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ABSTRACT

Over the coming decades it is expected that the vast amounts of area currently in agricultural
production will face growing pressure to intensify as world populations continue to grow, and
the demand for a more Western-based diet increases. Coupled with the potential
consequences of climate change, and the increasing costs involved with current energy-
intensive agricultural production methods, meeting goals of environmental and socioeconomic
sustainability will become ever more challenging. At a minimum, meeting such goals will
require a greater understanding of rates of change, both over time and space, to properly
assess how present demand may affect the needs of future generations. As agriculture
represents a fundamental component of modern society, and the most ubiquitous form of
human induced landscape change on the planet, it follows that mapping and tracking changes
in such environments represents a crucial first step towards meeting the goal of sustainability.
In anticipation of the mounting need for consistent and timely information related to
agricultural development, this thesis proposes several advances in the field of geomatics, with
specific contributions in the areas of remote sensing and spatial analysis: First, the relative
strengths of several supervised machine learning algorithms used to classify remotely sensed
imagery were assessed using two image analysis approaches: pixel-based and object-based.
Second, a feature selection process, based on a Random Forest classifier, was applied to a large
data set to reduce the overall number of object-based predictor variables used by a
classification model without sacrificing overall classification accuracy. Third, a hybrid object-
based change detection method was introduced with the ability to handle disparate image
sources, generate per-class change thresholds, and minimize map updating errors. Fourth, a
spatial disaggregation procedure was performed on coarse scale agricultural census data to
render an indicator of agricultural development in a spatially explicit manner across a 9,000 km?
watershed in southwest Saskatchewan for three time periods spanning several decades. The
combination of methodologies introduced represents an overall analytical framework suitable

for supporting the sustainable development of agricultural environments.
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INTRODUCTION

Human activities have resulted in significant environmental change globally with an estimated
half of the earth’s terrestrial surface directly transformed to varying degrees by human
activities (Steffen et al. 2005). Agricultural lands occupy an estimated one-third of the planet's
terrestrial surface (Ramankutty et al. 2006), utilize approximately two-thirds of all water
withdrawn from rivers, lakes, and aquifers (Postel 2000), and represent society's largest
consumptive use of water (Gleick et al. 2008). Modern agricultural practices are a primary
driver of human induced change in water quality and quantity (Gordon et al. 2008), and have
contributed to the pollution and degradation of freshwater and terrestrial ecosystems globally
(Foley et al. 2005). It has been estimated that over half of the world's geographically accessible
freshwater runoff has already been appropriated for human use (Postel et al. 1996). Of the
total amount of freshwater consumed for human use, the vast majority (70-80%) is used for
agricultural purposes (Gleick 2003; Gleick et al. 2008).

Over the last 40 years, cereal production has doubled from advances made during the
Green Revolution (Conway 1997) and modern agriculture currently feeds approximately 6
billion people (Tilman et al. 2002). However, rising populations in developing countries and
increasing demand for meat-rich diets in emerging markets signal a trend towards intensifying
land use on existing arable lands, and an increase in the conversion of less suitable areas for
agricultural purposes (OECD/FAO 2011). Demand for food is predicted to double by 2025 and,
based on best available estimates, will require that the volume of irrigation more than triple
from 1995 levels of 900 km? to 2950 km?, along with an increase in the total share of water
consumed by crops using irrigation from 28% to 46% (Postel 1998). Based on present
trajectories, it is predicted that over the next 50 years 10° hectares of natural ecosystems will
be converted to agriculture, accompanied by more than a doubling in anthropogenic
eutrophication of terrestrial, freshwater, and near-shore marine ecosystems, along with a

comparable increase in pesticide use, culminating in increased habitat destruction,
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unprecedented ecosystem simplification, a loss of ecosystem services, and species extinctions
(Tilman et al. 2001).

In Canada's western prairie provinces, researchers have warned that the cumulative
environmental effects associated with increasing development activities, growing populations,
and shifts in regional climate conditions may have disastrous consequences for freshwater
ecosystems in the region (Schindler 2001; Schindler et al. 2006; Schindler & Donahue 2006). An
analysis of trends in the annual minimum and mean daily flows of several major river systems in
this region suggest that a significant decrease over the last 30 years has occurred (Yue et al.
2003). Tree-ring based estimates of mass-balance reveal a net reduction in the amount of ice
covering the Peyto glacier between 1966 and 1995 (Watson & Luckman 2004), a trend which
has been linked to alterations in water flow for river systems within the prairie provinces
(Young 1996). During a similar period, historical land cover change related to agricultural
development in the province of Saskatchewan’s Boreal Plains revealed an annual deforestation
rate of 0.87%, a rate almost three times the world average (Hobson et al. 2002). Expansion of
bitumen production in the Athabasca watershed is forecast to triple by 2020, which is expected
to result in more water withdrawals, declines in habitat for a variety of species, and an
expansion of the already significant amounts of area used to store tailings from the production
process (Griffiths et al. 2006).

Within the province of Saskatchewan, prospective management decisions concerning
both agricultural development and water resources will require a greater understanding of how
the former may influence the latter over various spatial and temporal scales. Accordingly, the
management of water resources is shifting towards more integrated management approaches
involving large, ecological relevant scales and boundaries such as those provided by drainage
basins, which can span several jurisdictional boundaries and scales (Dubé 2003; Heathcote
2009; Seitz et al. 2011). In such integrated approaches, both the water resource itself and the
condition of the surrounding landscape that may impinge upon its quality and quantity are
assessed in combination (Verdonschot 2000; Snyder et al. 2005; Pinto et al. 2006). For example,
the recent State of the Watershed report, conducted by the Saskatchewan Watershed

Authority (SWA), reveals that nearly every watershed in the province is experiencing stressed or
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impacted conditions overall, and that the intensity of fertilizer and pesticide applications in
watersheds draining into the South Saskatchewan River range from moderate to high
(Government of Saskatchewan 2010). Such integrated regional reporting frameworks utilize
ecologically relevant boundaries (e.g., watersheds) and represent an improvement over
traditional reporting methods; however, there remain some methodological shortcomings in
the approach outlined in the SWA State of Watershed report and other reporting frameworks
that utilize similar approaches.

Chief among these shortcomings are that the thresholds and reporting scheme used for
various stressor-based indicators (e.g., manure and pesticide inputs) are completely dependent
on the underlying dataset. In other words, the reported condition of various stressor-based
variables is merely relative: either higher or lower than other watersheds. As such, an individual
watershed can report “stressed” conditions simply because other watersheds have reported
comparatively lower values for the same variable. Using such an approach, there is relatively
little or no ecologically relevant evidence for stating that a watershed is actually experiencing
stressed conditions as comparatively higher (or lower) values may be required for such a
threshold to be met. While not all variables reported in the SWA State of the Watershed report
utilize such relative thresholds, many of the stressor-based variables indicative of landscape
developmental pressures do.

Another shortfall of such reporting frameworks is the lack of spatially explicit data used
in their assessments. The source of information used for many of the stressor variables in the
SWA State of the Watershed report are derived from agricultural census data that are reported
in aggregated form over relatively large watershed areas. While such an approach is an
improvement over using traditional non-ecologically relevant jurisdictional boundaries (e.g.,
census divisions), the relative size of the watersheds and aggregation of the underlying census
data within them poses a problem for understanding how agricultural development activities,
which occur at local landscape scales where human activity is primarily concentrated (Drigo
2004; Lesschen et al. 2005), are linked to changes in ecosystem condition and functioning

within individual watersheds.
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A more robust approach would be capable of representing the variability of land use
and land cover within individual watersheds, as this would allow for spatially explicit analysis
within watersheds to be conducted. Information derived from spatially explicit analysis can be
used to better gauge how agricultural development at local scales is linked to changes in
aquatic ecosystem condition or function. Such relationships would be based on empirical
evidence and would therefore offer a more scientifically defensible threshold as compared to
using relative data-driven thresholds.

At present, there exists an opportunity to develop a cohesive analytical framework
suitable for assessing spatial and temporal trends in land cover and land use at local landscape
scales in agricultural environments. The collection and analysis of such information represents a
fundamental first step towards relating agricultural development, conducted at local landscape
scales, with relevant environmental variables of interest (e.g., water quality). Such an analytical
framework should be capable of acquiring consistent and timely information over large areas to
enhance existing integrated regional environmental reporting frameworks (e.g., SWA’s State of
Watershed report). To accomplish this goal, several methods are introduced in this thesis that
allow for processing of earth observation imagery and agricultural land use information in a

cohesive manner suitable for informing regional environmental reporting frameworks.
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OBJECTIVES

The objective of this thesis is to develop methods for determining spatial and temporal trends
in agricultural land cover and land use at local scales, over large areas and relatively long time
frames. In addition, these methods are applied to a relatively large watershed in southwest
Saskatchewan for three time periods spanning over three decades. Such information represents
a critical first step towards relating agricultural development with environmental variables of
interest to ascertain thresholds that can be used for management decisions. In order for such
relationships to be useful to management decisions that impact local-scale development,
suitable information must be obtained that is spatially explicit, temporally dense, and cover
relatively large areas. With these conditions in mind, several key methodological advances are
proposed in the field of geomatics, with specific contributions made in the areas of remote
sensing and spatial analysis. As part of a larger combined analytical framework driven by land
cover information derived from remotely sensed imagery and land use information contained in
agricultural census data, these methodological advances represent a cohesive analytical
framework suitable for supporting the sustainable development of agricultural environments.
Specific objectives towards achieving this goal are described below, which highlight both
individual contributions and their place within the larger analytical framework for determining
spatial and temporal trends in agricultural land cover and land use.

The first objective of this thesis was to compare the relative strengths and weaknesses
of several supervised machine learning algorithms used to classify remotely sensed imagery. In
addition, two image analysis approaches (pixel-based and object-based) are used to compare
the output from the several classification algorithms examined. These classification algorithms,
or classifiers, and the underlying image analysis approach, ultimately dictates how individual
land cover types are depicted in the final output map. Therefore, it is essential to understand
the relative strengths and weaknesses that each classifier provides in conjunction with a

particular image analysis approach. Chapter 2 carries out this comparison while providing
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recommendations in the context of operational settings that would be encountered in support
of regional environmental reporting frameworks (e.g., Saskatchewan Watershed Authority’s
State of the Watershed report).

The second objective of this thesis was to assess a means of incorporating multiple
sources of remotely sensed imagery, gathered at fundamentally different spatial and spectral
resolutions. Such multi-scale information can provide a better depiction of land cover
information than would be otherwise possible using just a single source of remotely sensed
information. In addition, such multi-scale information can provide a richer understanding of
relationships between land cover and response variables of interest (e.g., water quality) that
might be assessed within a regional environmental reporting framework. Unfortunately, such
fundamentally dense datasets are often too unwieldy and/or violate assumptions of traditional
statistical approaches. As such, Chapter 3 introduces the use of a feature selection process,
based on a Random Forest classifier. This feature selection procedure is applied to a data set in
order to reduce the large number of object-based predictor variables used by a classification
model without sacrificing overall classification accuracy. In addition, a feature importance
measure generated by the Random Forest classifier is used to assess the relative significance of
individual predictor variables used in the classification model. This methodological contribution
allows for multi-scale remotely sensed information to be utilized in a manner that provides
enhanced interpretability and efficiency.

The first two objectives focused on contributions to the classification and interpretation
of information derived from remotely sensed imagery. Fundamental to the overall stated
objective is the ability to assess landscape changes over time. As such, the third objective of this
thesis was to introduce a change detection method suitable for such an application. As
previously stated, operational land cover mapping efforts must be flexible enough to utilize
disparate sources of imagery. This quality is especially relevant when conducting mapping
exercises over long time periods as new remote sensing platforms are launched and/or
eventually malfunction. As such, maintaining consistency in mapping products derived from
disparate sources of imagery becomes an important quality for any analytical framework that

will eventually be placed into an operational environment. In Chapter 4, a hybrid object-based
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change detection method was introduced with the ability to handle disparate image sources.
While the introduced change detection methodology performed slightly less well than similar
methods, it provides a more consistent and flexible map updating strategy that provides per-
class change thresholds. In addition, the introduced change detection method minimizes
mapping errors due to “sliver” polygons as existing land cover boundaries and individual change
objects are handled explicitly within the map updating strategy.

Using the above methods, the fourth objective of this thesis was to consistently map
land cover information over a relatively large 9,000 km? watershed in southwest Saskatchewan
spanning several decades in southwest Saskatchewan for three time periods (c. 1970, c. 1990,
and c. 2000). This land cover information was then used to spatially disaggregate agricultural
census data over a large watershed area. While such agricultural land use information is useful,
it is unsuited to conducting spatially explicit analysis within such large watersheds. Such analysis
requires an understanding of the spatial variability in both land cover and land use at local
scales, as the relative composition and spatial configuration of land cover and land use at such
scales will provide a greater understanding of how agricultural development affects water
resources and associated ecosystem services. In Chapter 5, a spatial disaggregation procedure
was performed on coarse scale agricultural census data in order to render an indicator of
agricultural development in a spatially explicit manner.

The combination of methodologies introduced represents an overall analytical
framework suitable for mapping and tracking changes in agricultural land cover across large
areas over relatively long time periods in a spatially explicit manner. The information generated
using the introduced methods in image analysis and change detection are subsequently used to
spatially disaggregate coarse scale agricultural land use information. Such an analytical
framework, and the spatially explicit information generated by such an approach, represents a
means of using remote sensing and spatial analysis in support of sustainable agricultural

development.
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CHAPTER 1 PREFACE

In this first chapter, the reader is introduced to the overall motivation for developing enhanced
methods suitable for examining spatial and temporal trends in agricultural land cover and land
use at local landscape scales. A concise overview of several key techniques for combining land
cover and land use information is provided. Background material that was not possible to
include in subsequent, more focused, chapters is provided here to give the reader a more wide-

ranging and inclusive summary.
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CHAPTER 1

REMOTE SENSING AND GIS METHODS FOR MAPPING LAND COVER AND LAND
USE IN AGRICULTRUAL ENVIRONMENTS
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1.1 ABSTRACT

Human development has resulted in significant global landscape change. Historically,
much of these alterations have occurred in natural environments that are compatible with
human activities. In the last 300 years, the intensification of land use practises and wholesale
shifts in land cover composition within human dominated landscapes have been linked to
various forms of environmental degradation. Increasingly, managers and decision makers are
faced with balancing the needs of human development with the range of environmental
conditions required to maintain properly functioning ecosystems. This task is especially difficult
in environments where the nature of the pollution associated with human activities is diffuse,
occurs across large regional areas, and is cumulative in nature. As a first step towards
addressing such challenges, development on the landscape must first be identified, tracked,
and ultimately related to environmental variables of interest. Furthermore, such relationships
must also include pre-development conditions in order to assess the full range of variability
between landscape changes and environmental variables of interest.

Progress in the ability to detect changes in land cover composition remotely, using
sensors aboard aerial and satellite based platforms, have allowed for the near continuous
monitoring and evaluation of landscape change across large areas. When remotely sensed
imagery is coupled with records detailing the types and intensity of land use practises occurring
on the landscape, it is possible to gain a more detailed depiction of human development, both
prior to, and after development has taken place. In this chapter, key advances in image
processing and data integration techniques are examined that can be used in supporting
sustainable development of agricultural environments at larger, ecologically relevant,

landscape scales using remotely sensed imagery and land use data.
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1.2 INTRODUCTION

Over the past four decades, the ability to more precisely classify and estimate changes
in the composition and extent of land cover has been facilitated by the relatively recent and
widespread availability of imagery acquired by sensors on-board aerial and satellite based
platforms (Wulder & Franklin 2007). Land cover can be defined as those physical features of
interest that can be identified on the landscape (e.g., forest), whereas land use describes how
that particular cover type is utilized (e.g., national park versus active logging area).
Unfortunately, much of the information associated with land use activities cannot be directly
inferred with information that is detectable remotely. For example, within agricultural
environments, cropland areas might be readily identified by remotely sensed imagery;
however, the associated land use practises of this land cover type may change from year to
year (e.g., tillage practises, changes in the amount of fertilizer applied, etc.). Crops requiring
intensive fertilizer applications may contribute relatively more to human induced
eutrophication than those that do not. Such land use intensity information will likely remain
difficult or impossible to directly infer from remotely sensed data alone, but such information
remains essential to obtaining a complete understanding of historical human-induced

landscape change (Drigo 2004; Lesschen et al. 2005).

Understanding historical changes in land cover and land use is largely dependent on the
availability and consistency of appropriate data sources, which represents a significant
challenge. For example, while the ability to collect increasingly complex land cover information
over large areas has improved in recent decades, the availability of such spatially-consistent
data prior to the 1960s is limited in most areas of the world. Aerial photography may extend
such land cover records into the early decades of the 20th century, but in many cases, land
cover data sources for earlier periods are likely to be qualitative, spatially-constrained, or even
non-existent. Similarly, detailed and consistent land use information, such as the data recorded
in government censuses, is considered to be of very poor quality prior to the mid-1940s

(Ramankutty et al. 2006). Furthermore, while land use data are most often collected at fine

23



spatial scales (e.g., individual farmsteads), such data are often only made available to the public
in aggregated form over much broader spatial extents, often representing administrative units
(e.g., census boundaries). Unfortunately, such spatial delineations often bear little or no
resemblance to natural boundaries that are ecologically relevant (e.g., watersheds, ecoregions,
etc.), and the aggregation process itself can cause valuable fine spatial scale information to be

lost.

Land cover and land use data represent complementary, yet distinctly different, information
required to better understand human-induced environmental change over current and
historical time periods. Increasingly, researchers are examining ways of integrating such
disparate datasets (see Liverman 1998; Entwisle 2005; Lambin & Geist 2006). The promise of
such an approach is the ability to utilize information that describes the variability and
magnitude of land cover change, along with local landscape scale information related to human
development activities (e.g., land use information available in census data). Together, such
information allows for a richer understanding of how humans impact the landscape, at a variety
of spatial and temporal scales. Unfortunately, issues of availability, continuity, and
comparability between remotely sensed imagery and ancillary datasets used in such
approaches still plague efforts in the reconstruction of historical land cover and land use.
Progress in image processing and data integration techniques developed for a variety of remote
sensing applications offer a promising means of partially addressing these issues. In this
chapter, several advances in image processing and data integration techniques suitable for

reconstructing historical land cover and land use are examined with the following goals:

i) Review relevant examples of image processing techniques that demonstrate
improvements in land cover discrimination and classification accuracy, with a focus
on examples that can effectively utilize multiple sources of remotely sensed

imagery;
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i) Examine how data integration techniques can be used to spatially disaggregate land
use information (e.g., agricultural census data) using relatively fine spatial resolution

land cover information derived from remotely sensed imagery;

iii) Describe how the above two techniques, when used within an object-based image
analysis approach facilitated by a Geographical Information System (GIS), and driven
by remotely sensed imagery and ancillary datasets, can be used to efficiently create
and update consistent land cover and land use maps at finer spatial resolutions than

typically available.

When considered together, progress within these above areas represent a viable means of
addressing issues of data availability, continuity, and comparability that presently challenge our
understanding of change in land cover and land use at a variety of spatial and temporal scales.
The emphasis in this review is on agricultural environments as this particular land cover and
land use represents a relatively ubiquitous example of human activity in terrestrial
environments; however, the techniques and methods outlined here should remain transferable
to other settings where the consistency, comparability, and integration of land cover and land

use data are of interest.

1.3 IMAGE FUSION FOR ENHANCING THE MAPPING OF LAND COVER IN
AGRICULTURAL ENVIRONMENTS

Sensors on-board aerial or satellite based platforms are capable of recording
electromagnetic energy at different spatial, temporal, spectral, and radiometric resolutions.
“Image fusion” describes a suite of data processing techniques used to integrate multiple digital
based images, often from disparate sources, for the purposes of enhancing information from
the image(s) that could not otherwise be extracted using a single image alone (Pohl & Van
Genderen 1998). So-called “fused” imagery can be used to improve upon a variety of existing

remote sensing applications ranging from the visual interpretation of imagery (e.g., “pan-
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sharpened” multispectral imagery) to enhancing the ability to extract land cover classes for
thematic mapping purposes. In this section, several examples of image fusion are examined.
The examples are limited to studies that combine imagery in the optical and microwave portion
of the electromagnetic spectrum as this combination has been used extensively to map
agricultural landscapes. Furthermore, this sections illustrates the relative advantage of using
multiple sources of remotely sensed imagery to improve classification accuracies of agricultural

land cover types

In agricultural environments, image fusion techniques involving visual/near-infrared
(VNIR) and microwave wavelengths have long been used to improve upon classification
accuracies of various land cover types (Ahern et al. 1978). Microwave and VNIR wavelengths
interact with objects in the environment differently, and provide unique wavelength dependant
information that can increase the ability to discriminate between specific agricultural land cover
types of interest when combined (e.g., wheat vs. corn). For vegetation, the amount of
backscattering received by a sensor in the relatively longer microwave wavelengths is strongly
dependent on the macro structure of the target (size of leaves, stems, branches, and cropping
configuration) as well as its moisture content; whereas information received from relatively
shorter VNIR wavelengths are more dependent on plant pigmentation, micro structure
(intercellular arrangement), and moisture content of the leaf and canopy (Carver et al. 1985;
Jensen 2000; Lillesand et al. 2004; Jensen 2005). While VNIR wavelengths for mapping
agricultural land cover often achieve higher accuracies when compared to using only
microwave wavelengths, many studies have shown that the combination of both types of
imagery can achieve higher overall classification accuracies.

For example, Ahern et al. (1978) concluded that multispectral and microwave data,
simultaneously gathered from an aerial platform, provided complimentary information that
when combined allowed for an increased ability to discriminate between agricultural land cover
types as compared to using a single source. In a similar study, Ulaby et al. (1982) found that
combining airborne microwave data with VNIR imagery (Landsat), improved the classification

accuracy of agricultural land cover types (wheat stubble, corn, pasture, and bare soil) by

26



approximately 10% on a per pixel basis, and by ~15% when averaged across their studied field
(400 x 400 meters). These early studies demonstrate that the fusion of VNIR and microwave
imagery can improve the discrimination of crop types.

In later studies, Brisco & Brown (1995) investigated the utility of fusing multi-date
airborne Synthetic Aperture Radar (SAR) imagery and multi-spectral imagery (Landsat) for the
purposes of mapping agricultural land cover types. Their findings demonstrated that combining
these two image sources provided an enhanced ability to discern agricultural land cover types,
with SAR imagery better able to distinguish canola from grains and fallow land cover types
when compared to VNIR data, especially in the early portion of the growing season, likely due
to the relatively higher amounts of backscatter from the macro structure of the broad-leafed
crops as compared to the grains and fallow land cover types. Brisco & Brown (1995) also noted
that land cover classifications utilizing SAR imagery over multiple dates improved overall
classification accuracy from 30% to 74%; however, the same imagery only added a slight
improvement to the classification accuracies achieved using multiple-date VNIR classifications
(90% versus 92%). While VNIR classifications still outperformed those produced using SAR
imagery, the additional improvements in SAR classification accuracies using multiple date SAR
imagery was substantial in this study. Similarly, Simone et al. (2002) found that the fusion of
multiple-date, multi-polarized SAR (ERS-1) imagery along with multi-spectral imagery (Landsat)
sources resulted in a substantial improvement in the average classification accuracy for
“cereals” land cover in the early portion of the growing season (16.7% without fusion,
compared to 75.0% with fusion).

In a more recent study (McNairn et al. 2009), a single VNIR image dataset (SPOT and
Landsat TM) was compared to a single multi-polarized SAR image dataset (RADARSAT and
ENVISAT), with both datasets acquired within a 7-day window. Overall classification accuracies
for crop land cover types of the VNIR dataset (~70%) outperformed those of the SAR dataset
(~45-50%) in a variety of environments; however, when multiple dates of SAR imagery were
combined (without VNIR imagery), classification accuracies between 74-84% were possible
(McNairn et al. 2009). The use of multi-polarization SAR imagery for classifying agricultural land

cover shows a distinct improvement over the results obtained by Brisco & Brown (1995), and
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suggests that such an approach offers a comparable ability to classify crop types, as compared

to VNIR-only based classifications, when multiple-dates of imagery are used.

While the list of examples above is not exhaustive, the results typify those found
throughout the literature on microwave-VNIR image fusion. Improvements to land cover
classification accuracy in agricultural environments when fusing multiple date SAR and VNIR
imagery can yield substantial improvements, but in general, typical results provide only
marginal increases over classification accuracies achieved using single date VNIR data alone.
However, since atmospheric conditions (cloud cover, smoke, etc.) often hamper the collection
of VNIR imagery, a strategy for image acquisitions that includes the all-weather capabilities of
SAR imagery to fill in and/or complement existing VNIR imagery are evident and persuasive
when obtaining consistent spatial and temporal coverage of land cover is of interest (McNairn

et al. 2009).

In Chapter 3, an example of data fusion using multiple sources of remotely sensed
(VNIR) imagery is described. While SAR imagery was available for the more recent time periods
examined in this thesis (1990 and beyond), the relative lack of such imagery in earlier time
periods precluded its use. Nevertheless, the utility of fusing VNIR and SAR imagery for
enhancing the classification accuracy of various agricultural land cover types appears to be well
founded especially in operational settings where the all-weather capabilities of SAR can fill-in
and/or enhance crop classification efforts (McNairn et al. 2009). Given these findings,
operational settings requiring the spatial disaggregation of land use data should employ multi-
date VNIR and SAR imagery to supplement and/or enhance the classification of agricultural land
cover types, especially in situations where the discrimination between multiple crop types are

of interest.
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1.4 CREATING CONSISTENT HISTORICAL LAND COVER AND LAND USE MAPS

Linke et al. (2009a) outline an object-based image analysis approach suitable for updating an
existing reference thematic map within a “spatio-temporal disturbance-inventory database”
(i.e., a GIS) using remotely sensed imagery. Object-based image analysis relies on image
segmentation, a process whereby individual pixels are grouped to form larger, often spectrally
similar, image objects or segments. These image objects are used as the basis for subsequent
image classification. Linke et al. (2009b) demonstrated that small errors (“slivers”) introduced
through object-based map updating procedures can potentially cause large discrepancies in
various landscape metrics, potentially introducing a large source of error over time. To
minimize such errors, only areas where change has been detected are subjected to map
updating procedures (Feranec et al. 2000; 2007). In their approach, Linke et al. (2009a)
calculated the enhanced wetness difference index (EWDI) for each date to determine areas of
annual disturbances (Franklin et al. 2001). Areas representing change between dates are
converted into polygon objects through image segmentation. Since disturbance information
from ancillary and remotely sensed imagery are treated as objects within a GIS, individual
disturbance objects can be classified and updated (or backdated) from the original baseline
map, and any anomalies that can affect comparison of landscape metrics between multiple
dates (e.g., spurious stretch, sliver objects, etc) can be handled and errors minimized (Linke et

al. 2009b).

By incorporating object-based image analysis, and only updating areas identified as
change, the approach described by Linke et al. (2009a) is well suited to applications that require
a long time series of land cover maps that minimizes the amount of error introduced from the
updating procedure. In Chapter 4, the map updating logic recommended by Linke et al (2009a)
is adapted to a large study area, and utilizes disparate sources of remotely sensed imagery with

distinctly different spatial, spectral, and radiometric properties.
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1.5 INTEGRATING AGGREGATED LAND USE DATA WITH REMOTELY SENSED
LAND COVER IMAGERY

Detailed land use data, collected at fine local spatial scales (e.g., individual farmsteads),
are often summarized over large administrative areas (e.g., census boundaries). Typically, data
aggregation is done to protect the privacy of individuals’ information, but it also serves as a
means of summarizing key demographic and agricultural measures of interest over a broad
geographical area (e.g., demographic information, amount of fertilizer purchased, number of
livestock, etc.). Unfortunately, the size of the boundaries used to disseminate publicly
accessible information is often compiled over scales too coarse to ascertain local landscape
development activities. In addition, while these administrative boundaries are useful for
facilitating analysis relative to jurisdictional needs, such delineations are not well suited for
understanding processes that occur over ecologically relevant boundaries (e.g., watersheds,
ecozones, soil types, etc.). Information provided in the latter form allow for a better
understanding of how human activities might be linked to deteriorating ecological services
(e.g., anthropogenic eutrophication). Fortunately, several techniques have been used to
“spatially refine” aggregated land use data into a form more suitable to examining local
landscape development using ecologically relevant boundaries. In this section, an example of
using spatially explicit land cover data derived from remotely sensed imagery to disaggregate

land use data is examined.

Perhaps the earliest example of using remotely sensed imagery of land cover to
disaggregate land use information was pioneered by Green (1957). In that study, land cover
data extracted from aerial photographs were combined with socioeconomic data that
measured the relative desirability of residential areas in Birmingham, Alabama. Relevant areas
of land cover (e.g., urban and suburban built environments) were identified on aerial
photography and associated with housing density and socioeconomic data, such as mean
household income, in order to clarify urban patterns in a spatially explicit manner. Using this

approach, Green (1957) showed that the higher spatial resolution of urban dwellings depicted
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in the aerial photographs could be used to effectively disaggregate the spatially coarse
resolution land use data contained within population census data. Since that time, the
development of satellite-based platforms, advances in sensor technology, computing power,
image processing techniques, and statistical modelling methods have allowed for this approach
to further improve similar studies based in urban environments (Lo 1995; Lo & Faber 1997;

Chen 2002; Rogan & Chen 2004).

Data integration techniques such as those presented above illustrate that data collected
and summarized using different scales can be successfully merged, allowing for aggregated land
use information to be made more comparable with relatively fine spatial resolution land cover
imagery. In Chapter 5, several examples of spatial disaggregation of agricultural land use
information using remotely sensed imagery are examined. In addition, a spatial disaggregation
process is conducted over a large study area, with the results compared to typical choropleth

mapping results.

1.6 DISCUSSION

Developments in image processing and data integration techniques can aid in the
production of land cover and land use maps in agricultural environments. Image fusion
techniques allow for increased classification accuracies and the ability to better discriminate
between various agricultural land cover types. Such techniques also allow for a more robust
means of dealing with the vagaries of atmospheric effects and the subsequent loss of data that
hamper land cover classification exercises. Advances in data integration techniques illustrate
how land use data aggregated over large areas, such as agricultural census data, can be made
more comparable to finer spatial resolution land cover data derived from remotely sensed
imagery. When used in concert, these two techniques produce maps of land cover and land use
data that are spatially explicit, and therefore, more representative of local landscape
development. Lastly, land cover and land use maps produced using the techniques outlined

above are further strengthened within an object-based image analysis approach, which allows
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for finer grained control over updating existing base map, reducing small, but potentially
cumulatively large, errors while improving consistency between a time series of land cover
maps. When combined, progress in these three areas represents an innovative means of

monitoring and documenting landscape change in agricultural environments.

1.7 CONCLUSION

In this chapter, key advances in image processing, data integration, and GIS techniques
using remotely sensed imagery and historical ancillary data were examined. Recent progress in
these areas represent significant developments that, when combined, can form the basis of an
integrated analytical framework capable of monitoring and assessing changes in land cover and
land use over historical time periods at fine spatial scales. Improvements such as these are
important in a variety of applications where detailed land cover and land use information are
desirable. As human populations continue to grow, greater demands placed on agricultural
environments are likely to increase, along with the environmental degradation associated with
such development. Further refinement and combination of the techniques described here will
allow for a greater understanding of historical land cover and land use change at local

landscape scales commensurate with human activity.
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CHAPTER 2 PREFACE

In this chapter, a comparison between pixel-based and object-based image analysis is
conducted to ascertain the relative strengths and weaknesses of each approach. In addition,
several relatively newer machine learning algorithms used to classify remotely sensed imagery
are assessed, with emphasis placed on their ability to provide visually optimal depictions of
selected land cover types while achieving high overall classification accuracies. As the selected
image analysis approach and classification algorithm produce output that represents the
underlying basis for subsequent analyses, the assessment process utilized both a statistically
rigorous approach and a detailed visual assessment. The results of the comparison, and the
outlined detailed assessment process, serve as the basis for image analysis conducted in

subsequent chapters of this thesis.
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CHAPTER 2

A COMPARISON OF PIXEL-BASED AND OBJECT-BASED IMAGE ANALYSIS WITH
SELECTED MACHINE LEARNING ALGORITHMS FOR THE CLASSIFICATION OF
AGRICULTURAL LANDSCAPES USING SPOT-5 HRG IMAGERY"

" The published contents of this chapter appear with permission from Elsevier Inc. The version that appears in
this document has been modified to maintain consistency and formatting between chapters, and as such, it
contains different content than the original material. Readers are encouraged to refer to the original publication:

DURO, D.C., FRANKLIN, S.E., DUBE, M.G. (2012). A comparison of pixel-based and object-based image analysis with
selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery.
Remote Sensing of Environment (118): pp. 259-272.

All work reported in this chapter, including the review of the literature, experimental design, analysis and

discussion of the results, and writing of the text, was carried out by the Ph.D. candidate. As supervisors, Drs. S.E.
Franklin and M.G. Dubé reviewed all or parts of the work.
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21 ABSTRACT

Pixel-based and object-based image analysis approaches for classifying broad land cover
classes over agricultural landscapes are compared using three supervised machine learning
algorithms: decision tree (DT), random forest (RF), and the support vector machine (SVM).
Overall classification accuracies between pixel-based and object-based classifications were not
statistically significant (p>0.05) when the same machine learning algorithms were applied.
Overall classification accuracy for pixel-based image analysis approaches ranged from 87.6 to
89.3%, and 88.8% to 94.2% for object-based image analysis approaches. Using object-based
image analysis, there was a statistically significant difference in classification accuracy between
maps produced using the DT algorithm compared to maps produced using either RF (p=0.0116)
or SVM algorithms (p=0.0067). Using pixel-based image analysis, there was no statistically
significant difference (p>0.05) between results produced using different classification
algorithms. Classifications based on RF and SVM algorithms provided a more visually adequate
depiction of wetland, riparian, and crop land cover types when compared to DT based
classifications, using either object-based or pixel-based image analysis. In this study, pixel-based
classifications utilized fewer variables (15 vs. 300), achieved similar classification accuracies,
and required less time to produce than object-based classifications. Object-based classifications
produced a visually appealing generalized appearance of land cover classes. Based exclusively
on the basis of overall classification accuracy, there was no advantage to preferring one image
analysis approach over another for the purposes of mapping broad land cover types in

agricultural environments using medium spatial resolution earth observation imagery.

2.2 INTRODUCTION

The classification of land use and land cover (LULC) from remotely sensed imagery can be
divided into two general image analysis approaches: i) classifications based on pixels, and ii)
classifications based on objects. While pixel-based analysis has long been the mainstay for

classifying remotely sensed imagery, object-based image analysis has become increasingly
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commonplace over the last decade (Blaschke, 2010). Whether pixels or objects are used as
underlying units for the purposes of classifying remotely derived imagery, the information
contained within and among these units can be subjected to a variety of classification
algorithms. Previous comparative studies have been conducted that examine the relative
performance of different classification algorithms using pixel-based, and/or object-based image

analysis. A brief summary of selected comparisons is provided below.

2.2.1 ALGORITHM COMPARISONS USING PIXEL-BASED OR OBJECT-BASED
CLASSIFICATIONS

Using pixel-based based image analysis on Landsat Thematic Mapper (TM) data, Huang
et al. (2002) compared thematic mapping accuracies produced using four different classification
algorithms: support vector machines (SVMs), decision trees (DTs), a neural network classifier,
and the maximum likelihood classifier (MLC). Their results suggested that the accuracy of SVM-
based classifications generally outperformed the other three classification algorithms. Pal
(2005) compared the accuracies of two supervised classification algorithms using Landsat
Enhanced Thematic Mapper (ETM+) data: SVMs and Random Forests (RFs) (Breiman, 2001), and
found that they performed equally well. Gislason et al. (2006) compared a RF approach to a
variety of decision tree-like algorithms using pixel-based image analysis of Landsat MSS data.
They found that the selected tree-like algorithms tested performed similarly, but that the RF
algorithm outperformed the standard implementation of Breiman et al.'s (1984) DTs; however,
their findings also showed that the RF algorithm performed slightly less well than a modified DT
algorithm (boosted 1R). Carreiras et al. (2006) examined several classification algorithms, which
included standard DTs, quadratic discriminant analysis, probability-bagging classification trees
(PBCT), and k-nearest neighbors (K-NN) using pixel-based analysis of spatially coarse (1 km
pixels) SPOT-4 VEGETATION imagery. Their results, verified by 10-fold cross-validation, showed
that the PBCT algorithm produced the best overall classification accuracy. Brenning (2009)
compared eleven classification algorithms using a pixel-based image analysis, and Landsat

ETM+ imagery, for the detection of rock glaciers. This extensive study found that penalized
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linear discriminant analysis (PLDA) yielded significantly better mapping results as compared to
all other classifiers, including both SVMs and RFs. Using Landsat TM and ETM+data, Otukei and
Blaschke (2010) compared the MLC, SVM, and DT algorithms in a pixel-based approach, and
found DTs performed better than MLC and SVM. In an earlier study, Laliberte et al. (2006) used
an object-based approach on Quickbird imagery to compare K-NN with DT algorithms. Their
study found that DTs produced better overall classification accuracies than the K-NN algorithm,

but that the former was more difficult to implement as compared to the latter.

2.2.2 ALGORITHM COMPARISONS BETWEEN PIXEL-BASED AND OBJECT-
BASED CLASSIFICATIONS

Relatively recent comparisons between the results of pixel-based and object-based
image analysis have also been conducted. For example, Yan et al.(2006) compared pixel-based
image analysis using MLC and object-based image analysis using K-NN on Terra Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. In their study, the
authors claimed that the overall accuracy of the object-based K-NN classification drastically
outperformed the pixel-based MLC classification (83.25% and 46.48%, respectively). Yu et al.
(2006) used high spatial resolution digital airborne imagery and compared a pixel-based
classification based on MLC with an object-based classification using K-NN, using a DT as a
mechanism for feature selection in both cases. Their study showed that the 1-NN object-based
classification outperformed the pixel-based MLC classification by 17%, although calculation of
the average classification accuracy of each of the 48 vegetation classes listed was only 51% for
the object-based K-NN classification, and 61.8% for the pixel-based classification using MLC.
Platt and Rapoza (2008) compared K-NN and MLC for both pixel-based and object-based
classifications, with and without the addition of expert-based knowledge, using multi-spectral
IKONOS imagery. Their results revealed that the object-based NN classification using expert
knowledge had the best overall classification (78%), while the best pixel-based classification
using MLC (without expert knowledge) achieved an overall accuracy of 64%. Castillejo-Gonzalez

et al. (2009) compared pixel-based and object-based classifications in agricultural environments
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using multispectral Quickbird imagery and a variety of classification algorithms. The best pixel-
based classification used non-pan-sharpened imagery and the MLC algorithm, while the best
purely object-based classification used pan-sharpened imagery and MLC, with both approaches
achieving high overall accuracies of 89.6% and 93.69%, respectively. Their study also revealed
that the two best results, using non-pan-sharpened imagery and MLC, showed a small
difference in classification accuracy between pixel-based and object-based image analysis
(89.60% and 90.66%, respectively); however, the difference between these same approaches
grew considerably when using pan-sharpened imagery (82.55% and 93.69%, respectively).
Myint et al. (2011) used Quickbird imagery to classify urban land cover. They compared results
from a MLC pixel-based classification with an object-based classifier using K-NN and a series of

fuzzy membership functions.

The object-based classification (90.4%) outperformed the pixel-based classification
(67.6%) in overall accuracy for their original image; however, in their test image, the differences
between the object-based and pixel-based approaches were reduced to less than 10% (95.2
and 87.8%, respectively). Finally, in a recent study, Dingle Robertson and King (2011) compared
pixel-based and object-based image analysis for classifying broad agricultural land cover types
for two time periods (1995 and 2005) using Landsat-5 TM imagery. They compared land cover
maps produced using MLC (pixel-based) and K-NN (object-based) algorithms and found that the
difference in overall accuracy between these classification approaches was not statistically
significant. Despite these findings, an intensive visual analysis of their post-classification
analysis revealed that the object-based classification using K-NN depicted areas of change more

accurately than the pixel-based classification using MLC.

In general, the above comparisons between pixel-based and object-based classifications
reveal that the latter typically outperform the former when comparing overall classification
accuracy using a variety of remotely sensed imagery in settings ranging from agricultural to
urban land cover classes. However, unlike the studies examining either pixel-based or object-

based classifications in isolation, many comparison studies often rely on relatively simple
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classification algorithms (e.g., K-NN) for the object-based classification, and probabilistic based
algorithms (e.g., MLC) for the pixel-based classification, the latter of which is less suited to
datasets that are non-normally distributed, or that contain categorical data (Franklin & Wulder,
2002).

The present study aims to bridge the gap between these previous comparisons by
examining both pixel-based and object-based classification approaches, with a selection of
relatively modern and robust supervised machine learning algorithms: decision trees (DTs),
random forests (RFs), and support vector machines (SVMs). We conduct a visual and statistical
assessment of the classification outputs using medium spatial resolution (10 m) multi-spectral
imagery from the SPOT-5 HRG sensor. For the purposes of this study, six broad land cover
classes were mapped in a riparian area undergoing intensive agricultural development in
western Canada. We assessed each image analysis approach, and each of the selected machine
learning algorithms, for their ability to accurately portray these selected land cover types.
Recommendations are made in the context of mapping of agricultural landscapes for the
purposes of general land cover mapping and monitoring in agricultural environments using

medium spatial resolution earth observation imagery.

2.3 METHODS

2.3.1 STUDY AREA

The study area is located along the South Saskatchewan River approximately 90 km east
of the provincial border of Alberta-Saskatchewan (Figure 1). The approximately 80 sqg. km study
area is a subset of a much larger drainage basin selected by researchers attempting to
understand how long-term (~30 years) land cover change and land use practices typical of the
southern half of the western Prairie Provinces of Canada might impact the integrity of aquatic
ecosystem composition and function. Similar large drainage areas have been previously
selected by others to assess potential impacts caused by development on aquatic ecosystems
over time (e.g., Squires et al., 2009), and represent an appropriate scale and unit of

measurement for conducting cumulative environmental effects assessments on aquatic
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ecosystems (Dubé, 2003; Duinker & Greig, 2006; Noble, 2008; Seitz et al., 2011). Indeed, over
the past century, environmental impacts in the region due to agricultural development have
replaced much of the native vegetation and has filled an estimated 40% of small wetland areas
(Huel, 2000), facilitating the gradual introduction of crops and improved pasture lands that
dominate much of the prairies today. The selected study area is typical of agricultural activity
conducted near riparian and wetland environments in the region. Such environments have
been linked to a range of species and environmental processes, the flow of nutrients between
terrestrial and aquatic ecosystems, and are the focus of agricultural management practices for
protecting water quality in agricultural environments (Cooper et al., 1995; Gordon et al., 2008;
Gregory et al., 1991; Naiman & Décamps, 1997; Thompson & Hansen, 2001; US EPA, 2005).
Climate in the Prairie Ecozone is characterized by long and cold winters, with summers being
relatively short, but often very warm. The region receives little precipitation and is relatively dry
as a result, with semi-arid regions existing in the southern portions of the province (e.g., The

Great Sand Hills).
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Figure 1: Study area encompassing the South Saskatchewan River (Saskatchewan, Canada). Inset shows SPOT-5 10 m HRG

false color image of study area (R = NIR, G = Red, B =Green).
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2.3.2 DATA SETS AND PROCESSING

2.3.2.1 ANCILLARY DATASETS

Several tiles of the Canadian Digital Elevation Data (CDED) digital elevation model (DEM)
were downloaded from the GeoBase online spatial data portal (www.geobase.ca). At latitudes
of less than 68° N, the CDED DEM has a horizontal post spacing of approximately 23 m (North—
south) x 16—-11 m (East—west). After projection into Albers Equal Area Conic and nearest-
neighbor resampling, the CDED DEM was converted to square 16x16 m pixels. An Albers-Equal
Area Conic was selected as the final projection for all data used in this chapter due to known
area preserving characteristics of this projection, and because using a standard Universal
Transverse Mercator projection would have spanned multiple zones, introducing potential
projection-related challenges in the final map output. Together with elevation above sea level,
slope and aspect, topographic features (e.g., ridge, channel, plane) (Pike, 2000) were calculated
from the CDED DEM and included as variables in the classification process. Other ancillary
datasets (e.g., road networks, geodetic monuments, administrative boundaries, etc.) were
downloaded from the GeoSask online spatial data portal (www.geosask.ca), and used as

reference layers for geometric and orthographic corrections of satellite imagery.

2.3.2.2 REMOTE SENSING IMAGERY

Panchromatic (2.5 m) and multispectral (10 m) imagery from the Systeme Pour
I'Observation de la Terre (SPOT-5) satellite were obtained from the Alberta Terrestrial Imaging
Corporation (www.imagingcenter.ca). The SPOT-5 imagery was collected on August 28, 2005.
High resolution digital color aerial orthoimagery (60 cm pixels) obtained in the same year as the
SPOT-5 imagery was downloaded from the Saskatchewan Geospatial Imagery Collaborative
(www.flysask.ca) online data portal. The panchromatic imagery was orthorectified using a
rational polynomial coefficient model of the SPOT-5 sensor and the CDED DEM mosaic, in

conjunction with ground control points (n>=30)obtained from ancillary layers (road network
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and geodetic monuments). Image-to-map registration yielded a root-mean-square error (RMSE)
of 0.3 pixels using a 1st order polynomial transformation when applied to the panchromatic
imagery. The multispectral imagery was then registered to the panchromatic imagery, achieving
an RMSE of less than 0.5 pixels using a 1st order polynomial transformation. A visual
assessment confirmed that all image sources were aligned with ancillary data layers of higher
spatially accuracy (e.g., road network, quarter section plots, etc.). The multispectral SPOT-5
scene was examined for a study area suitably representative of an environment undergoing
agricultural development, and a 630x553 pixel subset (348,390 pixels) of the full SPOT-5 scene

was then selected for analysis (Figure 1).

Radiometric processing was applied to the SPOT-5 multispectral imagery, and the
Normalized Difference Vegetation Index (NDVI) layer was computed and included in the
analysis (Rouse et al. 1973). Calibrated digital numbers (DNs) were first converted to top-of-
atmosphere reflectance following procedures outlined by Chander et al. (2009) with updated
sensor calibration coefficients for both SPOT-5 HRG sensors provided by the Centre National
d'Etudes Spatiales (CNES, 2009), and updated exoatmospheric solar irradiance coefficients
using the Thuiller spectrum (Thuillier et al., 2003) provided by G. Chander (personal
communication, Sept. 2010). Absolute atmospheric correction of the imagery was not
performed due to the lack of simultaneously acquired ground based spectral data or
appropriate meteorological data available in the study area. Instead, a relative correction using
the Dark-Object Subtraction (DOS) method was used to alleviate atmospheric scattering effects
(Chavez, 1988). The angular second moment texture measure, from computed co-occurrence
matrices, was calculated for each of the SPOT-5 multispectral bands and NDVI layer. Texture
measures have been found to increase overall classification accuracies using SPOT imagery
(Franklin & Peddle 1990), and have been shown to improve the quality of the image
segmentation process (Ryherd & Woodcock, 1996). The angular second moment texture
measure (Haralick et al. 1973), a measure related to the degree of homogeneity among
neighbouring pixels (Baraldi and Parmiggiani 1995), was included in our analysis as it has been

shown to be important for discriminating between different crop types (Pefia-Barragan et al.
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2011). The four bands of SPOT-5 multispectral imagery were placed in a single data set along
with the calculated NDVI layer, texture measures, DEM, and related landscape variables. This
combined data set, or “image stack”, consisted of 15 individual layers, or predictor variables
(Table 1) suitable for differentiating between the selected land cover types. Pixel-based
variables were selected from this stack based on previous experience in classifying land cover
types in the study area. The object-based classification used several layers from the pixel-based
image stack as input to the image segmentation process, and as input layers for the calculation

of “object features”.

Table 1: Image layers used in pixel-based classifications.

. . . . 1
Spectral reflectance  Vegetation indices Landscape variables Texture measure

Green NDVI Elevation Green
Red Slope degrees Red
NIR Aspect degrees NIR
SWIR TopgraphicclassZ SWIR

NDVI
DEM

L "Angularsecond moment" texture calculated forthe listed image layers

2 Topographicclasses: Plain, Ridge, Channel (Pike 2000)

2.3.3 IMAGE SEGMENTATION AND OBJECT FEATURE SELECTION

Image segmentation represents a fundamental first step in object-based image analysis,
as the image objects (or image segments) resulting from this process form the basis of an
object-based image classification (Castilla & Hay, 2008). In this study, image segmentation was
performed using the multi-resolution segmentation (MRS) algorithm found in the 64-bit version
of eCognition Developer 8 (Trimble, 2010a). The MRS algorithm uses a bottom-up image
segmentation approach that begins with pixel sized objects which are iteratively grown through
pair-wise merging of neighboring objects based on several user-defined parameters (scale,

colour/shape, smoothness/compactness) that are weighted together to define a homogeneity
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criterion; together, these parameters define a stopping threshold of within-object homogeneity
based on underlying input layers, and thus define the size and shape of resulting image objects
(Baatz & Schape, 2000; Benz et al., 2004; Trimble, 2010b). Of the parameters used by the MRS
algorithm, the selection of an appropriate value for the scale parameter is considered the most
important, as this value controls the relative size of the image objects, which has a direct effect
on the classification accuracy of the final map (e.g., Kim et al., 2008; Myint et al., 2011; Smith,
2010). In general, smaller values for the scale parameter produce relatively smaller image
objects, while larger values produce correspondingly larger objects. An examination of the
available literature reveals that a quantitative, semi-automated approach for the selection of
optimum values for image segmentation parameters using genetic algorithms exists (e.g.,
Bhanu et al., 1995), but that such semi-automated methods are not yet fully implemented in
mainstream image segmentation software (e.g., Definiens' eCognition; but, see Costa et al.,
2008; Dragut et al., 2010). In this study, the selection of appropriate input layers and values for
individual parameters used by the MRS algorithm was guided by previous experience and by
using an iterative trial-and-error approach often employed by others conducting object-based
image analysis (Dingle Robertson & King, 2011; Yan et al., 2006; Yu et al., 2006; Mathieu et al.,
2007; Myint et al., 2011). The values for image segmentation parameters used in this study are
found in Table 2. Definitions of each parameter defined by the MRS algorithm are described

elsewhere (Baatz & Schape, 2000; Benz et al., 2004; Trimble, 2010b).

Table 2: Parameter values used in multi-resolution segmentation (MRS) algorithm

Scale Color/Shape Smoothness/Compactness # of Objects Median area of objects (sq. m)
5 0.9/0.1 0.5/0.5 6,583 9401
15 0.9/0.1 0.5/0.5 937 69243
30 0.9/0.1 0.5/0.5 273 241434

*-Image layers used: NDVI, DEM, and slope (weighted equally)

The image segmentation process was considered complete once image objects were
produced that visually corresponded to meaningful real-world objects of interest (e.g., fields of
crop, sinuous strip of riparian vegetation, circular patches of wetland vegetation, linear road

segments, etc.). Image objects produced using the smallest scale parameter (Figure 2b) were

48



sufficiently small enough to delineate fine scale features of interest within the study area such
as narrow channels of riparian vegetation, or fringes of wetland vegetation located around
pools of water. The two additional, coarser image segmentation scales (Figure 2c and d) were
included in the object-based classification to depict larger objects of interest (e.g., crop fields).
The use of image object information derived from multiple image segmentation scales has been
shown elsewhere to produce better overall classification accuracies (Smith, 2010), and better
classification accuracies for individual land cover classes (Myint et al., 2011). Image objects
produced at the finest image segmentation scale served as the underlying building blocks, or
“image segments” (Castilla & Hay, 2008), used for the object-based classification, although
information obtained from image objects produced at all three image segmentation scales
(Figures 2b—d) was utilized in the object-based classifications.

Following the image segmentation process, variables were selected for use in the
object-based classification. The object-based image analysis software used in this chapter refers
to such variables as “object features” (Trimble, 2010a), which is a term adopted throughout the
rest of the text when referring to variables used by object-based classifications. Object features
allow for contextual relationships between image objects to be incorporated into the object-
based image analysis. For example, relationships between several smaller sub-objects (e.g.,
groups of individual crops) contained within a single image object (e.g., crop field) produced
using a larger image segmentation scale, can be used for discriminating between land cover
types (Myint et al., 2011). In such cases, the information being considered represents an
“object texture feature” (see Table 3). Several types of object features are available within the

eCognition software and are described elsewhere (Trimble, 2010a).
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Figure 2: Comparison of image segmentation levels used in object-based classification: A) SPOT-5 10 m HRG false color image
of study area (R—NIR, G—Red, B—Green); B) Image segmentation (MRS scale 5); C) Image segmentation (MRS scale 15); D)

Image segmentation (MRS scale 30).

Selecting object features for use in object-based image analysis can be a subjective
process based on past experience and user knowledge (e.g., Laliberte et al., 2007), or one
driven by a feature selection algorithm prior to final classification (e.g., Yu et al., 2006; Van
Coillie et al., 2007). In this chapter, past experience with object-based classifications in the
study area was used to guide the selection of object features (Table 3). Detailed definitions of

each object feature are described elsewhere (Trimble, 2010b).
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Table 3: Object features used in object-based classifications

Table 3: Object features i
Object layer features

Description

Mean
Standard deviation
Mean difference to neighbours

Mean difference to scene

Mean difference to super-objects

Std. dev. difference to super-object

Object texture features

Mean value of an image object

Standard deviation of image object

The difference between mean values of an image object and
neighboring image objects.

The difference between the mean input layer value of an image
object and the mean input layer value of the scene

The difference between the mean input layer value of an image
object and the mean input layer value of its superobject.
Distance of 1.

The difference of the std. dev. input layer value of an image
object and the std. dev. input layer value of its super-object.
Distance of 1.

Description

Mean of sub-objects

Avg. mean diff to neighbors of sub-
objects

Standard deviation of the different input layer mean values of
the sub-objects. Distance of 1.

The contrastinside an image object expressed by the average
mean difference of all its sub-objects for a specific input
layer. Distance of 1.

*Object features listed were calculated for each of the 15 image layers listed in Table 1

The total number of object-features considered in a multi-scale object-based

classification can be considerable since information is calculated per image object, and can be
calculated at each segmentation scale for each of the input layers. In this study, information
based on all 15 input layers (Table 1), 3 image segmentation scales (Table 2), and 8 object
features (Table 3) were used in the object-based classification. The total number of object
features considered (360) in the object-based image analyses was reduced to 300 as the
calculation of values for certain object features required that certain conditions are met. For
example, in this study, “object texture features” (Table 3) were selected that calculate values
for an individual image object based on their underlying sub-objects, which are created at lower
image segmentation scales. However, image objects produced at the finest image
segmentation scale represent the finest level of detail, and therefore cannot be used to

calculate sub-object information.
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The total number of object features available to the object-based classifications greatly
outnumbers the number of variables used in pixel-based classifications (300 versus 15,
respectively). The ability to utilize and link information from image objects delineated at
multiple scales inherent in the underlying imagery is often presented as one of the advantages
of object-based image analysis (Blaschke, 2010). Accordingly, multiple image segmentation
scales were used for object-based classifications, which is an approach that has been adopted
in other recent studies comparing pixel-based and object-based classifications (e.g., Yan et al.,
2006; Myint et al., 2011; Whiteside et al., 2011). While utilizing disparate numbers of potential
predictor variables may hamper a strict comparison between image analysis approaches, it
nonetheless represents a more typical comparison, as object-based classifications often utilize
multiple image segmentation scales even if a single object-feature type is utilized (e.g., mean

layer value; see Table 3).

2.3.4 SAMPLING DATA, ACCURACY ASSESSMENT, AND MAP COMPARISON

In this study, high spatial resolution aerial orthophotos and panchromatic satellite
imagery were used to collect ground reference data, as contemporaneous field-based samples
were not available within the selected study area. A stratified random sampling approach was
utilized to adequately sample land cover classes of interest (e.g., narrow channels of riparian
vegetation) that were relatively underrepresented within the study area. An initial land cover
map produced using an unsupervised ISODATA clustering algorithm was created to provide an
initial stratification of the study area. Four multispectral bands from the SPOT-5 imagery were
used to produce the initial stratified classification using 20 spectral classes. Six broad land cover
classes were selected for the purposes of this comparison study: crop land, mixed grasslands,
exposed rock/soil, riparian and wetland vegetation, and water (cloud and shadow were not
present in the study area). The 20 spectral classes produced by the ISODATA algorithm were
grouped into the six selected land cover types. Spectral classes remaining from the ISODATA

classification that did not clearly fit into the selected six land cover types were classified as “no
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data” and excluded from further analysis. The generalized ISODATA classification was then

converted into a polygon based map and imported into a GIS for further analysis.

Using image objects produced at the finest segmentation scale (Table 2), and the
polygon-based ISODATA classification, a stratified random sample of image objects within the
six land cover types was performed. A total of 690 image objects were selected (115 per land
cover type). Image objects produced using the MRS algorithm — even using small image
segmentation scale values — can vary in size considerably (see Table 2), and may contain more
than a single land cover type. Image objects were visually examined using a combination of
SPOT-5 panchromatic and multispectral data, along with color aerial orthoimagery, to assess
the homogeneity of the land cover types present within individual image objects. Those image
objects that contained more than one of the six broad land cover types were rejected, leaving
679 samples in total. These samples were then split into training and testing set using
proportional stratified random sampling, which allowed for both sets of data to retain the
overall class distributions of the six selected land cover types present in the original data set.
Approximately two-thirds of the samples (437) were used to train the machine learning
algorithms, reserving approximately one-third (242) as a test set used exclusively for accuracy
assessment and statistical comparisons between classifications. The test set was not used to
train or tune parameters associated with the machine learning algorithms examined in this
study. Model building and tuning of individual parameters used by the machine learning
algorithms was accomplished through repeated k-fold cross-validation based on the training

data set only.

To obtain training and testing samples for the pixel-based classification that were
commensurate with training and testing image objects, a single point within each of the
selected image objects was randomly selected. As each of the image objects used for training
and testing were visually screened for land cover homogeneity, any point within the image

object would correspond to the underlying land cover type already identified for the image
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object. This procedure ensured that both the object-based and pixel-based classifications used

training and testing data gathered from the same locations.

Two measures for assessing the accuracy of thematic maps classified from remotely
sensed imagery are commonly reported: i) overall accuracy and ii) the Kappa coefficient of
inter-rater agreement (Congalton, 1991; Congalton & Green, 1998). Overall accuracy has the
advantage of being directly interpretable as the proportion of pixels classified corresponds to
probabilities related to a given thematic map's reported commission and omission accuracy
(Stehman, 1997), while the Kappa coefficient has been used to assess statistical difference
between classifications (Congalton, 1991). Studies often assess the performance of multiple
classification algorithms utilizing the same testing and training samples (Foody, 2004). In such
cases, the assumption that each classification was independently assessed is violated (Cohen,
1960) —i.e.,that the number of samples being compared are independent — and therefore, a
statistical comparison using Kappa coefficient values is unwarranted (Foody, 2004). In such
circumstances, it has been recommended that either a Monte Carlo permutation test of related
k coefficient values (McKenzie et al., 1996), or McNemar's test for paired-sample nominal scale
data (Agresti, 2002; Zar,2009), be used to assess whether statistically significant differences
between classifications exists (Foody, 2004). The latter approach has been used by others to
statistically compare object-based and pixel-based classifications (e.g., Dingle Robertson & King,

2011;Yan et al., 2006; Whiteside et al., 2011), and is therefore adopted here for comparability.

For each classification, a confusion matrix is presented, along with its overall accuracy
(i.e., the percentage of correctly classified land cover types), and user's and producer's accuracy
(Congalton & Green, 1998). As recommended by others, overall accuracy measures are
reported using 95% confidence intervals (Morissette & Khorram, 1998; Foody, 2009). The
McNemar test was used to assess the following goals of comparison: 1) whether a statistically
significant difference exists between pixel-based and object-based classifications that utilize the
same machine learning algorithm; and, 2) whether a statistically significant difference exists

between different machine learning algorithms when using either pixel-based or object-based

54



image analysis. The McNemar test was run without Yates' correction for continuity for small
sample sizes, as this correction is generally not recommended (Foody, 2004; Zar, 2009). Both
the individual accuracy assessments and statistical comparisons are based on the independent

test set.

2.3.5 TUNING OF MACHINE LEARNING ALGORITHM PARAMETERS

Model building, tuning, and accuracy assessments of were performed using version 2.12
of the 64-bit version of R, a multi-platform, open-source language and software for statistical
computing (R Development Core Team, 2010). Several add-on packages were used within R for
creating each of the machine learning algorithms used in this study: decision tree (DT), random
forest (RF), and the support vector machine (SVM). Classifications based on DT models used The
Recursive PARTitioning or “rpart” package (Therneau & Ripley, 2010), which is largely based on
the classification and regression tree (CART) algorithm originally developed by Breiman et al.
(1984). The classifications built with the RF algorithm used the “randomForest” package (Liaw &
Wiener, 2002), which is based on the original RF algorithm and software code developed by
Breiman and Cutler (Breiman, 2001; Breiman & Cutler, 2007). Classifications using models
based on the SVM algorithm (Cortes & Vapnik,1995; Vapnik, 1998) used the “kernlab” package

(Karatzoglou et al.,2004). In all, three classification algorithms were tested: DT, RF, ad SVM.

All classification models were developed using the “caret” package within R (Kuhn,
2008), which allowed for a single consistent environment for training each of the machine
learning algorithms and tuning their associated parameters. A repeated k-fold cross-validation
resampling technique was used to create and optimize classification models for both pixel-
based and object-based classifications using all three machine learning algorithms. Resampling
by k-fold cross-validation begins by partitioning a sample into k subsamples of roughly equal
size, with k-1 subsamples used as a training set, and a single subsample left out as a test set.
Using this approach, a classification model using each of the three machine learning algorithms

is built using the training set and assessed against the single leftover test set. This process is
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repeated k times (“folds”), whereby each of the k subsamples serves a turn as a test set,
ensuring that all subsamples are used as part of the training and testing sets. Results for each
fold are then combined to select the model with the highest average accuracy. Similar cross-
validation techniques have been used by others to compare the performance of multiple
classifiers using earth observation imagery (e.g., Friedl & Brodley, 1997; Huang et al.,2002;
Brenning, 2009, 2010).

Several adjustable “tuning parameters” used by each of the machine learning algorithms
to optimize classification performance were examined using 10-fold cross validation, which is
the number of folds recommended when comparing the performance of machine learning
algorithms (Kohavi, 1995). “Optimal” values for tuning parameters were selected using three
repetitions of a 10-fold cross-validation based on the original training data set, with the original
test removed completely from the cross-validation process (i.e., the original test set was not
used for training or tuning any of the classification models). Tuning parameters were
considered optimized based on classification models that achieved the highest overall
classification during the cross validation process. Specific details on tuning parameters used by
the three machine learning algorithms examined in this study are listed in the following

sections.

2.3.5.1 DECISION TREE BASED MODELS

For DT based classifications, several values were examined for the “maximum depth”
tuning parameter, which controls the maximum depth of any single node in the tree. When
using the “caret” package, an initial DT model is fit to all of the training data to obtain the
maximum depth of any node; this value is then used to obtain an upper bound on values
considered during subsequent model building using cross validation (Kuhn, 2011). In general,
using a larger maximum depth value will allow for a relatively complex tree to be built, with a
potential increase in overall classification accuracy, whereas lower maximum depth values tend

to build less complex trees, with potentially lower overall classification accuracies. By increasing
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the number of branching nodes (i.e., decision rules), the DT algorithm is capable of grouping a
larger number of distinct observations present within a dataset. By default, the “rpart” package
uses 10-fold cross validation of the training data to internally obtain classification error rates
(Therneau & Ripley, 2010). When using “rpart” the appropriate sized tree is obtained using the
“1 SE rule” established by Breiman et al. (1984), whereby the smallest-sized tree whose cross
validation error is within 1 standard error of the minimum cross validation error is selected. The
tree is then pruned using the “cost complexity” (cp) value that corresponds to the size of tree
found using the “1 SE rule”. The cp parameter controls the condition at which non-informative
splits are pruned from the tree (Therneau & Ripley, 2010). Using the “caret” package, the
default cp value (0.01) used by the “rpart” package was maintained, and only the maximum

depth parameter was tuned for DT based classifications.

2.3.5.2 RANDOM FOREST BASED MODELS

For random forest (RF) based classifications, the default number of trees (500) was
selected since values larger than the default are known to have little influence on the overall
classification accuracy (Breiman & Cutler, 2007). The other adjustable RF tuning parameter, the
mtry parameter, controls the number of variables randomly considered at each split in the tree
building process, and is believed to have a “somewhat sensitive” influence on the performance
of the RF algorithm (Breiman & Cutler, 2007). For categorical classifications based on the RF
algorithm, the default value for the mtry parameter is+/n, where p equals the number of

predictor variables within a data-set (Liaw & Wiener, 2002).

2.3.5.3 SUPPORT VECTOR MACHINE BASED MODELS

Classifications based on the support vector machine (SVM) algorithm used the radial basis
function (RBF) kernel. Other kernels were not considered in this study. The parameters used by

the SVM algorithm have been shown to influence overall classification accuracy (Burges, 1998).
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The two model tuning parameters for SVM models using the RBF kernel in the “kernlab”
package are “cost” (C) and “sigma” (o). Increasing the former leads to larger penalties for
prediction errors, which may produce an over-fitted model (Alpaydin, 2004); whereas
increasing the latter parameter affects the shape of the separating hyperplane (Huang et al.,
2002), which may also influence overall classification accuracy. An analytical method for directly
estimating o from the training data has been implemented in the kernlab package using the
“sigest” function (Karatzoglou et al., 2004). The “caret” package estimates an appropriate value
for the o parameter using the sigest function by default; therefore, only the C parameter was

tuned when running the SVM algorithm with the RBF kernel (Kuhn, 2011).

24 RESULTS

2.4.1 TUNING OF MACHINE LEARNING ALGORITHM PARAMETERS

For DT-based classifications, values ranging from 1 to 8 were examined for the
“maximum depth” tuning parameter. Based on the highest overall classification accuracy (i.e.,
the percentage of correctly classified samples) achieved by pixel-based and object-based
models (85.4% and 83.3%, respectively) a maximum depth value of 8 was selected for both
pixel-based and object-based classifications models. Several values for the mtry tuning
parameter (2—4, 68, 10-12, 14) were examined for the pixel-based RF classification. For the
pixel-based RF classification, the highest classification accuracy value (91.1%) was obtained with
an mtryvalue of 7. A total of 10 mtry parameter values (2, 35, 68, 101, 134, 167, 200, 233, 266,
and 300) were examined for the object-based RF classifications. Based on the highest
classification accuracy obtained (93.1%), an mtry value of 68 was selected for the object-based
RF classification. For the pixel-based and object-based classifications using the SVM algorithm, a
total of 10 values for the C parameter (0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, and 18) were examined.
The value for the o parameter was held constant at 0.0928 for pixel-based classifications, and at
0.00361 for object-based classifications. Pixel-based and object-based classifications using the
SVM algorithm (overall accuracy of 89.8% and 91.4%, respectively) were obtained using C

parameter values of 8 and 1, respectively. Models with optimized tuning parameter values
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were used to produce the subsequent image classifications, associated accuracy assessments,

and map comparisons.

2.4.2 VISUAL EXAMINATION OF THEMATIC MAPS

Pixel-based and object-based image classifications using the three examined machine
learning algorithms are depicted in Figures 3 and 4, respectively. Post classification clean up
(e.g., pixel-based filtering, GIS-based adjustment of classes, etc.) of the final thematic maps was
not performed. A visual overview of the pixel-based classifications is presented first, followed
by object-based classifications, and a comparison of outputs produced using both image
analysis approaches and all three machine learning algorithms. The following six broad land
cover types were classified using the above classification algorithms and image analysis
approaches: crop, mixed grassland, exposed rock/soil, wetland, riparian, and water. These land

cover types are visually assessed in the following sections.

59



Land cover classes 0 125 25 5 Kilometers

Figure 3: Comparison of pixel-based classifications: A) SPOT-5 10 m HRG false color image of study area (R—NIR, G—Red, B—
Green); B) Decision tree based classification; C) Random forest based classification; D) Support vector machine based

classification.
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Land cover classes 0 125 25 5 Kilometers

Figure 4: Comparison of object-based classifications: A) SPOT-5 10 m HRG false color image of study area (R-NIR, G-Red, B-
Green); B) Decision tree based classification; C) Random forest based classification; D) Support vector machine based

classification.
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2.4.3 PIXEL-BASED CLASSIFICATIONS

For the pixel-based classifications (Figure 3), the major visual difference interpreted
between thematic maps produced by the three different algorithms was the amount of wetland
or riparian land cover depicted in the southern quarter of the study area. For tree-based
classifications (Figures 3b and 3c), the south-western corner of the study area depicts riparian
vegetation, whereas the map produced by the SVM algorithm (Figure 3d) depicts this area as
dominated by mixed grasslands dotted primarily with wetlands. A visual inspection of this area
using available high spatial resolution imagery and color orthoimagery revealed that this area is
predominantly covered in vegetation typical of a mixed grasslands land cover type, although
small stream channels can be seen filled with vegetation, indicating the presence of a riparian
land cover class. Small areas of wetland vegetation are also present in the high resolution
imagery. Two predominant patches of exposed rock/soil, shown as blue-white patches on the
left portion of Figure 3a, are best classified by the SVM algorithm, while both the RF and DT
algorithms depict these areas with patches of crop land. In general, while all three pixel-based
classifications produced a similarly speckled “salt-and-pepper” appearance, the DT and RF
based classifications showed noticeably less of this speckle in the depiction of large crop land
areas (e.g., see north-eastern corner of Figure 3c). Overall, the pixel-based classification using
the SVM algorithm (Figure 3d) appears to contain less speckle compared to the DT and RF
classifications. The classification based on the SVM algorithm appears to show fewer errors of
commission in the classification of mixed grassland vegetation along the north-western area,

especially along channels containing riparian vegetation on the north side of the river.

2.4.4 OBJECT-BASED CLASSIFICATIONS

As with the pixel-based classification, the major visual difference interpreted between
thematic maps produced using object-based image analysis (Figure 4), is in the relative amount
of wetland, riparian and mixed grassland land cover depicted in the southern half of the study

area. For tree-based classifications (Figures 4b and 4c), the southern half of the study area
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depicts larger patches of riparian vegetation, whereas the SVM algorithm (Figure 4D) depicts
this area as predominantly mixed grassland. The thematic maps based on DT and SVM
algorithms (Figures 4b and 4c) show several noticeable errors of commission, namely the
misclassification of riparian land cover as wetland within the main river channel. All three
object-based classifications misclassified small areas of riparian and exposed/rock soil land
cover located along the riverbank as mixed grasslands. The two object-based classifications
using the RF and SVM algorithm show little indication of commission error when classifying
crop land alongside riparian channels on the northern slope of the river channel, whereas
several patches of misclassified crop land are present in this area of the object-based DT
classification map. Wetland vegetation present in the northern part of the study area appears
well defined by all three object-based classification algorithms, although several errors of

commission are noticeable in large inundated fields.

2.4.5 VISUAL COMPARISON OF PIXEL-BASED AND OBJECT-BASED
CLASSIFICATIONS

In general, all land cover maps show a reasonably accurate visual depiction of the broad
land cover types of interest in this area. When the same machine learning algorithm is
compared, both pixel-based and object-based classifications showed similar patterns. For
example, the predominance of mixed grassland areas in the southern portion of the study area
was noticeably higher in pixel-based and object-based classifications that utilized the SVM
algorithm when compared to classifications based on tree-based algorithms. Wetland and
riparian areas were generally well defined, although different algorithms and image analysis
approaches differed slightly in their specific depictions of these land cover types. Wetland areas
appeared to be best represented by the SVM based classifications, particularly when using the
object-based approach, which accurately portrayed vegetation encircling areas of open water,
although this quality is present when using tree-based classifications to varying degrees.
Likewise, the depiction of riparian vegetation was relatively consistent across approaches and

algorithms, with pixel-based classifications producing the most visually accurate depictions
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along steep ridges and narrow channels. Crop land was best depicted by object-based
classifications due to the generalized appearance, however the less speckled appearance of
croplands using pixel-based RF and DT based classifications were also considered adequate.
Pixel-based classifications based on RF and SVM algorithms produced more visually accurate
depictions of sand bars (exposed rock/soil land cover type) in riparian areas than any of the

object-based classifications.

2.4.6 ACCURACY ASSESSMENT AND STATISTICAL COMPARISONS

An accuracy assessment was performed for each classification produced in this study to
evaluate how well predictions based on the optimized models, generated using repeated k-fold
cross validation, compared against the independent test data. Table 4 contains detailed
confusion matrices of classification accuracies based on the test data. Overall, both pixel-based
and object-based classifications performed similarly with respect to overall classification
accuracy. In general, all land cover types achieved over 80% user's accuracy, with the exception
of wetland land cover types, which scored below 80% when using pixel-based image analysis, or
object-based image analysis using the DT algorithm. Producer's accuracy for several land cover
types was relatively consistent for both pixel-based and object-based classifications, but specific
differences between machine learning algorithms were apparent. For example, producer's
accuracy for the crop land cover type was consistently over 80% for both pixel-based and
object-based classifications, except when using the SVM classifier, where it decreased to 75%
for both image analysis approaches. All pixel-based classifications achieved a producer's
accuracy of 77.27% for wetland land cover types, while object-based classifications using the RF
and SVM algorithm achieved over 95% for this class. Pixel-based classifications that utilized the
DT algorithm had the lowest overall classification accuracy (87.6%), followed by SVM (89.26%),
and RF (89.67%) classifications (Figure 5). The same general trend was observed for object-
based classifications, with the DT algorithm obtaining the lowest overall classification accuracy
(88.84%), followed by RF (93.39%) and SVM (94.21%) algorithms. Exact 95% confidence limits,

calculated on the results obtained with the “hold-out” test data set, reveal a wide variability
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and overlap in overall accuracy reported between pixel-based and object-based classifications.
Based on these results, the lowest performing classification model (pixel-based DT) potentially

scored within the range of the best performing RF and SVM classifications (Figure 5).

100% -

96% -

92% -

88% -

Overall classification accuracy

84% -

80%

RF SVM

O Pixel-based @ Object-based

Figure 5: Comparison of overall classification accuracy (percent correct) of pixel-based and object-based classifications using
three supervised machine learning algorithms: Decision Tree (DT), Random Forest (RF), and Support Vector Machine (SVM).

Results based on "hold-out" test set. Exact 95% confidence intervals plotted.

Based on a comparison between predictions made with optimized classification models
built using repeated k-fold cross-validation and the “hold-out” test data, the McNemar test
indicated that the observed difference between pixel-based and object-based classifications
was not statistically significant (p>0.05) when the same machine learning algorithm was used
(e.g., DT classification model using pixel-based or object-based image analysis). With pixel-
based image analysis, the observed difference in classification accuracy between all three
machine learning algorithms was not statistically significant (p>0.05). For object-based
classifications, a statistically significant difference (p=0.05) in classification accuracy between
models using DT and RF algorithms (p=0.011), and DT and SVM algorithms (p=0.006) was
observed. The difference in overall classification accuracy between object-based classifications

utilizing the RF and SVM algorithms was not statistically significant (p>0.05).
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Table 4: Confusion matrices and associated classifier accuracies based on test data. CL=crop land, MG=mixed grasslands, RS=exposed rock/soil, RP=riparian, WA=water,

WL=wetland; Oa=overall classification accuracy, Pa=producer's accuracy, Ua=user's accuracy, Cl=confidence interval.

Pixel-based, Decision Tree

CL MG RS
CL 27 3 0
MG 1 60 1
RS 1 0 13
RP 3 4 0
WA 0 1 0
WL 0 1 0
Total 32 69 14
Pa 84.38%  86.96% @ 92.86%
Pixel-based, Random Forest
CL MG RS
CL 27 2 0
MG 1 61 1
RS 1 1 13
RP 3 3 0
WA 0 0 0
WL 0 2 0
Total 32 69 14
Pa 84.38%  88.41% @ 92.86%
Pixel-based, Support Vector Machine
CL MG RS
CL 24 2 1
MG 4 63 2
RS 1 1 11
RP 2 1 0
WA 0 0 0
WL 1 2 0
Total 32 69 14
Pa 75.00%  91.30%  78.57%

RP WA WL
0 0 2
5 0 3
0 0 0
72 0 0
1 23 0
4 0 17
82 23 22
87.80%  100.00%  77.27%
Oa:
lower 95% Cl:
upper 95% Cl:
RP WA WL
0 0 0
0 0 3
0 0 0
80 0 2
0 19 0
2 4 17
82 23 22
97.56% 82.61% 77.27%
Oa:
lower 95% Cl:
upper 95% Cl:
RP WA WL
1 0 1
0 1 1
0 0 0
81 0 3
0 20 0
0 2 17
82 23 22
98.78% 86.96% 77.27%
Oa: 89.26%
lower 95% Cl: 84.66%
upper 95% Cl: 92.86%

Total
32
70
14
79
25
22

242

87.60%
82.78%
91.48%

Total
29
66
15
88
19
25

242

89.67%
85.13%
93.20%

Total
29
71
13
87
20
22

242

Ua
84.38%
85.71%
92.86%
91.14%
92.00%
77.271%

Ua
93.10%
92.42%
86.67%
90.91%

100.00%
68.00%

Ua
82.76%
88.73%
84.62%
93.10%

100.00%
77.271%

Object-based, Decision Tree

CL MG RS RP WA WL
CL 26 0 1 0 0 0
MG 1 63 1 1 1 3
RS 1 0 12 0 1 1
RP 3 4 0 80 1 2
WA 0 0 0 0 18 0
WL 1 2 0 1 2 16
Total 32 69 14 82 23 22

Pa 81.25% 91.30% 85.71% 97.56% 78.26% 72.73%
Oa:

lower 95% Cl:

upper 95% ClI:

Object-based, Random Forest

CL MG RS RP WA WL
CL 27 1 0 0 1 0
MG 0 65 1 0 0 1
RS 1 0 13 0 0 0
RP 3 3 0 82 0 0
WA 0 0 0 0 18 0
WL 1 0 0 0 4 21
Total 32 69 14 82 23 22

Pa 84.38% 94.20% 92.86%  100.00%  78.26% 95.45%
Oa:
lower 95% Cl:
upper 95% ClI:

Object-based, Support Vector Machine

CL MG RS RP WA WL
CL 24 0 1 0 0 0
MG 3 68 1 0 0 0
RS 1 0 11 0 0 0
RP 3 1 0 82 0 0
WA 0 0 0 0 21 0
WL 1 0 1 0 2 22
Total 32 69 14 82 23 22
Pa 75.00% 98.55% 78.57%  100.00%  91.30% = 100.00%
Oa:

lower 95% Cl:
upper 95% ClI:

Total
27
70
15
90
18
22

242

88.84%
84.18%
92.52%

Total
29
67
14
88
18
26

242

93.39%
89.49%
96.17%

Total
25
72
12
86
21
26

242

94.21%
90.40%
96.80%

Ua
96.30%
90.00%
80.00%
88.89%

100.00%
72.73%

Ua
93.10%
97.01%
92.86%
93.18%

100.00%
80.77%

Ua
96.00%
94.44%
91.67%
95.35%

100.00%
84.62%



2.5 DISCUSSION

In general, classifications produced using either pixel-based or object-based image
analysis created similar and visually acceptable depictions of the broad land cover classes
present within the study area. As expected, compared to the pixel-based classifications, the
object-based classifications offered a more generalized visual appearance and more contiguous
depiction of land cover, which perhaps better represents how land cover interpreters and
analysts actually perceive the landscape (Stuckens et al., 2000). In some cases, the generalized
depiction of land cover classes produced by object-based image analysis may account for the
apparent preference for object-based classifications over slightly better performing pixel-based
classifications (e.g., Dorren et al., 2003). Nevertheless, additional processing of pixel-based
imagery, either prior to or after classification, can also produce similar generalized
representations of land cover, so such differences may in fact be largely trivial, at least when
considering the use of medium spatial resolution imagery (10-30 m pixels). When comparing
overall classification accuracy (percentage of classes correctly predicted), there is an apparently
consistent, but small (1-4%), improvement when using object-based image analysis over pixel-
based image analysis (see Table 4 and Figure 5). However, the large variability depicted by the
exact 95% confidence intervals suggests that the sample size of the “hold-out” test data set
(242) was too small for assessing such differences; therefore, any apparent trend reported here

should be considered tentative.

Deciding on a sampling effort that is economically feasible and logistically possible, with
one that allows for statistically rigorous comparisons is a major consideration in operational
settings where resources are often limited (Congalton, 1991).A sample size that is too large can
waste valuable resources that provide unnecessary precision, whereas a sampling effort that is
too small may not be capable of resolving any statistically meaningful differences when
comparing classification accuracies (Foody, 2009). Despite the lower sample size of the test set
and associated wider confidence limits, the McNemar test revealed that, when utilizing the

same machine learning algorithm, the observed difference between pixel-based and object-
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based classification accuracy was not significant at the 5% level. The findings in this study
suggest that, on the basis of achieving better overall classification accuracy for this application,
there is no statistical basis for preferring pixel-based to object-based image analysis, when
utilizing the same machine learning algorithm. In addition, when using pixel-based image
analysis, there was no statistically significant difference observed at the 5% level of significance
between classification accuracies achieved by any of the machine learning algorithms. These
findings are largely corroborated by the large overlap in confidence intervals depicted in Figure

5.

Nonetheless, when using object-based image analysis, statistically significant differences
(p<0.05) were observed for classification accuracies achieved by SVM and RF algorithms when
compared to DT-based classifications. Unfortunately, the McNemar test as implemented here
cannot be used for one-sided hypothesis testing (Foody, 2004), and the wide degree of overlap
in the 95% confidence intervals for overall accuracy (Figure 5) suggests that definitively
asserting which classification algorithm or image analysis approach is capable of producing
higher classification accuracies would be problematic based on the "hold-out" test set used in

this study.

Other studies have indicated that both RF and SVM algorithms can achieve similar overall
classification accuracies, which are typically greater than those obtained using DT based
algorithms. For example, Pal (2005) found that both SVM and RF algorithms produced similar
classification accuracies. Gislason et al. (2006) reported that RF based models achieved higher
classification accuracies than those produced by standard DT (i.e., DTs that did not utilize
bagged or boosting algorithms). These results differed from those reported by Otukei and
Blaschke (2010) who found that DTs generally performed better than classifications produced
using SVM. As with this study, the previous examples were based on medium- and relatively
coarse-spatial resolution imagery (Landsat MSS, TM, ETM+) and used similar broad land cover

classes; however, these comparisons relied on comparing overall classification accuracy values
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(i.e., the percentage of correctly classified samples) rather than using statistical comparison as

employed here and elsewhere (e.g., Foody 2009).

When comparing overall accuracies between object-based and pixel-based classifications
of Landsat-5 TM imagery, Dingle Robertson and King (2011) found no statistical difference
between approaches. However, two studies (Yan et al., 2006; Whiteside et al., 2011) found that
differences in overall classification accuracies produced using object-based image analysis were
statistically significant (p=0.001, and p=0.01, respectively) than pixel-based image analysis, with
both studies using medium spatial resolution EO imagery (ASTER and SPOT-5 HRG,
respectively). Contrary to the side-by-side comparison conducted in this study, these previous
studies compared different classifiers (e.g., MLC and K-NN) and image analysis methods, making
direct comparisons difficult. Furthermore, as illustrated in this study, examination of confidence
intervals around the overall classification accuracy assessments can reveal significant overlap in
overall accuracies between image analysis approaches, confounding the interpretation of two-
sided tests of significance such as McNemar's test (Foody, 2009), which have also been used in
previous comparisons (e.g., Dingle Robertson & King, 2011; Yan et al., 2006; Whiteside et al.,
2011). Potential remedies include collecting a larger “hold-out” test sample to assess whether
the large overlap in confidence intervals would remain, along with an appropriate means of
testing a one-sided hypothesis for such a comparison. Unfortunately, the collection and use of
an adequately sized “hold-out” test set might be prohibitive to assemble for logistical or
financial reasons, and would represent an “inefficient use of data”, as these data are, by
definition, not utilized by the classifier (Kohavi, 1995). Implementing a repeated k-fold cross-
validation, as illustrated in this study, with a larger dataset may provide statistically rigorous
results without “wasting” data, while at the same time allowing for one-sided hypothesis

testing to be performed (e.g., Kuhn, 2008).

From a practical production standpoint, the setup and execution of object-based

classifications were more labor intensive as compared to their pixel-based counterparts. Much

of the difference in execution time encountered was due to a lack of commercially available
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software for image analysis that implemented the machine learning algorithms examined in this
study. This lack of a streamlined production environment multiplied the number of software
packages needed and the amount of data transfers required. In addition, many of the present
comparisons between pixel-based and object-based classifications of EO imagery in the
available literature to date appear to rely on commercially available software solutions that
provide relatively outdated and/or less advanced classification methods. The present study,
along with others (e.g., Brenning, 2009,2010), fill this void by providing a methodological basis
for conducting statistically rigorous comparisons between classification outputs generated from
EO imagery using freely available open-source software (e.g., R Development Core Team, 2010).
Regardless of which software packages are used, differences in execution time between pixel-
based and object-based image analysis still remain. For example, the time spent selecting
object-based variables (i.e., “object features”) is roughly similar to that involved in selecting
variables for a pixel-based classification; however, the additional time needed to select
appropriate parameters for the underlying image segmentation is not trivial, especially if the
tasks include mapping large overlapping scenes of imagery in an operational setting. Future
development and adoption of more quantitative approaches for selecting optimal image
segmentation parameters (e.g., Costa et al., 2008; Dragut et al., 2010) will hopefully reduce the
time required for this important step, while at the same time producing superior results to the
gualitative trial-and-error methods that are typically practiced now. In addition, faced with
potentially hundreds of object features from which to select, the use of more advanced feature
selection algorithms in object-based image analysis is gaining increasing attention (e.g., Yu et

al., 2006; Chan & Paelinckx, 2008).

Considered together, object-based image analysis will likely remain more labor intensive
compared to pixel-based image analysis, which is a factor that should be evaluated carefully
when conducting image analysis of EO imagery in an operational environment. While
classification accuracy is an important attribute to consider, in circumstances where there are
few overall statistical differences between image analysis approaches, other preferences may

take precedence. For example, DT based models may be preferable because of their ability to
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generate visually interpretable node-based diagrams of the binary decision logic used to arrive
at the final classification. Conversely, the potentially higher overall classification accuracies
gained by using the RF algorithm may be preferable despite the lack of a similar visual

representation offered by the DT algorithm.

While statistically significant differences in overall classification accuracy were not
observed in this study between pixel-based and object-based image analysis when utilizing the
same machine learning algorithm, there may be other compelling reasons for selecting one
image analysis approach over another. For example, object-based image analysis may prove to
be more appropriate in situations that rely on the logic of updating and backdating image
objects within a versatile GIS environment (e.g., Linke et al., 2009; Linke & McDermid, 2011). As
previously mentioned, end users may prefer the generalized appearance of object-based
classification maps as compared to pixel-based classification maps, even when pixel-based
accuracy assessments are shown to be superior (Dorren et al., 2003). Such examples illustrate
that the selection of an image analysis approach, or selection of an individual classification

algorithm, may not always be driven by overall classification accuracy.

2.6 CONCLUSIONS

Classification of EO imagery using pixel-based and object-based image analysis was
performed using three machine learning algorithms. No statistical difference between object-
based and pixel-based classifications was found when the same machine learning algorithms
were compared. When conducting object-based image analysis, RF or SVM algorithms
produced classification accuracies that were statistically different compared to DT based
algorithms. No statistical significant between pixel-based classifications were found. Based on
visual assessments and interpretation of land cover distribution, all classifications were capable
of depicting the broad land cover types selected for this study with similar, and acceptable,
classification accuracies. More visually adequate overall depictions of riparian, wetland, and

crop land cover types were attributed to RF and SVM based classifications, whereas DT based

71



classifications contained noticeably more omission and commission errors in these classes.
Object-based classifications were comparatively more time consuming to produce than their
pixel-based counterparts. Based solely on overall classification accuracy, there appeared to be
no advantage in selecting a particular image analysis approach. However, in light of the
challenges presented in the Introduction and Chapter 1 of this thesis, and in the interest of
recommending an approach suitable for meeting the operational needs of regional
environmental reporting frameworks, a rational for preferring a particular image analysis
approach and classification algorithm examined in this chapter are offered below.

First, the fundamental working unit and mapping output of object-based image analysis
are easily integrated into present vector-based Geographical Information Systems. This
seamless exchange of information allows for further spatially explicit analysis to be conducted
without the need for convert from a pixel-based format, a process that can lead to the loss of
information and/or the introduction of error. Second, the Random Forest (RF) classifier
achieved high overall classification accuracies as compared to the decision tree (DT) algorithm.
While perhaps not as interpretable as the binary decision logic diagrams produced by decision
tree (DT) algorithm, the RF classifier is capable of generating feature importance scores, which
can provide insight into which variables are relatively more important to per-class (and per-
model) classification accuracies. The ability to handle large number of variables relative to the
number of observations further suggests that the RF classifier is well suited to object-based
image analysis, where the amount of variables used (as demonstrated in this chapter) can
number in the hundreds. In the following chapter, these recommendations to further explore

object-based image analysis and the RF classifier are examined in more depth.
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CHAPTER 3 PREFACE

Random Forests, one of the machine learning algorithms used for classifying remotely sensed
imagery in the previous chapter, exhibited promising characteristics when applied to large
datasets typical of multi-scale object-based image analysis. As noted in Chapter 1, the fusion of
multiple sources of remotely sensed imagery can often lead to better discrimination between
land cover types and an increase in overall classification accuracies. In this chapter, the Random
Forest algorithm is explored in greater depth and is used to classify remotely sensed
information derived from two satellite-based platforms. In addition, a feature selection
algorithm, based on Random Forests, is used to select relevant predictors from several dozen
object-based variables. Such data reduction and fusion techniques can provide potentially
valuable insight into what spatial scales and spectral information are most relevant for

discriminating between selected land cover types.
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CHAPTER 3

MULTI-SCALE OBJECT-BASED IMAGE ANALYSIS AND FEATURE SELECTION OF
MULTI-SENSOR EARTH OBSERVATION IMAGERY USING RANDOM FORESTS '

"The published contents of this chapter appear with permission from Taylor & Francis Ltd. The version that
appears in this document has been modified to maintain consistency and formatting between chapters, and as
such, it contains different content than the original material. Readers are encouraged to refer to the original
publication:

DURO, D.C., FRANKLIN, S.E., DUBE, M.G. (2012). Multi-scale object-based image analysis and feature selection of
multi-sensor earth observation imagery using random forests. International Journal of Remote Sensing (33): pp.
4502-4526.

All work reported in this chapter, including the review of the literature, theoretical and experimental design,

analysis and discussion of the results, and writing of the text, was carried out by the Ph.D. candidate. As
supervisors, Drs. S.E. Franklin and M.G. Dubé reviewed all or parts of the work.
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3.1 ABSTRACT

The random forest (RF) classifier is a relatively new machine learning algorithm that can
handle data sets with large numbers and types of variables. Multi-scale object-based image
analysis (MOBIA) can generate dozens, and sometimes hundreds, of variables used to classify
earth observation (EO) imagery. In this study, a MOBIA approach is used to classify the land
cover in an area undergoing intensive agricultural development. The information derived from
the elevation data and imagery from two EO satellites are classified using the RF algorithm.
Using a wrapper feature selection algorithm based on the RF, a large initial data set consisting
of 418 variables was reduced by ~60%, with relatively little loss in the overall classification
accuracy. With this feature-reduced data set, the RF classifier produced a useable depiction of
land cover in the study area and achieved an overall classification accuracy of greater than 90%.
Variable importance measures produced by the RF algorithm provided an insight into which
object features were relatively more important for classifying individual land-cover types. The
MOBIA approach outlined in this study achieved the following: (i) consistently high overall
classification accuracies (>85%) using the RF algorithm in all models examined, both before and
after feature reduction; (ii) feature selection of a large data set with little expense to the overall
classification accuracy; and (iii) increased interpretability of classification models due to the
feature selection process and the use of variable importance scores generated by the RF

algorithm.

3.2 INTRODUCTION

3.2.1 OBJECT-BASED IMAGE ANALYSIS

Object-based image analysis of earth observation (EO) imagery has become increasingly
prevalent over the last decade (Blaschke 2010). Uptake of object-based image analysis can be

partially ascribed to the increasing availability and use of sub-meter imagery (Lang 2008), as
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such very high spatial resolutions tends to increase intra-class spectral variability, which is an
issue when using pixel-based image analysis with classification algorithms that rely on
parametric statistical techniques to separate spectral classes (Chen et al. 2004, Yu et al. 2006,
Lu and Weng 2007). Additionally, the popularity of object-based image analysis can be seen in
light of efforts to alleviate issues associated with using pixel-based data as an underlying unit of
measurement (see Fisher 1997, Townshend et al. 2000), and as a means of more intuitively
incorporating information on features of interest that may exist at multiple spatial scales within

an image scene (Strahler et al. 1986, Hay et al. 2002).

Compared to traditional pixel-based approaches, multi-scale object-based image
analysis (MOBIA) often entails the use of dozens, and sometimes, hundreds of variables. This
difference is largely due to the use of object features, which are variables used to summarize
information from the original input layers (e.g., multi-spectral bands, vegetation indices, digital
elevation model, etc.). Selected object features are used for subsequent object-based
classification and are calculated for individual image objects, which are produced in a preceding
image segmentation process (e.g., see Section 3.3.3 for details). Image segmentation can be
conducted at a variety of scales related to the underlying input data, creating many smaller
image objects, or fewer larger image objects. When using multiple image segmentation scales,
object features that describe relationships between image objects created at different
segmentation scales can be used to provide additional contextual information, which is
potentially useful to multi-scale landscape analysis and classification applications. Such object-
based image analysis has been called “multi-scale segmentation/object relationship modelling”
(Burnett and Blaschke 2003), and has been used in various forms by others for the purposes of

classifying EO imagery (e.g., Watts et al. 2009; Kim et al. 2011; Leibovici and Jackson 2011).
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3.2.2 CLASSIFICATION ALGORITHMS FOR MOBIA

While MOBIA provides a potentially attractive approach for extracting information from
EO imagery, the large number of variables and data types that are often utilized requires the
use of suitable analytical methods to extract meaningful information from the underlying
imagery. Common methods used for MOBIA of EO imagery have tended to focus on using
heuristically simple classification algorithms, or "classifiers", such as k-nearest neighbour (k-
NN), or parametric statistical techniques such as maximum-likelihood classification (MLC). The
MLC classifier is believed to be unsuited to the classification of data types that may violate
various assumptions of parametric statistical techniques, such as categorical or non-normally
distributed data sets (Benediktsson et al. 1990; Gong 1996; Bruzzone et al. 1999; Franklin and
Wulder 2002). Despite these reservations, MLC is still often used in studies comparing various
classifiers, ostensibly as a benchmark due to its many decades of use for classifying EO imagery.
The MLC algorithm tends to perform relatively poorly in overall classification accuracy when
compared to more modern nonparametric machine learning classifiers (e.g., decision tree,
support vector machine, random forest), which has been demonstrated in a variety of recent
comparative studies (Yan et al. 2006; Yu et al. 2006; Platt and Rapoza 2008; Na et al. 2010;
Otukei and Blaschke 2010; Myint et al. 2011). Despite these findings, the MLC algorithm has
been found to perform better the k-NN classifier in pixel-based comparisons where the feature
space (i.e., number of input variables) was not optimized (Platt and Rapoza 2008). In a study
comparing machine learning algorithms (Mallinis et al. 2008), the k-NN classifier, commonly
used in OBIA, was compared with a decision tree (DT) classifier. The comparison found that the
DT classifier outperformed the k-NN classifier, a finding echoed in an earlier study (Laliberte et
al. 2006). Chan and Paelinckx (2008) compared the use of two tree-based ensemble algorithms
(Adaboost DT and random forest) against a neural network algorithm for classifying airborne
hyperspectral imagery containing 126 bands. Both tree-based ensemble classifiers achieved
similar results, and outperformed the neural network classifier; however, the random forest

(RF) classifier was found to be faster to train and more stable than the Adaboost DT classifier.
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The above studies suggest that classification algorithms that are well suited to MOBIA-based
application are those that are not restricted by parametric based assumptions (like MLC), are
capable of utilizing a variety of data types and sources (like DT), and that employ more

sophisticated heuristics than the k-NN classifier.

3.2.2.1 RANDOM FOREST

The RF classifier described by Breiman (2001) is a relatively new non-parametric
machine learning algorithm that can handle a variety of data types and has become adopted in
a wide variety of applications (Svetnik et al. 2004, Peters et al. 2007, Watts et al. 2009, Na et al.
2010). As the name implies, the RF classifier utilizes several DTs, whereby predictions made by
individual trees are averaged across the entire forest (Breiman and Cutler 2007). Such
ensemble-based classification algorithms combine predictions made by several individually
trained classifiers (e.g., DT) to achieve classification accuracies that are frequently more
accurate than what can be achieved using a single classifier alone (Maclin and Opitz 1999,
Prasad et al. 2006). The RF algorithm is capable of handling large numbers of variables (v)
relative to the number (n) of observations (Svetnik et al. 2004). These so-called "small n, large
v" data sets, referred to by others as the "curse of dimensionality" (Melgani and Bruzzone
2004), often characterize applications involving MOBIA of EO imagery, and are especially
relevant in instances where the number of variables (object features) may equal, or even
exceed, the number of training samples being considered. Such performance characteristics

make the RF classifier a attractive choice for MOBIA of EO imagery.

Recently, Sesnie et al. (2008) used importance measures generated by RF to identify
relationships between predictor variables and ecological categories, and as a means of
eliminating predictors of minor consequence to overall classification accuracy, in an approach
similar to the one adopted for this study. Ghimire et al. (2010) combined the Getis statistic, a
measure of local spatial dependence, and RF classifier to incorporate spatial dependence into a

pixel-based classification. Their findings showed that a spatial RF, using various window sizes to
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calculate the Getis statistic, outperformed the non-spatial RF when classifying several land
cover types using Landsat Enhance Thematic Mapper Plus (ETM+) imagery. The RF classifier has
also been used to create predictive maps of tree species using several ecological variables
under a range of potential future climate scenarios (Prasad et al. 2006). This latter study found
that the RF classifier performed slightly better than regression tree analysis, bagging trees, and

multivariate adaptive regression splines, based on a variety of measures.

In this study, a MOBIA approach and RF classifier are used to classify multi-source, multi-
sensor EO imagery. While the RF algorithm has been applied to multi-source classification of EO
imagery in pixel-based approaches (Pal 2005; Gislason et al. 2006), this study utilizes multiple
types of EO imagery obtained at variable spatial and spectral resolutions, along with other
ancillary data utilizing MOBIA. A similar approach has been previously used to classify urban
and rural land cover whereby information from different sensors were used in a priori fashion
for creating image objects for specific land cover types (Forghani et al. 2007). In contrast, this
study employs a feature selection procedure, based on the RF classifier, and variable
importance measures generated by the RF classifier, to derive which variables and sensor
specific image sources are important for the classification of individual land cover types. The
MOBIA approach outlined in this study answers the following questions: (i) what kind of
classification accuracies can be expected when using the RF algorithm to classify a multi-source,
multi-sensor dataset, both before and after feature reduction? (ii) What effects does feature
selection have on classification accuracies? (iii) What are the benefits of using feature selection

and the RF classifier for MOBIA of EO imagery?

3.3 METHODS

3.3.1 STUDY AREA

The study area is situated in Saskatchewan along a section of the South Saskatchewan
River approximately 80 km east of the provincial border between Alberta and Saskatchewan,

Canada (see Figure 6). Economic activity within the area is dominated by agricultural industries
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with an emphasis on dryland farming, although irrigation is used on a limited basis. Various

crop types are grown and harvested in the region including several cereal crop species (e.g.,
wheat, barley, oat, rye, triticale), oilseed species (e.g., canola, flax, mustard, sunflower), and a
variety of leguminous "pulse crops" (e.g., peas, lentils, chickpeas, dry beans). Livestock farming
is also practised in the region, either in the form of intensive cattle feedlots, or as ranching
operations covering large areas of rangeland. The climate is characterized by long cold winters
with relatively short warm summers. Mean annual precipitation in the area is less than 350

mm, with portions classified as semiarid (e.g., Great Sand Hills, Saskatchewan). Threats to water
guality and quantity from cumulative environmental effects caused by development and

climate change are of increasing concern in the region (Schindler 2001, Schindler and Donahue

2006).
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Figure 6: a) Location of study area in south-western Saskatchewan, Canada. b) Location of study area in relation to full SPOT-

5 scene.

3.3.2 DATASETS AND PRE-PROCESSING

Two sources of remotely sensed imagery were obtained for this study: Landsat-5
Thematic Mapper (TM) data, and SPOT-5 High Resolution Geometric (HRG) data. A 2.5 m

panchromatic scene and a 10 m multi-spectral scene (August 28, 2005) of the study area was
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obtained from the SPOT-5 satellite, along with a 30 m multi-spectral scene from Landsat-5
(August 22, 2008). The Landsat series of satellites have a long history of use in agricultural
applications (Rouse et al. 1973), with the TM sensor recently being used for mapping grizzly
bear habitat in agricultural environments (Collingwood et al. 2009; Wang et al. 2010), and
wildfire susceptibility in semi-arid rangeland environments (Chen et al. 2011), which are
environments similar to those found in the study area. The SPOT-5 HRG sensor is the most
widely used Landsat-like alternative and has been found to be at least as accurate as Landsat in
comparisons of land cover classification accuracy (Powell et al. 2007). Recently, the HRG sensor
onboard SPOT-5 has been used to classify within-field crop types and estimates of crop yields

(Yang et al. 2009, Conrad et al. 2010).

Control points used to georectify the satellite imagery were derived from several
sources of ground survey data (e.g., national road network, geodetic controls points, and
cadastral boundary layers). Using a first order polynomial transformation, all data sets were
geometrically rectified to the higher spatial precision of the ground survey data with
registration errors of less than 0.4 RMSE in all cases. Several tiles of the Canadian Digital
Elevation Data digital elevation model (DEM) covering our study area were downloaded
(www.geobase.ca) and processed. The use of a DEM and derived topographic variables has
been used to increase classification accuracy of EO imagery (Franklin 1987) and as a means of
correcting for illumination and topographic effects (Franklin and Giles 1995). All imagery and
DEM files were transformed to a common projection (Albers Equal Area Conic, North American
Datum 1983) for subsequent processing steps. The DEM has a horizontal post spacing of
approximately 23 m (North-South) x 16-11 m (East-West) at the latitude of the study area. A
mosaic of the separate tiles of the DEM was created, and converted to 16 x 16 m pixels using
nearest-neighbour resampling. The latter processing step was performed in order to avoid
software related issues when using analyzing datasets with square and non-square pixels. Slope
and aspect were derived from the DEM, along with measures of topographic features (e.g.,
channel, ridge, plain) (Pike 2000). The DEM and derived topographic variables were included in

our analysis to better discriminate areas of upland riparian vegetation which often follow a
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specific topographic morphology (e.g., narrow stream channels that drain into a larger river).
DEMs have been used in this capacity by others as input variables in ecological models for

predicting vegetation composition (Moore et al. 1991; Franklin 1995; Miller and Franklin 2002).

In order to better compare spectral information from two separate sources and dates of
remotely sensed imagery, the calibrated 8-bit digital numbers for SPOT-5 and Landsat-5
spectral bands were converted to 32-bit floating point exoatmospheric reflectance data (see
Chander et al. 2009). Landsat-5 imagery was selected as the basis for the relative radiometric
correction due to the widely available information and calibration history of the sensor. The
SPOT-5 scene was radiometrically normalized relative to the Landsat-5 scene through a linear
transformation based on spectrally invariant objects (Schott et al. 1988). This process involved
simple thresholding of spectral bands to isolate and mask out areas of water and vegetation to
locate spectrally invariant pixels common between scenes (e.g., large gravel pits, paved roads,
large sand dunes, etc.) (Clark et al. 2011). A linear transformation was applied to each band of
the target imagery (SPOT-5 HRG) to match the mean and standard deviation of the spectrally
invariant pixels found in the base image (Landsat-5 TM). The Normalized Difference Vegetation
Index (NDVI) was calculated for both the SPOT-5 and Landsat-5 imagery. The NDVI was selected
based on previous studies that found it useful for classifying crop types (Price et al. 1997,
Doraiswamy et al. 1998), assessing agricultural productivity (Hill and Donald 2003, Wardlow
2008, Yang et al. 2009), and as an indicator of watershed condition (Griffith et al. 2002), in
agricultural settings similar to those found in our study area. The angular second moment
texture measure (Haralick et al. 1973), a measure related to the degree of homogeneity among
neighbouring pixels (Baraldi and Parmiggiani 1995), was included in our analysis as it has been
shown to be important for discriminating between different crop types (Pefia-Barragan et al.
2011). The angular second moment texture measure was calculated on the pixel-based NDVI
layers derived from SPOT-5 and Landsat-5 multispectral bands. A listing of all input layers used

in this study is in Table 5.
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Table 5: List of variables selected for image segmentation and calculation of object features.

Data sources

Input variables

SPOT-5 HRG

Landsat-5 TM

Panchromatic *

Green

Red

Near-infrared

Short-wawe infrared

NDVI -2

NDVI-angular 2nd moment texture

DEM

Blue

Green

Red

Near-infrared

Short-wawve infrared

Mid-infrared

NDV| 34

NDVI-angular 2nd moment texture

Elevation
Slope
Aspect
Channel
Ridge
Plain

! used as input for Level 1 image segmentation (see Table 2)
2 used as input for Level 2 image segmentation
3 used as input for Level 3 image segmentation

4 used as input for Level 4 image segmentation
Note: all variables listed were used in the calculation of
selected object features (see Table 3)
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3.3.3 IMAGE SEGMENTATION AND OBJECT FEATURE SELECTION

3.3.3.1 SELECTION OF IMAGE SEGMENTATION PARAMETERS

Image segmentation represents the fundamental first step in a MOBIA of EO imagery, as
this procedure defines the size and shape of image objects that will contain the aggregated
information from original input layers, which are ultimately used for classification. The selection
of appropriate image segmentation parameters tends to vary between projects as these values
depend on the selected application, underlying input imagery, and the environment under
analysis (Addink et al. 2007, Blaschke 2010, Myint et al. 2011). Image segmentation was
performed using the multi-resolution segmentation (MRS) algorithm found in Definiens’
eCognition Developer 8 software (Trimble 2010a). The MRS algorithm merges individual pixels
with their neighbours based on several parameters that define within-object homogeneity
(Baatz and Schape 1999; Benz et al. 2004). Prior to assigning values for parameters that control
the image segmentation algorithm, the user must select which input layers are used by the MRS
algorithm and whether differing weights should be applied to each data source. In this study,
equal weightings were applied to all input imagery in order to equally weigh the fine spatial
scale panchromatic data along with the NDVI layers derived from both the SPOT-5 and Landsat-
5 sensors. Lippitt et al. (2012) found that the use of spectral transformations (e.g., NDVI)
improved the overall accuracy of image segmentations for certain targets as compared to using
untransformed spectral data alone. Table 5 indicates which input layers were used by the MRS

algorithm for image segmentation.

The three main user-defined parameters for the MRS algorithm are shape-colour,
compactness-smoothness, and scale. The paired shape-colour and compactness-smoothness
parameters range from 0 to 1, as a weighting between each of the paired parameters. For
example, a low value for the shape parameter (e.g., 0.1) is balanced by a larger emphasis on
spectral (“colour”) information (e.g., 0.9), with both weights always summing to one. Similarly,
the compactness-smoothness parameter controls whether image objects with similar spectral

characteristics should share smooth borders, or whether image objects should be more
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compact overall (Trimble 2010b). Of all the user defined parameters within the MRS algorithm,
the scale parameter is considered to be the most important for the classification of EO imagery
as this value controls the relative size of image objects and has a direct effect on overall
classification accuracy (Blaschke 2003; Meinel and Neubert 2004; Kim et al. 2008; Liu and Xia
2010; Smith 2010; Myint et al. 2011).

Image objects created using the MRS algorithm can be nested hierarchically, whereby
lower levels containing many smaller image objects (e.g., tree crowns), can be linked to larger,
“super-objects” above them (e.g., forest stand), and vice versa. Smaller image objects obtained
by using lower values for the image segmentation scale parameter have been shown to
produce better overall classification accuracies compared to using a single larger image
segmentation scale (Smith 2010, Myint et al. 2011). However, these same studies have also
demonstrated that the use of several image segmentation scales improves overall classification

accuracy as compared to using a single image segmentation scale.

In this study, image segmentation scales were selected in an approach similar to Frohn
et al. (2011) and Peia-Barragan et al. (2011), whereby smaller image objects derived at finer
image segmentation scales were used to form the basis of a hierarchical, multi-scale object-
based classification. In other words, image objects created at the finest image segmentation
scale do not necessarily represent real-world objects of interest, but are instead sufficiently
small to represent such objects when combined. These "image segments" represent the
fundamental building blocks of an object-based classification (Castilla and Hay 2008). Image
objects created at coarser image segmentation scales were used to provide information on
larger real-world objects of interest (e.g., crop fields, channels of riparian vegetation, etc.).

The selection of image segmentation parameters and input bands was based on an
iterative trial-and-error approach whereby image segmentations parameters and input
variables were systematically varied and the resulting image segmentations visually assessed
for their ability to depict real-world objects of interest. While time-consuming and qualitative,
this trial-and-error approach is often utilized in object-based classifications (e.g., Laliberte et al.

2007, Mathieu et al. 2007, Dingle Robertson and King 2011, Myint et al. 2011, Pu et al. 2011). A
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more quantitative approach for selecting optimal image segmentation parameters based on
underlying input variables has been developed (Costa et al. 2008), but was not applied in this
study due to time constraints required to properly assess and adapt this approach. Table 6
outlines the values selected for image segmentation parameters along with selected summary
statistics for image objects produced at each segmentation level, and Table 5 details the

specific bands used for each segmentation level.

Table 6: Values for image segmentation parameters used in the multi-scale, multi-sensor, object-based classification.

Segmentation Scale |Shape/ Compactness/ # of Median Area of
Level Colour Smoothness Objects Objects (m?)
1 10 | 0.1/0.9 0.5/0.5 92813 721
2 20 | 0.1/0.9 0.5/0.5 18306 3525
3 40 | 0.1/0.9 0.5/0.5 5382 11040
4 60 | 0.1/0.9 0.5/0.5 2251 30160

Note: see Table 1 for variables used in the image segmentation process

3.3.3.2 SELECTION OF IMAGE OBJECT FEATURES

Following the segmentation of input layers by the MRS algorithm, several object
features were selected. The selection of the appropriate object features in an object-based
classification can be based on past experience and user knowledge (e.g., Laliberte et al. 2007),
or can utilize feature selection algorithms (e.g., Yu et al. 2006, Chan and Paelinckx 2008, Genuer
et al. 2010). In this study, both strategies were adopted: past experience with conducting
object-based classification in the study area was used to guide the initial selection of object
features, with the RF-based feature selection algorithm (see Section 3.3.6) used to select only
those object features deemed “relevant” to the overall land cover classification model. Table 7
lists the two types of object features used in this study. These object features were calculated

for all input layers at each segmentation scale, resulting in a total of 440 object features (22
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input variables x 5 object features x 4 segmentation scales). The total number of object features
was reduced to 418, as object features that consider sub-object values were not calculated at

the finest image segmentation scale.

Table 7: List of object features initially used by all land cover classification models: a) "layer features", and; b) "texture

features" used in the object-based classification (adapted from Trimble 2010).

Object feature type:

(a) Layer features Description

Mean Mean value of object for a specific input variable

Standard deviation Standard deviation of object for a specific input variable

Mean difference to neighbours The difference between mean values of an image object
and neighboring image objects.

Mean difference to super-objects The difference between the mean value of an image object
for a specific input layer and the mean value of it's super-
object

(b) Texture features Description

Mean of sub-objects Standard devation of the mean value of sub-objects for a

given superobject

Note: abowve object features were calculated for all input variables listed in Table 1

3.3.4 TRAINING AND TESTING DATA

Training and testing data for the study area was obtained from visually interpreting 60
cm aerial colour orthophotos and 2.5 m panchromatic SPOT-5 imagery. An unsupervised
ISODATA clustering algorithm was applied to the four bands of SPOT-5 multi-spectral imagery
for the purposes of creating an initial land cover map suitable for conducting a stratified
random sample. The stratified random sample is the recommended approach when attempting
to avoid under-sampling small but possibly important areas of interest (e.g., riparian vegetation
in small narrow channels) when sample sizes are small (Congalton 1991). This procedure
yielded 20 classes that were generalized to five selected broad land cover types: crop land,
mixed grasslands, areas of exposed rock/soil, riparian, and water. Spectral classes produced by

the ISODATA classification that did not correspond to one of the five selected land cover types
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were labelled as “unclassified”. The remaining spectral classes that represented the five land
cover types were then labelled accordingly. A stratified random sample with equal proportions
was performed within the five land cover types obtained from the ISODATA classification,
yielding a total of 1,000 samples (200 samples per land cover type). These sample points were
assessed visually over a 30 m x 30 m area using the SPOT-5 panchromatic and colour aerial
photos obtained in the same month and year as the SPOT-5 and Landsat-5 multispectral
imagery. Sample points were visually examined to ensure that labels assigned by the
generalized ISODATA classification were correct, with mislabelled samples adjusted where

necessary.

These sample points and labels were then spatially joined to image objects created at
the finest image segmentation scale. This was accomplished using a spatial query within a GIS
to determine which samples were completely contained by image objects. The spatially joined
image objects were visually reassessed using aerial photos and panchromatic SPOT-5 imagery
to ensure that the joined image object represented the land cover labels assigned in the
previous procedure. The number of samples was reduced due to multiple sample points
occupying the same image object, or points lying on image object boundaries. Training and test
data were drawn from the remaining samples through a stratified random sample. This
procedure ensured that similar sample proportions for each land cover type were used for both
training and testing purposes. Of the remaining 986 samples, 70% were used for training and
30% for testing purposes. Testing data was set aside exclusively for the purposes of assessing

classification accuracy.

3.3.5 OBJECT-BASED CLASSIFICATION

Information from all image objects obtained at each segmentation scale was extracted
from the Definiens software for further processing in various relational database and GIS

software. The development of the classification model was performed using R, a multi-
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platform, open-source language and software for statistical computing (R Development Core

Team 2010).

3.3.6 FEATURE SELECTION

In this study, the multiplicative effect of considering several input variables, object
features, and image segmentation scales led to the creation of a large number of potential
predictor variables (i.e., “object features”). When analyzing "small n, large v" data sets,
traditional statistical classifiers (e.g., multiple linear regression and k-NN) cannot be used
reliably without feature selection, with more advanced classification algorithms (e.g., artificial
neural networks and support vector machine) often requiring feature selection when there are
large numbers of irrelevant predictor variables (Svetnik et al. 2004). While the RF classifier is
capable of handling large numbers of variables and relatively low number of observations, it
may be advantageous to reduce the number of variables that need to be considered for reasons
of practicality (i.e., reduced computation time), and/or determining which variables are
deemed irrelevant to predicting the feature of interest (Guyon and Elisseeff 2003). The RF
classifier has previously been used as a means of conducting feature selection in pixel-based
image analyses of earth observation imagery (Chan and Paelinckx 2008, Dye et al. 2011, Ismail

and Mutanga 2011), and is used here in the context of MOBIA.

Two problems are associated with reducing data set dimensionality for the purposes of
classification (Nilsson et al. 2007): finding a minimal set of variables that are optimal for

I”

classification (the “minimal-optimal” problem), versus finding all variables relevant to the target
variable (the “all-relevant” problem). As computational time was not an issue, feature selection
was carried out to minimize "irrelevant" variables, and improve model interpretability, while
maintaining overall classification accuracy. Current feature selection techniques fall under two
categories (Kohavi and John 1997, Guyon and Elisseeff 2003): 1) filter approaches, which use
selection methods that are independent of the classifier, and define the relevancy of variables

based only on the training data; and, 2) wrapper approaches, that search for the subset of
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variables that produce the highest classification accuracy using the training data and the
classifier as part of the evaluation. Wrapper approaches are believed to produce better results

than filter approaches (Kohavi and John 1997), and so the latter is excluded in this study.

In this study, feature selection was performed using the “Boruta” package for R (Kursa
and Rudnicki 2010), a wrapper algorithm that uses the RF classifier to determine variable
relevancy using the following heuristic (adapted from Kursa and Rudnicki 2010): “shadow
variables” are introduced for each of the original variables, which are created by randomly
shuffling the original observations for each variable. A RF classifier is applied to the data set,
which is now composed of the original variables and their randomly shuffled shadow
counterparts. The Boruta algorithm assesses Z-scores of the original RF variable importance
score (see Section 3.2.2.1) against the randomly permuted shadow variables to determine
which variables are truly important (Kursa and Rudnicki 2010). Variables that are significantly
lower than this maximum Z-score are marked as “unimportant” and removed permanently,
while variables that are significantly higher are marked as “important”. Shadow variables are
then removed and the process is repeated within the wrapper function until all variables have
been deemed “important” or “unimportant”, or until the maximum number of user defined
iterations completes. Due to the high fluctuations of Z-scores when using large numbers of
variables, the process begins with three initial rounds, which compare only selected shadow
variables, whereas remaining rounds compare original variables against all shadow variables.
The Boruta algorithm was run on the training data set, which had a total of 418 variables and
689 observations. Parameters for the Boruta algorithm were as follows: confidence level was
set at 0.999 and the algorithm was set into "force mode", whereby all shadow variables were

retained at each run.

3.3.7 MODEL DEVELOPMENT AND VARIABLE IMPORTANCE

The RF classifier used in this study is based on the "randomForest" package in R (Liaw and

Wiener 2002). The RF algorithm is based on an ensemble of unpruned decision trees, which are
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each grown to their maximum size using a different sample of two-thirds of the original training
data, with the remaining one-third held back as "out-of-bag" (OOB) samples used as an internal
estimate of error of overall classification accuracy (Breiman and Cutler 2007). It is reported that
this "out-of-bag" (OOB) error estimate is unbiased in many tests (Breiman 2001). In this study,
final classification accuracy is always reported using the separate “hold-out” test data set
(Section 3.3.4), and not the OOB data.

Unlike traditional DT algorithms which examine all variables at each splitting node of the
tree, the RF algorithm considers a random number of variables at each split. For the
classification of categorical based variables, the majority vote among all trees in the ensemble
(i.e., the “forest”) determines the prediction for a given observation. Individual unpruned trees
within the forest are considered to be low bias and high variance (i.e., over fitted) models, but
the averaging that takes place over hundreds, or many thousands, of trees within the forest
lowers variance and reduces bias of the individual trees (Breiman 2001).

The RF algorithm is relatively simple to run “off the shelf” as only two user defined
parameters are required: 1) the number of trees to be grown; and, (2) the number of variables
which are randomly selected for determining splits at each node in individual trees. While
tuning algorithms exist for determining such values, the default parameters have been shown
to provide good classification results on datasets containing thousands of predictor variables
(Liaw and Wiener 2002). Changes to the number of trees had little effect on the overall
classification accuracies for all models used in this study, so this number was left at its default
value (500). The mtry parameter, which controls the number of variables randomly considered
at each split in the tree building process, is said to have a somewhat sensitive effect on the
performance of the random forest algorithm (Breiman and Cutler 2007). Initial runs of the RF
classifier on the training data revealed that several levels of this value had no appreciable effect
on overall classification accuracy, so the default value was used for all models assessed in this

study (+/n, where n equals the number of variables).

In this study, emphasis is place on the results obtained from applying the RF classifier to

the entire multi-source, multi-sensor data set that has undergone the feature selection
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procedure outlined in Section 3.3.6. Variable importance is assessed using the "mean decrease
in accuracy" measure found in the "randomForest" package (Liaw and Wiener 2002). Variable
importance in RF is based on the following heuristic: prediction errors based on the OOB
samples are recorded for each tree, and again after randomly shuffling OOB samples. The
difference between prediction accuracy of the OOB samples versus permuted OOB samples is
averaged over all trees, and then normalized by the standard deviation of the differences (Liaw
and Wiener 2002). Variables with larger scores are thought to be more important to the
classification than variables with lower scores. It should be noted that the feature selection
algorithm also uses the "mean decrease in accuracy" measure, but does so by comparing Z-
scores between original and randomly permuted "shadow" variables (see Section 3.3.6). Several
classifications were performed in order to assess the relative effect of the feature selection
process, and multiple sources of EO imagery, on classification accuracy. This was accomplished
using the full dataset, and two modifications thereof: 1) SPOT-5 based variables removed, 2)
Landsat-5 based variables removed. Classification accuracy before and after feature selection
was assessed by examining the percentage of predictions classified as correct relative to the

reference data set.

3.4 RESULTS

3.4.1 IMAGE SEGMENTATION

The results of the four selected image segmentation scales are shown in Figure 7 over a
detailed subset within the study area. By design, image objects produced at the finest
segmentation scale conform to small patches of spectrally similar pixels and do not necessarily
conform to any real-world object of interest, although patches of mixed grassland are well
delineated in the bottom left corner of Figure 7a. At coarser image segmentation scales, real-
world features of interest are depicted as large generalized image objects. For example, areas
of riparian vegetation (depicted as bright red vertical areas in Figure 7) are segmented with
large contiguous boundaries in Figures 7c and 7d, correctly representing long channels of

riparian vegetation. Areas of exposed soil/rock are best delineated with contiguous boundaries
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in Figure 2b, which can be seen by the correct delineation of an exposed sandbar within the

river channel (white oval object next to sandbar covered in riparian vegetation).

3.4.2 FEATURE SELECTION

The Boruta algorithm was applied to the full multi-source, multi-sensor data set. A total
of 130 runs of the algorithm resulted in sizeable reduction of variables (i.e., object features). Of
the original 418 variables contained in the entire multi-source, multi-sensor data set ("full
model"), 160 variables were confirmed as “relevant”, 190 as “unimportant”, and 68 as
“tentative”. In addition to leaving out irrelevant variables, variables marked as tentative were
excluded from further analysis. A diagnostic plot depicting the fluctuation of variable
importance after several iterative runs of the Boruta algorithm is found in Figure 8. The number
of variables deemed unimportant dropped off markedly after approximately 40 runs of the
Boruta algorithm, although fluctuations in Z-scores are noticeable in irrelevant variables at
approximately 100 runs. The number of variables considered relevant and tentative remains

fairly consistent over all iterations of the Boruta algorithm.
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Figure 7: Image segmentation results for a detailed section of the study area at the following image segmentation scales: (a)
10, (b) 20, (c) 40, (d) 60. Standard false colour composite (R=NIR band, G=Red band, B=Green band) of SPOT-5 multispectral
imagery (28 August 2005) as background.
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Figure 8: Diagnostic plot showing overall feature selection results after 130 runs of the Boruta algorithm (Kursa & Rudnicki
2010). Green lines represent “relevant” variables, yellow lines “tentative” variables, and red lines “unimportant” variables.
The three blue lines along the horizontal axis represent maximum, median, and minimum Z-scores for “shadow variables”.
Vertical grey lines represent the initial three, less restrictive, runs of the Boruta algorithm. Higher Z-scores indicate relatively

more important variables relative to shadow variables.

Figure 9 lists the top 40 object features used by the feature reduced "full model". The
types of object features and related input layers that dominated the feature reduced "full
model" were predominantly those based on the SPOT-5 derived NDVI, and individual spectral
bands of the SPOT-5 and Landsat-5 sensors. Over half of the top 40 object features were
dominated by the NDVI and multispectral information, object features based on the texture
measure as applied to the SPOT-5 NDVI, and object features based on mean elevation, in the
bottom-third of the list. The dominate object feature types were those that calculated mean
and standard deviation values, while object features based on relationships between image
objects at different image segmentation scales were not present in the top 40 object-features.

Object features based on SPOT-5 NDVI and SPOT-5 spectral bands (panchromatic, red, and
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green) dominate the top five important variables. Information from the SPOT-5 panchromatic
band obtained at the two coarsest image segmentation scales (40 and 60) were in the top ten
most important variables. The top three object features based on the Landsat-5 sensor are
based on the mean value of image objects derived from the NDVI input variable at all

segmentation levels except for 20.

Figure 10 summarizes the change in overall classification accuracy (percentage of
correct predictions) before and after the feature selection process under two scenarios: (i)
using the full multi-source, multi-sensor dataset, and; (ii) using a subset with sensor specific
multi-spectral information removed. All classification models retained the use of other object
features (e.g., SPOT-5 panchromatic and DEM-based object features). The number of variables
before and after feature selection are as follows (Figure 10): (a) all multi-spectral information
included (418 before vs. 160 after), (b) SPOT-5 multi-spectral information only (266 before vs.
129 after), (c) Landsat-5 multi-spectral information only (279 before vs. 177 after). Overall
classification accuracy decreased slightly (<0.5%) after feature selection when using multi-
spectral information from both SPOT-5 and Landsat-5 sensors. The model based on SPOT-5
multi-spectral information alone showed a slight increase (<0.5%) in overall classification
accuracies after feature selection, whereas classification accuracy increased (~1.4%) after
eature selection when using Landsat-5 multi-spectral information alone. The maximum
difference between overall classification accuracies between models was approximately 3%.
Using SPOT-5 multi-spectral information alone produced slightly higher overall classification
accuracies (¥1.3% maximum difference) than when using a model with multi-spectral

information from both satellite sensors.
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Figure 9: Feature selection results with the top 40 variables (object features) rated by Z-score for the feature reduced "full model" depicted in Figure 10(a). Image
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Figure 10: Overall classification accuracy (percentage of predictions correctly classified) before and after feature selection.
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model); (b) Landsat-5 multi-spectral based object features removed, and; (c) SPOT-5 multi-spectral based object features

removed.

3.4.3 CLASSIFICATION OUTPUT

The classification produced using the feature reduced "full dataset" model, which
utilizes multi-spectral and texture information from both satellite sensors, is shown in Figure
11a. Riparian areas appear to be depicted accurately along the banks of the river and within the
narrow drainage channels in the northern half of the study area. Errors of commission for
riparian land cover are apparent in large rectangular crop fields and along the road found in the
southern half of the study area. The narrow drainage channels containing riparian vegetation in

the south-western corner of the study area appear to be over represented along ridge lines.
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Areas of crop land appear well delineated as rectangular fields, but several errors of omission
and commission are visible throughout the image. Commission errors for areas of crop land
appear most noticeably in the southern half of the study area where small pockets appear
interspersed with riparian and mixed grassland land cover types. Areas of exposed rock/soil
appear well delineated in the classified imagery, with narrow road features correctly identified
in the northern half of the study area (but not in the south). Recently harvested crop land, or
fields left fallow appear bright white and cyan in the false colour composite shown in Figure
11b, and appear well delineated as field-like objects in Figure 11a. Areas of mixed grasslands
are depicted reasonably well, although errors of omission are present in the southern half of
the study area, where small pockets of concentrated shrubby vegetation (visible in high spatial

resolution imagery) are incorrectly classified as riparian vegetation.

A detailed confusion matrix of the classification accuracy of the feature reduced model
depicted in Figure 11a is available in Table 8. Based on the percentage of correct predictions,
the crop land cover type showed the worst user's and producer's classification accuracy (50 and
63%, respectively). An examination of the confusion matrix reveals that there is a large amount
of class confusion between crop land and mixed grassland. All other land cover types achieved
user's and producer's accuracy above 83%, with the majority above 88%. The feature-reduced

model achieved an overall accuracy of 91.3%, with a lower 95% confidence interval of 87.4%.
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multispectral imagery (28 August 2005) for comparison.



60T

Table 8: Confusion matrix (based on reference data) of the feature reduced "full dataset model" (see Figure 11a). Pa = Producer's accuracy; Ua = User's accuracy.

Predicted Class

Class Crop land Exposed soil/rock Mixed grasslands Riparian Water Total
Reference Class
Crop land 12 4 6 2 0 24
Exposed soil/rock 0 80 5 0 0 85
Mixed grasslands 5 0 52 2 0 59
Riparian 1 0 0 100 0 101
Water 1 0 0 0 27 28
Total 19 84 63 104 27 297
Pa 63% 95% 83% 96% 100%
Per-class kappa (Pa) 0.60 0.93 0.78 0.94 1.00

Ovwerall accuracy: 91.3% (95% lower and upper confidence limits: 87.4-94.2%)

Owerall kappa: 0.882 (95% lower and upper confidence limits: 0.838-0.926)

Ua | Per-class kappa (Ua)

50%
94%
88%
99%
96%

0.47
0.92
0.85
0.98
0.96



3.4.4 VARIABLE IMPORTANCE

The top ten variables used to classify four selected land cover types in the feature
reduced full-model are displayed in Figure 12. Object-features are ranked by the "Mean
Decrease in Accuracy" measure (see Section 3.3.7). All object features listed are based on mean
layer values of input variables (see Table 5). The top ten object features for three of the four
land cover types are dominated by information derived from the SPOT-5 sensor, with the
exception of the crop land cover type, where Landsat-5 based object features were found to be
relatively more important than SPOT-5 object features (Figure 12c). Object features based on
the SPOT-5 panchromatic input layer are found in the top ten object features listed for all four
land cover types, but only at image segmentation scales greater than or equal to 40.
Information derived from the SPOT-5 NDVI input layer, and obtained at the two coarsest image
segmentation scales (40 and 60), is relatively more important to the classification of mixed
grasslands than other object features. Only the riparian land cover type utilized object features
based on the angular second moment texture measure, and did so at the finest (10) and
coarsest (60) image segmentation scales using the SPOT-5 NDVI input layer (Figure 12a). Except
for the mixed grassland land cover type, the relative difference in variable importance between

the top 10 object features was relatively small.
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3.5 DISCUSSION

The use of a feature selection algorithm was able to markedly reduce the number of
variables used by the RF classifier, while maintaining similar overall classification accuracies.
While the reduction in variables resulted in a slight decrease in overall classification accuracy
(<0.5%) for classification models that combined both SPOT-5 and Landsat-5 imagery, small
increases (<1.5% at most) were noted when using feature reduced models that had Landsat-5
or SPOT-5 multi-spectral information removed (Figure 10). These results suggest that, in terms
of overall classification accuracy, the RF classifier was relatively insensitive to the feature
selection procedure, which is in agreement with findings made by others (Svetnik et al. 2004).
However, the sizeable reduction (30-60%) in "irrelevant" variables allowed for a more tractable
interpretation of the final model, with only small differences in overall classification accuracy.
From the perspective of conducting MOBIA of EO imagery, where the use of many object
features can impede the interpretation of the final classification model, such results reveal a
promising avenue for building more parsimonious classification models that maintain overall

classification accuracy while increasing model interpretability.

The removal of Landsat-5 multi-spectral bands from the full data set produced slightly
higher (at most, 1.5%) overall classification accuracies as compared to the multi-sensor model
(Figure 10). Several explanations for this discrepancy are possible, with the most likely related
to the image segmentation procedures used in this study. The two finest image segmentation
scales (10 and 20) utilized the SPOT-5 NDVI input layer and SPOT-5 panchromatic, while
Landsat-5 NDVI input layer was used for the creation of the two coarser image segmentation
scales (40 and 60). Larger image segmentation scales were used to produce image objects that
were commensurate with the coarser spatial resolution of the Landsat-5 data, as finer image
segmentation scales used with the Landsat-5 data produced blocky pixel-like image objects. It is
possible that using image objects created by SPOT-5 data at lower image segmentation scales
as the basis for image objects created by Landsat-5 data at coarser image segmentation scales

may have resulted in image objects that were sub-optimal for the TM based data.
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Another potential source of error could be related to the radiometric processing used to
normalize the spectral responses between satellite sensors. Image acquisitions from both
satellites were within 6 days of each other, which should minimize any differences in vegetation
phenology and earth-sun illumination differences between dates. Visual inspection of both
sources of imagery did not reveal any noticeable differences in land cover. The off-nadir
viewing capability of the SPOT-5 sensor may have confounded the classification accuracy of the
multi-sensor model, as sensor view angle is known to influence values obtained when using
vegetation indices applied to crop vegetation (Pinter et al. 1987). The higher overall accuracy
attributed to the classification model which had the Landsat-5 multi-spectral based information
removed may also indicate that the two relatively coarser image segmentation scales were
inappropriate; however, the prevalence of these two image segmentation scales in the variable
importance plots (Figures 9 and 12) suggest that this is not likely the major source of error.
Further refinement of the approach outlined will be necessary to fully understand the relative
utility and drawbacks of combining multi-sensor data sets in the MOBIA approach outlined

here, as various permutations of image segmentation parameters and input layers are possible.

The classification produced by the feature reduced multi-source, multi-sensor data set
provided an acceptable visual depiction of broad land cover classes within the study area. The
RF algorithm provided classification accuracies over 91% when using the feature reduced multi-
source, multi-sensor data set. Variable importance measures produced by the RF algorithm
provided information on which object features and sensor specific information provided
relatively more useful information for individual land cover types. In general, the top ten most
important variables for each land cover type (Figure 12) revealed a relatively flat response in
depicted importance scores (i.e., the top ten object features were relative equal in importance).
This finding suggests the possibility that several redundant object features remain, which could
be potentially removed through more stringent feature reduction using the Boruta algorithm,
and/or a more judicious selection of input variables. Despite the small relative differences in

variable importance scores for most land cover type, the mixed grasslands land cover type
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(Figure 12b) showed a larger relative difference between the first two object features (based on
SPOT-5 NDVI) and the remaining eight object features, with an emphasis on coarse image
segmentation scales. Such a result can be potentially explained given the large homogenous
areas covered by mixed grasslands within the study area. In other words, due to the relative
spectral homogeneity of the mixed grasslands land cover type, object feature information
derived at coarser image segmentation scales was relatively more important than the
equivalent information at finer image segmentation scales. In contrast, only the riparian land
cover type utilized object feature information derived at the finest image segmentation scale
(Figure 12a). In addition, only the riparian land cover type utilized the angular second moment
texture measure as applied to the SPOT-5 NDVI input variable. These results suggest that areas
of riparian vegetation are best described using smaller image objects whose spectral
differences contrast their immediate surroundings (e.g., water and exposed soil/rock). Both
interpretations fit well with a visual assessment of areas containing riparian vegetation. While
these interpretations are only preliminary they serve to illustrate how the variable importance
scores produced by the RF algorithm can lead to increased interpretability of classification

models produced from MOBIA of EO imagery.

3.6 CONCLUSIONS

In this study, using a MOBIA approach, a classification model based on several hundred
object features derived from multiple data sources and two types of EO imagery was created.
The feature selection algorithm was able to reduce the size of the datasets examined by up to
60% while still maintaining similar overall classification accuracies. Using the feature reduced
multi-source, multi-sensor dataset, the RF classifier achieved an overall classification accuracy
greater than 90%. Variable importance measures produced by the RF classifier allowed for the
final classification model to be interpreted, providing insight into how image segmentation
scales and object features were related to a particular land cover type. Both feature selection

and the use of the RF classifier proved useful when conducting MOBIA on EO imagery.
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CHAPTER 4 PREFACE

Previous chapters presented background information and detailed rationale for selecting a
particular image analysis approach (object-based) and classification algorithm (Random
Forests), which were used to create land cover maps over selected sites within a larger study
area. In this chapter, the focus shifts towards examining several change detection methods that
utilize remotely sensed imagery. These change detection methods are compared to determine
which approach achieves the best change detection results, and which is best suited to handling
multiple sources of remotely sensed imagery. As in Chapter 2, the results of the comparison are

assessed using a variety of statistical and visual assessments.
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CHAPTER 4

A HYBRID OBJECT-BASED CHANGE DETECTION METHOD FOR USE WITH
MULTI-SENSOR DATASETS IN HISTORICAL LANDSCAPE RECONSTRUCTION?
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41 ABSTRACT

A hybrid object-based change detection method utilizing cross-correlation analysis (CCA)
and a hierarchical image object segmentation strategy is introduced for the analysis of
agricultural land cover change using medium spatial resolution satellite imagery. The
performance of the proposed CCA method achieved an overall change detection accuracy of
73.14%, which was marginally less than the accuracy achieved using two non-CCA methods
(74.64 and 74.86%). Differences between classification accuracies achieved by non-CCA
methods were not statistically significant (p>0.05), but were significant between the hybrid
object-based CCA method and non-CCA methods examined (p<0.05). Despite lower overall
accuracy, the hybrid object-based CCA change detection method achieved errors of commission
for changed areas that were approximately 10% better than non-CCA methods, and produced

results that more effectively reflected the visual appearance of the reference change map.

4.2 INTRODUCTION

The combination of historical maps, aerial photographs, and satellite-based earth
observation (EO) imagery has been used recently to map changes in historical land use and land
cover (LULC) in a variety of environments. Such historical LULC information is increasingly
valuable in agricultural areas as anthropogenic change has been linked to large alterations in
global carbon, water, and nitrogen cycles (Houghton 1995; Postel et al. 1996; Vitousek et al.
1997), and is an essential component to understanding how human demographics and
socioeconomic decisions relate to local and global environmental impacts (Liverman 1998;
Entwisle and Stern 2005; Lambin and Geist 2006). Detailed LULC maps over long time horizons
are required to better understand the magnitude and trajectory of LULC change caused by
humans on local and global scales (Petit and Lambin 2002). Key to this goal is the ability to

readily detect change on the landscape considered significant for a particular application.
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Various methods developed to detect land use and land cover (LULC) change have been
described (see Singh 1989; Coppin et al. 2004; Lu et al. 2004; Rogan and Chen 2004; Treitz and
Rogan 2004), and are typically divided into two general approaches: i) multi-temporal analysis
of spectral data, and ii) post-classification analyses. In the former approach, spectral
information extracted from two or more dates of imagery is compared in order to identify a
change in LULC. In the simplest bi-temporal case of assessing spectral change over time,
thresholds are established using manual and/or statistical based methods, to determine the
point at which recorded spectral differences represent meaningful LULC change. This change
detection strategy generally requires that images undergo some level of radiometric processing
to maintain comparability between spectral information, which may exhibit differences due to
atmospheric and phenological conditions, as well as differences in sensor calibration and
radiance values caused by differing earth-sun-sensor geometry between acquisition dates
(Chander et al. 2009). In contrast, post-classification change detection methods rely on
summarizing differences in land cover change labels that have been derived from
independently classified images from two or more dates. This approach allows for a detailed
account of land cover classes and their changed state to be assessed over time, generally avoids
the need to perform radiometric processing required by multispectral change detection
strategies, and can be readily used to compare classified imagery obtained from sensors with
similar characteristics (e.g., Landsat Thematic Mapper and Enhanced Thematic Mapper Plus)

when comparable land cover classes are used.

Several examples of multi-temporal analysis of object-based spectral information have
emerged in recent years: in one early study, Desclée et al. (2006) utilized a statistical approach
("multivariate iterative trimming") to assess whether spectral differences in between image
objects derived from medium resolution SPOT (Systéme Pour d'Observation de la Terre)
imagery of forested environments were statistical outliers, and therefore more likely to
represent real land cover change. The obvious appeal of such an approach, as compared to

gualitative visual examinations, is that change thresholds are based on probability distributions
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which can produce statistically rigorous and comparable results when parametric assumptions
are met.

In a similar statistically driven approach, Im et al. (2008) compared image objects
segmented from multi-date imagery in order to create and assess correlation, slope, and
intercept information in urban and suburban environments with high spatial resolution imagery
(Quickbird). Changes in the magnitude and direction of multispectral information contained
within image objects (created with and without neighborhood correlation information) were
statistically assessed, with significant differences indicating unique change information in the
form of a lower correlation coefficient, or varying slope and intercept (Im and Jensen 2005).
While they found object-based approaches produced higher overall change detection
accuracies than per-pixel based classifications, Im et al. (2008) found few statistical differences
between image analysis approaches when conditions were held constant.

Using high spatial resolution imagery in a built environment, Niemeyer et al. (2008)
applied the Iteratively Reweighted Multivariate Alteration Detection (IR-MAD) transformation
(Nielsen 2007; Canty and Nielsen 2011) as an underlying analytical approach for object-based
change detection. Such an approach provides a robust statistical change detection method as
MAD components are invariant under affine transformation of the original data, and
theoretically can be applied to multi-sensor datasets (Canty 2010). Using bi-temporal pan-
sharpened Quickbird imagery segmented at three different scale parameters, a combination of
four multispectral bands and shape information (e.g., border index, roundness, compactness,
etc.) were subjected to the IR-MAD transformation, followed by an unsupervised cluster
analysis using fuzzy maximum likelihood estimation (FMLE) and label relaxation to identify
potential areas of change within the MAD components (Niemeyer et al. 2008). Using this
approach, the authors were able to detect and classify several types of change related to

construction activities underway in a nuclear facility over the course of a year.

Post-classification of EO imagery classified using object-based image analysis has also

been used for change detection purposes. Ruelland et al. (2011) compared pixel-based and

object-based image analysis using a post-classification change detection strategy for mapping
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LULC change in the Sahel region of Africa using multi-sensor datasets over a 50 year time
period. Aerial photographs and EO imagery from the Corona "spy-satellite" program, Landsat,
and SPOT platforms were independently classified and used to track and quantify historical
LULC change in a 100 km? watershed (cf. Franklin et al. 2005) using a post-classification analysis
strategy. Ruelland et al (2011) found that the manual digitization of landscape features
provided the highest overall classification accuracies (over 0.915 Kappa) over three dates of
imagery, with pixel-based and object-based image analysis also producing relatively high
accuracies (0.841-0.976 Kappa). Overall proportions of land cover between approaches were
relative consistent over time, but could vary by as much as 10% for some land cover classes
(Ruelland et al. 2011).

In another recent example of object-based change detection using post-classification
analysis, Robertson and King (2011) assessed land cover change between two image dates in an
agricultural environment using medium resolution Landsat data. They found no statistically
significant differences in classification accuracies of land cover between image analysis
approaches; however, based on an intensive visual comparison, they found that object-based
image analysis produced more accurate representations of landscape change as compared to
pixel-based maps.

Hybrid approaches to change detection that integrate elements of both multispectral
change detection and post-classification analysis have also been developed. One such approach
is based on an initial formulation of “cross-correlation analysis” (CCA) (Koeln and Bissonnette
(2000) that uses existing land cover maps to ‘guide’ the process (Note: CCA should not to be
confused with canonical correspondence analysis). In this hybrid approach, land cover
boundaries delineated based on an existing map are used as the basis for collecting spectral
information specific to each land cover class. The CCA is then performed using a multivariate
calculation of class-specific information to assess which areas within a given land cover type
exhibit change in the updated imagery. As spectral information is drawn from the imagery used
to update the map there is less need to perform complex radiometric or atmospheric

corrections (Koeln and Bissonnette 2000); however, the accuracy of the initial classification or
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GIS-based map is important as these land cover boundaries are used to derive spectral class

information used in the CCA calculation.

4.2.1 CHALLENGES TO OBJECT-BASED MAP UPDATING AND CHANGE
DETECTION WITH MULTI-SOURCE IMAGERY

The above examples illustrate several promising object-based change detection
methods and have helped clarify important issues identified with map updating strategies that
incorporate object-based image analysis. For example, McDermid et al. (2008) illustrated the
impact of "sliver" objects, which are small and potentially spurious elements of change, created
by the inconsistent delineation of boundaries between change objects and image objects within
an existing base map. Despite representing a relatively small percentage of the overall changed
area, the presence of sliver objects was shown to have significant impacts on the magnitude
and trajectory of four common landscape metrics (number of patches, edge density, mean
patch size, and mean shape index) when examined over a series of updated thematic maps
representing ‘annual-change’ (Linke et al. 2009). Efforts to mitigate or eliminate issues related
to sliver objects led to the formulation of a comprehensive methodological framework whereby
a GIS-based system is used to maintain an inventory of disturbance features suitable for
producing consistent object-based thematic maps over time (Linke and McDermid 2011).
However, the implementation of this change detection framework requires significant effort
and is recommended in situations where the overall goals of the mapping process demands
that updating strategies minimize such artifacts (e.g., when calculating landscape metrics over

time).

Most of the examples of object-based change detection listed here utilize the same or
similar sources of imagery between acquisition dates (e.g., Landsat Thematic Mapper and
Enhanced Thematic Mapper Plus); however, several issues have been identified when post-

classification analysis is conducted on maps derived from sensors with substantially different

129



characteristics. For example, differing pixel sizes can lead to certain land cover elements being
detected by one sensor, but not another. In addition, complications typically arise from
misregistration of imagery with different spatial resolutions. And finally, differences in the
spectral and radiometric resolutions of the sensors being compared must be managed in the
change detection and mapping process (Serra et al. 2003). Such issues are not limited to post-
classification analysis of land cover change, but also affect change detection strategies that rely
on multi-temporal analysis of spectral change. Resampling procedures have been suggested as
a means of minimizing differences between disparate sources of EO imagery by placing imagery
into a common (lowest) spatial resolution (Petit and Lambin 2001). In one example, such
procedures created mixed results when comparing overall classification accuracies using post-
classification analysis of land cover change obtained using several different sources of imagery
over time (Ruelland et al. 2011). Change detection methods that utilize multiple sources of EO
imagery will become increasingly important to overcome limitations inherent to a single source;
therefore, more research focused on integrating GIS and multiple sources of imagery for

change detection analysis has been suggested (Lu et al. 2004).

4.2.2 AN OBJECT-BASED HYBRID CHANGE DETECTION APPROACH

In the present study, a method for change detection and map updating is introduced
using an object-based hybrid change detection approach suitable for integrating multi-sensor
datasets acquired over long time periods. The goal is to enable object-based change detection
that allows for disparate sources of EO imagery to be used with few ‘map’ related problems
that would otherwise reduce the effectiveness of the update products. Specifically, two
advancements are integrated into the proposed object-based hybrid change detection

approach to address the aforementioned challenges:

1) The CCA change detection method described by Koeln and Bissonnette (2000), and
subsequently used in later studies (Hurd et al. 2001; Civco et al. 2002), is adapted for

use in an object-based image analysis environment. This hybrid change detection
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approach allows for disparate sources of imagery to be utilized with a minimum of
radiometric processing by using per class spectral information obtained from update
imagery using existing land cover boundaries from a base map. Furthermore, unlike
many multi-spectral change detection methods, the use of CCA approach contains
significant promise because of the ability to fine-tune the degree of change detected on
a per land cover class basis, allowing for a higher degree of confidence that the change

detected is of significance in the study area under investigation.

2) While previous change detection and LULC mapping over long time periods have utilized
object-based image analysis to classify disparate sources of imagery, such studies have
relied on post-classification analysis of independently classified imagery (e.g., Ruelland
et al. 2011). In the present study, in order to minimize compounding classification errors
between entire maps that have been classified independently, only areas labeled as
change are updated in the base map. Such an approach has been advocated for
operational settings where a consistent time series of LULC is desired (e.g., Feranec et
al. 2000; Feranec et al. 2007; McDermid et al. 2008; Linke et al. 2009). In this study, this
updating procedure is accomplished through the use of “hierarchical object networks”
(Benz et al. 2004), whereby existing object boundaries are used as the basis for
subsequent image object segmentation. Such an approach has been used in previous
object-based change detection studies (e.g., Willhauck 2000; Walter 2004), as a means
of integrating multiple sources of information (e.g., an existing thematic map), while

maintaining consistent boundaries for image objects of interest between map updates.

4.2.3 OBJECTIVES OF THIS STUDY

This study implements an object-based hybrid change detection approach based on CCA
(Koeln and Bissonnette 2000) in conjunction with a hierarchical image segmentation strategy
(Benz et al. 2004) to enforce image object boundaries between map updates derived from

multiple sources of EO imagery and an existing base map. The goal is to illustrate the enhanced
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change detection capability and map updating versatility of such an approach. In order to
accomplish this, we compare the performance of the proposed object-based hybrid change
detection method with other object-based methods that have recently been recommended in

land cover change applications.

43 METHODS

4.3.1 STUDY AREA

The change detection methods considered in this study were tested over an area
undergoing intensive agricultural development in southwest Saskatchewan in western Canada;
51.751N, -109.408W). Figure 13 depicts several types of land cover change typical of land
undergoing agricultural development. In addition, other forms of anthropogenic landscape
change (e.g., oil and gas development) and natural events (e.g., periodic flooding of crop lands)
are present. Crop reports coinciding with the acquisition date of the 2005 SPOT-5 multispectral
imagery indicate significant rainfall in the area (Saskatchewan Agriculture and Food 2005). This
change in the appearance of the imagery is evident in the large areas of inundated crop land

(Figure 13).
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SPOT-5 HRG-1: 28 August 2005

Figure 13: A) areas of crop land inundated in 2005, but either in-filled and/or experiencing dry conditions in 1990; B) well
pads and support roads in 2005, but missing in 1990; C) change in water level for two small natural drainage areas. SPOT-5
HRG and Landsat-5 TM imagery presented as a false color composite (Red=XS3, Green=XS2, Blue=XS1, and; Red=Band 4,

Green=Band 3, Blue=Band 2, respectively).

4.3.2 SATELLITE-BASED EO IMAGERY AND INITIAL PROCESSING

Two sources of multi-spectral EO imagery were used to perform object-based change
detection based on the selected comparison of methods: SPOT-5 10 m High Resolution
Geometric (HRG-1) imagery for the base time period (28 August 2005) and Landsat-5 30 m
Thematic Mapper (TM) imagery for the retrospective time period (5 September 1990). While
not necessary for CCA change detection method (Koeln and Bissonnette 2000), these satellite
images were converted to exoatmospheric reflectance to maintain radiometric consistency
between data obtained from different sensor types (Chander et al. 2009). Both dates of
multispectral EO imagery were georectified to the high spatial resolution air photo (circa 1990)

using nearest neighbor resampling, achieving a RMSE of equal to or less than 0.5 pixels for both
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TM and SPOT imagery. An inspection of features visible in both the air photo and EO imagery
(e.g., road intersections, corners of large agricultural fields, large built up environments, etc.)

revealed that an accurate image registration was achieved between all images.

4.3.3 CREATION OF THE CHANGED AREA REFERENCE MAP

To assess the relative performance of each change detection method in this study, a
reference map of change occurring over the two time periods was created using independently
acquired high spatial resolution imagery. A combination of image segmentation and manual
delineation was used to create a reference change map. The reference map for the base time
period (circa 2005) was created using SPOT-5 2.5 m panchromatic imagery, while the reference
map for the retrospective period (circa 1990) was based on the interpretation of a scanned
panchromatic aerial photographs with a spatial resolution of approximately 0.80 m. Both
images were georectified to a road network vector layer with a root mean square error (RMSE)
equal to or less than 0.5 pixels using nearest neighbor resampling. Image segmentation was
performed independently on both images using a multiresolution segmentation algorithm with
the following parameter values: scale of 200, 0.5 for shape, and 0.5 for compactness. In order
to identify changed areas, image objects in the 2005 base map were intersected with image
objects in the 1990 retrospective map. Change objects were assessed by visually examining the
high resolution imagery to ascertain whether actual land cover change had occurred between
dates. A change mask with two classes, "change" and "no-change", was created and used as the

reference to assess all change detection methods examined in this study.
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4.3.4 OBJECT-BASED CHANGE DETECTION AND ASSOCIATED IMAGE
SEGMENTATION STRATEGIES

As previously explained by Niemeyer et al. (2008), and adapted here, there are several
basic potential image segmentation strategies for object-based change detection (Figure 14).
The first strategy (Figure 14a) involves segmenting spectral information shared between two
images to identify change objects. For example, Linke and McDermid (2011) segmented a
differenced EWDI image acquired between two dates to obtain only change objects. This
approach can be considered useful when the imagery is reasonably comparable in resolution
(e.g., similar spatial and spectral resolution). The second strategy (Figure 14b) involves
segmenting one image and retaining those image objects over time. Using this strategy,
spectral information obtained from other imagery is used to determine whether an individual
object has changed and what its new land cover label should be updated to. This latter
approach was recommended by Pape and Franklin (2008), in situations where the spectral or
spatial resolution of imagery being compared for change may be quite different. The third
strategy (Figure 14c) involves independently segmenting imagery obtained at different times
(i.e., using information from both images to create change objects). This approach can involve
significant post-processing to reduce or eliminate differences in objects that arise when the
segmentation process creates different results for similar features (e.g., Linke et al 2009). A
fourth strategy introduced in this study, which can be considered as a hybridized extension of
the second and third, involves maintaining land cover boundaries generated from one date of
imagery, but allowing for new image objects to be segmented within existing land cover
boundaries derived from other imagery in a hierarchical fashion (see Figure 14d). Based on
these different image segmentation strategies, three approaches to object-based change
detection were considered and compared in the Saskatchewan study area for two time periods

(To=2005; T4 =1990):
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i)

i)

a differenced pixel-based NDVI image obtained from two dates (one SPOT-5
HRG and Landsat-5 TM image) is segmented and used to identify change
objects (e.g., Linke and McDermid 2011);

segmentation of Tg imagery (SPOT-5 HRG) whereby image objects remain
static between both dates and types of imagery. NDVI information from T_; is
summarized within image objects derived from To imagery. NDVI information
contained within image objects at Tp and T_; imagery SPOT-5 HRG and
Landsat-5 TM imagery are then differenced and a threshold of change is
established. Image objects that exhibit spectral change above the analyst
determined threshold are labeled as change and undergo land cover class

updating (e.g., Pape and Franklin 2008); and,

segmentation and classification of Tg imagery (SPOT-5 HRG) to establish land
cover boundaries for the base map (circa 2005). Cross-correlation analysis
(CCA) as originally described in a remote sensing study by Koeln and
Bissonnette (2000), but adapted here for object-based image analysis, is used

to determine areas of change.
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Figure 14: (adapted from Niemeyer et al. 2008) a) Segmentation of combined multispectral information from both Tyand T,
("combined object change detection" - COCD); b) static segmentation of T,, with image objects carried over to T, ("static
object change detection" - SOCD); c) independent segmentations for both T, and T.;; d) hierarchical segmentation where land
cover boundaries from T, are retained, with new image objects segmented based on T_, imagery ("hierarchical object CCA

change detection" - HOCD-CCA).

4.3.5 CROSS-CORRELATION ANALYSIS FOR OBJECT-BASED CHANGE
DETECTION

When using CCA for change detection, a land cover map of the area under investigation
at the base acquisition date (Ty) is used to delineate class boundaries for the bi-temporal
change detection process (Figure 14d). In this study, the land cover map used to describe Towas
derived using object-based image analysis and a Random Forest machine learning algorithm to
classify SPOT-5 HRG imagery acquired over the study area (28 August 2005), which achieved an

overall classification accuracy above 90%. Seven broad land cover classes were selected (water,
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wetland, riparian, crop, mixed grassland, built, and exposed soil/rock) based on the needs of
larger studies attempting to assess potential cumulative environmental effects on aquatic
ecosystems caused by development (Dube 2003; Squires et al. 2009; Seitz et al. 2011), and to
ensure consistency between thematic maps produced using sensors with different
characteristics (Petit and Lambin 2001; Petit and Lambin 2002). The land cover boundaries
derived from the To map were overlaid on the Landsat-5 TM imagery representing the 1990
retrospective time period (T.;1). The mean and standard deviation of multispectral information
(from T_;) contained within individual image objects (derived at Ty) were then summarized for
each class boundary to derive an expected spectral signature for that land cover class (Koeln
and Bissonnette 2000). A multivariate Z-statistic was then calculated to determine how much
an individual image object's information deviates from the expected multispectral signature of

a given class using the following equation (adapted from Hurd et al. 2001):

(1)

where

Zjc is the Z statistic for the image object with indices j and k,

i is the band number in the multispectral image,

n is the number of bands,

rii is the mean reflectance in band i of the image object with indices j and k,
cjk is the corresponding thematic class with indices j and k,

Mic is the mean reflectance value in band i of all image objects of class ¢, and

oic is the standard deviation of the reflectance values in band i of all image objects of class ¢
Using such an approach, image objects with high Z-score values potentially represent land cover

change, whereas lower Z-score values indicate unchanged areas. Image objects identified as

changed based on Z-scores are then extracted and reclassified, and used to update an existing
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base map within a GIS environment. Two image segmentation strategies for the hybrid object-

based change detection method using CCA are explored:

i) maintaining static image objects derived at T throughout the change detection

process (e.g., Pape and Franklin 2008); and,

ii) creating new image objects segmented from imagery from the second acquisition
date (T.1) that respect existing land cover boundaries derived at Ty (e.g., Koeln and
Bissonnette 2000; Willhauck 2000) using hierarchical image segmentation approach

as formally described by Benz et al. (2004). (see Figure 14d).

Image objects in the former approach used "object primitives" (Castilla and Hay 2008)
from an existing object-based classification with the following image segmentation parameter
values: scale 10, shape 0.1, and compactness of 0.5. For the latter image segmentation strategy,
Landsat-5 imagery from T_; was used to derive new image objects using three image
segmentation scales (10, 30, and 60). This was done to assess the effect of the scale parameter
on change detection accuracy, while keeping other segmentation parameter values constant
(shape 0.1, and compactness of 0.5).

In addition, modified versions of the object-based change detection methods described
by Pape and Franklin (2008) and Linke and McDermid (2011) are used for comparison. In the
former two studies, a differenced EWDI (Franklin et al. 2001) image was used as the spectral
basis of the change detection. In the present study, two disparate sources of sensor data were
utilized (SPOT-5 HRG and Landsat-5 TM). The "wetness" parameter derived using the Tasseled
Cap transformation (Crist and Kauth 1986), which is used for the calculation of the EWDI, has
been recently described for the SPOT-5 HRG sensor; however, the stability of the
transformation has been found to be uncertain when applied to imagery with seasonal and
geographical differences (lvits et al. 2008). Therefore, for ease of comparison a differenced
Normalized Difference Vegetation Index (NDVI) image based on the SPOT-5 HRG imagery (circa
2005) and the Landsat-5 TM imagery (circa 1990) was used in place of the EWDI.
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To maintain comparability with the hybrid object-based change detection method
proposed in this study, the modified versions of the object-based change detection method
using differenced NDVI imagery used identical image segmentation parameters (scale 10, shape
0.1, and compactness of 0.5). In addition, the overall performance and sensitivity of the above
change detection methodologies were all assessed using the same threshold of change,
whereby values above two standard deviations were considered as change. Previous work by
others (e.g., Franklin et al. 2001; Pape and Franklin 2008), has recommended a threshold of two
standard deviations; the experience in those studies and others provided a reasonable first
approximation of change/no-change areas that could be applied within the present study area.
The following assumptions regarding this approach were made: 1) a normal distribution in
change values exists; 2) the amount of changed area considered is small relative to the total
area, or class area, under investigation, and; 3) areas of actual change are represented by high

absolute values generated by the change detection methods.

4.3.6 CHANGE DETECTION ACCURACY ASSESSMENT

Change detection accuracy was assessed using a point-based random sample, and an area
based comparison of changed areas. To obtain a point-based sample that was not biased by the
large amount of no-change area, a stratified random sample of equal proportions was
conducted in change/no-change areas delineated in the reference change map. Using this
method, 700 change and 700 no-change points were selected. These 1400 points, representing
change/no-change areas across the study area, were then intersected with the change and no-
change areas generated by the different object-based change detection methods. For the area-
based change detection accuracy assessment, areas detected as change were intersected with
areas verified as change in the reference map, with the percentage of overlap reported.
Confusion matrices with producer's and user's accuracy are reported (Congalton and Green
1998). While a modified method for comparing Kappa coefficients based on related samples
has been developed for testing dichotomous outcomes (Donner et al. 2000) suitable for

change/no-change studies, the use of the Kappa statistic has been found to be problematic due
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to a violation of statistical independence when comparing paired samples (Foody 2002; 2004).
The McNemar’s test for paired-sample nominal scale data (Agresti 2002; Zar 2009) was used
without Yates' continuity correction, to assess whether statistically significant differences
between change detection methods exist. Particular attention in this study is paid to user's
accuracy, which refers to the amount of change detected in relation to the change actually

verified on the change reference map.

44 RESULTS

Figure 15 depicts a change and no-change masks using: a) manually delineated high
spatial resolution panchromatic imagery (hereafter "change reference map" — CRM — Figure
15a); b) segmentation of NDVI imagery differenced from Ty and T_; (hereafter "combined object
change detection" — COCD - Figure 15b); c) image objects derived at T and carried over to T4,
using differenced NDVI imagery (hereafter "static object change detection" — SOCD — Figure
15c), and; d) CCA of multispectral imagery utilizing land cover boundaries derived from Ty

(hereafter "hierarchical object CCA change detection" - HOCD — Figure 15d).

Figures 15b and 15c show the results of the COCD and SOCD methods, respectively.
Overall, both COCD and SOCD show considerably more change than was detected in the CRM
(Figure 15a) and by the HOCD-CCA method (Figure 15d). An overall visual assessment reveals
that the CRM and the HOCD-CCA method showed the highest degree of agreement. Generally,
the large areas of cropland in the southeast and northwest which were detected as change by
COCD and SOCD, are missing from the CRM and HOCD-CCA. In the HOCD-CCA approach (Figure
15d), there is a notable absence of inundated crop land/wetland in the southwest portion of
the study area which is present in all other change detection methods (Figures 15a-c). A
network of roads and well pads present in the northern section of the CRM, but are absent in

change masks produced by all change detection methods (Figures 15b-d).
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Figure 15: a) Reference change map derived from high spatial resolution imagery (CRM); b) combined object change
detection (COCD); c) static object change detection (SOCD); d) hierarchical object CCA change detection (HOCD-CCA) using

static objects from T, imagery.
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Figure 16 summarizes the overall accuracy of the object-based change detection methods
and the percentage of area detected as change with the area of change verified in the CRM
(Figure 16a). Static object change detection (SOCD) which maintains image objects between
dates (Figure 15b) and is driven by establishing a threshold of change using differenced NDVI
information between dates (e.g., Pape and Franklin 2008), provided the highest overall change
detection accuracy (74.9%). Areas detected as change using this method also achieved the
highest level of overlap with areas verified as change in the CRM (56.66%). Combined object
change detection (COCD) (e.g., Linke and McDermid 2011) using difference NDVI information
achieved an overall accuracy and percentage of detected changed area that overlapped with
the CRM that were nearly identical to the previous method (74.6% and 56.59%, respectively).
Hierarchical object CCA change detection (HOCD-CCA) using static objects from Ty imagery
performed marginally less well in overall change detection accuracy than the two previous
methods (73.1%); however, there was a marked decrease in the amount of detected changed
area that overlapped with the changed area delineated in the CRM (44.27%). The overall
classification accuracy dropped to 69.9%, and the percentage of changed area in agreement
with the CRM dropped to 41.51% when using HOCD-CCA with image objects derived from T_;
imagery with a scale parameter value of 10. HOCD-CCA using a scale parameter value of 30, a
size that coincides with the underlying 30 m spatial resolution of the imagery (Landsat-5 TM)
used to segment new image objects at T_, improved the overall change detection accuracy
slightly to 71.0%, with a slight drop in the percentage of changed area in agreement with the
CRM (39.7%). Using HOCD-CCA with a scale parameter value of 60 slightly decreased the overall
change detection accuracy to 70.8%, with a slight drop in the percentage of changed area in

agreement with the reference map (39.55%).

143



80% — —= Owerall change accuracy - 80%

—e— Overlap with reference -+ 75%

change
— 70%

( -+ 65%
J ( -+ 60%
+ 50%

N 1+ 45%

65% [~

5% +

—
T

L 2
/0
—
—

70% -+ + 55%

— - 40%

Overall change detection accuracy
Percentage of changed area that
overlaps with reference change area

+ 35%

60% 1 1 1 1 1 30%
A B C D E F

Change detection method

Figure 16: Overall change detection accuracy using: A) static object change detection (SOCD); B) combined object change
detection (COCD); C) hierarchical object CCA change detection (HOCD-CCA) using static objects from T0 imagery; D) HOCD-
CCA using image objects derived from T-1 imagery (scale 10); E) HOCD-CCA using image objects derived from T-1 imagery
(scale 30); F) HOCD-CCA using image objects derived from T-1 imagery (scale 60).
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Table 9 provides detailed matrices of user's and producer's accuracy (Congalton and
Green 1998) for the top three performing object-based change detection methods as reported
by overall accuracy in Figure 16. For the SOCD and COCD approaches, there was near identical
agreement in overall classification accuracy, and in user's and producer's accuracy (Tables 9a
and 9b). User's accuracy for non-CCA methods detected between 87.83 and 87.91% of the
change areas verified in the CRM, whereas the HOCD-CCA change detection method using static

objects from Ty was capable of detecting 97.65% of the change verified in the CRM.

Table 9: Change detection accuracy reported for three object-based change detection methods: A) static object change
detection; B) combined object change detection; and, C) static object CCA change detection. Ua=user's accuracy;

Pa=producer's accuracy.

a) static object change detection (SOCD)

Reference
Class No-change Change Total
Prediction Ua
No-Change 644 296 940 68.51%
Change 56 404 460 87.83%
Total 700 700 1400
Pa 92.00%  57.71%

Overall accuracy: 74.86% (95% lower and upper confidence limits: 72.50-77.11%)

b) combined object change detection (COCD)

Reference
Class No-change| Change Total
Prediction Ua
No-Change 645 300 945 68.25%
Change 55 400 455 87.91%
Total 700 700 1400
Pa 92.14% 57.14%

Overall accuracy: 74.64% (95% lower and upper confidence limits: 72.28-76.90%)

¢) hierarchical object CCA change detection (HOCD-CCA) using static objects from T,

Reference
Class No-change| Change Total
Prediction Ua
No-Change 692 368 1060 65.28%
Change 8 332 340 97.65%
Total 700 700 1400
Pa 98.86%  47.43%

Overall accuracy: 73.14% (95% lower and upper confidence limits: 70.74-75.45%)
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Using the McNemar test, differences between change detection accuracies achieved by the
SOCD and COCD methods depicted were not significant at the 5 percent level of significance (p
=0.6692). The difference in change detection accuracy between the static object change
detection method SOCD and the COCD method were statistically significant at the 5 percent
level of significance when compared to HOCD-CCA change detection method using static
objects from Ty (p<0.001). Figure 17a illustrates how change objects created by HOCD-CCA
(image segmentation scale 30) respects existing land cover boundaries derived from Ty imagery.
In contrast, Figure 17b illustrates how COCD creates change objects that are generally localized
to the same area of change (e.g., inundated area), but that do not conform to land cover
boundaries derived from Ty imagery. There are notable differences in the amount of area
detected as change between methods, as well as the size and shape of the individual change

objects due to differences in image segmentation strategies used.

; i os 5 Fhomet ] Land cover boundaries (2005)
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Figure 17: Comparison of change detected by various methods: a) Change objects derived from HOCD-CCA change detection
methods conform to pre-existing land cover boundaries derived from TO imagery using image object derived from T-1
imagery (scale 30); b) COCD change detection introduces change objects that have a pixelated appearance and do not
conform to pre-existing land cover boundaries. Background imagery: SPOT-5 HRG (28 August 2005) shown in false color

composite (XS3=Red, XS2=Green, XS1=Blue).
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45 DISCUSSION

In general, all three object-based change detection methods tested in this paper achieved
similar overall classification accuracies; however, there was considerable difference in the
amount and types of change detected by each method using a threshold of two standard
deviations. Most notably, the HOCD-CCA based change detection method introduced in this
study (Figure 15d) showed considerably less change at a threshold of two standard deviations
relative to the other methods compared in this study (Figures 15b and 15c). The most obvious
explanation for the high degree of change detected by the non-CCA methods relative to the
CRM (Figure 15a), is that these methods are based on differenced spectral information that
provides information that is not discernible in a visual interpretation of high spatial resolution
panchromatic imagery used to produce the CRM. For example, variations in crop vigor between
years would not necessarily be readily apparent in the panchromatic imagery, but may in fact

be readily discernible in multispectral imagery in the near-infrared portion of the spectrum.

A visual examination of Figure 13 reveals that the crop areas detected by the non-CCA
approaches in the southeast and northwest portion of the study area (Figures 15b and 15c)
show up as red areas in the circa 2005 SPOT-5 imagery, but as grey or light-green areas in the
circa 1990 Landsat-5 imagery, indicating differences in phenology or vegetation type. Visual
inspection of high spatial resolution imagery used to derive the CRM reveal no discernable
change in land cover type (i.e., a crop land cover type is visible in circa 2005 and 1990 imagery).
In contrast, the HOCD-CCA approach does not detect this subtle spectral difference (Figure
15d). This effect is likely due to the way thresholds for the CCA calculation is derived. Using
CCA, thresholds are determined on a per-class basis, rather than for the entire study area as is
the case with the non-CCA methods. A cursory examination of change objects representing the
areas of crop land detected by the non-CCA approaches (Figures 15b and 15c) that appear
bright red in the southwest and northeast portions of the study area (Figure 13), reveal a mean

Z-score of 8.07, which is well below the two standard deviation threshold determined for crop
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land cover types (Z-score value of 25.88) using the CCA method. In this case, the use of per-
class thresholds with the CCA method, as determined by a pre-existing land cover map (derived
at To), has effectively eliminated an element of subtle spectral change. To achieve a similar
result using non-CCA methods presented here, the analyst would have to manually adjust the
threshold of change to eliminate unwanted change area, an activity that can consume a major
portion of the analyst's time (Desclée et al. 2006; Pape and Franklin 2008). As the non-CCA
change detection approaches examined here operate on a per-scene basis, manual adjustment
of the threshold for these approaches may not be capable of producing the same less-noisy
change mask depicted by the CCA method. However, since all methods examined in this study
were conducted within an object-based environment (i.e., GIS), it should be possible to adapt
the per land cover class threshold strategy used in the CCA approach to other methods, while
implementing more statistically rigorous means of establishing change thresholds (e.g., Desclée

et al. 2006).

Despite similar overall change detection accuracies between the object-based methods
examine in this study, the amount of area detected as change that overlapped with areas of
change verified in the reference change map neared 60% with the two non-CCA change
detection methods, and between 40-44% using variations of CCA method. The high levels of
overlap reported by non-CCA change detection methods could potentially be explained by the
high amount of subtle spectral change present in the non-CCA change detection methods. In
other words, the cumulative addition of small areas of change detected by the non-CCA
methods may have increased the amount of changed area detected. While the detection of
subtle change likely represents real elements of change in the land cover map (e.g., differences
in phenology and/or moisture content of crop fields), it represents change that is not of interest
in this study. Another potential explanation for the higher amount of changed area in common
with the CRM is the omission of a large amount of wetland/inundated crop land area in the
southwest (Figure 15a) not detected by the CCA method (Figure 15d), but largely detected by
the non-CCA methods (Figures 15b and 15c). In this case, the per-class threshold established by

the CCA method may have performed sub-optimally. A visual examination of this area reveals a
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wetland-like environment, with a bright-red tip extending from the southern portion of the
inundated cropland area (Figure 13a). A cursory examination of image objects in this area
reveal a mean Z-score of 3.2 for the wetland land cover type, which is under the two standard
deviation threshold (Z-score of 24.43), therefore indicating that these image objects are
considered unchanged by the CCA change detection method. While adjusting the threshold
may improve the results in this case, it is possible that the map used to establish land cover
boundaries and image objects used in the CCA approach was incorrect (i.e., the area should be
considered as crop land cover type instead of a wetland land cover type). As the CCA approach
is entirely based on the accuracy of the underlying base map, which is consequently used to
establish land cover boundaries and related change thresholds, any error in this map may
potentially result in errors of omission or commission in the change detection process. Such a
situation highlights the potential pitfalls of applying the CCA change detection method when

using inaccurate base maps.

Differences in overall change detection accuracy between CCA and non-CCA methods
were statistically different (p<0.05); however, the large degree of overlap in 95 percent
confidence intervals (Figure 16) suggests that determining which approach actually achieved
better change detection performance is problematic. A closer examination of detailed
confusion matrices presented in Table 9 provides some insight into this matter: While non-CCA
change detection methods achieved higher classification accuracies overall, user's accuracy for
the CCA change detection method was approximately 10% higher than non-CCA change
detection methods. The low amount of commission error indicated by this result indicates that
the CCA change detection method was better able to detect change as indicated in the CRM.
This finding supports the visual correspondence between the CRM (Figure 15a) and the HOCD-
CCA change detection method (Figure 15d). The higher producer's accuracy for changed areas
achieved by non-CCA change detection methods is likely due to the large amounts of subtle
spectral change detected. In other words, the large amounts of subtle spectral change detected
by the non-CCA change detection methods may confer an advantage in avoiding errors of

omission that can occur when applied to other mapping situations (i.e., the producer's accuracy
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for detecting changed areas would be higher). This finding is also logically consistent with the

results presented in the study.

Previous research examining object-based change detection and map updating
highlighted the need to address the issue of respecting boundary delineations of an existing
map when undergoing map updating procedures (McDermid et al. 2008). The CCA method as
demonstrated in this study utilized a hierarchical image segmentation strategy (Benz et al.
2004), whereby existing object boundaries are used as the basis for subsequent image object
segmentation, which has been used in previous object-based change detection studies (e.g.,
Willhauck 2000; Walter 2004). When hierarchical image segmentation is not implemented, the
resulting image objects that are created do not have to conform to the land cover boundaries
of an existing base map (Figure 17b). Such a situation may contribute to change objects not
aligning correctly when overlaid on an existing land cover map (Linke et al. 2009).

In the comparison outlined in Figure 17, the CCA method retains land cover boundaries
and creates new image objects which correspond to the (coarser) underlying imagery from T_4,
using a scale parameter value of 30, resulting in larger change objects. However, when
performing image segmentation on the differenced pixel-based NDVI imagery from Toand T.4,
the resulting image objects become pixelated due to the coarser spatial resolution (30m) of the
Landsat-5 TM imagery, and relatively finer scale parameter scale used (10). The over-
segmented appearance of the non-CCA approach depicted in Figure 17b may contribute to
spurious change being detected as the underlying image objects effectively become pixel-like,
which may result in a salt-and-pepper effect in the change detection process. Segmentation
scale has been found to directly effect the overall accuracy of object-based land cover
classifications (Kim et al. 2011; Smith 2010; Myint et al. 2011), and has been shown in this study
to degrade overall change detection accuracy when not commensurate with the underlying

imagery (Figure 16).
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46 CONCLUSION

A hybrid object-based change detection method based on CCA utilizing a hierarchical
image segmentation strategy was introduced and compared to two object-based change
detection methods. While the CCA change detection method performed slightly less well than
the two non-CCA change detection methods compared in this study, the visual depiction of
areas detected as change using CCA was superior to the non-CCA change detection methods.
Furthermore, the underlying flexibility of the method remains promising, especially if disparate
sources of EOQ imagery are to be used. The hierarchical image segmentation strategy utilized in
this study has been confirmed to be a viable solution for respecting existing land cover
boundaries when conducting map updating procedures, which could potentially reduce or
eliminate the number of spurious change objects introduced. The use of per-class thresholds
used by the object-based CCA change detection method outlined in this study show potential
promise over using a singular threshold typically used in bi-temporal multispectral change
detection. Adapting per-class thresholds to non-CCA object-based change detection methods
along with more statistically rigorous threshold selection processes should prove useful to
reducing or eliminating unwanted change from being detected. Overall the hybrid object-based
CCA change detection method introduced in this study was capable of utilizing multiple sources

of EO imagery for the purposes of detecting land cover change with a high degree of accuracy.
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CHAPTER 5 PREFACE

In this concluding chapter, the cumulative knowledge gained from research efforts outlined in
previous chapters is combined and applied over a large agricultural area in southwest
Saskatchewan. The application demonstrates how land cover information derived from
disparate sources of remotely sensed imagery spanning three decades can be used to spatially
disaggregate land use information over the same time period. Using this approach, selected
land use information can be depicted at local landscape scales, allowing for spatial and
temporal trends in land use to be examined. The results of the spatial disaggregation procedure

are compared against traditional choropleth mapping techniques.
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5.1 ABSTRACT

In the application outlined in this study, land use intensity information derived from
agricultural census data were spatially disaggregated using land cover information derived from
earth observation (EQ) imagery. While cropland area estimated by census data and EO imagery
were different, correlations between these datasets were high and statistically significant (n =
19; 1976: Adjusted R? = 0.93, p<0.001; 1991: Adjusted R? = 0.96, p<0.001; 2005: Adjusted R? =
0.91, p <0.001). Medium spatial resolution EO imagery (10-60 m pixels) was used to spatially
disaggregate coarse agricultural land use information gathered over large census boundaries.
The result of the spatial disaggregation procedure was a spatially explicit representation of land
use intensity. While the spatial disaggregation procedure outlined could benefit from
refinement, the application as illustrated shows considerable promise as a means of obtaining

local spatial and temporal trends on land use intensity in agricultural environments.

5.2 INTRODUCTION

Earth observation (EO) imagery acquired at medium spatial resolutions (10-60 m pixels),
provides a valuable synoptic and historic record of detailed global land cover at local landscape
scales. In contrast to EO imagery, detailed information on socioeconomic aspects of agricultural
land use, often gathered by national censuses over bi-decadal (or longer) time frames, is
typically made available to the public in aggregated form. These data are often summarized
over spatially coarse administrative units that tend not to be ecologically relevant, and are less
suited to conducting analysis at local scales (Comber et al., 2008) where human induced
disturbances to ecosystems and potential socioeconomic linkages are more readily apparent
(see Liverman 1998; Entwisle and Stern 2005). Most socioeconomic information covered in
such censuses will likely remain difficult or impossible to directly infer from remotely sensed

data alone, yet such information remains essential to obtaining a complete understanding of
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human induced landscape change over historical time periods (Drigo, 2004; Lesschen et al.,

2005).

To better leverage the distinct information available from EO imagery and census data,
researchers have explored methods of combining aspects of both using a variety of techniques.
For example, Kerr and Cihlar (2003) used land cover information derived from the SPOT-
4/VEGETATION (VGT) sensor (1 km pixels) to construct a "spatially refined" version of
agricultural census data summarized over 336 watersheds across Canada. Cardille and Clayton
(2007) related land cover of the Amazon Rainforest derived from Advanced Very High
Resolution Radiometer (AVHRR) imagery (1 km pixels) with agricultural census data to produce
a "scaled-down" land use map produced at an intermediate resolution (9 km pixels). Comber et
al. (2008) applied dasymetric and volume preservation (“pycnophylactic”) techniques to relate
coarse spatial resolution agricultural census data with a gridded raster product (1 km pixels)
derived from several vector layers depicting land cover. More recently, in an approach
paralleling the one described in this study, Mehaffey et al. (2011) linked census data (e.g., crop
yields, fertilizer and pesticide application rates, tillage practises, etc.) with a variety of other
sources of land use and crop yield data, using the Landsat-based (30 m pixels) National Land
Cover Database (NLCD) product for a dozen states in the US Midwest. In contrast to previous
examples given, this latter approach utilized relatively fine spatial resolution land cover maps to
"spatially constrain" several datasets together, resulting in a spatially explicit database suitable
for modeling ecological responses at local scales, which in turn, could be used to drive
econometric models capable of assessing tradeoffs between potential cropping scenarios and
impacts to ecosystem services in an agricultural environment undergoing intensive

development Mehaffey et al. (2011).

5.2.1 OBJECTIVES OF THIS STUDY

In the application outlined here, selected land use information obtained from agricultural

census data is combined with medium spatial resolution imagery (10-30 m pixels) using a
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spatial disaggregation process. Previous studies utilizing similar spatial disaggregation methods
have tended to rely on spatially coarse resolution EO imagery (e.g., 1 km pixels), whereas
comparatively few such applications have demonstrated the process using EO imagery with
relatively finer spatial resolutions (e.g., 10-60 m pixels). The application demonstrated here
shows how spatially disaggregated land use intensity information can provide enhanced
insights into local landscape scale agricultural development over traditional choropleth
mapping. Land use intensity is defined here to represent the amount of chemical fertilizer
applied to field crops. Other information may also be used to define land use intensity, such as
field practices employed (e.g., zero-tillage), but such information is not considered here due to

lack of suitable information over the time periods examined.

53 METHODS

5.3.1 STUDY AREA

The study area is located in the southwest part of the province of Saskatchewan
(Canada), and is centered over a large drainage area which represents the downstream
confluence of three major river systems in Canada’s Western Prairie Provinces: the Oldman,
Bow, and Red Deer Rivers (Figure 18). These rivers and their associated drainage areas
represent the upper portion of the larger South Saskatchewan River Basin (SSRB), which is
facing increasing cumulative environmental impacts from a variety of development activities

and climate change scenarios (Schindler, 2001; Schindler and Donahue, 2006).
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Figure 18: The study area is centered on a large drainage basin (designated as “Happyland” by the Water Survey of Canada)

located in southwest Saskatchewan, Canada.
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5.3.2 IMAGE PRE-PROCESSING, SEGMENTATION, AND CHANGE DETECTION

EO imagery from different satellite platforms were used to create land cover maps of
the study area at medium spatial resolutions (Table 10). Circa 2005 land cover mapping utilized
nine multispectral scenes from the Satellite Pour I'Observation de la Terre (SPOT-5) obtained
using the High Resolution Geometric (HRG) sensor (10 m pixels). Land cover for the 1990 period
was produced using imagery from Landsat-5's Thematic Mapper (TM) sensor (30 m pixels),
while the 1976 land cover map used Landsat-2's Multispectral Scanner (MSS) (60 m pixels).
Calibrated digital numbers were processed to exoatmospheric reflectance (Chander et al.,
2009), which were then radiometrically normalized to enhance the comparability of spectral
information between scenes within each time period using manually collected pseudo invariant

features (Schott et al., 1988).

Table 10: Specifications of disparate earth observation imagery used in this study.

Satellite Acquistion Date Sensor Radlomgtrlc Spa\_tlal Spectral resolution (nm)*
resolution resolution (m) . . L

"Blue" "Green"  "Red" "Near-infrared" __"Shortwave-infrared "Mid-infrared" _"Thermal"
SPOT-5 2005-Aug-06 HRG-1 8-bits 10
SPOT-5 2005-Aug-06 HRG-1 8-bits 10
SPOT-5 2005-Aug-27 HRG-2 8-bits 10
SPOT-5 2005-Aug-27 HRG-2 8-bits 10
SPOT-5 2005-Aug-28 HRG-1 8-bits 10 NA 500-590 610-680 780-890 1,580-1,750 NA NA
SPOT-5 2005-Aug-28 HRG-1 8-bits 10
SPOT-5 2008-Jul-03 HRG-2 8-bits 10
SPOT-5 2008-Sep-30 HRG-2 8-bits 10
SPOT-5 2008-Sep-30 HRG-2 8-bits 10
Landsat-5  1990-Sep-05 ™ 8-bits 30
Landsat5  1990-Sep-05 ™ 8-bits 30 450-520 520-600 630-690 760-900 1550-1750 2080-2350 10400-12500
Landsat-2  1976-Aug-14 MSS 6-bits 57 .
Landsat2  1976-Aug-14 MSS 6-bits 57 NA 500-600 600-700 700-800; 800-1100 NA NA NA

* - band name designations are approximations

All images were resampled to a common pixel size corresponding to the finest spatial
resolution imagery (i.e., SPOT-5; 10 m pixels). Resampling to the coarsest spatial resolution
when comparing disparate image sources has been suggested (Petit and Lambin, 2001),
although others have recently found that such an approach generally degrades overall
classification accuracy compared to using inherent spatial resolutions of the underlying imagery

(Ruelland et al., 2011). In this study, pixels were resampled to the finest spatial resolution of the
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available imagery (10 m pixels), but image segmentation parameters were selected based on
the coarsest spatial resolution (i.e., 60 m pixels). All imagery and subsequent spatial ancillary
data were projected into an Albers Equal Area Conic (NAD 1983).

The selection of appropriate segmentation parameters and classification algorithm for
object-based image analysis was based on previous work within the study area, and is
described elsewhere (Duro et al., 2012). Image layers and parameter values used in the image
segmentation process are listed in Table 11. Change detection was accomplished using Cross-
Correlation Analysis (CCA) whereby an existing land cover map is used to guide the change
detection process. The CCA is performed using a multivariate calculation of class-specific
spectral information contained in the imagery used for updating; class-specific spectral
information is, in turn, derived from the class boundaries within the existing land cover map
(Koeln and Bissonnette, 2000; Hurd et al., 2001; Civco et al., 2002). Using this approach using
object-based image analysis, image objects were segmented within existing land cover
boundaries based on the underlying imagery used for the updating procedure (Duro et al., in

review).

Table 11: Segmentation parameter values used for object-based image analysis.

Year of image . Color/ Smoothness/ # of Median area of
acquistion Satellite Input layer  Scale Shape Compactness Objects objects (sq. m)
1976 Landsat-2 NDVI 60 0.5/0.1 0.5/0.5 406,012 28,800
1990 Landsat-5 NDVI 60 0.5/0.1 0.5/0.5 470,367 16,200
2005 & 2008  SPOT-5 NDVI 60 0.5/0.1 0.5/0.5 536,509 16,700

5.3.3 ANCILLARY DATA

5.3.3.1 BASE MAP (CIRCA 2000)

An existing land cover product (the "Land Cover for Agricultural Regions of Canada, circa
2000), developed by Agriculture and Agri-Food Canada (AAFC) using 30 m Landsat imagery
(AAFC 2008) was selected to demonstrate the change detection and map updating procedures

outlined in Section 5.3.2. The land cover classes used in the AAFC mapping product are as
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follows: Water, Exposed rock/soil, Built-up, Shrubland, Wetland, Grassland, Annual Crops,
Perennial Crops and Pasture, Coniferous, Deciduous and Mixed Forest. A thematic accuracy
report for this mapping product claims an overall accuracy of 82% (AAFC 2008). Comparisons
with agricultural census information suggests that the AAFC land cover map slightly
overestimates the amount of area in "Annual Cropland" (3%) and underestimates the amount
of area in "Unimproved Pasture"/ "Grassland" (23.2%) land cover classes (AAFC 2008).

For the purposes of this study, and to maintain comparability among disparate image
sources, land cover classes were further generalized and modified according to Table 12. Areas
identified as "Coniferous" and "Deciduous" in the AAFC land cover map within the southern half
of the study area were found to primarily correspond to areas of wetland vegetation types
visible in EO imagery at all three time periods, and were relabelled accordingly. Patches of
vegetation found within the main river along sand bars or river banks mistakenly classified as
"Wetland" in the AAFC map were reclassified as "Riparian", along with "Coniferous" or
"Deciduous" land cover types located alongside or within narrow stream banks or the main
river. In addition, areas classified as "Perennial Crops and Pasture", "Shrubland", and
"Grassland" were generalized into a "Mixed Grassland" land cover type as the limited amount
of available imagery made reliably discerning between these land cover types problematic.
Furthermore, the acquisition dates of the EO imagery that could be acquired were not optimal
for discriminating between grassland species located within the study area (see Price et al.,

1997).

165



Table 12: Generalization and modification of original AAFC land cover classes in circa 2000 base map.

Original land cover class Modified land cover classes

Water Water

Exposed Exposed rock/soil

Built-up Built-up

Shrubland Mixed Grassland

Grassland Mixed Grassland

Perennial Crops and Pasture |Mixed Grassland

Wetland Wetland

Coniferous Wetland

Deciduous Wetland

Annual Crops Cropland

Mixed Forest Not present in study area
Riparian

5.3.3.2 CENSUS DATA

Agricultural census data were obtained from Statistics Canada (www.statcan.gc.ca)
and/or from the University of Saskatchewan's Data Library (library.usask.ca/murray/data-and-
gis). While this data has been made available in aggregate form over several watershed scales
(AAFC 2008b), the finest watershed scale available was still too spatially coarse, covering an
area approximately 9,000 km? in size. In an effort to obtain agricultural census data summarized
at finer spatial scales, data from individual census consolidated subdivisions (CCS), which
represent agglomerations of incorporated towns, rural municipalities, cities, etc., were
gathered and compiled for the study area. As the CCS boundaries are administrative in nature,
they do not conform to the drainage area located within the study area (see Figure 19).

The Census of Agriculture (CoA), collected every 5 years since 1896 in the Prairie
Provinces of Canada, contains a wide range of information on various aspects of agricultural
activity, ranging from socioeconomic to land use practices (Statistics Canada, 2011a). Of the
many dozen variables available in the CoA, this study focused on one related to fertilizer use —
the amount of fertilizer purchased in dollars (“FERTPD”) — in order to assess the relative level of
land use intensity within the study area. Data from the CoA was acquired for census years 2006,
1991, and 1976. In contrast to most of the information gathered in the CoA, data on the

FERTPD is actually recorded for the previous year (i.e., the CoA survey in 1976 will ask for
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information on FERTPD for 1975). EO imagery gathered for this study corresponded to non-CoA
years where FERTPD information would have been recorded (i.e., 2005 and 1990), except for in
1976 where imagery was collected in the same year as the CoA (see Table 10), and therefore

would not be commensurate with FERTPD information reported for 1975.

Figure 19: Census consolidated subdivisions (CCS) in relation to the drainage basin, and associated effective drainage area,

located within the study area.
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Information on FERTPD was not collected in the 1976 CoA, but was available for
previous and following CoAs (i.e., 1971, 1981 and beyond). The data gap for the 1976 CoA
(1975 for FERTPD information) was interpolated using a simple arithmetic mean based on the
available previous and following values of the FERTPD variable for all 19 CCS examined in this
study. Prior to interpolation, all dollar values were normalized to constant 2002 dollars based
on the latest Consumer Price Index information (Statistics Canada, 1998, 2011b). Based on the
linear increase in fertilizer purchases between 1971 and 1986, the interpolated values
generated for each CCS were considered adequate for the purposes of this study. In addition to
FERTPD, the amount of area used by cropland (i.e., hectares devoted to field crops) reported by
the CoA was also used to compare with estimates of cropland area made by EO imagery. The
variable “ECRPLND” includes land in crops, and does not include areas used that are not defined

as field crops (e.g., fruits, vegetables, summer fallow, woodland, etc.).

5.3.4 SPATIAL DISAGGREGATION

The method for spatially disaggregating agricultural census data followed an "intelligent
areal interpolation" method (Eicher and Brewer 2001), whereby ancillary data were used to
reassign information from a given zonal unit into another. In this study, remotely sensed
estimates of cropland area were used to reassign land use information derived from the CoA
(see Figure 20). Using this approach, selected land use information from the CoA was assigned
to areas identified as cropland from EO imagery. In this way, the spatial homogeneity of
information assumed in the choropleth maps is spatially disaggregated to correspond to the
actual spatial distribution of the information under investigation. In other words, instead of
agricultural land use information being reported over an entire CCS area, which may contain
large amounts of non-agricultural land cover types, only areas identified as having agricultural
uses within each CCS area are assigned appropriate information from the CoA.

Such methods are valuable because they combine the advantages of the relatively
higher spatial resolution of EO imagery with typical spatially coarse census information (Comber

et al., 2008). Similar methods have been used by others to "spatially refine" agricultural census
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information with land cover data derived from EO imagery (e.g., Kerr and Cihlar, 2003; Cardille
and Clayton, 2007; Mehaffey et al., 2011), but have been tended to use coarse spatial
resolution imagery (i.e., 1 km pixels). In this study, relatively fine spatial resolution EO imagery
(10-60 m pixels) was used to spatially disaggregate CoA information, allowing for a better
indication of development at the local landscape scale. Such spatially explicit information can
then be used to assess the relative impact that spatial configuration and composition of land

cover and land use has on various environmental concerns (e.g., anthropogenic

eutrophication).
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Figure 20: Conceptual diagram of the spatial disaggregation process used in this study: a) Fertilizer purchases per CCS; b)
Estimate of cropland area per CCS using EO imagery (example of full land cover map shown in inset); c) Spatially

disaggregated fertilizer purchases per CCS area for cropland areas estimated by EO imagery.
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While many variables exist within the CoA that could benefit from spatial
disaggregation, only a few were amenable to this method in light of the land cover classes that
could be reliably mapped with the available EO imagery. For example, while there is
information within the CoA on the extent of improved and unimproved pasture areas within
each CCS, it would be relatively difficult to reliably discern this particular land use from its
underlying land cover type (i.e., grassland species) based on the EOQ imagery available (see
Section 5.3.2). This study illustrates the spatial disaggregation process using information on the
amount of fertilizer purchased ("FERTPD") per CCS, as cropland areas could be readily discerned

from other land cover types.

5.3.5 VALIDATION

Comprehensive validation of the land cover classifications over the entire watershed was
not possible due to the lack of suitable ground reference data (e.g., aerial photographs) for the
1990 and 1976 time periods, and the large size of the study area (almost 30,000 km?). Acquiring
suitable ground reference information for such large areas over historical time periods is
problematic; instead, three sample sites within the study area were assessed using similar
classification and change detection methods to those employed here. The results from these
sample sites revealed overall classification accuracies greater than 90% for the general land
cover types used in this study (Duro et al., 2012), and a change detection accuracy of
approximately 73% (Duro et al., in review). Comparisons between the amount of cropland area
estimated by the CoA and the amount of cropland area derived from EO imagery were used to

assess the level of agreement between these independently derived datasets.
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5.4 RESULTS

5.4.1 AGREEMENT BETWEEN ESTIMATES OF CROPLAND AREA USING COA
DATA AND EO IMAGERY

Figure 21 represents the relationship between the area of cropland estimated by the
CoA per CCS (ECRPLND), and the area of cropland per CCS estimated by EO imagery for each
CoA year examined in this study. Modelled agreements between CoA years (1976, 1991, and
2006) showed linear relationships between EO imagery (1976, 1990, and 2005/2008) that were
statistically significant (n=19; p<0.001). While all models indicate the presence of large
deviations, the overall relationships between estimates of cropland area derived from the CoA
and EO imagery were consistently linear over all three time periods examined.

If CoA estimates of cropland area per CCS are used as reference of actual on-the-ground
conditions, cropland area estimates derived from EO imagery show varying degrees of
overestimation, and to a lesser extent, underestimation. On average, there was 46.77% more
cropland area per CCS estimated using 2005/2008 EO imagery as compared to estimates in the
2006 CoA. Based on this comparison, the Root-Mean-Square-Error (RMSE) was approximately
32,986 ha, or approximately 330 km? per CCS. When comparing 1990 EO imagery with the 1991
CoA, the average percent difference in the amount of area estimated per CCS was 54.37%
higher for estimates made using EO imagery, with a corresponding RMSE of 36,671 ha, or
approximately 367 km”. In the only instance where CoA and EO imagery were acquired
contemporaneously, the amount of area in cropland estimated per CCS by 1976 EO imagery
was 16.55% higher, on average, than that estimated by the 1976 CoA. The corresponding RMSE

for this latter comparison was 13,021 ha, or approximately 130 km?.
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Figure 21: Relationships between cropland area estimated from EO imagery (hectares) per CCS vs. Census of Agriculture
estimates of cropland area per CCS (hectares) using ECRPLND variable. There are statistically significant agreements between
these independent estimates of cropland area (n = 19; 1976: Adjusted 2 =0.93, p<0.001; 1991: Adjusted > = 0.96, p<0.001;
2005: Adjusted r* = 0.91, p<0.001).
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The differences between estimates of cropland area for each CCS area, either derived
from the CoA (ECRPLND) or EO imagery, two completely independent sources of information,
show similar patterns (Figure 22). As mentioned, the main difference between both sources of
information is that EO imagery appears to overestimate the amount of cropland area in later
years (1991 and 2005) as compared to CoA estimates. For the 1976 period, estimates of
cropland area made by EO imagery reported lower values for several CCS areas. Another
notable difference between both sources of information is the degree at which cropland areas
increase between years: for CoA based estimates of cropland area, the increase appears to be
relatively consistent and small between years, with the exception of CCS area “Special Area
No.3” (see Figure 19 for reference), where the increase between 1976 and 1991 is large. For
estimates of cropland area derived from EO imagery, there is a notable increase in cropland
area between 1976 and 1991 in all CCS areas, and a relatively smaller increase in cropland area
between 1991 and 2005. The one exception is in CCS area “Piapot No. 169”, where less
cropland area was reported in 2005 using EO imagery. Interestingly, the large relative increase
in cropland area between 1976 and 1991 in CCS area “Special Area No.3” estimated by the CoA
is also present in the estimate derived from EO imagery, although the absolute values in

estimated cropland area differ substantially.
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Figure 22: Comparison of independently derived estimates of cropland area made by Census of Agriculture (CoA) and earth

observation (EO) imagery for all 19 CCS areas for three time periods: a) 1976, b) 1991, and c) 2005.

174



5.4.2 SPATIAL DISAGGREGATION OF LAND USE INTENSITY

Figure 23 compares the difference in the depiction of the FERTPD variable (dollars spent
on fertilizer in constant 2002 dollars) normalized using different areal accounting units for 1975,
1990, and 2005 (i.e., the year in which FERTPD was reported). When the area of each CCS
boundary is used to normalize the data (Figure 23a), which includes non-cropland areas where
fertilizer would not be applied, the spatial pattern shows relatively lower amounts of fertilizer
purchased in the southern and western halves of the study area in 1975 and 1990. In 2005,
there was a marked increase in overall fertilizer purchases compared to previous years.

The previous spatial and temporal pattern is evident when the CoA estimate of cropland
area per CCS is used to normalize the data, which scales the depiction of fertilizer purchases to
areas where cropland is present within the CCS (Figure 23b). When using the CoA estimate of
cropland area to normalize the data, the spatial distribution of the amount of fertilizer
purchased shows relatively higher concentrations overall across all CCS areas, with notably
higher relative purchases depicted in earlier CoA years. This can be seen by the relatively high
amounts of fertilizer purchased in the CCS areas of Chesterfield and Antelope Park (see Figure
19 for reference) in 1975 and 1990, as compared to other CCS areas. More notably, by 2005,
the amount of fertilizer purchased is relatively equal (and relatively high) among all CCS areas
as compared to previous years.

Finally, when using estimates of cropland area derived from EO imagery (Figure 23c),
the spatial and temporal distributions of the amount of fertilizer purchased is relatively similar
to when using CoA estimates of cropland area (Figure 23b). However, the most notable
difference between the latter two products is in the overall intensity and spatial arrangement
of the FERTPD information. Where Figure 23b shows relatively higher amounts of fertilizer
purchased per CCS area, Figure 23c shows relatively less fertilizer purchased per CCS area. This
difference is most notable in northern CCS areas in earlier years (1975 and 1990) as the relative
amounts of fertilizer purchased appear to decrease. However, by 2005, the spatial pattern in
fertilizer purchases shows the large increase relative to previous years, a pattern confirmed

using other areal normalizations (Figures 23a and 23b).
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Figure 23: Spatial disaggregation of FERTPD information normalized per area of: a) CCS boundaries; b) CoA estimate of

cropland area; c) EO imagery estimate of cropland area.
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5.5 DISCUSSION

The relationship between cropland area estimates derived from the CoA and EO
imagery were highly correlated and linear in nature (see Section 5.4.1 and Figure 21). When
averaged over the three years examined, EO imagery overestimated the amount of cropland
area by 39.23% or approximately 27,559 ha (~276 km?) as compared to CoA estimates. The
average size of each CCS is approximately 156,732 ha (1,567 km?), which corresponds to an
average overestimation of approximately 18% per CCS area as compared to CoA estimates.
Interestingly, the potential overestimation of cropland area derived from EO imagery in this
study has been noted by others: As in this study, Frolking et al. (1999) were able to relate
cropland area estimated using EO imagery (1 km pixels) with estimates from comparable
agricultural censuses data with a high degree of correlation (r* = 0.82); however, they found
that estimates of cropland area derived from EO imagery were 50-100% higher than that found
in agricultural census data. In another study from a similar region, Liu et al. (2005) found that
estimates of cropland area using Landsat TM imagery (30 m pixels), a spatial resolution used in
this study, were 50% larger than that estimated by national census data. Using 1 km pixels, Kerr
& Cihlar (2003) found that the amount of “agricultural area” reported in CoA data (which
included grassland areas) were well correlated and statistically significant when compared with
estimates made by EO imagery (r’=0.78, p<0.001). In contrast to the findings here, they found
that estimates of agricultural areas were consistently underestimated by EO imagery. The land
cover product used as the basis for this work (see Section 5.3.3.1), which also utilized medium
spatial resolution imagery (30 m pixels), reported a slight overestimation (3%) of cropland areas
(AAFC 2008) when compared to cropland area estimates in the CoA.

Perhaps one of the more compelling results revealed that the estimates of cropland
area derived from two completely independent sources showed a great deal of overall
correspondence (Figures 21 and 22). The notable exception was that EO imagery showed
relatively higher estimates of cropland area in 1991 and 2005 as compared to CoA estimates,
whereas estimates for 1976 from both sources were relatively similar, both overall and on a

per-CCS basis. A potential explanation for this upward bias in estimated cropland area derived
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from EO imagery in 1991 and 2005 might be that the median object size was almost half that
found in 1976, with a corresponding smaller number of objects overall. Smaller and more
numerous objects derived from 1990 and 2005/2008 imagery may have caused cropland area
to be over reported. Despite the difference in the median image object size, the scale
parameter value (60), which sets the minimum image object size, ensured that all years
consistently utilized a similar minimum mapping unit. In addition, areas of cropland are typical
found in a spatially cohesive pattern, therefore differences in image object sizes are relatively
meaningless as all objects are effectively summed when determining overall area coverage.
However, in situations where there are small, isolated fragments, over reporting of cropland
area may result.

In this study, a potentially large source of error is the mismatch between acquisition
dates and when CoA data were gathered, causing a discrepancy between the amounts of
cropland area estimated in the CoA and that estimated by EO imagery. For EO imagery and the
CoA from the same year (1976), the average percent difference between CoA and EO imagery
estimates of cropland area dropped to 16.57%. Given that both independent datasets show a
remarkable correspondence in the general temporal trends in cropland area, it is likely that the
overall trends are representative of actual ground conditions. However, the reported difference
in magnitude, especially in later years, indicates that the accounting of cropland areas between
data sources is different.

Indeed, an explanation for the discrepancy between CoA and EO imagery estimates of
cropland area could be related to how data are collected for the CoA. For example, “data
suppression” procedures to ensure privacy of respondents may remove data from an analysis;
data inconsistencies from rounding error or the effects of sampling may introduce error; and,
perhaps the largest potential source of error when using CoA data, is the use of the
“headquarters rule”, whereby all data collected for an agricultural operation is assigned to the
geographic area where the farm headquarters is located (Statistics Canada, 2008). This latter
rule may introduce an overestimation (or underestimation) regarding land use information
within a given census boundary (e.g., CCS), as information is effectively removed (or added)

within a census reporting boundary. Such practices, while preserving anonymity, hamper multi-
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temporal analysis of land use data, as information is deliberately obfuscated. Ultimately,
estimates of cropland area made by either data source likely contain errors, raising the
possibility that CoA estimates may actually underestimate the amount of cropland area (Kerr

and Cihlar, 2003).

The spatial disaggregation outlined and conducted in this study used data on fertilizer
purchases, a measure of land use intensity, and land cover information derived from EO
imagery. When compared to standard choropleth mapping (Figures 23a and 6b), the
disaggregated agricultural land use information (FERTPD) in Figure 23c was more suited to
representing the amount of fertilizer purchased per CCS area in a spatially explicit manner. In
other words, the extent and configuration of cropland area was evident in the spatially
disaggregated maps, whereas traditional choropleth maps — even after normalization of area —
depicted the land use intensity information in a spatially homogenous fashion.

While comparisons between CoA and EO imagery estimates of cropland area were
different, they showed nearly identical spatial patterns of land use intensity when displayed
normalized to the amount of area identified as cropland (Figures 23b and 23c). Regardless of
which estimate of cropland area is more accurate, the main advantage of the disaggregation
procedure is that a more spatially representative depiction of cropland area per CCS can be
achieved. In this form, the land use variable under investigation can be readily assessed,
allowing for spatially explicit analyses to be conducted. For example, the number and area of
cropland patches can be assessed, adding enhanced insight into the spatial configuration of
individual land cover types. Such local landscape level analysis would not be possible using
standard choropleth mapping as the spatial distribution of the variable of interest is assumed to
be homogenous throughout the selected boundary (e.g., CCS areas depicted in Figures 23a and

23b).

Future work to extend the methods outlined here could focus on obtaining ancillary

information and/or EO imagery capable of providing detailed land cover classes that allow the

spatial disaggregation to be carried out in more detail, or by using other CoA information that
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can benefit from the spatial disaggregation process. With more detailed land cover classes (i.e.,
specific crop types), information on the amount of fertilizer applied per crop type could be
estimated, as different crop types require varying amounts of fertilizer. Such an application
could be adopted within the study area to assess the relative trade-offs between increasing
agricultural land use intensity and various ecosystem services, which is an approach being
pursued by others in similar intensively developed agricultural regions (Mehaffey et al., 2011).
Another example might involve using appropriate EO imagery and ancillary data to locate areas
and extents of improved and unimproved pastures, feedlots, and other livestock operations,
which could provide greater insights into the spatial distribution of livestock related land use

intensity information in the study area.

5.6 CONCLUSIONS

While both independent agricultural census data and EO imagery estimates of cropland
area were different, the overall relationship between both sources was found to be highly
significant, and the overall temporal trend in cropland area per census boundary showed
considerable similarity. Using medium spatial resolution EO imagery (10-60 m pixels) to
spatially disaggregate land use information contained in agricultural census data provided a
spatially explicit representation of land use intensity, which when compared to traditional
choropleth mapping, would be better suited to understanding the effects of local landscape
scale development. While further work is needed to select more refined datasets used by the
spatial disaggregation procedure outlined here, the application as illustrated shows
considerable promise as a means of gathering enhanced insight into spatial and temporal

trends in local landscape land use intensity in agricultural environments.
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CONCLUSION

As established in the introduction of this thesis, many regional environmental assessments
(e.g., the Saskatchewan Watershed Authority’s State of the Watershed report) currently utilize
information that has been aggregated over large watershed boundaries. While such approaches
utilize ecologically relevant units of analysis, the use of aggregated information confounds
understanding how the spatial configuration and composition of land cover and land use
related to agricultural development at local scales may impinge upon ecosystem functions over
time. As a result, several objectives were established to address this deficiency by introducing
and implementing developments in the image analysis and spatial analysis.

Chapter 2 investigated whether pixel-based or object-based approaches to image
analysis, along with several machine learning algorithms, provided adequate depictions of land
cover in agricultural environments. The results from this chapter established that there was no
statistically significant difference in overall classification accuracy between pixel-based and
object-based image analysis approaches. However, object-based image analysis allowed for the
mapped results to be easily integrated with land use information within a Geographical
Information System (GIS). Furthermore, the Random Forest (RF) classification algorithm
exhibited advantageous qualities, which singled out its use in research explored in subsequent
chapters.

In Chapter 3, object-based image analysis and the RF classifier was explored in more
detail and used to combine disparate sources of earth observation imagery for mapping broad
agricultural land cover types. In addition, a feature selection algorithm was used to reduce the
size of the underlying dataset without affecting overall classification accuracy. The large
amount of predictor variables available due to using various sources of earth observation
imagery and object-based image analysis was reduced using the feature selection algorithm by
up to 60% without unduly impacting overall classification accuracy. In conjunction with the

feature importance scores generated by the RF classifier, it was possible to gain greater insight
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into which image segmentation scale and sensor specific bands provided relatively more useful
information for classifying broad agricultural land cover types.

Chapter 4 adapted an existing change detection method for use within an object-based
image analysis environment. The object-based image analysis approach allowed for a more
robust means of updating existing land cover maps, as image segmentation procedures could
be configured to respect existing land cover boundaries delineated in previous maps.
Furthermore, the change detection procedure allowed for multiple sources of imagery with
different spatial and spectral characteristics to be utilized in the map updating procedure. The
flexibility of the introduced change detection method and associated map updating procedure
provides a standardized approach of integrating multi-scale, multi-source, and multi-date
imagery.

Building upon image processing, change detection, and map updating methods outlined
in previous chapters, a spatial disaggregation procedure was described and implemented in
Chapter 5. Selected agricultural land use data information was spatially disaggregated over a
modest sized watershed in southwest Saskatchewan for three time periods. The disaggregated
land use data showed similar spatial and temporal patterns to independently gathered
agricultural census data, but with the advantage of depicting this information in a spatially
explicit manner within individual watersheds.

The combination of methods developed in this thesis allow for the creation of maps
depicting land cover and land use at local landscape scales in a spatially explicit manner over
time periods where remotely sensed information is available. The image processing methods
investigated and implemented allow for multiple scales of investigation through the use of
object-based image analysis, an RF classifier, and associated feature selection algorithm. The
introduced change detection method and map updating procedures described and employed in
this thesis allows for multiple sources and dates of imagery to be used within a flexible GIS
processing environment. This thesis introduced several developments in image processing and
spatial analysis allowing for the multi-scale, multi-source, and multi-date imagery to be

processed in a consistent manner suitable for supporting sustainable agricultural development.
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FUTURE RESEARCH DIRECTIONS

Opportunities exist to extend this thesis. Potential avenues include:

A) Spatial disaggregation of livestock related information

Due to the lack of suitable imagery, it was not feasible to conduct a spatial disaggregation of
stocking densities within the study area. In this thesis, stocking densities and associated waste
manure production could only be summarized over relatively large CCS areas and normalized to
CCS areas. Access to higher resolution earth observation imagery and/or appropriate business
records might be used to locate feedlot operations across the study area, allowing for the
effective spatial disaggregation of such data. Collecting multi-date and multi-source imagery
(e.g., VNIR and SAR imagery) could be used to improve the discrimination between improved
pastures and natural grasslands so that areas used for grazing can be effectively mapped.
Although confusion would still remain as natural grasslands can be used as improved pasture
and vice versa. Delineating areas that are deliberately set aside for grazing purposes would
provide an opportunity to better quantify stocking densities within the region and associated

environmental impacts.

B) Detailed crop type mapping

Broad land cover types were utilized in this study to facilitate the integration of earth
observation imagery with varying spatial, spectral, and radiometric characteristics. With
appropriate resources, the generalized land cover types used in this thesis could be expanded
to better represent the variety of crop types found within the study area. Such an effort would
have to balance detailed crop type mapping, which would be possible in later years, with what
is actually achievable using relatively less suitable multispectral imagery in earlier years (e.g.,

Landsat MSS imagery). This detailed crop type mapping could then be used to determine the
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relative amount of resources (e.g., fertilizer, water, pesticides, etc.) required to produce specific
crops, or to assess carbon and nutrient cycling. While such an analysis can be conducted using
agricultural census data alone, as shown in this thesis, the relative utility of examining
additional information in a spatially explicit manner may lead to more compelling

opportunities.

C) Detailed riparian mapping and landscape assessment

Since hydrological characteristics within the prairie provinces suggest that only a small portion
of an entire watershed actually contributes flow to the main river stem, it would be
advantageous to focus on mapping efforts that can provide a high level of detail of such
hydrologically (and ecologically) relevant areas. This approach could utilize relatively advanced
sources of remotely sensed information, such as that provided by hyper-spectral or LIDAR
sensors, to map vegetation characterises of riparian environments. Detailed field data on the
abundance of certain sentinel species, used as indicators of overall aquatic ecosystem health,
could be related to remotely sensed estimates of habitat cover. In addition, detailed landscape
analysis could be conducted to assess whether the composition and configuration of land cover
elements can be related to the condition of riparian environments. If so, this can be used to
assess large swathes of area. In this thesis, preliminary information related to landscape metrics

within the riparian environments was conducted.
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