H5OH) of 600 oC, 400oC and 0.59 h respectively. Maximum crude-ethanol conversion of 

85 mol% was observed for catalyst with 15wt% Ni loading prepared by precipitation 

method (PT15), while maximum hydrogen yield (= 4.33 moles H2 / mol crude-ethanol 

feed) was observed for catalyst with 15wt% Ni loading prepared by coprecipitation 

(CP15).  

Performance tests were carried out on (CP15) in which variables such as space 

velocity (WHSV) 1.68h-1to 4.68h-1, reduction temperature 400 to 600oC and reaction 

temperature 320 to 520 oC, were changed for optimum performance evaluation of the 

selected catalyst. The catalyst deactivated over first three hours of 11 hours time-on-

stream (TOS) before it stabilized, the reaction conditions resulted in a drop of ethanol 

conversion from 80 to 70mol%. 

The compounds identified in the liqiud products in all cases were ethanoic acid, 

butanoic acid, butanal, propanone, propanoic acid, propylene glycol and butanedioic acid. 

The kinetic analysis was carried out for the rate data obtained for the reforming of crude 

ethanol reaction that produced only hydrogen and carbon dioxide. These data were fitted 

to the power law model and Eldey Rideal models for the entire temperature range of 320-

520 oC. The activation energy found were 4.405 × 103 and 4.428 × 103 kJ/kmol 

respectively. Also the simulation of reactor model showed that irrespective of the 

operating temperature, the benefit of an increase in reactor length is limited. It also 

showed that by neglecting the axial dispersion term in the model the crude ethanol 

conversion is under predicted. In addition the beneficial effects of W/FAO start to 

diminish as its value increases (i.e. at lower flow rates). 
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1.0 INTRODUCTION 

The majority of current energy needs are supplied by combustion of non-

renewable energy sources such as fossil fuels, which is associated with release of large 

quantities of greenhouse gases (GHG), especially carbon dioxide (CO2) and other 

harmful emissions to the atmosphere. The gradual depletion of these fossil fuels reserves 

and efforts to combat pollution and greenhousegas emissions have generated a 

considerable interest in using alternative sources of energy (Cortright et al., 2002; Haga 

et al., 1998) 

On the other hand, strong efforts are being made to commercialize the use of 

fuel cells such as the proton exchange membrane (PEM) fuel cell for the generation of 

electric power for both electric vehicles and distributed electric power plants 

(Creveling, 1992; Dunison and Wilson, 1994). The major reason for the interest is the 

high energy efficiency of the fuel cell with an overall energy efficiency of about 85%, 

in some cases (Whitaker, 1994). Also, with an equally strong interest in the use of 

hydrogen (H2) as the fuel, PEM fuel cells are the most certain to meet future ultra low 

NOx, SOx, CO, CH4 and CO2 emissions targets (Creveling, 1992). Thus, H2 has a 

significant future potential as an alternative fuel that can solve the problems of CO2 

emissions as well as the emissions of other air contaminants. It is well known that H2 

production can be accomplished by gasification or reforming of fossil fuels (Gary and 

Handwerk, 1994; Simanzhenkov and Idem, 2003) or biomass (Garcia et al., 2000). 

However, if a global cycle of clean and sustainable production of energy is envisaged, a 
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new eco-friendly reservoir of hydrogen is needed. In this context, ethanol (a form of 

biomass) satisfies most of these requirements since it is easy to produce, and is also safe 

to handle, transport and store (Anthanasio et al., 2004; Cavallaro et al., 1996). It is to be 

noted that about 352 liters of ethanol can be produced from approximately 1 tonne or 1 

acre of wheat. As such, ethanol provides an environmentally responsible energy source 

that can significantly reduce GHG emissions (Haga et al., 1998). It is also known that 

the application of ethanol for the production and use of H2 energy is CO2 neutral 

(Anthanasio, 2002). 

Furthermore, since ethanol does not contain heteroatoms and metals, its use as 

source of energy does not result in emissions of NOx, SOx, particulates and other 

toxics. In addition, ethanol is mostly an oxygenated hydrocarbon, which leads to 

complete combustion during its application to produce power. As such, little or no CO 

is produced. These attributes have made H2 obtained from ethanol reforming a very 

good energy vector, especially in fuel cells applications. H2 production from ethanol has 

advantages when compared with other H2 production techniques, including steam 

reforming of methanol and hydrocarbons. Unlike hydrocarbons, ethanol is easier to 

reform and is also free of sulfur, which is a catalyst poison in the reforming of 

hydrocarbons (Cavallaro et al., 1996). Also, unlike methanol, which is sourced from 

hydrocarbons (Klouz et al., 2002) and has a relatively high toxicity, ethanol is 

completely biomass based and has low toxicity. 

1.1 Knowledge Gaps and Problem Identification 

Extensive studies on hydrogen production from ethanol have been reported in 

the literature, [Anthanasio et al. (2002, 2004), Breen et al. (2002), Cavallaro et al. 
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(2003), Freni, (2002), Galvita et al. (2001), Haga et al. (1998), Jose et al. (2003), 

Leclerc et al. (1998), Marino et al. (1998) and Velu et al. (2002)]. These authors have 

used catalysts such as Ni/MgO, Cu/ZnO, Cu/SiO2, Cu/ZnO2, Cu/Al2O3, Cu/MgO, 

Cu/NiO/Cr2O3, Ni/Al2O3, CuO/ZnO/Al2O3, Pt/α-Al2O3, Rh/Al2O3, and Co/Al2O3. It, 

however, appears from the literature that there is very little or no research activity in the 

area of crude ethanol reforming, and also, no work has been done on the kinetic 

modeling and reactor design. 

A wide literature review on ethanol steam reforming has been done. This is to 

identify a catalyst that promotes hydrogen production from ethanol steam reforming. 

The past experience of ethanol steam reforming will be used to design an efficient 

catalyst for crude ethanol reforming. 

1.2 Justification 

The production of hydrogen by steam reforming of pure ethanol has been widely 

investigated. Jordi et al. (2002) performed their investigation on Co/ZnO catalyst using 

a water to ethanol molar ratio of 13:1 (20% v/v ethanol), whereas Leclerc et al. (1998) 

reported that water to ethanol ratios in the range of 20:1 (14%v/v ethanol) to 30:1 

(10%v/v ethanol) enhanced hydrogen selectivity and inhibited the production of 

undesirable product such as methane (CH4), carbon monoxide (CO), acetaldehyde, 

ethylene and carbon. Gavita et al. (2001) used water to ethanol molar ratios of 3:1 and 

8.1:1, and obtained the highest ethanol conversion on Ni/MgO catalyst at water to 

ethanol molar ratio of 8.1:1 (28%v/v ethanol). Das, (2003) used water to ethanol molar 

ratio of 6:1 (35% v/v ethanol) on Mn promoted Cu based catalyst to obtain optimum 

ethanol conversion, hydrogen yield and selectivity. 

 3



In all these cases, water was needed as a co-feed to the process, consequently 

there is no need to reduce the water and organic contents of fermentation product 

(fermentation broth produced from a fermentation process) since this contains 

approximately 12%v/v ethanol, which is within the range of water to ethanol molar ratio 

used for literature cited ethanol reforming processes. Besides, by using crude ethanol, 

the other organic compounds present in the fermentation broth could equally be 

reformed to produce additional H2. Also, this process would eliminate the large amount 

of energy wasted during distillation to remove water from fermentation broth in order to 

produce dry or pure ethanol. Haga et al., 1998 suggested that in order to obtain a 

widespread use of ethanol for hydrogen production, the economics and energetics of the 

ethanol production process have to be greatly improved. Thus, by circumventing the 

distillation and drying step, this process of reforming crude ethanol (i.e. fermentation 

broth) provides an ability to produce H2 from crude ethanol solution in a cost-effective 

manner. 

1.3 Research Objectives 
The main objectives of this research were (1) to design and develop a high 

performance catalyst that is capable of efficiently catalyzing the production of hydrogen 

from crude ethanol, (2) to kinetically model the reforming reaction in order to obtain a 

rate expression and (3) to carry out comprehensive reactor modeling in order to 

simulate the reactor responses to changes in process parameters. 

The aim would be to maximize crude ethanol conversion and hydrogen 

selectivity for the best performing Ni/Al2O3 catalysts. The performance of the screened 

catalyst would be tested for different process variables such as, reaction temperature, 
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weight of catalyst and flow rate ratio (W/Fcrude-C2H5OH) and catalyst reduction 

temperatures. The stability of the catalyst would be tested by time-on-stream runs. 

Characterization studies by different techniques would be carried out for the fresh and 

spent catalysts to correlate their activities with different physical and chemical 

properties. Within these objectives various phases of research were mapped out with 

each phase having set of objectives. These phases are outlined below. 

1.3.1 Phase I Preparation and Characterization of Catalysts  

Ten different Ni-based catalysts were prepared and characterised in this phase. 

Three preparation methods were used; coprecipitation, precipitation and impregnation. 

Catalysts characterisation was performed in order to obtain the relationship between the 

catalyst characteristic and its performance. 

The techniques used for catalyst characterisation were (1) Thermo gravimetric 

analysis/ differential thermal analysis, (2) Powder X-ray diffraction, (3) BET surface 

area, pore volume and pore size distribution analysis. and (4) Temperature programmed 

reduction (TPR). 

1.3.2 Phase II Evaluation of Catalyst Performance for Crude 
Ethanol Reforming in a Packed Bed Tubular Reactor 

 
The experimental phase was carried out in a fixed bed reactor in order to screen 

the catalysts and to identify the best one among the ten Ni-based catalysts. The 

screening tests were conducted at fixed temperature of 400oC and W/FAO of 0.59 kg-cat-

h/kg crude ethanol. Variables such as space velocity (WHSV) 1.68 to 4.62h-1, reaction 

temperature 320 to 520 oC, and reduction temperature 400 to 600 oC were changed for 

optimum performance evaluation of the selected catalyst.  
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1.3.3 Phase III Kinetic and Reactor Modeling  

 This phase involved the following tasks: 

(a) Proposition of reaction mechanism 

(b) Development of rate equation using Eley-Rideal approach and estimation of the 

kinetic parameters 

(c) Development of power law rate model and estimation of kinetic parameters 

(d) Development of reactor model and simulation 

The performance evaluation data for the best catalyst will be chosen to study the 

kinetics of the crude ethanol reforming reaction. The differential method of kinetic 

analysis will be used to find the reaction rates from the performance evaluation 

experiments. The rate parameters will be estimated by fitting the experimental data to 

the different catalytic reaction model, by non-linear regression method. Also, a rigorous 

reactor model will be developed by coupling of partial differential equations involving 

mass and energy balance in order to simulate the reactor responses to changes in 

different process parameters. 
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2.0 LITERATURE REVIEW 
 

2.1 Introduction 

Review of production of hydrogen by the steam reforming of ethanol will be 

presented in this chapter. The review will focus on catalysts currently available for the 

production of hydrogen from ethanol with emphasis on the performance for H2 

production. Crude ethanol reforming is primarily targeted to supply hydrogen as an 

energy vector in fuel cells; therefore, review of different types of fuel cells, fuels used 

in fuel cells and their applications have been carried out as part of literature review for 

this work. 

2.2 The Fuel Cell 

Austin, (1959), defined fuel cell as an electrochemical device that transforms 

chemical energy stored in fuels directly into electrical energy. Fuel cells have no 

moving parts and have no useful energy loss due to friction. Therefore fuel cells are 

highly energy efficient, and an overall energy efficiency of 85% has been reported for 

a particular (PEM) type of fuel cell (Whitaker, 1994). 

 In a typical fuel cell such as solid oxide fuel cell (SOFC), reactions that take 

place are as follows, a catalyst (such as lanthanum strontium manganite (LSM)) 

embedded in the cathode converts oxygen (supplied by air) into oxygen ion. When 

fuel gas containing hydrogen is passed over the anode, a flow of negatively charged 

oxygen ions moves across the electrolyte (yittra stabilized zirconia) to oxidize the 
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fuel. Electrons generated at the anode travel through an external load to the cathode, 

completing the circuit and supplying electric power along the way. 

Cathode:   O2          +             4e-    =           2O2-

Anode:   2H2       +          2O2-         =        2H2O + 4e-     

2.2.1 Types of Fuel Cells 

 Fuel cells are classified according to the electrolyte they employ (Creveling 

1992). This determines the kind of chemical reactions that take place in the cell, the 

kind of catalysts required, the temperature range in which the cell operates, and the fuel 

required. There are several types of fuel cells, each with different advantages, 

limitations and potential applications. These are: alkaline fuel cell (AFC), used in space 

vehicle power systems; the phosphoric acid fuel cell (PAFC) used in both road 

transportation and stationary engines; the solid polymer fuel cell (SPFC) also used in 

both road transportation and stationary engines; the molten carbonate fuel cell (MCFC) 

used in stationary engines, and the solid oxide fuel cell (SOFC) used only in stationary 

engines.  

2.2.1.1 Alkaline Fuel Cell 

The alkaline fuel cell uses alkalis such as aqueous potassium hydroxide or 

sodium hydroxide as the electrolyte, and hydrogen as the fuel. It operates at low 

temperature of 20 –90oC (Gulzow, 1996) and is, therefore, sensitive to hydrogen fuel 

impurities. Alkaline fuel cells can be used in artificial space satellite (Austin, 1959) and 

also in automobiles and locomotives (Ahuja and Green, 1998). 
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2.2.1.2 Molten Carbonate Fuel Cell (MCFC) 

The molten carbonate fuel cell (MCFC) uses a molten carbonate electrolyte that 

usually consists of potassium or sodium carbonate (K2CO3 or Na2CO3), which is mixed 

with lithium carbonate (Li2CO3) to lower the melting point (Austin, 1995). It operates at 

high temperatures usually > 500 oC. This high temperature enables the MCFC to use 

fuels such as natural gas, coal-derived gases, refinery gases, methanol, and process gas 

directly in the fuel cell section (Austin, 1995). The MCFC is capable of tolerating high 

level of impurities in the fuel at the operating temperature. 

2.2.1.3 Solid Oxide Fuel Cell (SOFC) 

The SOFC uses a solid oxide such as zirconia as the electrolyte (Hsu et al, 

1994). Zirconia has refractory property which enables the operation of the SOFC at 

temperatures as high as 1000 oC. At this high temperature, zirconia has the unique 

property of conducting oxygen ions instead of electrons. This property is essential for 

the operation of the fuel cell. Because of the extremely high temperature, SOFC can 

also use liquid fuels such as gasoline, diesel and kerosene directly (Hsu et al., 1994). 

SOFC can also tolerate high levels of impurities in the fuel. 

2.2.1.4 Phosphoric Acid Fuel Cell (PAFC) 

PAFC uses phosphoric acid as the electrolyte (Whitaker, 1994). At the operating 

temperature of 120oC only hydrogen can be used directly as the fuel. Natural gas, 

refinery gas, methanol or coal derived gases are types of fuels usually supplied to the 

fuel cell power plant. These gases are usually processed in the gas processing section to 

produce hydrogen, which then enters the fuel cell section. PAFC has low tolerance to 

impurity due to low operating temperature. 
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2.2.1.5 Proton Exchange Membrane Fuel Cell (PEMFC) 

 The proton exchange membrane (PEM) or the solid polymer fuel cell (SPFC) 

uses a solid proton exchange membrane (PEM), such as polyper-fluorosulfonic acid, as 

the electrolyte. The operating temperature is about 80oC. This permits rapid start-up. 

The fuel used in the PEMFC is usually hydrogen. If other types of fuels such as natural 

gas or methanol are used, they are usually reformed in the fuel processing section into a 

hydrogen rich gas before being allowed to enter the fuel cell section. Because the 

operating temperature is lower than that of PAFC, the level of tolerance of this type of 

fuel cell to fuel impurity is relatively lower. 

2.3 Fuel for Fuel Cell 

Hydrogen, natural gas, methanol, gases obtained from the gasification of coal, 

gasoline vapour, refinery gases, process gas, kerosene and diesel are the common fuels 

for fuel cells. The choice of fuel depends on factors such as cost of the fuel, availability, 

as well as ease of transportation and storage of the fuel. The type of fuel has a great 

impact on the fuel cell operating temperature and, consequently, on the type of 

electrolyte and other components used in the fuel cell stack or system (Idem 1995). 

2.4 Methods of Production of Hydrogen 

Hydrogen can be produced by electrolysis of water using Hoffman’s apparatus, 

steam reforming of natural gas and other fossil fuels, as off-gases from petroleum 

refinery operations, and by steam reforming of methanol or ethanol. Ethanol is the only 

renewable source of hydrogen since it can be produced from biomass by fermentation 

process.  
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2.5 Thermodynamic and Catalytic Research 

 Although there is no published literature report on the reforming of crude 

ethanol, past experience of the steam reforming of “pure” ethanol will be used in order 

to understand the reforming potentials of crude ethanol. This section will present reports 

of catalysts that have been previously used for hydrogen production by steam reforming 

of “pure” ethanol. 

In the thermodynamic studies carried out by Vasudeva et al. (1996), they 

reported that in all ranges of conditions considered, there was nearly complete 

conversion of ethanol and only traces of acetaldehyde and ethylene were present in the 

reaction equilibrium mixture. For a water- to-ethanol molar ratio in the feed of 20:1, the 

ratio of moles of hydrogen produced to moles of ethanol consumed was 5.56 compared 

to the stoichiometric maximum achievable of 6.0. Methane and carbon monoxide also 

decreased substantially when the water-to-ethanol ratio in the feed was increased from 

10 to 20. They also reported that for a water-to-ethanol molar ratio of 20:1, an increase 

in the temperature from 525 to 925oC decreased the equilibrium amounts of methane 

and carbon dioxide, but increased the amount of carbon monoxide. The yields of 

acetaldehyde, ethylene and carbon, which were only in trace quantities were not 

affected. For an increase in temperature from 525 to 625 oC the yield of hydrogen 

initially increased from 5.56 to 5.72 moles per mole of ethanol consumed, and thereafter 

decreased to 5.17 at 925 oC. Also, they showed that at lower water content (e.g. less 

than 10 moles of water / mole ethanol) and constant temperature of 725 oC, the yields of 

methane and carbon monoxide increased with pressure while yield of hydrogen 

decreased substantially. 
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Freni et al. (1996), investigated thermodynamic analysis of ethanol steam 

reforming reaction at temperature range of 600 to 700oC, pressure 1 atm and water to 

ethanol molar ratio of 2:1. They observed that thermodynamically favored products 

were hydrogen, carbon monoxide, methane, acetaldehyde, ethylene and carbon. They 

also observed that the amount of hydrogen produced by the ethanol reforming was 

influenced by the temperature. At 600 oC the amount of hydrogen produced was 46.8%, 

and increased to 58.95% at 700 oC. Hydrogen yield was enhanced at low pressure and a 

value as high as 95% of theoretical value was reported. Also high water to ethanol 

molar ratio in the feed reduced the yield of undesirable products like carbon monoxide, 

methane and carbon. 

Garcia and Laborde (1991) reported that it was possible to obtain hydrogen by 

the steam reforming of ethanol at temperatures greater than 280 oC and atmospheric 

pressure with methane being an unwanted product. Hydrogen production is however 

favored by high temperature, low pressure and high water-to-ethanol feed ratio. These 

conditions also reduce the level of by-products significantly. The effects of pressure (1-

9atm) on the production of hydrogen and methane were also studied. The study showed 

that hydrogen production increased at all pressures as temperature increased but it 

increased at a much higher rate at atmospheric pressure and temperature above 327 oC. 

The study also showed that concentration of methane in the product stream decreased 

with the decrease in pressure. At a temperature of 527 oC and a water-to-ethanol feed 

ratio of 1:1, the methane content was 32% for atmospheric pressure and 40% for 

operating pressure of 3 atm. The production ratio of hydrogen to methane increased for 

a water-to-ethanol molar ratio of 10:1, an operating pressure of 1atm and temperatures 

 12



above 427 oC. At atmospheric pressure and temperatures above 327 oC, production of 

hydrogen reached a maximum with minimum CO production for a water-to-ethanol 

molar ratio of 10:1. 

The thermodynamic analysis of Thoephilus, (2001) on steam reforming of 

ethanol in a solid polymer fuel cell at 1 atm, temperature range of 527 to 1027 oC, and 

water-to-ethanol feed ratios of 3:1 to 6:1 showed that the ethanol-steam reforming 

reaction needs to be carried out in two steps: (i) a high-temperature endothermic step 

(steam reforming), in which ethanol is converted to a gaseous mixtures of H2, CO, CO2, 

CH4 and unreacted H2O, (ii) a subsequent, low temperature step (water-gas shift 

reaction) in which CO is reacted with water to form H2 and CO2. Since the shift reaction 

is equilibrium-limited, CO conversion is not complete and an additional step of CO 

removal is necessary (e.g. by selective CO oxidation). He concluded that hydrogen 

yield of nearly 100% was obtained at optimum condition of water-to-ethanol ratio 5:1 

and temperature 727 oC. 

Cavallaro and Freni, (1996) investigated the ethanol steam reforming reaction 

over CuO/ZnO/Al2O3 catalyst, and others such as NiO/CuO/SiO2, Cu/Zn/Cr/Al2Ox, 

Pt/Al2O3, Pt/La2O3/Al2O3, Pt/TiO2, Pt/MgO/Al2O3, Rh/SiO2, Rh/Al2O3, and 

Rh/MgO/Al2O3. The experiments were carried out in a packed-bed reactor at 

temperature range of 357 to 477oC; pressure of 1 atm, water-to-ethanol molar ratio of 

6:1and 10:1. At low temperature of 377oC, no traces of intermediate products such as 

acetic acid, acetaldehyde and ethyl acetate were produced. These compounds were 

produced at temperatures below 325oC when the hydrogen and carbon dioxide 
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selectivity was very low. Hydrogen, carbon dioxide and carbon monoxide selectivity 

increased with increase in temperature.  

Haga et al. (1998) investigated the effects of crystallite sizes on different 

alumina-supported cobalt catalysts on steam reforming of ethanol over the reaction 

conditions: temperature range of 223 to 452 oC; pressure of 1 atm; and water-to-ethanol 

feed ratio of 4.2:1. They reported that methane, acetaldehyde, ethene, diethyl ether and 

carbon dioxide were observed as product. The steam reforming of ethanol over cobalt 

catalysts however preceded via the formation of acetaldehyde at the temperature below 

400oC. The ethanol conversion reached a maximum value of 100% at 400oC. Also, the 

results obtained using Co from different initial materials showed that the activity for 

ethanol conversion was independent of the starting materials such as cobalt acetate, 

cobalt carbonyl and cobalt chloride that produced cobalt catalyst.  

The production of acetaldehyde steadily increased at lower temperatures and 

reached a maximum at around 330 oC. Above this temperature, acetaldehyde was 

converted to carbon dioxide and hydrogen. The carbon monoxide selectivity increased 

and reached its maximum (53%) at about 380 oC after which it decreased sharply to 

23% at 400 oC. Methane selectivity reached a maximum of 20% at 400 oC after which it 

decreased gradually to 10% at 450 oC. 

 Marino et al. (1998) studied the activity of γ-alumina supported copper-nickel 

catalysts for hydrogen production from steam reforming of ethanol at 1 atmospheric 

pressure and water to ethanol molar ratio of 2.5:1. The effects of the copper loading and 

calcination temperature on the structure and performance of Cu/Ni/K/γ-Al2O3 catalysts 

were examined. The copper loading was varied from 0.00 wt.% to 6.36 wt.%, the 

 14



catalysts were calcined at 550 and 800oC  for 5h before examination. The effluent gas 

stream after the reaction contains H2, CO, CO2, CH4, C2H4O, (C2H5)2O, C2H5OH and 

H2O. The catalysts exhibited acceptable activity, stability and hydrogen selectivity 

when the reaction was carried out at 300 oC. They concluded that doping of catalysts 

with potassium hydroxide neutralizes the acidic sites of the support and in this way 

minimizes diethyl ether and ethene production. In the catalyst, copper was the active 

agent; nickel promotes C-C bond rupture and increases hydrogen selectivity and 

potassium neutralizes the acidic sites of the γ-alumina and improves the general 

performance of the catalyst. The results of catalyst activity and selectivity 

measurements together with those on catalyst structure indicated that catalyst must have 

a high dispersion of the active agent in order to maximize ethanol conversion per copper 

mass unit; the higher copper dispersion was therefore achieved when catalyst was 

calcined at the lower temperature (550oC). 

 Anthanasio et al. (2002) investigated ethanol steam reforming reaction at 750oC 

and water to ethanol molar ratio 3:1 over Ni-based catalyst supported on yittra-

stabilized-Ziconia (YSZ), La2O3, MgO and Al2O3. It was reported that Ni/La2O3 

catalyst exhibited high activity and selectivity towards hydrogen production and also 

has long term stability of about 100h on stream for steam reforming of ethanol. The 

long term stability of Ni/La2O3 was attributed to the scavenging of coke deposition on 

the Ni surface area by lanthanum oxycarbonate species. Results obtained from time-on-

stream over Ni/Al2O3 catalyst are comparable to those of Ni/ La2O3, but the selectivities 

toward reaction products decreased. In case of Ni/YSZ catalyst, selectivity towards 

hydrogen was constant; however selectivity towards CO2 and CO decreased with time, 
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which became stable only after 20h on stream. Ni/MgO catalyst was very stable under 

the prevailing conditions, but poorly selective compared to other catalyst mentioned 

earlier. 

Luengo et al. (1992) examined ethanol steam reforming reaction using Ni, Cu 

and Cr based catalysts on γ-Al2O3 and α-Al2O3 supports. The experiments were carried 

out at temperature range of 300 to 550 oC; pressure of 1 atm; water-to-ethanol feed ratio 

of 0.4:1 to 2:1; and ethanol space velocity of 2.5 to 15 h-1. The metallic concentration 

was chosen to maximize the total conversion and increase selectivity to CO and H2. α-

Al2O3 supported catalyst gave maximum ethanol conversion of 100% and high 

selectivity to H2 and CO, unlike γ-Al2O3 supported catalyst in which the ethanol 

conversion and selectivity to desired product was lower. 

Velu et al. (2002) studied the steam reforming of ethanol over Cu-Ni-Zn-Al 

mixed oxide catalyst in the presence or absence of air. The reaction products were H2, 

CO, CH3COOH, CH3CHO, CH4 and CO2. The ethanol conversion increased with 

increase in O2/ethanol ratio and reached 100% at the O2/ethanol ratio of 0.6. Also, the 

selectivity of both CO and CO2 increased until an O2/ethanol ratio of 0.4 was reached, 

CO selectivity however dropped at O2/ethanol ratio of 0.6. Hydrogen yield decreased 

from 3 mols/mol of ethanol reacted to 2 mol/mole of ethanol reacted in the absence of 

oxygen. They concluded that addition of oxygen improved the ethanol conversion and 

also oxidation of CH3CHO to CH4 and CO2. It was also reported that Cu–rich catalyst 

favored the dehydrogenation of ethanol to acetaldehyde, while the addition of nickel to 

Cu/Al2O3 system ruptured the C-C bond, enhanced the ethanol gasification and reduced 

the selectivity of acetaldehyde and acetic acid. 
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Cavallaro et al. (2003) reported that rhodium impregnated on γ-alumina is 

highly suitable for steam-reforming of ethanol. The performance evaluation of Rh/γ-

Al2O3 as reforming catalyst at 650oC showed that the main reaction products were CO2, 

CO, CH4 and CH3CHO. Also high conversion of ethanol was obtained at gas hourly 

space velocity (GHSV) between 5000 and 80, 000h-1, which decreased as the GHSV 

increased to 300,000h-1. Maximum hydrogen selectivity was obtained at much lower 

GHSV of 10h-1, which also  decreased as the GHSV increased. The catalyst stability was 

investigated with and without oxygen. It was observed that catalyst deactivates very fast 

without oxygen, the presence of oxygen positively enhanced the catalyst stability and 

only 10% of activity was lost after 95h of reaction.  

Breen et al. (2002) investigated steam reforming of ethanol at 400 to 750 oC 

over a range of oxide-supported metal catalysts at water to ethanol molar ratio of 3:1. 

They concluded that the support plays an important role in the steam reforming of 

ethanol. They observed that alumina-supported catalyst are very active at lower 

temperatures for dehydration of ethanol to ethene which at higher temperatures (550oC) 

is converted into H2, CO and CO2 as major product and CH4 as minor product. The 

activity of the metal was in the order of  Rh>Pd>Ni=Pt. Ceria/zirconia supported 

catalysts were most active and exhibited 100% conversion of ethanol at high space 

velocity and high temperature of ∼650oC. The order of activity at higher temperatures 

was Pt Rh>Pd. By using combination of a ceria/zironia-supported metal catalyst with 

the alumina support, it was observed that the formation of ethene does not inhibit the 

steam reforming reaction at higher temperatures. 

≥
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Freni, (2001) examined the ethanol steam reforming reactions over Rh/Al2O3 

catalyst. The reaction was carried out at temperature range of 392 to 650 oC; pressure of 

1.4 atm; and water-to- ethanol feed ratio of 4.2:1 to 8.4:1. The results indicated the 

catalytic activity of alumina (Al2O3) was not negligible; there was production of ethene 

and water at 347 oC, the production increased and reached equilibrium at 600 oC. It was 

observed that water content did not influence the ethene formation. When 5% Rh was 

added to alumina, the product analyses below 460oC showed the presence of carbon 

dioxide, methane and acetaldehyde. The main steam reforming reaction occurred above 

460oC and the products included hydrogen, carbon dioxide, carbon monoxide and 

methane. 

Freni et al. (2002) also examined the steam reforming ethanol for hydrogen 

production for molten carbonate fuel cell on Ni/MgO. They reported that the catalyst 

exhibited very high selectivity to hydrogen and carbon dioxide. The CO methanation 

and ethanol decomposition were considerably reduced. In addition, coke formation was 

strongly depressed because of the benefits induced by the use of the basic carrier, which 

positively modified the electronic properties of Ni. 

Galvita et al. (2001) investigated the steam reforming of ethanol for syn-gas 

production in a two-layer fixed bed catalytic reactor. The reaction conditions were as 

follows, temperature range of 210 to 380 oC; pressure of 1 atm; and water-to-ethanol 

feed ratio of 8.1:1 and 1.04:1. In the first bed, the ethanol was converted to a mixture of 

methane, carbon oxides, and hydrogen on Pd/C (Pd supported on Sibunit, a special 

porous carbonaceous material) catalyst and then this mixture was converted to syn-gas 

over a Ni-based catalyst for methane steam reforming. It was observed that ethanol 
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conversion increased with increasing temperature, which attained 100% at 330 and 360 

oC for water-to-ethanol ratios of 8.1 and 1.04, respectively. They concluded that the use 

of two-layer fixed-bed reactor prevented the coke formation and provided the yield 

close to equilibrium. 

Jordi et al, (2002) examined the hydrogen production process by steam 

reforming of ethanol over several cobalt supported catalyst. The reaction temperature 

was varied from 300 to 450oC and water to ethanol molar ratio of 13:1 was used. It was 

observed that negligible steam reforming of ethanol occurred over Co/Al2O3 catalyst. 

The dehydration of ethanol to ethene took place to a large extent. This was attributed to 

the acidic behaviour of Al2O3 under similar conditions. Co/MgO catalyst showed low 

conversion of ethanol of only 30%, and the main reaction was dehydrogenation of 

ethanol to acetaldehyde. Co/SiO2 also showed dehydrogenation of ethanol to 

acetaldehyde as the main reaction. At low temperature, 100% ethanol conversion was 

obtained on Co/V2O5, about 84% of ethanol converted was through dehydrogenation to 

acetaldehyde, while the rest was the actual ethanol steam reforming. Co/ZnO exhibited 

the highest catalytic performance of all catalysts studied. 100% ethanol conversion was 

achieved and the highest selectivity of hydrogen, and carbon dioxide per mole ethanol 

reacted were obtained without catalyst deactivation. 

Aupretre et al. (2002) also studied the effects of different metals (Rh, Pt, Ni, Cu, 

Zn and Fe) and role of the supports (γ-Al2O3, 12%CeO2-Al2O3, CeO2 and Ce0.63Z0.37O2) 

on steam reforming of ethanol. The experiments were carried at water to ethanol ratio of 

3:1 and constant temperature between 500 and 800oC and 1 atm pressure. 

 19



At 700oC, γ-Al2O3 supported Rh and Ni catalysts appeared to be the most active 

and selective catalysts in ethanol reforming reaction. Ni/Al2O3 gave a higher yield but 

lower selectivity to CO2 compared with Rh/Al2O3. While concentrating on Rh and Ni 

catalysts the role of other oxides supports were investigated. The results obtained at 

600oC showed the catalyst activity in following descending order for Rh; Rh/ 

Ce0.63Z0.37O2>Rh/ CeO2-Al2O3 > Rh/ CeO2 > Rh/ γ-Al2O3. A similar trend was obtained 

for Ni; Ni/ Ce0.63Z0.37O2  > Ni/ CeO2 > Ni/ CeO2-Al2O3 > Ni/ γ-Al2O3. 

Jose et al. (2003) examined the steam reforming reaction over Ni/Al2O3 catalyst. 

They concluded that high temperature above 773K, higher water to ethanol molar ratio 

(6:1) increased the high hydrogen yield (5.2) and selectivity (91%). The excess water in 

the feed enhanced methane steam reforming and depressed carbon deposition.  

In the comprehensive study carried out by Jordi et.al (2001), various metallic 

oxides such as MgO, γ-Al2O3, TiO2, V2O5, CeO2, ZnO, Sm2O3, La2O3, and SiO2 were 

used as catalysts for steam reforming of ethanol at temperature between 300oC and 

450oC. The ethanol conversion increased with increase in temperature in all cases. 

However, significant differences were observed in terms of activity, stability and 

selectivity of the catalysts. It was observed that γ-Al2O3 and V2O5 although showed 

high conversion of ethanol, at lower temperature (350oC), they were not suitable for H2 

production as both were highly selective for ethylene production by dehydration of 

ethanol (being acidic in nature). The results also showed that MgO and SiO2 gave total 

conversion less than 10% and were also selective for dehydrogenation of ethanol to 

form acetaldehyde, La2O3 and CeO2 gave total conversion of approximately 20%. Other 

oxides such as TiO2 and Sm2O3 showed high deactivation process with conversions 
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decreasing from 100% to 3.9% and from 67.2% to 37.2% respectively. After reaction 

these catalysts appeared black. This was attributed to the carbon deposition during the 

reaction, which could have been responsible for the drop in activity of the catalyst. 

ZnO reportedly enhanced the steam reforming of ethanol, and showed high 

selectivity for H2 and CO2. They concluded that ethanol is capable of forming wide 

range of products. The product selectivity obtained with different catalysts can be 

explained with following reactions: 

• Ethanol-steam reforming       

              C2H5OH + 3H2O                           2CO2    + 6H2                                                   (1.1) 

• Ethanol decomposition to methane  

              C2H5OH          CO   + CH4     + H2                                                    (1.2)

• Ethanol dehydration  

C2H5OH             C2H4      + H2O     (1.3) 

• Ethanol dehydrogenation  

C2H5OH                               CH3CHO     + H2     (1.4) 

• Ethanol decomposition to acetone 

       2 C2H5OH                                          CH3COCH3    + CO        + 3H2     (1.5) 

• Water-gas shift reaction  

               CO    + H2O                                  CO2   +  H2                              (1.6) 

 Methane, acetaldehyde, acetone, ethene, are all undesirable products because they 

compete with H2 for the hydrogen atoms.  
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2.6 Rational for Selecting Catalyst Components 

Ni/Al2O3 catalyst was selected based on well documented fact that Ni enhances 

steam-reforming reaction (Gavita et al., 2001; Idem et al., 2003). Also, Ni ensures C-C 

bond rupture of ethanol or other oxygenated hydrocarbon components of crude ethanol 

(Luengo et al., 1992; Marino et al., 1998), in addition, it enhances ethanol gasification, 

reduces selectivity of acetaldehyde and acetic acid (Velu, 2002). On the other hand, γ -

Al2O3 was chosen as support because it is cheaply available; it has high surface area and 

high thermal stability (Richardson, 1989). 

2.7 Catalyst Characterization 

  The main reasons for characterizing catalysts are (i) to elucidate the processes 

taking place during each step of catalyst preparation, (ii) to determine the catalyst 

characteristics responsible for catalyst performance, and (iii) to use these 

characterizations as feedback during subsequent stages of design of catalyst for 

improved performance (Idem 1995). No information is available in the literature about 

any previous work or catalyst used for the reforming of crude ethanol. However, 

previous characterization studies for nickel-based catalysts will be examined. 

 The characterization of Ni/Al2O3 catalysts was done by Jianjun et al. (2004), the 

characterization techniques used were temperature-programmed reduction (TPR), 

thermogravimetric analysis (TG/DTA) and powder X-ray diffraction (XRD). Juan-Juan 

et al. (2004) used temperature-programmed reduction (TPR) and X-ray photoelectron 

spectroscopy (XPS) techniques to characterize the alumina supported nickel catalyst 

with potassium doping. Also Jae-Hee et al. (2004) used techniques such as temperature-

programmed reduction (TPR), temperature programmed oxidation (TPO), powder X-
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ray diffraction (XRD) and transmission electron microscopy (TEM). It may be noted 

that extensive characterization studies were done on Ni based catalysts used mostly for 

CO2 reforming of methane. The brief description of the characterization techniques for 

Ni based catalysts is presented below. 

2.7.1 X-Ray Diffraction (XRD) Studies 

 Jianjun et al. (2004) carried out XRD studies on Ni/Al2O3 catalysts prepared by 

impregnation of alumina with nickel nitrate solution. NiO and Al2O3 phases were 

detected on the calcined samples by these authors. Jae-Hee et al. (2004) also carried out 

XRD studies on Ni/Al2O3 and Cu/Ni/Al2O3 catalysts. Phases such as NiAl2O4, NiO 

were identified on Ni/Al2O3 catalyst at angle 2θ between 37.0 to 66.2oC, when Cu was 

added, a new peak appeared corresponding to (Cu 0.2 Ni 0.8)O, other phases like CuO 

and CuAl2O4 were also identified. The XRD pattern of both catalysts after reduction in 

5% H2/Ar at 750oC for 3 hours revealed the presence of Ni metal at 44.5oC. 

2.7.2 Temperature Programmed Reduction 

 Jianjun et al. (2004) carried out TPR experiments on Ni/Al2O3 and 

Ni/MgO/Al2O3 catalysts calcined at 550oC as well as pure NiO samples calcined at 

800oC. Two reduction peaks were observed for Ni/Al2O3 and Ni/MgO/Al2O3 catalysts 

between 500-600oC and 600-900oC. Pure NiO prepared by decomposition of Ni(NO3)2 

and calcined at 800oC for 5 hours showed one peak at 397.9oC. The authors concluded 

that the reducibility may depend on the degree of aggregation of nickel oxide. Also fine 

distribution of nickel oxide on the support resulted to stronger interaction between NiO 

and support (which led to formation of NiAl2O4) which was at higher reduction 

temperature. A TPR peak assigned to nickel oxides that were not completely integrated 
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in the spinel structure, but however had certain degree of interaction with support was 

observed at approximately 505oC. They also reported that high temperature around 

800oC was required to reduce nickel aluminate spinel (NiAl2O4). 

2.7.3 Temperature Programmed Oxidation 

 Jae-Hee et al. (2004) reported that the deactivation of Ni-based catalysts can be 

due to the carbon formation on the catalyst during the reaction. Therefore, the TPO 

experiments were conducted to investigate the type of carbon deposited on the catalyst 

after 16 h of run. The TPO spectral of Ni/Al2O3 catalyst showed two major peaks at 

400oC and 660oC.The peak at 400oC was assigned to the reversible carbonaceous 

species, which was supposed to be reversibly converted to CO2 by CO oxidation, while 

the peak at 660oC was assigned to an inactive graphitic carbon. They also noted that 

graphitic carbon was mainly produced on Cu/Ni/Al2O3 and hence carbon deposition 

from CH4 decomposition could be prevented on Cu-Ni alloy. The TEM images of the 

used catalysts were taken to examine the morphology of the carbon. A number of 

carbon tubes with different sizes of 10-100nm were observed on the used Ni/Al2O3 

catalyst, while carbon tubes of uniform sizes were formed on Cu/Ni/Al2O3. The Ni 

particles of 10-20nm were mainly observed on Ni/Al2O3 catalyst by TEM images.  

2.7.4 Thermogravimetric Analysis (TG/DTA) of Spent Catalyst 

 Jianjun et al. (2004) reported the TG/DTA results of spent 5%NiMgAl2O3 

catalyst in an oxidative atmosphere. In their analyses they observed that initial step of 

weight loss occurred at the temperature above 100oC. This was ascribed to thermal 

desorption of H2O and adsorbed CO2 and removal of easily oxidizeable carbonaceous 

species. The oxidation of coke to CO and CO2 was observed mainly at 450-650oC.The 
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DTA profiles of the same catalyst under oxidative environment revealed two distinctive 

exothermic peaks at 470oC and 600oC. It was concluded that the main part of the coke 

deposited on the catalyst was oxidatively removed at around 600oC. 
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3.0 EXPERIMENTAL 

The preparation and characterization procedures of the Ni/Al2O3 catalysts 

prepared by coprecipitation, precipitation and impregnation methods shall be described 

in this chapter. The experimental set-up and procedures for catalytic reforming of crude 

ethanol and kinetic studies are also discussed. 

3.1 Catalyst Preparation  

Three different catalyst preparation techniques such as co-precipitation, 

precipitation and impregnation methods were used for the preparation of catalysts. Ten 

different catalysts were prepared by varying the concentration of nickel. 

3.1.1 Chemicals 

The sources of nickel was nickel (ii) nitrate hexahydrate, 99.999% pure 

[Ni(NO3)2. 6H2O; obtained from Sigma-Aldrich, Inc., St Louis, Mo, USA] while that 

for aluminum was aluminum nitrate nonahydrate [ Al(NO3)3. 9H2O; 98.0-99.99% pure; 

obtained from EM Science, Gibbstown, NJ, USA]. Sodium carbonate [Na2CO3, 99.5% 

pure] and commercial alumina [Al2O3] were obtained from EM Science, Gibbstown, 

NJ, USA]. 

3.1.2 Coprecipitation Procedure 

The solution mixture of nickel nitrate hexahydrate and aluminum nitrate 

nonahydrate of appropriate concentrations (depending on nickel loading) were prepared. 

Precipitation was brought about by adding this solution in a drop-wise manner with 
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constant stirring to sodium carbonate solution (pH =11.5) maintained at 40oC in a 3-liter 

flask. The quantity of sodium carbonate solution taken was 1.1 times the stoichiometric 

requirement. The resulting slurry (pH ≅  8.0) was vigorously stirred for another 60 min. 

The precipitate was filtered and dried at 80oC overnight. The dried precipitate was then 

washed several times with warm water and finally with cold water and then dried at 

110oC overnight in air. The dried sample was then calcined, characterized and used for 

performance evaluation for the reforming of crude ethanol. 

3.1.3 Precipitation Procedure 

The precipitation method involved the preparation of solutions of predetermined 

amounts of nickel nitrate hexahydrate (depending on the Ni loading). This solution was 

added to another solution containing an appropriate quantity of sodium carbonate (to 

induce complete precipitation of the former), and commercial alumina. The resulting 

slurry was vigorously stirred for 24 h to enhance precipitation of nickel on the γ -

alumina. The precipitate was filtered and dried at 80oC overnight. The dried precipitate 

was then washed several times with warm water and finally with cold water and then 

dried at 110oC overnight in air. The dried sample was then calcined, characterized and 

used for performance evaluation for the reforming of crude ethanol. 

3.1.4 Impregnation Procedure 

The impregnation method involved preparation of nickel solutions of different 

concentrations dissolved in a solution of a fixed amount of the same type of commercial 

alumina (γ -alumina obtained from EM Science, Gibbstown NJ, USA) as used in the 

precipitation method. The resulting slurry was stirred vigorously for 24 h and then 

filtered; the filtered sample was dried at 110oC overnight in air. The dried sample was 
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analyzed for elemental composition by inductively coupled plasma–mass spectroscopy 

(ICP-MS). The information was used to prepare a calibration curve that was used for 

subsequent preparation of catalysts with the desired Ni loading. 

3.1.5 Calcination 

Calcination was carried out in a muffle furnace by placing the catalyst samples 

in a crucible. The temperature of the furnace was slowly raised to 600oC and maintained 

at this temperature for 3 hours. After calcination, the catalyst was allowed to remain 

inside the switched off furnace to cool down slowly to room temperature. Due to the 

loss of material during calcination such as moisture, nitrates and carbonates, the catalyst 

reduced in size appreciably. 

3.1.6 Activation 

The catalysts were activated in-situ prior to performance evaluation by reducing 

in a stream of 5 % H2 in N2 (obtained from Praxair, Regina, SK, Canada) at 600 oC for 2 

hours. 

3.1.7 Composition of Catalysts 

The designations and elemental compositions of the calcined catalysts are given 

in Table 3.1. CP, PT and IM indicate coprecipitation, precipitation and impregnation 

techniques, respectively. The numbers in these designations represent the loadings 

while the symbols represent the methods. For example, CP10 indicates a catalyst with 

10% Ni loading prepared by coprecipitation method. 
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Table 3.1: Name and Chemical Compositions of Catalysts Prepared 

 

 
 

Preparation 
method 

 
 

Catalyst  
Name 

 
Ni 

Composition 
(wt.%) 

 
Al 

Compisition 
(wt.%) 

O 
Composition 

(wt.%) 
 CP10 10 47.63 42.37 

Coprecipitation CP15 15 44.98 40.02 
 CP20 20 42.34 37.66 
 CP25 25 39.69 35.31 
 PT10 10 47.63 42.37 

Precipitation PT15 15 44.98 40.02 
 PT20 20 42.34 37.66 
 IM10 10 47.63 42.37 

Impregnation IM15 15 44.98 40.02 
 IM20 20 42.34 37.66 

3.2 Catalyst Characterization 

Catalyst characterization was carried out to identify the properties of the catalyst 

that are responsible for the catalyst activity. These were performed for dried, calcined 

and reduced catalysts. The different techniques used for the catalysts characterization 

include: Thermogravimetric/differential scanning calorimetry (TG/DSC), Powder X-ray 

diffraction (XRD), temperature programmed reduction (TPR), and BET surface area, 

pore volume and pore size distribution (see Table 3.2 for key information). The 

different characterization techniques are briefly described in the following sections. 

3.2.1 Thermo-Gravimetric / Differential Scanning Calorimetry 

 The objective of the Thermo gravimetry / differential scanning alorimetry (TG / 

DSC) analyses was to determine the weight loss, rate of weight loss as well as heat 

effects due to drying or decomposition of the catalyst sample with the change of 

temperature. From the generated profiles, it can be predicted if the weight loss of the 
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sample was caused by drying or decomposition of complexes. Catalyst samples were 

analyzed by the TG-DSC in order to determine the maximum temperature after which 

the catalyst weight loss was negligible. TG-DSC analyses were performed with TG-

DSC-1100 supplied by Setaram Scientific and Industrial Equipment, NJ, USA. 20 to 50 

mg of catalyst sample was placed in a balance inside the analyzer. The analyzer read the 

weight of the sample automatically. The sample was heated in flowing argon from 40 to 

800 oC with a heating rate of 10 oC / min. This helped to determine the approximate 

temperature of decomposition of constituent carbonates, hydroxide and other 

compounds.  

3.2.2 Powder X-Ray Diffraction Analyses 

At different stages of preparation, all the catalysts were examined by X-ray 

diffraction (XRD) using D8 diffractometer with GADDS with a Cu-Kα radiation at 40 

kV and 40 mA, both manufactured by Bruker AXS, U.S.A, in order to identify the 

component phases present as a function of preparation method. This was applied to 

dried, calcined and reduced catalyst samples. The powdered samples were smeared on 

metal holder at room temperature. The X-ray diffractograms were recorded from 20o to 

100o at a speed of 5o (2θ) per min. The crystallite sizes of the samples were also 

obtained by X-ray line broadening using the same equipment. 

3.2.3 Temperature Programmed Reduction (TPR)  

The objective of temperature programmed reduction (TPR-H2) was to determine the 

reducibility as well as the optimum reduction temperatures for the catalysts before the 

reforming reaction. It was also useful in determining the type of species present in the 

calcined samples when combined with XRD analyses. The TPR analysis was performed 
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Table 3.2: Summary of catalyst characterization studies 

No. Characterization Place Carried Out Key Information 

1 X-Ray Diffraction 
Process Systems 

Engineering Laboratories, 
U of R 

To obtain information on 
various phases of the 
catalysts 

2 Temperature 
Programmed Reduction 

Catalysis and Chemical 
Reaction Engineering 
Laboratories, U of S 

To measure the extent of 
reduction (intensity and 
reduction temperature) 
for various phases of the 
catalysts 

3 Thermo Gravimetric/ 
Differential Scanning 
Calorimetry 

Process Systems 
Engineering Laboratories, 

U of R 

To determine the thermal 
stability and weight loss 
of the catalysts 

4 Temperature 
Programmed Oxidation 

Catalysis and Chemical 
Reaction Engineering 
Laboratories, U of S 

To determine the carbon 
deposition on catalyst 
surface 

5 BET Surface area, Pore 
Volume and Pore Size 
Distribution 

Process Systems 
Engineering Laboratories, 

U of R 

 To measure physical 
surface area, pore volume 
and pore size distribution 
of the catalysts 

 

for the calcined catalysts using Quantachrome equipment (Model ChemBET 3000, 

manufactured by Quantachrome Corporation, FL, USA). About 0.1 g of the catalyst 

sample was placed in a U shaped glass tube. The sample tube was placed in an electric 

furnace with precise temperature control. The sample tube was heated from 35 to 900 

oC at a linearly programmed rate of 10 oC/min at atmospheric pressure in a reducing gas 

stream of 3 mol% H2 with balanced N2 (obtained from Praxair, Mississauga, ON, 
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Canada) with a flow rate of 35 ml/min. The TPR plot was logged using an on-line data 

acquisition system. 

3.2.4 BET Surface Area, Pore Volume and Pore Size Distribution 

 The BET surface area, pore size, pore volume and pore size distribution 

measurements of the catalysts were determined by using a Micromeritics adsorption 

equipment (Model ASAP 2010, manufactured by Micromeritics Instruments Inc., 

Norcross, GA, USA) using N2 gas ( 99.995 % pure; obtained from Praxair, Regina, SK, 

Canada). BET surface area includes the surface area of the pores as well as that of the 

outside of the catalyst. The BET analyses were performed for the calcined catalysts. 

Each analysis required about 0.50g of catalyst sample. Prior to analysis, each catalyst 

sample was evacuated at 200 oC to ensure that there was no adsorbed moisture on the 

catalyst surface. The adsorption and desorption isotherms used in the evaluation of BET 

surface area were obtained at the boiling temperature of liquid nitrogen which is -195 

oC. These values are characteristic for a given catalyst sample and are reproducible.  

3.3 Reaction Feed Stock  

The feed for this process was fermentation broth and was obtained from Pound 

Maker Agventures, Lanigan, Saskatchewan, Canada. This was used as received except 

for the removal of particulate matter by filtration. However, for the purpose of 

evaluating the performance of the catalysts, crude ethanol was defined as the 

combination of all the oxygenated hydrocarbon components present in fermentation 

broth; namely, ethanol, lactic acid, glycerol and maltose. Analysis of the fermentation 

broth was carried out to identify and quantify these components of fermentation broth 

using a high performance liquid chromatograph (HPLC), Agilent 1100 series supplied 
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by Agilent Technologies, Wilmington, Delaware, USA. The HPLC was equipped with a 

250 by 4.1 mm HC-75 column and a refractive index detector, while 0.05 mM succinic 

acid was used as the mobile phase. 

3.4 Experimental Set-up and Procedure  

3.4.1 Catalyst Performance Evaluation 
 

Experiments were carried out in a packed bed tubular reactor (PBTR) setup. The 

reactor assembly is shown in Figure 3.1. The reactor used was BTRS model number 

02250192-1 supplied by Autoclave Engineers, Erie, PA, USA. It was made of a 

stainless steel tube of 8 mm internal diameter (D) placed in an electric furnace. Crude 

ethanol was delivered to the reactor chamber by means of a HPLC pump regulated at 

desired flow rates. The reaction temperature was measured with a sliding thermocouple 

placed inside the bed. The error on temperature measurement was within 1± oC. 

 A typical run for the reforming of crude ethanol was performed as follows: 

approximately 1 g of the catalyst was mixed with 2 g of Pyrex glass (i.e. inert material) 

of the same average particle size and then loaded into the reactor. The feed consisting of 

crude ethanol (comprising of ethanol plus other organics and water) was then pumped at 

the desired flow rate (i.e. space velocity) to the vaporizer maintained at 250oC before 

entering the reactor. Prior to reaction the catalyst was reduced in-situ by treatment with 

5% H2 in N2 gas (supplied by Praxair, Regina, SK, Canada) flowing at 100 mL/min for 

2 h. The reactions were carried out at atmospheric pressure and reaction temperature of 

400oC. The product mixture during reaction was passed through a condenser and gas-

liquid separator to separate the gaseous and liquid products for analysis.  
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3.4.2 Kinetic Studies 

The same reactor was used to generate kinetic data for modeling the crude 

ethanol reforming process over catalyst CP15 which was identified as the best catalyst 

in this work. 

 The experiments to collect kinetic data were performed at reaction temperatures 

of 593, 693 and 793K, and ratios of weight of catalyst to mass flow rate of crude 

ethanol (W/FA0) of 2143, 1382, 1071, 952 and 779 kg-cat-s/kg-crude ethanol using 

catalyst of 0.6 mm average particle size. According to Rase, (1987), Geankoplis, (2000) 

and Froment et al. (1990), there are requirements for packed-bed reactors to ensure that 

flow conditions in the reactor are close to plug flow in order to obtain isothermal reactor 

operation, eliminate backmixing and minimize channeling. These are: (a) ratio of 

catalyst bed height to catalyst particle size (L/Dp) > 50, and (b) ratio of internal diameter 

of the reactor to the catalyst particle size (D/Dp) > 10. In this work, L/Dp and D/Dp of 

88.33 and 13.33 were respectively used in all kinetic experiments in order to ensure 

plug flow behavior in the reactor. 

3.5 Analysis of Products 

 The liquid product was analyzed using the HPLC described in section 3.3 above 

as well as GC-MS. GC-MS analysis was performed using GC-MS model HP 6890/5073 

supplied by Hewlett-Packard Quebec, Canada. A HP–Innowax column (length = 30m, 

internal diameter = 250µm, thickness = 0.25µm) packed with cross - linked – poly – 

ethylene glycol was used in the GC for the separation of components.  The composition 

of the output gas stream was analyzed on-line by gas chromatography (Model HP 6890) 
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using molecular sieve and hysep columns, a thermal conductivity detector (TCD) and 

helium as carrier gas.  

 

Figure 3.1: Schematic diagram of the experimental rig for the 
production of hydrogen from crude ethanol 
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4.0 RESULTS AND DISCUSSION 

The results of catalyst characterization studies, catalyst performance evaluation, 

kinetic and reactor modeling are presented and discussed in this section. 

4.1 Catalyst Characterization 
 

4.1.1 BET surface area, Pore size and Pore volume 

BET surface area, pore volume and pore size studies were performed on the 

calcined catalysts. The results are given in Table 4.1 for pore volume and average pore 

size and in Figure 4.1 for BET surface area. 

Table 4.1: Summary of Pore volume and Pore sizes of catalysts 
 

Catalyst Name Pore Volume (cm3/g) Pore Size (nm) 

CP10 0.26 12.6 

CP15 0.29 14.5 

CP20 0.22 12.8 

CP25 0.19 12 

PT10 0.23 5.4 

PT15 0.22 5.6 

PT20 0.12 5.4 

IM10 0.18 4.3 

IM15 0.18 4.6 

IM20 0.17 4.5 
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In the coprecipitation method, the BET surface area (Figure 4.1) decreased in a 

monotonic fashion from 83 to 65 m2/g as the Ni loading increased. In contrast, the pore 

size and pore volume initially increased with Ni loading and reached a maximum of 

14.5 nm and 0.29 cm3/g, respectively and then decreased with further increase in the Ni 

loading. The pore volume of catalysts which were prepared by precipitation and 

impregnation methods showed a somewhat different trend as compared to the trend for 

coprecipitation. It was observed in the PT and IM catalysts that 10 and 15% Ni loading 

catalysts gave identical values in each case. 
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Figure 4.1: BET surface areas as function of Ni loading for catalysts 
calcined at 600oC  
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 Calcined catalysts prepared by precipitation and impregnation methods 

exhibited high surface area and low pore sizes compare to those prepared by the 

coprecipitation method. However their trends with nickel loading were similar. 

4.1.2 Powder X-ray Diffraction (XRD) 

Powder XRD analyses were performed on the dried, calcined and reduced 

catalysts to identify the species present in the catalysts at various stages of preparation. 

Figure 4.2 shows the XRD spectra obtained for dried (Figure 4.2a), calcined (Figures 

4.2b-d) and reduced (Figure 4.2e) catalysts. Typical spectra of dried catalysts (15% Ni 

loading) exhibited common XRD peaks corresponding to nickel hydroxide 

(Ni(OH)2.4H2O) and nickel oxide hydroxide (NiOOH). Only the catalyst prepared by 

the impregnation method gave XRD peaks corresponding to hydrated alumina 

(Al2O3.3H2O) whereas the catalyst prepared by coprecipitation had XRD peaks 

corresponding to nickel aluminium carbonate hydroxide (Ni2Al(CO3)2(OH)3 and 

NiAl(CO3)(OH)3) and nickel carbonate hydroxide hydrate (Ni2(CO3)(OH)2.4H2O). The 

catalysts prepared by the coprecipitation and precipitation methods exhibited XRD 

peaks corresponding to aluminium carbonate hydroxide (Al(CO3)2(OH)4.3H2O and 

Al(CO3)(OH)). The formation of nickel aluminium carbonate hydroxide, nickel 

carbonate hydroxide hydrate and aluminium carbonate hydroxide were attributed to 

using Na2CO3 for precipitation (Idem, 1995).  

Catalysts prepared by all the three different methods were compared at different 

Ni loadings in the case of calcined catalysts. For the catalysts with 10% Ni loading, the 

XRD spectra (Figure4.2b) showed common peaks corresponding to nickel oxide (NiO), 

alumina (Al2O3) and nickel aluminate (NiAl2O4) even though the latter was only 
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pronounced for IM10 whereas for the catalysts with 15% Ni loading, only nickel oxide 

and alumina were the common species. Nickel aluminate was observed only on 

coprecipitated (CP15) and impregnated (IM15) samples. The same scenario was 

observed for the catalyst samples with 20% Ni loading. The formation of nickel 

aluminate was attributed to the close interaction between NiO and Al2O3 at a high 

temperature as shown in Equation 4.1 mainly for impregnated catalyst samples or the 

decomposition of nickel aluminium carbonate hydroxide followed by Equation 4.1 for 

coprecipitated catalyst samples. This was similar to the results of Idem and Bakhshi, 

(1996a). 

  NiO + Al2O3=NiAl2O4                 (4.1) 

The formation of nickel aluminate is an indication of strong metal-support interaction. 

Also, the appearance of peaks corresponding to nickel species is an indication of strong 

crystallinity of the species and that monolayer coverage of Al2O3 by the applicable Ni 

species was exceeded. On the other hand, the absence of some of the Ni species (such as 

NiAl2O4) in some of the calcined catalyst samples (e.g. the PT catalysts) is an indication 

that Ni species is still within monolayer coverage (i.e. the amount present is too small 

and thus cannot be detected by XRD) or is completely absent.  

In the case of the reduced catalysts, typical XRD spectra for catalysts with 15% 

Ni loading (Figure 4.2e) show common peaks corresponding to nickel metal (Ni) and 

aluminum oxide. The spinel, nickel aluminate, was observed only for catalysts prepared 

by coprecipitation and impregnation methods. This shows that the reduction 

temperature of 600oC used for catalyst reduction with H2 was not sufficient to reduce all 

the nickel aluminate species to Ni metal and alumina for these two types of catalysts.  

 39



Table 4.2 shows the results of crystallite size measurements for NiO species 

obtained by X-ray line broadening as a function of preparation method and Ni loading. 

At 10% Ni loading all catalysts have relatively small crystallite sizes with that prepared 

by impregnation having the smallest crystallite size. However, with Ni loadings of 15 

and 20%, the catalysts prepared by the impregnation method produced a dramatic 

increase in crystallite size (105.8 and 160.2 nm, respectively). These were much larger 

than the crystallite sizes of the corresponding Ni loadings for catalysts prepared by 

coprecipitation and precipitation methods. The overall large crystallite sizes (especially 

for Ni loading > 15%) shows the existence of agglomeration of Ni species and that 

monolayer coverage was exceeded. 

Table 4.2: Crystallite size of catalysts 

Catalysts Name Crystallite size(nm) 

CP10 26.5 

CP15 29.8 

CP20 38.5 

PT10 21.5 

PT15 20.8 

PT20 39.6 

IM10 15.3 

IM15 105.8 

IM20 160.2 
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Figure 4.2b: XRD pattern of calcined catalysts (10% Ni loading) 
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Figure 4.2d: XRD pattern of calcined catalysts (20 % Ni loading) 
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Figure 4.2e: XRD pattern of reduced catalysts (15% Ni loading) 
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4.1.3 Thermo-Gravimetric / Differential Scanning Calorimetry 

The evaluation of weight loss as well as the rate of weight loss associated with 

drying or decomposition of dried catalysts as a function of temperature is important 

because it helps to determine the maximum temperature after which the catalyst weight 

loss is negligible (i.e. complete decomposition). This, in turn, helps to establish the 

minimum temperature at which catalyst becomes thermally stable, and as such, the 

minimum temperature for catalyst calcination. The TGA profiles for dried catalysts 

samples are shown in Figures 4.3(a-i).  
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Figure 4.3a: TG-DSC profile of dried CP10 catalyst 

The profiles of these dried catalysts, in general, show an endothermic peak 

between 100-150oC corresponding to thermal desorption of H2O and adsorbed CO2 as 

reported by Jianjun et al. (2004). The peak at about 250-350oC corresponds to the 

abstraction of chemically bound water from nickel hydroxide hydrate (Ni(OH)2.4H2O) 
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and aluminum hydroxide. It could also correspond to the thermal decomposition of 

nickel aluminum carbonate hydroxide (Ni2Al(CO3)2(OH)3) by removal of CO2. The 

endothermic peak at about 500-600oC corresponds to the thermal decomposition of 

nickel hydroxide into NiO and H2O as reported by Parthasarathi et al. (2000) and the 

thermal decomposition of nickel aluminum hydroxide into NiAl2O4 and H2O. The 

nickel hydroxide described in the former case results from the elimination of H2O and 

CO2 from Ni2(OH)2CO3.4H2O and by abstraction of H2O from Ni(OH)2.4H2O. Since 

the peak that was observed specifically at 600oC was obtained only in the CP catalysts 

and was absent in the PT and IM catalysts, it can be concluded that the Ni(OH)2 in this 

case originated from Ni2(OH)2CO3.4H2O, whereas the one at about 500oC originated 

from Ni(OH)2.4H2O. Also, since the peak at 600oC is specific to the CP catalysts, the 

results imply that the decomposition of nickel aluminum hydroxide to yield NiAl2O4 

occurs at this temperature. The TG profiles for these dried catalyst samples suggest that 

the calcination temperature of 600oC was adequate and was able to stabilize all the 

catalysts except in CP20 where a higher calcinations temperature would be required for 

stabilizing the catalyst. 
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Figure 4.3b: TG-DSC profile of dried PT10 catalyst 
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Figure 4.3c TG-DSC profile of dried IM10 catalyst 
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Figure 4.3d: TG-DSC profile of dried CP15 catalyst 
 

-25

-20

-15

-10

-5

0
0 200 400 600 800 1000

TG
, m

g
D

TG
, m

g/
m

in
 1

02

-16

-12

-8

-4

0
Temperature, oC

D
SC

, m
W

DSC

DTG

TG

Figure 4.3e: TG-DSC profile of dried PT15 catalyst 
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Figure 4.3f: TG-DSC profile of dried IM15 catalyst 
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Figure 4.3g: TG-DSC profile of dried CP20 catalyst 
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Figure 4.3h: TG-DSC profile of catalyst PT20 catalyst 
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Figure 4.3i: TG-DSC profile of fresh IM20 
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4.1.4 Temperature Programmed Reduction (TPR-H2 )

 The objective of TPR-H2 experiments was to determine the reducibility as well 

as the optimum reduction temperature for the catalysts for the reforming of crude 

ethanol. In conjunction with XRD data, it was also useful in determining the type of 

species present in the calcined catalysts. The TPR-H2 profiles of all the catalysts 

calcined at 600oC are given in Figure 4.4a-c for catalysts prepared by coprecipitation, 

precipitation and impregnation, respectively. The peak temperatures and the 

corresponding species are summarized in Table 4.3  

All the reduction peaks between 400 and 612oC represent the reduction of NiO. 

The oxide of nickel was produced by the thermal decomposition of various non-

aluminum containing nickel species at appropriate temperatures, as evidenced from 

XRD and TGA studies. The presence of these peaks has been reported by Idem et al. 

(2000) for Co-Ni-ZrO2/sulphated-ZrO2 hybrid catalysts and by Jae-Hee et al. (2004) for 

Ni/Al2O3 catalyst. The peaks observed in the temperature range of 750-812oC represent 

the reduction of NiAl2O4 species. The presence of this peak has been reported by 

Marino et al. (1998), Jae-Hee et al. (2004) and Juan-Juan et al. (2004) for Ni/Al2O3 and 

Cu-Ni/Al2O3 catalysts. The reduction temperature and the peak width are indications of 

the ease of reduction and the degree of interaction between different species, 

respectively. High reduction temperature indicates difficulty in reduction whereas wide 

peaks indicate a great degree of interaction between the species and the support. It is 

seen from TPR-H2 profile that the PT catalysts are almost completely reduced at 600oC 

whereas the CP and IM catalysts require a higher reduction temperature (approximately 

800oC) due to the presence of the NiAl2O4 species. 
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Table 4.3 Summary of TPR Analyses for Calcined Ni/Al2O3 Catalysts 

Catalysts name 
 

Number of peaks Peak temperature 
oC 

Major reducible 
species 

CP10 
 

3 471, 534, 700 NiO, NiAl2O4

CP15 3 501, 569, 731 NiO, NiAl2O4

CP20 
 

3 514, 572, 738 NiO, NiAl2O4

PT10 
 

2 438, 633 NiO  

PT15 3 434, 602, 769 NiO  

PT20 
 

2 446, 529  NiO 

IM10 
 

3 444,594, 794 NiO, NiAl2O4

IM15 3 472, 602, 812 NiO, NiAl2O4

 
IM20 

3 488, 612, 830 NiO, NiAl2O4

 
 

This implies that PT catalysts have higher reducibility than the CP and IM 

catalysts. It is important to note that the respective major higher TPR-H2 peak 

temperatures (about 800oC) for the IM and CP catalysts increased with the Ni loading, 

implying that reducibility decreased with the Ni loading. In contrast, the major higher 

TPR-H2 peak temperature (600oC) in the case of PT catalysts shifted to lower 

temperatures as the Ni loading increased implying that reducibility increased with Ni 

loading. Also, the TPR-H2 peaks for the PT catalysts were narrower than those for the 

CP and IM catalysts implying a higher degree of interaction of Ni species with Al2O3 

for CP and IM catalysts, as evidenced by the presence of NiAl2O4. 
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Figure 4.4a: TPR-H2 profiles of calcined catalysts prepared by the 
coprecipitation method 
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Figure 4.4b: TPR-H2 profiles of calcined catalysts prepared by the 
precipitation method  
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Figure 4.4c: TPR-H2 profiles of calcined catalysts prepared by the  
impregnation method 
 
4.2 Experimental Studies      

4.2.1 Crude Ethanol Composition  

As mention earlier in section 3.3, the feed stock for this process was 

fermentation broth obtained from Pound maker Agventures Lanigan Saskatchewan, 

Canada. It was analyzed using a high performance liquid chromatograph (HPLC). The 

result of the analysis is shown in Table 4.4. Consequently, the overall molecular 

formula of crude ethanol based on the weighted average of these components is 

. Based on this composition, the general equation representing the 

reforming of crude-ethanol can be represented as in Equation (4.2). 

23.112.612.2 OHC

2221.236.122.12 6.07H2.12COO3.01HOHC +⎯→⎯+   ∆H = 129kJ/mol           (4.2) 
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Table 4.4: Crude-ethanol composition 
 

Crude ethanol  

components 

Volume % 

 

Mole % (on a water  

free basis) 

Ethanol 12.005 88.417 

Lactic acid 0.998 5.713 

Glycerol 0.994 5.868 

Maltose 0.001 0.001 

Water 86.002 Not applicable 

 

4.2.2 Reaction Involved in Crude Ethanol Reforming 
 
 There are several reactions involved in the reforming of crude-ethanol. The 

components found from the product analyses were: hydrogen, carbon dioxide, carbon 

monoxide, methane, 2-propanone, butanedioic acid, propanoic acid, 2,3-butanediol, 

propylene glycol (1,2 propane diol), 2-butanol and acetic acid. Two sets of reactions 

were considered to be taking place, first is the basic steam reforming reaction that 

involved the crude ethanol and water to produce the desired products, hydrogen and 

carbon dioxide, and second is the possibility of crude components reacting together to 

form undesired products. 

4.2.3 Catalyst Performance Evaluation 

The catalysts were evaluated for their performance in the reforming of crude 

ethanol. Some of the test runs were repeated to check the reproducibility of results. The 

error was within 4.0 %. The evaluation criteria used were crude ethanol conversion, H2 

selectivity and H2 yield. Crude ethanol conversion was defined according to Equation 
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4.3 while H2 yield and selectivity were defined according to Equations 4.4 and 4.5, 

respectively. An overall mass balance was done for every run, which varied within 1 to 

5% uncertainty range. The mass balance error was attributed to carbon deposition which 

was not quantified. 

Crude ethanol conversion (X) = 
in(organics) gmol

out(organics) gmolin(organics)  gmol −    (4.3) 

where organics = ethanol + lactic acid + glycerol + maltose 

Hydrogen yield (YH2) = 
in(organics) gmol*6.07

)out2(H  gmol
     (4.4) 

Hydrogen selectivity (SH2) = 
(X)Conversion*in(organics) gmol*6.07

)out2(H  gmol
×100  (4.5) 

4.2.3.1 Crude Ethanol Conversion 

This evaluation was carried out on all prepared catalysts at a calcination 

temperature of 600oC, weight hourly space velocity (WHSV) of 1.68h-1, reaction 

temperature of 400oC, and catalyst reduction temperature of 600oC. Figure 4.5 shows 

the crude ethanol conversion behavior for catalysts prepared by the coprecipitation 

method. It is seen in the figure that each catalyst showed an initial high activity with a 

high initial crude ethanol conversion. This was attributed to the initial high activity of 

the catalysts. The conversion decreased with time and then stabilized at about 180 min 

time on stream (TOS). CP15 gave the highest stable conversion of crude-ethanol (79 

mol%), followed by CP25 (59 mol%) while CP10 gave the lowest conversion (32 

mol%) under the same experimental conditions. 
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Figure 4.6 gives crude ethanol conversions for the catalysts prepared by the 

precipitation method. The figure shows trends similar to those exhibited by catalysts 

prepared by the coprecipitated method. 
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Figure 4.5: Conversion of crude ethanol as a function of time-on-
stream (TOS) on catalyst prepared by coprecipitation method 
 

Similar reasons as for the trend in the coprecipitated method could also be used 

to explain the behavior. Also, the highest stable conversion of crude ethanol was 

obtained on PT15 (85 mol%). This was followed by PT20 (83 mol%) while the lowest 

conversion was obtained on PT10 (44.0 mol%). 

Figure 4.7 shows that the trend for crude ethanol conversion as a function of 

time-on-stream (TOS) obtained on catalysts prepared by the impregnation method were 

similar to those for the CP and PT catalysts. It was observed that the IM15 and IM20 

did not show any difference in their crude ethanol conversion activities as stable crude 
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ethanol conversions of 47.0 and 47.0 mol% were respectively obtained on these 

catalysts. On the other hand, IM10 gave a lower stable conversion of 44.0 mol%.  
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Figure 4.6: Conversion of crude-ethanol as a function of time-on-
stream (TOS) on catalyst prepared by precipitation method 
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Figure 4.7: Conversion of crude ethanol as a function of time-on-
stream (TOS) on catalyst prepared by impregnation method  
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 In order to evaluate the effect of Ni loading, the stable crude ethanol 

conversions obtained on catalysts prepared by the three methods as a function of Ni 

loading were compared. The results are given in Figure 4.8. For catalysts prepared by 

coprecipitation, the stable conversion increased with Ni loading and reached a 

maximum value of 79 mol% at a Ni loading of 15 wt%. Beyond this loading, the 

conversion of crude ethanol decreased. A similar trend was observed in the case of 

catalysts prepared by the precipitation method for which the lowest stable conversion 

was 44 mol % by PT10 and the maximum stable conversion was 85 mol % by PT15.  

 Catalysts prepared by impregnation method exhibited a slightly different trend 

in which crude ethanol conversion reached a maximum value of 46.7 mol% on IM15  
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Figure 4.8: Comparison of stable conversion of crude ethanol on 
various catalysts (T = 400oC, WHSV = 1.68h-1) 
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from 44 mol% on IM10. A further increase from 15% to 20% Ni loading did not result 

in any appreciable change in crude ethanol conversion. 

4.2.3.2 Hydrogen Yield 

 The activities of all the catalysts were also evaluated in terms of H2 yield as 

defined in Equation 4.4. Figure 4.9 illustrates the variation of H2 yield as a function of 

Ni loading. CP10 gave a H2 yield of 2.12 mol H2/mol crude ethanol fed, the yield 

increased as Ni loading increased and reached maximum of 4.33 mol H2/mol crude-

ethanol fed on CP15, and then decreased as the Ni loading increased beyond 15%. 
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Figure 4.9: Variation of hydrogen yield with Ni loading (T = 400oC and 
WHSV=1.68-1) 
 
 Similar trends were obtained in both the catalysts prepared by precipitation 

and impregnation methods with maximum H2 yields of 4.24 and 2.52 mol H2/mol 

crude-ethanol fed obtained on PT15 and IM15, respectively. Since the production of 
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hydrogen was a major objective in this work, catalyst CP15 was considered the 

optimum catalyst. This is because it gave the highest hydrogen yield of 4.33 moles 

H2/mole crude-ethanol fed, and also had a high stable crude-ethanol conversion of 79 

mol% even though slightly lower than that for PT15 (85 mol%). 

4.2.3.3 Hydrogen Selectivity 

 The higher H2 yield for CP15 as compared with PT15 (that gave a higher crude 

ethanol conversion) was attributed to the higher H2 selectivity of CP15. This was 

confirmed in Figure 4.10, which shows the variation of H2 selectivity with Ni loading 

for all catalysts.  
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Figure 4.10: Hydrogen selectivity as a function of Ni loading at T = 
400oC WHSV=1.68-1 
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 Catalysts prepared by coprecipitation method were the most selective to 

hydrogen production with CP10 giving the highest H2 selectivity of 91 mol%, followed 

by CP15, 90 mol%. CP25 gave the lowest selectivity of 87 mol%. The catalysts 

prepared by the precipitation method gave a trend similar to that for the coprecipitation 

method. PT10 gave the highest selectivity of 87 mol% followed by PT15 and PT20 with 

equal selectivity of 82 mol%. In contrast, catalyst prepared by the impregnation method 

showed a somewhat different trend, in which IM10 gave the lowest selectivity of 85 

mol%. The selectivity reached a maximum of 88 mol% for IM15 and reduced to 86 

mol% as the Ni loading increased to 20% in IM20. In order to evaluate circumstances 

that led to a better performance of the PT and CP catalysts over the IM catalysts, an 

attempt was made to correlate the catalyst synthesis method to catalyst characteristics 

and to performance. Two catalyst characteristics, resulting from the three synthesis 

methods that exhibited a definite correlation with catalyst performance (in terms of 

crude ethanol conversion) were catalyst reducibility and crystallite size of Ni species. 

4.2.3.4 Effect of Catalyst Reducibility on Crude Ethanol Conversion 

 Table 4.3 shows that the three preparation methods had a strong effect on 

catalyst reducibility. In this section the extent of these differences in reducibility and 

how they affected catalyst performance measured in terms of crude ethanol conversion 

were evaluated. Reducibility was measured in terms of the minimum temperature 

required for complete reduction of the catalysts as provided by TPR-H2 results (Figure 

4.11 and Table 4.3).  

Figure 4.11 shows the typical effect of the reducibility of catalyst on conversion. 

PT15 was the most reducible catalyst because the dominant NiO species were 
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completely reduced at 600oC thereby making a larger amount of the active metal 

available for the reforming reaction.   
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Figure 4.11: Effect of reducibility on crude ethanol conversion on 
various catalysts 

 

In contrast, the presence of NiAl2O4 formed as a result of a strong-metal-

support-interaction (see Equation 4.1) in both CP15 and IM15 made them less reducible 

as compared to PT15. The consequence is that a larger fraction of the Ni species were 

very tightly bound to the support, and therefore, not reduced at the reduction 

temperature used. Consequently, a small fraction of reduced active Ni metal species was 

available for the reforming reaction in both the CP and IM catalysts. Thus, while PT15 

gave a crude ethanol conversion of 85% at the operating reduction temperature of 

600oC, CP15 and IM15 gave crude ethanol conversion of 79 and 46.7 mol%, 

respectively. This is in good agreement with the results of Idem and Bakhshi, (1994b). 
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Based on the latter two results, it would appear that the low crude ethanol conversion of 

46.7 mol% for IM15 may not be solely due to reducibility factors as this alone should 

not produce such a drastic change. 

4.2.3.5 Effect of Reduction Temperature on Crude Ethanol Conversion 
and Hydrogen Yield 

 
 In order to further investigate the effect of reducibility on catalyst performance, 

experiments were also performed to determine the effect of reduction temperature on 

ethanol conversion and hydrogen yield. All the experiments were conducted on CP15 

using a W/Fcrude-ethanol ratio of 0.59 h (i.e. WHSV = 1.68h-1). The results are shown in 

Figure 4.12. Crude ethanol conversion increased from 50 to 77 mol % and the hydrogen 

yield also increased from. 2.8 to 4.2 mol/mole crude ethanol fed as the reduction 

temperature was increased from 400 to 600oC.  
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Figure 4.12: Crude ethanol conversion, H2 selectivity and H2 yield as 
functions of reduction temperature for CP15 at WHSV = 1.68h-1 
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This result could be attributed to the small amount of the active Ni sites made 

available for the reforming reaction by reduction at the lower reduction temperature as 

compared with the amount available at higher temperatures. This can be confirmed 

from the TPR-H2 profiles for catalyst CP15 (Figure 4.4a) in which this catalyst was 

more reduced at 600oC.The figure further shows that the amount of Ni metal generated 

at 600oC was definitely larger than those at 500 and 400oC.  

4.2.3.6 Effect of Crystallite Sizes on Crude Ethanol Conversion 

 The major differences in performance of the catalysts prepared by the three 

methods had earlier been attributed to factors other than reducibility alone. One of these 

other factors was the crystallite size of the NiO species. Table 4.2 shows that 

preparation methods affect the crystallite sizes of the active Ni species as observed in 

the X-ray line broadening results. 
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Figure 4.13: Crude ethanol conversion as a function of crystallite size 
for catalysts prepared by the coprecipitation method 
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The effects of the preparation method and Ni loading on the crystallite sizes and 

their ultimate effect on crude ethanol conversion are illustrated in Figures 4.13-4.15. 

Figure 4.13 shows the activities of catalysts prepared by coprecipitation method as a 

function of crystallite sizes and Ni loading. It is observed that an increase in Ni loading 

from 10 to 15 % produces only a slight difference in crystallite size of the catalyst, but a 

large increase in crude ethanol conversion from 32 to 79 mol%. This large increase is 

attributed to a larger amount of Ni being available because of the higher Ni loading of 

CP15 as compared to CP10. On the other hand, a further increase in Ni loading as in 

CP20 increased the crystallite size appreciably. This lowered the Ni dispersion on the 

catalyst such that the activity in CP20 dropped to 54 mol% even though its Ni loading 

was higher than CP15. 
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Figure 4.14: Crude ethanol conversion as a function of crystallite size 
for catalysts prepared by the precipitation method 
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In this case, the adverse effect of a larger crystallite size (lower Ni dispersion) 

outweighed the beneficial effect of Ni loading of CP20. Similar results were obtained 

when catalysts prepared by the precipitation method was used as shown in Figure 4.14.  

The conversion dropped slightly when loading increased from 15 to 20%, the 

magnitude of change in this case is a reflection of the magnitudes of the detrimental 

effect of larger crystallite size as opposed to the beneficial effect of higher reducibility. 

In the case of the catalysts prepared by the impregnation method, a completely different 

behavior was observed (Figure 4.15). The crystallite size of IM10 was the smallest and 

there was a rapid increase in crystallite size as the Ni loading increased from 10 to 15% 

and a corresponding but slight increase in the activity of the catalysts with respect to 

crude ethanol conversion. 
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Figure 4.15: Crude ethanol conversion as a function of crystallite size 
for catalysts prepared by the impregnation method 
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For this preparation method, the beneficial effect of Ni loading of the catalysts 

appeared to have overcome the adverse effect of a larger crystallite size. 

In all cases it was observed that the crystallite size increased with Ni loading. 

Also, except for the IM series of catalysts, high Ni loading beyond 15% did not increase 

the activity with respect to crude ethanol conversion. This is in agreement with the 

results of Ming-Tseh et al. (2002) on supported Ni catalyst, in which the author 

observed that at low nickel loading the dispersion was higher than that at high nickel 

loading and decreased gradually with loading. This was attributed to the fact that at low 

nickel content, the small nickel crystallites exhibit no agglomeration, while at high 

nickel loading, there was the existence of agglomeration due to the presence of 

significant nickel density. These results on the effect of the crystallite size on catalyst 

performance explain the major difference between CP15 and IM15, which exhibited 

similar reducibility but widely different crude ethanol conversions. The results confirm 

that the major contributing factor in this case is the crystallite size of NiO species which 

is larger in IM15 (105.8 nm) as compared with CP15 (29.8 nm). 

4.2.4 Effect of Operating Conditions 

4.2.4.1 Effect of Temperature on Crude Ethanol Conversion and 
Hydrogen Selectivity 

 
Experiments were performed to study the effect of the reaction temperature on 

the overall crude-ethanol conversion using CP15, as shown in Figure 4.16. The reaction 

temperatures used were 320, 400, 420 and 520oC for a fixed weight hourly space 

velocity of 1.68h-1. As expected, crude-ethanol conversion was lowest (64 mol%) at 

320oC and as the temperature was increased, the conversion increased and reached a 

maximum of 80.1 mol% at 520oC. In contrast, the H2 selectivity decreased with an 

 69



increase in temperature, also as expected, due to the increased methanation activity as 

well as the formation of carbon monoxide on this catalyst at higher temperatures.  
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Figure 4.16: Variation of crude ethanol conversion and hydrogen 
selectivity as functions of temperature for CP15 at WHSV=1.68h-1 

 
4.24.2 Effect of W/Fcrude-ethanol on Crude Ethanol Conversion, Hydrogen 

Selectivity and Yield 
 
 Experiments were also performed to study the effect of W/Fcrude-ethanol ratio in the 

range 0.22 to 0.59 h (i.e. WHSV in the range 1.68-4.62h-1) on crude ethanol conversion 

and hydrogen selectivity and yield using CP15 at a reaction temperature of 420oC. The 

results are given in Figure 4.17, which shows that the conversion of crude ethanol 

increased from 35.6 mol% for W/Fcrude-ethanol ratio of 0.22 h to 79.8 mol% for W/Fcrude-ethanol 

ratio of 0.59 h. This behavior was expected as the reactant had a longer residence time 

for reaction inside the reactor. The effect of W/Fcrude-ethanol ratio on hydrogen yield was 

similar to that for crude-ethanol conversion as also shown in Figure 4.17. The hydrogen 
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yield increased from 1.95 to 4.33 (moles H2/mole crude ethanol fed) with an increase in 

W/Fcrude-ethanol ratio from 0.22 to 0.59 h. The hydrogen selectivity also increased with 

W/Fcrude-ethanol ratio. The result was attributed to the excess water that is present in crude 

ethanol. 
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Figure 4.17: Conversion of crude ethanol and H2 selectivity and yield 
as a function of W/Fcrude-ethanol for CP15 at T = 420oC 

 
 

4.2.5 Catalyst Activity versus Time-on-Stream (TOS) Studies 
 

Catalyst activity was evaluated as a function of time-on-stream. This was 

conducted on the CP15 operating at a WHSV of 1.68h-1, reduction temperature of 

600oC and a reaction temperature of 400oC. Figure 4.18 shows the crude ethanol 

conversion as a function of time-on-stream for 11 h of experimental run. The figure 

shows an initial high activity, which dropped from 80 mol% to 70 mol % within the 
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first 3 h of run and then stabilized for the remaining 8 h. In order to determine whether 

the drop in activity was due to the conditioning of the catalyst in the reaction 

environment or due to coke formation, it was decided to perform a temperature 

programmed oxidation (TPO) analysis of the spent sample obtained from the TOS 

studies. The results obtained for TG/DTA carried out under oxidative atmosphere are 

given in Figure 4.19. The figure shows a weight loss resulting from burning off of the 

coke deposited during the TOS run. 
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Figure 4.18: Conversion of crude-ethanol as a function of time-on-
stream (min) for CP15 at T = 400oC and WHSV=1.68h-1 

 
This shows that coke deposition was the problem but appeared to have stabilized after 3 

h. In the TG/DTA profile itself, the initial step of weight reduction occurred over the 

temperature range of 100-200oC. This was ascribed to the removal of easily oxidizable 

carbonaceous species as reported by Das, (2003) and Jianjun et al. (2004). The 

oxidation of coke (carbon deposit) to CO and CO2 occurred mainly at 360oC. After 3 
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months of runs there was problem of reactor plugging. This was attributed to blockage 

due to the presence of minerals in the fermentation broth. 
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Figure 4.19: The TG/DTA profile of spent CP15 after 11 hours time-
on-stream 
 
4.3 Kinetic Studies 

Kinetic studies and development of a kinetic model for the crude ethanol 

reforming process was necessary in order to accurately design the crude ethanol 

reformer. The objective of this study was to obtain a rate equation using method of 

experimentation and analysis based on fundamental kinetic studies. This was done to 

obtain a rate equation that could readily be combined with generalized equations for 

rates of physical transport process to produce a reactor model capable of extrapolation 

over a wide range of reactor operating conditions. The derivation of this rate equation 

was based on a mechanistic description of the crude ethanol reforming process together 
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with extensive kinetic measurements. Kinetic data were obtained in a kinetic regime 

under isothermal conditions in which the flow was close to plug flow. The experimental 

data were also fitted to a power law type rate model. Results of these derivations, 

measurements and analyses are discussed in the following sections. 

4.3.1 Kinetic Data 

The experiments to collect kinetic data were conducted in a catalyst bed in 

which fluids channeling was absent. This condition was achieved by employing catalyst 

in the appropriate average size range, as well as other conditions necessary and required 

for plug flow and isothermal behavior in the reactor (as stated in section 3.4.2). The 

choice of catalyst particle size was based on the report of Idem and Bakhshi (1996). 
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Figure 4.20: Variation of crude-ethanol conversion with space-time at 
593, 693 and 793 K. 
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 The kinetic data were obtained after 3 hours time-on-stream when the catalyst 

activity was stable with time. Results for the variation of crude ethanol conversion (X) 

with ratio of weight of catalyst to crude ethanol flow rate ratio (W/FAO) at reaction 

temperatures of 593, 693, and 793 K are presented in Figure 4.20. These results show 

that the crude ethanol conversion initially increased rapidly with an increase in W/FAO. 

Further increase in W/FAO resulted in a slowing down of the corresponding increase of 

(X) for the three temperatures. These results are typical of the trend for most catalytic 

reactions where conversion depends on the amount of feed present. 

4.3.1.1 Derivation of Kinetic Models 

Rate expressions for crude ethanol reforming are not available in the literature. 

However since the stoichiometry is more familiar, the pure ethanol steam reforming 

reaction shown in Equation 4.6 was used to develop the kinetic models. There was no 

loss of accuracy by doing this since the atomic ratios indicated in Equation 4.6 were 

used just as illustrations of the presence of carbon, hydrogen and oxygen atoms in the 

organic fraction of the feed but not for any calculations. 

22262 6H2COO3HOHC +⎯→⎯+       (4.6) 

A micro reactor was used to gather the experimental data and the design equation for 

the plug flow reactor was therefore applicable for data analysis. This was used in the 

differential form: 

A
AO

r
)d(W/F

dX
=         (4.7) 
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Slopes (i.e. 
)d(W/F

dX

AO

) were taken at various points of the X vs. W/FAo curves within 

the range of the operating conditions to obtain kinetic data for the three temperatures in 

order to determine experimental rates described in Equation 4.7. The kinetics 

experimental data for catalytic reforming of crude ethanol are shown in appendix D, 

Table D-1. 

4.3.1.2 Rate Equation Based on Eley-Rideal Mechanism 

After eliminating the influence of film and pore diffusion, three basic steps 

based on Eley Rideal mechanism were used in the derivation of the mechanistic type 

rate equations. Step one is the adsorption of crude ethanol on the catalyst surface, step 

two is the interaction of the adsorbed crude ethanol with an adjacent vacant site while 

step three involves two surface reactions. Four rate expressions, representing four 

possible rate controlling steps assumed, were derived. These are given in Equations 4.8, 

4.9, 4.10 and 4.11 for mechanism in which the rate determining steps (RDS) were 

assumed to be adsorption of crude ethanol (model # 1), the dissociation of adsorbed 

crude ethanol (model # 2), surface reaction of adsorbed oxygenated hydrocarbon 

fraction with non-adsorbed water vapor (model # 3), and surface reaction of adsorbed 

hydrocarbon fraction with non-adsorbed water vapor (model # 4) respectively. 
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where rA is the rate of crude-ethanol conversion (kmol-crude/kg-cat s), ko is the 

collision frequency (kg-cat s)-1, E is the activation energy (kJ/kmol), T is the absolute 

temperature (K), R is the Universal gas constant (kJ/kmol-K), Kp is the thermodynamic 

equilibrium constant, AOHC =62 , , **
4 AOCH = BOH =2 , , **

2 SCH = CCO =2  and 

,  = coefficient of term i in the denominator. Details concerning these 

derivations are given in Appendix E. 

DH =2 iK

4.3.1.3 Power Law Model 

The power law model was also used to fit the experimental data. The model is of 
the form given in Equation 4.12. 

n
ART

E

oA Cekr −=                   (4.12) 

where n, is the order of reaction with respect to crude-ethanol. This form of the power 

law model (i.e. no terms involving the concentrations of H2O and the products, H2 and 
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CO2) was adopted because H2O was present in a large excess as compared to the 

combined concentration of the organic components of the crude, CA, and because the 

reaction was more or less irreversible within the temperature range used in the kinetic 

studies. 

4.3.1.4: Estimation of the parameters of rate models  

The values of the parameters of the mechanism based rate models (Equations 

4.8, 4.9, 4.10 and 4.11) as well as the model based on power-law (Equation 4.12) were 

estimated by using a nonlinear regression procedure according to the modified 

Levenberg-Marquardt algorithm, which is documented in IMSL MATH/library (1994). 

These rate equations were rewritten in terms of molar rates, N , in kmol/s as in 

Equations 4.13 to 4.17. 
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n
ART

E

oA Nekr −=                    (4.17) 

The subroutine called DBCLSF documented in the IMSL MATH/library (1994) was 

used to obtain the optimum fitting parameters, because this algorithm was proven to be 

very efficient in estimating the mass transfer parameters, as reported elsewhere Ji et al. 

(1999). The values obtained for the kinetics parameters are presented in Table 4.5. 

Table 4.5. Fitted values of kinetics parameters  

 

Parameter Model # 1 
 

Model # 2 
 

Model # 3 
 

Model # 4 
 

Power Law 
 

k0 8.91  10× 
2 2.08 × 103 1.31 × 1014 2.75 × 10-2 3.12 × 10-2

E 4.03 × 103 4.43 × 103 3.55 × 103 7.56 × 103 4.41 × 103

KA - 3.83 × 107 1.00 × 1020 2.27 × 1014 - 
KE 0.0 - - - - 
KF 0.0 0.0 - 1.00 × 1020 - 
KG 0.0 0.0 0.0  - 
KH - - - 0.0 - 
KQ - - 3.66 × 1012 - - 
n - - - - 0.43 

4.3.2 Determination of the most realistic rate model  

Figure 4.21 represents the comparison of measured rates and predicted rates 

using rate models of Equations 4.13 to 4.17. A close look at this parity chart shows that 

models 1 and 4 did not yield satisfactory results (with average absolute deviation, 

AAD%, greater than 20%) whereas models 2 and 3 as well as the power law model 

produced satisfactory results (AAD < 11%). In fact, model 2 in particular yielded 
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excellent results with AAD% equal to 6%. Results of close inspection of both the parity 

rates chart (Figure 4.21) and the estimates of the values of the parameters (Table 4.5) in 

order to elucidate the circumstances behind the behavior of each model in fitting the 

kinetic data were discussed below. 
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Figure 4.21. A comparison of measured and predicted rates within the 
temperature range 593 to 793 K. 
 
4.3.2.1. Assumption of adsorption of crude ethanol on an active site as 

the rate-determining step (RDS) 
 

Considering the estimated values of the parameters as well as the values of the 

thermodynamic equilibrium constant, the rate model based on the assumption of 

adsorption of crude ethanol on an active site as the rate-determining step reduces to:  
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][Nekr A
E/RT

0A
−=                    (4.18) 

Equation 4.18 is very similar to the Power Law model except that the former has an 

order of reaction of unity whereas the Power law model has an order of reaction of 0.43. 

Even though they both have about the same activation energies, the Power law with an 

ADD% of 4.5% provides a better correlation of the kinetic data as compared with 

model # 1 represented in Equation 4.8, 4.13 or 4.18 as shown in Figure 4.21. This 

shows that the rate dependence of the concentration of crude ethanol was not accurately 

described by Equation 4.18 this led to rejection of the assumption of the adsorption of 

crude ethanol on an active site as the rate determining mechanism for the reforming of 

crude ethanol. 

4.3.2.2. Assumption of dissociation of adsorbed crude ethanol as the 
RDS 

 
By considering the estimated values of the parameters as well as the values of 

the thermodynamic equilibrium constant, the rate model based on the assumption of 

dissociation of adsorbed crude ethanol on an active site as the rate-determining step 

reduces to: 

2
AA

A
E/RT

0
A ]NK[1

Nek
r

+
=

−

                   (4.19) 

This model has an ADD% of 6.0%, which is very close to that provided by the 

Power law model. Also, the activation energy derived from this model is almost 

identical to that obtained from the Power law model. These indicate that the assumption 

of dissociation of adsorbed crude ethanol as the RDS may be justified. If this is the case, 
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it is because the constraint of requiring two active sites to be available before the 

reaction can proceed as imposed in this assumption is more stringent as compared with 

the previous assumption of the adsorption of crude ethanol on an active site. This results 

in the dissociation of adsorbed crude ethanol taking a much longer time frame as 

compared with the adsorption of crude ethanol on an active site. However, before it can 

be concluded that this step is indeed the true rate determining mechanism, there is need 

to evaluate and then reject the models that are based on assuming the last two surface 

reaction steps as the RDS. 

4.3.2.3. Assumption of reaction of adsorbed oxygenated hydrocarbon 
fraction with non-absorbed steam as RDS 

 
By imposing the values of the constants from Table 4.5, the model based on 

assumption of the surface reaction between adsorbed oxygenated hydrocarbon fraction 

with non-absorbed steam as RDS reduces to Equation 4.20. 
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This model has an ADD% of 11%, which makes it reasonable to be included as 

one of the mechanistic based models. However, a comparison of the activation energies 

between the Power law model and this model shows a significant difference. Based on 

this large difference, it can be conclude that the model based on Equation 4.20 deviates 

from the mechanism that is illustrated in the Power law model whereas the model based 

on Equation 4.19 provides a more realistic mechanism for the reforming of crude 

ethanol than that base on Equation 4.20. 
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4.3.2.4. Assumption of reaction of adsorbed hydrocarbon fraction with 
non-absorbed steam as the RDS 

 
In this case, a consideration of the values of the estimated parameters as given in 

Table 4.5 reduces the model to Equation 4.21. 
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This model produced a very large ADD and the activation energy obtained is by far 

much different compare with one obtained for the Power law model. Thus, this model 

can be readily rejected as it does not represent a realistic mechanism for the reforming 

of crude ethanol. Consequently, Equation 4.19 appears to be the only model that 

represents the most realistic mechanism for the reforming of crude ethanol. 

4.4 Reactor Modeling 

 The reactor modeling was carried out as part of this research by developing 

system of partial differential equations to describe the reactor system. The model was 

based on the coupling of mass and energy equation as well as the kinetic model 

developed for this process. The model was used to verify the assumption of plug flow 

behavior of the process and also to accurately predict the concentration profiles of all 

chemical species and temperature profiles of the fluid in both the axial and radial 

directions. 

The model is based on the steady state mass and energy balances (Equations 

4.22 and 4.23, respectively) around the reactor as reported by Bird et al. (2002). The 
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geometry of the packed bed tubular (PBTR) depicted in Figure 4.22, represents a 

schematic diagram of the catalytic packed bed tubular reactor used in the experimental 

work, the model equations can be presented in cylindrical coordinates for z components 

as in Equations 4.22 and 4.23. 
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where Dz and Dr respectively denote the effective diffusivity in axial and radial 

directions, zλ  and rλ  respectively denote effective thermal conductivity in axial and 

radial directions, v denotes velocity,  denotes concentration of each chemical 

species, 

iC

Bρ  denotes the catalyst bulk density, rj denotes reaction rate (noting that if the 

diffusant is being consumed by the reaction, rj is negative in these equations otherwise 

it is positive), gρ  denotes gas density, Cp denotes heat capacity, T denotes temperature, 

and H∆  denotes heat of reaction. The initial and boundary conditions for the steady 

state mass and energy balance equations (Equations 4.22 and 4.23) in the case of using 

the packed bed tubular reactor (PBTR) that shown in figure 4.22 are as follows: 

0)0,( ii CrC =       at z = 0 and  0)0,( TrT = 10 rr ≤≤

0),0( =
∂

∂
z

r
Ci   0),0( =

∂
∂ z

r
T     at r = 0 and  Lz ≤≤0

0),( 1 =
∂

∂
zr

r
Ci  )(),( 211 TTUzr

r
T

TWr −=
∂
∂

− λ  at r = r1 and Lz ≤≤0  

where UTW denotes overall heat transfer coefficient across the tube wall and the 

superscript 0 denotes the inlet conditions. 
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Figure 4.22. A schematic diagram of the packed bed tubular reactor 
(PBTR). 

 

Regarding the boundary conditions at the outlet of the reactor (at z = L and 

), it can be assumed that the convective part of the mass and heat transport 

vector dominates. The finite element method was used to solve the partial differential 

equations (Equations 4.22 and 4.23) subject to these initial and boundary conditions. It 

is important to note that these numerical model equations were solved without any 

10 rr ≤≤
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simplifying assumptions such as eliminating the axial dispersion term or the cylindrical 

coordinates. 

4.4.1. Numerical Model Predictive Performance 

The simulation and experimental results are given in the parity chart of Figure 

4.23, which compares the experimental conversions of crude ethanol with those 

predicted by solving the partial differential equations 4.22 and 4.23 subject to the initial 

and boundary conditions and using the rate model given in Equation 4.14. 
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Figure 4.23: Comparison of measured and predicted crude ethanol 
conversion within the temperature range from 593 to 793 K and 
WHSV range from 1.68h-1 to 4.62h-1
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This figure shows very good predictive ability of the numerical model 

(Equations 4.22 and 4.23) with an average absolute deviation from the experimental 

data of 15%. It is important to note that the numerical solutions were arrived at without 

any simplifying assumptions, unlike what is obtained in some literature where the axial 

dispersion term is eliminated in order to simplify the solution of the partial differential 

equations. 

4.4.2 Verification of Plug Flow Behavior 

In performing the experiments to obtain kinetic data, the assumption was made 

that plug flow behavior was attained under the operating conditions. 
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Figure 4.24: Radial mole fraction profiles of crude ethanol at various 
catalyst bed depths in the tubular reactor at inlet temperature of 593 K 
and W/FA0 of 2016 kg-cat s/kg-crude  
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With plug flow behavior, isothermalilty as well as flat concentration profiles for all the 

species were assumed. The model was used to examine whether this assumption was 

justified with particular reference to reactor bed height and internal diameter. Typical 

results for the concentration and temperature profiles in the radial direction within the 

range of conditions used for obtaining kinetic data are shown in Figures 4.24 and 4.25, 

respectively at different depths of the catalyst bed. As seen in the figures, somewhat 

isothermal behavior and plug flow behavior were attained. 
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Figure 4.25: Radial temperature profiles of fluid at various catalyst 
bed depths in the tubular reactor at W/FA0 of 2016 kg-cat s/kg-crude. 
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4.4.3: Simulation of Concentration Profiles of Chemical Species along 
the Reactor Length 

 
 The concentration profiles of all the species along the reactor were also 

simulated using the solution of the numerical model subject to the initial and boundary 

conditions in conjunction with the kinetic model. Typical profiles for crude ethanol feed 

temperature of 593 K and W/FA0 of 2016 kg-cat s/kg-crude ethanol is shown in Figure 

4.26. The exit concentrations based on the solution of the numerical model for the 

production of hydrogen from the reforming of crude ethanol for all the species for this 

run were compared with the corresponding concentrations obtained experimentally by 

GC and HPLC analyses. The results are given in Table 4.6. There is excellent 

agreement between the predicted and experimental results with an average absolute 

deviation (AAD%) of 6.2%. 

 
Table 4.6: Outlet concentration profiles of the reactor at feed 
temperature of 593 K and W/FA0 of 2016 kg-cat s/kg-crude 
 

Fluid Measured mole 
fraction 

Predicted mole fraction AAD% 

Crude ethanol 0.029 0.028 3.45 
Water 0.805 0.822 2.11 
CO2, CO, CH4, etc. 0.043 0.039 9.30 
Hydrogen 0.123 0.111 9.76 

                                                                               AAD% 6.15 
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Figure 4.26: Concentration profiles along the reactor at a feed 
temperature of 593 K and W/FA0 of 2016 kg-cat s/kg-crude 
 
4.4.4. Effect of the Axial Dispersion Term 

 The numerical model was used to determine the possible effects of neglecting 

axial dispersion as well as the conditions in which it is not appropriate to assume plug 

flow behavior. The simulated results in the case of neglecting or not neglecting axial 

dispersion are shown in Figures 4.27 and 4.28 in terms of the radial conversion profile 
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of crude ethanol and the radial temperature profile of the fluid in the reactor, 

respectively. The results exhibit more or less plug flow and isothermal behaviors. 

However, the results show that by neglecting the axial dispersion term, the crude 

ethanol conversion is under predicted (Figure 4.27), and the extent of under prediction 
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Figure 4.27. Effect of axial dispersion term on the crude ethanol 
conversion profile at a depth of 30 mm from the top of the catalyst bed 
at a feed temperature of 593 K and W/FA0 of 2016 kg-cat s/kg-crude 
 
depends on the ratio of the velocity to the diffusivity (vz/Dz) with a lower vz/Dz ratio 

resulting in a lower prediction. Similar behavior and discussion is applied to the 

reaction temperature shown in Figure 4.28. The slightly lower temperature shown in the 

center of the reactor is due to the endothermic nature of the reaction. 
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Figure 4.28. Effect of axial dispersion term on the temperature profile 
at a depth of 30 mm from the top of the catalyst bed at a feed 
temperature of 593 K and W/FA0 of 2016 kg-cat s/kg-crude 
 
4.4.5: Simulation of Effect of Reactor Length and W/FA0  

In some instances, the objective of a process may be to enhance the performance 

of the reactor in a given process. Such an enhancement may be achieved by an increase 

in the length of the catalyst bed or increase in W/FA0 ratio both of which result in an 

increase in the residence time of the feed in the reactor. The first effect was simulated 

by increasing the catalyst bed length from 0.05 m to 0.2 m at temperatures in the range 

of 373-873 K. 

The results are shown in Figure 4.29 for a fixed W/FA0 ratio of 2000 s for this 

range of temperatures. These results show that even though there are some benefits to 

be derived by increasing the length of the catalyst bed, these benefits however diminish 

as the reaction temperature increases. In fact, at the highest temperatures used, the 
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benefit is so insignificant that the reaction is more or less completed after a catalyst bed 

length of about 0.15 m so that the extra length of catalyst bed beyond 0.15 m is not 

utilized. At the lower temperature (373 K), there is no additional conversion beyond 0.2 

m. This is attributed to the higher degree of reversibility of the reaction at this 

temperature. Thus, irrespective of the temperature, the benefit of an increase in length is 

limited  
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Figure 4.29: Effect of catalyst bed length on crude ethanol conversion 
at various feed temperatures and W/FA0 of 2000 s. 
 

The corresponding axial temperature profile for a run conducted at W/FA0 = 2016 kg-cat 

s/kg-crude and inlet feed temperature of 593 K is shown in Figure 4.30. This figure 

shows a rapid drop in temperature at the top of the catalyst bed, which become slower 

after 20 mm depth as the feed progressed towards the bottom of the catalyst bed. This is 
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a reflection of a slowing down of the reaction (crude ethanol conversion) as shown in 

Figure 4.29, and consequently, a lesser endothermic demand for heat supply as the 

reaction mixture progresses towards the bottom of the catalyst bed. 
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Figure 4.30: Axial temperature profile of the fluid along the center of 
the tubular reactor. at W/FA0 of 2016 kg-cat s/kg-crude and inlet feed 
temperature of 593 K 
 

In the case of a change in W/FA0 ratio, the results are given in Figure 4.31 for a fixed 

catalyst bed length of 0.53 m and temperature of 693 K for W/FA0 in the range of 1000 

to 16000 s. The results show that the benefit is huge (i.e. linear increase in the 

conversion of crude ethanol with W/FA0) for the lower W/FA0 values. However, as the 

W/FA0 values increase (i.e. extremely low flow rates), the beneficial effects start to 

diminish. The effects of both the increase in catalyst bed length and the W/FA0 ratio on 

crude ethanol conversion demonstrate that there are limits as to how much 
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enhancements could be achieved without modifying the activity of the catalyst to 

provide for higher activity. However, it points to the region where we can maximize the 

gains by optimizing the relevant parameters for increasing the production of hydrogen 

by the reforming of crude ethanol. 
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Figure 4.31: Effect of W/FA0 on crude ethanol conversion in the axial 
direction at 693 K 
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5.0 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 
 
1 As a result of the type of species generated by the preparation method, the PT 

catalysts were more reducible than the CP and IM catalysts. 

2 Catalysts prepared by precipitation generally exhibited lower crystallite sizes of 

NiO species than the corresponding catalysts prepared by coprecipitation. The 

catalysts prepared by impregnation had the largest crystallite sizes except IM10 

which had the smallest crystallite size. 

3 A combination of small crystallite size and higher reducibility for PT catalysts 

resulted in higher crude ethanol conversions for the PT catalysts. These 

conversions were followed by those of the CP catalysts, which had slightly 

bigger crystallite sizes but lower reducibility. The IM catalysts exhibited the 

lowest crude ethanol conversions because of larger crystallite sizes and lower 

reducibility.  

4 Catalysts with 15% Ni loading gave the best crude ethanol conversions for each 

method of synthesis with PT15 (catalyst with 15% Ni loading prepared by 

precipitation) giving the best overall crude ethanol conversion of 85mol%. This 

was attributed to small crystallite size and high reducibility of PT15 as 

compared to CP15 and IM15. 
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5 The precipitation method resulted in NiO as the dominant species in the catalysts 

whereas NiAl2O4 was a major species in catalysts prepared by the coprecipitation 

and impregnation methods.  

6 In terms of H2 yield, CP15 gave the highest yield as compared to corresponding 

catalysts prepared by precipitation and impregnation. 

7 Coking was observed at the onset of the reaction but stabilized after 180 min 

time-on-stream. 

8 A new kinetic model was developed to describe the experimental kinetics data. 

This was an Eley-Rideal type rate model based on the assumption of dissociative 

adsorption of crude ethanol on active sites as the rate-determining step. The 

average absolute deviation from the experimental rate was 6% 

9 The kinetics model compared well with an empirical power-law rate model, which 

had an average absolute deviation of 4.5% from the experimental rate 

10 A comprehensive model for the design and simulation of packed bed tubular 

reactors was developed. 

5.2 Recommendation 
 

1 The effects of higher reduction temperatures on crude ethanol conversion should 

be studied on catalyst CP15. 

2 Modification of catalyst support by using CeO2-ZrO2 mixed oxides should be 

investigated, this is because CeO2-ZrO2 limits carbon deposition due to its redox 

properties and also promotes metal activity. 

3 Effect of addition of oxygen to the reaction mixture in order to minimize coke 

formation should be investigated. 
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4 Quantitative and qualitative analysis of coke formation to evaluate the amount and 

type of coke formed by the catalyst should be done. 
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7.0 APPENDICES 

Appendix-A: Energy Efficiency 
 

The thermodynamics studies of Garcia and Laborde (1991), Vasudeva et al. 

(1996) and Freni et al. (1996) showed that high temperatures (above 300oC) favored the 

production of hydrogen in a steam reforming reaction. Also, it is well documented in 

the literature as shown in section 2.5 that steam reforming reactions have been carried 

out at temperatures ≥ 300oC. In some cases temperatures as high as 700oC have been 

used. Thus, irrespective of the type of feed material used, a relatively high temperature 

is required for the reaction. However the unique advantage of this process in terms of 

energy savings is that it eliminates the energy intensive distillation process involved 

during production of pure ethanol. 

Evaluating the energy efficiency of this process involves a comparison of the 

amount of useful energy obtained when a fixed amount of crude ethanol is used to 

produce hydrogen for fuel cell to run an automobile, with the amount of useful energy 

obtained when pure ethanol is used as direct combustion fuel in an automobile. 

Calculation of chemical energies of ethanol and hydrogen 

The chemical energy store in ethanol and hydrogen is regarded as the enthalpy 

of combustion; this can be calculated as follows: 

Combustion of ethanol:           A-1 O3H2CO 3O OHHC 2 2252 +⎯→⎯+
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Enthalpy of combustion = )H( R∆ reactant),Hproduct,(H ff −∑          A-2 

Table A-1: Heat of formation of gases 
 (kJ/mol) Hf  

H2 0 

O2 0 

CO2 -393.5 

H2O -241.83 

C2H5OH -235.31 

 

Density of hydrogen = 8.5×10-5g/mL 

From Equation A-2, 

Enthalpy of combustion of ethanol )H( R∆  =          A-3  ) H(1-) H 3H(2 e
f

w
f

c
f ×+×

= -235.31)(1--241.83))(3393.5)((2 ××+−×  

        = -1277.18 kJ/mol of ethanol 

   = )H( R∆  = 1277.18 kJ/mol of ethanol 

Or         = -27.76kJ/g of ethanol 

Where superscript c, w, and e indicate carbon dioxide, water and ethanol respectively. 

Similarly, 

Combustion of hydrogen   OH     O21 H 22 2 ⎯→⎯+          A-4 

Enthalpy of combustion  = (  )H( R∆ )0()H w
f −

      = 83.241− kJ/mol H2 = -10.28 kJ/LH2 

= )H( R∆  = -10.28 kJ/LH2

 104



Heat conversion efficiency 

If 1 litre of pure ethanol is used directly as a fuel (heat engine) in a car, only 

about 20% of the chemical energy stored in ethanol can be converted to useful 

mechanical work. If the same amount of ethanol is converted to hydrogen to run a fuel 

cell, about 60% of the stored chemical energy in hydrogen can be converted to electrical 

energy (Sorcha, 2003). 

Mechanical work output by heat engine 

Basis: 1 litre (1000mL) of ethanol  

  Chemical/Heat energy available (∆ ) = H
g

27.76kJ-
mL

0.791g1000mL ××  

            = -21916.94kJ 

with only about 20% efficiency, the useful work output  

            = 0.2 ×  -21916.94kJ = -4392.39kJ         A-5 

Electrical work output by fuel cell  

Pure ethanol as source of hydrogen 

 Number of moles of 1 litre ethanol   = 
46g

1mole
mL

0.791g1000mL ××  

 
        = 17.2mol 
 
 Theoretical number of moles of H2 that can be produced from 1 litre of ethanol 
 
        = 6 ×  17.2 = 103.17 mol 
 
 Assuming 90% H2 yield by steam reforming reaction 
 
      = 103.17mol ×  0.9 = 92.85 moles of H2 
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 The volume of H2 produced at ideal state       = 
mol

22.4L  92.85mol×  

 
        = 2079.84 L 
 

 The energy available ∆  = H
L

10.28kJ-   L 2079.84 ×  

      = -21380.86 kJ 

with only 60% efficiency, the useful electrical work output; 
      = 0.6 ×  -21380.86 = -12828.52 kJ         A-6 
 
Crude ethanol as source of hydrogen 
 
Fermentation broth (from feedstock analysis) contains 12%v/v ethanol. 
 
Amount of fermentation broth that will provide 1 liter of ethanol = 1/0.12=8.333Liter of 

feedstock. 

From reforming experiments (Run # 12) 
 
  13.2*10-3 L (fermentation broth feedstock) produced 0.149moles H2
 
   8.33 L (fermentation broth feedstock) will produce  
 

028.94149.0*
10*2.13

33.8
3 =−  moles of H2

 
The volume of H2 (assume ideal state) produced is therefore; 

     = 94.028 moles ×  22.4Liter/mole 
 
     = 2106.23L 

Heat energy available = -10.28 kJ/LH2 ×2106.23L H2 

        = -21652.04 kJ 

with about 60% efficiency, the useful electrical work output   

 = 0.6×  -21652.04 kJ 

     = -12991.22 kJ       (A-7) 
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A close look at Equations A-5, A-6 and A-7 show that effective energy output is 

much greater in fuel cell system when used as source of energy than the heat engine, 

due to the higher energy conversion advantage of the fuel cell. This implies that when 

equal amounts of ethanol are used as a direct fuel for automobile or reformed to 

produce H2 for fuel cells to run automobile, the overall energy is enhanced in the latter 

than the former. 
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Appendix-B: Calculations of Equilibrium Conversion 

The basic steam reforming reaction of ethanol will be used to evaluate the 

equilibrium conversion of this process. 

The reaction is:  
 

C2H5OH + 3H2O = 6H2 + 2CO2      (B-1) 
at 673K  

 
 
Thermodynamic data, Smith et al. (1996) 

  A B C D 
Hf (kJ / 
mol) 

Gf (kJ / 
mol) 

H2 3.249 4.22E-04 0.00E+00 8.30E+03 0.00E+00 0.00E+00 

CO2 5.457 1.05E-03 0.00E+00 -1.16E+05 -3.94E+02 -3.94E+02 

H2O 3.47 1.45E-03 0.00E+00 1.21E+04 -2.86E+05 -2.37E+02 

C2H5OH 3.518 2.00E-02 -6.00E-06 0.00E+00 -2.35E+05 -1.68E+02 
 
 
Where ∆ = 6 * (H2) + 2 * (CO2) – (C2H5OH) – 3 * (H2O) 
 
 

  ∆A ∆B ∆C ∆D ∆H0 (kJ/ 
/mol) 

∆G0 (kJ / 
mol) 

H2

CO2

H2O 
C2H5OH 

16.48 -1.973E-02 6.002E-06 2.179E+05 305.572 91.159 

 
 

Step 1: Calculation of thermodynamic equilibrium constant Kp 

Kp, the thermodynamic equilibrium constant is a function of temperature and 

can be obtained from the Gibb’s free energy as follows, 

    RTGKp /)ln( ∆=− ,     (B-2) 

this can also be expressed as  
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-ln (KP) = /RT = ( -  )/ RT0G∆ 0
0G∆ 0

0H∆ 0 +   / RT + 1/T  dT - 

dT     (Smith, 1996)              (B-3) 

0
0H∆ ∫ ∆

T

To
p RC /0

∫ ∆
T

To
RTpC /0

Where, ∆H 0 and ∆G0 are enthalpy and Gibbs energy of formation respectively in 
kJ/mol.  
 
Cp / R = A + BT +CT2 – DT-2       T in Kelvin from T =298 to Tmax 
 
So, ∆Cp / R = ∆A + ∆ BT + ∆CT2 – ∆DT-2 

 
Now, 
 

∫ ∆
T

To
p RC /0 dT = dT = [16.48 - 1.973E-02 T + 6.002E-06 T∫ ∆

673

298

0 / RC p ∫
673

298
2 -2.179E+05 T-2] dT 

 
  = 2587.9                             (B-4) 
 
and 
 

∫ ∆
673

298

0 / RTpC dT = [16.48 - 1.973E-02 T + 6.002E-06 T∫
673

298
2 -2.179E+05 T-2]/T dT 

 
           = 6.03                       (B-5) 
 
  
Solving equation (B-3), we get 

Kp= 6.52*1014 

Step 2: Calculations of mole fraction in the product mixture 

The equilibrium expression is as given in equation B-6, 
 
        (B-6) P

vOv

i
ii KPPy i −=∏ )/()( ϕ

  
[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] P
vO

OHOHOHHCOHHC

COCOHH KPP
yy

yy −= )/(
***

***
3

2
3

25252

2
2

2
2

6
2

6
2

ϕϕ
ϕϕ

               (B-7) 

 
Where, 

iϕ  = activity coefficient of species i 
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iy  = mole fraction of species i 
ϕ = exp [ Pr / Tr (β0 + ωβ1)] 
 
β0 = 0.083 – 0.422 / (Tr)1.6

and  
β1 = 0.139 – 0.172 / (Tr)4.2

 
ν = νH2 + νCO2 - νC2H5OH - ν H2O = 6 + 2 – 1 – 3 = 4 

Thermodynamic data, Smith et al.(1996) 
  ω Tc (K) Pc (bar) Tr Pr βo β1 ϕ 
                  
H2 -2.16E-01 3.32E+01 1.31E+01 1.79E+01 8.38E-02 7.88E-02 1.39E-01 1.00E+00 
CO2 2.24E-01 3.04E+02 7.38E+01 1.95E+00 1.49E-02 -6.20E-02 1.29E-01 1.00E+00 
H2O 3.45E-01 6.47E+02 2.21E+02 9.17E-01 4.99E-03 -4.02E-01 -1.09E-01 9.98E-01 
C2H5OH 6.45E-01 5.14E+02 6.15E+01 1.15E+00 1.79E-02 -2.52E-01 4.48E-02 9.97E-01 

 
P = Operating pressure, 1.00 bar 
 
PO = Standard-state pressure, 1.00 bar 
 
T = 673.0 K 
 
Solving equation (B-6): 
 

[ ] [ ]
[ ][ ]

K
yy

yy

OHOHHC

COH *)9886(.3
252

2
2

6
2 =                      (B-8) 

 
Let the equilibrium reaction coefficient be Ce
Total moles at any time = 1 + 3 + 0 + 0 - Ce – 3Ce + 6Ce + 2Ce = 4 + 4Ce
 
yH2 = 6Ce / (4 + 4Ce)  
 
yCO2 = 2Ce / (4 + 4Ce)  
 
yH2O = (3 – 3Ce) / (4 + 4Ce)  
 
yC2H5OH = (1 -Ce) / (4 + 4Cεe)  
 
Replacing these values in equation (B-7) and simplifying, we get: 

Kp
CeCe

Ce *9886.0
)1()1(

27
44

8

=
−+

                  (B-9) 

by further simplification we obtained 
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448 )1(*)1( −− +− eee CCC -2.41*1013 =0               (B-10) 

Equation (B-10) could not be solved at high temperature (673K), however the solutions 

at lower temperatures 495K and 520K were as follows: 

 
For T = 495 K, Ce = 0.96 
 
For T = 520K, Ce = 0.98 
 
The value of Ce increases with temperature as expected for an endothermic reaction, it 

can be concluded that Ce approaches unity as the reaction temperature increases up to 

673 K. 
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Appendix C: HPLC Calibration Curves for the Feed Crude 
ethanol and Liquid Condensate  
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Figure C1: HPLC Calibration curve for glycerol 
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Figure C2: HPLC Calibration curve for lactic acid 
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Figure C3: HPLC Calibration curve for maltose 
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Figure C4: HPLC Calibration curve for ethanol 
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Figure C5: Feed pump calibration 
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Appendix D: kinetic Data 
 

Table D-1. Kinetics experimental data. 

 

T 
(K) 

Rate of 
reaction 
(kmol-

crude/kg-cat s) 

NA
(kmole/s) 

NB
(kmole/s) 

NC
(kmole/s) 

ND
(kmole/s) 

KP
 

Run  
# 

593 3.03286E-06 5.70596E-09 1.57331E-07 8.40614E-09 2.40685E-08 2.45431E+11 1 
593 3.38489E-06 6.96321E-09 1.81138E-07 8.66974E-09 2.48233E-08 2.45431E+11 2 
593 3.8669E-06 8.43861E-09 2.0793E-07 8.81142E-09 2.52289E-08 2.45431E+11 3 
593 4.51138E-06 1.03925E-08 2.4341E-07 8.99906E-09 2.57662E-08 2.45431E+11 4 
593 5.41583E-06 1.64558E-08 3.51408E-07 9.27356E-09 2.65521E-08 2.45431E+11 5 
693 3.8669E-06 5.02195E-09 1.57821E-07 1.0229E-08 2.92878E-08 3.36674E+15 6 
693 4.73885E-06 6.94639E-09 1.91534E-07 1.02336E-08 2.93008E-08 3.36674E+15 7 
693 4.87424E-06 9.80704E-09 2.41648E-07 1.02403E-08 2.93201E-08 3.36674E+15 8 
693 5.41583E-06 1.27534E-08 2.91574E-07 1.00001E-08 2.86323E-08 3.36674E+15 9 
693 6.31485E-06 1.73306E-08 3.66116E-07 9.18524E-09 2.62993E-08 3.36674E+15 10 
793 4.06187E-06 5.11495E-09 1.60744E-07 1.04184E-08 2.98302E-08 4.45742E+18 11 
793 4.64136E-06 6.56813E-09 1.86765E-07 1.05044E-08 3.00763E-08 4.45742E+18 12 
793 4.73885E-06 8.52993E-09 2.21894E-07 1.06204E-08 3.04085E-08 4.45742E+18 13 
793 5.41583E-06 1.20164E-08 2.81443E-07 1.04052E-08 2.97921E-08 4.45742E+18 14 
793 6.76978E-06 1.62475E-08 3.50781E-07 9.71516E-09 2.78165E-08 4.45742E+18 15 
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Appendix E: Derivation of Eley-Rideal Rate Expressions 
for Crude Ethanol Reforming 

 
Since the stoichiometry is more familiar, the pure ethanol steam reforming 

reaction shown in Equation E-1 was used to develop the kinetic models. There was no 

loss of accuracy by doing this since the atomic ratios indicated in Equation E-1 were 

used just as illustrations of the presence of carbon, hydrogen and oxygen atoms in the 

organic fraction of the feed but not for any calculations. 

22262 6H2COO3HOHC +⎯→⎯+                 (E-1) 

Three basic steps based on Eley-Rideal mechanism were used in the derivation of the 

mechanistic type rate equations with the assumption that intrinsic data were collected, 

and as such, mass and heat transfer limitations were absent: step one is the adsorption of 

crude ethanol on the catalyst surface, step two is the interaction of the adsorbed crude-

ethanol with an adjacent vacant site while step three involves two surface reactions. The 

mechanism is as given in Equations (E-2) to (E-5). 

Adsorption of crude ethanol on an active site: 

O(a)HC(a)OHC 62
k

62
11,⎯⎯ →←+ −                 (E-2) 

Dissociation of adsorbed crude ethanol into hydrocarbon and oxygenated hydrocarbon 

fractions: 

(a)CH(a)OCH(a)O(a)HC *
2

*
4

k
62

22, +⎯⎯ →←+ −                          (E-3) 

Surface reaction of adsorbed oxygenated hydrocarbon fraction with non-adsorbed water 

vapor: 
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(a)3HCOO(g)H(a)OCH 22
k

2
*

4
33, ++⎯⎯ →←+ −               (E-4) 

Surface reaction of adsorbed hydrocarbon fraction with non-adsorbed water vapor: 

(a)3HCOO(g)2H(a)CH 22
k

2
*

2
44, ++⎯⎯ →←+ −                 (E-5) 

where (a) represents an active site, ki represents the forward reaction rate constant for 

reaction i, and k-i represents the backward reaction rate constant for reaction i. 

Let , , AOHC 62 = **
4 AOCH = BOH2 = , , **

2 SCH = CCO2 =  and  DH2 =

Then the equilibrium relations for the above reaction can be given as in 

Equations E-6 to E-9. 

(a)A

A(a)
1 CC

C
K =                    (E-6) 

(a)A(a)

(a)S(a)A
2 CC

CC
K

**
=                   (E-7) 

B(a)A

(a)
3

DC
3 CC

CCC
K

*

=                   (E-8) 

2
B(a)S

(a)
3

DC
4 CC

CCC
K

*

=                   (E-9) 

where i
i

i K
k
k

=
−

 = equilibrium constant for reaction i. 

Four cases of possible rate controlling mechanisms were evaluated. In the first 

case (i.e. formulation of model #1), adsorption of crude-ethanol (Equation E-2), is 
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assumed as the rate-determining step (RDS). The rate of reaction for this case can be 

written as Equation E-10. 

A(a)1(a)A1A CkCCkr −−=               (E-10) 

Using Equations E-7-E-9 to eliminate the unknown quantity, , and factorizing we 

obtain 

)(aAC

]
CKKKK

CC[CCkr 3
B4321

6
D

2
C

A(a)1A −=               (E-11) 

where 

A(a)C  = Concentration of A on an active site 

*(a)AC  = Concentration of intermediate A, adsorbed on an active site  

(a)C  = Concentration of unoccupied active sites, 

*S
C  = Concentration of intermediate S, adsorbed on an active site  

CBA C,C,C , are concentrations of A, B and C, respectively in kmoles 

P4321 KKKKK =  , the thermodynamic equilibrium constant. 

The only immeasurable quantity at this point is . This can be eliminated as follows: 

If we let be the total number of sites available on the catalyst whether occupied by 

adsorbed species or not, then 

)(aC

tC

(a)S(a)AA(a)(a)t ** CCCCC +++=                 (E-12) 

where, 
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(a)C   = unoccupied sites 

A(a)C  = site occupied by A 

(a)A*C  = site occupied by A* 

(a)S*C  = site occupied by S* 

Using the equilibrium relations to eliminate the last three terms of Equation E-12 we 

obtain: 

(a)3
B432

6
D

2
C

(a)2
B4

3
DC

(a)
B3

3
DC

(a)t C
CKKK

CCC
CK
CC

C
CK
CC

CC +++=             (E13) 

]
C

CCK
C

CCK
C

CCK
[1

C
C

3
B

6
D

2
CE

2
B

3
DCG

3

B

DCF

t
(a)

+++

=               (E-14) 

Let , , 1A KK = 3F 1/KK = 321H KKKK = , 4G 1/KK = , 421Q KKKK = and 

. 432E KK1/KK =

On substituting Equation E-14 into E-11, we obtain: 

]
C

CCK
C

CCK
C

CCK
[1

]
CK
CC[CCk

r

3
B

6
D

2
CE

2
B

3
DCG

B

3
DCF

3
BP

6
D

2
C

At1

A

+++

−
=             (E-15) 

Written in terms of the Arrhenius law, . Hence, the rate equation 

becomes 

RTE
ot ekCk /

1
−=
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]
C

CCK
C

CCK
C

CCK
[1

]
CK
CC[Cek

r

3
B

6
D

2
CE

2
B

3
DCG

B

3
DCF

3
BP

6
D

2
C

A
E/RT

O

A

+++

−
=

−

            (E-16) 

where rA is the rate of crude-ethanol conversion (kmol-crude/kg-cat s), ko is the collision 

frequency (kg-cat s)-1, E is the activation energy (kJ/kmol), T is the absolute 

temperature (K), R is the Universal gas constant (kJ/kmol-K), Kp is the thermodynamic 

equilibrium constant. Equation E-16 is referred to as model # 1. 

On the other hand, in the second case (formulation of model # 2), Equation E-3, 

the dissociation of adsorbed crude ethanol (which requires an additional active site) is 

assumed as the rate determining step. The rate of reaction can be written as: 

(a)S(a)A2(a)A(a)2A ** CCkCCkr −−=               (E-17) 

Using equilibrium relations E-6, E-8 and E-9 to eliminate the immeasurable 

, and , and factorizing, we obtain the rate as: )(aAC
)(* aA

C
)(* aS

C

]
CK
CC[CCKkr 3

BP

6
D

2
C

A
2

(a)12A −=                           (E-18) 

where , the thermodynamic equilibrium constant 4321P KKKKK =

Also, the only immeasurable quantity at this point is . This can be eliminated 

in the same manner as was done for the first model that resulted in Equation E-16. Thus, 

after all the eliminations and substitutions, we obtained a rate equation in the form of 

Equation E-19, which is referred to as model # 2. 

)(aC
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2
2

B

3
DCG

B

3
DCF

AA

3
BP

6
D

2
C

A
E/RT

O

A

]
C

CCK
C

CCK
CK[1

)
CK
CC(Cek

r
+++

−
=

−

             (E-19) 

In the third case (for formulation of model # 3), surface reaction E-4 is assumed 

to be the rate-determining step. Then, the rate of reaction can be written in the form of 

Equation E-20. 

(a)
3

DC3B(a)A3A CCCkCCkr * −−=                          (E-20) 

Using equilibrium relations E-6, E-7 and E-9 to eliminate the immeasurable  and 

factorizing, the rate equation becomes: 

)(* aA
C

)
KKKK

CC
CC
CC

(CkKKKr
4321

3
DC

3
DC

3
BA

(a)3421A −=              (E-21) 

Again,  can be eliminated in the same manner as described for cases 1 and 

2. Thus, after all the eliminations and substitutions, we obtained a rate equation in the 

form of Equation E-22, which is referred to as model # 3. 

)(aC

)
C

CCK
CC

CCK
CK(1

)
K
CC

CC
CC(ek

r

2
B

3
DCG

3
DC

2
BAQ

AA

P

3
DC

3
DC

3
BAE/RT

O

A

+++

−

=

−

             (E-22) 

where  E/RT
Ot3421 ekCkKKK −=

The fourth case (for formulation of model # 4) involved the assumption of 

surface reaction E-5 as the rate-determining step. The procedure used to derive the 

 121



kinetic model based on this rate determining step was similar to the ones used for 

previous three cases, and the final rate equation was of the form of Equation E-23, 

which is referred to as model # 4. 

)
CC

CCK
C

CCK
CK(1

)
K
CC

CC
CC(ek

r

3
DC

BAH

B

3
DCF

AA

P

3
DC

3
DC

3
BAE/RT

O

A

+++

−

=

−

             (E-23)   
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Appendix-F: Material Balance Calculations 

The calculations are based on data collected for experimental run number 12 

Feed:  

Crude ethanol  = 0.0344 mol  = 1.81 g 

H2O   = 0.63 mol  = 11.35 g 

Total mass entering the system = 1.81+11.35 = 13.16g 

 

Product:  

From gas and liquid sample analyses: 

H2   = 0.1488mol  = 0.2975 g 

CO2   = 0.0360mol  = 1.5828 g  

CO   = 0.0092 mol = 0.2567g 

CH4   = 0.0056 mol = 0.0903 g 

Acetic acid & others = 2.9E-9 mole 

------------------------------------------------------------------------ 
Total moles of products 0.1995 mol = 2.2273 g ≅
 

Crude ethanol = 0.0072 mol  = 0.3452 g 

Water   0.5481 mol = 9.866 g ≅

Crude Ethanol Conversion: 

(X) = %100
ethanol)in crude (Moles

tethanol)ou crude (Moles ethanol)in Crude (Moles
×

−  
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 %100
0344.0

)0072.00344.0(
×

−   ≅  78.98 % 

Hydrogen Yield: 

Hydrogen yield (Y) = 
ethanol)in crude (Moles 6.07

)out2H  (Moles 

×
×100%  

 

   %100
07.60344.0

1488.0
×

×
 = 71.3% 

or 

  71.3% of 6.07 = 4.33 mol H2 / mol crude ethanol fed 

 

Mass Recovery: 

Percentage mass recovery = %100
streaminlet  ofWeight 

streamoutlet ofWeight   ×  

 

%100)3452.010.18490.25670.09031.5828(0.2975
)35.1181.1(

×+++++
+

 

              = 96.94% 

 

Product compositions: 

H2 = 
product moles Total

 produced 2H  Moles 
x 100 % = (0.1488 / 0.1995) x 100 % = 74.59 % 
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CO2 = 
product moles Total

 produced 2CO  Moles 
x 100 % = (0.0360 / 0.1995) x 100% = 18.05 % 

CO = %100 produced CO  Moles 
product moles Total

×  = (0.0092 / 0.1995) x 100% = 4.61% 

CH4 = %100
 produced  4CH   Moles 

product moles Total
×  = (0.0056 / 0.1995) x 100% = 2.83 % 

CH3-COOH and others= %100
out    others and COOH3CH Moles 

product moles Total
×   

 = (2.9E-9/0.1995)*100% 

         = 0.00015% 
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Appendix-G: Reproducibility Test 
Reproducibility of stable crude-ethanol conversion (X) 

Catalyst: CP15 
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Sample calculations: 

Run 12, X =79% 

Run 47, X=76.7% 

Deviation = (79-76.7)/79×100% = 2.9% 
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Catalyst: IM15 
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Sample calculations: 

Run 40, X =47.1% 

Run 48, X=44.4% 

Deviation = (47.1-44.4)/47.1×100% = 5.7% 
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Catalyst: PT15 
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Sample calculations: 

Run 28, X = 85.17% 

Run 52, X = 81.5% 

Deviation = (85.17-81.5)/85.17×100% = 4.3% 
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Appendix-H :  
Experimental Results      

     
  Run 5 Run 6 Run 7 Run 8 
Catalyst used  CP10 CP10 CP10 CP10 
       

Reduction temperature    (oC) 600.00 600.00 600.00 600.00 
Time-on-stream (min) 60.00 120.00 180.00 240.00 
Reaction temperature oC 400.00 400.00 400.00 400.00 
Volume  feed rate ml/min 0.20 0.20 0.20 0.20 
Crude ethanol feed (moles) 3.44E-02 3.44E-02 3.44E-02 3.44E-02 

W/Fcrude ethanol  (h) 5.95E-01 5.95E-01 5.95E-01 5.95E-01 
       
       
Crude ethanol 
 conversion (mol%) 65.65 44.29 32.28 32.10 

H2 yield (mols H2 / 
 mol crude ethanol fed) 3.51 2.43 2.09 2.12 
       

Product composition (mol%)      

       

H2 7.23E+01 7.14E+01 7.01E+01 7.20E+01
CO2 1.80E+01 1.95E+01 1.77E+01 1.77E+01
CH4 4.56E+00 4.10E+00 7.06E+00 6.13E+00
CO 5.13E+00 5.03E+00 5.13E+00 4.15E+00
Acetic acid and others 2.00E-04 4.00E-04 5.00E-04 5.00E-04 
       
Total product (mol) 1.67E-01 1.15E-01 1.01E-01 1.01E-01 

       
Weight loss (% mass loss) 3.52 1.59 1.20 1.35 
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Appendix-H :  
Experimental Results      

     
  Run 9 Run 10 Run 11 Run 12 
Catalyst used  CP15 CP15 CP15 CP15 
          

Reduction temperature    (oC) 600.00 600.00 600.00 600.00 
Time-on-stream (min) 60.00 120.00 180.00 240.00 
Reaction temperature oC 400.00 400.00 400.00 400.00 
Volume  feed rate ml/min 0.20 0.20 0.20 0.20 
Crude ethanol feed (moles) 3.44E-02 3.44E-02 3.44E-02 3.44E-02 

W/Fcrude ethanol  (h) 5.95E-01 5.95E-01 5.95E-01 5.95E-01 
       
       
Crude ethanol 
 conversion (mol%) 88.95 85.72 78.98 79.00 

H2 yield (mols H2 / 
 mol crude ethanol fed) 4.73 4.60 4.30 4.33 
       

Product composition (mol%)      

       

H2 7.27E+01 7.32E+01 7.41E+01 7.46E+01
CO2 2.00E+01 1.84E+01 1.84E+01 1.80E+01
CH4 3.73E+00 3.83E+00 2.83E+00 2.83E+00
CO 3.52E+00 4.59E+00 4.60E+00 4.59E+00
Acetic acid and others 7.00E-05 9.00E-05 1.50E-04 1.50E-04 
       
Total product (mol) 2.24E-01 2.16E-01 2.00E-01 2.00E-01 

       
Weight loss (% mass loss) 1.77 2.56 2.95 3.06 
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Appendix-H :  
Experimental Results      

     
  Run 13 Run 14 Run 15 Run 16 

Catalyst used  CP20 CP20 CP20 CP20 
          

Reduction temperature    (oC) 600.00 600.00 600.00 600.00 
Time-on-stream (min) 60.00 120.00 180.00 240.00 
Reaction temperature oC 400.00 400.00 400.00 400.00 
Volume  feed rate ml/min 0.20 0.20 0.20 0.20 
Crude ethanol feed (moles) 3.44E-02 3.44E-02 3.44E-02 3.44E-02 

W/Fcrude ethanol  (h) 5.95E-01 5.95E-01 5.95E-01 5.95E-01 
       
       
Crude ethanol  
conversion (mol%) 77.96 68.36 53.66 53.82 

H2 yield (mols H2 / 
 mol crude ethanol fed) 4.28 3.61 2.91 2.91 
       

Product composition (mol%)      

       

H2 7.47E+01 7.17E+01 7.26E+01 7.27E+01 
CO2 1.55E+01 1.31E+01 1.58E+01 1.50E+01 
CH4 5.01E+00 9.33E+00 7.56E+00 7.52E+00 
CO 4.72E+00 5.95E+00 4.05E+00 4.74E+00 
Acetic acid and others 1.00E-04 1.00E-04 3.00E-04 3.00E-04 
       
Total product (mol) 1.97E-01 1.74E-01 1.38E-01 1.38E-01 

       
Weight loss (% mass loss) 2.22 2.28 1.35 1.64 
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Appendix-H :  
Experimental Results      

     
  Run 17 Run 18 Run 19 Run 20 

Catalyst used  CP25 CP25 CP25 CP25 
          
Reduction temperature    
(oC) 600.00 600.00 600.00 600.00 
Time-on-stream (min) 60.00 120.00 180.00 240.00 
Reaction temperature oC 400.00 400.00 400.00 400.00 
Volume  feed rate ml/min 0.20 0.20 0.20 0.20 
Crude ethanol feed (moles) 3.44E-02 3.44E-02 3.44E-02 3.44E-02 

W/Fcrude ethanol  (h) 5.95E-01 5.95E-01 5.95E-01 5.95E-01 
       
       
Crude ethanol 
 conversion (mol%) 80.23 70.58 60.45 59.49 

H2 yield (mols H2 / 
 mol crude ethanol fed) 4.41 3.80 3.18 3.17 
        

Product composition (mol%)      

        

H2 7.48E+01 7.30E+01 7.10E+01 7.15E+01 
CO2 1.85E+01 1.80E+01 1.86E+01 1.80E+01 
CH4 3.13E+00 4.43E+00 4.83E+00 4.83E+00 
CO 3.59E+00 4.59E+00 5.59E+00 5.59E+00 
Acetic acid and others 1.60E-04 2.70E-04 4.20E-04 4.40E-04 
        
Total product (mol) 2.03E-01 1.79E-01 1.54E-01 1.52E-01 

       
Weight loss (% mass loss) 2.47 2.70 1.74 1.86 
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Appendix-H :  

Experimental Results      
     

  Run 21 Run 22 Run 23 Run 24 
Catalyst used  PT10 PT10 PT10 PT10 
          

Reduction temperature    (oC) 600.00 600.00 600.00 600.00 
Time-on-stream (min) 60.00 120.00 180.00 240.00 
Reaction temperature oC 400.00 400.00 400.00 400.00 
Volume  feed rate ml/min 0.20 0.20 0.20 0.20 
Crude ethanol feed (moles) 3.44E-02 3.44E-02 3.44E-02 3.44E-02 

W/Fcrude ethanol  (h) 5.95E-01 5.95E-01 5.95E-01 5.95E-01 
       
       
Crude ethanol 
 conversion (mol%) 54.48 51.80 43.77 43.80 

H2 yield (mols H2 / 
 mol crude ethanol fed) 2.97 2.79 2.34 2.33 
       

Product composition (mol%)      

       

H2 7.36E+01 7.25E+01 7.15E+01 7.07E+01
CO2 1.56E+01 1.57E+01 1.35E+01 1.35E+01
CH4 5.35E+00 5.71E+00 7.72E+00 8.75E+00
CO 5.42E+00 6.11E+00 7.32E+00 7.01E+00
Acetic acid and others 1.70E-03 1.80E-03 2.50E-03 2.50E-03 
       
Total product (mol) 1.39E-01 1.32E-01 1.13E-01 1.13E-01 

       
Weight loss (% mass loss) 2.06 1.95 1.86 1.70 
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Appendix-H :  

Experimental Results      
     

  Run 25 Run 26 Run 27 Run 28 
Catalyst used  PT15 PT15 PT15 PT15 
          

Reduction temperature    (oC) 600.00 600.00 600.00 600.00 
Time-on-stream (min) 60.00 120.00 180.00 240.00 
Reaction temperature oC 400.00 400.00 400.00 400.00 
Volume  feed rate ml/min 0.20 0.20 0.20 0.20 
Crude ethanol feed (moles) 3.44E-02 3.44E-02 3.44E-02 3.44E-02 

W/Fcrude ethanol  (h) 5.95E-01 5.95E-01 5.95E-01 5.95E-01 
       
       
Crude ethanol  
conversion (mol%) 96.15 92.59 85.32 85.17 

H2 yield (mols H2 / 
 mol crude ethanol fed) 4.82 4.70 4.24 4.24 
       

Product composition (mol%)      

       

H2 6.93E+01 7.03E+01 7.13E+01 7.05E+01
CO2 1.22E+01 1.12E+01 1.22E+01 1.22E+01
CH4 1.05E+01 1.25E+01 1.05E+01 1.13E+01
CO 8.00E+00 6.00E+00 6.00E+00 6.00E+00
Acetic acid and others 1.30E-03 2.60E-03 5.60E-03 5.60E-03 
       
Total product (mol) 2.39E-01 2.30E-01 2.11E-01 2.11E-01 

       
Weight loss (% mass loss) 3.50 3.06 2.75 2.60 
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Appendix-H :  

Experimental Results      
     

  Run 29 Run 30 Run 31 Run 32 
Catalyst used  PT20 PT20 PT20 PT20 
          
Reduction temperature    
(oC) 600.00 600.00 600.00 600.00 
Time-on-stream (min) 60.00 120.00 180.00 240.00 
Reaction temperature oC 400.00 400.00 400.00 400.00 
Volume  feed rate ml/min 0.20 0.20 0.20 0.20 
Crude ethanol feed (moles) 3.44E-02 3.44E-02 3.44E-02 3.44E-02 

W/Fcrude ethanol  (h) 5.95E-01 5.95E-01 5.95E-01 5.95E-01 
       
       
Crude ethanol  
conversion (mol%) 94.67 83.53 83.20 83.14 

H2 yield (mols H2 / 
 mol crude ethanol fed) 4.76 4.20 4.18 4.23 
       

Product composition (mol%)      

       

H2 7.23E+01 7.03E+01 6.92E+01 7.00E+01
CO2 1.22E+01 1.22E+01 1.23E+01 1.17E+01
CH4 9.53E+00 1.15E+01 1.25E+01 1.29E+01
CO 6.00E+00 6.00E+00 6.00E+00 5.40E+00
Acetic acid and others 8.00E-04 3.00E-03 3.00E-03 3.90E-03 
       
Total product (mol) 2.37E-01 2.08E-01 2.07E-01 2.08E-01 

       
Weight loss (% mass loss) 2.80 2.65 2.47 2.49 
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Appendix-H :  
Experimental Results      

     
  Run 33 Run 34 Run 35 Run 36 

Catalyst used  IM10 IM10 IM10 IM10 
          

Reduction temperature    (oC) 600.00 600.00 600.00 600.00 
Time-on-stream (min) 60.00 120.00 180.00 240.00 
Reaction temperature oC 400.00 400.00 400.00 400.00 
Volume  feed rate ml/min 0.20 0.20 0.20 0.20 
Crude ethanol feed (moles) 3.44E-02 3.44E-02 3.44E-02 3.44E-02 

W/Fcrude ethanol  (h) 5.95E-01 5.95E-01 5.95E-01 5.95E-01 
       
       
Crude ethanol 
 conversion (mol%) 73.00 48.50 43.97 44.20 

H2 yield (mols H2 / 
 mol crude ethanol fed) 3.69 2.46 2.27 2.28 
       

Product composition (mol%)      

       

H2 6.89E+01 6.78E+01 6.85E+01 6.89E+01
CO2 1.13E+01 1.20E+01 1.23E+01 1.13E+01
CH4 4.88E+00 5.56E+00 5.06E+00 4.86E+00
CO 1.49E+01 1.46E+01 1.41E+01 1.49E+01
Acetic acid and others 2.10E-02 7.00E-03 7.00E-03 6.33E-03
       
Total product (mol) 1.84E-01 1.24E-01 1.14E-01 1.14E-01

       
Weight loss (% mass loss) 4.50 2.89 2.69 2.89 
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Appendix-H :  
Experimental Results      

     
  Run 37 Run 38 Run 39 Run 40 

Catalyst used  IM15 IM15 IM15 IM15 
          

Reduction temperature    (oC) 600.00 600.00 600.00 600.00 
Time-on-stream (min) 60.00 120.00 180.00 240.00 
Reaction temperature oC 400.00 400.00 400.00 400.00 
Volume  feed rate ml/min 0.20 0.20 0.20 0.20 
Crude ethanol feed (moles) 3.44E-02 3.44E-02 3.44E-02 3.44E-02 

W/Fcrude ethanol  (h) 5.95E-01 5.95E-01 5.95E-01 5.95E-01 
       
       
Crude ethanol  
conversion (mol%) 72.00 49.00 46.70 47.10 

H2 yield (mols H2 / 
 mol crude ethanol fed) 3.80 2.56 2.50 2.52 
       

Product composition (mol%)      

       

H2 7.22E+01 7.01E+01 7.16E+01 7.23E+01
CO2 4.91E+00 8.51E+00 7.60E+00 1.09E+01
CH4 7.78E+00 7.18E+00 7.70E+00 7.74E+00
CO 1.51E+01 1.42E+01 1.31E+01 9.08E+00
Acetic acid and others 8.00E-03 2.20E-02 2.00E-03 3.50E-03 
       
Total product (mol) 1.81E-01 1.25E-01 1.20E-01 1.21E-01 

       
Weight loss (% mass loss) 5.47 3.28 3.23 2.45 
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Appendix-H :  
Experimental Results      

     
  Run 41 Run 42 Run 43 Run 44 

Catalyst used  IM20 IM20 IM20 IM20 
          

Reduction temperature    (oC) 600.00 600.00 600.00 600.00 
Time-on-stream (min) 60.00 120.00 180.00 240.00 
Reaction temperature oC 400.00 400.00 400.00 400.00 
Volume  feed rate ml/min 0.20 0.20 0.20 0.20 
Crude ethanol feed (moles) 3.44E-02 3.44E-02 3.44E-02 3.44E-02 

W/Fcrude ethanol  (h) 5.95E-01 5.95E-01 5.95E-01 5.95E-01 
       
       
Crude ethanol 
 conversion (mol%) 65.20 53.30 46.90 47.00 

H2 yield (mols H2 / 
 mol crude ethanol fed) 3.36 2.77 2.45 2.45 
       

Product composition (mol%)      

       

H2 7.02E+01 7.12E+01 7.02E+01 7.01E+01 
CO2 6.91E+00 8.71E+00 6.91E+00 7.10E+00 
CH4 7.78E+00 6.02E+00 7.78E+00 6.78E+00 
CO 1.51E+01 1.41E+01 1.51E+01 1.60E+01 
Acetic acid and others 1.40E-03 2.30E-03 2.80E-03 3.20E-03 
       
Total product (mol) 1.64E-01 1.36E-01 1.20E-01 1.20E-01 

       
Weight loss (% mass loss) 4.51 3.68 3.35 3.44 
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Appendix-H :  
Experimental Results      

     
  Run 45 Run 46 Run 47 Run 48 

Catalyst used  CP15 CP15 CP15 IM15 
          

Reduction temperature    (oC) 400.00 500.00 600.00 600 
Time-on-stream (min) 240.00 240.00 240.00 240 
Reaction temperature oC 400.00 400.00 400.00 400 
Volume  feed rate ml/min 0.20 0.20 0.20 0.2 
Crude ethanol feed (moles) 3.44E-02 3.44E-02 3.44E-02 3.44E-02 

W/Fcrude ethanol  (h) 5.95E-01 5.95E-01 5.95E-01 5.95E-01 
       
       
Crude ethanol  
conversion (mol%) 49.73 58.46 76.67 44.4 

H2 yield (mols H2 / 
 mol crude ethanol fed) 2.84 3.17 4.15 2.34 
       

Product composition (mol%)      

       

H2 7.55E+01 7.27E+01 7.36E+01 7.17E+01 
CO2 1.80E+01 1.80E+01 1.90E+01 5.00E+00 
CH4 1.83E+00 4.13E+00 2.80E+00 7.93E+00 
CO 4.59E+00 5.09E+00 4.56E+00 1.54E+01 
Acetic acid and others 1.90E-02 1.60E-02 2.00E-04 2.59E-03 
       
Total product (mol) 1.29E-01 1.50E-01 1.94E-01 1.12E-01 

       
Weight loss (% mass loss) 2.57 2.00 2.70 3.82 
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Appendix-H :  
Experimental Results      

     
  Run 49 Run 50 Run 51 Run 52 

Catalyst used  CP15 CP15 CP15 PT15 
          

Reduction temperature    (oC) 600.00 600.00 600.00 600.00 
Time-on-stream (min) 240.00 240.00 240.00 240.00 
Reaction temperature oC 320.00 420.00 520.00 400.00 
Volume  feed rate ml/min 0.20 0.20 0.20 0.20 
Crude ethanol feed (moles) 3.44E-02 3.44E-02 3.44E-02 3.44E-02 

W/Fcrude ethanol  (h) 5.95E-01 5.95E-01 5.95E-01 5.95E-01 
       
       
Crude ethanol  
conversion (mol%) 57.60 79.60 80.10 81.5 

H2 yield (mols H2 / 
 mol crude ethanol fed) 3.41 4.31 4.31 3.98 
       

Product composition (mol%)      

       

H2 6.27E+01 7.02E+01 7.21E+01 6.86E+01
CO2 1.98E+01 2.03E+01 1.86E+01 1.27E+01
CH4 8.38E+00 7.22E+00 6.29E+00 1.25E+01
CO 9.04E+00 2.26E+00 3.00E+00 6.15E+00
Acetic acid and others 2.60E-03 1.10E-03 1.10E-03 6.47E-03 
       
Total product (mol) 1.52E-01 1.71E-01 2.05E-01 2.03E-01 

       
Weight loss (% mass loss) 1.30 6.47 1.00 2.1 
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