
REGION-COLOR BASED AUTOMATED BLEEDING DETECTION IN CAPSULE 

ENDOSCOPY VIDEOS 

 

 

 

 

 

 

A Thesis Submitted to the College of 

Graduate Studies and Research 

In Partial Fulfillment of the Requirements 

For the Degree of Master of Science 

In the Department of Electrical and Computer Engineering 

University of Saskatchewan 

Saskatoon, SK, Canada 

 

By 

 

SONU SAINJU 

 

 

 

 

 

 

 

 

 Copyright Sonu Sainju, June, 2014. All rights reserved. 



 

i 

 

Permission to Use 

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from 

the University of Saskatchewan, I agree that the Libraries of this University may make it freely 

available for inspection. I further agree that permission for copying of this thesis in any manner, 

in whole or in part, for scholarly purposes may be granted by the professor or professors who 

supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the 

College in which my thesis work was done. It is understood that any copying or publication or use 

of this thesis or parts thereof for financial gain shall not be allowed without my written permission. 

It is also understood that due recognition shall be given to me and to the University of 

Saskatchewan in any scholarly use which may be made of any material in my thesis. 

 

Requests for permission to copy or to make other use of material in this thesis in whole or part 

should be addressed to: 

 

 Head of the Department of Electrical and Computer Engineering 

57 Campus Drive 

University of Saskatchewan 

Saskatoon, Saskatchewan 

Canada, S7N 5A9  

 

 

 

 

  



 

ii 

 

ABSTRACT 

Capsule Endoscopy (CE) is a unique technique for facilitating non-invasive and practical 

visualization of the entire small intestine. It has attracted a critical mass of studies for 

improvements. Among numerous studies being performed in capsule endoscopy, tremendous 

efforts are being made in the development of software algorithms to identify clinically important 

frames in CE videos. This thesis presents a computer-assisted method which performs automated 

detection of CE video-frames that contain bleeding.  

Specifically, a methodology is proposed to classify the frames of CE videos into bleeding and 

non-bleeding frames. It is a Support Vector Machine (SVM) based supervised method which 

classifies the frames on the basis of color features derived from image-regions. Image-regions are 

characterized on the basis of statistical features. With 15 available candidate features, an 

exhaustive feature-selection is followed to obtain the best feature subset. The best feature-subset 

is the combination of features that has the highest bleeding discrimination ability as determined by 

the three performance-metrics: accuracy, sensitivity and specificity. Also, a ground truth label 

annotation method is proposed in order to partially automate delineation of bleeding regions for 

training of the classifier.  

The method produced promising results with sensitivity and specificity values up to 94%. All 

the experiments were performed separately for RGB and HSV color spaces. Experimental results 

show the combination of the mean planes in red and green planes to be the best feature-subset in 

RGB (Red-Green-Blue) color space and the combination of the mean values of all three planes of 

the color space to be the best feature-subset in HSV (Hue-Saturation-Value). 
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Chapter 1 

Introduction 

This chapter introduces the scope of computer-aided methods in the automated detection of 

bleeding in Capsule Endoscopy (CE) images. It begins with a brief introduction to the CE 

technology and its scope in the diagnosis of bleeding related abnormalities. The motivation behind 

the use of region-based classification technique is its ability to utilize information from the local 

regions of the video frames. The limited exploration of this technique in the existing works related 

to bleeding detection has also provided a motivation in investigating the approach in this field. The 

chapter presents the motivation of the thesis by providing the past and current research scenarios 

in the use of various types of classification techniques. The objectives and organization of the 

thesis are finally presented at the end. 

 

1.1 Capsule Endoscopy 

Capsule Endoscopy (CE), also called Video Capsule Endoscopy (VCE) or Wireless Capsule 

Endoscopy (WCE) is a unique endoscopic technique which was first developed by an Israel based 

company called Given Imaging. It uses a different approach to the examination of the GI tract than 

the thin lighted-tube approach which is inserted down the throat. Though the standard endoscopic 

techniques are able to perform both diagnostic and limited therapeutic functions, these techniques 

are painful and uncomfortable to the patients. CE technology was thus developed as an innovative 

way to perform non-invasive examination of the GI tract. This technique employs a pill-shaped 

miniaturized device which captures and transmits the images from the interior of the GI tract of 

the patients. The original CE developed by Given Imaging was the first CE device to be approved 
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by the US Food and Drug Administration (FDA) in 2001 AD [1]. Over subsequent years, CE 

systems from other manufactures also entered the commercial market. Currently, three CE systems 

are approved by the FDA for the diagnosis of the small bowel: PillCam SB2, Given Imaging Ltd, 

Yoqneam, Israel; Endocapsule, Olympus America Inc., Center Valley, Pennsylvania; and 

MicroCam, IntroMedic Company Ltd, Seoul, Korea [1]. PillCam Colon of the Given Imaging has 

also been recently cleared by the FDA for the visualization of the colon [2]. Given Imaging has 

developed CE systems for visualizing esophagus. 

 

1.1.1 CE in the Diagnosis of Bleeding Related Abnormalities 

GI tract bleeding [3] accounts for approximately 300,000 hospitalizations per year in the United 

States [4]. In majority of the cases, the source of bleeding can be found with the traditional 

diagnostic methods. However, the source of bleeding cannot be readily identified in approximately 

5% of patients [5]. These bleeding incidences with unknown origin are called Obscure 

Gastrointestinal Bleeding (OGIB). The small bowel has been known to be one of the prime 

locations of lesions leading to OGIB. The visualization of the entire small intestine is not possible 

with upper endoscopy and colonoscopy. Technologies like CE and push enteroscopes have 

recently been advanced to make the small intestine accessible for examination [6]. Also, among 

these two methods, it was studied that CE is preferred by patients because of less pain and more 

ease and comfort associated with the procedure [7]. Other works have also shown that CE has 

larger range of access to the small intestine, and thus can identify more bleeding sites than push 

enteroscopes [7]. CE has thus established itself as a gold standard tool in the examination of the 

small bowel. 
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1.1.2 Scope of Computer Aided Bleeding Detection Systems in CE 

Standard endoscopy and capsule endoscopy both have the ability to view the GI tract directly. 

However, the two systems have different operation scenarios. In standard endoscopy procedures, 

the diagnosis process is controlled by the physician. Given that the whole process is viewed by the 

physician in real time anyway; manual marking of suspicious regions is not time consuming. But 

in case of CE, the pill-shaped device moves along the GI tract in a manner similar to food, which 

is through natural peristalsis. Thus, the diagnosis process is not controllable as the camera cannot 

be moved according to the desire of the endoscopist. The recorded video is then viewed later for 

examination. The real time viewing of the process is infeasible as the complete process lasts for 

an average of 8 hours. Also, the process produces around 55,000 frames per patient per 

examination and it requires around 2 hours of time for a physician to inspect the video [8].  

Thus, there is a high scope of computer assisted diagnosis tools in CE for making the diagnosis 

more accurate, reliable and fast. The inspection time of the video can be greatly reduced if the 

suspicious frames could be recognized by a computer system. The suspicious frames thus selected 

could then be presented to the physician for the final decision. Given Imaging (Yoqneam, Israel) 

provides a tool called Suspected Blood Indicator (SBI) that detects red pixel in the images [9]. 

However, studies have shown that performance of SBI is not sufficient to screen all types of 

bleeding in the GI tract [10], [11]. This has motivated a lot of studies in the development of 

computer assisted diagnosis tools to automatically detect bleeding areas in capsule endoscopy 

images. 
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1.2 Research Motivation 

A number of studies related to Computer Aided Diagnosis (CAD) in capsule endoscopy are 

pattern recognition problems that perform classification of images into different classes according 

to the image features. Image features characterize certain properties of images. Features that 

describe image properties such as color, texture, brightness, contrast etc. have been widely studied 

and used in pattern recognition involving images. Classification itself can be of various types based 

on the identification area, which is the area of image that is used in the calculation of feature. It 

can range from whole image and image fragments to even the smallest image element i.e. the 

image pixel. The choice of an identification area for the mathematical formulation of the features 

depends on its appropriateness to the aim of the image analysis. According to the identification 

area, classification is performed in four ways: pixel-based, patch-based, image-based and region-

based. 

Pixel based methods analyze and classify every pixel in the images. Such a scheme was 

followed in [12], [13]. Both of these methods require multi-dimensional feature vector for 

processing every pixel in an image. Classification based on this kind of feature extraction scheme 

requires high computation cost for a single image, which gets even worse with higher resolution 

images. Since thousands of images need to be examined for a complete diagnosis, these methods 

do not seem to be effective for real application. Also, features derived from single pixel do not 

account for relations that might exist between the pixel and its local and global neighborhood.  

Image based methods generate features utilizing the area of the whole image. The features thus 

characterize the whole images which are then subject to classification. In [14], [15], [16], image-

based features like local color histogram, Color Wavelet Covariance (CWC), spatial pyramids are 

utilized that can carry both global and local information. However, this kind of classification 
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scheme is highly likely to misclassify images containing small bleeding area. Also, delineation of 

the bleeding areas is not possible with this kind of scheme.  

An intermediate area of identification is thus generally preferred in capsule endoscopy images 

where features are generated from image patches. Image patches are derived by dividing an image 

into blocks of fixed shape and size. One such example is to divide an image into rectangular blocks 

of 8x8 pixels. These image patches characterize local image features and are computationally less 

rigorous than pixel based schemes. Authors in [17] performed a classification based on image 

patches by dividing images (256 × 256 pixel resolution) into rectangular blocks of 30×30 pixels 

and similarly, in [18] classification based on blocks of 10×10 pixel on images of 400×400 

resolution is performed. The authors in [19] point out that circular ROIs provide a good inclusion 

of abnormality. They used overlapping circular Regions of Interest (ROIs) in the calculation of 

features and perform classification based on the circular ROIs.  

However, [20] suggests that lesions are generally of arbitrary shapes and sizes which makes 

fixed sized rectangular or circular patches unsuitable to serve as effective ROIs. Fixed shaped and 

sized ROIs are prone to background noise especially in case of smaller lesions. The authors in. 

[20] further show that all the features used in the study performed better classification when the 

features were derived from the image regions. Image regions are image partitions of arbitrary shape 

and size which are derived by dividing an image into several pixel groups such that the individual 

groups contain pixels which are similar to each other with respect to some criteria. In [20], mean-

shift segmentation was used to divide images into homogeneous regions and then features such as 

3D histogram, LBP (Local Binary Pattern), MS-CWC, were calculated to detect lesion in 

gastroscopic images. Thus, a promising area of study has been opened to explore region based 

classification approach in detecting bleeding areas too. The segmentation scheme used in [20] 
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involves optimization of multiple parameters for optimal segmentation performance. It thus 

provides us a motivation to propose a region selection algorithm which requires minimal 

parameters and optimization. So, in this thesis, a region-based classification system was developed 

to accurately classify CE frames into bleeding and non-bleeding classes by using histogram related 

features.  

 

1.3 Thesis Objectives  

The overall objective of this thesis is to develop an efficient and accurate method to detect the 

frames of CE videos that contain possible bleeding occurrences by: 

i) Extracting region features with bleeding discrimination capabilities. 

ii) Devising a region-based classification system that can classify the frames of the CE 

videos into bleeding and non-bleeding classes. 

iii) Selecting the best features from the available ones in order to achieve high classification 

performance.  

 

1.4 Thesis Organization 

This thesis consists of six chapters. Chapter 2 presents the overview of the existing methods 

that have been performed to automate bleeding detection in CE videos and images. Several feature 

computation techniques and classifiers are presented in the chapter along with the corresponding 

works that adopted the technique in their methodology. In chapter 3, the overview of the proposed 

methodology is illustrated. The chapter then presents the feature extraction techniques that were 

used in the proposed method. It also illustrates the feature-selection and classification approaches 

that were adopted in the thesis. Chapter 4 presents all the results and experiments that were 
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performed to tune the parameters involved in order attain accurate detection of the bleeding frames 

in CE videos. Finally, in chapter 5, a summary of the accomplishments is presented along with 

various recommendations for potential future. 

 .
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Chapter 2 

Bleeding Detection in CE Images 

This chapter offers a survey on some representative methodologies in the area of bleeding 

detection in CE, specifically identifying those techniques which are relevant to fulfill the research 

objectives of this field. After a thorough evaluation of the published works, it was found that almost 

all the existing methodologies are classification methods that make use of Artificial Neural 

Networks (ANN), Support Vector Machines (SVM) and other machine learning methods in order 

to adapt to the problem at hand. 

Figure 2- 1 shows the basic stages of a generalized classification system [21]. A classification 

problem starts with feature extraction and is followed by the feature extraction and classifier design 

stages. The system is then evaluated. It is, however, subject to redesign at any stage in order to 

improve the overall performance. This chapter presents various techniques adopted by the existing 

algorithms of bleeding detection in relation to the basic stages of a general classification system 

as presented in Figure 2- 1. 

 

Image
Feature 

Extraction

Performance 

Evaluation

Feature 

Selection
Classification

 

Figure 2- 1 Basic stages of a classification system. 
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2.1 Feature Extraction 

Measurable quantities must be derived in order to perform computer analyses in images or their 

fragments. Image features are numerical indicators that characterize color, texture, contrast, 

brightness and other aspects of image appearance. Feature extraction is thus the mathematical 

formulation of image properties. Three major aspects must be considered for feature extraction: 

color space selection; identification area; and type of features. The types of identification area and 

their corresponding advantages and limitations have been covered in section 1.2. It was argued 

that region-based features improve bleeding detection in CE video frames as the features are able 

to provide information from the local levels of image which are important in characterizing the 

image. Also, the image regions, which are used in the derivation of region-based features, are 

better suited for delineating the boundaries of bleeding areas. The classification time of a single 

frame can also be reduced significantly with region-based classification schemes than with the 

pixel-based ones.  

Selection and transformation to an appropriate color space is a crucial part of feature extraction. 

The relevance of a color feature to a recognition problem is greatly influenced by the choice of 

color space. Color spaces aid in the specification of colors in some standard way. Typically, a color 

space constitutes of a 3D coordinate system where each point represents a constituent color of the 

model. RGB (Red-Green-Blue) and HSI (Hue-Saturation-Intensity) are the two most frequently 

used color spaces in bleeding detection applications in CE. The existing research works regarding 

bleeding discrimination have been performed using RGB only [23], [24], using HSI only [17], 

[25], [26] and using both RGB and HSI [12], [15]. Other color spaces such as CIE (International 

Commission on Illumination) Lab, CIE LUV, YCbCr, YUV have also been utilized by some 

studies [19], [20].  
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2.1.1 Features for Bleeding Discrimination in CE images 

As in Figure 2- 2, bleeding regions appear different from their surrounding tissues mainly in 

term of color. Color is one of the important cues used by clinicians to discriminate between 

bleeding and normal regions in CE images. Thus, a lot of studies have shown the usefulness of 

color features in this stream [12], [13], [15], [[25]-[27]]. Among the works performed with color 

related features, a few of them used the values of color pixel either directly or along with some 

modifications in order to characterize the color property. For example, [12] used feature vector x 

= (R, G, B, H, S, I) for every pixel in the image; where, R, G, and B are the red, green and Blue 

color values of the pixel in RGB color space and H, S, and I are the Hue, Saturation and Intensity 

values of the pixels in HSI color space. Similarly, [13] used Red Ratio (RR) features which were 

calculated for every picture element. The authors defined three RR features as follows: 𝐹1 = 
𝑅(𝑖,𝑗)

𝐺(𝑖,𝑗)
, 

𝐹2 = 
𝑅(𝑖,𝑗)

𝐵(𝑖,𝑗)
, 𝐹3 =

𝑅(𝑖,𝑗)

𝑅(𝑖,𝑗)+𝐺(𝑖,𝑗)+𝐵(𝑖,𝑗)
 ; where R(i,j), G(i,j), B(i,j) are the red, green and blue pixel 

values of the pixel at the position (i, j) of the image.   

 

 

Figure 2- 2 CE Images with visible bleeding areas. The images are taken from ref. [28]. 
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Usage of pixel values at every location is not an effective way of representing image color. 

Histogram presents an effective way to represent color distribution of images. It is a direct way to 

show how individual color levels are occupied in an image. However, global histograms are rarely 

used as they do not provide local information regarding color distribution. Images are, thus, 

divided into non-overlapping blocks of fixed size, so that local histograms can individually be built 

from the blocks. Also, inclusion of all the color levels requires a large structure, due to which 

sampling of each color channels is performed in order to achieve smaller structures. Such a color 

feature, proposed by the authors in [29], has been used in [15] to characterize images for bleeding 

detection. The authors in [15] divided an image of 576×576 pixels into 9 separate blocks and 

computed local histogram from each. It divided H, S, and V channels of HSV space uniformly into 

12, 5 and 8 bins respectively. The feature vector computed in such a way consisted 225 

components. Similarly, [25] used 3D histogram with 32×32×24 sampling in the HSV color space 

to create the 3D feature structure. The structure was compressed using 3D Discrete Cosine 

Transform (DCT) into 286 components long feature vector.  

Besides the color features, a number of works has shown the usability of texture features that 

are calculated on the color channels for bleeding discrimination [14], [17]. The textural features 

characterize the pattern of pixels in an image and their relation to the surrounding. Authors in [14] 

claim that Color Wavelet Covariance (CWC) works suitably in the classification of CE images 

including bleeding images. CWC coefficients are the covariances of the second order textural 

measures between different channels of the used color space. In order to calculate CWC 

coefficients, each color channel is applied with three level Discrete Wavelet Transformation 

(DWT) images and upon using only the second level wavelet detailed channels, 9 sub images are 

obtained for each image. Then, for each sub image, co-occurrence matrices at four different 
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directions are determined which results in 36 matrices. The co-occurrence matrices contain the 

spatial dependence of the gray level intensities or the color intensities. Haralick proposed fourteen 

different texture measures from the co-occurrence matrices [30]. However in this study, only 

angular second moment, correlation, inverse difference moment and entropy were extracted from 

each of the 36 matrices, which resulted in 144 wavelet features, Finally, covariance of the same 

features in different color channels were calculated resulting in 72 feature components per image. 

CWC features were used for bleeding detection in [15] and [31] too. However, [15] claims that the 

color features derived from HSV histograms outperform the CWC features regardless of the choice 

of the classifying system. Furthermore, the calculation of the co-occurrence matrices takes longer 

time inducing longer time requirements for the calculations of CWC [20].  

 

2.2 Classification 

In machine learning, there is no universal classifier. The choice of the classifier depends on the 

available data and the application. Existing bleeding detection methods in CE images mostly 

employ supervised pattern recognition scheme. As the name suggests, supervised learning methods 

exploit a priori known information to design a classifier which, after being trained, can predict the 

labels of unseen data. Two types of classifiers are common in supervised pattern recognition: i) 

Based on Bayes decision theory; ii) Based on optimization of cost function.  

 

2.2.1 Classifiers based on Bayes Decision Theory 

Given M classes: ω1, ω2,…, ωM, and an instance of unknown label represented by a feature 

vector x, Bayesian decision theory states that, x is assigned to the class ωi if P(ωi|x)>P(ωj|x), ∀𝑗 ≠
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𝑖. From Bayes rule: P(ω𝑖|x) =
𝑝(𝑥|𝜔𝑖)𝑃(𝜔𝑖)

𝑝(𝑥)
 , where p(x|ωi) is the class conditional probability 

density function (PDF) and p(x) is the pdf of x. Upon using the Bayes rule and given that p(x) is 

positive and same for all classes, Bayes decision rule can also be written as 

p(x|ωi)P(ωi)>p(x|ωj)P(ωj)), ∀𝑗 ≠ 𝑖. However, the underlying pdfs are not known and they have to 

be estimated from the available data. Bayesian based classifier is used in [23] to select blood pixels. 

It models the unknown probability models for blood and non-blood pixels via mixture model and 

Expectation Maximization (EM) algorithm.  

 

2.2.2 Classifiers based on Optimization of Cost Function 

The authors in [32] also claim that the classifiers based on the optimization of cost function 

perform better in presence of limited data. Also, the usage of the latter type of classifier is common 

in bleeding detection in CE images. These classifiers try to determine a decision surface separating 

the classes by directly using the data form the training set rather than the pdfs of the underlying 

data [32]. Among such schemes, Neural Networks (NNs) and Support Vector Machines (SVMs) 

are widely used in the computer systems built for CE images. 

 

2.2.2.1 Neural Networks 

A Neural Network is the network of basic perceptron elements which are also called neurons, 

analogous to the terminology used in neuroscience to refer to the basic building blocks of the brain. 

Multilayer Perceptron (MLP) or a feedforward neural network is a widely used neural network in 

real world problems which require multiple layers of neurons in order to achieve minimum error. 

In an MLP, neurons are connected as seen in Figure 2- 3, which is a two layer network. Here, the 

inputs, outputs and the hidden variables are represented by nodes and the links between the nodes 
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represent weight parameters. The links between the nodes and xo and z0 are the bias parameters. 

Overall network function for the network shown in Figure 2- 3 is then given as in equation (2.1) 

[33]. Where, w is the vector formed by grouping all weight and bias parameters. h(.) is a 

differentiable nonlinear activation function which transforms the input unit activations to hidden 

units as 𝑧𝑗 = ℎ(𝑎𝑗). Similarly, each output unit activation is transformed generally by a logistic 

sigmoid function σ (.) as  𝑦𝑘 = 𝜎(𝑎𝑘). Thus, the neural network model is a non-linear function 

which maps a set of input variables {xi} to the output variables {yk} controlled by a weight vector, 

w. The weight vector is adjusted by reducing the difference between the inputs and their desired 

outputs. 

 

outputsinputs

hidden units

z0

z1

zQ

x0

x1

xP

yK

y1

 

Figure 2- 3 A two layer feedforward neural network. 

 

(2.1) 
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𝑖=1

 + 𝑤𝑘0
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𝑄
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Because of powerful models and simple algorithms, multilayer neural networks find their 

application in many real world problems including bleeding detection in CE images. Use of the 

neural network in bleeding detection is common. In [13], neural networks were used to perform 

pixel-wise classification scheme. Similarly, classification was performed in [12] using a 

probabilistic neural network. Patch based classifications were performed in CE images in [17]  and 

it also performed experiments to  the performance of the classification system by varying the 

number of neurons in the hidden layer. 

 

2.2.2.2 Support Vector Machines (SVM) 

Support Vector Machines (SVMs) are supervised learning models which constructs an optimal 

hyperplane to classify data into different classes. A linearly separable two class case is presented 

in Figure 2- 4. A hyperplane can be described by the equation: 𝑔(𝑥) =  𝒘𝑇𝒙 + 𝑤0 = 0,  that 

classifies the feature vectors 𝑥𝑖, i=1, 2, …, N, into two classes ω1 and ω2.. As seen in Figure 2- 4, 

lines drawn parallel to the separating line are the supporting hyperplanes and the distance between 

them is called the margin. Width of the margin is constrained by support vectors which are the 

data points that are closest to the separating hyperplane. An issue of concern here, is that there 

exists an infinite number of possible hyperplanes between the data of the two classes. Every 

hyperplane is defined by its direction, determined by w, and its position, w0. Since, the optimal 

hyperplane is the one that separates the high probability density areas of two classes with 

maximum possible margin between them, the goal is to determine the direction that provides the 

maximum margin. Please refer [34] for the mathematical details.  
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z1
z1

z2

z2

 

Figure 2- 4 Training a SVM requires finding an optimal hyperplane. Two such hyperplanes are 

shown above which separate members of two classes. Class 1 is shown as green squares and 

class 2 is shown as red circles. 

 

SVM is one of the learning models which has been effectively used in many applications 

including pattern recognition in capsule endoscopy videos. It has been used in [35] to detect small 

bowel polyps and ulcers and to detect tumors in [36]. Another study [16], uses SVM with Color 

Invariant Descriptor and Pyramid of Color Invariant Histograms to detect bleeding images. 

Similarly in [25], SVM is used to detect blood frames by using HSI (Hue, Saturation and Intensity) 

and LBP (Local Binary Pattern) features. In [15], classifications of the CE frames were performed 

using both SVM and NN. The study reports slightly better classification with SVM than with NN. 

However, the performance of SVM and NN depend on many parameters and their direct 

comparison is difficult. Both NN and SVM have been successfully used in image analysis in CE 

proving the usability of both techniques.  
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2.3 Performance Measures 

Performance evaluation in a classification problem includes determining the classification 

performance of the system. Sensitivity, specificity and accuracy are three ideal criteria for 

measuring classification performance. Sensitivity is the probability of correctly labeling the 

members of positive cases. Specificity is the probability of correctly labeling negative cases. 

Accuracy is the probability of correctly labeling both positive and negative cases. They are given 

as in equation (2.2) [22]. 

 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, (𝑆𝑒𝑛. ) =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦, (𝑆𝑝𝑒𝑐. ) =  
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, (𝐴𝑐𝑐. ) =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃)
 

(2.2) 

TP, FP, TN, FN  are the counts of True Positive, False Positive, True Negative and False 

Negative events respectively. Almost all the bleeding detection methods have utilized the 

aforementioned metrics for system evaluation. However, all the methods calculate these measures 

using their own database. The unavailability of standard dataset or image database for studies 

related to CE images and videos makes it difficult to perform direct comparison between different 

methods. Thus, this thesis doesn’t provide quantitative comparison between the methods. 
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Chapter 3 

Proposed Methodology 

In this chapter, the overview of the proposed bleeding detection method is presented at first and 

then, the feature computation, classification, feature selection and performance evaluation schemes 

utilized in the proposed methodology are presented. Feature extraction scheme includes the steps 

that are required to characterize images with measurable quantities. These quantities, called 

features, are calculated using the image data. The chapter first presents the features and the color 

spaces that were selected to characterize the image regions. It then presents the region selection 

schemes adopted to partition images into constituent regions. The adopted region selection method 

allows fast image segmentation with minimal human intervention. The ground truth annotation 

method is then proposed. This method automates the annotation method partially. Finally, 

classification, feature selection schemes are presented. Performance measures adopted for 

evaluation are presented at the end of the chapter. 

 

3.1 Overview of the Proposed Bleeding Detection Method 

A region based classification scheme is proposed in this thesis for bleeding detection in CE 

images. This classification system makes use of region features to classify image regions into 

bleeding and non-bleeding classes. Like any other supervised classification scheme, the proposed 

methodology contains two basic stages: the classifier learning stage and the application stage. 

Figure 3- 1 illustrates an overview of the method. The classifier learning stage determines the 

optimized classifier through the use of data with known class labels and the application stage 

makes use of the optimized classifier to classify different sets of data with unknown class labels. 



 

19 

 

At the classifier learning stage, the classifier is presented with the training data by the use of which 

the classifier learns the discriminating plane between the classes. The classifier is then tested to 

with a set of test images to evaluate the classification performance of the classifier. The 

classification performance of a classifier is significantly affected by the features used in the 

training and testing. Since, multiple features are calculated from the image regions, feature 

selection is performed to optimize the classifier performance. Multiple learning and testing 

operations are performed to optimize the classifier. And, metrics providing numerical measures of 

the classification performance of the classifier are used to evaluate the system at every stage of 

feature selection process.  

 

Classifier Learning Stage Application Stage

Input video frames of training 
dataset

Calculate Region Features

Classifier Optimization

Optimized 
Classifier, OC

Feature Selection Based on SVM

Input Image

Calculate Region Features

Region Classification by OC 

Bleeding Detection in Image

Region-Selection

Region Partitioning

Selection of Regions Using 
Minimum Region Size 

Threshold 

Ground Truth Label 
Annotation For Bleeding 

Frames

Region-Partitioning 
For Non-Bleeding 

Frames

 

Figure 3- 1 Overview of the proposed bleeding detection method. 
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The training and testing data used in both the stages are the features obtained from image 

regions. Automatic region selection method, as described in section 3.5.1, is applied to 

automatically segment the image into constituent regions in the application stage. Similarly, non-

bleeding images are also segmented using the same method for obtaining ground truth labels for 

non-bleeding class. However, the ground truth labels for bleeding regions are labeled from the 

proposed semi-automated ground truth label annotation method.  

The partitioning of image into constituent regions, selecting suitable color spaces and image 

features and finally calculating those features are the steps required for characterizing images or 

image regions. These steps jointly form the image feature extraction scheme of the proposed 

method, which will further be discussed in this chapter. 

 

3.2 Feature Extraction: Statistical Features 

Bleeding manifests itself by appearing redder in color than its surrounding or tends to have 

lower intensity than normal tissues. Color is one of the important cues used by clinicians to 

discriminate between bleeding and normal regions in capsule endoscopic images. However, 

variation in illumination, variation in the shades and extent of bleeding, presence of other fluids 

and debris pose complexity in detecting bleeding in capsule endoscopy images. Thus, bleeding 

identification based on limiting threshold of color values might be erroneous. Hence, features that 

hold information on the color distribution of images are useful to identify bleeding and non-

bleeding regions. 

Histogram is a graphical representation of frequency of occurrences of intensity levels of 

images or image regions. Histograms are widely used in image analysis due to its simplicity and 

robustness to variations in scale and translation. In color images, color distribution of each plane 
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can be modeled by its individual histogram. Histograms of the planes of a color space model the 

color distribution of images represented in that space. For image analysis, numerical indicators 

like mean, standard deviation, entropy, skew and energy can be calculated from the histograms of 

the color planes. These measures characterize the histograms of the image color planes, and thus 

convey information about the color distribution of images. These features have been successfully 

used in image classification and analysis purposes in studies [37], [38]. The histograms and these 

statistical features do not provide local color information of the image if they are directly obtained 

from the whole image. But, if the features are measured from smaller parts of the image, the local 

color information can be extracted. These statistical measures were thus calculated from the color 

channels of the different image regions which were obtained from the appropriate region selection 

method.  

For simplicity and uniformity, all the images used in this work were converted to an 8-bit image. 

For 8-bit images, each color plane consists of 256 intensity levels and hence there would be 256 

different entries in the histograms of each plane. Thus, if L is the number of bins in each histogram, 

width of each bin, w, is given by256/L. The features were calculated from the first order histogram 

probability, P(g), of the different color channels of the image regions which is given as in equation 

(3.1) [39]. 

 

𝑃(𝑔(𝑖)) =  
𝑁(𝑔(𝑖))

𝑁𝑢𝑚𝑃𝑖𝑥𝑒𝑙
 

 

(3.1) 

 

Where, 𝑔(𝑖) =
𝑤−1

2
+ 𝑤 ∗ 𝑖; [i=0, 2 … L-1]. 
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Here, NumPixel is the total number of pixels in the image region being considered and N(g(i)) 

is the number of pixels with the level value g(i). g(i) is the value of the bin center, given as in 

equation (3.1). Following are the statistical measures which were used as the region features: 

 

3.2.1 Mean (M) 

Mean of an image or any region of an image gives its average brightness. It is calculated as 

given in equation (3.2) [39]. 

M =   𝑔(𝑖) 𝑃(𝑔(𝑖))

𝐿−1

𝑖=0

 

 

(3.2) 

 

3.2.2 Standard deviation (S) 

Variance of an image region gives the spread of the pixel intensities around the mean intensity 

value. A higher value of variance denotes a higher contrast of pixel intensities in the region; 

whereas, a lower value indicates a lower contrast in the image region. Square root of variance gives 

the standard deviation. It is defined as given in equation (3.3) [39]. 

S =  √ (𝑔(𝑖) − M)2 𝑃(𝑔(𝑖))

𝐿−1

𝑖=0

 

 

     (3.3) 

 

 

3.2.3 Entropy (N) 

Entropy is a measure which gives uncertainty or information content. Complex images, in 

which pixel values change unexpectedly, have larger entropy values. It is defined as follows in 

equation (3.4) [39]. 
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N = −  𝑃(𝑔(𝑖))

𝐿−1

𝑖=0

 log2 𝑃(𝑔(𝑖)) 
(3.4) 

 

3.2.4 Skew (K) 

Skew of a probability distribution gives a measure of its asymmetry. A positive value of skew 

means the distribution has a longer tail at the left side and similarly a negative sign implies a longer 

tail at the right side of the distribution. It is defined as follows in equation (3.5) [39]. 

K = 
1

𝑆3
  (𝑔(𝑖) − M)3𝑃(𝑔(𝑖))

𝐿−1

𝑖=0

 

 

 

(3.5) 

 

3.2.5 Energy (E) 

Energy tells us about the way the pixel levels are distributed in a region. An energy value of 1 

suggests that the region has a constant pixel level. Accordingly, it is understood that, as the value 

of energy gets lower, the pixel values are distributed over more number of color pixel levels. It is 

defined in equation (3.6) [39]. 

E =   [𝑃(𝑔(𝑖))]2
𝐿−1

𝑖=0

 

 

(3.6) 

 

 

3.3 Feature Extraction: Color Space Selection 

Two color spaces: RGB (Red-Green-Blue) and HSV (Hue-Saturation-Value) were used for 

representing the images and for calculating the statistical features. All the regions were attributed 
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with five features listed as in section 3.2 in all three channels of RGB and HSV color space. All 

the used features and their corresponding symbols are summarized in Table 3- 1. RGB color space 

was utilized in this work as it doesn’t require any conversion. A lot of research works have 

successfully utilized RGB color space in various applications in image analysis including bleeding 

detection. HSV color space, on the other hand, is another widely used color space in image 

analysis. Its relevancy in recognition problems is attributed to the resemblance of its approximation 

to the intuitive human color perception. The following sections define the color spaces and the 

conversion between the two.  

 

3.3.1 RGB 

RGB is a color model which represents color as a combination of the three primary colors Red, 

Green and Blue. This is an additive color model where the primary colors are added to produce 

the secondary colors of light. The color subspace of interest is a cube as shown in Figure 3- 2 [40]. 

Red, green and blue are at the three corners of the cube with black at the origin of the cube and 

white at the farthest corner of the cube from the origin. 

Green

Yellow

Cyan

Black

Red

Blue

Magenta

G

B

R

(0, 1, 0)

(1, 0, 0)

(0, 0, 1)

(0, 0, 0)

White

(1, 1, 1)

 

Figure 3- 2 RGB color space cube [40]. 
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3.3.2 HSV 

HSV is another widely used color model which is intuitively based on human color perception. 

It is attributed with separate chromatic and non-chromatic planes. Hue and Saturation are its 

chromatic planes. Hue refers to the true color. It is the dominant wavelength in the spectral 

distribution of a color patch. Saturation represents purity of color. It is the amount of white light 

mixed with hue. Value is the non-chromatic plane which represents illumination level. Figure 3- 

3 shows a HSV hexacone which is in the subset of HSV space pertaining to the valid RGB values 

[40]. Hue H ranges from 0° to 360° beginning and ending with the red color with all the 

intermediate colors in between. Saturation S varies from 0 on the central axis (V-axis) to 1 on the 

edges of the cone. Value V is the vertical axis which ranges from 0 (apex of the cone) to 1 (base 

of the cone). 

H

V

V=1

White

V=0 Black

S

0° 
Red

120° Green

240° Blue

 

Figure 3- 3 HSV color space hexacone [40]. 

 

The RGB to HSV transformation is as follows in equation (3.7) [35]: 
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ℎ =

{
  
 

  
 
   0,                                                                                 𝑖𝑓  𝑚𝑎𝑥 = 𝑚𝑖𝑛

(60 ×  
𝑔 − 𝑏

𝑚𝑎𝑥 − 𝑚𝑖𝑛
+ 0°)𝑚𝑜𝑑 360° ,           𝑖𝑓 𝑚𝑎𝑥 = 𝑟

60 ×  
𝑏 − 𝑟

𝑚𝑎𝑥 − 𝑚𝑖𝑛
+ 120° ,                             𝑖𝑓 𝑚𝑎𝑥 = 𝑔

60 × 
𝑟 − 𝑔

𝑚𝑎𝑥 −𝑚𝑖𝑛
+ 240°,                                𝑖𝑓 𝑚𝑎𝑥 = 𝑏

 

 

𝑠 =  {
0,                                                                                     𝑖𝑓 𝑚𝑎𝑥 = 0
𝑚𝑎𝑥 −𝑚𝑖𝑛

𝑚𝑎𝑥
= 1 −

𝑚𝑖𝑛

𝑚𝑎𝑥
,                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   

 

𝑣 = 𝑚𝑎𝑥 

(3.7) 

Where, 

r, g, b are the normalized values [0, 1] in the RGB color space.  

max and min are the largest and smallest values among r, g, or b in a color. 

 

Table 3- 1 Summary of feature symbols 

 

 

Feature 

Name 

Symbols 

Red  Green Blue  

Hue Saturation Value 

Mean (M) 
RM GM BM 

HM SM VM 

Standard 

deviation (S) 

RS GS BS 

HS SS VS 

Entropy (N) 
RN GN BN 

HN SN VN 

Skew (K) 
RK GK BK 

HK SK VK 

Energy (E) 
RE GE BE 

HE SE VE 
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3.4 Feature Extraction: Regions 

Images were partitioned into constituent regions of arbitrary shapes and sizes in order to extract 

features from them. There are different definitions for the term region for varying context. The 

proposed method utilizes color information of the pixels to partition an image into its constituent 

regions. For this method, region is defined as a pixel set which is specified by using a class 

membership function defined in a color space. Such region formation is performed in the chosen 

color space.  

In the proposed method, minimum variance color quantization was performed to obtain 

different pixel groups. Generally, quantization reduces the number of colors in an image by first 

selecting a set of colors that represent the color gamut of the image and then computing appropriate 

mapping from the original color space to the representative colors in the reduced space. For 

example, for an RGB image, the color cube is partitioned into smaller boxes and then all colors 

that fall into each box are mapped to the color value at the center of the box. Minimum variance 

quantization takes the distribution of input variable into account while partitioning the color cube. 

Also, it groups pixels based upon the variance between their color values. Please refer to [41] for 

the algorithm of the method. The pixels are grouped such that they would have small variance 

from the representative color of the group. The quantization scheme is thus able to produce regions 

containing similar colored pixels, however, the number of represented colors after quantization 

plays a vital role in the type of regions formed.  

Even though the grouping of the pixels take place in the color space, it is preferable to extract 

regions in the image that correspond to recognizable object surfaces. It was empirically found out 

that, with smaller values like 10 to 15 colors, extracted regions corresponded to object surfaces in 

the image. But, such small values mean large groups of pixels with large variances. Large variances 
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in turn can cause dissimilar pixels to be grouped together. This is harmful especially when small 

bleeding areas are present as they are likely to be included within the surrounding non-bleeding 

are. Again, if the representative colors after quantization are more than 30, meaningful regions 

would not be extracted. Also, large number of regions means high computational costs. Thus, 20 

to 30 regions were determined to be useful to region partitioning in bleeding detection. Finally 24 

number of colors was selected as it provided a reasonable tradeoff between accuracy and 

complexity. 

 

3.5 Feature Extraction: Region Selection Schemes 

Region selection was performed to partition images into regions which are homogeneous in 

color. Features are crucial in characterizing image regions and in discriminating between the 

bleeding and non-bleeding classes. Region selection must thus produce image regions which align 

with the nature of the image properties that needs to be attributed for the problem at hand. Since 

the aim is to characterize the color distribution of the regions, the region selection scheme based 

on the color similarity of the pixels in the image was followed. Also, according to the requirement 

of the system, the images were partitioned in two ways: automated and semi-automated.  

 

3.5.1 Automatic Region Selection 

Fully automated region selection is required in the application stage of the methodology where 

the video frames are fed to the system for bleeding detection. Any form of human intervention in 

the application stage is highly undesirable and even impractical. An automatic region selection 

method as shown in Figure 3- 4 was thus followed. This method has two main steps: region 

partitioning and selection of regions using minimum threshold for region size. 
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Selection of regions 
using minimum 

threshold for region-size
Region partitioning

 

Figure 3- 4 Automatic region selection. 

 

3.5.1.1 Region partitioning 

Color segmentation and color quantization are different processes, however; if color 

quantization is performed in order to significantly reduce the number of colors in the new image, 

then it can be thought of as a rough segmentation [42]. Following this concept of segmentation, 

constituent homogeneous regions were selected from an RGB image using the steps: 

i) Smooth the image with an averaging filter of size 3x3. 

ii) Obtain a new image with a reduced color palette of size s by using minimum variance 

quantization technique on the color palette of the smoothed image of size O. The size of the 

reduced palette s=24 was empirically found to be a good estimate of the number of regions in 

images as it provided a reasonable tradeoff between accuracy and complexity. Figure 3- 5 shows 

sample images and the resulting images are shown in pseudo-color for better visualization of 

the different constituent regions of image. 
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Figure 3- 5 Region partitioning. Left: Original color images; Right: Images with 24 regions 

obtained after quantizing the original image at the left. Different regions of the images are 

represented with different colors.  

 

iv) Group all the pixels with the same color value as one region. Thus, there would be s 

number of regions in the resulting image. However, use original pixel values while 

calculating features. 

 

3.5.1.2 Selection of regions using threshold for minimum region size  

Formation of constituent image regions is an important step in the proposed methodology. To 

further improve the speed of bleeding detection process, regions which are not useful in bleeding 

discrimination can be omitted in further calculations. The region sizes were analyzed to determine 

whether or not any difference exists between bleeding and non-bleeding regions in terms of their 

sizes. If true, the regions with sizes that are outside of the range of bleeding regions can totally be 

ignored, and thus the required number of calculations can be reduced too. 
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3.5.2 Proposed Semi Automated Method for Ground Truth Annotation of 

Bleeding Regions 

Training dataset presents the classifier with the features of the different classes involved. For 

features based on regions, preparation of training data requires the delineation of regions of interest 

at first. The training data for non-bleeding class was simply created by using the automatic region 

selection method. The automatic region selection scheme is easy and fast in non-bleeding case as 

there is no need to select correct regions from the available pool of image regions because none of 

the image regions consist of bleeding pixels. But in case of bleeding images, the region selection 

scheme would produce a pool of image regions in which only a selected regions would be the 

actual bleeding regions. In order to obtain only the bleeding regions, manual intervention is 

required to select the correct regions. Hence, a new method with minimal human intervention was 

proposed to annotate bleeding regions in images. This method is applied on successive frames of 

a video. The scheme makes use of the similarity between the consecutive frames of the capsule 

endoscopy video. 

Figure 3- 6 demonstrates the flowchart of this scheme. The basic idea of the scheme is to obtain 

single bleeding region from the consecutive bleeding frames of a video by performing seeded 

region growing separately in all the frames. However, the initial starting point or seed needs to be 

provided only the first frame. For simplicity, the term ‘current frame’ is used for the frame whose 

seed has been determined and the seed’s validity has been confirmed. The process gets started 

from the first seed at the first bleeding frame. The location of first seed, S1, was manually selected 

by the user. It should be within the bleeding area and preferably at the center of a region or far 

from the edges. After growing a region at any current frame, the centroid of the region, and the 

average color of the region, M1, was determined. As shown in Figure 3- 6, the coordinates of the 
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region-centroid at the current frame (green points encircled by dashed green circle) was used as 

the location of seed for the next frame (blue points encircled by solid blue circle). Before starting 

the region growing process from this position at the next frame, the validity of the latest seed must 

be evaluated. This was performed by checking whether the color distance between the possible 

seed pixel at the next frame and the average color, M1, of the region grown at the current frame 

was lower than a fixed threshold. If not, then another pixel in the immediate 5x5 neighborhood of 

this position was inspected to find a pixel whose color is within the threshold distance of the 

average color, M1, of the current frame. This step affirms the feasibility of the seed, S2, belonging 

to a bleeding area in the next frame and also accounts for slight changes occurring between the 

successive frames. Also, before moving on to the next frame, distance between the average color 

of the regions of the current, and previous frame were checked. This step increases the reliability 

of the scheme by stopping the process whenever average color of grown region starts to 

significantly differ from previously grown regions. 

 

Region Growing. Figure 3- 7 demonstrates the steps of a seeded region growing technique 

which starts with an initial point. For simplicity, the latest point that was added to the growing 

region was called the seed in this algorithm. After the addition of every new pixel, the average 

color of the region was updated. The n-connected neighbors of the seed were added to the neighbor 

list of the region. Each neighbor of the region was then compared against the mean of the region 

in order to determine whether it meets the growing condition or not. The region thus iteratively 

grows in all four directions until all of its neighbors fail the growing criteria. 
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Figure 3- 6 Semi-automatic ground truth annotation: the first two CE frames are shown alongside the steps of the flowchart. Blue solid 

circle encloses the seed of the current frame and green dashed circle encloses the centroid the current grown-region. 
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Select the seed

Add the seed to the region  

Add the closest neighbor to the 

region 

Add 8-connected neighbors of the 

seed to the neighbors-list of region.

Stop
T

Neighbors

Seed

Non-

neighbors

F

Region

Check whether any neighbor is 

within the threshold value

 

Figure 3- 7 Left: Steps of region growing algorithm, Right: Illustration of two consecutive 

iterations of region growing process where following symbols are used: blue dot: seed, green 

tick: neighbor of region, red flags: non-neighbor of region, hashed pixel: member of region. 

 

A distance measure in the coordinate system of a color model gives the closeness of pixels in 

terms of color. Since differences between colors cannot be accurately perceived from distance 

measures based on RGB values [43], HSV color space was used for measuring color difference. 

The distance measure as described in [44] was used. For any two points (H1, S1, I1) and (H2, S2, 

I2), their color difference is given in as equation (3.8), 

𝑑 =  √(𝑑𝐶)2 + (𝑑𝐼)2 

Where, 

𝑑𝐼 = |𝐼1 − 𝐼2| 
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𝑑𝐶 = √𝑆1
2 + 𝑆2

2 − 2𝑆1 𝑆2 cos 𝜃 

𝜃 = {
|𝐻1 − 𝐻2|                𝑖𝑓 |𝐻1 − 𝐻2| < 180

° 

360° − |𝐻1 − 𝐻2|   𝑖𝑓 |𝐻1 −𝐻2| > 180
° 

(3.8) 

 

3.6 Support Vector Machine for Classification 

Based on the successful usages of SVM in similar applications, it was adopted in this study too. 

The classification of bleeding and non-bleeding patterns is a demanding application and the 

linearly separable case shown at Figure 2- 4 is not sufficient. Such complex problems require the 

design of non-linear classifiers. However, given N points which are non-linearly separable in an l-

dimensional space, mapping them into higher dimensional space can increase the probability of 

finding a space where the points are linearly separable. Adopting such an approach, SVM uses 

appropriate nonlinear functions in order to preprocess data to a higher dimensional space where 

the data from the two classes can be separated by a hyperplane [45]. Furthermore, architecture of 

SVM supports the use of kernels that allows the mappings even into an infinite space.  

Also, there could be cases where the perfect separation of the points of the two classes might 

negatively affect the generalizing abilities of the SVM classifier. In such cases, some flexibility in 

the classification is allowed by introducing a cost parameter, C in the SVM models that controls 

the tradeoff between cost of misclassification and forcing rigid margins. The optimal value of C is 

determined along with other parameters of the SVM model in the training stage. A rigorous search 

called the grid search was adopted in the proposed method to determine the optimal parameters. 

In this search, each parameter is varied on a range of values taken in geometric steps and the model 
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is evaluated at each stage. Thus, if there are two parameters in the model, with each varying in a 

range consisting of 10 intervals, then there would be 10×2 steps in the search. 

 

3.7 Feature Selection 

A major challenge in pattern recognition is the large number of features which is also called the 

curse of dimensionality. Addition of features obviously increases the computational complexity 

and it can increase the discriminative power of the classifier too. However, it might also lead to no 

or little gain in classification because of the correlation between the features and sometimes it 

might even cause a loss due of addition of noise. Also, more the number of features, more will be 

the number of classifier parameters. Thus, in presence of limited number of training patterns, it 

becomes imperative to keep the number of features to a sufficient minimum in order to achieve 

good generalization ability [21]. In regards to these issues in pattern recognition, feature selection 

was performed to optimize classification performance. Given a set of features, feature selection 

chooses subsets of features which would reduce the feature space dimension without 

compromising discriminative power of the classifier.  

There exists two approaches for feature subset selection: scalar feature selection and feature 

vector selection. In scalar feature selection, the features are ranked individually on the basis of 

their discrimination capabilities. Then, a subset of features with the best performance is selected 

to form the feature vector. This selection scheme is very simple but it fails to hold important 

information regarding correlation between the features. Thus, feature vector selection approach is 

widely adopted for complex problems and for highly correlated features. Again, there are two ways 

of performing feature vector selection: filter approach and wrapper approach. The two approaches 
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differ in terms of the optimality rule which is a criterion used for determining the optimality of 

feature subsets.  

 

 Filter Approach: The optimality rule in this approach is independent of classifier 

[46].  

 Wrapper Approach: The optimality rule is dependent to classifier. For all the 

combinations possible, performance of the classifier is evaluated and the one giving 

the best performance is selected [46].  

 

In this study, wrapper approach was adopted for feature selection. An exhaustive feature 

selection was followed to find the best feature subset which involves evaluation of classifier 

performance after each classifier training. Figure 3-8 presents the scheme of this feature selection 

approach. 15 features, as listed in Table 3- 1, were used in this algorithm by combining them in all 

possible ways. These features were considered in pairs, triplets and up to groups of fifteen, in all 

possible combination. The whole experiment was thus divided into 15 sub parts according to the 

size of the feature subset, n. In each case of size n, 15 features can be combined in 15Cn number 

of ways. For each combination, an SVM was trained and tested with the corresponding subset of 

features selected from the available features. The SVM was further evaluated on image level with 

the usage of a set of 100 test images. Since, the classifier classifies only the regions, image level 

classification was performed in a slightly different manner. In order to classify an image, all of its 

constituent regions were classified at first. If any one of them was classified as a bleeding region, 

then the image was categorized as a bleeding image. The classification performance of the method 

was evaluated on the basis of the results of image level classification on the 100 test images. Every 
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classifier was trained and tested with the same set of images. The combination of features resulting 

in the best image level performance of the classifier was finally selected as the best feature subset. 

 

3.8 Performance Measures 

The results obtained from the classification algorithm were analyzed for evaluating the 

performance of the proposed bleeding detection algorithm. There exists four possible cases about 

the detection result. A bleeding image can be truly detected as a bleeding image and a non-bleeding 

image can truly be identified as a non-bleeding image. If bleeding is considered to be a positive 

event and non-bleeding to be a negative event, the above mentioned two cases are called True 

Positive (TP) and True Negative (TN) detections respectively. Likewise, if a bleeding image is 

falsely identified as a non-bleeding image, then this is the case of False Negative (FN) detection 

and if a non-bleeding image is falsely identified as a bleeding image, it is called False Positive 

(FP) detection. From these values, various measures like sensitivity, specificity and accuracy can 

be calculated. Sensitivity, specificity and accuracy are three ideal criteria for assessing the 

classification performance of the proposed algorithm and these measures are widely used in 

literature regarding evaluation of pattern recognition systems. They are described as in equation 

(2.2). By considering only the sensitivity value, important information on the correct classification 

of the negative events, will be missed.  Similarly, specificity value alone will also not be able to 

provide complete assessment of the classification performance. Further, if the number of positive 

and negative cases differs significantly, accuracy alone can be misleading because it can be biased 

to either sensitivity or specificity depending on the number of positive and negative cases. For 

example, if the number of positive cases is significantly less than the number of negative cases, 

accuracy will be biased to specificity. Hence no single measure among the three is enough for 
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complete assessment of classification performance, because of which, the proposed method makes 

use of all of them. 

Various circumstances in practical scenarios play a role in determining whether a high 

sensitivity or a high specificity should be preferred over the other. For example, in bleeding 

detection, physicians would prefer having a false positive hit rather than actually missing the 

positive event. However, a lot of false positive hits can be annoying and might reduce. Also, there 

can be cases where bleeding is present in a batch of adjacent frames where some beginning or end 

frames could only contain faint traces of bleeding and could be missed. These false negatives could 

lead to a low value of sensitivity but it could be tolerable in this case. 

 

  



 

 

 

4
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Figure 3-8 Exhaustive feature selection scheme followed in the proposed method for bleeding detection.
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Chapter 4 

Results and Experiments 

This chapter presents all the experiments performed and the results obtained. All the 

experiments were carried out as computer simulations which were performed in MATLAB [47]. 

And all the videos and images used in this study were taken from [28] and from the DVD resource 

available in [48]. The LIBSVM package [49] was used to implement the Support Vector Machine 

(SVM) models in our methodology. 

Two sets of experiments were performed. A set of experiments were performed for selecting 

the best feature subspaces for bleeding detection in RGB and HSV color space. The best feature 

subsets were further tested with three different videos. Also, another set of experiments were 

performed to determine appropriate minimum region size threshold by examining the size 

histograms of bleeding and non-bleeding regions. The effect of this parameter in the classification 

performance of the methodology was also observed. 

 

4.1 Feature Extraction 

Classification of video frames was performed on the basis of the statistical features as listed in 

Table 3- 1. Classification ability of each possible combination of features was evaluated. In such 

an evaluation, the feature vectors used in training and testing the SVM, consists of only the features 

that constitute the feature combination being evaluated. Figure 4-1 presents scatter plots of some 

random feature combinations of the train and test data. These plots show that only selective feature 

combinations produce differentiable cases of bleeding and non-bleeding classes. These outcomes 
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also show that appropriate feature combinations among the available set of features must be 

selected in order to classify the image regions correctly. 

 

  

Figure 4-1 Scatter plots of random feature combinations in RGB and HSV color spaces. 

 

4.2 Training and Testing of the SVM 

Radial Basis Kernel function (RBF) was used for SVM training. Optimal value for cost, C, was 

searched in the range log2 𝐶 = [−5,−4,… ,10] and gamma, G in the range: log2 𝐺 =

[−15, −14,… ,1]. Classification performance of a model, trained with each possible combination 

of C and G, was evaluated with 5-fold cross validation. The parameter values resulting in the 

highest cross validation accuracy were selected as the optimal parameters and were then used to 

train a new model using the whole training set.  
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All the SVM models were trained and tested using the set of training data consisting of 248 

instances. The 248 instances consist of equal number of bleeding and non-bleeding feature 

instances/vectors. Each of the bleeding instance is derived from a single bleeding region of a frame 

with bleeding. Thus, 124 bleeding frames were used to create the 124 bleeding instances. The 

bleeding instances were created from 10 videos taken from [48] by using the ground truth 

annotation method described in section 3.5.2 . Similarly, the non-bleeding instances were derived 

from the 124 regions of 25 non-bleeding frames. The non-bleeding frames were also taken from 

ref. [48].  

After training and testing, image level test was performed for each SVM with a set of 100 test 

images in order to calculate the metrics for performance evaluation. The test image set consists of 

50 bleeding images and 50 non-bleeding images. The feature combination producing the best 

classification performance was the best combination of features. The best feature combinations in 

RGB and HSV color spaces were further tested with three independent videos. Our set of test 

images contains fewer images but these are independent images with varying amount and type of 

bleeding events. Thus, the test set is adequate enough for roughly estimating the performance of 

the proposed methodology. This dataset can be extended in future if more data is available.  

 

4.3 Feature Selection 

For selecting the best feature subsets, bleeding discrimination ability of each possible feature 

combination was separately evaluated as described in section 3.7. At first, best combinations of 

features for each subset size n [n=1 to 15] were obtained. Since it is difficult to compare the 

features based on all three measures, accuracy was used to sort out the best feature combination 

for each size n at first. Accuracy was chosen because the numbers of positive and negative cases 
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in our test dataset are equal in this experiment which makes it unbiased toward sensitivity and 

specificity. Other measures were examined afterwards for ensuring the best performance in 

discriminating both the classes. 

Table 4-1 and Table 4-2 demonstrate the best combination of features for all subset size n [n= 

1, 2, .., 15] in RGB and HSV color spaces respectively. Feature combinations which produce high 

sensitivity value do not necessarily ensure high classification performance. For example, in Table 

4-1, the sensitivity value for the best combination of subset size s=1 is 100% but its specificity is 

0%. What these values mean is that, among the 50 bleeding images, all of them were classified 

into their true class but all the non-bleeding images were misclassified. Thus in this case, all the 

images in the test set were classified as the positive class, no matter what their actual labels were. 

Hence those combinations, which produced all three performance measures with highest values 

and with minimal differences among themselves, were selected as the best feature subsets. In cases 

where there were multiple of such subsets, any one of them is shown in Table 4-1and Table 4-2 

for simplicity. After selecting the best feature subset for all sizes, the same scheme as earlier is 

utilized for determining the best subset among themselves. In case of multiple feature subsets 

achieving the highest level of performance, the one with the smallest size is selected. For example, 

94% is the highest level of classification performance obtained by the RGB features in this 

experiment; but, among the selected feature subsets, the one with RM and GM is of the smallest 

size and is thus the finally selected feature combination for the RGB color space. This scheme is 

also presented by Figure 4-2 and Figure 4-3 which demonstrate the plots of the best performance 

values for all subset sizes, n, in RGB and HSV spaces. Both the color spaces were able to attain 

high accuracy of 94%. 
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Table 4-1 Feature selection results for RGB color space 

 

Size Acc. Sens. Spec. Feature Combination 

1 0.5 1.0 0.0 GM 

2 0.94 0.94 0.94 RM, GM 

3 0.94 0.94 0.94 RM, GM, GN 

4 0.94 0.94 0.94 RM, GM, GN, BE 

5 0.94 0.94 0.94 RM, GM, BN, RK, GK 

6 0.94 0.94 0.94 RM, GM, BN, RK, GK, RE 

7 0.94 0.94 0.94 RM, GM, BN, RK, GK, RE, BE 

8 0.94 0.94 0.94 RM, GM, BN, RK, GK, RE, BE, GE 

9 0.93 0.94 0.92 RM, GM, BM, BS, RN, GN, BN, RK, GK 

10 0.93 0.94 0.92 All except RS, GS, BS, RN, RK 

11 0.93 0.96 0.9 All except RS, GS, GE, BE 

12 0.93 0.96 0.9 All except RS, GS, BE 

13 0.93 0.96 0.9 All except RS, GS 

14 0.87 1 0.74 All except GS 

15 0.79 1 0.58 All 

 

Table 4-2 Feature selection results for HSV color space 

 

Size Acc. Sens. Spec. Feature Combination 

1 0.72 0.92 0.52 HM 

2 0.89 0.92 0.86 HM, SM 

3 0.94 0.98 0.9 HM, SM, VM 

4 0.91 0.94 0.88 HM, SM, SS, SE 

5 0.9 0.96 0.84 HM, SM, VM, SS, HE 

6 0.89 0.94 0.84 HM, SM, VM, HS, SS, SE 

7 0.9 0.96 0.84 HM, SM, VM, HS, SS, VS, SE 

8 0.86 0.96 0.76 HM, SM, VM, HS, SS, VS, SE, VE  

9 0.84 0.98 0.7 HM, SM, VM, HS, SS, VS, HN, HK, VE 
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10 0.82 0.94 0.7 All except  SN, VN, SK, VK, VE 

11 0.75 0.94 0.56 All except SN, VN, SK, VK 

12 0.68 0.94 0.42 All except VN, SK, VK 

13 0.54 0.98 0.1 All except VK, HE 

14 0.54 1.00 0.08 All except VK 

15 0.48 0.96 0 All 

 

 

 

Figure 4-2 Performance comparison of the best feature subsets of all sizes in RGB color space. 
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Figure 4-3 Performance comparison of the best feature subsets of all sizes in HSV color space. 

 

4.3.1 Results of Feature Selection in RGB Color Space 

Table 4-1 shows that in RGB color space, none of the features are able to discriminate bleeding 
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performance of bleeding detection was obtained. But, the combination of RM and GM could 

achieve highest performance level attained in this set of experiments with accuracy, sensitivity and 

specificity of 94%. Thus, all the three performance measures of this combination are high which 

ensures an all-round performance in the discrimination of the bleeding and non-bleeding regions. 
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it was noticed that high level of performance was achievable only up to subset size n=8. 

Performance started to gradually decline afterwards.  

Thus, the mean values of the red and green planes are the two most relevant features for 

bleeding detection in the RGB color space. It is also interesting to inspect the scatter plot of the 

features in the reduced feature space of the best feature subset. Figure 4-4 presents the feature 

instances of the bleeding and non-bleeding classes with RM in the x-axis and GM in the y-axis. 

The plot shows the presence of a relation between the mean of the red and green color channels of 

the image regions which provide discriminative capabilities towards the bleeding discrimination 

problem. 

 

 

Figure 4-4 Scatter plots of the feature instances in the best feature subset of RGB color space. 

Bleeding instances are shown as red star and non-bleeding instances are shown as blue 

diamonds. 
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4.3.2 Results of Feature-Selection in HSV Color Space 

Table 4-2 presents the results of feature selection in HSV color space. It shows that HM is the 

most important feature in the HSV color space and it is singly able to achieve a fair amount of 

bleeding discrimination. The combination of HM, SM, and VM produced values of accuracy, 

sensitivity and specificity as high as 94%. Thus, all the three performance measures of this 

combination are high ensuring an all-round performance in the discrimination of the bleeding and 

non-bleeding regions. Moreover, almost all other best feature subsets of size higher than n=3, 

contain the combination of HM, SM, and VM. But, further addition of features into this feature 

subset resulted in the decline of the performance. Thus, the combination of mean values of the 

hue, saturation and value planes is the most relevant feature subset for bleeding detection in the 

HSV color space. Figure 4-5 presents the feature instances of the bleeding and non-bleeding 

classes with HM in the x-axis, SM in the y-axis and VM in the z-axis. The plot shows a clear 

separability of the bleeding and non-bleeding instances in the shown feature space. 

 

 

Figure 4-5 Scatter plots of the feature instances in the best feature subset of HSV color space. 

Bleeding instances are shown as red star and non-bleeding instances are shown as blue 

diamonds. 
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4.3.3 Comparison of the Feature Subsets in RGB and HSV Color Space 

It is noteworthy to compare the performances of the feature subsets in RGB and HSV spaces. 

Figure 4-6 and Figure 4-7 show the number of combinations in each subset size, n, which produce 

accuracy values above 50% in RGB and HSV color space respectively. These plots portray the 

differences in the nature of the feature subsets in RGB and HSV color spaces. It was noted that the 

number of combinations, with accuracy higher than 50%, is much larger in RGB than HSV for 

every subset size. The occurrences of numerous combinations with comparable performances are 

because of many redundant features. For example the feature subset containing RM, GM, GE has 

accuracy of 94 %, which is exactly the same with the feature combination containing RM, GM, 

BE. Here GE and BE can be seen as two redundant features. There are numerous such redundant 

features, and thus there are many feature combinations that produce the same or comparable 

performances. For equivalent level of performance, there are significantly higher numbers of such 

feature combinations with RGB color space than with HSV. This shows that the RGB color space 

has significantly larger number of highly correlated features.  

It was also noted that the addition of selective higher order features to the best feature subset 

provides no more useful information in the decision making. This is true for both RGB and HSV 

spaces; but in HSV, the higher order statistical features tend to affect the decision making 

negatively. This explains why the sorted accuracy value for each subset size in RGB space 

decreases gradually from their maximum point as shown in Figure 4-6; whereas, this decrease is 

very steep in HSV, as shown in Figure 4-7. Some bleeding detection results are presented in Figure 

4-8. These are obtained using the best feature subsets of RGB and HSV. 
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Figure 4-6 Plot of the accuracy values sorted in descending order up to 50% for all feature subset size, n, in RGB color space.
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Figure 4-7 Plot of the accuracy values sorted in descending order up to 50% for all feature subset size, n, in HSV color space.  
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Figure 4-8 Bleeding detection performed by the corresponding best feature subsets in RGB and 

HSV color spaces. The detected bleeding regions are delineated with white lines. 
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Figure 4-9 Samples of frames of Video 1, Video 2 and Video 3 in row 1, row 2 and row 3 respectively. 
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4.4 Test of the Feature Selection Results  

The best feature subsets were determined on the basis of a test set containing limited number 

of images. Thus, the relevancy of the best feature subsets were further tested in different video 

frames in the application stage of the methodology. As described in section 3.1, an application 

stage of the proposed methodology makes use of the optimal classifier which is trained and tested 

using the best feature subsets. Three independent CE videos were used to evaluate the performance 

of bleeding discrimination in each video individually. In order to evaluate the classification 

performance, all frames of each video were extracted and then classified in the application stage 

by using the optimal classifier.  

Table 4-3 Performance of the best feature subsets in three independent videos in RGB and HSV 

color spaces. 

 RGB HSV 

 Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

Video 1 0.871 0.786 0.878 0.854 0.928 0.848 

Video 2 0.918 0.994 0.876 0.992 1.000 0.988 

Video 3 0.988 0.800 1.000 0.988 0.800 1.000 

 

Some frames of the three videos are shown in Figure 4-9 to help in the comparative analysis of 

the performance of the features in the three videos. Video 1 has 589 numbers of frames with 42 

bleeding and 547 non-bleeding frames. Video 2 has 500 numbers of frames with 177 bleeding 

images and 323 non-bleeding images. Video 3 has 428 numbers of frames with 25 bleeding and 

403 non-bleeding frames. The classification performance of the best combination of features on 

bleeding detection in three videos are presented in Table 4-3. The feature subsets provide good 

classification performance in Video 2 and Video 3 with accuracy as high as 91.8% and 98.8% 

respectively. Lighting along with the amount of bleeding seem to affect the performance of the 

proposed detection algorithm. For example, Video 2 consists of frames with multiple bleeding 
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regions with large and clear bleeding areas due to which the classification performance was 

remarkably good in this video. Also, improper lighting conditions seem to affect the sensitivity in 

case of Video 3 in extreme conditions, especially when bleeding regions fall within the dark areas. 

Overall, good discrimination of bleeding and non-bleeding regions in this experiment has further 

corroborated the relevancy of the best feature subsets in the proposed bleeding discrimination 

methodology.  

 

4.5 Tuning of Region Size Threshold 

As described in section 3.5.1, sizes of the image regions can be used to further improve the 

system performance in regards to the number of required calculations. The aim here is to find the 

range of region sizes that occur predominantly in the bleeding category only. In order to determine 

the valid range of region sizes for the bleeding class, at first the frequency of occurrences of various 

region sizes in the two classes were examined. Then, suitable region size threshold was determined 

by analyzing the effects of region size thresholds to the classification performances.  

At first, histograms of region sizes were created for bleeding and non-bleeding regions of the 

test images which are shown in Figure 4-10 and Figure 4-11 respectively. The histograms show 

that bleeding and non-bleeding occur in a large overlapping range of region sizes. But, it can be 

inferred that the bleeding regions rarely occur with sizes less than 200 pixels whereas non-bleeding 

regions are highly probable to occur with sizes lesser than 100 pixels. 
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Figure 4-10 Histogram of region sizes for bleeding regions of test images. 

 

 

Figure 4-11 Histogram of region sizes for non-bleeding regions of test images. 
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Table 4-4 Comparison of performance and time in RGB color space by varying the region size 

threshold 

Region size 

threshold 

Video 1 Video 2 Video 3 

Sens. Spec. Time 

(sec) 

Sens. Spec. Time 

(sec) 

Sens. Spec. Time 

(sec) 

0 0.786 0.878 712 0.994 0.876 605 0.800 1.000 521 

100 0.786 0.878 710 0.994 0.876 601 0.800 1.000 518 

200 0.500 0.878 706 1.000 0.873 595 0.800 1.000 512 

300 0.405 0.878 703 0.938 0.873 593 0.800 1.000 510 

400 0.262 0.878 693 0.938 0.873 588 0.800 1.000 508 

500 0.119 0.879 691 0.932 0.876 586 0.800 1.000 507 

1000 0.119 0.925 671 0.864 0.876 574 0.800 1.000 493 

2000 0.000 0.982 595 0.689 0.938 506 0.600 1.000 455 

4000 0.000 1.000 419 0.175 1.000 320 0.000 1.000 345 

Table 4-5 Comparison of performance and time in HSV color space by varying the region-size 

threshold 

Region size 

threshold 

Video 1 Video 2 Video 3 

Sens. Spec. Time 

(sec) 

Sens. Spec. Time 

(sec) 

Sens. Spec. Time 

(sec) 

0 0.929 0.848 354 1.000 0.988 302 0.800 0.988 223 

100 0.929 0.848 350 1.000 0.988 298 0.800 0.988 222 

200 0.643 0.848 349 1.000 0.988 297 0.800 0.988 220 

300 0.548 0.848 343 1.000 0.988 294 0.800 0.988 220 

400 0.405 0.848 340 1.000 0.988 290 0.800 0.988 219 

500 0.405 0.848 340 1.000 0.988 290 0.800 0.988 218 

1000 0.262 0.890 332 1.000 0.988 286 0.800 0.988 214 

2000 0.000 0.969 305 1.000 0.988 262 0.800 0.988 199 

4000 0.000 1.000 230 0.057 1.000 185 0.000 1.000 158 

 

Another experiment was performed to study the effect of ignoring small regions to the 

performance of the methodology by using the same three different videos as in section 4.4. As 

earlier, frames of individual videos were classified by using the most optimized classifier in RGB 

and HSV spaces. Here region partitioning was followed by region selection using various region 

size thresholds. Separate simulations were performed for the region size thresholds of 0, 100, 200, 

300, 400, 500, 1000, 2000 and 4000. Table 4-4 and Table 4-5 demonstrate that ignoring the small 

regions could affect the sensitivity of this methodology, especially for videos with smaller bleeding 

regions. Video 1, has multiple frames consisting of a single, small bleeding region as shown in 
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Figure 4-9. Thus, performance for Video 1 was negatively affected by ignoring smaller regions 

and the effect increased with the increase in the region size threshold.  But, Video 2 and Video 3 

have larger bleeding regions because of which the performances for these videos were not affected 

until very large regions were omitted. Also, it was noted that none of the performances were 

affected till the region size threshold of 100 pixels.  

Table 4-4 and Table 4-5 also show the total time required by the bleeding detection process for 

all three videos. In order to observe the reduction in time caused by the reduction in the number of 

regions, time for completing the bleeding detection process in each video can be compared against 

each other for different minimum region size thresholds. Thus, it was observed that by ignoring 

smaller regions, reduction in time can be achieved without compromising performance. Thus, from 

the size histograms presented in Figure 4-10, Figure 4-11and from Table 4-4  and Table 4-5, it can 

be concluded that the regions of size lesser than 100 pixels can safely be omitted in the bleeding 

detection process, in order to reduce the number of calculations.  

 

4.6 Performance Comparison to Other Existing Methods 

In order to demonstrate the classification performance of the proposed method, it was compared 

with existing state of the art methods in bleeding detection. In Table 4-6, state of the art methods 

are enlisted in order of the time of their publication. All types of classification methods according 

to identification area are covered in Table 4-6. Similar values of performance metrics are seen to 

be reported by the enlisted methods. Further, there is no clear indication of the superiority of any 

method from their reported values of performance metrics. Thus, various aspects of the methods 

must be considered in addition to the performance metrics while comparing the methods. Readers 
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can also refer to [50] for additional reviews of computer aided decision support systems for GI 

tract including detection of bleeding pathology. 

In Table 4-6, references [12], [23] and [51] are pixel based classification methods. Even with 

the use of simple features, this type of method is computationally exhaustive. Likewise, the authors 

in [31] use covariance of second order statistical features (CWC) based on discrete wavelet 

transform and then perform classification between the abnormal and normal classes with the use 

of texton boost classifier. This method achieves a reasonably good classification performance but 

the results of the method are determined from a database of only 100 WCE images. Even though, 

it is an image based method, the used features are computationally intensive. The authors in this 

study have themselves claimed the high computational cost requirement of the method. In contrast, 

the proposed method requires first order statistical features which demand significantly lower 

computational requirements than the CWC features  

In [17], [19]and [26], identification areas which are intermediate to the pixel and image based 

areas were used. This type of method derives features from fixed shape and size image patches, 

which are highly likely to introduce noise, especially for smaller bleeding regions. These methods 

have reported similar values of the performance metrics except [19] which reports a perfect 

classification performance values. However, these are patch level classification results which are 

not as conclusive as image level classification results. Authors in [19] also provide an image level 

classification result of 3.5% false positive rate. But this result is determined on the basis of only 

one patient’s video. Video of a single patient covers limited types of bleeding occurrences and 

results based on a single video do not provide conclusive result for image level classification. 

However, the image level classification results of the proposed method are based on 100 

independent images from standard public database sources. The results of the proposed method 
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are further supported by additional experiments performed with three independent video sequences 

consisting of 1512 frames. Different types of videos were used in the experiment to make it fair 

and Table 4-3 shows that the method is able to provide 92.9% sensitivity even with small bleeding 

areas in video frames.  

Similar to our method, [52] is a region-based classification method. Though the method is able 

to achieve good classification performance, it involves large number of parameters in various 

processes like edge detection, morphological operations and superpixel segmentation. Although 

the authors provide optimal values for these parameters, some human intervention might be 

required to optimize these parameters in varying scenarios because of their significant effect to the 

performance of the method. However, the proposed method requires the optimization of only one 

parameter which has significant effect to the system. Thus, the proposed method requires minimal 

human intervention, making it suitable for automatic applications.  

In Table 4-6, an analytical comparison of the enlisted methods is also provided in terms of their 

computational costs requirements to perform image level classification. Two sub steps are focused 

in the comparison: feature extraction and segmentation/ region partitioning. Following aspects 

were taken into account for labelling the feature extraction into high, medium and low categories: 

feature complexity, feature vector size per identification area and number of identification area per 

video frame. For example, both [52] and the proposed method utilize simple features but, [52] 

divides an image into a total of 400 regions in 576x576 images which is much higher than the 

proposed method which produces less than 24 regions in 256x256 images. Thus, feature extraction 

in the proposed method has significantly lower computational costs than in [52]. Likewise, 

computational costs for region partitioning schemes were also labelled into the same three 

categories: high, medium and low. The region partitioning method used in the proposed method is 
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based on color quantization which is computationally less rigorous than other segmentation 

methods. 

Thus, the method proposed in this work has low computational requirements in both feature 

extraction and region partitioning. It has exhaustive feature selection but that is required only once 

and doesn’t affect in the application phase. Moreover, the method has an additional level of 

automation than all other methods as it employs a semi-automatic ground truth label annotation 

method.  
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Table 4-6 Comparison of existing state-of-the-art methods in bleeding detection. 

Ref. Identifi

cation-

area 

# images and 

videos 

Source of 

data 

Features #compone

nts / 

identif. 

area 

Feature 

Selection 

Ground 

truth 

label 

Classifi

cation 

Computatio

nal Cost ** 

Sens. Spec. 

Feat

ure 

Region

-partn. 

[23] pixel 15222 frames 

from 3 videos 

Single 

Hospital 

RGB pixel 

values 

3/ pixel None Manual EM 

clusteri

ng 

H None 92.0 98.0 

[51] pixel 2,000 frames 

from 2 videos 

N/A. Pixel values N/A None N/A Thresho

lding 

H None 92.86 89.49 

[17] patch 400 frames from 

20 videos 

Single 

Hospital 

various N/A None Manual ANN M L *91.6 *93.6 

[26] patch N/A Single 

Hospital 

Adaptive 

color 

histogram 

110/ patch None N/A ANN H L 91.8 93.5 

[12] pixel 14630 frames 

from 150 videos 

Single 

Hospital 

RGB and 

HSV values 

6 /pixel None Manual ANN H None 93.1 85.8 

[31] image 100 images Jin shan 

co. 

CWC 72 / image None N/A Texton 

Boost 

H None 89.1 82.3 

[19] patch 538 frames plus 

1 video 

N/A various 2494 / 

patch 

Anova, 

SFFS, VSCH 

Manual SVM, 

VSCH 

H L *86.0 

-100.0 

*98.6-

100.0 

[52] region 5000 frames 

from 20 videos 

Single 

Hospital 

R/B, R/G, 

R/(R+G+B) 

3 /region None Manual SVM M M 99.0 94.0 

ours region 348 frames plus 

3 videos 

Standard 

public 

database 

histogram 

features 

15/ region Exhaustive semi-

automate

d 

SVM L L 94.0 94.0 

* marked sensitivity and specificity values are patch level classification results. All other values are image level classification performances. 

** Computational costs are labelled as high, medium and low categories, which are represented by the symbols: H, M, and L respectively.  
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Chapter 5 

Conclusion and Future Work 

5.1 Summary of Accomplishments 

Bleeding detection in CE videos is a problem of interest, and thus has attracted a critical mass 

of research. A number of works have been performed in this field by devising supervised 

classification systems which apply intelligent techniques to classify the frames into different 

classes. This thesis argues that the region-based classification approach is suitable to this 

application as it provides information from the local regions of the video frames. The main 

objective of the thesis is to use relevant feature extraction, feature selection and classification 

techniques in order to efficiently perform bleeding detection in CE. 

The proposed bleeding detection method was presented in the thesis for detecting the frames of 

the video which have possible bleeding occurrences in order to assist physicians in the examination 

of gastrointestinal tract. The proposed method performs a supervised classification of the video 

frames on the basis of statistical features that were derived from the regions of frames. The 

proposed method uses region selection technique based on color quantization in order to divide 

the image into regions of homogeneous color. This region selection method is fast and requires 

minimal parameter optimization. Statistical measures were then derived from the first order 

histogram probability of the color channels of the regions. RGB and HSV color channels were 

utilized in the proposed work.  

The experiments and results were then presented. The use of all available 15 features resulted 

in poor classification in both RGB and HSV color spaces. Thus, an exhaustive search was 

performed for determining the best combination of features. The combination which achieved 
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maximum sensitivity and specificity of 94% were selected as the best feature subsets. Additional 

experiments to test the relevancy of these selected feature subsets also produced consistently good 

performance with three independent videos. Thus through feature selection, high classification 

performance was achieved. Furthermore, the best feature subsets in RGB and HSV were only of 

size two and three respectively. With the use of these subsets, the method requires less number of 

features per image region thus, reducing the classification time per video frame. 

Also, the regions of the bleeding and non-bleeding classes were experimented in this thesis. 

The results determined that the regions occurring in small sizes, with 100 or less number of pixels, 

can totally be ignored as they are not likely to be of any importance. Thus by ignoring small 

regions, the number of regions per frame was reduced, which in turn reduced the number of 

classifications required to class per frame.  

A semi-automatic method was also proposed to annotate the ground truth labels of bleeding 

class. Manual annotation of the ground truth labels for bleeding requires manual delineation of the 

whole bleeding area. Since large training set is always desirable, manual annotation could be 

tedious. The proposed annotation method addresses this problem by requiring the user to input 

only a single point in the bleeding area. After receiving the location of the starting point and a 

threshold value, the method then grows a region containing similar neighboring pixels within the 

given threshold.  

Overall, the proposed method combines multiple synergistic approaches which makes it 

suitable for the detecting CE frames containing bleeding. The proposed method achieves high 

classification performance with the region-color features derived from first order probability 

histograms. Thus, the region partition method and the extracted color features are relevant to 

bleeding detection. Further, Table 4-6 illustrates various features of the proposed method like low 
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computational cost, high classification ability, added level of automation, and usage of standard 

data sources that has proved its novelty and relevance in classifying bleeding and non-bleeding 

regions in CE images. Minimal human intervention and low computational requirements of the 

method also make it feasible for practical implementation. Thus, the method shows great promise 

in assisting physicians in bleeding detection in CE videos. 

 

5.2 Recommendations for Future Works 

This section provides a few recommendations which can be explored in future for improving in 

the classification performance of the method: 

1. Preprocessing techniques were not explored in this work. Ref. [25] has used detection of 

specular highlights in air bubbles which improved the classification performance of their 

method. Such techniques which perform image enhancement, removal of very dark areas 

and highlights can be integrated into the proposed method to improve the performance of 

the system.  

2.  The methodology classifies the video frames into two classes: bleeding and non-bleeding. 

A classification system with an extra class can be designed which would take ambiguous 

and difficult cases into account. 

3. Other image segmentation techniques can be tested and compared with the automatic region 

selection technique used in the methodology.    

4. The bleeding detection process can be sped by addressing the correlation that is present 

among the adjacent frames of the video. 

.
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