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ABSTRACT 

An ever-growing Canadian urban population could be severely impacted by increase in 

temperature. Canada’s mean temperature is projected to increase by 6-8°C towards the end of the 

21st century. The consequence of rising temperatures is an increased likelihood of extreme 

temperature events like heatwaves and wildfires. The thesis aims to assess changes in extreme 

temperature in large Canadian urban areas. The research will help in developing mitigation 

measures like urban planning, which help cope with changing temperature extremes. Predicting 

urban temperature change will require rigorous assessment of climate models, to account for the 

uncertainty in projecting temperature in large urban agglomerates.  CMIP6 ensemble of models, 

provide an opportunity for assessment of urban-based projections. The models however, would 

need to be of fine resolution to fully capture its variability since urban temperature is heavily 

influenced by local urban features that contribute to Urban heat island (UHI).  Historical maximum 

and minimum temperature trends are analyzed for eighteen urban areas in the Canada with 

population greater than 250,000 and use twelve CMIP6 models of fine resolution (<1°), and four 

tier-one emission scenarios to assess maximum, minimum, and mean temperature trends in future. 

An efficient observation dataset, Serially based station data (SCDNA), was used as a reference 

observation dataset and a novel bias-correction technique, the Semi-Parametric Quantile Mapping 

method (SPQM), was used to bias-correct future temperature data. Extreme temperature events 

were analyzed with the help of eight selected indices of the Expert Team on Climate Change 

Detection and Indices (ETCCDI), across all the emission scenarios for all the cities in the study. 

The indices were computed for the entire future time-period (2021-2100) and for three time-slices, 

T1 (2021-2050), T2 (2040-2070) and T3 (2070-2100) to assess temporal variability. The 

magnitude, frequency, and duration of the occurrence of extreme events can be analyzed 

effectively using the ETCCDI indices, classified as absolute, threshold, and duration Indices and 

percentile indices. 

The historical temperature trends in Canadian cities were found to be related with urban features 

like elevation and population-growth but not strongly linked with urban area. Other features of 

UHI were deemed essential to understand the transitioning of historical and future temperature 

trends in Canada. Four emission scenarios predict increasing mean temperatures in all Canadian 

cities, except for the optimistic emission scenario (SSP1-2.6), which shows a marginal decreasing 
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trend in the last quarter of the 21st century. Uneven changes are noted in all the projected indices, 

for example, in the annual maxima of daily maximum temperature (TXx), i.e., an increase of 0.5 

°C and 0.6 °C per decade over the T1 and T2 respectively, and 0.99°C for T3 for the SSP5-8.5. 

Results show faster rates of warming across Canadian cities especially for the higher emission 

scenarios (SSP3-7.0 and SSP5-8.5).  

Spatial trends of extreme temperature indices corelate with temperature trends in individual 

climate zones in Canada, and the cities associated with a zone, expectedly experience similar 

trends. Cities in the Prairies and the Great Lakes zones, experience the highest increasing trends 

over the absolute and threshold indices in the higher emission scenarios, whereas the cities in the 

Canadian coasts experience higher increasing trends in the percentile indices. Lower emission 

scenarios also point towards increasing spatial trends in all Canadian cities. The coastal cities also 

experience the highest trends for the warm-spell duration index (WSDI) and a decreasing trend in 

the cold-spell duration index (CSDI). Spatial patterns of duration indices in the Canadian coastal 

cities point towards hotter summers, and milder winters, whereas the cities in the Canadian 

prairies, the Great Lakes, and Quebec will experience hotter summers with longer durations of 

extremely hot weather, in addition to persistence of harsher winters.  

Temperature projections have several applications, for example, in civil engineering applications, 

where temperature has a great role in the estimation and assessment of concrete and reinforcement 

deterioration. Another field of research is urban-based mortality studies, a consequence of the 

increasing frequency and duration of extreme temperature events. Heat-wave analysis, estimated 

through extreme temperature indices, forms the basis for estimating mortality rates from heat 

waves and other extreme temperature events. 

Climate models and CMIP6 models have systematic errors in their development and hence can 

only predict temperature projections with a limited degree of confidence. An extension of the work 

in this thesis could be the use of various model performance indicators, that quantitively assess the 

performance of temperature projections made by CMIP6 models in Canadian cities. The future 

temperature projections and estimations of heat waves provide a scientific basis for a better 

understanding of the temperature patterns and temperature-related extreme events in Canadian 

cities and thus help facilitate climate change adaptation. 
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Chapter 1: General Introduction 

1.1 Overview 

Rising temperatures have a severe impact on human health (Martin et al., 2012), food security, 

ecology (Piao et al., 2010), biodiversity (Urban et al., 2016), and water supply (Papalexiou et al., 

2018). A predicted increase in the temperature leading to a higher frequency of heat waves and 

higher than average temperature across the world (Katz & Brown, 1992; Meehl & Tebaldi, 2004; 

Schar et al., 2004) is set to have a major effect on the ever-increasing global urban population. The 

increase of world urban population coincides  with an ever-rising population in Canadian urban 

centers (Government of Canada, 2015). The increase in temperatures has severe effects on the 

general well-being and socio-economic aspects of human life (Gosling et al., 2009; Martin et al., 

2012).  Populations in the northern hemisphere are predicted to experience higher increases in 

temperature in the future. Several climate models actually predict that Canadian cities will 

experience temperatures higher than  their historical average in the coming decades (Weaver, 

2003). There is limited research on urban temperature projections in Canadian cities (Pengelly et 

al., 2007). The increase in the number of extreme temperature events in Canada could potentially 

affect an unprecedented number of people and communities. A projected increase of 105 − 135 

heat-stress related deaths per year over the coming decades in the city of Toronto, is an example 

of an impending catastrophe that could arise from a lack of preparedness (Pengelly et al., 2007) 

Predicting urban temperature can be a bigger challenge than the estimation of climate parameters 

over larger land or ocean masses, which typically involve the use of very coarse-scale climate 

models. The presence of urban features, typically inherent of larger population centers across the 

world, creates a phenomenon known as ‘Surface Urban Heat Island’ (SUHI) (Gaur et al., 2018), 

which leads to local variations of temperature. The concept and influence of SUHI on urban 

temperature will not be addressed in this thesis, although the phenomenon’s importance in 

studying urban temperature is recognized. The frequency and effect of heat waves on Canada have 

increased the need for accurate temperature-based urban projections to facilitate better preparation. 
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Given the continuous expansion of city boundaries with increasing population, the heat-island 

effect is always predicted to increase (Choi et al., 2014) and future urban temperature simulations 

to assess local temperature changes would be critical in long-term urban planning (Gallo & Xian, 

2014). Hence, there is a need for a robust set of models that either encompass most of the local 

urban temperature variation or better represent the features of an urban environment. 

Global climate models or general circulation models (GCMs) typically employs a mathematical 

model of the general circulation of both atmosphere and ocean processes. The Coupled model 

Intercomparison project (CMIP), provides a platform of tried and tested models, used extensively 

for temperature projections in various resolutions. This thesis involved the extraction of the CMIP6 

(which is CMIP’s 6th iteration) ensemble of models, both historical and future, of the highest 

available resolution and on a daily scale, i.e., a time series with one data point per day will be used 

for the study. The parameters of interest of the data extracted are the Maximum temperature (TX) 

and Minimum temperature (TN). Various modelling groups use different sets of equations and for 

initial and boundary conditions leading to a set of ensemble members from each group. It is 

recommended to use several ensemble members to account for the unpredictability of temperature 

variation. Therefore, TX and TN datasets were extracted for a set of twelve models. Four different 

emission scenarios based on the inherent uncertainty of future temperature change (details in 

section 1.3 Thesis Data). 

Bias is always exhibited by climate models, and CMIP6 models are no exception (Cannon et al., 

2015). The bias manifests itself when a set of historical models are compared to observations. 

Hence, future projections of the models would need a statistical adjustment, known as bias 

correction. A novel bias-correction technique (section 1.4), known as Semi-parametric quantile 

mapping method, was used to obtain future temperature time series for four emission scenarios 

(see section 1.5). Bias-corrected simulations for all CMIP6 models were then analyzed for the 

various extreme temperature indices. Extreme temperature indices, in accordance with the Expert 

team of climate change detection and Indices (ETCCDI), help understand the rate of change of 

extreme temperature, the frequency of the change, and can also be used to analyze the spatial 

variation of extreme temperature across Canadian cities. 

The primary objective of the thesis is to understand the transition from observed historical 

temperature trends to bias-corrected future trends over the variables of TX, TN and Temperature 
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mean (Tmean) (calculated as (TX + TN)/2), over every future emission scenario, across Canadian 

cities and obtain relationships between the change of the variables and the cities’ populations, 

elevations, and respective climate zones. 

Chapter-1 of the thesis focuses on an overview of the thesis topic, a succinct literature review on 

urban temperature, the study area, the datasets being used, and the statistical techniques that are 

used to correct temperature data and making reliable urban temperature projections. The Chapter 

is divided into the following sections: Urban temperature and study area (section 1.2), Thesis data 

(section 1.3), Bias correction techniques and Extreme temperature indices (section 1.4), and Thesis 

overview (section 1.5), which includes research questions that the thesis will aim to explore and 

thesis objectives, followed by individual chapter overviews. 

1.2 Urban temperature and study area 

1.2.1 Urban Temperature Overview   

Studying the extent of urban temperature variation is a challenging task as the difference in 

temperature between a rural and an urban area can be as high as 7°C (Lauwaet et al., 2015). The 

extent of the effects of temperature varies between urban environments. Urban temperatures are 

complex due to altered surfaces and different land cover types leading to various thermal surfaces 

and high local temperature variation. Therefore, coarse-scale climate fails to account for these 

alterations (Wang et al., 2016). An urban temperature profile is a result of complex temperature 

dynamics, among other factors (Tang & Wang, 2007). The area of a city, its elevation, the land 

cover types, and its population are a few factors that contribute significantly to the urban heat 

island effect (Allen et al., 2015; Gaur et al., 2018; Wang et al., 2016). It is important to understand 

temperature changes for developing risk assessment strategies in urban areas. The study area hence 

encompasses the largest eighteen population centers in Canada. 

Larger urban agglomerates contribute to higher amounts of radiative forcing. Radiative forcing is 

essentially the difference between the heat energy absorbed by the earth and the energy radiated 

back into space. This difference, which directly aids the greenhouse effect, is uncertain and hard 

to predict for a future time period. Hence, scenarios of climate projections are employed under 

various Shared Socio-economic Pathways (SSPs), each one representing a different concentration 

of radiative forcing. Each individual set of future projections is critical towards effective urban 
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planning in Canadian urban centers,  and helps cope with the ever-increasing temperature and 

changing land cover in and around the areas of densely populated urban zones (Wicki & Parlow, 

2017). 

1.2.2 Study area 

The largest 18 population centers in Canada are considered for the thesis. These cities have a 

population of over 250,000 as of the year 2020 and have also experienced some of the highest 

population growth since 1980. The cities are located in 7 provinces and 6 climate zones across 

Canada.  

1.3 Thesis Data 

The thesis uses two distinct sets of data; the CMIP6 data which consist of twelve models each 

having a historical dataset and four future datasets corresponding to future scenarios, and an 

observation dataset. 

CMIP6, the sixth iteration of CMIP, is built on five DECK experiments (Diagnosis, 

Experimentation and characterization of Klima) and twenty-one Model-Intercomparison projects 

(MIPs), which serve as a robust means of involving a vast majority of the parameters that control 

climate in a region. The DECK experiments incorporated by every model in CMIP6 consist of the 

following simulations: Atmosphere Model Intercomparison Project (AMIP), Pre-industrial 

Simulations (pi-control), Historical simulations, 1% increase in CO2 atmospheric concentration 

(1% CO2), and four times the amount of atmospheric CO2 (4 X CO2). In the last two experiments, 

the change in the concentration is made for the year 1850, and then the natural climate forcings 

are applied until an equilibrium is attained (Eyring et al., 2016). The DECK experiments serve as 

the basis of all of the CMIP6 models, hence all the changes made in the individual DECK 

experiments (like 1% CO2 or 4 X CO2), are done on all the modelling groups. When applied to 

obtain the simulations, natural forcing (aerosols, land-use and solar variability) leads to variations 

and evolution within each model. One or more of the DECK experiments are tinkered with to form 

various variant labels or realizations in each individual model (Eyring et al., 2016). CMIP-

endorsed climate models simulate meteorological and hydrological variables for more than 150 

years in the past and project future changes under various scenarios assuming different radiative 

forcing or forcing levels called Shared Socioeconomic Pathways (SSPs).  
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A total of eight CMIP models, with two models having two and four subsequent realizations or 

variant labels (detailed in the Methods and Data section) with relatively fine resolution (< 1°) are 

selected. These have a combination of historical simulations (1979-2014) and future projections 

through various SSPs (2015-2100). The main SSPs, also known as Tier-1 scenarios, are the SSP1, 

SSP2, SSP3, and SSP5. The scenario names also have an extension based on the forcing category 

(Table A.1). 

The CMIP6 models, are initially assessed for a given base-period (in this case 1979-2014), i.e., the 

historical time period. The assessment is a comparison of model data against an observation 

dataset. Typically, bias is estimated as the difference between the cumulative distribution function 

of the historical observation dataset and that of the model. The observation datasets considered 

were the Natural Resources Canada Meteorological Data (NRCANMET), the Watch Forcing Data 

(WFDEI), the Climate prediction center (CPC), and TX and TN data from the National oceanic 

and atmospheric administration (NOAA). All the datasets had a proportion of missing or erroneous 

values within the time period of 1979-2014. Station-based serially complete datasets for North 

America (SCDNA) for TX and TN time series for the base period (1979-2014) have been used for 

historical comparison with the CMIP6 models. SCDNA is based on ground observations, that have 

been thoroughly quality checked. The missing values were computed using a robust series of 

methods including quantile mapping, machine learning, and information from other reanalysis 

products of nearby stations. SCDNA (highlighted in Table 1.1) data are proven to perform very 

well when compared to other observational datasets that are notable for having a very high standing 

(Tang et al., 2020).  
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Table 1.1: List of Observation datasets considered including SCDNA data 

Observation 

Dataset name Institution 
% of missing 

values 

WFDEI 

Hadley center for Climate Prediction and Research, Ministry 

of Defense, UK 4.3-5.3% 

NRCANMET National Resources Canada (NRcan)  <0.5% 

CPC National Oceanic and Atmospheric Administration (NOAA) 1% 

SCDNA 
Center for Hydrology, Coldwater lab, University of 

Saskatchewan 0% 

1.4 Bias correction techniques 

The assessment of climate projections requires a thorough and comprehensive method of statistical 

adjustment (Barrow & Sauchyn, 2017). Either one or a combination of correction techniques have 

to be used to assess the credibility and performance of any Global climate model, and CMIP6 

models are not an exception. Hence, relatively coarser scale models like many models in CMIP6 

are widely used for impact assessment studies, including the application of a correction technique 

since the temperature projections in an urban area as alluded to earlier are far more complicated 

because of the changing land use and land cover. Hence, the statistical technique of bias correction 

is the most common technique applied to make the temperature projections more realistic. 

1.4.1 Bias-correction overview  

Bias correction is a statistical adjustment made to improve the accuracy of the climate model 

output, but it can also be used to improve the resolution (Ehret et al., 2012). Urban Climate impact 

assessment using future projections will be more reliable when done with higher resolution data 

(Jury et al., 2015; Notaro et al., 2015). As stated earlier, coarse-scale models, would not be able to 

account for urban temperature variability. However, a number of models, with a reasonably high 

resolution, can offer an insight into temperature variation. Climate models participating in the 

CMIP project, are robust and offer a scientific solution to exploring and understanding urban 

climate variability. The gap between a coarse-scale model and urban processes can be bridged, 

through a statistical adjustment and bias-correction can also be used as a technique 

(Rummukainen, 2010), especially when mapped to a point or station observation data. 
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The simplest bias correction method used in temperature impact studies is the delta method. The 

differences (or ratios) between the simulated and observed timeseries (Graham et al., 2007; Haerter 

et al., 2011) are obtained and then the differences (or ratios) are added to the future timeseries 

(Anandhi et al., 2011). As this technique only considers the mean values, whilst other statistical 

parameters are ignored, the method is not conducive for effective temperature projections or 

impact assessment on a finer scale. Another important method, the most commonly used one, is 

Quantile Mapping. The main objective of this method is to use a transfer function that helps 

temperature simulation values of the model replicate the ones of the observation data with a great 

deal of accuracy (Grillakis et al., 2017), making it highly effective for several climate impact 

assessment studies (Grillakis et al., 2011; Ines & Hansen, 2006). Seasonal temperature over the 

base period is shown in Figure 1.1, where the large temperature variation across Canadian cities is 

presented. Bias correction is done on a monthly scale, to account for the high seasonal variation. 

 

Figure 1.1: Seasonal and spatial variation of temperature across Canadian cities 

The bias between an observation dataset and a modeled dataset can be visualized through a CDF 

plot (as shown in Figure 1.2). The CDF plot shows that there is a consistent bias across all CMIP6 
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models when stratified on a monthly scale. 

 

Figure 1.2: Historical (1979-2014) CDF of SCDNA data and CMIP6 modelled data, shows 

significant bias across all the models for one city. 

1.4.2 Distribution selection  

The first step of bias correction involves fitting a distribution to the data, and in most cases, the 

Normal distribution is usually chosen (Haerter et al., 2011; Piani et al., 2010; Terink et al., 2010). 

However, additional statistical distributions with more parameters have been considered for data 

with higher variability and skewness (Thrasher et al., 2012). Though several distributions 

including Normal, Johnson unbounded, and General-logistic were considered, the Skew-normal 

(𝑆𝑆𝑆𝑆) distribution (e.g., Ashour & Abdel-hameed, 2010; Azzalini, 2011) was the distribution of 

choice, as it captured the historical skewness of the temperature data when stratified on a monthly 

scale. It was estimated that three-parameter distribution (narrowed down to Skew-normal or 

General-logistic) had realistic fit parameters and Skew-normal distribution had the best fit (Figure 

1.3) 

The distribution is fit on a monthly basis as temperature is seasonal. This distribution had a good-
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fit with across all cities in the study and all the CMIP6 models. 

The Probability Density Function (PDF) and the Cumulative Distribution Function (CDF) of the 

Skew-normal (𝑆𝑆𝑆𝑆) distribution are given by: 

𝑓𝑓(𝑥𝑥) =
2
𝛽𝛽
ϕ�

𝑥𝑥 − 𝛼𝛼
 𝛽𝛽 � × Φ�𝛾𝛾 �

𝑥𝑥 − 𝛼𝛼
 𝛽𝛽 �� (1.1) 

𝐹𝐹(𝑥𝑥) = Φ�
𝑥𝑥 − 𝛼𝛼

 𝛽𝛽 � − 2T��
𝑥𝑥 − 𝛼𝛼

 𝛽𝛽 � , 𝛾𝛾� (1.2) 

where 𝛼𝛼,𝛽𝛽, and 𝛾𝛾 are location, scale and shape parameters, respectively; Φ(𝑥𝑥) = (1 +

erf �𝑥𝑥/√2�)/2 and ϕ(𝑥𝑥) = 1/√2π exp (−𝑥𝑥2/2) are the CDF and PDF of the standard normal 

distribution, and T is Owen’s T function. For each city and month, the parameters are estimated 

by the maximum likelihood method. 

 

Figure 1.3: CDF plots showing the fit of probabilities of historical (SCDNA) against Skew-normal 

or General-logistic fitted modelled historical data. 
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1.4.3 Bias-correction techniques considered 

The most common bias-correction methods are the traditional Quantile mapping, which makes use 

of a transfer function to match the cumulative distribution functions (CDF) of modelled and 

observed data, and the Quantile delta mapping which theoretically improves the efficiency of 

Quantile mapping, by calculating the delta changes at various quantiles (Chen et al., 2013; Guo et 

al., 2018). 

Both these methods had their disadvantages; the methods either did not work very well with data 

that had trends or seasonality or also involved fitting at observations (historical), model (historical) 

and future simulations, hence having a larger margin for error. 

1.4.4 Semi-parametric quantile mapping method 

A novel Quantile mapping technique is used in the thesis known as the Semi-Parametric Quantile 

Mapping method (SPQM). The SPQM method has proven to be easier and simpler than the 

traditional Quantile Mapping method (QM) or the Quantile Delta Mapping (QDM), as it uses the 

CDF of only one set of data which is the observation historical time series.  

1.4.5 Extreme temperature indices 

The ETCCDI temperature indices, referred to as extreme temperature indices are based on a 

collaborative work put forward by the Expert team of climate change detection and Indices 

(ETCCDI), the World Meteorological Organization (WMO), and Climate change and 

predictability (CLIVAR) (Zhang et al., 2011). The indices selected in the thesis encompass all the 

aspects of extreme temperature assessment and are aimed to accomplish the objectives (section 

1.5.1) of the thesis. 

The ETCCDI temperature indices assess extreme temperature events, their frequency, and duration 

of occurrence over a region (Sillmann et al., 2013; Zhang et al., 2011). For example, heat waves 

are a consequence of extreme events, and when consecutive days are hotter than normal, this can 

be assessed through ETCCDI duration indices, since there are no other universally accepted 

standard metrics to compare heatwaves between regions, cities or time-periods (Meehl & Tebaldi, 

2004; Perkins & Alexander, 2013) 

The categorization of the indices will help understand the behavior of trends of temperature 

extremes. Each category of the indices will contribute to fulfilling an objective set out by the thesis; 
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the absolute indices will advance our understanding of changes in trends of TX and TN, across 

Canadian cities whereas the percentage indices will shed light on the frequency of trends, the 

duration indices on the duration, and the combination of all the indices, will help accomplish the 

overarching objective of understanding the behavior of future temperature extremes, and also the 

transition of historical to future extreme temperature trends. 

Indices can also be classified based on the data used for their computation; Maximum indices, will 

include TXx, WSDI, TX90p, and ID, all of which are computed from the TX data, and TNn, CSDI, 

TN10p, and FD are computed from the TN data. 

Absolute indices are calculated by considering the annual, seasonal, or monthly maximum with its 

units in °C, and the threshold indices are calculated as the number of days above a threshold value 

(in our case it is 0°C). The percentage and duration indices typically use a base period of 30 years 

from the 1951-2003 historical window (Alexander et al., 2006) for their computation. In this thesis 

a base period of 1979-2008 is used to calculate a percentile value for a 5-day moving window. The 

process can be described by the following steps for one day in a year: 

1. For January 15th, we take the days January 13th, 14th, 15th, 16th, and 17th, for the base 

period, hence 150 values, and calculate the percentile value (90th or 10th depending on the 

index), over the 150 values. 

2. In the future time period, the day of January 15th is checked with the calculated percentile 

value from step 1; if the value either exceeds the 90th percentile value (or is lower than 

the 10th percentile value) it would count as a day, the percentage of the days counted in a 

year represent the percentage indices.  

3. If the counted days from step 2 occur over at least 6 consecutive days, the annual sum of 

all the days is taken as the duration indices. 

4. The trends are assessed and presented as change (increasing or decreasing trend) per 

decade for all indices. The trends are assessed using Python’s Scipy library linear 

regression function to find the best fit line.The documentation for the Scipy library is 

accessed at https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html. 

 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html
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1.5 Thesis Overview 

1.5.1 Thesis Objectives 

The thesis aims to answer the following research questions: 

• How would the historical temperature trends relate to urban features and transition to future 

trends across the four emission scenarios? 

• How are the historical and future trends of TX and TN magnitudes changing and what are the 

trends of frequency of occurrence of extreme events? 

• What would the correlation between different spatial variations of extreme temperature 

indices, across future emission scenarios, and what geographical factors could be influencing 

these changes? 

Based on these research questions, the primary objective of the thesis is to understand the changing 

extreme temperature trends in Canadian cities, and the following objectives help achieve the 

primary goal of the thesis. 

• To extract and  analyze TX, TN datasets through selected CMIP6 models that encompass 

the temperature variation exhibited in Canadian cities and make statistical adjustments 

by correcting bias on future projections. 

• To  analyze the transition of historical trends to future trends through annual Tmean 

trends and long-term annual Tmean trends. 

• To calculate and understand the change in the magnitude, frequency, and duration of 

extreme temperature events in Canadian cities using selected extreme temperature 

indices. 

1.5.2 Chapter 2 Overview 

The second chapter focuses on the objectives put forward in Chapter 1 and involves extraction and 

analysis of TX and TN datasets for a set of eight models, two of which have four different variant 

labels, leading to 12 models for analysis and the SCDNA dataset, for the eighteen largest 

population centers, from various climate zones in Canada. Bias-corrected future projections are 

analyzed for extreme temperature indices. The results of the chapter will outline historical 

temperature trends and long-term future temperature trends. Extreme temperature changes are 
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assessed through eight selected ETCCDI indices or extreme temperature indices. The indices are 

presented and analyzed as trends (increase or decrease per decade) in two phases. The first phase, 

presents the indices, as boxplots, for all the CMIP6 models, for the four emission scenarios. In the 

second phase, the mean of the models is presented as a trend for every city on a map, to visualize 

spatial patterns and variation. 

1.5.3 Chapter 3 Overview 

Chapter 3 of the thesis includes a summary of the research findings in the previous chapters, the 

engineering significance of the thesis, and provides direction for future work in this research area. 
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Chapter-2: Analysis of extreme temperature changes using 

ETCCDI indices and CMIP6 data in Canadian cities  

Abstract 

This study incorporates the selected ETCCDI indices to assess changes in temperature extremes 

in the largest 18 Canadian cities. Bias-corrected maximum and minimum temperature projections 

of eight CMIP6 models using four Shared Socio-economic Pathways (SSPs) were used to calculate 

the extreme temperature indices. The indices, grouped as absolute, duration, threshold, and 

percentile indices, offered varying spatial and magnitude variation amongst the cities involved in 

the study. The increase of absolute indices is uneven throughout the 21st century, although other 

indices have an evenly increasing or decreasing trend, based on the city. Absolute indices predicted 

the highest increasing trends in the cities in the Prairies climate zone over the last three decades of 

the 21st century (2071-2100), whereas the duration and the threshold indices are predicted to have 

the highest trends in coastal Canadian cities. Despite increasing trends in magnitudes of minimum 

and maximum temperature extremes, it is projected that the duration and frequency of lower 

temperature extremes will persist, especially in the cities in the Canadian prairies and the Great 

Lakes climate zones. The results of this study will aid in further understanding extreme 

temperature-related phenomena like heat waves and will assist in urban planning and mitigation 

strategies. 

2.1 Introduction 

About 55% of the world’s population lives in urban areas and this proportion is expected to rise to 

66% by 2050 (United Nations et al., 2019). In Canada, over 80% of the population lives in urban 

areas currently, with a steep decline in the rural population from 84% in 1851 to 18.9% as of 2011 

(Government of Canada, 2015). Due to the ever-growing population and a dense network of heavy 

construction/buildings within a constrained space, urban areas typically have a different climate 
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with increased temperatures compared to their surrounding rural areas, creating a ‘heat island’ 

(Gaur et al., 2018). This has a severe effect on the environment, from reduced air quality to 

structural deterioration of concrete infrastructure (Lauwaet et al., 2015; Stewart et al., 2011), 

general well-being, and socio-economic aspects of human life (Gosling et al., 2009; Martin et al., 

2012). In addition, temperature changes have a severe effect on precipitation patterns, frequency, 

and duration (Buishand & Brandsma, 1999). There is a predicted increase in temperature variation 

leading to a higher frequency of heat waves across the world (Katz & Brown, 1992; Meehl & 

Tebaldi, 2004; Schar et al., 2004). The threatening effects of heat waves in several parts of the 

globe have increased the importance of temperature-based projections to facilitate better risk 

management and disaster preparedness (Martin et al., 2012). Therefore, it is of paramount 

importance to understand historical and future temperature changes in urban areas for risk analysis 

and adaptation and mitigation measures development.  

 North temperate and polar regions are expected to experience higher increases in temperature 

compared to the tropics in the future. Previous versions of climate models predict that Canadian 

cities will experience temperatures higher than their averages in the coming decades (Weaver, 

2003). Canada has fewer studies conducted on the extent of heat waves in the last few decades, 

when compared to other countries (Pengelly et al., 2007). In the city of Toronto, heat waves are 

responsible for 120 deaths per year and this number is expected to rise to 144 − 447, as the number 

of extreme hot-weather periods is predicted to be more frequent in the coming decades, both in 

Toronto and the nearby urban centers in Ontario (Allen et al., 2015). The frequency and effect of 

heat waves on Canada have increased the need for accurate temperature-based projections to 

facilitate better preparation. The likelihood of temperature extremes is always on the rise, even 

though it is hard to determine if the sole reason for this increase is the greenhouse emissions. 

However, the greenhouse emissions trend in the last century, point towards a rise in extreme events 

such as heat waves, whereas the likelihood of extreme frost events has decreased (Murray & Ebi, 

2012). Hence, statistical studies on extreme events, help with mitigation strategies to limit extreme 

damage that can occur from extreme events (Reichstein et al., 2013). Given the continuous 

expansion of city boundaries with increasing population, future climate simulations are critical for 

long-term urban planning (Gallo & Xian, 2014). 

Previous versions of CMIP simulations have been extensively used and thoroughly analyzed for 
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both historical and future periods—historical for quantifying the simulations’ accuracy, and future 

for understanding the projected change (Barrow & Sauchyn, 2017; Gaur et al., 2018; Lauwaet et 

al., 2015). The majority of CMIP models from the previous versions of CMIP, predict a global 

temperature increase (Diffenbaugh & Giorgi, 2012). Although CMIP models overall do not fully 

represent the local features of urban areas (Knutti & Sedláček, 2013; Tebaldi & Knutti, 2007), 

CMIP6-endorsed models are advantageous due to the fact that they are modelled using different 

initial conditions for historical climate and four major scenarios for future projections leading to 

an ensemble of simulations. CMIP data are also available for longer time scales (~ 150 years for 

historical simulations and till 2100 for future projections) enabling us to better understand changes 

in temperature.  

A compendious way of assessing climate projections does require a thorough and comprehensive 

method of analysis (Barrow & Sauchyn, 2017). Either one or a combination of correction 

techniques must be used to assess the credibility and performance of CMIP6 models. Bias 

correction is a statistical adjustment made to improve the accuracy of the model output (Ehret et 

al., 2012). It corrects the CMIP models’ inability to capture features that would contribute to 

temperature variation in urban areas. Urban climate impact assessments using future projections 

will be more reliant when done with higher resolution data (Jury et al., 2015; Notaro et al., 2015). 

Bias correction methods range from simple delta mapping methods to many types of Quantile 

mapping methods (Graham et al., 2007; Grillakis et al., 2011; Haerter et al., 2011; Ines & Hansen, 

2006). The normal distribution is usually considered as the distribution of the model data. (Haerter 

et al., 2011; Piani et al., 2010; Terink et al., 2010). However, additional statistical distributions 

with higher parameters will need to be considered, for data comprised of higher variability and 

skewness (Thrasher et al., 2012). 

Bias correction and downscaling techniques are essential to make meaningful projections of 

climate indices (Maurer et al., 2007). Studying temperature extremes often consists of studying 

the 16 temperature-related extremes indices. The temperature indices are developed through the 

collaborative work of the Expert team of climate change detection and Indices (ETCCDI), the 

World Meteorological Organization (WMO), and the Climate change and predictability 

(CLIVAR) (Alexander et al., 2006). Temperature indices effectively capture the varying climate 

of a region or a country with emphasis on temperature duration, intensity, and frequency, making 

them highly effective for validating the changing climate of a region (Zhang et al., 2011). 
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2.2 Methodology and study area 

2.2.1 Study area 

The study incorporates the top eighteen cities with the highest population (Table 2.1). 

Geographically, the cities lie in various climate zones of Canada (Plummer et al., 2006) (Figure 

2.1). Toronto, Hamilton, London, Ottawa-Gatineau, St. Catharines-Niagara Falls, Windsor, 

Kitchener, and Oshawa are large urban centers in Ontario and Quebec, surrounded by the Great 

Lakes and in the St Lawrence climactic zone. Cities in the province of Quebec, Montreal and 

Quebec City, lie in the Northeastern Forest zone, a climactic zone affected by Arctic tundra, the 

Atlantic Ocean and the Great Lakes. Winnipeg, Saskatoon and Regina are the cities in the 

Canadian prairies, characterized by long winters and short summers with longer sunshine hours. 

Vancouver and Victoria are situated in the Pacific climate zone in western Canada, and have 

relatively milder winters and higher amount of precipitation compared to other regions. Halifax is 

on the eastern end, in the Atlantic climate zone, where climate is heavily regulated by winds 

generated by Atlantic Ocean currents. Calgary and Edmonton are located at the periphery of the 

Canadian prairies and the Northwestern Forest and hence are impacted by climactic conditions of 

both zones. These climate zones, play a vital role in understanding the spatial variation of 

temperature in both the historical and the future contexts. 
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Table 2.1: List of Canada’s highest population centers, along with area, elevation and population. 

  

City Name 
Population (2020 

Consensus) Province Area(km²) Elevation(m) 

Toronto 6,255,000 ON 7124 85 

Montreal 4,247,000 Que 4258 40 

Vancouver 2,606,000 BC 2700 31 

Calgary 1,581,000 ALB 825 1050 

Edmonton 1,491,000 ALB 684 645 

Ottawa-Gatineau 1,408,000 ON 2790 70 

Winnipeg 825,000 MB 464 239 

Quebec City 832,000 Que 484 98 

Hamilton 771,000 ON 1138 324 

Kitchener 571,000 ON 136.9 301 

London 511,000 ON 1572 251 

Victoria 390,000 BC 19.47 23 

Halifax 415,000 NS 234.72 102 

Oshawa 402,000 ON 145.7 106 

Windsor 338,000 ON 146.3 190 

St. Catharines-

Niagara Falls 

 

 

416,000 ON 302.81 98 

Saskatoon 331,000 SK 228.1 482 

Regina 263,184 SK 180 577 
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Figure 2.1: Cities used in the analysis are situated in 6 climate zones and 7 provinces across 

most populated regions of Canada. 

2.2.2 Data 

Simulated historical daily maximum and minimum temperature values (TX and TN) outputs of 8 

CMIP6 models were retrieved from the Earth System Grid Federation (https://esgf-

node.llnl.gov/projects/esgf-llnl/). Although more than 40 CMIP6 models are available, models 

with fine resolution, that is, less than 1° on either direction, are chosen (Table 2.2). Four scenarios 

for future, that is, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, are considered. Simulations with 

same variant label that are available for the historical and all four SSPs are considered (Table A.1). 

Serially Complete Dataset for North America (SCDNA), a database for North America considering 

station observations is used in this work. The data were thoroughly quality checked and missing 

values are imputed using a robust series of methods including quantile mapping, machine learning 

https://esgf-node.llnl.gov/projects/esgf-llnl/
https://esgf-node.llnl.gov/projects/esgf-llnl/
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and information from other reanalysis products of nearby stations (Tang et al., 2020). Stations that 

are closest to the city latitude-longitude are chosen. TX and TN timeseries for 1979-2014 period 

is considered here. 

Table 2.2: Eight CMIP6 models) with resolution of 1° or lower, that are used in the analysis of 

the thesis, along with a station-based observation dataset. 

Model Name Institution 

Model 

Identifier 

No of grids 

(Lat X Lon) 

AWI-CM-1-1-

MR  

Alfred Wegener Institute, Helmholtz center for 

Polar and Marine Research, Germany AWI 192 × 384 

EC-Earth3  

Consortium of various institutions from Spain, 

Italy, Denmark, Finland, Germany, Ireland, 

Portugal, Netherlands, Norway, UK, Belgium, 

and Sweden 

EC-E or 

EC-E-r4 256 × 512 

EC-Earth3-Veg 

Consortium of various institutions from Spain, 

Italy, Denmark, Finland, Germany, Ireland, 

Portugal, Netherlands, Norway, UK, Belgium, 

and Sweden 

EC-Ev or 

EC-Ev-r2, 

EC-Ev-r3, 

EC-Ev-r4 256 × 512 

GFDL-ESM4 

National Oceanic and Atmospheric 

Administration, GFDL, Princeton, USA GFD 180 × 288 

GFDL-CM4 

National Oceanic and Atmospheric 

Administration, GFDL, Princeton, USA GFL 180 × 288 

INM-CM4-8 

Institute for Numerical Mathematics, Russian 

Academy of Science, Moscow, Russia INC 120 × 180 

INM-CM5-0 

Institute for Numerical Mathematics, Russian 

Academy of Science, Moscow, Russia 
INM 

120 × 180 

MPI-ESM1-2-HR  Max Planck Institute for Meteorology MPE 192 × 384 
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MRI-ESM2-0  

Meteorological Research Institute, Tsukuba, 

Japan MRI 160 × 320 

SCDNA  Global Water Futures, Univ. of Saskatchewan SCD Station 

2.2.3 Methods  

Quantile Mapping (QM), a method of bias correction technique, can preserve the statistical 

properties of observation data at all quantiles and is better than other commonly used methods (e.g. 

delta method) of bias correction (Chen et al., 2013; Teutschbein & Seibert, 2012). Some extended 

methods, such as the Detrended QM (DQM) and the Quantile Delta Mapping (QDM) are used to 

include varying biases such as non-stationary biases in the projected timeseries (Cannon et al., 

2015; H. Li et al., 2010). While in the DQM the trend in long-term mean is removed prior to 

quantile mapping, in the QDM relative changes between historical and future simulations are 

preserved at all quantiles instead of just the mean as in detrended QM. Both these methods require 

fitting probability distribution at three levels if a parametric case is considered.  

While non-parametric methods avoid the uncertainties due to the fitting, the bias-corrected 

projections are highly dependent on the quality of data that would be mapped, which are 

observation data. A Semi-Parametric Quantile Mapping (SPQM) method is employed in this work. 

Here we fit a skew-normal (𝒮𝒮𝒮𝒮) distribution to the observed data and empirical quantiles are used 

for future simulations. 𝒮𝒮𝒮𝒮 distribution (e.g., Ashour & Abdel-hameed, 2010; Azzalini, 2011) is 

used as the observational data exhibits a minor skewness in both directions (positive or negative 

skewness). To account for seasonality, the distribution is fit on a monthly basis. Though we have 

tried fitting Log-normal and Johnson unbounded, the skew-normal is found to be the best fit. The 

PDF and CDF of the 𝒮𝒮𝒮𝒮 distribution are given by 

𝑓𝑓(𝑥𝑥) =
2
𝛽𝛽
ϕ�

𝑥𝑥 − 𝛼𝛼
 𝛽𝛽 � × Φ�𝛾𝛾 �

𝑥𝑥 − 𝛼𝛼
 𝛽𝛽 �� (2.1) 

𝐹𝐹(𝑥𝑥) = Φ�
𝑥𝑥 − 𝛼𝛼

 𝛽𝛽 � − 2T��
𝑥𝑥 − 𝛼𝛼

 𝛽𝛽 � , 𝛾𝛾� (2.2) 

where 𝛼𝛼,𝛽𝛽, and 𝛾𝛾 are location, sale and shape parameters, respectively; Φ(𝑥𝑥) = (1 +
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erf �𝑥𝑥/√2�)/2 and ϕ(𝑥𝑥) = 1/√2π exp (−𝑥𝑥2/2) are the cdf and pdf of the standard normal 

distribution, and T is Owen’s T function. For each city and month, the parameters are estimated 

by the maximum likelihood method. For a given month (𝑚𝑚), the quantile mapped future 

projections 𝑥𝑥�fs,𝑚𝑚(𝑡𝑡) using SPQM is given by: 

𝑥𝑥�fs,𝑚𝑚(𝑡𝑡) = 𝐹𝐹𝑜𝑜,𝑚𝑚 �𝑞𝑞fs,𝑚𝑚(𝑡𝑡)� (2.3) 

where 𝑞𝑞fs,𝑚𝑚(𝑡𝑡) is the empirical probability of future simulation, 𝑥𝑥fs,𝑚𝑚(𝑡𝑡). The empirical 

probabilities for future simulations are obtained using the Weibull plotting position formula 

((𝑟𝑟/(𝑁𝑁 + 1)), where 𝑟𝑟 is the rank of a datapoint of interest and 𝑁𝑁 is the total sample size. As a 

linear trend is noted in the projections, specifically for higher SSPs (SSP 5-85 and SSP 3-70), the 

timeseries is detrended first and SPQM is applied.  

The steps of the SPQM method are  

1. 𝒮𝒮𝒮𝒮 distribution is fit to historical observations in a monthly basis. 

2. for a given model, variant label, and SSP, the projected timeseries is detrended  

3. on the detrended timeseries, the empirical probabilities using the Weibull plotting 

position are calculated  

4. using CDF of 𝒮𝒮𝒮𝒮 distribution on the empirical probabilities, projected temperature for 

each month is calculated  

5. finally, the trend, which was removed in step 2, was added back to obtain the quantile 

mapped future projections. 

The mean temperature timeseries is obtained for both historical observations and bias-corrected 

projections. First, the historical temperature trends are calculated for the annual mean timeseries 

and compared with the population growth rate. Further the relation between trends, growth rate, 

area of urban extent and geographical location are assessed. Next, we calculated the changes in 

projected trends for different scenarios and quantified the uncertainty in climate models in 

determining the trends. Further changing magnitude and frequency of extreme temperature is 

assessed in terms of popularly used indices. 

Temperature indices allow to understand effectively the changes in magnitude, duration and 



35  

frequency of extreme events (Sillmann et al., 2013). The Expert team of climate change detection 

and Indices (ETCCDI) developed a suit of indices to quantify the varying extremes in a region. 

These indices are widely used in literature, in both global and regional scales. Fourteen temperature 

indices that provide a comprehensive coverage of changes in magnitude, duration and frequency 

of extremes (LUO et al., 2020) were selected.  The indices can be classified as: (a) absolute indices 

(TXx and TNn) (b) threshold indices (FD, ID) (c) percentile indices (TX90p and TN10p) and (d) 

duration indices (WSDI and CSDI). All the indices were calculated considering the base period as 

1979-2008, for the four SSPs and for a given simulation and SSP, a linear line fit for each index 

and the slope is calculated. The changes in the index are noted on decadal basis. Uncertainty in the 

simulations has been assessed in modelling the future trend of extreme indices. The future period 

(2020-2100) is further divided into three time slices of 30 years each, that is, T1 (2021-2050), T2 

(2041-2070) and T3 (2071-2100), to account for temporal variability. 
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Table 2.3: Categorisation and definitions of extreme temperature indices used in the analysis 

2.3 Results 

The average temperature of historical time series SCDNA and bias-corrected CMIP6 models is 

analyzed. The time-series shows a clear increasing trend for most of the cities (Figure 2.2). It is 

evident that relationships between urban features like elevation and area, can be noted. Cities in 

prairies have a milder slope compared to coastal and Great Lakes regions. It is noted that, cities 

with large population (Toronto, Montreal) have high slopes (of order 0.07°C per year). Most cities 

in Ontario, have high slope, with Ottawa having the highest slope (0.19°C per year). Though 

Ottawa and Edmonton have approximately same population, Edmonton has a mild slope (0.01°C 

per year). Further assessment of urban features and the historical annual mean trend, showed that 

there isn’t a clear evidence of proportionality relationships between city area and population, 

Index Type Index Definition Units 

Absolute 

Indices 
TXx Annual maximum value of daily maximum temperature °C 

  TNn Annual minimum value of daily minimum temperature °C 

Threshold 

Indices ID Annual number of days when TX < 0°C Days 

  FD Annual number of days when TN < 0°C Days 

 Duration 

Indices WSDI 

Annual number of days with at least six consecutive days 

where TX >90th Percentile Days 

  CSDI 

Annual number of days with at least six consecutive days 

where TN >90th Percentile Days 

Percentile 

Indices TX90p 

Percentage of days in a year when TX > 90th percentile for 

a historical base period. % 

  TN10p 

Percentage of days in a year when TN < 10th percentile for 

a historical base period. % 
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although elevation has an effect, with lower slopes for cities at higher elevations (Table A3). The 

bias-corrected future projections represented by the various shaded regions (Figure 2.2) also show 

a consistent increasing trend except for SSP1-2.6. Although, the scenario does exhibit an 

increasing trend in the first-half of the 21st century, the trend either plateaus or shows a slight 

decreasing trend towards the end of the century, as a result of the scenario’s assumption of 

sustainable development and green future. Cities in the Canadian prairies have lower magnitude 

of annual mean temperatures, compared to other regions as they experienced colder winters 

historically. 

 

Figure 2.2: Annual average temperature for the historical (black line) and bias-corrected projected 

time-series for the four Shared Socio-economic Pathways (SSPs). The shaded region represents 

the 12 models in each emission scenario.  
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Figure 2.3: Long term trend in the annual mean temperature (°C per year) for different warming 

scenarios for the future. The red line shows the historical observed trend during 1979-2014. 

Long term annual mean trends (Figure 2.3), indicate that the slopes of the trend line are highest 

for SSP5-8.5 as it has the highest warming scenario. In the cities in prairies region, the historical 

trend line coincides or is below the trend projected by the SSP1-2.6 scenario. In the cities in the 

Great Lakes and North-eastern climate zones have a higher slope trend in the SSP2-4.5 scenario.  

Substantial increase in average temperature by the end of 2100 is noted even for the least warming 

scenario, SSP1-2.6, for most of the cities (Figure A.1). An average increase of 0.7°C, 2.8°C, 5.3°C, 

and 6.7°C compared to the historical period is noted in SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-

8.5 respectively in all the cities. Spatially, the increase for cities in the Canadian coastal areas, is 

smaller (from 2 to 4 °C) by the end of 2100. The cities in Quebec, belonging to the north-eastern 

climate zone, experience an increase very similar to the cities in the Great Lakes climate zone, an 

increase of 2.5 to 7.5 °C is noted. Though the average historical trends are milder in the prairies, 

the increase is much higher compared to the other regions.  
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Figure 2.4: Slopes of TXx and TNn indices for individual models for all emission scenarios. The 

units of the rate of change are °C/decade. 

The slopes of extreme temperature indices are plotted for all the individual models across all the 

cities, for every emission scenario (Figure 2.4, Figure A.5, Figure A.6, Figure A.7). The trends of 

TXx and TNn show that the AWI, MPI, and GFD are the models that have smaller variance across 

cities, whereas the other models, particularly EC-E and EC-Ev, exhibit a higher variance, as these 

two models have more than one variant label. Hence, rigorous model performance parameters 

should be used to quantitatively assess model performance.  

The slopes of extreme temperature indices are also assessed for individual cities (Figure 2.5, Figure 

A.2, Figure A.3, Figure A. 4). Maximum temperature indices increase across emission scenarios, 

decreasing over the time-period T3 for SSP1-2.6 and increasing steadily across all the other 

emission scenarios, peaking at SSP5-8.5 in Figure 2.5. Increasing trends for WSDI and TX90p 

corelate with increasing TXx by showing an increase in percentage of hot days by 4.8 to 7.5% and 

duration of warm days by 20 to 30 days per decade as depicted in Figure 2.5. The minimum 

temperature indices like TN10p, CSDI and FD have decreasing trends of smaller magnitudes. 
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Increasing trends are observed for TXx and TNn, with the trend for TNn being higher at 2 °C, 

compared to a maximum increase of 1.5 °C for TXx.  

 

Figure 2.5: Indices Slopes for CMIP6 models as shown for the emission scenario SSP5-8.5. The 

units of the indices are °C/decade for TXx and TNn, days/decade for WSDI, CSDI, ID and FD and 

%/decade for TX90p and TN10p. 

Spatial variation of indices offers substantial insight into future temperature patterns across 
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Canadian cities. The indices trend for each city is represented by the mean trend of all the models 

for this city. A slight increasing (or decreasing) trend approximately 0.1°C is noted for the absolute 

indices for SSP1-2.6 (Figure A.8). The max-indices steadily increase with increasing emission 

scenarios. It is also noted that the cities in the Canadian prairies, experience the highest increase 

in absolute indices’ trends over both SSP2-4.5 and SSP3-7.0 (Figure A.9, Figure A.10), whereas 

the cities in the Great Lakes, show the highest increase in SSP1-2.6 scenario. The other maximum 

temperature indices (TX90p and WSDI), show that the Canadian coastal cities have the highest 

trends in all the emission scenarios. The minimum temperature indices show slim decreasing 

trends, with the trend intensifying marginally with increasing emission scenario (Figure A.9, 

Figure A.10) 

The Spatial patterns for emission scenario of SSP5-8.5 (Figure 2.6), are similar to the trends in the 

emission scenarios like SSP3-7.0 and even SSP2-4.5. The absolute indices peak in the cities in 

Canadian prairies climate zone, but other maximum temperature indices (TX90p, WSDI) exhibit 

higher increasing rates for cities in the Canadian coasts. 

The trends of ID and FD show a decrease over most of the cities, except Vancouver and Victoria, 

however the trend of CSDI shows only a marginal decreasing trend of -1 to -1.2 days per decade. 

The highest decrease of ID is observed in Saskatoon, and surrounding cities in the prairies. The 

cities in the east-coast like Halifax, in the North-eastern climate zone like Quebec City and 

surrounding cities in the Great Lakes zone, also experience a decrease of 3.5 to 4.2 days per decade. 



42  

 

Figure 2.6: Spatial trends variation of all 8 indices for the emission scenario SSP5-8.5. The size 

of the dots is proportional to the magnitude of the trend.  
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Figure 2.7: Boxplots for Absolute indices TXx (above) and TNn (below), the units of TX and TN 

are °C /decade. 

The trends of TXx and TNn are inconsistent throughout the time-period of study and are presented 

in three separate time periods of 2021-2050 (T1), 2041-2070 (T2) and 2071-2100 (T3). The 

boxplots shown in Figure 2.7 of Absolute indices (TXx and TNn), show an increasing trend for 

both the SSP scenarios of 2-4.5, 3-7.0, and 5-8.5, which are used extensively for decision making 
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for mitigation measures in urban areas (Daniel et al., 2019) whereas the scenario of SSP-1-2.6 

showing a decreasing trend. The increase of TXx between the time periods of T1to T3, is a median 

of 0.5 to 0.6 °C in the T2 time-period to almost 1.10 °C per decade in the T3 period in the scenario 

of SSP5-8.5, and this trend is even higher for TNn, translating to an increase in minimum 

temperature of over 1.90 °C per decade in T3 in the frigid regions of Canadian prairies. The relative 

change of magnitudes is greater for the cities of the Canadian prairies like Regina, Saskatoon and 

Winnipeg, and Calgary and Edmonton, situated at the region’s periphery. The cities in the climate 

zones of the Great Lakes, also experience a maximum temperature increase (TXx) of about 1°C 

per decade, and a minimum temperature increase of even 2 °C of the TNn index, in the SSP5-8.5 

scenario for time-period T3.  

 

 

Figure 2.8: Spatial Variation of TXx and TNn indices for the decades T1 
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Figure 2.9: Spatial Variation of TXx and TNn indices for time-period T2 

The mean absolute magnitude of all the CMIP6 models for one scenario of an index value is shown 

as the spatial variation of for the indices TXx and TNn through (Figure 2.8, Figure 2.9 and Figure 

2.10). The TXx and TNn indices have a mean increase by 0.91 and 1.52 °C per decade across the 

time-period of study. The spatial variation varies a great deal throughout the twenty-first century. 

Figure 2.8 shows that the average increase in both the TXx and TNn indices are 0.45 and 0.91 °C 

increase per decade in the highest emission scenario. The lowest emission scenario, SSP1-2.6 in 

fact, shows a decreasing trend through, to the decades of T3, as demonstrated by Figure 2.10. In 

the decades of T2, the increase of TXx and TNn is as high as 0.92 and 1.920, higher than the 

average for the time-period of 2015-2100. The cities that experience the highest increase in the 

decades of T2 are the Saskatoon, Regina, and Winnipeg, situated in the Canadian prairies. The 
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cities in the Great Lakes region in Ontario also, experience an increase of 0.85 °C and 1.86 °C per 

decade in the TXx and TNn indices respectively. In the time-period T3, the increase per decade of 

TXx and TNn is as high as 1.53 °C and 2.5 °C in the SSP5-8.5 scenario. Both the higher emission 

scenarios, SSP3-7.0 and SSP5-8.5, have the high increasing trend in the latter part of the twenty-

first century. 

 

Figure 2.10: Spatial Variation of TXx and TNn indices for time-period T3 

Percentile index TX90p experiences an increasing trend throughout the future period of 2015-

2100. TX90p index has a median increase of 4.5 % per decade for majority of the cities (Figure 

2.5) with west coast cities like Vancouver and Victoria, experiencing a higher increase of about 5 

% increase per decade. The spatial trends show a consistent increasing trend for all the emission 

scenarios, with the highest increase of 6.23% per decade for the Pacific coastal cities of Victoria 
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and Vancouver, and the Atlantic coastal city of Halifax. Cities in the Canadian prairies also 

experience a 5% increase per decade, in the highest scenario of SSP5-8.5 (Figure 2.6) 

The TN10p index shows a decreasing trend across all emission scenarios (Figure A.2, Figure A.3, 

Figure A. 4). Unlike TX90p, the variation of the trend is not high. Across the time-period of study 

(2015-2100) the decreasing trend varies between 0.2 and 1.5% decrease per decade. No substantial 

difference is noticed in the variation of spatial pattern for the TN10p index, as most cities across 

the both sides of the Canadian coast, the prairies and the Great Lakes region experiencing a 

decreasing trend of 1.2% per decade over the emission scenarios of SSP3-7.0 and SSP5-8.5. 

Threshold indices like Icing days (ID) and Frost days (FD) indicate the trend of number of days 

below a threshold of maximum and minimum temperature projections. Both the indices exhibit a 

decreasing of the indices, all the scenarios through the 2015-2100 time-period indicating warmer 

maximum and minimum temperatures in all climate zones. The indices show that cities in the 

Canadian prairies like Saskatoon, Regina and Winnipeg have a median change of -4.5 to -7.5 

days/decade in SSP3-7.5 and SSP58.5 in the ID index. The index FD also has a decreasing trend 

of -8.5 days in the SSP5-8.5 scenario, a correlation with increasing TNn index in the cities in the 

Canadian prairies (Figure 2.4). 

Changes in the CSDI index is steady decrease of cold spell durations throughout the cities of 

interest. The emission scenarios SSP3-7.0 and SSP5-8.5 for all the cities experience a duration 

change of 0.5-1 day/decade (Figure A.2, Figure A.3, Figure A. 4 and Figure 2.6). The spatial 

variation of the CSDI index is uniform throughout, like the WSDI index, the CSDI index has a 

direct correlation with the TN10p index, although its reduction rates are lower than the increasing 

rate of WSDI. 

2.4 Discussion 

All the results clearly indicate that as the magnitude of extreme temperature indices varies across 

emission scenarios (Seneviratne et al., 2016). The warming trends intensify with increasing 

emission scenario i.e., from SSP-1-26 to SSP-5-8.5. Long-term future annual mean trends indicate 

a significant increase, from historical trends. The trends in most cities are captured by the SSP1-

2.6 (cities in the prairies or coastal regions) or the SSP2-4.5 (cities in the Great Lakes and the 

northeastern climate regions) scenario, indicating that the higher emission scenarios (SSP3-70 and 
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SSP5-85) predict higher warming trends. The historical trend in Ottawa is however, not captured 

well by any emission scenario. 

Projected long-term trends across Canadian cities are being supplemented by previous studies that 

indicate the average mean-temperature over Canada is expected to rise by 2°C in the lowest 

emission scenario, by the mid-2050s and more than 6°C in the higher emission scenario, by the 

end of the twenty-first century, with Southern Canadian provinces experiencing an increase of 7-

8 C based on the reference base period of 1985-2005. Intuitively, the increase of maximum 

temperature will be even higher (Bush,E & Flato,G, 2019) as the highest increasing trend of 0.91°C 

and 1.2°C per decade, for TXx and TNn across all cities for the highest emission scenario (Figure 

2.6) which depict the spatial patterns for the future time-period of reference. 

Both the Absolute indices (TXx and TNn) show an increasing trend, where the magnitude of 

increase of TNn, is higher than TXx for all the cities involved in the study, in accordance to 

previous research on the global trends of TNn (Sillmann et al., 2013). The spatial patterns of annual 

maximum temperature (TXx) presented in Figure A.8, Figure A.9 and Figure A.10 show that the 

cities in the Prairies climate zone have a higher warming trend in the scenario SSP-3-7.0, and that 

trend slows down in the scenario SSP-5-8.5, where the cities in the great lake climate zone have 

the highest magnitude of warming in the 2070-2100 decades. This is consistent with the findings 

in literature; the warming trend over the Canadian prairies shows an increase in mean temperature 

of upto of 7.2 °C in the 2060s and the 2070s in the RCP8.5 scenario (which is similar SSP5-8.5 

scenario) (Zhou et al., 2018). The results in TX90p are consistent with the WSDI results, the cities 

experience the highest percentage increase for both the indices across the scenarios SSP3-7.0 and 

SSP5-8.5. TN10p shows a decreasing trend, a decrease of 1 % per decade, is consistent with an 

increase in minimum temperature. The trends in percentile indices, indicate an increase in 

magnitude of higher temperature extremes i.e., increase in temperatures greater than 90th percentile 

value of base period, but only a marginal decrease in temperature extremes i.e., temperatures below 

10th percentile value of base period. The significance of the results of percentile indices is that 

although there is an increase in maximum temperature extreme events in Canada, the frequency of 

lower temperature extremes (in winter) will continue to persist throughout twenty-first century, 

just like the observed increasing trend of minimum temperature warming over Southern Canada 

(Bonsal et al., 2001; Peacock, 2012). The coastal cities of Victoria and Vancouver do not see any 

change in either of the threshold indices (ID or FD), as their maximum and minimum temperatures 
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do not fall below the threshold value of 0°C.  

2.5 Summary and Conclusion 

Bias-corrected TX and TN CMIP6 datasets across emission scenarios except the most optimistic 

scenario in SSP1-2.6, predict an irregular warming of large Canadian population centers, 

consistent with previous studies on CMIP projections in Canada. The annual mean (Figure 2.2) 

increases with increasing emission scenario, and so are the warming trends of various temperature 

indices analyzed in the paper. All the CMIP6 models agree with the trends projected by extreme 

temperature indices, for e.g., all the models simultaneously predict an increasing trend of TXx 

index or a decreasing trend of TN10p index. The rate of increase of TNn is higher than TXx across 

emission scenarios and cities, and its spatial variation points towards a higher rate of warming 

minimum temperatures in the cities in the Canadian prairies and the Great Lakes climate zones. 

Indices computed from TX (TXx, TX90p, WSDI and ID), have an increasing trend across emission 

scenarios, except the SSP1-2.6 scenario. The Indices although predict an initial increasing trend 

for the SSP1-2.6 scenario, over the decades in T1, project a decreasing trend thereafter. Spatial 

patterns of TX indices (mean trend of all the models) show that the largest increase in magnitude 

of the TXx index is in the cities in the prairie climate zone Saskatoon, Regina, Winnipeg, Calgary 

and Edmonton. Although the magnitude of increasing trend in TXx or the TNn is not very high, 

over the coastal cities of Victoria, Vancouver and Halifax, higher frequency of warmer 

temperatures is corroborated by the trends of the TX90p and the WSDI indices. Increasing rates 

of the ID and the FD, consistently show that the both the cities in the Canadian prairies and the 

Great Lakes climate zones, have higher warming trends across higher emission scenarios (SSP3-

7.0 and SSP5-85), and amongst other Canadian cities involved in the study. Finally, the indices of 

TN10p and CSDI, do not correlate with the increasing rate TNn. Although both TN10p and CSDI 

have marginal decreasing trends across all the cities in Canada. 
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Chapter-3: Summary and Recommendation for future work 

3.1 Summary and general discussion 

Strategies for adaption to increased temperature projections rely on resilient urban-based 

projections, despite are uncertainties associated with atmospheric processes and climate models 

that generate futuristic temperature. Hence a combination of the use of four emission scenarios, 

that are all possible, and bias-correcting the future data gives the best opportunity to identify 

projected changes and makes the information more relevant to planners and decision-makers who 

are faced with adaptation at a local or regional scale, like large urban  centers. The applications of 

reliable climate projections are multi-fold in Canadian cities; the extreme temperature will lead to 

higher extreme events such as heatwaves, storms and droughts, and all provincial governments in 

Canada have some form of climate contingency plans for the future as a result of the projections 

(Li et al., 2018). 

Emission scenarios help understand climate projections better, and provide a comprehensive 

coverage and possibilities of understanding temperature projections. Amongst the emission 

scenarios the most optimistic scenario (SSP1-2.6), did exhibit a decreasing temperature and 

correspondingly decreasing absolute annual maximum and minimum temperatures, and even 

decreasing threshold and duration trends. The projections through various extreme temperature 

indices across other scenarios show a steady increase in yearly maximum and minimum (Absolute 

indices), translating to a steady increase both duration and frequency of warmer temperatures 

across all Canadian cities (Seneviratne et al., 2016) The findings of temperature indices align with 

the previous multi-decadal temperature based projections studies (Gaur et al., 2018; Power et al., 

2017; Zhou et al., 2018). The combined effects of extreme temperature indices will contribute to 

a combined increase in extreme weather events, consequentially increasing the risks of urban heat-

related mortality rates (Martin et al., 2012). The trends exhibited by the temperature indices, depict 

a faster rate of increase of TN projection over TX projections, leading to higher changes in Annual 

minimum (TNn). Annual maximum and minimum temperature projections (TXx and TNn), are 
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higher than mean temperature projections of 2 °C by 2050 and 6-7°C by 2100. The results of TXx 

and TNn across emission scenarios show that the increase at the end of 2100 is between much 

higher, between 10°C - 14°C across the emission scenarios. 

The spatial patterns are represented by the mean of the trend of all the models for a particular 

emission scenario for all the indices. The trends of absolute indices (TXx and TNn) shed light on 

the higher predicted increasing TX trends in the cities in the Canadian prairies and the Great Lakes 

regions. The trends align with previous research on the projections in the cities in the Canadian 

prairies. The cities are expected to warm faster than the rest of the country, and almost three-times 

that of the world’s average (Sauchyn & Davidson, 2020). The increasing trends in absolute indices, 

can contribute to an even higher increase in prolonged heatwaves, by the end of the century in 

these climate regions (Fortune et al., 2013; Smoyer-Tomic & Rainham, 2001). The trend of 

absolute indices, is not consistent, the rate of increase of both the absolute indices, is the highest 

for the 2070-2100 decades. The percentage and the duration indices’ spatial patterns also point 

towards a warming trend with the higher forcing or emission scenario (SSP5-8.5), The trend will 

be only be accentuated in larger urban  centers that have already been grappling with negative 

implications of rising temperatures. Maximum temperature indices like TX90p and WSDI have a 

high increasing trend in coastal cities of Vancouver, Victoria and Halifax, pointing towards an 

even warmer climate, over the hot season in these cities in the higher emission scenarios (SSP3-

7.0 and SSP5-8.5). The threshold indices also an indicator of warming trends especially in the 

cities in the prairies and the Great Lakes climate regions over the higher emission scenarios. The 

effects of harsh winters will still be persistent especially in these cities, but warmer spring and 

autumn is predicted by the increasing Icing days (ID) index, and marginal increase in Frost days 

(FD) over both these climatic regions. 

Overall, the extreme temperature indices, exhibit a qualitative consistency in their trends between 

projections under different emission scenarios, with the trends in TX and TN projections. The 

results, corroborate the historical trends of temperature increase over many major cities in Canada. 

The frequency and duration of extreme temperature events, is predicted to increase, but there is 

more scope for even more extensive research on the frequency of other extreme events like floods, 

droughts and blizzards as a result of higher predicted maximum and minimum temperature 

increase in Canadian cities. 
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3.2 Applications of research topic 

3.2.1 Role in UHI and mortality rates research 

Reliant and robust climate-based projections have played a crucial role in assisting with adaptation 

and climate contingency programs all over the world. Relatively larger-scale climate projections 

provide observational evidence and hence helps with extensive understanding of the SUHI 

phenomenon(Gaur et al., 2018). Hence, large scale temperature projections focused on larger 

urban centers, can not only provide a foundation for assessment and research of urban heat islands. 

Although it is imperative for researchers to understand urban-rural temperature difference to make 

meaningful temperature projections, bias-corrected or downscaled projections also provide 

credible information for long-term urban planning and mitigation programs, for local authorities 

and city governments (Rizwan et al., 2008). 

Continued research in temperature-related mortality studies, also relies on scenario-based 

temperature projection, to better understand the human susceptibility to higher ambient 

temperatures. Research in various bio-medical fields point towards negative consequences of 

higher temperatures, which not only include hyper and hypothermia but also long-term 

physiological changes to the human respiratory rate and circulation rate, contributing to higher 

mortality rates (Keatinge & Donaldson, 2004; Kolb et al., 2007). Modelling a relationship between 

mortality trends and meteorological conditions is a complex process. Previous research suggests 

that there is evidence to show that this relationship could be uncertain (McMichael et al., 2006). 

However, further research (Martin et al., 2012) does show increased mortality in Canadian cities 

with increased temp in IPCC’s A2 scenario which is an intermediate scenario like SSP2-4.5. The 

research also pointed out that predicting future mortality rates, will need to account for uncertainty 

in temperature increase, which can be provided by using more climate models, and also various 

other emission scenarios (Martin et al., 2012). Hence, bias-corrected temperature projections for 

various Canadian cities, using a multi-model ensemble for various scenarios presents an 

opportunity for advancing current research in projecting mortality rates due to extreme temperature 

events in Canadian cities. 

3.2.2 Role in assessing concrete deterioration 

Deterioration of concrete structures, is a consequence of increasing concentration of atmospheric 
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CO2. With about 1.1 trillion dollars invested in concrete infrastructure in developed countries 

comparable to the size of Australia (Stewart et al., 2011), rehabilitation of concrete structures could 

prove to be very expensive. Most concrete deterioration occurs, through either Carbonation or 

chloride ingress, both of which are not only dependent on the concentration of atmospheric CO2, 

but also on ambient atmospheric temperature (Bastidas-Arteaga et al., 2010; Belda Revert et al., 

2018). It is also understood that urban environments tend to contain 10-15% more CO2 due to the 

‘heat-island’ effect, which in-turn contributes to higher local ambient atmospheric temperature 

(Silva et al., 2014). Future projections can provide critical information to calculate the extent of 

corrosion, and in-turn help manage concrete infrastructure better in large cities. Carbonation 

deterioration risk studied in the Sydney, a city that has similar arid climate in some cities in 

Canada, was found to have increased by 400% (Stewart et al., 2011). Use of bias-corrected CMIP6 

projections will provide scope for concrete deterioration assessment in Canadian cities, and can 

help with appropriate and cost-effective adaptation measures. 

3.3 Recommendation for future work 

The applications of CMIP6 temperature models are multi-fold, and offer a could offer a wide range 

of opportunities for further analysis. However, a few uncertainties are persistent with most GCM 

models, along with some internal variability and CMIP models also could carry uncertainties. A 

few uncertainties, that exist are model uncertainty; where the model could have a 

misrepresentation of its inbuilt dynamic and physical processes, and also scenario uncertainty, 

where the modelled projections of a scenario are not always consistent with the socio-economic 

conditions that prevail in communities across the world (Barrow & Sauchyn, 2017) 

• Although, the thesis uses multiple CMIP6 models, the model performances are not 

qualitatively analyzed. Various models can be assessed through model performance 

indicators and model variance indicators (LUO et al., 2020) 

• Although the thesis is based on extreme temperature events in Canada, through assessing 

extreme temperature indices, the research can be extended to projecting heat-waves and 

frameworks for adaptation and mitigation strategies. 

• The thesis not only offers scope for urban-heat island research but is also extremely 

helpful for research urban-planning and mitigation measures. Research on building 
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frameworks to tackle the SUHI effect, is a way forward for UHI research. 

• The use of CMIP6 models to evaluate extreme temperature indices need not be restricted 

to use for Canadian cities, but for entire region of Canada. The use of other reliable 

gridded observation or reanalysis datasets can be used, for bias-correction or 

downscaling processes.  

• Extreme events using TX or TN datasets cannot be simulated with high accuracy in a 

smaller spatial scale using downscaling processes. Hence statistical or dynamic 

downscaling processes can be applied on CMIP6 models across emission scenarios for 

varied perspective on projections across Canadian cities. 
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Appendix: Chapter 1 Supplementary Information 

Table A.1: Future Model Scenarios used for CMIP6 

Tier 1 Scenarios 

Forcing 

Category 

2100 Forcing W 

m-2  

# of 

SSP 

SSP5-8.5 High 8.5 5 

SSP3-7.0 High 7 3 

SSP2-4.5 Medium 4.5 2 

SSP1-2.6 Low 2.6 1 

Table A.2: List of cities with historical trend. 

City Name 

Population 

Growth 

(1980-2020) Area(km²) Elevation(m) 

Slope of 

SCDNA 

(°C/year) 

Toronto 3247000 7124 85 0.0548 

Montreal 1423000 4258 40 0.0692 

Vancouver 1359000 2700 31 -0.0035 

Calgary 1013000 825 1050 0.0085 

Edmonton 985227 684 645 0.0093 

Ottawa-Gatineau 679000 2790 70 0.1919 

Winnipeg 244000 464 239 0.0218 

Quebec City 264000 484 98 0.0376 

Hamilton 227000 1138 324 0.0308 

Kitchener 286000 136.9 301 0.0402 

London 228000 1572 251 0.0370 

Victoria 159000 19.47 23 0.0146 
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Halifax 137000 234.72 102 0.0407 

Oshawa 256000 145.7 106 0.0440 

Windsor 89000 146.3 190 0.0317 

Saskatoon 181000 228.1 482 0.0086 

St Catharines-

Niagara Falls 113000 302.81 98 0.0359 

Regina 101184 180 577 -0.0132 
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Chapter 2 Supplementary Information 

Figure A.1: Annual mean for all the CMIP6 models for the year 2100. The black star in the SSP1-

2.6 boxplots, represents the annual historical mean (1979-2014) for all the cities. 
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Figure A.2: Indices Slopes for CMIP6 models as shown for the emission scenario SSP1-2.6. The 

units of the indices are °C/decade for TXx and TNn, days/decade for WSDI, CSDI, ID and FD and 

%/decade for TX90p and TN10p. 
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Figure A.3: Indices Slopes for CMIP6 models as shown for the emission scenario SSP2-4.5. The 

units of the indices are °C/decade for TXx and TNn, days/decade for WSDI, CSDI, ID and FD and 

%/decade for TX90p and TN10p. 
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Figure A. 4: Indices Slopes for CMIP6 models as shown for the emission scenario SSP3-7.0. The 

units of the indices are °C/decade for TXx and TNn, days/decade for WSDI, CSDI, ID and FD and 

%/decade for TX90p and TN10p. 
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Figure A.5: Slopes of TX90p and TN10p indices for individual models (°C per year) for all 

emission scenarios. The units of the rate of change are °C/decade. 
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Figure A.6: Slopes of WSDI and CSDI indices for individual models for all emission scenarios. 

The units of the rate of change are days/decade. 
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Figure A.7: Slopes of ID and FD indices for individual models for all emission scenarios. The 

units of the rate of change are days/decade. 
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Figure A.8: Spatial trends variation of all 8 indices for the emission scenario SSP1-2.6. The size 

of the dots is proportional to the magnitude of the trend.  
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Figure A.9: Spatial trends variation of all 8 indices for the emission scenario SSP2-4.5. The size 

of the dots is proportional to the magnitude of the trend.  
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Figure A.10: Spatial trends variation of all 8 indices for the emission scenario SSP3-7.0. The size 

of the dots is proportional to the magnitude of the trend.  
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