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ABSTRACT 

The global gene expression profiles of industrial strains of Saccharomyces 

cerevisiae responding to nitrogen deficiency and very high sugar concentrations 

stresses were determined by oligonucleotide microarray analysis of ~ 6200 yeast 

open reading frames. Genomics analysis showed that 400 genes in S. cerevisiae was 

differentially expressed by more than 1.5-fold compared with controls at late-

logarithmic phase of fermentation, as the yeast adapted to changing nutritional, 

environmental and physiological conditions. The genes of many pathways are 

regulated in a highly coordinated manner. The repressed expression of GDH1 and 

up-regulation of ARO10 within the contrast of Q270/Q10 indicated high energy 

demanding of yeast cells under high sugar stress. Activities of G3P shuttle indicated 

that under very high gravity environment, sufficient assimilatory nitrogen enhances 

yeast’s ability of redox balancing, and therefore higher stress-tolerance and higher 

fermentation efficiency of yeast. Under contrast W270/Q270, the up-regulation of 

DUR1,2 responsible for urea degradation induces the glutamate biosynthesis and the 

consumption of -ketoglutarate. This may indicate that higher nitrogen level would 

enable higher activities in the TCA cycle, and therefore generate more energy for 

biosynthesis and yeast cell proliferation under very high gravity fermentation 

conditions. Nitrogen metabolism was also stimulated by high nitrogen level when 

yeast was grown in very high gravity environment. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

The use of ethanol as an alternative transportation fuel provides tremendous 

environmental and economic advantageous and it enables countries to achieve 

energy security and independence (Duncan, 2003). The recent increases in 

petroleum prices and government legislation and regulations have stimulated the 

production of fuel ethanol. The demand of ethanol for producing reformulated 

gasoline and for use as an extender of the gasoline supplies is expected to accelerate 

the growth rate of the ethanol industry as long as petroleum prices remain high 

(Eidman, 2006). 

Currently, the most significant barrier to wider use of fuel ethanol is its cost. 

However, fuel ethanol has the potential to be cost-competitive with petroleum fuels 

if there are government incentives and continued progress with both conventional 

and advanced ethanol production technologies (Zhang et al., 2003).  

In fact, in the past decade, the conventional fermentation process has been 

improved through the application of very high gravity (VHG) technology capable of 

fermenting higher-density mashes with a higher initial sugar level (Thomas et al., 
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1993). This exciting technology aims at increasing both the rate of fermentation and 

the final ethanol concentration and thereby reducing processing costs (Ingledew, 

1993).  

Nevertheless, the economic advantages of VHG technology are accompanied 

by a number of problems: as the sugar concentration increases, the yeast is exposed 

to severe conditions, such as the increase of both osmotic pressure and produced 

ethanol, nutrient deficiencies, especially dissolved oxygen and assimilable nitrogen. 

These may result in a significant delay in fermentation and drop in yeast viability 

(Pratt et al., 2003; Casey et al., 1984; Day et al., 1975; White, 1978). 

In today’s fuel market, every penny in cost savings makes a difference. Thus, 

a deeper understanding of stress-tolerance mechanisms of Saccharomyces cerevisiae, 

which may lead to new process design that may improve yield and performance in 

the conversion process are essential to making fuel ethanol competitive with 

gasoline.  

1.2 Objectives 

In this project, we aimed at investigating the influence of nutritional 

deficiency and VHG stresses on global gene expression profiling of yeast cells using 

oligonucleotide microarray technique. The objectives of this project include: 

• Exploring global gene expression profiling of S. cerevisiae grown under two 

different specific gravity environments in the absence and presence of urea 

respectively.  
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• Comparing gene expression profiling patterns obtained from two different 

specific gravity environments in the absence and presence of urea 

respectively. 

• Revealing the function of genes involved in cellular metabolism with respect 

to tested conditions. 

1.3 Thesis organization 

Chapter 1 is the introduction to this thesis, and provides a summary of 

project background, objectives, and a description of the thesis organization. 

Chapter 2 examines the current literature in the field of fuel ethanol 

production. It is a review of VHG technology, the economic value it brings and the 

trouble it causes, the techniques we use to study it, and an overview of related work 

in the field. The features of other sustainable transportation fuels are also introduced. 

Chapter 3 covers experimental design, the materials and methodology we 

followed in this work. Modified protocols are described.  

Chapter 4 provides the results of fermentation and gene expression work, and 

discussions of the major discoveries.  

 Chapter 5 states conclusions and suggests possible directions for future 

research. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Sustainable Transportation Fuels 

 It is an inescapable fact that, within our lifetime, the fossil fuels will run out 

no matter how many more oil wells are drilled, since most of the fossil fuels are used 

for transportation - cars, buses, ships, trains and planes, and these vehicles have been 

consuming fossil fuels at a rate far greater than the fuels can be replenished. As 

fossil fuel supplies diminish, concern is growing over what will happen after these 

supplies run out. 

Sustainable transport fuels are of key interest as they can be reproduced by 

nature indefinitely, therefore reducing the dependency on fossil fuel as well as 

helping reduce fuel price and pollution. There are four kinds of sustainable fuels that 

vehicles can run on that are not made from petroleum. Some of them are now used 

as transportation fuels and will likely be playing an increasingly important role in 

the future. 

Hydrogen is a perfect ecological fuel, producing only water when used. 

Hydrogen is renewable and abundant. It can be produced from domestic resources 

including natural gas, coal, biomass, and even water (Dicks et al., 2004). The main
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problem with it is the costly extraction process, since it requires a huge amount of 

energy to break apart the incredibly strong bond between hydrogen atoms no matter 

what method is used, and its storage is also a serious problem (Dresselhaus et al., 

1999; Alimova et al., 1987). 

Methane, the primary component in natural gas, is an important fuel, but it is 

also the second-most important greenhouse gas (Spokas et al., 2006). Methane 

occurs naturally, but human-related activities such as fossil fuel production, biomass 

burning and waste management release significant quantities of methane into the 

atmosphere (Hindrichsen et al., 2005; Khalil, 1993). These emissions would be 

reduced if methane could be captured and used as a major energy source, while, if 

improperly used, methane may cause devastating damage to the environment as it 

decompose into gas and water when they enter the atmosphere, which may 

contribute to greenhouse gas accumulations (Spokas et al., 2006). 

Other than the alternatives described above, biodiesel is one of the most 

common gasoline alternatives. Biodiesel is a clean burning fuel produced from any 

material that contains fatty acids, such as vegetable fats and oils, animal fats, waste 

greases and so on (Haas et al., 2006). The environmental benefits of this sustainable 

fuel are tremendous. For example, it has been shown to have lower emissions of 

particulate matter, unburned hydrocarbons, and carbon monoxide than petroleum-

based fuels (Graboski et al., 1998). It is non-toxic as well as biodegradable, and it 

can be blended at any level with petroleum diesel to create a biodiesel blend without 

any engine modifications (Crabbe et al., 2001). 



 6

Biodiesel has been gaining popularity as an alternative fuel to the traditional 

fossil fuels in Europe, especially in Germany and France, but it is not yet in 

widespread use in North America due to the limitation in supplying the feedstock 

fats and oils (Körbitz, 1999).  

Alcohol fuels such as ethanol, produced by infinite nature resources like 

locally agricultural crops, has increasingly becoming the answer to the ever-growing 

oil deficiency that the world is facing. Ethanol can be used either as fuel for 

automobiles alone or as an additive to gasoline (Bayraktar, 2005). Due to the fact 

that the low energy density of ethanol makes it heavier and takes up 1.5 times as 

much tank space as gasoline, ethanol is usually blended with gasoline (Sagar, 1995). 

Two common mixtures are E10 and E85 which contain 10% (v/v) and 85% (v/v) 

ethanol, respectively (Niven, R.K. 2005).  

In North America, the E10 fuel is becoming common practice because blends 

that contain up to 10 percent ethanol does not require any engine modification for all 

the automobiles sold in North America (Jarvis, 1992; Hsieh et al., 2002). E85 fuel 

requires special engine design, such as corrosion-resistant materials and a higher 

engine compression ratio, which is one of the factors preventing its widespread use 

in North America (Canadian Renewable Fuels Association, a). 

Ethanol not only reduces the consumption of petroleum fuels, but also 

addresses the problems of air pollution from vehicles and global warming at the 

same time. Ethanol molecules contain 35% of oxygen by weight, which allows more 

complete fuel combustion and thus reduces harmful tailpipe emissions and 

particulate emissions that pose a health hazard (Niven, 2005). It has been reported 
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that gasoline containing a 10% (v/v) ethanol blend reduces smog generating 

emissions like carbon monoxide by 25-30% (v/v), particulate matter by 50% (v/v)  

and volatile organic compounds by up to 7% (v/v) (Canadian Renewable Fuels 

Association, b). The process is carbon neutral, because the carbon dioxide released 

during ethanol production and combustion is recaptured as a nutrient to the crops as 

they grew. Therefore, the increased use of fuel ethanol will partially offset the global 

warming effect of burning gasoline. 

Methanol is another alcohol fuel which can be made from renewable 

resources. With a far higher cumulative toxicity rating and lower energy density than 

that of ethanol, methanol is a less attractive alternative transport fuel (Sagar, 1995). 

As discussed above, ethanol as a gasoline alternative is the most clean 

burning and sustainable fuel for our vehicles. Much attention has been placed on the 

prospects of using ethanol as a transportation fuel due to the recent increases in 

gasoline prices. However, current fuel ethanol production methods make the energy 

value of the produced fuel not significant compared to the energy put into 

production. For this reason, it is not feasible to replace all current fossil fuel 

consumption entirely by ethanol unless the yield efficiency of fuel ethanol can be 

steadily improved and more efficient alternate feedstock crops are developed.  

2.2 Fuel Alcohol Production 

Ethanol can be made from grain-based sources, which are rich in starch, such 

as wheat, barley, and corn, or cellulose-based sources, from just about any 
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agriculture waste, forestry byproducts and even municipal solid waste, such as 

grasses, crop residues, wood, waste paper, and yard waste (Wyman, 1994).  

Ethanol is traditionally produced from the fermentation of starchy materials. 

Basically the process requires the conversion of starch to sugars by the use of 

enzymes and then fermenting those sugars by adding yeast. During fermentation the 

yeast converts the sugars to ethanol and carbon dioxide. Corn is the predominant 

feedstock in the North American ethanol industry, because of its high starch content, 

low prices and wide availability. Corn is converted to ethanol in either a dry or wet 

milling process. The main difference between the two is in the initial treatment of 

the grain. In dry milling operations, liquefied corn starch is produced by heating 

corn meal with water and alpha-amylase enzyme. A second enzyme, glucoamylase, 

converts the liquefied starch to sugars, which are fermented by yeast into ethanol 

and carbon dioxide. Wet milling operations separate the fiber, germ (oil), and 

protein from the starch before it is fermented into ethanol (Kim et al., 2005).  

While chemically identical to the grain-based ethanol, cellulose ethanol 

utilizing a cheaper substrate such as crop residues could make fuel ethanol more 

competitive with fossil fuel. Differing from grain-based ethanol production, using 

cellulose is more complicated, as cellulose, the main component of plant cell walls, 

are protected by various layers of other material that makes the plant cellulose 

difficult to degrade, in order to render the sugars in the cellulose fraction accessible 

to conversion, it is necessary to treat the plant cellulose with a combination of 

chemical and enzymatic processes, and these technical challenges has been 

extensively researched in the last two decades (Dale et al., 1984; Azzam, 1989; 
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Bjerre et al., 1996; Wright, 1998; Reshamwala et al., 1995; Duff and Murray, 1996). 

Efficient pretreatment processing, optimized cellulose enzymes and the enzyme 

loading are considered to be essential to the efficient and economical production of 

cellulose ethanol (Sun et al., 2002; Mosier et al., 2005). Until very recently, the 

enzyme cost for cellulose conversion has been the main challenge for commercial 

production of cellulose ethanol (IEA Bioenergy - update 23, 2006). 

Cellulose is much more difficult to convert to ethanol than starch, but the 

reward for a successful outcome could huge, and cellulose is predicted to be the 

future of fuel alcohol production due to the fact that we will eventually run out of 

feed corn and small grains. Application of cellulose-based technologies could 

significantly reduce the level of greenhouse gases emissions (Wyman, 1999), as well 

as the amount of waste entering the landfills and agricultural land needed for ethanol 

production (Kenney et al., 1983), and offer additional revenue streams to farmers for 

the collection and sale of currently unused crop waste (Lockeretz, 1981). 

The fuel alcohol industry in North America truly has experienced a dynamic 

emergence from the 1980s to the present, and the use and production of fuel ethanol 

are expected to continue to grow vigorously alongside the rising energy prices and 

environmental problems. A look into this evolution is shown in Figure 2.1. 
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Figure 2.1 Historical chart of ethanol production 
Source of data: http://www.ethanolrfa.org/industry/statistics/#A 

The figure shows that the industrial alcohol capacity has been rising 

exponentially in the past decade. According to the Renewable Fuels Association 

(RFA), the United States manufactured 3.85 billion gallons in 2005 and 4.86 million 

gallons in 2006; The RFA also estimated that more than 6.9 billion gallons of 

ethanol is going to be produced in 2007. 

Aside from conventional ethanol production, after a long time of research, 

Canada’s Iogen Corporation, the world's only company operating a demonstration 

facility that converts biomass to ethanol is now negotiating with the federal 

government to locate its long-promised cellulosic ethanol plant in Saskatchewan 

(Bioproducts, 2007). Iogen plans to break ground on a commercial-scale biorefinery 

in the summer of 2007, and plans to be supplying ethanol to commercial markets by 

2009, which promises to greatly increase the volume of fuel ethanol that can be 
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produced in Canada (Ethanol producer magazine, 2006). The cost of cellulose 

ethanol is expected to be competitive with the price of rack (pre tax) gasoline as 

more cellulose ethanol plants are constructed (Iogen in the News, 2005).  

The Government of Canada and some provincial governments have also 

supported the development and use of ethanol fuel and co-products from starch and 

cellulose-based feedstock through research and development programs (Natural 

Resources Canada, accessed in July, 2006). The federal government has announced 

that all fuel in Canada must contain five per cent ethanol by 2010. This mandate 

would require a production of approximately two billion liters of ethanol, which is a 

very big jump but can be done if current and announced biofuel programs are 

implemented (Lepage-Monette, 2006). 

2.2.1 Very High Gravity Fermentation Technology 
 
 Ethanol is being widely investigated as a substitute for gasoline as a 

transportation fuel (Lynd et al., 1991). However, based on current technologies, no 

process can produce ethanol at a selling cost competitive with gasoline or petroleum 

derivatives of fossil fuels. This situation therefore necessitates improving and 

optimizing the fermentation process for a quicker and cheaper ethanol product. 

Very-high-gravity (VHG) fermentation is one such process improvement that has 

proven successful in increasing fermentation rate and the final ethanol concentration 

and thereby reducing processing costs (Ingledew, 1993).  

 VHG technology refers to the use of mashes containing 270 or more grams 

of dissolved solids per liter (Bayrock et al., 2001). This technology has significantly 

increased industrial ethanol levels all over the world in the past decade. Since less 
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water must be heated, cooled, and evaporated, an increase in fermentation ethanol 

levels brings concomitant energy reductions and environmental benefits (Thomas et 

al., 1996). The conditions necessary to increase ethanol levels have been tested in 

pilot plants and led to production of 23.8% v/v ethanol from wheat mash containing 

38% w/v dissolved solids (Thomas et al., 1993), and some of these changes are now 

being incorporated into process designs which target higher ethanol concentrations 

to lower costs.   

2.2.2 VHG Fermentation and Its Affect on Yeast Viability 

 With the growing awareness in VHG fermentation for economic advantages, 

there has been prevailing interest in understanding the mechanisms and regulation of 

stress tolerance in yeast, as maintaining yeast viability is one of the most important 

parameters in order to reach high ethanol concentrations in fermentation process. 

 When VHG fermentation process is applied, different and increased demands 

are placed on the yeast. Exposure of yeast cells to VHG environment implies both 

exposure to very high osmotic stress and high level of toxicity of ethanol (Pratt et al., 

2003) which can cause a loss of cell viability and consequently slow and stuck 

fermentations (Day et al., 1975; White, 1978). 

Osmotic pressure is the force that develops between two solutions of 

differing concentrations separated by a semipermeable membrane (Heggart et al., 

1999). In order for yeast to be able to reproduce, the osmotic pressure inside the cell 

must exceed that outside the cell (Owades et al., 1981). This is not likely to be the 

case at very high gravities. In VHG fermentation environment, yeast cells decrease 

their volume and cytoplasmic water content in response to hypertonic stress 
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(Marechal et al., 1994), which directly causes the loss of viability of S. cerevisiae 

(Morris et al., 1986). 

S. cerevisiae accumulates glycerol as an osmotic regulatory solute in 

response to hypo-osmotic shock (MacKenzie et al., 1988). In addition, a strong 

relationship between intracellular trehalose levels and resistance to osmotic stress 

was also observed (Albertyn et al., 1994; Thomas et al., 1994). Both glycerol and 

trehalose have been demonstrated to be involved in protection against severe 

osmotic stress (Heggart et al., 1999). Proline is also believed to be the explanation of 

the yeast being able to ferment high sugar mashes with little apparent osmotic stress 

or alcohol intolerance (Ingledew et al., 1985; Thomas et al., 1992).  

Ethanol is a primary metabolic product of yeast fermentation. Unfortunately, 

as the concentration increases, ethanol itself inhibits cell growth and viability and 

the yeast has a tendency to quit fermentation (Rose, 1980). This is particularly 

important in industrial ethanol production and has direct relevance in VHG 

fermentation (Heggart et al., 1999).   

Although the mode-of-action of ethanol has not been fully understood, the 

primary target of ethanol is thought to be plasma membrane. Yeast plasma 

membrane fluidity increases with ethanol concentration and becomes especially 

permeable for protons, resulting in an intracellular acidification (Jones et. al., 1987; 

d’Amore et. al., 1987). This alteration in membrane permeability leads to changes in 

fatty acid and sterol composition. Supplementation of membrane unsaturated fatty 

acids were suggested to increase yeast ethanol tolerance (Rose, 1980; d’Amore et. 

al., 1987). It was also observed that yeast cells adapt to ethanol stress by 
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synthesizing trehalose, which has a protective effect on membranes (Sharma, 1997; 

Hallsworth, 1998). 

Moreover, Mg2+ as a supplement of high sugar media has been observed to 

aid in the production of more ethanol, indicating that Mg2+ has protective effect on 

yeast growth from ethanol stress (d’Amore et. al., 1988; Walker et. al., 1996). 

Physiological factors such as mode of substrate feeding, intracellular ethanol 

accumulation, temperature and osmotic pressure all contribute to the ethanol 

tolerance of yeast (d’Amore et. al., 1987). 

Other studies show that growth inhibition results, in part, from ethanol-

induced water stress (Jones et al., 1986; Guerzoni et al., 1994). Ethanol can reduce 

water availability to below the level at which enzymes, membranes and cells remain 

functional and structurally stable. As a response, yeast cells synthesize compatible 

solutes such as glycerol and trehalose to protect against water stress (Hallsworth, 

1998).  

Although the stuck fermentations and poor yeast viability were ascribed to 

ethanol toxicity and high osmotic pressure, later studies indicated that nutritional 

deficiency was also a factor limiting the production of high levels of ethanol (Casey 

et al., 1984). It has been shown that supplementation of assimilable nitrogen could 

help eliminate most stuck fermentations (Ingledew et al., 1985), leading to 

prolonged and increased production of yeast cell mass, and results in higher ethanol 

yield as well as the survival of yeast to 15% ethanol (Casey et al., 1984; Kalmokoff 

et al., 1985). The usable forms of nitrogen include urea, individual amino acids, 

small peptides and ammonium ion, and they are known collectively as Free Amino 
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Nitrogen (FAN) (Pugh et al., 1997). In addition, low levels of oxygen (Andreasen et 

al., 1953, 1954) for the synthesis of sterols and unsaturated fatty acids are also 

potential for yeast cells reproduction and therefore the rate of fermentation (Casey et 

al., 1984).  

The optimized production condition has increased plant productivity and 

resulted in increased profit margins for the fuel alcohol industries. This necessitates 

a fair amount of research for deeper understanding the mechanisms governing the 

regulation of stress tolerance in yeast, which would bring up strategies on improving 

cell viability, and designing biotechnological processes for producing fuel ethanol 

more economically. 

2.3 DNA Microarray Technology 

The genomic expression program required for maintenance of the optimal 

internal milieu in one environment may be far from optimal in a different 

environment. Thus, when environmental conditions change abruptly, yeast cells 

respond to environmental stress by altering the expression of thousands of genes, 

creating a genomic expression program that is specific to certain stress (Gasch et al., 

2000). A thorough census of transcripts before and after administration of a stimulus 

therefore would reveal alterations in gene expression between the two situations. 

DNA microarray technology is one such approach that comparatively analyzes 

genome-wide patterns of RNA expression.  

 Microarrays are microscopic arrays of immobilized nucleic acids. One 

common use of microarrays is to determine which genes are activated and which 
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genes are repressed when two populations of cells are compared. In microarray 

technology, an experiment with a single DNA chip provides researchers information 

on the interactions between thousands of genes simultaneously, which has therefore 

dramatically accelerated many types of investigations, and the technology has 

become a standard tool for the analysis of transcription profiles among other high-

throughput analytical methods (Duggan et al., 1999; van Berkum et al., 2001; Case-

Green et al., 1998 and Young, 2000). One of the key challenges is to interpret the 

data: to identify key genes or patterns of expression associated with some condition 

and so to gain valuable clues about the biological processes related to that condition.  

 S. cerevisiae has been the model organism for higher eukaryotes for the 

development of microarray technology since the sequencing of its genome was 

completed (Miklos and Rubin, 1996; Goffeau et al., 1997). Many comprehensive 

studies have been designed to demonstrate how gene messages vary in response to 

different stimuli, such as high saline concentration (Posas et al., 2000), carbon and 

nitrogen starvation (Kao, 1999), alkylating treatment (Jelinsky et al., 1999), as well 

as to identify genes whose expression depends on a cell state, such as cell-cycle 

progression (Spellman et al., 1998), diauxic shift (DeRisi et al., 1997) and 

sporulation (Chu et al., 1998). Most of these studies are of some practical application 

to the biology of industrial yeasts for the improvement of the ethanol production 

processes. There are, however, many other applied fields for DNA microarray 

technology where advances are rapid, such as drug targets research, neurobiology 

studies and so on (Shoemaker et al., 2002). The applications for this technique are 

considerable and will continue to gain momentum. 
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DNA microarrays come in two main types of technical platforms. The first is 

based on standard microscopic glass slides on which cDNAs or long 

oligonucleotides (typically 70−80 mers) that correspond to transcripts of many 

different genes have been spotted (DeRisi et al., 1997). The second is based on 

photolithographic techniques to synthesize 25-mer oligonucleotides on a silicon 

wafer and constitutes the patented technology of Affymetrix Inc (Lipshutz et al., 

1999). Among these methods, the spotted oligonucleotide microarrays are relatively 

inexpensive and less labour involvement as compared to the others (Stanton, 2001).  

The use of microarrays to monitor gene expression is a rapidly evolving 

technology and has brought about a rethinking of the biology and disease at a global 

('systems biology') level (Kitano et al., 2002; Hood et al., 2004). The technology is 

still being improved because the value of array experiments depends on the quality 

of the array and different technical solutions are emerging (Wodicka et al., 1997; 

Hauser et al., 1998; Cox et al., 1999; Nau et al., 2000 and Hughes et al., 2001).  

2.4 Integrative approaches for gene function assignment 

With the genome sequences of many organisms in hands, post-genomic 

studies have shown a prevailing trend in gene function assignment and 

comprehensive investigations of biological systems in response to external stimuli. 

DNA microarrays have provided scientists with a first step towards uncovering gene 

function on a global-scale at expression levels. Further understanding of functional 

genomics is addressed by integrative studies that include analyses at multiple levels, 

including the level of gene expression (transcriptomics), protein translation 
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(proteomics) and more recently the metabolite network (metabolomics) (Delneri et 

al., 2001). 

Metabolites are the end products of cellular processes, and their levels can be 

regarded as the ultimate response of biological systems to genetic or environmental 

changes and so reflect more closely the activities of the cell at a functional level 

(Fiehn, 2000). Metabolomic analysis aims to provide a comprehensive insight into 

the metabolic state of a system – profiles of a number of predefined target 

metabolites of an organism under a given set of conditions (Daviss, 2005; Fiehn, 

2001). The target can be a set of metabolites shared among different pathways or all 

metabolites of a specific pathway (Fiehn, 2001). 

The metabolomics-based approach is expected to explore and define the 

function of genes involved in metabolic processes and gene-to-metabolite networks 

(Fiehn et al., 2000; Oksman-Caldentey et al., 2005). In particular, an innovative 

integrative approach that links comprehensive gene expression profile and targeted 

metabolite analysis can bring us deeper understanding of the links between different 

levels of biological systems (Goossens et al., 2003; Askenazi et al., 2003; Oksman-

Caldentey et al., 2005). Bioinformatics are then being used to relate the data to the 

genome. Such a network not only will assist biologists in testing the treatment 

effects at the metabolic pathway level and extracting a comprehensive overview of 

experimental effects from microarray data, but also will help identify gene function 

and subsequent metabolic engineering targets for future biotechnological 

applications (Patil et al., 2004; Nielsen et al., 2002). 
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2.5 Overview of metabolism and gene regulation during 
fermentation 

 
Metabolism is a large circular process of energy conversion involved in 

maintaining the living state of the cells, and thus the organism. In general 

metabolism may be divided into two categories: catabolism (dissimilation), where 

the energy is released from the oxidative degradation of complex organic 

compounds; and anabolism (assimilation), where energy is used for reductive 

synthesis of new molecules to maintain the structure and function of an organism. 

The oxidative and reductive processes of anabolism and catabolism are mediated by 

dehydrogenases, which predominantly use NAD+ or NADH and NADP+ or NADPH, 

respectively, as redox cofactors (Walker, 1998). The coenzyme NAD(H) system is 

primarily involved in energy-producing (catabolic) metabolism, normally 

maintaining their NAD+/NADH ratio near 1000 that favours metabolite oxidation, 

while the coenzyme NADPH system is primarily involved in biosynthesis 

(anabolism) metabolism, keeping their NADP+/NADPH ratio near 0.01 that favours 

metabolite reduction (Voet et al.,1995).  

Glucose metabolism, the citric acid cycle and oxidative phosphorylation are 

central biochemical pathways in cellular energy metabolism (Oexle et al., 1999). S. 

cerevisiae exhibits different modes of metabolism to gain energy depending on the 

availability of oxygen and the carbon sources. Under aerobic conditions, pyruvate, 

the output of the glucose metabolism is oxidized by the citric acid cycle completely 

to CO2 with oxygen (O2) as the terminal electron acceptor in the electron transport 

chain (respiration) (Otterstedt et al, 2004), while, under anaerobic conditions, 
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pyruvate is channeled into the production of ethanol to cancel the debt of NAD+ 

originating in the glycolytic pathway (fermentation) (Rose et al., 1987). As a 

facultative anaerobic organism, S. cerevisiae has a strong tendency towards a mixed 

respiro-fermentative metabolism, in which ethanol is produced even in the presence 

of oxygen, as long as the external glucose concentration exceeds 0.8 mM (Verduyn 

et al, 1984).                                          

When cells grow on nonfermentable C2 and C3 substrates or fatty acids, 

energy has to be provided by the electron transport chain, and in addition to this, 

gluconeogenesis and the glyoxylate cycle are necessary for the biosynthesis of sugar 

phosphates (Neeff et al., 1977), therefore, one may consider genes involved in 

glyoxylate cycle as gluconeogenic genes. In the presence of glucose or other easily 

fermentable sugars, glycolysis is the major energy-yielding pathway, and ethanol is 

produced. The syntheses of all gluconeogenic and glycoxylate cycle enzymes are 

strongly repressed under such conditions (Polakis et al., 1965), so are the enzymes of 

the respiratory chain and most citric acid cycle enzymes (Zimmermann et al., 1997).  

 The primary pathways of yeast during respiro-fermentative metabolism 

include glycolysis and gluconeogenesis pathways, pentose phosphate pathway, 

glycerol metabolic pathway and citric acid cycle as shown in Figure 2.2, nitrogen 

metabolism and urea cycle as shown in Figure 2.6, and proline and arginine 

metabolism as shown in Figure 2.7.  
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Figure 2.2 Scheme of primary pathways and energy metabolism in yeast.  
The genes involved in the pathways are listed. The genes with significant fold 
change are shown in blue. Red arrow shows the flux direction of the regulating 
genes. Scheme was modified from Kresnowati et al. (2006). 
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2.5.1 Glycolysis and gluconeogenesis 

Glycolysis is the sequence of reactions that converts glucose into pyruvate 

with the concomitant production of two ATP and two NADH. Glycolysis can be 

carried out anerobically and thus an important pathway for organisms that can 

ferment sugars. Gluconeogenesis proceeds in the opposite direction, which enables 

yeast cells to grow on non-sugar carbon sources like ethanol, glycerol, or peptone 

(Schuller, 2003), and expends two NADH, four ATP and two GTP (the equivalent of 

ATP). Most of the enzymes in glycolysis and gluconeogenesis catalyze reversible 

reactions. Whether glycolysis or gluconeogenesis occurs is influenced by the activity 

levels of a few non-reversible reactions. The irreversible steps in glycolysis are 

catalysed by hexokinase, phosphofructokinase-1 (PFK) and pyruvate kinase (PK). 

Those of gluconeogenesis are catalysed by phosphoenolpyruvate carboxykinase 

(PEPCK), pyruvate carboxylase, fructose 1,6-bisphosphatase (F-1,6-bisPase) and 

glucose 6-phosphatase (McElwee et al., 2006). A futile cycle consisting of both 

pathways would waste four ATP equivalents per cycle. In order to prevent this, 

glycolysis and gluconeogenesis pathways are reciprocally regulated (Polakis et al., 

1965). 

2.5.2 Pentose phosphate pathway (PPP) 

 Some glucose-6-phosphate is diverted from the common glycolytic pathway 

into the pentose phosphate pathway. The main role of the PPP is to provide the cell 

with a source of NADPH as reducing power for biosynthetic reactions and to supply 

pentose phosphate for the synthesis of nucleotides (Zimmermann et al., 1997). This 

pathway is also important for protecting yeast from oxidative stress, since NADPH 
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is an essential cofactor for glutathione- and thioredoxin-dependent enzymes that 

defend cells against oxidative damage (Miosga et al., 1996; Slekar et al., 1996). 

The pathway can be divided into two parts (Rose et al., 1987). One is 

oxidative and irreversible, which converts glucose-6-phosphate into ribulose-5-

phosphate and CO2, generating NADPH with two dehydrogenate enzymes involved. 

Since no transhydrogenase activity could be detected in S. cerevisiae (Bruinenberg 

et al., 1985), no direct interconversion of NADH and NADPH can occur. The 

oxidative part of the PPP was therefore thought to be the major source of NADPH in 

S. cerevisiae (Zimmermann et al., 1997). The other is non-oxidative and reversible 

and is important for interconversion of ribulose-5-phosphate, fructose-6-phosphate 

and glyceraldehyde-3-phosphate, which are required for many biosynthetic 

pathways. Since glucose-6-phosphate, fructose-6-phosphate and glyceraldehyde-3-

phosphate are also glycolytic intermediates, so they can be shunted to glycolysis and 

oxidized to pyruvate, or utilized by the gluconeogenic enzymes to generate more 6 

carbon sugars (fructose-6-phosphate or glucose-6-phosphate). 

2.5.3 Glycerol metabolism 

Glycerol is a by-product of yeast ethanol fermentations and its formation is 

essential in the maintenance of the redox balance (van Dijken et al., 1986). Glycerol 

is produced by reduction of dihydroxyacetone phosphate to glycerol-3-phosphate by 

a cytosolic NAD+-dependent glycerol-3-phosphate dehydrogenase (GPD), followed 

by dephosphorylation to glycerol by glycerol-3-phosphatase (Gancedo et al., 1968). 

As stated above, excess NADH produced in the cytoplasm due to the 

formation of biomass and different by-products must be reoxidized to allow an 
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enduring cellular metabolism. Glycerol formation is the only way of restoring the 

cytoplasmic redox balance with a net result of NADH consumption under anaerobic 

conditions since ethanol production is a redox neutral process (Van Dijken et al., 

1986). The oxidation of NADH in glycerol assimilation is catalyzed by cytosolic 

GPD that encoded by GPD1 and GPD2 (Albertyn et al., 1994; Eriksson et al., 1995). 

Respiratory oxidation of cytosolic NADH can also play a role in maintaining 

cytosolic redox balance. However, NADH is unable to cross the mitochondrial inner 

membrane and mechanisms are required for conveying cytosolic NADH to the 

mitochondrial electron transport chain, such as the glycerol-3-phosphate (G3P) 

shuttle (Larsson et al., 1998). G3P shuttle comprising DHAP and L-G3P carries 

electrons from cytosolic NADH to the respiratory chain with the help of the 

cytosolic GPD encoded by GPD1 and GPD2, and mitochondrial GPD encoded by 

GUT2.  

Beside G3P shuttle, yeast cells can also indirectly exchange the NADH 

between mitochondria and cytosol by some other metabolite shuttles, such as the 

ethanol-acetaldehyde shuttle (Nissen et al., 1997). The mechanisms of the G3P 

shuttle and the ethanol-acetaldehyde shuttle are shown in Figures 2.3 and 2.4. 

Glycerol also acts as a compatible solute when yeast cells are exposed to 

osmotic stress (Brown, 1978). The prominent physiological response of yeast cells 

to osmotic stress is the enhanced production and intracellular accumulation of 

glycerol and the glycerol production under this situation is solely controlled by the 

level of cytosolic NAD+-dependent glycerol-3-phosphate dehydrogenase activity, 

the key enzyme of glycerol synthesis (Andre et al., 1991; Albertyn et al., 1994).  
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Figure 2.3 Illustration of glycerol-3-phosphate shuttle. Modified from Nguyen 
(2004) 
 

 

Figure 2.4 A scheme presentation of ethanol-acetaldehyde shuttles. Modified from 
Nguyen (2004) 
 

2.5.4 Citric acid cycle (TCA cycle) 

 The citric acid cycle (also known as the tricarboxylic acid cycle, the TCA 

cycle, or the Krebs cycle) is oxidative, generating NADH, which drives the synthesis 

of large amount of ATP for the cell metabolism. As well, this cycle provides the 
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carbon skeletons used in many biosynthetic reactions, such as the synthesis of 

glutamate (Stryer, 1988).  

Pyruvate dehydrogenase (PDH) links glycolysis to the TCA cycle via 

conversion of pyruvate to acetyl-CoA, which is the initiator of the TCA cycle 

(Ullrich et al., 1975). The reactions of TCA cycle serve to completely degrade the 

two-carbon unit acetyl-CoA (which is derived primarily from three major food 

groups: carbohydrate, lipids, and proteins) in to CO2, while transforming the energy 

of the acetyl-CoA into one high-energy phosphate bond in the form of GTP and four 

reducing equivalents (three NADH + H+, and one FADH2). The NADH and FADH2 

are then oxidized by the electron transport chain that coupled with the citric acid 

cycle, and ultimately yielding fifteen ATP equivalents per pyruvate molecule under 

aerobic metabolism. The conversion of pyruvate to acetyl CoA and all reactions of 

the TCA cycle take place in the mitochondria which is also the location of the 

electron transport chain (Rose et al., 1987). 

2.5.5 Nitrogen metabolism, urea cycle and metabolism of amino groups  

Nitrogen is a critical chemical element in both proteins and DNA, and thus 

every living organism must metabolize nitrogen to survive. Yeasts are capable of 

utilizing a range of different inorganic and organic sources of nitrogen (Cooper, 

1982). However, S. cerevisiae selects the preferred nitrogen sources that yield 

relatively higher growth (such as ammonia, glutamine, and asparagine) or stimulates 

metabolisms of alternative nitrogen sources (such as proline and urea) when the 

preferred ones have been consumed (ter Schure et al., 2000; Marzluf, 1997).  
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In order to use the nitrogen sources, yeast cells have to convert them into 

glutamate and glutamine − the predominant nitrogen donors for all other nitrogen 

containing compounds in the cell such as amino acid (ter Schure et al., 2000). Both 

glutamate and glutamine can be synthesized directly using ammonia as the amino 

group donor. In S. cerevisiae, two genes (GDH1 and GDH3) encoded NADP+-

dependent glutamate dehydrogenase isoenzymes (Avendaño et al., 1997) are 

required to catalyze glutamate synthesized from ammonia and -ketoglutarate 

(Figure 2.5). Glutamine is synthesized from ammonia and glutamate in a reaction 

that requires ATP, catalyzed by glutamine synthetase. Therefore nitrogen catabolism 

is centered on degrading nitrogen sources to finally yield either ammonia or 

glutamate as end products. Several systems, such as those degrading allantion, urea, 

or asparagine, generate ammonia as the final product. The remaining systems, such 

as those participating in proline and arginine metabolism, generate glutamate 

(Cooper, 1982).  

 
 

Figure 2.5 The glutamate synthesis reaction 
 

In the degradative pathway of every amino acid, its carbon skeleton enters 

the TCA cycle or is channeled into gluconeogenesis, part of the ammonia is reused 

for biosynthetic purpose, and the rest of it must be excreted and is mainly in the 

form of urea. The series of reactions that operate to eliminate excess nitrogen and 

form urea is known as the Urea Cycle or the Krebs-Henseleit Cycle. As a nitrogen 
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source for S. cerevisiae, urea is carboxylated by urea amidolyase (DUR1,2) to 

produce two molecules of ammonia via allophanate (Cooper et al., 1980). The 

summary of the links between the urea cycle and the citric acid cycle is shown in 

Figure 2.6.  

 
 

Figure 2.6 The relationship of the urea cycle to the TCA cycle 
Source: http://138.192.68.68/bio/Courses/biochem2/AminoAcids/UreaCycle.html 

 

2.5.6 Proline and arginine metabolism 

Proline is an amino acid that is not only required for protein synthesis but can 

also serve as a nitrogen source, the least-preferred nitrogen source. As stated above 

in nitrogen metabolism, when other sources of nitrogen like ammonia, asparagine or 

glutamine are unavailabe, S. cerevisiae cells degrade proline into glutamate via the 

proline utilization pathway. The conversion is assisted by proline oxidase and delta-

1-pyrroline-5-carboxylate dehydrogenase encoded by gene PUT1 and PUT2, 

respectively (Brandriss et al., 1979). 

Arginine is another nitrogen source that S. cerevisiae can utilize when 

optimal sources of nitrogen are unavailable. Three enzymes, arginase (CAR1) and 

ornithine transaminase (CAR2), delta 1-pyrroline-5-carboxylate reductase (PRO3) 
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are responsible for arginine catabolism (Middelhoven, 1964) (Figure 2.7) which 

occurs in the cytosol with the hydrolysis of arginine to proline, releasing three 

nitrogen atoms. The proline ring is able to be further degraded to glutamate via the 

proline utilization pathway under aerobic condition, and therefore entering TCA 

cycle through -ketoglutarate (Brandriss et al., 1980).  

The metabolic pathway of arginine biosynthesis and the genes involved in its 

metabolism is presented in Figure 2.8. The first five steps of arginine biosynthesis in 

S. cerevisiae take place in the mitochondrion and result in the formation of ornithine 

which is then exported to the cytoplasm. In the cytoplasm, L-ornithine is converted 

to L-arginine in three reactions mediated by ornithine carbamoyltransferase, 

arginosuccinate synthase, and argininosuccinate lyase. Transcription of genes of the 

arginine biosynthetic pathway, as well as of other amino acid biosynthetic pathways, 

is activated upon amino acid starvation. 

 

Figure 2.7 Arginine and proline degradation pathway. 
Source: http://pathway.yeastgenome.org:8555/YEAST/new-

image?type=PATHWAY&object=ARGDEG-YEAST-PWY&detail-level=2 
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Figure 2.8 The metabolic pathway for the arginine synthesis from glutamate in yeast 
Source: http://pathway.yeastgenome.org:8555/YEAST/new-

image?type=PATHWAY&object=YEAST-ARG-SYN-PWY&detail-level=2 
 

2.6 Knowledge gap 

The transcriptional responses of yeast cells to osmotic, ethanol stress and 

nitrogen limitation have been investigated by several studies using DNA microarray 

technique (Posas et al., 2000; Alexandre et al., 2001; Backhus et al., 2001). These 

works have successfully determined the molecular mechanisms involved in 

protection against individual stresses. However, industrial fermentations are 

dynamic in nature, with multiple stresses or biological changes interacting 

simultaneously to affect the physiological traits of the yeast or fermentation 
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parameters. Thus, studying the effect of individual stresses on yeast does not give 

the full picture of the important environmental parameters in fermentation. Although 

a further study focusing on the influence of VHG fermentation on the transcriptional 

profile of S. cerevisiae has been carried out (Devantier et al., 2005), it didn’t 

consider the effects of assimilable nitrogen level which are important for the 

efficiency of the VHG fermentation (Casey et al., 1984). 

The work described in this thesis contributes to the understanding of 

transcriptional gene expression profile in S. cerevisiae grown in a defined medium 

mimicking the fermentation conditions in the fuel ethanol industry with regard to 

supplementation of assimilable nitrogen, carbohydrate source and concentration, 

which has not been studied so far.  
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CHAPTER 3 MATERIALS AND METHODS  

3.1 Experimental design 

In order to understand the cell behaviour in response to different 

environments at a global level, the overall gene expression profiles of the yeast were 

examined using Agilent in situ synthesized 60-mer oligonucleotide microarrays by 

harvesting the yeast at the late logarithmic phase of fermentations under different 

conditions. The chosen time for sample collection ensures both high expression 

levels of stress genes and high activities of the yeast cells (Rossignol, 2003). 

 For comparison, chemically defined medium with various combination of 

glucose levels (10 g glucose/l vs. 270 g glucose/l) and free amino nitrogen levels (no 

supplementation of urea vs. 16 mM urea) were used for fermentation. Thus, a 22 

experimental plan was designed and implemented. Hybridizations between contrasts 

were conducted to monitor expression difference of interesting genes triggered by 

certain stress. 

In a microarray experiment, in order to distinguish true differences between 

conditions, several replicates per condition are needed to obtain sufficiently reliable 

enough estimates of variation among samples within condition. Dye-swap technique 

is used to offset the bias caused by dye effect. In this comparative study of four 

conditions, the experiments were designed as shown in Figure 3.1 where circles 
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represent samples, and arrows represent chips; the red and green ends of the arrows 

represent the dyes used for the samples at either end. 

 

  

 
Figure 3.1 An experimental design for a comparative study of the effect of nitrogen 

deficiency on yeast grown at two gravity environments. 
Source: http://discover.nci.nih.gov/microarrayAnalysis/Experimental.Design.jsp 

 

To validate the microarray results, targeted metabolites and organic acids 

were profiled using High Performance Liquid Chromatography (HPLC) in 

combination with Ion Chromatography (IC), which facilitate the interpretation of 

expression data as well. 

3.2 Yeast cultivation 

S. cerevisiae, originally supplied by Alltech Co. (Nicholasville, KY) and held 

in pure culture at Dr. W. M. Ingledew’s laboratory at University of Saskatchewan, 

was cultivated in batch. The chemically defined medium was used to cultivate yeast 

(Narendranath et al., 2001; Stephanopoulos et al., 1998). 

The final concentrations of ingredients in the chemically defined medium 

were: (mmol/l) (NH4)2SO4, 2; Urea (if added), 16; K2HPO4, 0.86; KH2PO4, 6.83; 

MgSO4, 2.03; NaCl, 2.05; and (µmol/l) H3BO3, 24; MnSO4, 20; NaMoO4, 1.5; 

270 g glucose/l 
with urea 

10 g glucose/l 
with urea 

10 g glucose/l 
without urea 

270 g glucose/l 
without urea 
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CuSO4, 10; CoCl2, 1.5; ZnSO4,100; KI, 1.8; FeCl3,100; CaCl2, 82; and (µg/l) biotin, 

300; calcium pantothenate, 3000; folic acid, 30; myoinositol ,15000; niacin, 600; 

pyridoxine HCl, 600; riboflavin, 300; and thiamine HCl, 300. The medium 

contained either 10 or 270 g glucose/l as the sole carbon source. The vitamin 

solution (with the unit of “µg/l”) was prepared as a 1000-fold concentrated stock and 

kept frozen at -20° C. When needed, an aliquot was thawed and filter-sterilized (0.2-

µm pore size membrane filter) and the required amount was added to medium. 

Working cultures of this organism were maintained at 4° C in YPD (a 

medium containing 1% yeast extract, 1% peptone, and 2% glucose) slant tubes with 

an addition of 2% agar. The cultures were started from a fresh single colony and 

incubated with 100 ml YPD (complete) liquid medium at 30° C. The flasks used 

were 250-ml screw-capped, side-arm Erlenmeyer flasks. The growth of yeast cells 

was measured turbidometrically using a Klett Summerson colorimeter (Clinical 

model, Klett Manufacturing, NY) equipped with a No. 59 filter (560-630nm). Yeast 

cells were stained with methylene blue, and the viable cells (cells that were not 

stained blue) were counted directly using light microscopy at 200 × magnification 

and a hemocytometer (Bright Line Counting Chamber, Hausser Scientific, PA). 

After cell number reached 3×107 cells/ml (the corresponding Klett unit is 105), a 10-

ml culture was withdrawn and used to subculture to 90 ml of chemically defined 

medium with 270 g glucose /l; for the condition of 10 g glucose/l, a 1-ml culture was 

inoculated into 99ml chemically defined medium. 
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3.3 Batch growth of yeast cells grown under four different 
conditions 

 
In order to study the influence of nitrogen deficiency and very high sugar 

concentration on global gene expression profiling of yeast cells, chemically defined 

medium with various combination of glucose levels (10 g glucose/l vs. 270 g 

glucose/l) and free amino nitrogen levels (no supplementation of urea vs. 16 mM 

urea) were used for fermentation. They are the medium with 10 g glucose/l in the 

presence of urea (10U); the medium with 10 g glucose/l without urea 

supplementation (10Q); the medium with 270 g glucose/l in the presence of urea 

(270U); and the medium with 270 g glucose/l without urea supplementation (270Q).  

3.4 Glucose consumption and ethanol production 

Aliquots of cell suspension at different points during batch fermentation were 

centrifuged and 1 ml of supernatant was analyzed for glucose and ethanol 

concentration using Biochemistry Analyzer (YSI 2700 Select, YSI Incorporated, 

Yellow Springs, OH) and Gas Chromatograph (GC) (5890 series II, Hewlett-

Packard, Palo Alto, CA), respectively.  

3.5 RNA extraction 

Total RNA was isolated from cell culture using the Agilent Total RNA 

Isolation Mini Kit (Agilent Technologies, Inc., USA). The manufacturer’s protocol, 

“Isolation of High-Purity Total Cellular RNA from Yeast Using the Agilent Total 

RNA Isolation Mini Kit” was used. The only deviation from the stated procedure 
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was that glass beads were used instead of rotor-stator homogenizer in disruption of 

yeast cells. One volume of glass beads (0.45-0.55-mm diameter) was added to three 

volumes of the lysis buffer in the 1.5 mL Eppendorf tubes. The tubes were first 

placed on ice for two minutes and vortexed vigorously for 1 minute, and then placed 

on ice for one minute (This process was repeated for two more times to attain 

thorough disruption and homogenization). Purified RNA was stored at -80° C until 

use. 

To assure the success of microarray experiments, the quantity and quality of 

the RNA were always checked before use through a combination of UV absorbance 

with gel electrophoresis detection.  

3.5.1 Quantification of RNA 

The concentration of total RNA was determined by measuring the optical 

absorbance at 260nm with UV-VIS spectrophotometer (UV mini 1240, SHIMADZU, 

JAPAN) using the following formula: 

Total RNA (µg) = A260 reading × 40 µg/ml ×dilution factor × volume of 

RNA sample (ml) 

10 µl of the RNA samples was diluted in 990 µl 10 mM Tris-HCl (pH 7.0) 

and transferred to a quartz cuvette (1 cm path length). The reading at 260 nm was 

read using a UV spectrophotometer against 10 mM Tris-HCl (pH 7.0) as blank 

solution.  



 37

3.5.2 Purity of RNA 

The ratio of absorbance at 260 nm to absorbance at other wavelengths is a 

good indicator of the purity of the preparation, so a full UV spectrum was taken in 

10 mM Tris-HCl, pH 7.5. Pure RNA should be observed with an A260/A280 ratio of 

approximately 2.0, and an A260/A230 ratio above 1.8. In addition, an A260/A270
 ratio 

greater than or equal to 1.2 indicates the RNA is free of phenol, and an A260/A330 

ratio of approximately 0 indicates the RNA is free of particle.  

3.5.3 Integrity of RNA 

RNA integrity was detected by denaturing agarose gel electrophoresis and 

ethidium bromide staining following the protocol “QIAGEN Guide to Analytical 

Gels” available on QIAGEN website. 

3.6 Fluorescent Direct Labeling of cDNA  

 RNA isolated from two samples was converted to fluorescently labeled 

cDNA — either cyanine 3-cDNA (pink dye), or cyanine 5-cDNA (blue dye) using 

the Agilent Fluorescent Direct Label Kit (Agilent Technologies, Inc., USA) as per 

the manufacturer's instructions. The resulting labeled cDNA samples were combined 

for the hybridization to the same microarray. Figure 3.2 provides an overview of the 

procedure and shows a sample Microarray image. 
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Figure 3.2 Agilent Fluorescent Direct label Kit Protocol 
Source: Agilent Fluorescent Direct label Kit Protocol 

 

3.7 Hybridization to an oligonucleotide-based Microarray 

  Hybridization was performed using hybridization kit (Agilent Technologies, 

Inc., USA) as per the manufacturer's protocol. After incubation at 60° C for 17 hours 

in the hybridization oven, unhybridized probe was removed by washing the 

microarray slide with several changes of buffer. A modified washing procedure 
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specially designed for cDNA labeled targets developed by Agilent Technologies, Inc. 

was used. The slides were then stored in dark until scanning. 

3.8 Microarray image processing 

Briefly, the microarray slides were scanned by a dual-beam laser scanner 

(Axon Instruments, Inc., Union City, CA), the obtained images were then subject to 

background correction, followed by normalization and scaling steps in order to bring 

all microarrays to a same scale. The scaled microarray data were linearized using 

marray and limma packges (retrieved from R statistics web site) to infer the 

expression profiles. An R script code was written in order to use the feature provided 

by the packages.  

3.8.1 Image scanning 

The hybridized microarrays were scanned with a GenePix 4000B dual laser 

scanner at 10-µm resolution complete with its own GenePix Pro software for 

microarray image analysis.  

Cyanine 3-cDNA was excited at a wavelength of 532 nm producing a green 

color and cyanine 5-cDNA was excited at a wavelength of 632 nm producing a red 

color. Data from each fluorescence channel were collected and stored in TIFF image 

formats.  The images were overlaid to generate the final microarray image consisting 

of red, yellow and green spots of varying intensities.  The background intensity 

calculated locally, rather than globally was subtracted from the feature intensity 

resulting in the true spot intensity for calculating meaningful gene expression 

values.   
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3.8.2 Image pre-normalization  

Before the gene expression profiles of the RNA samples can be analyzed and 

interpreted, the red and green intensities must be normalized relative to one another 

so that the red/green ratios are as far as possible an unbiased representation of 

relative expression. Each microarray was pre-normalized with the GenePix 

normalization factor so that the median of ratios of all of the features was equal to 1. 

The pre-nomalized microarray images can be found in Appendix 1.  

The intensities were then converted to gene expression ratios by dividing 

Cy5 intensity by Cy3 intensity in each spot, and the ratios were log-transformed with 

base 2 so that up-regulated and down-regulated genes changed by the same 

amplitudes. The intensity of the spot is proportional to the amount of gene 

expression within the sample.  A yellow spot represents equal gene expression 

between both samples and the gene expression is said to be non-differential.  

3.9 Microarray data analysis 

A software package for analyzing designed experiments and the assessment 

of differential expression, LIMMA (Linear Models for Microarray Data), was used 

to process pre-normalized microarray data. An R Statistics script developed by Dr. 

Lin incorporates LIMMA tools to mine biological information buried in the pre-

normalized datasets. In the R script, the microarray dataset is sequentially evaluated 

as following: background correction of datasets, normalization between datasets, 

linear fitting of normalized datasets and Bayesian inference of up-, down- and non-
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regulating genes in the datasets. The MA plots were used to illustrate data extracted 

from microarray images. These plots are collected and presented in Appendix 2.  

3.10 Analysis of targeted metabolites and organic acids 

   Succinic acid and glycerol were quantified by HPLC (Series 1100, Agilent 

Technologies, Mississauga, ON) equipped with a refractive index detector (HP 

1047A, Hewlett Packard, Mississauga, ON). The metabolites were separated in an 

ORH-801 column (ICE-99-9754, Transgenomic Company, Omaha, NE) in which 

the 2.5 mM sulfuric acid (H2SO4) mobile phase was used as at 0.2 ml/min, and the 

temperature was maintained at 50° C. In order to determine the distribution of 

metabolites and organic acids, a series of standard samples were prepared at a 

concentration of 50.0 mM, filtered with a 0.2 μm cellulose nitrate membrane filter 

(Cat. 7182-002, Whatman International Ltd, Maidstone, England).  

 Lactic acid, acetic acid, pyruvic acid, α-ketoglutaric acid, d-glucuronic acid, 

fumaric acid, citric acid, succinic acid, malic acid were analyzed by ion exclusion on 

a Dionex DX500 IC unit equipped with an AS11HC column (Dionex Corp., 

Sunnyvale, CA). The Potassium Hydroxide was used as eluent at 1.5 ml/min. 

Conductivity detection with an ASRS-Ultra II 4-mm suppressor was used. A series 

of standard samples were prepared at a concentration of 20 ppm, filtered with a 0.2 

μm cellulose nitrate membrane filter. 

  Based on the relationship between the peak area and concentration of each 

standard sample, a plot of concentration versus peak area was obtained, which serves 
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as the calibration curves (see Appendices 3 and 4) for quantifying metabolites and 

organic acids of interest. 
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CHAPTER 4 RESULTS AND DISCUSSION 

4.1 Batch Growth of Yeast Cells Grown under Four Different 
Conditions 

 
When yeast cells were inoculated into the liquid medium with adequate 

nutrients and incubated with shaking at 30°C as mentioned in Chapter 3, typical 

batch growth curves were resulted when the viable population and turbidity of cells 

were plotted against time (Figure 4.1 and Figure 4.2). 

 As depicted by both figures, the lag phase occurred immediately after 

inoculation was a period of adaptation of cells to a new environment. During this 

phase, cells experienced a change of nutritional status or alterations in physiological 

growth condition, and there was no measurable growth. After cells transited from lag 

phase and commenced active cell division, they entered an acceleration phase and 

gradually finished adjusting to the new environment. In the exponential phase, cells 

multiplied rapidly, and cell mass and cell number density increased exponentially 

with time. Following the exponential phase, cell growth was retarded in a 

deceleration phase due to depletion of essential nutrients, and accumulation of 

growth inhibitory metabolites, such as ethanol. Yeast cells enter the prolonged 

periods of stationary phase without added nutrients and finally died or autolyzed due 

to the exhaustion of essential nutrients or the buildup of inhibitors.  
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Figure 4.1 Growth curves of S. cerevisiae at 10 g glucose/l in the absence and 
presence of urea 
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Figure 4.2 Growth curves of S. cerevisiae at 270 g glucose/l in the absence and 
presence of urea 
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 The experiments under all conditions were conducted more than three times 

to ensure that reproducible results could be obtained, and each growth phase of the 

yeast cells in the three runs was statistically reproducible (within cell counting 

±15%). 

4.2 The Influence of FAN Levels on Yeast Growth and 
Fermentation Performance 

 
In order to study the influence of FAN (Free Amino Nitrogen) levels on 

yeast growth, the viable yeast cell numbers were plotted against time in a semi-log 

format as shown in Figure 4.1 and Figure 4.2. Both figures shows that the yeast cells 

entered the deceleration phase sooner when grown in the absence of urea than in the 

presence of urea.  

In order to understand the influence of FAN levels on fermentation 

performance, the curves illustrating the trends of glucose consumption and ethanol 

production during the course of fermentations with 10 g and 270 g glucose/l in the 

absence and presence of urea were generated and presented in Figures 4.3 and 4.4. 

In the batch fermentation with 270 g glucose/l without urea in the medium 

(Figure 4.4), the glucose was taken up very slowly and the fermentation was not 

efficient due to the weak viability of yeast caused by the lack of nitrogen source. 

While, when adequate urea was present in the medium, the glucose concentration 

sharply decreased before the nutrients were depleted and then remained more or less  
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Figure 4.3 Glucose consumption and ethanol production during yeast growth at 10 g 
glucose/l in the absence and presence of urea 
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Figure 4.4 Glucose consumption and ethanol production during yeast growth at 270g 
glucose/l in the absence and presence of urea 
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constant until the end of fermentation. The ethanol concentration increased in 

harmony and was considered to be related. However, as the growth continued, 

nutrient depletion occurred. Yeasts were dependent on glucose as a primary form of 

energy. As one can see in Figures 4.3 and 4.4, the diauxic shift appeared near the 

end of the fermentation, at approximately 12 h and 66 h respectively.  

The results indicated that the lack of FAN prevents the yeast growth and 

imposes a limiting effect on consumption of glucose and ethanol formation. 

Addition of adequate levels of FAN in medium ensures efficient yeast growth and 

hence a desirable fermentation performance.  

4.3 RNA Sample Collection  

Culture samples were collected at late log phase considering the higher 

viability of yeast cells at log phase and the higher expression levels of stress genes 

upon entry into stationary phase. The integrity, purity and quantity of isolated RNA 

samples were detected by gel electrophoresis and UV spectrophotometer, and the 

resulted gel electrophoresis image was presented in Figure 4.5, where 28S ribosomal 

RNA bands were present with intensity approximately twice that of the 18S rRNA 

band, and all appeared as sharp bands which indicate there was no major RNA 

degradation. 

 

Figure 4.5 Gel electrophoresis image of RNA samples 
From left to right: a, standards; b, 270 U; c, 270 Q; d, 10 Q; and e, 10 U.  
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4.4 Gene Expression Profiling  

In this thesis, only genes involved in the primary pathways of yeast during 

respiro-fermentative metabolism with more than 1.5-fold transcriptional change are 

described and explained. They are the genes involved in glycolysis and 

gluconeogenesis pathways, pentose phosphate pathway, glycerol metabolic pathway 

and citric acid cycle (Figure 2.2), the genes involved in nitrogen metabolism and 

urea cycle (Figure 2.6), and the genes involved in proline and arginine metabolism 

(Figure 2.7). The concentrations of targeted metabolites and organic acids for 

microarray data validation are present in Table 4.1. The data of differentially 

expressed genes in the primary pathways are present in Table 4.2. Further details 

(microarray images, image processing, and data analysis etc.) can be found in the 

appendices. 

Table 4.1 Average of extra-cellular metabolite concentrations measured at the late 
log phases of yeast growth under four different fermentation conditions;  

Organic Acid (mM) 10W 10Q 270W 270Q 

Acetic Acid 1.7648 0.6676 2.1653 1.9088 
Lactic 0.0351 0.0123 1.6102  0.2810 

Pyruvic Acid 0.0723 0.1195 1.0450 0.6509 
-Ketoglutaric Acid 0.0193 0.0216 0.1386 0.2244 

Fumaric Acid 0.0011 0.0011 0.0039 0.0044 
Citric Acid 0.0021 0.0017 0.0108 0.0063 
Glycerol

*
 0.40  0.18  6.27  2.65  

*g/l  
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Table 4.2 Genes in S. cerevisiae that experienced transcriptional change (>1.5-fold) 
when cells were grown in medium with different glucose and urea concentrations 

1. Glycolysis and gluconeogenesis 
Gene name ORF W10/Q10 W270/Q270 W270/W10 Q270/Q10 

ACS1 YAL054C 4.012 -0.911 -3.729 0.746 
ACS2 YLR153C 1.365 0.36 -1.776 -1.12 
ADH2 YMR303C 2.239 -0.194 -2.977 -0.111 
ALD4 YOR374W 1.226 0.078 1.983 3.328 
ALD6 YPL061W 2.2 0.176 1.602 3.663 

ARO10 YDR380W -0.482 -2.022 1.891 3.143 
CDC19 YAL038W -2.565 0.33 2.069 -0.72 
ENO1 YGR254W -1.731 0.707 1.958 -0.868 
ENO2 YHR174W -1.824 0.626 1.595 -1.006 
FBP1 YLR377C 4.597 -0.174 -5.5 -0.033 
GPM1 YKL152C -1.893 0.467 1.788 -0.498 
HXK1 YFR053C 0.073 -0.208 1.86 2.138 
HXK2 YGL253W -2.03 0.537 0.481 -2.153 
PDC1 YLR044C -2.461 0.138 2.218 0.041 
PDC5 YLR134W -2.475 0.196 2.521 -0.007 
TDH1 YJL052W -1.502 0.945 2.219 -0.452 

2. Pentose phosphate pathway 
Gene name ORF W10/Q10 W270/Q270 W270/W10 Q270/Q10 

ZWF1 YNL241C -0.15 -0.727 0.578 1.209 
GND1 YHR183W -2.052 0.311 1.348 -0.969 
GND2 YGR256W -0.051 -1.119 -0.992 -0.327 
RKI1 YOR095C 1.732 -0.432 -1.656 0.301 
RPE1 YJL121C 0.061 0.136 -0.575 -0.676 
TKL1 YPR074C -0.365 0.026 -0.386 -0.642 
TKL2 YBR117C 1.762 -1.206 -0.825 1.904 
TAL1 YLR354C 0.1 -0.113 -0.12 0.001 
FBP1 YLR377C 4.597 -0.174 -5.5 -0.033 

3. Glycerol metabolism 

Gene name ORF W10/Q10 W270/Q270 W270/W10 Q270/Q10 
HOR2 YER062C 1.441 -0.227 -3.347 -1.893 
RHR2 YIL053W 3.181 -0.348 -3.913 -0.612 
GUT1 YHL032C 2.328 -0.317 0.529 2.798 
GUT2 YIL155C 1.291 -0.393 0.615 2.011 
GPD1 YDL022W 1.681 -0.346 -2.69 -0.288 
GPD2 YOL059W 0.398 -0.016 -1.256 -0.808 
ADH2 YMR303C 2.239 -0.194 -2.977 -0.111 
ALD4 YOR374W 1.226 0.078 1.983 3.328 
ALD6 YPL061W 2.2 0.176 1.602 3.663 
CHO1 YER026C 0.2 0.481 2.193 1.661 
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4. Citric acid cycle (TCA cycle) 
Gene name ORF W10/Q10 W270/Q270 W270/W10 Q270/Q10 

ACO1 YLR304C 2.314 0.143 -2.992 -1.217 
CIT1 YNR001C 2.541 -0.389 -1.842 0.692 
CIT2 YCR005C 4.146 -2.342 -4.688 1.339 
CIT3 YPR001W 2.731 0.095 -2.789 -0.025 

FUM1 YPL262W 1.573 0.423 -2.554 -1.21 
IDH1 YNL037C 1.639 -0.106 -2.303 -0.833 
IDP1 YDL066W 1.309 0.371 -2.21 -1.727 
IDP2 YLR174W 2.894 -0.371 -3.957 -0.511 

MDH2 YOL126C 3.271 -0.645 -3.825 -0.002 
KGD1 YIL125W 2.033 -0.096 -2.196 -0.357 
PCK1 YKR097W 4.882 -0.472 -5.292 0.109 
PYC1 YGL062W 2.25 -0.13 -1.481 0.442 
SDH1 YKL148C 2.055 -0.345 -1.806 0.107 

5. Urea cycle, amino groups and nitrogen metabolism 

Gene name ORF W10/Q10 W270/Q270 W270/W10 Q270/Q10 
DUR1,2 YBR208C -1.527 2.129 1.843 -1.758 
ECM40 YMR062C -0.025 0.39 -1.375 -1.68 
ARG1 YOL058W 0.725 1.04 -1.666 -1.741 
ARG3 YJL088W 1.426 -0.478 -2.497 -0.524 
ARG4 YHR018C 0.049 0.718 -1.46 -2.02 
CAR1 YPL111W 0.585 3.237 2.633 -0.134 
CAR2 YLR438W 0.853 2.04 2.054 0.471 
GDH1 YOR375C -1.731 0.951 0.535 -2.053 
GDH2 YDL215C 1.322 0.054 -0.681 0.122 
GDH3 YAL062W 2.057 -0.029 -2.423 -0.106 

6. Arginine and proline metabolism 

Gene name ORF W10/Q10 W270/Q270 W270/W10 Q270/Q10 
PUT1 YLR142W -2.835 0.167 3.645 0.876 
PUT2 YHR037W -0.049 0.176 0.373 -0.113 
ALD4 YOR374W 1.226 0.078 1.983 3.328 
ALD6 YPL061W 2.2 0.176 1.602 3.663 
ARG1 YOL058W 0.725 1.04 -1.666 -1.741 
ARG3 YJL088W 1.426 -0.478 -2.497 -0.524 
ARG4 YHR018C 0.049 0.718 -1.46 -2.02 

ARG5,6 YER069W 0.483 0.278 -1.253 -1.287 
ARG8 YOL140W -0.256 0.4 -0.348 -1.005 
CAR1 YPL111W 0.585 3.237 2.633 -0.134 
CAR2 YLR438W 0.853 2.04 2.054 0.471 
PRO3 YER023W -1.367 0.549 0.991 -1.016 
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4.4.1 The Effect of Urea at Low Glucose Condition (W10/Q10) 

4.4.1.1 Glycolysis and gluconeogenesis 

 
According to the growth curve (Figure 4.3), glucose was taken up very fast 

when adequate nitrogen was provided at low gravity condition. It was most likely 

that the only carbon source left at late log phase of W10 was ethanol. In conjunction 

to our data (Table 4.2), as compared to Q10, HXK2, TDH1, GPM1, ENO1, ENO2, 

PDC1, PDC5 and CDC19 involved in glycolysis were down-regulated nearly two 

folds, corresponding with low concentration of its end product, pyruvic acid (Table 

4.1). Whereas, FBP1 (fold change= 4.597), responsible for the conversion of 

fructose-1,6-bisphosphate to fructose-6-phosphate during gluconeogenesis 

metabolism, ADH2 (fold change= 2.239), ALD6 (fold change= 2.2) and ACS1 (fold 

change= 4.012) catalyzing the utilization of ethanol were up-regulated. Transcription 

level of ALD4 and ACS2 were also increased but to a less extent than those above. 

HXK1 was not affected by the urea level. The regulations of ALD4 and ALD6 

responsible for acetate production are in accordance with the extra-cellular acetic 

acid concentration (Table 4.1). 

4.4.1.2 Pentose phosphate pathway (PPP) 

 The expression of the gene GND1, responsible for NADPH regenerating 

reaction in the PPP, was down-regulated, indicating the decreased flux of glucose-6-

phosphate through the PPP when yeast was grown in an enriched media (Lagunas 

and Gancedo, 1973), such as W10. In addition, NADPH/NADH released from the 

oxidization of ethanol to acetyl-CoA makes the NADPH from PPP dispensable 
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(Zimmermann et al., 1997). The genes TKL2 and RKI1 were all up-regulated 

towards the direction of gluconeogenesis intermediate production to generate more 6 

carbon sugars for the synthesis of cellular component. 

4.4.1.3 Glycerol metabolism 

Our data (Table 4.2) shows that genes involved in the biosynthetic and 

dissimilatory pathways for glycerol were all up-regulated. They are genes HOR2 

(fold change= 1.441), RHR2 (fold change= 3.181), GUT1 (fold change= 2.328), 

GUT2 (fold change= 1.291), GPD1 (fold change= 1.681), and GPD2 (fold change= 

0.398). The results shows that the G3P shuttle (Figure 2.3) and glycerol formation as 

to reoxidize the cytolic NADH was used more extensively with ethanol than with 

glucose as the substrate, which might be a reflection of an increased production rate 

of NADH when using a reduced substrate such as ethanol.  

4.4.1.4 Citric acid cycle (TCA cycle) 

In conjunction to Figure 4.3, ethanol was the only carbon source left. Energy 

for biosynthesis has to be provided through the respiratory chain (Neeff et al., 1977). 

As a result, the mitochondrial genes required for TCA cycle: ACO1, CIT1, CIT3, 

FUM1, IDH1, IDP1, IDP2, KGD1, SDH1, were all up-regulated in W10 as 

compared to Q10. Four genes involved in gluconeogenesis metabolism and 

glyoxylate cycle required for the metabolism of ethanol were also greatly induced. 

They are the genes encoding pyruvate carboxylase (PYC1, fold change= 2.25), 

phosphoenolpyruvate carboxykinase (PCK1, fold change= 4.882), citrate synthase 

(CIT2, fold change= 4.146), and cytosolic malate dehydrogenase (MDH2, fold 
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change= 3.271) (Kim et al., 1986; Walker et al., 1991; Proft et al., 1995; Minard et 

al., 1991). Extra-cellular -ketoglutaric acid, fumaric acid and citric acid were 

detected at similar levels in both conditions, so no connection with the different 

expression levels could be shown. 

4.4.1.5 Nitrogen metabolism, urea cycle and metabolism of amino groups 

Two genes (GDH1 and GDH3) encoded NADP+-dependent glutamate 

dehydrogenase were expressed oppositely, GDH1 was expressed to a lower extent 

(fold change= -1.731) in the presence of urea as compared to in the absence of urea, 

whereas, GDH3 was expressed to a greater extent (fold change= 2.057). This is 

because the expression of GDH1 and GDH3 is differentially regulated and depends 

on the nature of the carbon source (DeLuna et al., 2001). The NAD+-dependent 

glutamate dehydrogenase GDH2 was up-regulated (fold change= 1.322). The 

expression of the gene for urea degradation (Cooper et al., 1980) was less induced 

(DUR1,2, fold change= -1.527) when urea is present in the medium. The urea effect 

on the regulation of ECM40 was insignificant. 

4.4.1.6 Arginine and proline metabolism 

PUT1, the gene encoding the yeast proline oxidase was down-regulated (fold 

change=-2.835) in W10 as compared to Q10, suggesting that the level of proline 

utilization as nitrogen source in the presence of urea is lower. The urea effect on the 

regulation of gene PUT2 was insignificant. ARG5,6, ARG4, ARG3 and ARG1 

responsible for arginine biosynthesis, and CAR1 and CAR2 involved in arginine 
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utilization and urea cycle were all slightly increased when urea is present in the 

medium.  

4.4.1.7 Summary 

 The influence of urea level on the low gravity fermentation was not 

significant due to the occurrence of diauxic shift at the time point of harvesting yeast. 

As compared to Q10, the up-regulation of genes involved in ethanol production, 

down-regulation of the genes involved in glycolysis, and up-regulation of 

mitochondrial genes all confirmed the hypothesis obtained from the growth curve of 

10 g/l glucose with urea as nitrogen source condition (Figure 4.3) that the diauxic 

shift occurred at the time point of harvesting yeast. 

4.4.2 The Effect of Urea at High Glucose Condition (W270/Q270) 

4.4.2.1 Glycolysis and gluconeogenesis 

At very high gravity conditions, the urea effect on the expression levels of all 

the glycolysis related genes was insignificant, except for the repressed regulation of 

gene ARO10 (fold change= -2.022), which catalyzes decarboxylation of 

phenylpyruvate to phenylacetaldehyde (Vuralhan et al., 2003). 

4.4.2.2 Pentose phosphate pathway 

Generally, the urea effect on the pentose phosphate pathway under very high 

gravity conditions was insignificant. Only genes ZWF1, TKL2, GND2, and RKI1 

were slightly down-regulated. This may suggest that nitrogen level did not have 

significant effects on the NADPH/NADP+ balance.  



 57

4.4.2.3 Glycerol metabolism 

 As compared to Q270, genes involved in the biosynthetic (HOR2, RHR2 and 

GPD1) and dissimilatory pathways (GUT1 and GUT2) for glycerol were slightly 

down-regulated in W270. The results showed that the G3P shuttle and glycerol 

formation as to reoxidize the cytolic NADH was used less extensively in the 

presence of urea, which might be a reflection of a more balanced environment if 

adequate nitrogen is provided. 

4.4.2.4 Citric acid cycle (TCA cycle) 

 Under very high gravity conditions, the urea effect on the TCA cycle related 

genes was insignificant, only the gene involved in the glyoxylate cycle which serves 

for gluconeogenesis metabolism was down-regulated (CIT2, fold change= -2.342). 

Extra-cellular -ketoglutaric acid, fumaric acid and citric acid were also detected at 

similar levels in both conditions (Table 4.1).  

4.4.2.5 Nitrogen metabolism, urea cycle and metabolism of amino groups  

DUR1,2 (fold change= 2.129) responsible for urea degradation had a higher 

transcription level at W270 as compared to Q270. The ammonia produced from urea 

degradation would induce the glutamate biosynthesis, which lead to the up-

regulation of GDH1. The urea effect on the regulation of genes for glutamate 

catabolism or anabolism (GDH2 and GDH3) and urea cycle (ARG3, ARG4, and 

ECM40) were insignificant. 
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4.4.2.6 Arginine and proline metabolism 

At very high gravity conditions, arginine utilization genes CAR1 (fold 

change= 3.237) and CAR2 (fold change= 2.04) were more active in the presence of 

urea, expression of gene ARG1 responsible for arginine biosynthesis was also 

slightly up-regulated. This result suggested that adequate nitrogen source could 

stimulate high activity of nitrogen metabolism when yeast was grown under very 

high gravity environment. The urea effect on the expression of proline utilization 

genes PUT1 and PUT2 was insignificant.  

4.4.2.7 Summary 

 Overall, these data imply that the urea level did not affect the primary 

metabolic pathway, but it did stimulate the nitrogen metabolism. The enhanced 

amino acid degradation to glutamate could enable higher activities in the TCA cycle, 

which could therefore generate more energy for biosynthesis and yeast cell 

proliferation under very high gravity fermentation conditions. High urea level could 

also stimulate nitrogen metabolism when yeast was grown under very high gravity 

environment. 

 

 

 



 59

4.4.3 The Effect of Glucose in the Presence of Urea (W270/W10) 

4.4.3.1 Glycolysis and gluconeogenesis 

Given adequate nitrogen level, as compared to the glucose depleted 

environment in W10, the very high gravity stimulated the transcription of most of 

the genes involved in glycolysis metabolism and hence the accumulation of pyruvic 

acid (Table 4.1). Notable among these are the genes TDH1, PDC1, PDC5 and 

CDC19, each of which is increased over twofold (Table 4.2). Other genes whose 

transcription level showed modest increase are HXK1, GPM1, ENO1 and ENO2. 

Genes ALD4 and ALD6 responsible for a small amount of acetate production (Rose 

et al., 1987; Remize et al., 2000) during glucose fermentation were also up-regulated 

(fold change= 1.983 and 1.602), which is in accordance with the extra-cellular acetic 

acid concentration (Table 4.1). Accordingly, gene involved in ethanol utilization, 

such as ADH2 and genes involved in gluconeogenesis metabolism such as ACS1, 

ACS2 and FBP1 were subject to carbon catabolite repression. These data implies 

that the yeast has a strong tendency towards fermentation metabolism. ARO10 

catalyzing decarboxylation of phenylpyruvate to phenylacetaldehyde was up-

regulated (fold change= 1.891). The transcription of glucose-induced gene HXK2 

was slightly increased. 

4.4.3.2 Pentose phosphate pathway 

Gene GND1 (fold change= 1.348) was up-regulated in W270 as compared to 

W10, as the rapidly proliferating cell needs large quantities of NADPH for the 

conversion of ribonucleotides (RNA) to deoxyribonucleotides (DNA). The gene 
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RKI1, responsible for the interconversion of ribose 5-phosphate and ribulose 5-

phosphate, was down-regulated (fold change= -1.656). 

4.4.3.3 Glycerol metabolism 

 Interestingly, as compared with W10, genes involved in the biosynthetic 

pathway for glycerol were all down-regulated in W270, even though the 

extracellular glycerol concentrations (Table 4.1) at sampling times were found to be 

10-fold higher in VHG sample. They are HOR2 (fold change= -3.347), RHR2 (fold 

change= -3.913), GPD1 (fold change= -2.69). This is probably because sampling 

point was at the late exponential phase, whereas samples during VHG fermentations 

were measurable only in the stationary phase (Devantier et al., 2005). According to 

the comparison between W270 and W10, where glucose and ethanol were used as 

substrate, respectively, it seems likely that the glycerol formation played an 

important role in maintaining the cytosolic redox balance when NAD+ was needed to 

oxidize the ethanol. 

4.4.3.4 Citric acid cycle (TCA cycle) 

As compared to the ethanol-grown environment in W10 where mitochondrial 

genes were more active, when yeast is growing in a glucose-grown environment in 

W270, all of the mitochondrial genes involving in the TCA cycle, such as ACO1, 

CIT1, CIT3, FUM1, IDH1, IDP1, IDP2, KGD1, SDH1, as well as several genes 

involved in gluconeogenic metabolism, such as CIT2, PYC1, PCK1, and MDH2 

were subject to glucose repression (Polakis et al., 1965), because glycolysis is the 

major energy-yielding pathway in the presence of glucose. Extra-cellular -
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ketoglutaric acid, fumaric acid and citric acid detected in W270 were more than 

W10. Since the gene expression values are log-ratios of relative intensities, 

connection with the metabolite concentration may not be shown. 

4.4.3.5 Nitrogen metabolism, urea cycle and metabolism of amino groups 

In the presence of urea, as expected, GDH3 displayed a lower expression 

level (fold change=-2.423) under very high gravity condition as compared to W10 

where glucose was depleted. The expression of glutamate dehydrogenase GDH1 and 

GDH2 did not very much. Genes ARG1, ARG3 and ARG4 displayed lower 

expression levels in W270 as compared to W10. The regulation of ECM40 was 

insignificant. The regulation of gene for urea degradation (DUR1,2) was elevated at 

W270 as compared to W10. This suggests that given adequate nitrogen, very high 

glucose concentration stimulates urea degradation. 

4.4.3.6 Arginine and proline metabolism 

In the presence of urea, genes responsible for arginine catabolism, CAR1 

(fold change= 2.633) and CAR2 (fold change= 2.054) (Middelhoven, 1964), as well 

as the gene encoding the yeast proline oxidase, PUT1 (fold change= 3.645) all 

showed higher expression level at very high gravity conditions. The results 

suggested that at very high gravity environment due to the high urea uptake rate, at 

the point of yeast harvesting, arginine and proline might have been used as nitrogen 

sources when the primary nitrogen source was not available due to urea depletion. 
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4.4.3.7 Summary 

 The occurrence of diauxic shift in W10 shift the yeast metabolism from 

anaerobic fermentation of glucose to ethanol utilization, therefore different modes of 

metabolism to gain energy were exhibited. This mechanism affected the gene 

expression pattern in glycolysis and gluconeogenesis pathways and citric acid cycle. 

The yeast gene expression pattern in arginine and proline metabolism and nitrogen 

metabolism showed that very high gravity environment can stimulate urea uptake 

rate and therefore the activity of nitrogen metabolism of yeast.  

4.4.4 The Effect of Glucose in the Absence of Urea (Q270/Q10) 

4.4.4.1 Glycolysis and gluconeogenesis 

In the absence of urea, with glucose as sole carbon source under both very 

high gravity and low gravity conditions, HXK1 (fold change= 2.138) had the 

opposite expression pattern to HXK2 (fold change= -2.153), in line with HXK2’s 

known repression of HXK1 (Rodriguez et al. 2001). ALD4, ALD6 and ARO10 were 

up-regulated over threefold in response to very high gravity stress. The up-regulation 

of ARO10 that leads to ethanol production was triggered by the high energy 

demanding caused by ethanol stress (Piper, 1995), and the reason is that in the 

presence of high concentration of glucose, ethanol formation through glycolysis 

metabolism is the major energy-yielding pathway to meet the high energy demand. 

The increase in acetate-coding genes ALD4 and ALD6 is in accordance with the 

high acetic acid concentration in Q270 as compared with Q10. Other groups of 

genes involved in the glycolysis metabolism did not show significant transcription 
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changes. The concentration of extra-cellular pyruvic acid detected in Q270 was 

higher than Q10 (Table 4.1), so no connection with the gene expression levels could 

be shown. 

4.4.4.2 Pentose phosphate pathway 

 When yeast was grown under conditions with nitrogen deficiency and very 

high gravity such as Q270, yeast stopped proliferating and the synthesis of nucleic 

acids, therefore, the gene TKL2 encoding transketolase for the generation of 

glyceraldehyde-3-phosphate was up-regulated and channeled the PPP intermediates 

into the glycolysis metabolism. 

4.4.4.3 Glycerol metabolism 

 The genes involved in dissimilatory pathway of glycerol, GUT1 (fold 

change= 2.798) and GUT2 (fold change=2.011) were up-regulated, and genes 

involved in biosynthesis pathway of glycerol, GPD1, GPD2, RHR2, and especially 

the gene HOR2 (fold change=-1.893) were down-regulated. The up-regulation of 

gene GUT2 may indicate higher activity of G-3-P shuttle that deoxidizes excess 

NADH generated by higher biomass synthesis under very high glucose 

concentration. The down-regulation of glycerol biosynthesis genes suggested that in 

condition with urea deficiency, very high gravity caused less activity of glycerol 

formation and might have led to failure of maintaining cytosolic redox balance, 

which would otherwise keep the cells functioning. 
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4.4.4.4 Citric acid cycle (TCA cycle) 

 When nitrogen level was not adequate, the glucose effect on the expression 

of genes involved in the TCA cycle was insignificant, and only the gene IDP1 

encoding isocitrate dehydrogenase which diverts -ketoglutarate to biosynthetic 

processes (Haselbeck et al., 1993) was repressed. Extra-cellular fumaric acid and 

citric acid were also detected at similar levels in both conditions. 

4.4.4.5 Nitrogen metabolism, urea cycle and metabolism of amino groups 

The repressed expression of GDH1 in Q270 as compared to Q10 (fold 

change= -2.053) indicated that Gdh1p catalyzed the reaction in an opposite direction 

to produce -ketoglutarate and energy, as well as to supplement to TCA cycle, as 

more ATP was required when yeast was grown in a very high gravity environment. 

The expression of genes GDH3 and GDH2 did not very much. Genes ARG1, ARG3, 

ARG4 and ECM40 involved in urea cycle (Jauniaux et al., 1978) displayed lower 

expression levels in Q270 as compared to Q10. The regulation of gene for urea 

degradation (DUR1,2) was repressed in Q270 as compared to Q10. 

4.4.4.6 Arginine and proline metabolism 

In the absence of urea, the glucose effect on the regulations of genes for 

arginine utilization, CAR1 and CAR2, and genes for proline utilization, PUT1 and 

PUT2 was insignificant. Genes ARG1, ARG4, ARG5,6 and ARG 8 were down-

regulated, and the results indicated that the activities of genes encoding enzymes of 

the nitrogen metabolism were inhibited by very high gravity environment. 
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4.4.4.7 Summary 

 Under nitrogen deficiency condition, the glucose effect on the yeast reflected 

that high gravity environment triggered higher energy demand and higher activity of 

redox balancing metabolism and that yeast grown under low gravity environment 

was provided with a better opportunity for redox balancing which maintains the cell 

function. In low nitrogen level culture, the nitrogen metabolism was inactivated by 

very high gravity stress.  
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

Our data provide insight into the regulatory mechanisms of S. cerevisiae in 

coping with VHG stresses and nutritional deficiency. A number of conclusions can 

be drawn from the metabolism and gene regulation analysis. Briefly these are:  

1. The high nitrogen culture displayed higher mRNA levels for genes involved 

in nitrogen compound recycling, which would enhance the activities in TCA 

cycle and generate more energy for biosynthesis and yeast cell proliferation 

under very high gravity fermentation conditions, although the up-regulation 

of genes involved in TCA cycle was not shown. 

2. According to the gene expression profile of contrasts Q270/Q10 and 

W270/Q270, respectively, we conclude that in nutrient deficient culture, the 

activities of genes encoding enzymes of the nitrogen metabolism were 

inhibited by very high gravity environment. In energy sufficient cultures, the 

activities of nitrogen metabolism were stimulated when yeast was grown in 

high nitrogen culture. 
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3. Activities of G3P shuttle under different conditions indicated difference in 

redox balancing, which might have suggested an explanation of higher 

stress-tolerance and higher fermentation efficiency of yeast under certain 

condition. Very high gravity with high nitrogen level culture provides a more 

redox balanced environment, while very high gravity with urea deficiency 

culture leads to failure of maintaining cytosolic redox balance, which 

eventually affects the cells function. 

5.2 Recommendations 

The following recommendations should be considered in future studies: 

1. Time points for harvesting yeast must be carefully chosen to avoid the 

affection of any undesired environmental changes on gene expression pattern. 

Such as the fermentation under 10 g/l glucose case, diauxic shift occurs as 

the glucose is being depleted, therefore sampling before this point would 

allow greater confidences in explaining the effect of certain stress on yeast 

transcriptional profile. 

2. In glass slide microarray studies, RNA from the target sample and from the 

'control' sample are pairwise studied as an equivalent mixture in which the 

'control' RNA is the reference for expressing the gene transcript levels in the 

target sample, thus the quantification of gene transcript levels in pairwise 

comparisons makes the results less straightforward. To overcome this, 

Affymetrix microarray platform is recommended, because it generates a gene 

expression profile of one sample and therefore quantifies gene transcript 
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levels in arbitrary (but well-defined) expression units and enhances the 

reliability of the comparisons between separately analyzed samples. 

3. When using metabolite profiling approach to test the hypothesis that 

suggested by genomics, an combined measurement of both intracellular and 

extracellular metabolite concentrations would give a more direct and 

comprehensive analysis of  the real outcome of the potential changes. 

4. To get a complete picture of the yeast response to nutritional deficiency and 

VHG stresses, it will be interesting for further studies to integrate data from 

all levels of "-omics" which include metabolomic, proteomic and 

transcriptomic data to a single data matrix to get a holistic view on the 

changes associated with VHG fermentation. Such analyses would link 

metabolic changes in biochemical pathways to the enzymes involved, and 

subsequently to the genetic alterations, leading altogether to obtain the 

direction of strain improvement for enhanced ethanol production. 

5. The data presented here are based on a 22 microarray experimental design 

(see Chapter 1, Experimental Design). Analysis of three pairs of replicate 

dye-swaps (6 chips) using the same contrast RNA samples may reveal 

further trends in gene expression not considered herein.  
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APPENDICES  

A1-Oligonucleotide Microarray Images  

The mircroarray slides were scanned by a dual-beam laser scanner. The 

obtained pre-normalized images with the presence of non-biological differences 

(inherent noise and systematic variation) between two samples are shown in Figure 

A1.  

 

 
a.  10Q-3 270Q-5 
 

 
c. 10U-3 270U-5 
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b. 10Q-5 270Q-3 
 

 
d. 10U-5 270U-3 

 
e. 10U-3 10Q-5 
 

 
g. 10U-3 10Q-5 
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f. 10U-5 10Q-3 
 
 

 
h. 10U-5 10Q-3 

 
i. 270U-3 270Q-5 
 
 

 
k. 270U-3 270Q-5 
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j. 270U-5 270Q-3 
 
 

 
l. 270U-5 270Q-3 
 
 
 

Figure A1: Oligonucleotide Microarray images prior to normalization 
‘3’ and ‘5’ represent Cy3 dye and Cy5 dye that were used to process RNA 
samples. 3 stands for Cyanine 3; 5 stands for Cyanine 5 

 
 
 
 



 87

A2-Microarray Data Processing 

The microarray raw images (Figure A1) shown in Appendix 1 were re-

represented using MA plots (Figure A2-1) and subject to the following 

normalization and inference steps: 

1. Background correction (Figure A2-2) 

2. Normalization and scaling among arrays (Figures A2-3 and A2-4) 

3. Bayesian inference using limma package (Figures A2-5 and A2-6) 

An MA plot (also called a RI plot) is a plot used to show the intensity-

dependent microarray data in log-ratio scale. The MA plot is a scatter plot with 

transformed data; in which, x-axis represents the average log intensity from 2 

channels ( GRlogA 2 ⋅= ) while y-axis represents the log-ratios ( GRlogM 2= ). 

R is the intensity strength emitted by Cy5 dye (in red color), and G is the intensity 

strength emitted by Cy3 color (in green color). 

Figure A2-1 provides an overview of all microarry data generated from 

different combinations of experimental conditions. For example, the condition ‘cy5-

cy3=Q10-W10’ represents yeast samples harvested from 10 g glucose/l in the 

absence of urea (Q10) and in the presence of urea (W10) were colored with cy5 and 

cy3 dye, respectively. The ‘marray’ package, an R statistics package, was used to 

remove background noises embedded in the microarray images during scanning 

(Figure A2-2). These background-collected data were then normalized to the same 

scale among all microarray data, and presented in a format of MA plot (Figure A2-3) 

and box plot (Figure A2-4).  Then, the ‘limma’ package, another R statistics package 
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designed for processing microarray data, was used to infer the normalized data. The 

inferred results are presented in a format of MA plot (Figure A2-5) and volcano plot 

(Figure A2-6). 

The volcano plots provide an overall visualization of gene expression 

profiles. The upper right section of the plot indicates significant up-regulations, and 

upper left section indicates significant down-regulations. 

 

 
 

Figure A2-1 MA plots of raw data 
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Figure A2-2 MA plots of background corrected array data 
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Figure A2-3 MA plots of normalized between-array data 
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Figure A2-4 Box plot of normalized between-array data 
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Figure A2-5 MA plots for different experimental conditions 
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Figure A2-6 Volcano plots for different experimental conditions 
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A3-Calibration Curves for Organic Acids 

The calibration curves of six organic acids were established using IC (see Chapter 

3 Material and Methods). They are present in Figure A3. Included in these figures are the 

relationships between area counts and concentrations (ppm), as well as the equations and 

the regression coefficients for the calibration curves. 
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Figure A3-1 Calibration curve for -ketoglutarate acid
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y = 0.0663x - 0.0056
R2 = 0.9997
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Figure A3-2 Calibration curve for pyruvic acid
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y = 0.2637x + 0.0036
R2 = 0.9592
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Figure A3-3 Calibration curve for citric acid
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y = 0.2938x + 0.006
R2 = 0.9694
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Figure A3-4 Calibration curve for fumaric acid
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y = 0.0656x + 0.0216
R2 = 0.9999
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Figure A3-5 Calibration curve for lactic acid
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y = 0.082x + 0.1345
R2 = 0.9991
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Figure A3-6: Calibration curves for acetic acids 
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A4-Calibration Curve for Glycerol  

The calibration curve of glycerol was established using the HPLC (see Chapter 3 

Material and Methods). The calibration curve is presented in Figure A4. 
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Figure A4: Calibration curve for glycerol 
 

 
 
 

 

 

 


