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ABSTRACT 
 

Large-scale mining practices have disturbed many natural watersheds in northern 

Alberta, Canada. To restore disturbed landscapes and ecosystems’ functions, 

reconstruction strategies have been adopted with the aim of establishing sustainable 

reclaimed lands. The success of the reconstruction process depends on the design of 

reconstruction strategies, which can be optimized by improving the understanding of the 

controlling hydrological processes in the reconstructed watersheds. Evapotranspiration is 

one of the important components of the hydrological cycle; its estimation and analysis 

are crucial for better assessment of the reconstructed landscape hydrology, and for more 

efficient design. The complexity of the evapotranspiration process and its variability in 

time and space has imposed some limitations on previously developed 

evapotranspiration estimation models. The vast majority of the available models 

estimate the rate of potential evapotranspiration, which occurs under unlimited water 

supply condition. However, the rate of actual evapotranspiration (AET) depends on the 

available soil moisture, which makes its physical modeling more complicated than the 

potential evapotranspiration. The main objective of this study is to estimate and analyze 

the AET process in a reconstructed landscape. 

Data driven techniques can model the process without having a complete 

understanding of its physics. In this study, three data driven models; genetic 

programming (GP), artificial neural networks (ANNs), and multilinear regression 

(MLR), were developed and compared for estimating the hourly eddy covariance (EC)-

measured AET using meteorological variables. The AET was modeled as a function of 

five meteorological variables: net radiation (Rn), ground temperature (Tg), air 

temperature (Ta), relative humidity (RH), and wind speed (Ws) in a reconstructed 

landscape located in northern Alberta, Canada. Several ANN models were evaluated 

using two training algorithms of Levenberg-Marquardt and Bayesian regularization. The 

GP technique was employed to generate mathematical equations correlating AET to the 

five meteorological variables. Furthermore, the available data were statistically analyzed 

to obtain MLR models and to identify the meteorological variables that have significant 

effect on the evapotranspiration process. The utility of the investigated data driven 
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models was also compared with that of HYDRUS-1D model, which is a physically 

based model that makes use of conventional Penman-Monteith (PM) method for the 

prediction of AET. HYDRUS-1D model was examined for estimating AET using 

meteorological variables, leaf area index, and soil moisture information. Furthermore, 

Wavelet analysis (WA), as a multiresolution signal processing tool, was examined to 

improve the understanding of the available time series temporal variations, through 

identifying the significant cyclic features, and to explore the possible correlation 

between AET and the meteorological signals. WA was used with the purpose of input 

determination of AET models, a priori. 

The results of this study indicated that all three proposed data driven models 

were able to approximate the AET reasonably well; however, GP and MLR models had 

better generalization ability than the ANN model. GP models demonstrated that the 

complex process of hourly AET can be efficiently modeled as simple semi-linear 

functions of few meteorological variables. The results of HYDRUS-1D model exhibited 

that a physically based model, such as HYDRUS-1D, might perform on par or even 

inferior to the data driven models in terms of the overall prediction accuracy. The 

developed equation-based models; GP and MLR, revealed the larger contribution of net 

radiation and ground temperature, compared to other variables, to the estimation of 

AET. It was also found that the interaction effects of meteorological variables are 

important for the AET modeling. The results of wavelet analysis demonstrated the 

presence of both small-scale (2 to 8 hours) and larger-scale (e.g. diurnal) cyclic features 

in most of the investigated time series. Larger-scale cyclic features were found to be the 

dominant source of temporal variations in the AET and most of the meteorological 

variables. The results of cross wavelet analysis indicated that the cause and effect 

relationship between AET and the meteorological variables might vary based on the 

time-scale of variation under consideration. At small time-scales, significant linear 

correlations were observed between AET and Rn, RH, and Ws time series, while at larger 

time-scales significant linear correlations were observed between AET and Rn, RH, Tg, 

and Ta time series. 
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CHAPTER 1. INTRODUCTION 
 

1.1 Background 

One of the major human activities that threaten the natural environment is large-

scale surface mining, which put the original ecosystem and hydrology of a local region 

at high risk. As a result of these large-scale mining practices, which usually extend to 

hundreds of square kilometres of area and hundreds of meters of depth, millions of 

tonnes of solid waste are produced (O’Kane et al., 1998) and various functions of natural 

watersheds are destroyed. As a solution for this growing concern, many governments 

have forced mine operators to adopt reasonable reclamation strategies for the mined 

landscapes (Haigh, 2000). Land reclamation is described as the process of restoration of 

disturbed landscapes and establishment of sustainable soil-vegetation-water relationship 

to achieve land capabilities corresponding to the natural state (Gilley et al., 1977).  

The oil sands industry has disturbed many natural watersheds in northern 

Alberta, Canada, where mining activities have been in operation for the extraction of oil 

from oil-bearing sands (Fig. 1.1). The oil sands mining practices at Mildred Lake area 

near Fort McMurray have affected approximately 1200 km
2
 of natural environment with 

the expectation of expansion to 2000 km
2
 by 2020 (Carey, 2008). During the mining 

process, soil and overburden are removed to gain access to oil bearing deposits. When 

the mining practices are over, large-scale open pits resulting from mining operation are 

filled and contoured with stockpiled tailing materials and overburden, and then covered 

with a topsoil layer to reconstruct the disturbed landscape (Boese, 2003; Elshorbagy et 

al., 2005). 

The global aim of these reconstruction practices is to establish a sustainable 

reclaimed land, which can evolve over time by dynamic interactions between local flora 

and fauna and hopefully mimic the natural watershed in the future (Jutla et al., 2006). As 

a result, mining industries should adopt reclamation strategies based on sustainable 

reclamation principles. 
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Soil cover design is one of the major issues in a reclamation project, which 

directly affects the local hydrological processes of the reconstructed watershed, such as 

runoff, drainage, infiltration, and evapotranspiration. The decisions regarding the 

material, structure, layering, and depth of the soil cover should be taken with 

consideration of local climate conditions. Understanding the various processes 

controlling the reconstructed ecosystem, either as an integrated hydrological system or 

as individual processes, helps the mining industry to evaluate the hydrological 

performance of the reconstructed watersheds and to optimize the design of reclamation 

strategies that can potentially decrease financial expenses (Elshorbagy, 2006). 

 
Figure 1.1. Large-scale oil sands mining operation at Mildred Lake Area, Fort 

McMurray, Alberta. 

 

1.2  Area of Interest  

Monitoring and simulation of various hydrological processes in the reconstructed 

watersheds have been the interest of many researchers (Elshorbagy et al., 2005, 2007; 

Parasuraman et al., 2006, 2007). Various hydrological processes driving the hydrology 

of the reclaimed watershed can be simulated as a unique system, which is complicated 

considering the interrelationships among the various processes. By monitoring and 

simulating these processes, one can understand the hydrology of the reconstructed 

landscape better and adopt more efficient strategies in watershed management and future 

reclamation designs. One of the important hydrological processes that needs to be 

monitored and modeled is evapotranspiration.  
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Evapotranspiration (ET) is a combined term including the transport of water to 

the atmosphere in the form of evaporation from the soil surfaces and from the plant 

tissues as a result of transpiration. Evapotranspiration plays an important role in the 

hydrological cycle and it is considered a major cause of water loss around the world. 

Almost 62% of precipitation falls on continents are returned back to the atmosphere 

through the evapotranspiration process (Dingman, 2002). In the sub-humid climate of 

northern Alberta, ET is the largest annual loss of water (Devito et al., 2005), showing its 

vital role in the hydrological system of the reconstructed watersheds.  

Evapotranspiration can be conceptually expressed either in the form of potential 

or actual evapotranspiration. Potential evapotranspiration (PET) describes the maximum 

loss of water from a short green crop under specific climatic conditions when unlimited 

water is available. Reference evapotranspiration (ETo), which is a commonly used 

concept in engineering and scientific practices, is defined as the rate of 

evapotranspiration from a well-defined reference environment (e.g. well-watered short 

grass). ETo can be multiplied by a crop-specific coefficient for estimating the crop 

evapotranspiration (ETc) (Irmak and Haman, 2003). The actual evapotranspiration 

(AET) is the rate at which water is actually removed to the atmosphere from a surface 

due to the evapotranspiration process. AET is the preferred form of evapotranspiration in 

hydrological analysis because in most cases limited water is available for 

evapotranspiration and the actual rate of water loss is of interest.  

Accurate assessment of evapotranspiration is of vital importance from different 

points of view, such as reliable quantification of hydrological water balance, 

hydrological design, water resource planning and management, irrigation system design 

and management, and crop yield simulation. In this study actual evapotranspiration as an 

individual hydrological process is of interest to be modeled, estimated, and analyzed. 

The realization of the evapotranspiration process, which is obtained through 

understanding of the temporal variations of AET time series and the meteorological 

variables influencing the AET, can be considered as a step forward in the global aim of 

better understanding and management of reclaimed watersheds.  
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1.3 Problem Definition 

Despite the importance of evapotranspiration in the water balance, it is one of the 

least measured components of the water cycle (Brutsaert 1982; Jackson 1985), probably 

because of the expensive and cumbersome requirements needed for its direct 

measurement methods. As a result, indirect methods varying from empirical 

relationships to complex combined equations are used for estimating ET.  

Evapotranspiration is a complex phenomenon because several interacting 

meteorological factors, such as solar and terrestrial radiation, wind speed, temperature, 

relative humidity, and growth stage of the crop are driving the ET process. Based on 

available meteorological variables, several models including empirical solar radiation-

based or temperature-based equations and physically based equations; e.g. Penman and 

Penman-Monteith equations, have been developed for the estimation of potential ET. 

Since potential ET depends on meteorological variables, many equations have been 

developed for its estimation in the past.  

AET is dependent on the available soil moisture, and is, consequently, region-

specific, which makes its modeling or estimation more complicated than the potential 

ET. AET is currently estimated indirectly and in relation to potential ET estimation 

models using approaches that require information on soil moisture for considering the 

water supply deficit in the estimation of the AET. However, soil moisture is not readily 

available information in many cases, which results in less applicability of this method. In 

addition, in order to use this method, users are required to make reasonable estimates for 

some of the parameters in the employed potential evapotranspiration models, which 

involve some uncertainties and might not result in reliable AET estimates. Considering 

the disadvantages and limitations of the current AET modeling methods, there is a vital 

need to develop some techniques that can accurately estimate AET values based on 

conventionally available meteorological variables, and are also easy to apply.  

For some complex hydrological processes, such as AET, it is difficult to develop 

mechanistic models, since the underlying physics of the AET process can be too 

complicated to be accurately represented in a physically based manner. Consequently, an 
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inductive (data driven) modeling approach, which can provide a model to predict and 

investigate the process without having a complete understanding of it, can be a useful 

tool. Inductive modeling approach is also interesting because of its knowledge discovery 

property. Using data driven models, one can extract useful implicit information from a 

large collection of data and improve the understanding of the underlying process.  

For reconstructed watersheds, it is suggested to perform, at least, five years of 

monitoring (Rick, 1995). However, Syncrude Canada Ltd. has changed some of the field 

measurement and data collection strategies at some of the reclaimed sites, which shows 

the possibility of facing an insufficient monitoring period for modeling purposes. Data 

driven models with high generalization abilities can be employed for AET prediction 

issues in the reclaimed sites where no AET measurement instrumentation can be made 

available.  

Among the data driven modeling approaches, standard multilinear regression 

(MLR) is a known statistical modeling technique, which has been widely used in the 

past for data mining and function estimation problems. Despite the huge development in 

the area of data driven modeling, multilinear regression is still popular and being used 

for various modeling and model comparison issues. This technique can be examined as a 

benchmark modeling method in this study. 

Machine learning (ML) techniques are modern data driven modeling methods 

that originated from the advances in computer technologies and mathematical 

algorithms. These techniques are usually employed for characterizing complicated 

systems, which cannot be easily understood, analyzed, and modeled. Artificial neural 

networks (ANNs) and genetic programming (GP) are two robust ML techniques, which 

apply artificial intelligence for the modeling of complex systems. ANNs are 

computational models that can be used for the modeling of complex relationships by 

simulating the functional aspects of biological neural networks. GP is an evolutionary-

based technique inspired by the biological evolution to generate computer programs (e.g. 

models) for solving a user-defined problem. ANNs and MLR techniques have been 

commonly used for modeling of the potential ET process (Kumar et al., 2002; Trajkovic, 

2005; Bhakar et al., 2006; Zanetti et al., 2007; Landeras et al., 2008; Chauhan and 
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Shrivastava, 2009), but not considerably for the estimation of AET (Sudheer et al., 2003; 

Parasuraman et al., 2006; 2007). GP has been infrequently employed in the 

characterization of the ET process, whether AET or potential ET, (Parasuraman et al., 

2007; Parasuraman and Elshorbagy, 2008).  

Understanding of AET as well as its correlation with the interacting 

meteorological variables can be improved by exploiting the available time series data 

and some data mining tools. A new digital signal processing tool, namely wavelet 

analysis (WA), has a robust property for providing multiresolution representation of 

hydrological time series. Representation of the time series data into time and scale 

domains makes it possible to extract useful information about temporal cyclic events 

existing in the underlying signal. In addition, the correlation structure of time series data, 

in terms of temporal cyclic variations, can be investigated using extensions of wavelet 

analysis such as cross wavelet analysis. Temporal variations of AET and meteorological 

variables, as well as their correlations, can be examined using wavelet analysis. 

 

1.4  Objectives 

This study aims to develop some data driven models and compare their 

performances for the estimation of the AET process. It is also of interest to investigate if 

data driven models can reveal some information about the AET function and its most 

influential variables. Contribution of the meteorological variables to the AET temporal 

variations is also of interest and will be examined using wavelet analysis as an approach 

to modeling input determination.  

The broad aim of this study is to model and analyze the hydrological process of 

AET using the data driven techniques and WA. The specific objectives of this study are:  

1) To predict actual evapotranspiration using meteorological variables by 

developing three different models using ANNs, GP, and statistical multilinear 

regression techniques; 
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2) To compare the developed models in terms of predictive accuracy, 

generalization ability, structure, and complexity;  

3) To identify the most important meteorological variables influencing the AET 

process; and 

4) To examine the utility of the wavelet analysis in determination of the most 

important variables for estimation of AET, prior to the modeling. 

 

1.5  Scope of the Research 

The current study fulfills a part of a large research program that aims to develop 

a framework to improve understanding of the dynamics of various hydrological 

functions driving the hydrology in reconstructed watersheds. The presence of such a 

framework seems to be a vital need for efficient and desirable application of an 

extensive monitoring program conducted at the experimental reclaimed sites in northern 

Alberta, Canada (e.g. south bison hill (SBH) and south west sand storage (SWSS)). The 

overall findings of this research program will help the mining industry as well as 

reclamation scientists to have a better understanding of the hydrology of the 

reconstructed lands and to regulate optimum reclamation strategies that lead to self-

sustainable watersheds. Figure 1.2 (Modified after Jutla, 2006 and Parasuraman, 2007) 

shows a diagram of the ongoing overall research program.  
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Figure 1.2. Research Program Framework for Developing a Sustainable Reclamation 

Strategy. 

 

Initial understanding obtained from field data collected in the reconstructed 

watersheds is utilized in two parallel modeling approaches of inductive (data driven) and 

mechanistic modeling. The latter can be either traditional available models (using for 

example HSPF, SLURP) or system dynamics models. The partial understanding gained 

from both modeling approaches along with the knowledge obtained through comparison 

between natural and reconstructed systems can be encapsulated together to give an 

initial understanding of the system through a decision analysis approach, which requires 

comprehensive and detailed sensitivity and uncertainty analysis (Jutla et al., 2006). 
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Decision analysis provides some feedback on the already executed monitoring and 

modeling program and will be followed by re-directed monitoring and refined modeling 

processes to achieve a comprehensive understanding of the reconstructed watershed 

systems. Finally, the current reclamation practices can be modified based on the 

quantified system understanding to establish a sustainable reclamation strategy. The 

framework of the research program comprises the following specific tasks to be 

completed (After Jutla, 2006 and Parasuraman, 2007): 

 Develop a system dynamics watershed simulation model that helps to improve 

the understanding of various hydrological functions associated with the 

reclaimed watersheds. This task is part of a study running in parallel to the 

current study (Keshta et al., 2009); 

 Adapt some of the available watershed models (e.g. HSPF, SLURP) to the 

reconstructed watershed systems and compare the performances of the available 

models with the system dynamics model developed in the previous task. This is 

to identify the capability of different modeling approaches in capturing the 

dynamics of hydrological functions in reconstructed watersheds. A step in this 

direction has been recently taken (Keshta and Elshorbagy, 2009); 

  Conduct inductive modeling and data mining approaches for modeling, 

estimation, and analysis of different hydrological processes, individually or as a 

system, without considering the physics of the investigated processes. The 

current research work attempts to complete this task for one of the important 

components of the hydrological cycle in reconstructed watersheds (Fig 1.2). 

This study complements earlier attempts by Parasuraman and Elshorbagy 

(2008); Parasuraman et al. (2007); and Parasuraman et al. (2006); 

 Develop inductive and deductive models for natural watersheds and conduct a 

comparison between the performances of both watershed modeling approaches 

to identify the possible lack of knowledge in the system understanding. This 

task also helps to identify the required data for modeling and decision making; 
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 Investigate the possibility of combining the advantages of both mechanistic and 

inductive modeling approaches for developing the most suitable integrated or 

hybrid models for reconstructed watersheds; 

 Develop a multi-criterion decision analysis (MCDA) tool comprising the 

knowledge obtained from different reclamation alternatives for identifying the 

most important components influencing the system understanding and 

reclamation strategies of reconstructed watersheds. The MCDA technique will 

be employed for determining the parameters and hydrological processes that are 

highly required to be measured and modeled, and also for identifying the most 

suitable modeling approach and the most sustainable reclamation strategies. A 

step forward was taken by Elshorbagy (2006); and 

 Conduct comprehensive uncertainty analysis to determine various uncertainty 

components that influence the watershed modeling and decision making 

exercise; including the uncertainties associated with the measured variables, 

model structures and parameters, and scale and representation of various 

hydrological functions. 

The current research study is restricted to the inductive modeling and data 

mining analysis of actual evapotranspiration function as an individual hydrological 

process in reconstructed watersheds, as highlighted in Fig. 1.2. The study is more 

focused on the assessment of different data driven modeling techniques and also the 

extraction of knowledge from the monitored processes of AET and the meteorological 

variables. The current modeling and analysis of the AET process is restricted to an 

experimental reconstructed site called south west sand storage (SWSS). The available 

data, in this site, are limited to the years of 2005 and 2006, which are used for the 

modeling and analysis purposes in this study. The small scale resolution of the data 

(hourly) is of interest in this study to be modelled and analyzed. As a result, the 

applicability and performance of the proposed models on larger time resolutions are not 

discussed here. Since the current study is restricted to one site only, the influence of 

vegetation (species and age) and soil structure on the evapotranspiration mechanism are 
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not studied in this thesis. Uncertainty analysis of the modeling exercise will also not be 

covered in the present study. 

 

1.6  Synopsis of the Thesis 

The rest of this thesis is organized in the following chapters. Chapter 2 provides 

the literature review on evapotranspiration modeling methods, development history and 

hydrological application of the data driven modeling techniques; ANNs and GP, and 

WA. Chapter 3 presents a description of the study area and the experimental data that 

were used for modeling and analysis purposes. This chapter also provides a description 

of the data driven modeling techniques; ANNs, GP, and MLR, and the WA along with 

the associated methodologies for developing the AET prediction models and analysis of 

the time series data, respectively. Chapter 4 presents the results and discussions of the 

AET modeling, comparative analysis among the various models, and the WA of the 

AET and the meteorological time series. In the last chapter, chapter 5, the summary of 

the study, conclusions of the results and analysis, research contributions, possible 

extensions of the research, and study limitations are provided.  
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CHAPTER 2. LITERATURE REVIEW 
 

Three main techniques, namely, artificial neural networks (ANNs), genetic 

programming (GP), and wavelet analysis (WA), were investigated in this study for 

modeling and analyzing the challenging process of evapotranspiration. ANNs and GP 

were employed as data driven modeling (sometimes called machine learning) techniques 

and the wavelet analysis was considered as a signal processing tool. This chapter 

provides a brief literature review of these three techniques and their relevant use in 

hydrology. In addition, a brief description of the evapotranspiration mechanism and a 

literature review on the currently available evapotranspiration models are also presented. 

 

2.1 Evapotranspiration 

Evapotranspiration (ET) is the process of returning water back to the atmosphere 

through evaporation from open water, soil, and plant surfaces, and transpiration from 

plants. Theoretically, evaporation is a diffusive process that follows Fick’s first law and 

can be written as a function of vapour pressure deficit (at evaporating surface and 

overlying air) and wind speed. Evaporation is accompanied by heat loss from 

evaporating surface in the form of latent heat, which can be compensated by radiative or 

sensible-heat transfer or by heat transfer from within the evaporating body to the surface 

(Dingman, 2002). The rate of latent heat (LE) is related to the evaporation rate using the 

latent heat of vaporization and the mass density of water. Physically, the four basic 

factors involving the evaporation mechanism include energy availability, water 

availability, vapour pressure gradient, wind, and the atmospheric conductance. Any 

other parameters that influence the above factors also influence the evaporation process 

(McNamara, 2009).  

Transpiration is the evaporation of water from the vascular system of the plants 

into the atmosphere as a consequence of the photosynthesis process. It involves the 

absorption of water from soil through roots and its translocation through the vascular 

system of the roots, stem, and branches to the leaves. The water is then moves from the 
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vascular system of the leaf to the walls of stomatals where evaporation takes place. 

Water vapour is then released to the atmosphere through the openings of the leaf, called 

stomata. Transpiration is limited by energy availability, water availability, humidity, 

temperature, ambient CO2 concentration, and wind speed. Plant species come into play 

by influencing the leaf conductance and the plant adaptation to water availability 

(Dingman, 2002). 

When unlimited water is available, the rate of ET is mostly controlled by the 

atmospheric conditions, and ET might be near the maximum rate. However, when the 

soil water becomes limited, the soil water content starts to control the rate of ET and 

may stop the process when the transport of water through the soil becomes critical 

(Dingman, 2002).  Since in real situations the water is usually not unlimited, the rate of 

ET under the limited water supply conditions is said to be the actual rate of 

evapotranspiration (AET).  

 

2.2 Modeling of Evapotranspiration 

The importance of evapotranspiration (ET) in the water cycle and hydrological 

management, in addition to expensive and sensitive measuring equipment, led to 

extensive efforts for modeling the ET mechanism. Many methods have been developed, 

revised, and proposed for the estimation of ET in different climatic conditions using 

different predictor variables. Jensen and Allen (2000) reviewed the evolution of different 

types of ET estimation methods. Conventional ET models are basically categorized into 

physically based and empirical models. Some examples of the physically based ET 

models include the equations developed by Penman (1948), Monteith (1965, 1973), 

Shuttleworth and Wallace (1985), and Granger and Gray (1989).  

Penman (1948) derived a sound physically based evaporation model by 

combining the energy-balance method with the mass-transfer method. The Penman 

evaporation model was later modified by Monteith (1965) to take into account the 

vegetation surface and the aerodynamic resistance terms, which resulted in the well-

known Penman-Monteith (PM) equation for the estimation of ET. The PM method 
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proved to be superior to about 20 other methods based on the regression analysis of 

lysimeter measurements (Jensen et al., 1990). FAO-24 Penman (Doorenbos and Pruitt, 

1977) and Kimberly Penman (Wright, 1982, 1996) methods were developed afterwards 

following Penman’s theoretical method. 

FAO-24 was shown, by different studies such as Jensen et al. (1990), Allen et al. 

(1998), and Walter et al. (2001), to lack global validity. The United Nation’s Food and 

Agricultural Organization (FAO) recommended a PM-based approach, namely FAO-56 

PM (Allen et al., 1998), as the standard method for the estimation of potential 

evapotranspiration from a reference surface (ETo) (e.g. grass). The PM model basically 

estimates the rate of evapotranspiration from a wet and uniformly vegetated surface 

where unlimited water supply is available. The American Society of Civil Engineers 

(ASCE, 2004) recommended a Standardized Reference Evapotranspiration (ETo) 

Equation on the basis of the ASCE-PM method (Jensen et al., 1990), which is now 

generally considered to be the standard technique for the estimation of ETo. 

Empirical models were developed with the aim of proposing simpler ET 

equations, which require fewer input variables that are also routinely available. Attempts 

for empirical modeling of evapotranspiration resulted in various methods: temperature-

based (Thornthwaite, 1948; Blaney and Criddle, 1950; Hargreaves and Samani, 1985), 

radiation (and temperature)-based (Priestley and Taylor, 1972; Makkink, 1957; Jensen 

and Haise, 1963; Stephens and Stewart, 1963), water budget-based (Guitjens, 1982), and 

mass-transfer-based (Harbeck, 1962; Rohwer, 1931). The empirical models have the 

advantages of being simple and using a small number of meteorological variables; 

however, reasonable estimation of model parameters is required for local applications. 

This is considered to be a limitation for the empirical ET prediction models.  

In the literature, the vast majority of the studies have been focused on modeling 

of the potential evapotranspiration process in which the evaporation occurs from soil and 

plant surfaces under no water stress. However, actual evapotranspiration (AET) occurs 

under actual conditions of water supply. Quantifying AET has been made possible by 

using time- and labour-consuming methods, such as water-balance, energy-balance-

Bowen-ratio (EBBR), and eddy-covariance (EC). EBBR and EC methods are 
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micrometeorological estimation (observation) methods (Droogers, 2000). Since 

theoretical modeling of the AET mechanism is complicated, its values are currently 

estimated using the available ETo models, crop coefficient (Kc) (as an indication of 

actual vegetation), and the information of soil moisture. This approach basically adjusts 

the estimated ETo values for the actual investigated plant and soil water condition. 

Compared to the ETo, limited studies were observed in the literature, which 

investigated the modeling of AET mechanism. Some of these studies are briefly 

described here. A simplified method was developed by Slabbers (1980) to predict the 

AET based on ETo, crop-dependent critical leaf water potential, and the fraction of 

available soil moisture. Poulovassilis et al. (2001) developed a simple semi-empirical 

approach for estimating AET using meteorological, crop, and soil data. AET was also 

estimated using the relationships developed between AET and pan evaporation 

(Bernatowicz et al., 1976; Linacre, 1976; Dolan et al., 1984; Koerselman and Bertman, 

1988) and between AET and Penman’s potential evaporation (Koerselman and Bertman, 

1988). According to Slabbers (1980), the concept of AET is often limited to the semi-

empirical models (Denmead and Shaw, 1962; Zahner, 1967; Grindley, 1969), which are 

subject to several limitations.  

Some equation-based ET models have also been adapted for the estimation of 

AET, such as Penman-Monteith equation (Monteith, 1973) and the work conducted by 

Shuttleworth and Wallace (1985). In the PM method, the model parameters (e.g. 

aerodynamic resistance of leaf surface) should be specified for the estimation of AET in 

cases where the theoretical assumptions of PM method are not valid (e.g. low soil 

moisture conditions). Priestley-Taylor (PT) method (Priestley and Taylor, 1972) was 

also adapted for the estimation of AET using an empirical parameter (Pauwels and 

Samson, 2006). A strong dependence was found between the empirical parameter of PT 

method and the soil moisture condition by Gavin and Agnew (2004). The proposed AET 

models mainly require extensive predictor variables, such as meteorological parameters, 

soil moisture information, leaf area, and canopy aerodynamic characteristics. The most 

encountered problem in the application of the currently available models is the lack of 

the required information. According to Poulovassilis et al. (2001), determination of 
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critical parameters (e.g. threshold soil moisture and threshold leaf water potential) is also 

a serious obstacle in AET estimation using the available models. 

 

2.3 Data driven modeling 

2.3.1 Overview 

Improving the predictive ability of hydrological models and the understanding of 

hydrological processes are the concern and focus of most hydrologists and modelers 

(Lange, 1999). Therefore, extensive studies have been conducted for developing more 

reliable and efficient hydrological models. Owing to the recent developments in 

computer technologies and new mathematical algorithms, data driven modeling 

techniques have been developed as a new approach for simulation and prediction of 

various natural and artificial phenomena. These new techniques are of particular interest 

in hydrological modeling, which is extensively used for modeling complex and not fully 

understood natural processes.  

Among the available data driven techniques, which do not require 

comprehensive knowledge of the physics of the investigated processes, are ANNs and 

GP. ANNs and GP are the two machine learning techniques employed in this study for 

the modeling of the AET process. The utility of these techniques for modeling and 

predicting various complex processes has been investigated in the literature, and is 

briefly reviewed in the following two sections. Furthermore, in this literature review, a 

short history of the development of each technique is provided to highlight the long road 

each technique has passed through to become as readily applicable as it is today. These 

modeling techniques are becoming even more popular with the recent advances in 

software/hardware technologies and digital data acquisition (measuring) methods. 

 



17 

 

2.3.2 Artificial Neural Networks (ANNs) 

 Development history of ANNs 

The concept of Artificial Neural Networks (ANNs) was introduced more than 60 

years ago in 1943 (McCulloch and Pitts, 1943) when efforts were concentrated on the 

understanding of the human brain and simulating its analytical functioning 

(Govindaraju, 2000). Since that time ANNs has experienced huge developments through 

a three stage evolvement history (Schalkoff, 1997). During the first stage, preliminary 

work was conducted on the development of the artificial neuron. This era ended by a 20-

year lull in neural network research caused by the results of Minsky and Papert’s (1969) 

work showing the limitations of the preliminary neuron theorem (Jain et al., 1996).  

The second phase of ANNs development began with the Hopfield’s (1982) effort 

in iterative autoassociable neural networks and the introduction of Hopfield networks 

(Govindaraju, 2000). The second era was followed by the discovery (Werbos, 1974) and 

the popularization (Rumelhart and McClelland, 1986) of a rigorous ANN training 

algorithm, namely back-propagation. Introduction of the back-propagation training 

algorithm made a giant forward step in the transition of ANN research into the 

applications in a variety of areas. The third stage involved studying the ANN limitations 

and generalizations, its combination with other computational techniques (e.g., genetic 

algorithm), and the role of hardware advances in the ANN implementations (Dawson 

and Wilby, 2001). 

 

 Hydrological modeling using ANNs 

Increasing numbers of published studies, especially during the last decade, on the 

employment and development of ANNs in various fields including hydrological 

modeling, indicates their popularity among researchers. ANNs have been increasingly 

used in a variety of fields, such as financial management, computer science, various 

branches of engineering, control systems, and environmental science (Dawson and 

Wilby, 2001). Taylor (1996) wrote a brief discussion on the general application of 
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ANNs, whereas Flood and Kartam (1994, 1997) discoursed on the ANNs application in 

solving different civil engineering problems. The hydrology-related literature is the 

focus of this section.  

The potential of ANNs in environmental science was discussed by Schmuller 

(1990) and Maier and Dandy (2001). Some earlier instances of ANNs in the modeling of 

hydrological systems were proposed by Daniel (1991). ASCE (2000a, b) presented a 

detailed review on the various applications of ANNs in hydrology. Some examples of 

hydrological studies that investigated the potential of ANNs in the modeling of different 

hydrological processes include:  rainfall-runoff modeling (Zhu et al.,1994; French et al., 

1992; Minnes and Hall 1996; Tokar and Johnson 1999; Elshorbagy et al., 2000; Dawson 

and Wilby, 2001; Birikundavy et al., 2002; Campolo et al., 2003; Huang et al., 2004; 

Riad et al., 2004; Hettiarachchi et al., 2005; Senthil Kumar et al., 2005), stream flow 

modeling (Kang et al., 1993; Karunanithi et al.,1994; Poff et al., 1996; Muttiah et al., 

1997; Elshorbagy et al., 2002), water quality modeling (Maier and Dandy 1996; Rogers 

1992; Rogers and Dowla 1994; Starrett et al., 1996; Hutton et al., 1996), river stage 

forecasting (Lachtermacher and Fuller, 1994; Thirumalaian and Deo, 1998; Campolo et 

al., 1999), characterization of ground water (Aziz and Wong, 1992; Ranjithan et al., 

1993; Rizzo and Dougherty, 1994; Yang et al., 1997), estimation of precipitation 

(French et al, 1992; Tohma and Igata, 1994; Hsu et al., 1996, 1997; Kuligowski and 

Barros, 1998), and estimation of soil moisture content (Elshorbagy and Parasuraman, 

2008). In hydraulic engineering, ANNs have been employed for the prediction of 

sediment load (Abrahart and White, 2001; Nagy et al., 2002; Yitian and Gu, 2003; 

Bhattacharya et al., 2005) and studying flood wave propagation (Dartus et al., 1993).  

Despite the large number of studies which have been conducted on different 

hydrological problems, few applications of ANNs can be found in the area of 

evapotranspiration, and especially, actual evapotranspiration. Kumar et al. (2002) 

developed an ANN model for the prediction of reference evapotranspiration (ETo) and 

compared its performance with that of a conventional method (Penman-Monteith 

equation) to examine the capabilities of ANNs in ETo prediction compared to the PM 

method. The results of the study showed that the ANN model can predict ETo better than 
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the conventional method for the considered local case study. Jothiprakash et al. (2002) 

investigated the capability of ANNs for the estimation of ETo using the daily 

meteorological variables. It was found that the results of ANN models were in good 

agreement with those of FAO-modified Penman method, and that four basic 

meteorological variables were sufficient for remarkably accurate estimation of ETo using 

ANNs. Trajkovic et al. (2003) developed a radial-basis function type neural network 

(RBF-ANN) model for the prediction of ETo. Trajkovic (2005) examined the reliability 

of RBF-ANNs as well as three other calibrated temperature-based approaches for the 

estimation of ETo. The results confirmed the efficiency of the temperature-based RBF-

ANN model for the prediction of ETo. The utility of ANNs for the estimation of 

reference and crop evapotranspiration (ETc) of wheat crop was examined by Bhakar et 

al. (2006) and it was revealed that the ANN model was suitable for the prediction of ETo 

and ETc. Zanetti et al. (2007) found that by using ANNs, it was possible to estimate ETo 

just as a function of maximum and minimum air temperature. The results of a study 

conducted by Jain et al. (2008) indicated that ANNs can efficiently estimate ETo from 

the limited meteorological variables of temperature and radiation only. 

The degree of influence of each of the meteorological variables; wind speed, 

solar radiation, relative humidity, air and soil temperature, on the estimation of daily 

ETo, and the performance of ANNs compared to those of Penman, Hargreaves, and 

multilinear regression (MLR) methods were investigated by Kisi (2006). The study 

concluded that the ANN model trained by Levenberg-Marquardt algorithm was superior 

to the MLR, Penman, and Hargreaves method. Also, the input combination of wind 

speed, solar radiation, relative humidity, and air temperature resulted in the best 

performance statistics.  

Landeras et al. (2008) developed seven ANNs with different input combinations 

and then compared ANNs to locally calibrated empirical and semi-empirical equations 

of ETo. Their proposed ANNs performed better than the locally calibrated equations 

particularly in situations where appropriate meteorological inputs were lacking. Wang et 

al. (2008) employed the capability of ANNs for the prediction of ETo with a limited 

meteorological dataset of minimum and maximum air temperature. It was observed that 
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ANN predictions were more accurate than those of the local reference model, 

Hargreaves, and Blaney-Criddle method in a semiarid area. Kumar et al. (2008) 

developed several ANNs-based ETo models, corresponding to the best ranking 

conventional ETo estimation methods, and compared the results with FAO-56 PM ETo 

estimation model. The ANN models were consistent with the non-ideal condition of data 

availability and predicted ETo values with better closeness to the FAO-56 PM ETo than 

the conventional methods.  

Dai et al. (2009) investigated the predictive ability of ANNs for the prediction of 

ETo in arid, semi-arid, and sub-humid areas of Mongolia, China, and conducted a 

comparison between the estimated ETo values from ANNs and MLR. The results 

showed that regional ETo can be satisfactorily estimated using ANN models and 

conventional meteorological variables. The study also demonstrated that ANNs modeled 

ETo better than MLR. Chauhan and Shrivastava (2009) investigated the climatic based 

methods as well as ANNs to identify the approach that estimates the closest ETo to the 

standard PM ETo. It was found that ANN model can perform better than the climatic 

based models and is able to estimate ETo by using only maximum and minimum 

temperatures. 

In the majority of the conducted studies, researchers have focused on the 

modeling of potential and reference crop evapotranspiration but not actual 

evapotranspiration (AET). To the knowledge of the author, the only publications 

reporting the application of ANNs for the modeling of AET include the studies 

conducted by Sudheer et al. (2003) and Parasuraman et al. (2006; 2007). Sudheer et al. 

(2003) estimated the lysimeter-measured AET of rice crop using RBF-ANNs. The 

results demonstrated that ANNs can successfully estimate the AET.  

Parasuraman et al. (2006) developed spiking modular neural networks (SMNNs) 

for modeling the dynamics of EC-measured hourly latent heat flux. The results 

demonstrated that although the SMNNs are computationally intensive, they can perform 

better than regular feed forward neural networks (FFNNs) in modeling evaporation flux. 

Parasuraman et al. (2007) developed a regular three-layered FFNN model for the 

estimation of EC-measured hourly AET as a function of net radiation, ground 
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temperature, air temperature, wind speed, and relative humidity. Their results indicated 

that the ANN model performed better than the currently used PM method in northern 

Alberta, Canada. 

 

2.3.3 Genetic Programming (GP) 

 Development history of GP 

The origins of evolutionary computation traced back to the late 1950’s (Box, 

1957; Friedberg, 1958; Friedberg et al., 1959; Bremermann, 1962) when it was proposed 

for the first time and then remained unknown for almost three decades. Fundamental 

works (Holland, 1962; Fogel, 1962; Rechenberg, 1965; schwefel, 1968), conducted 

during the 1970’s, started to change the face of this computational approach to an 

adaptable and well-suited problem solving tool in the scientific and economic fields 

(Back et al., 1997). Genetic algorithm (GA) was first introduced by Holland (1962; 

1975; Holland and Reitman, 1978) and then studied and developed by several scientists 

(De Jong, 1975, 1987; Goldberg, 1985, 1989; Grefenstette, 1986; Koza, 1989; Davis, 

1991; Goldberg et al., 1993; Forrest and Mitchell, 1993; Mitchell, 1996). Genetic 

programming (GP), as an extension of GA, was first recognized as a different and new 

development in the world of evolutionary algorithms in the seminal monograph of Koza 

(1992). In his book, problem solving using GP and evolving tree-like structure solutions 

were precisely described.  

 

 Hydrological modeling using GP 

Evolutionary algorithms, in general, and GP, in particular, have been 

successfully applied in many fields as diverse as engineering, natural science, 

economics, and business (Back et al., 1997). The use of GP in hydrological problems is 

still not as popular as some other ML techniques such as ANNs. However, an increasing 

number of publications shows the rapid growth of the GP acceptability among 

researchers as well as hydrologists.  
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In hydraulic engineering, GP has been employed for modeling of sediment 

transport (Babovic, 2000; Kizhisseri et al., 2005; Aytek and Kisi, 2008), estimation of 

vegetation and channel resistance coefficients (Giustolisi, 2004; Baptist et al., 2007), and 

estimation of circular pile scour (Guven et al., 2009). In the latter study, Guven et al. 

(2009) compared the developed linear GP model with an adaptive neuro-fuzzy model 

and the conventional regression analysis. It was found that the GP and hybrid ANN 

model performed better than the regression model. Furthermore, GP was judged as more 

flexible, practical, and robust than the hybrid ANN model. Aytek and Kisi (2008) also 

compared their proposed GP-based sediment estimation model with the MLR. It was 

observed that the results of GP model are better than those of MLR in the modeling of 

sediment load. 

The efficiency of GP in hydrological modeling was shown by various studies. 

Some studies investigated the application of GP in rainfall-runoff modeling (Cousin and 

Savic, 1997; Savic et al., 1999; Whigham and Crapper, 1999, 2001; Khu et al., 2001; 

Liong et al., 2002; and Babovic and Keijzer, 2002). Savic et al. (1999) conducted a 

comparison among the results of the developed GP and ANN rainfall-runoff models. It 

was observed that the two employed data driven techniques are in good agreement with 

the best optimized conceptual model, however; GP provided more insight into the 

rainfall-runoff relationship than ANN. The results of the Whigham and Crapper (2001) 

study showed the potential of the evolutionary GP technique in capturing rainfall-runoff 

correlation especially when it is poorly understood.  

Partially known dynamics of an urban fractured-rock aquifer was modeled using 

the GP technique by Hong and Rosen (2002). In this study, explicit representation of the 

GP model improved the understanding of the dynamic behaviour of the aquifer system, 

in addition to its efficiency in predicting the groundwater level fluctuations. Coulibaly 

(2004) employed the GP technique for spatial downscaling of large scale meteorological 

variables to local extreme temperatures, and then compared its results with the statistical 

downscaling model. It was shown that the GP technique was able to provide simpler and 

more efficient model than the available regression-based method. Hong et al. (2005) 

induced a rainfall recharge model using the GP technique and found that the evolved GP 
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models were more reliable than the soil water balance model at predicting the observed 

rainfall recharge. Makkeasorn et al. (2006) generated a soil moisture estimation model 

using the GP technique. The results indicated that the GP was a useful tool for modeling 

the highly nonlinear structure of soil moisture distribution with strong agreement 

between the model results and the observed values.  

The capability of GP in flow forecasting was examined by Sivapragasam et al. 

(2007), Makkeasorn et al. (2008), and Wang et al. (2009). The results of Sivapragasam 

et al. (2007) demonstrated that by the use of the GP technique, the short lead prediction 

of river flow improved significantly, and the appropriate input variables could be 

efficiently identified for longer lead forecast. They also compared the evolved GP model 

with its ANNs counterpart, and it was observed that, except for the advantage of GP in 

identifying suitable inputs, there was no significant difference between the prediction 

accuracy of the GP and the ANN models. Makkeasorn et al. (2008) developed and 

compared GP- and ANNs-based long-term flow forecasting models and observed that 

the ANN models generally performed worse than the GP derived models. Wang et al. 

(2009) conducted a comparative study among various artificial intelligence (AI) 

techniques for forecasting river flow discharge. The results indicated that the hybrid 

ANN (neuro-fuzzy) and GP models were, in order, the most promising estimation 

models. 

Among the various published studies on the application of GP in hydrological 

modeling, only a few studies examined the applicability and robustness of GP for 

modeling of the evapotranspiration process. To the best knowledge of the author, the 

only publications that investigated the application of GP for modeling the 

evapotranspiration mechanism are the studies conducted by Parasuraman et al. (2007), 

Parasuraman and Elshorbagy (2008), and El-Baroudy et al. (2009). Parasuraman et al. 

(2007) employed equation-based GP for modeling the hourly actual evapotranspiration 

process as a function of net radiation, ground temperature, air temperature, wind speed, 

and relative humidity. The performance of the evolved GP model was compared with 

that of ANN model and the traditional Penman Monteith (PM) method. It was noted that 

GP and ANN models had comparable performances and both predicted AET values with 
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better closeness to the measured AET than the PM method. Their analysis also indicated 

that the effect of net radiation and ground temperature on the AET dominated over other 

variables. Parasuraman and Elshorbagy (2008) investigated a GP-based modeling 

framework for quantifying and analyzing the model structure uncertainty on an AET 

case study. The results of the study demonstrated the capability of the ensemble-based 

GP in quantifying the uncertainty associated with the hourly AET model structure. In 

addition, it was observed that the uncertainty of the model increased with higher level of 

the model’s structural complexity, which was also accompanied by better prediction 

accuracy. El-Baroudy et al. (2009) did not develop a new GP model for AET, but rather 

developed models using a technique called evolutionary polynomial regression (EPR), 

and then compared its performance to the ANN and GP models developed by 

Parasuraman et al. (2007). With the exception of Parasuraman et al. (2007), 

Parasuraman and Elshorbagy (2008), and El-Baroudy et al. (2009), no other publication 

was observed that reports an explicit equation for the prediction of AET.  

 

2.4 Wavelet Analysis (WA) 

2.4.1 Overview 

Hydrological processes are widely known with their property of being highly 

variable in time and space, which makes them physically challenging with regard to 

understanding and modeling. Temporal and spatial variability of hydrological systems 

can be attributed to the variability of different processes having interactions with the 

target mechanism. Wavelet analysis (WA) makes it possible to decompose any signal 

into location (time/space) and scale (or frequency) domains and subsequently, to detect 

and describe the periodic patterns that exist in the signal.  

Wavelet analysis, as a relatively new signal processing tool, has been used for 

investigating the fluctuations in physical processes. Using this WA tool, it is also 

possible to clarify the presence of relationships among the variability of different signals 

involving a mechanism. WA was used in this study as multiresolution signal processing 

tool for gaining more insight into the temporal variability of the complex AET process 
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and also for exploring the signals that are more correlated and have more contribution to 

the temporal fluctuations of the AET. WA has the potential to be employed either for 

signal analysis or to be coupled with other modeling approaches for various prediction 

(estimation) issues. This literature review mainly covers the signal processing 

application of WA.  

 

2.4.2 Development History of Wavelet Analysis 

Underpinnings mathematics of WA was placed by Joseph Fourier in the 19
th

 

century with his theories of frequency analysis by which one was able to present a 

periodic function as the sum of its Fourier series. The first mention of the WA, as what it 

is known today, appeared in the thesis of Alfred Haar in 1909. In 1980, wavelet was 

conceptually defined based on physical intuition by Jean Morlet and the team working 

under Alex Grossman at the Marseille Theoretical Physics in France. In 1985, the main 

algorithm was proposed in the Stephane Mallat work in digital signal processing (Mallat, 

1989). Afterward, the methods of wavelet analysis have been mainly developed by Yves 

Meyer and his colleagues. Meyer constructed the first non-trivial wavelets, which sped 

the dissemination of the method (Meyer, 1993). Ingrid Daubechies (1988) constructed a 

set of wavelet basis functions, using the Mallat’s work, which have become the 

cornerstone of the current applications of wavelets (Graps, 1995). The wavelet analysis 

method became practically popular after the work conducted by Torrence and Compo 

(1998). 

 

2.4.3 Applications of Wavelet Analysis 

Wavelet analysis (WA) has become an attractive tool for researchers, in different 

fields, who are interested in analyzing the non-stationary signals of data both in 

frequency and temporal/spatial domains. WA covers a wide range of applications in 

diverse fields of sciences, such as mathematics, engineering, image processing, optic, 

turbulence, quantum mechanics, medical, and biomedical research (Lau and Weng, 

1995). A collection of papers on the application of wavelet in different fields of 
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geosciences (e.g. fluid mechanics, meteorology, oceanography, climatology, and 

geophysics) can be found in Labat (2005) and Foufoula-Georgiou and Kumar (1994). 

Some examples of WA in geophysics include the studies conducted by Gamage and 

Blumen (1993), Gu and Philander (1995), Kumar and Foufoula-Georgiou (1997), 

Baliunas et al. (1997), Yokoyama and Yamazaki (2000), Guyodo et al., (2000), and Lui 

(2002). 

In the field of hydrology, wavelet has been increasingly used for the analysis of 

spatial-temporal variability of hydrological processes and systems as well as their 

interactions with climatic variations. Earlier application of wavelets in hydrology was 

presented in Foufoula-Georgiou and Kumar (1994). WA has been frequently applied for 

feature extraction of discharge time series data in hydrology (Smith et al, 1998; 

Compagnucci et al., 2000; Labat et al., 2000; Saco and Kumar, 2000; Kirkup et al., 

2001; Gaucherel, 2002; Cahill, 2002; Lafreniere and Sharp, 2003; Anctil and Coulibaly, 

2004; Coulibaly and Burn, 2004; Labat et al., 2004; Labat, 2006; Schaefli et al., 2007; 

Gang et al., 2008; Labat, 2008; Zanchettin et al., 2008). In the above-mentioned studies, 

the utility of WA was mainly employed for detecting and analyzing different periodic 

events existing in the discharge and correlated meteorological signals. Schaefli et al. 

(2007) employed wavelet and cross wavelet analysis for detecting potentially flood 

producing meteorological situations and identifying the prevailing hydrometeorological 

conditions associated with different types of flood events. It was noted by Schaefli et al. 

that the WA has the potential to be a powerful tool in understanding and modeling of 

hydrological processes. The results of the WA conducted by Labat (2008) revealed the 

non-stationary long-term fluctuations of the world’s largest river and their connections 

to climatic variability and trends. Coulibaly and Burn (2004) investigated the temporal 

and spatial variability of Canadian streamflows. The results exhibited different period 

bands of significant activities in the streamflow time series, which were found to be 

correlated to the considered climatic patterns at some spatial locations.  

Multiresolution analysis of wavelet has been also applied for characterization of 

temporal variability of rainfall (Waymire et al., 1984; Gupta and Waymire, 1990; Kumar 

and Foufoula-Georgiou, 1993a, b; Kirkup et al., 2001; Coulibaly, 2006; Westra and 
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Sharma, 2006, Xiaomei et al., 2006; Miao et al., 2007; Chen and Liu, 2008). Coulibaly 

(2006) employed wavelet and cross wavelet analysis to investigate both spatial and 

temporal variability in seasonal precipitation and its relationship with climatic modes in 

the Northern Hemisphere. The results revealed striking climatic-related cyclic features in 

the precipitation time series and, in the temporal-spatial variability of the relationship 

between precipitation and climate throughout Canada. Westra and Sharma (2006) used 

wavelets for analyzing the modes of variability in three rainfall characteristics. The 

results exhibited significant periodicities in Australian rainfall and highlighted the role 

of not-conventionally considered phenomena in rainfall variations. Using WA, Xiaomei 

et al. (2006) discovered spatial structures and periodic oscillations exist in Yellow River 

Basin rainfall.  

Lau and Weng (1995) applied wavelet transformation to two well-known climate 

time series, and the results provided new information on the nonlinear basis of the 

earth’s climate variations. Multiresolution analysis has also been used for understanding 

the behaviour of karst environments in river flow components, and for improving the 

performance of the surface hydrological modeling (Salerno and Tartari, 2009). In the 

Salerno and Tartari study, contribution of groundwater to the river discharge was 

examined by comparing correlation spectra (cross wavelet and wavelet coherency) of 

error-precipitation, error-groundwater, and precipitation-groundwater time series. The 

error signal was obtained from the difference between measured and physically 

simulated river discharge. 

In addition to the application of WA in the feature extraction of time/spatial 

series signals, it has been effectively employed for various modeling approaches. As an 

example, wavelets have been successfully coupled with ANNs. In the literature, 

conjugate wavelet-ANN modeling approach has been developed for drought forecasting 

(Kim and Valdes, 2003), streamflow simulation (Ju et al., 2008), and sediment load 

estimation (Partal and Cigizoglu, 2008). Kim and Valdes (2003) adopted an ANN model 

to forecast the wavelet-decomposed subsignals of regional drought and reconstruct the 

predicted response signal. The study indicated that the conjugate approach significantly 

improved the ability of ANNs in forecasting the drought index. Ju et al. (2008) 
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developed a wavelet neural network (WNN) model for simulation of daily streamflow 

and compared its performance with that of back propagation neural network model. It 

was observed that the results of WNN model were more accurate than those of the 

traditional ANN model.  

There are very limited case studies in the literature that investigated the 

application and capability of WA in analyzing the variability of the evapotranspiration 

process. Kaheil et al. (2008) used discrete wavelet transform (DWT) for decomposing 

and reconstructing processes involving the AET phenomenon at various spatial scales, 

and to find the relationship between the inputs and outputs using support vector 

machines technique. The spatial scaling behaviour of evapotranspiration (latent heat) 

was also investigated by Brunsell et al. (2008) using a combination method of wavelet 

multiresolution analysis and information theory metrics. Furthermore, the relationship 

between spatial variability of remotely sensed latent heat flux and vegetation, 

temperature, and elevation was examined using WA. It was shown that the spatial 

variability of latent heat flux was most closely controlled by the radiometric temperature 

(a proxy for soil moisture).  

Wang and Luo (2007) combined the wavelet transformation and neural network 

techniques for developing a forecasting model for reference crop evapotranspiration 

(ETo). In the Wang and Luo study, WA was used to decompose the time series data of 

ETo into different frequency components and then ANNs were adopted for forecasting 

(modeling) the obtained frequency components. The effectiveness of WNN model was 

verified and it was shown that simulation error of new proposed hybrid model was 

smaller than that of the traditional ANN models. To the best knowledge of the author, no 

effort has been made, in the literature, which benefited from the capability of WA in the 

temporal scaling of AET variations. Time-scale analysis of the AET signal seems to be 

an effective approach in improving the understanding of the AET process as well as the 

efficiency and predictive ability of AET prediction models. 
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CHAPTER 3. MATERIALS AND METHODS  
 

3.1 Overview 

This chapter provides a description of the study area and the experimental data 

that were used for modeling and analysis purposes. The analysis and modeling work 

constitute of two main parts: data driven modeling of actual evapotranspiration (AET) 

process and time-scale (multiresolution) analysis of the AET and the meteorological 

time series. Artificial neural networks (ANNs) and genetic programming (GP) are the 

main data driven (machine learning) techniques adopted in this study and are explained 

in this chapter. Statistical multilinear regression (MLR) was used as a common standard 

modeling technique. In addition, a physically based model, namely HYDRUS-1D, 

which employs the standard Penman Monteith model and additional soil information, 

was used for estimation of AET. The MLR and HYDRUS 1-D methods were 

investigated as possible alternatives to the proposed data driven techniques with which 

their prediction abilities were compared. A brief description of MLR and HYDRUS 1-D 

is also presented in this chapter. The last part includes a description of the wavelet and 

cross wavelet transforms that were carried out for multiresolution analysis of time series 

variability.  

 

3.2  Site description 

The experimental data, which were used in this study, were collected from the 

South West Sand Storage (SWSS) site, located at Mildred Lake mine approximately 40 

km north of Fort McMurray, Alberta, Canada (Fig. 3.1). The SWSS facility is an active 

tailing disposal facility (dam), which covers an area of about 23 km
2
, holding 

approximately 435×10
6
 m

3
 of materials, with 40 m relief higher than the surrounding 

landscape and an overall side slope of 5% (Parasuraman et al., 2007). The construction 

of the SWSS facility began in 1990 and was later covered between 1995 and 1998 with a 

layer of reclamation material (45 cm topsoil) (Chaikowsky, 2003) followed by 

vegetation seeding in 2001. 
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Figure 3.1. Location of the reconstructed study area (SWSS). 

 

The soil cover system within the SWSS consists of a 45 cm thick peat/secondary 

mineral soil mix with a clay loam texture overlying the tailing sand (Fig. 3.2). The 

vegetation cover system varies across the SWSS site; including the dominant 

groundcover of horsetail (Equisetum arvense), fireweed (Epilobium angustifolia), sow 

thistle (Sonchus arvense), white and yellow sweet clover (Melilotus alba, Melilotus 

officinalis), and tree and shrub species including Siberian larch (Larix siberica), hybrid 

poplar (Populus sp. hybrid), trembling aspen (Populus tremuloides), white spruce (Picea 

glauca), and willow (Salix sp.) (Parasuraman et. al., 2007).  
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Figure 3.2. Soil cover system of the SWSS site. 

 

3.3 Experimental data 

The latent heat flux technique was originally applied on a continuous basis 

(Baldocchi et al., 1988) using the micrometeorological method of eddy covariance (EC). 

EC is considered as the most promising method of measuring patch-scale (e.g. on the 

order of 100s of meters) dynamics of the water cycle (Baldocchi, 2003; Baldocchi et al., 

1988). The EC technique makes use of sensitive and expensive instruments to measure 

high-frequency changes of the vertical component of the wind velocity, humidity, and 

temperature simultaneously. In the EC technique, the covariance of the vertical wind 

speed with temperature and water vapour are used to estimate the sensible heat and 

latent heat (LE) flux (Drexler et al., 2004). For estimating the LE flux, high frequency-

measured absolute humidity (ρv) and vertical wind speed component (wv) are expressed 

as the summation of fluctuations and time-averaged components;            
  and 

            
  , where overbar signifies a time average over a specified interval of time 

and the prime indicates fluctuation from the mean. The averaging period must be larger 

than the duration of the largest eddy in the turbulent transport process for which 10-30 

minutes periods are usually used. The time averaging period of 30 minutes applied for 
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the LE data were used in this study. The LE flux is then estimated as      
   

         , which 

is equal to the mean covariance of the fluctuations of the vertical wind and absolute 

humidity from their means (Drexler et al., 2004). λ is the latent heat of vaporization. 

Using EC technique it is possible to do the calculations in real time as fast as the 

readings are taken (Strangeways, 2003). ―The accuracy of the EC technique ranges from 

±15% to ±20% of the actual evapotranspiration for hourly values‖ (Strangeways, 2003). 

In addition to the high level precision and high degree of temporal and spatial resolution 

of the EC technique in direct measurement of LE, it has an exceptional property of self-

verification, in case when other components of the energy balance closure can be 

computed at the same time. Drexler et al. (2004) stated that no other methods have this 

self-verification property.  

The latent heat (LE) flux measurement system on the SWSS site consisted of a 

triaxial sonic anemometer (CSAT3, Campbell Scientific, USA), for capturing the high-

frequency wind vector, an open-path infrared gas analyser (LI-7500, Li-Cor, USA) as a 

humidity sensor and a fine-wire thermocouple, for recording the temperature 

fluctuations, located in the approximate center of the sonic head about 2.9 m above the 

ground surface. All measurements and their fluctuations were obtained at a frequency of 

10 Hz and the mean fluxes were recorded every 30 minutes on a CR23X datalogger 

(Campbell Scientific, USA) (Carey, 2008). The quantities are measured at high 

frequency to record the most rapid fluctuations that are important to the process (Drexler 

et al., 2004). 

The EC tower was equipped with instrumentation to measure supplemental data 

including long- and short-wave radiation (CNR1 net radiometer, Kipp and Zonen, 

Netherlands) and wind speed (015A MetOne, USA) at 3.1 m above the ground, air 

temperature and relative humidity (HMP45C, Vaisala Oyj, Finland) at 3 m, and ground 

temperature (TCAV-L thermopile, Campbell Scientific, USA) at 0.03 m below the soil 

surface. The supplemental data were sampled at 1 minute intervals and recorded every 

half hour on a CR23X datalogger (Carey, 2008). Figure 3.3 shows the EC tower on the 

SWSS site.  
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The LE and net radiation (Rn) fluxes were originally recorded in W.m
-2

 on a half 

hourly basis. For convenient interpretation, the latent heat flux [W.m
-2

] was converted to 

the equivalent depth of water [mm.m
-2

]. This was implemented using the following 

equations (Dingman, 2002):  

         [3.1] 

         [3.2] 

where, AET is the rate of actual evapotranspiration [mm/ 0.5hr], LE is the latent heat 

energy [MJm
-2

0.5hr
-1

], T is the mean half-hour temperature [
o
C], λ is the latent heat of 

vaporization [MJkg
-1

] and
 
ρw is the water density [kg.m

-3
]. Air temperature (Ta; 

o
C), 

ground temperature (Tg; 
o
C), relative humidity (RH), and wind speed (Ws; m.s

-1
) 

constituted the rest of the meteorological data used for this study. Since the hourly time 

scale of the data was the subject of study, conversion of the recorded half-hourly data to 

hourly data was also implemented in the pre-processing step.  

In data driven modeling, it is important to have large enough collection of data, 

which contain several different instances for appropriately capturing the investigated 

function. Using short time intervals, e.g. hourly, large number of instances can be used 

for modeling, especially when the available measured data are associated with limited 

time period. For instance, for the current case study, only two years of data are available 

from which 1207 hourly instances can be obtained for modeling the ET process. 

However, if daily time step is used, only 102 instances would be available. 

Consequently, the hourly time scale of the data was selected for the current modeling 

study. AET variations at small time-scales are also important because this type of 

variation is more challenging than the larger scales and is important to be modeled and 

analyzed. There are many water related functions (e.g. water quality) in engineering that 

needs to be estimated at small-scales for which the rate of evapotranspiration at the same 

time-scale is required. Small time-scale models can always be used for estimation of 

larger-scale variations, by aggregating the small-scale predicted values. However, the 

other way round might not be easily possible. For consistency in the data driven 

w
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AET

)(1000

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modeling and time series analysis, the same time scale (hourly) was used for the wavelet 

signal analysis in this study.  

 
Figure 3.3. Eddy covariance tower at the SWSS site. 

 

For modeling purposes, the day-time data, associated with the period of 8:00 AM 

to 8:00 PM, from May 3 to September 21, 2005 and from May 27 to September 8, 2006, 

were used. In the first step, the data of the year 2006 were used for modeling purposes 

with the three proposed techniques (ANNs, GP, and statistical models). Disregarding the 

missing data, the total number of available instances for modeling in year 2006 is 1207, 

which were randomly divided into three data subsets consisting of 604 instances (50%), 

201 instances (17%), and 402 instances (33%) of the data, for training, cross-validation, 

and testing purposes, respectively. To obtain three statistically consistent subsets, a 

population of 100 groups of three data subsets was randomly generated by sampling 

from the entire dataset. The statistical characteristics of the data, i.e. mean and standard 

deviation, were determined for every subset of each group. Then, the group possessing 

three subsets with relatively similar statistical characteristics was selected for this study. 

Aside from the described modeling procedure, a rigorous test was also implemented in 
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the second step, using the data of 2005, to assess the generalization ability of the 

developed models in a more realistic way. Disregarding the missing data in 2005, 1600 

instances are available. The 2005 dataset has different statistical properties from the data 

of 2006, which are discussed later in this study.  

Multiresolution analysis of the AET and meteorological signals (wavelet 

analysis) was conducted using the data of the year 2006. Since wavelet analysis (WA) 

cannot be applied to a non-continuous time series, which contains a gap or missing data, 

gap filling was performed to obtain a continuous time series. In the dataset of the year 

2006, only AET time series contained missed values, which were filled using the most 

fitted AET model developed in this study using the 2006 data (statistical multilinear 

regression). The total number of instances that were available for wavelet analysis of the 

2006 data is 2520, which constitute the hourly data from May 27 to September 9. All of 

the observed time series data were pre-treated before performing the WA. The time 

series data were standardized, following Grinsted et al. (2004), by subtracting the mean 

value and then dividing by the standard deviation (zero mean and unit standard 

deviation) for convenience when the results were compared. 

The air temperature during the growing season of the year 2006 varied between 7 

to 34 
o
C with an average value of 21 

o
C. The average day-time net radiation flux and 

relative humidity were about 230.11 W/m
2 

and 0.51, respectively. The total rainfall 

received during the growing season of 2006 was approximately 226.2 mm. During the 

growing season of 2005, the air temperature ranged between -4 to 29 
o
C, with the 

average of 17 
o
C. The average day-time net radiation flux and relative humidity values 

were 215.36 W/m
2
 and 0.53, respectively. The total received rainfall during the growing 

season of 2005 was 279.2 mm. The normal rainfall in the Fort McMurray is about 307.9 

mm for the period of May to September. The average soil water content in the top 45 cm 

of the soil during the studied periods of years 2005 and 2006 were 0.296 and 0.264 

cm
3
/cm

3
, respectively 
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3.4 Data driven modeling  

3.4.1 Artificial Neural Networks (ANNs) 

ANNs (Swingler, 1996) are massive networks of parallel information processing 

systems resembling (simulating) the human brain’s analytical function, and they have an 

inherent ability to learn and recognize highly nonlinear and complex relationships by 

experience. ANNs learn from empirical examples, which make them a non-rule-based 

technique, like statistical methods (Maier and Dandy, 2000). ANNs use mathematical 

transfer functions to relate target variables to predictor (input) variables (Dawson and 

Wilby, 2001).  

Each neuron (information-processing unit) in ANNs consists of input connection 

links, a central processing unit, and output connection links (Fig. 3.4). Input signals are 

received through the connection links from the outside environment or other neurons. 

Each connection link is assigned a synaptic weight (w) representing the strength of the 

connection between two nodes in characterizing input-output relationship (ASCE, 

2000a). Received information is processed in the central processing unit (neuron body), 

by adding up the weighted inputs and bias (Eq. 3.3), and passed through the activation 

function (Eq. 3.4). Bias (b) is the threshold value, which must be exceeded before the 

node (neuron) can be activated (ASCE, 2000a). Activation function forms the output of 

the node and enables the nonlinear transformation of inputs to outputs. The type of 

activation function, which can be sigmoid, linear, threshold, Gaussian, or hyperbolic 

tangent function (Dawson and Wilby, 2001), depends on the network’s type and 

associated training algorithm. The log-sigmoid activation function is one of the two most 

commonly used activation functions in the literature because it is continuous, relatively 

easy to compute, its derivatives are simple (during the training process), maps the 

outputs away from extremes, and provide nonlinear response (ASCE, 2000a).  

          [3.3] 

          [3.4] 

bxwt i

n

i

i 
1

te
tf




1

1
)(



 37 

 
Figure 3.4. Schematic diagram of an artificial neuron. 

 

A typical ANN consists of a number of neurons organized following special 

arrangement (ASCE, 2000a), which represents the pattern of connections among 

network nodes (Fausett, 1994). One of the popular types of ANNs, in water resource 

problems, is the feed forward neural networks (FFNNs) in which the neurons are 

arranged in layers; input layer, one or more hidden layers, and output layer. The 

information in FFNNs flows and is processed in one direction from input layer, through 

hidden layer(s), to the output layer. In FFNNs, neurons of each layer are operating in 

parallel and are fully connected to those of the next layer (Fig. 3.5). Each of the neurons 

in the hidden layer receives the input signals from the input layer through the weighted 

connection links. Received information is processed individually in each of the hidden 

layer neurons and the outputs (processed information) are passed to the output layer 

neuron(s) to release the final response of the network. A simple configuration of a three-

layer feed forward ANNs is shown in Fig. 3.5. 
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Figure 3.5. Simple configuration of three-layer feed forward ANN (from Fauske, 2006). 

 

An ANN model can consist of several hidden layers; however, it was observed in 

the literature that a single hidden layer has been usually sufficient for the approximation 

of conventional hydrological processes (Maier and Dandy, 2000), and it was noted also, 

in particular, for the process of evapotranspiration (Kumar et al., 2002; Parasuraman et 

al., 2007). As a result, three-layer FFNNs were adopted in this study for the modeling of 

AET process. Input and output layers may contain one or more neurons depending on 

the problem at hand (number of predictors and predictands, respectively). For this study, 

the input layer contained five nodes providing the information of predictor variables; Rn, 

Tg, Ta, RH, and Ws, to the network and the output layer consisted of a single neuron 

representing the model output (predicted AET values). 

The number of hidden layers and hidden neurons is specified, based on the 

complexity of the problem, using different methods (usually trial-and-error procedure 

(ASCE, 2000a)). In this study, trial-and-error procedure was used and different number 

of hidden neurons ranging from 1 to 14 was investigated for finding the optimum 

number of hidden neurons. Activation functions adopted here include the log-sigmoid 

and linear functions for the hidden layer and output layer neurons, respectively. ANNs 

with single hidden sigmoid layer and linear output layer are the most popular network 

architectures in the field of water resources (Cybenko, 1989; Hornik et al., 1989). 
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In addition to the type of ANNs, geometry of the network (number of hidden 

layers and neurons), and activation functions, ANNs are characterized by the method of 

determining the optimum connection weights, namely training algorithm (Fausett, 

1994). ANNs learn the pattern of the investigated process (or trained) by adjusting the 

connection weights and bias values using the provided examples of input-output 

relationship (namely, training samples). A training algorithm is employed to optimize 

the weight matrices and bias vectors, which minimize the value of a predetermined error 

function. Minimum error function results in an ANN model that can generate the most 

similar output vector to the target vector.  

The Back propagation algorithm is the most common type of training algorithm 

in the FFNNs in water related problems (Maier and Dandy, 2000). Basically, back 

propagation algorithm is a gradient descent technique that adjusts weights and biases in 

the direction of the most rapid decrease in the network error function. The network starts 

with random weight and bias values and generates the output of the network using the 

given input data; this step is called the forward step (ASCE, 2000a). The network output 

is compared with the desired target output, and the associated error value is computed. 

The error is propagated backward through the network and the connection weights are 

adjusted accordingly using the following equation: 

        [3.5]
 

where wij(k) and wij(k+1) are the weight vectors of neuron j of the layer i at two sequent 

paths (epochs). The parameters gk and αk are the gradient of the error function surface 

and the learning rate, respectively. Learning rate is the step-size parameter affecting the 

speed of arriving at the minimum error value. The forward and backward steps, together 

called an epoch, are implemented repeatedly for several times until the error function 

reaches its minimum value and the optimum weight and bias values are achieved.  

One of the problems that threaten the learning process is over-fitting. It usually 

occurs when the network has memorized the training examples, but it has not learned to 

generalize to new situations. Various techniques can be employed to, avoid over training 

and, improve network generalization ability such as; regularization and early stopping 
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(Neural Network Toolbox User’s Guide, 2009). Regularization attempts to smooth the 

network response by keeping the size of the network weights adequately small 

(MacKay, 1992) using the modified form of the error function, which considers network 

weights and biases (Neural Network Toolbox User’s Guide, 2009). Benefiting from the 

regularization method, the modified error function (msereg) that was employed in the 

training process of ANNs in this study is given as: 

      [3.6] 

where Oi, Pi, N, γ, and wj are the target output, ANN predicted output, number of 

training samples, performance ratio, and network weights, respectively.  

Through the early stopping approach, an independent test set, namely cross-

validation, can be used to monitor the performance of the model on a set of not-yet-

encountered examples at some stages of the training process. Training is stopped when 

error on the cross-validation dataset begins to rise to prevent the model from being over-

trained (Neural Network Toolbox User’s Guide, 2009). In this study, both regularization 

and early stopping approaches were employed with the examined training algorithms; 

Levenberg-Marquardt (Levenberg, 1944; Marquardt, 1963) and Bayesian-regularization 

(MacKay, 1992). Levenberg-Marquardt is one of the high-performance algorithms that 

appear to be the fastest method for training moderate-sized FFNNs (Neural Network 

Toolbox User’s Guide, 2009). Bayesian-regularization algorithm is an automated 

regularization algorithm, which uses Bayesian framework to automatically determine the 

optimal regularization parameter, performance ratio (γ), in the modified performance 

function. This algorithm also provides a measure of network parameters (weight and 

biases) that are being effectively used by the network. This ensures that the network will 

not use a larger number of parameters than the identified effective ones in estimating 

network output values. In other words, it keeps the network size as small as possible 

(Neural Network Toolbox User’s Guide, 2009). 

Neural Network Toolbox in MATLAB (MATLAB® Software, 2003) was used 

to develop the ANN models to predict AET based on five inputs of meteorological 
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variables, Rn, Tg, Ta, Ws, and RH. The data pool of 2006 was randomly divided into three 

subsets of training, cross validation, and testing using the approach explained earlier. 

The employed approach for splitting the data pool ensured that all three sub datasets 

were fairly representing the population to be modeled. The training subset was used for 

optimizing the connection weight matrices and bias vectors of the network. The cross- 

validation subset was used to stop the training process when the network starts to over-

fit the training subset (early stopping). Once the network was trained, the generalization 

and predictive ability of the network was evaluated using a completely unseen subset of 

2006 called testing subset.  

The data subsets were normalized so that data fell between 0 and 1. Such scaling 

of data smoothes the solution space and averages out some of the noise effects (ASCE, 

2000a). Based on the training subset, different ANN models were trained using 

Levenberg-Marquardt and Bayesian-regularization training algorithms, using different 

number of hidden neurons ranging from 1 to 14. For each examined network 

architecture, the training process was repeated several times, each time started with 

different random initial weight matrices, until satisfactory optimal network (with 

minimum errors) was obtained. The ANN model with the best performance measures 

associated with the cross-validation subset was selected as the optimal predictive 

network. The performance and generalization ability of the trained model was evaluated 

on the testing subset. This model validation determines how well the ANN model 

performs on the dataset that have not been seen during the training process (Cheng and 

Titterington, 1994). 

ANNs, as a data driven technique, have the ability to determine the critical model 

inputs (Maier and Dandy, 2000). In this study, the ANN modeling technique was used to 

identify the important meteorological variables affecting the AET process. In this 

approach, no prior knowledge was assumed about the physics of AET mechanism and 

the relationships among variables. All possible combinations of input variables, 26 

combinations, were considered to be examined as ANN model input sets. Separate 

optimal ANN models were developed and trained for each input combination set using 

the model development approach explained earlier. The developed ANN models were 
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compared based on their prediction accuracy in order to identify the most appropriate 

and efficient combinations of inputs for the estimation of AET. This approach is 

commonly referred to as trial-and-error procedure, which is under the category of 

heuristic approaches. The possible combination sets of five available input variables 

include; five-input combination, ―Rn, Tg, Ta, RH, Ws‖, four-input combinations, ―Rn, Tg, 

RH, Ws‖; ―Rn, Tg, Ta, RH‖; ―Rn, Tg, Ta, Ws‖; ―Rn, Ta, RH, Ws‖; ―Tg, Ta, RH, Ws‖; three-

input combinations, ―Rn, Tg, RH‖; ―Rn, Tg, Ws‖; ―Rn, Tg, Ta‖; ―Rn, RH, Ws‖; ―Rn, Ta, RH‖; 

―Rn, Ta, Ws‖; ―Tg, RH, Ws‖; ―Tg, Ta, Ws‖; ―Tg, Ta, RH‖; ―Ta, RH, Ws‖; and two-input 

combinations, ―Rn, Tg‖ ; ―Rn, RH‖ ; ―Rn, Ws‖  ―Rn, Ta‖ ; ―Tg, RH‖ ; ―Tg, Ws‖ ; ―Tg, Ta‖ ; 

―Ta, RH‖ ; ―Ta, Ws‖ ; ―RH, Ws‖. 

 

3.4.2 Genetic programming (GP) 

Genetic algorithms (GA) belong to the family of evolutionary algorithms, and 

are generally considered as an optimization method for searching global optimum of a 

function using natural genetic operators. Genetic programming (GP), which was 

introduced by Koza (1992), is an extension of GA for inducing computer programs, as 

solutions for problems at hand, using an intelligent and adaptive search. This type of 

search uses the information gained from the performance (fitness) of individual 

computer programs, in the search space, for modifying and improving the current 

programs. Depending on the particular problem, computer programs of the GP search 

space may be different, e.g. Boolean-valued models and symbolic mathematical models 

(Koza, 1992). Symbolic regression GP evolves computer programs in the form of 

mathematical expressions in which both functional form and numerical coefficients of 

the regression symbolic model are optimized through the evolutionary process of GP. 

This application of GP was adopted in this study for obtaining explicit mathematical 

AET models.  

In the first step of GP implementation, a population of computer programs are 

randomly generated using no primary knowledge about the optimum solution (e.g. 

structure of the underlying relationship model) and possible relationships among 
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variables. This initial population is called initial random generation (or first generation). 

Symbolic regression models are represented by structured parse trees (Fig.3.6), which 

are composed of functional and terminal sets appropriate to the problem. A functional 

set can be a set of mathematical arithmetic operators such as {+, -, *, /}, mathematical 

functions, Boolean and conditional operators, and any other user-defined functions 

where the number of arguments of each function is specified. The terminal set, which is 

associated with the nodes that terminate a branch of a tree in tree-based GP (Banzhaf et 

al., 1998), is defined as independent variables; i.e. the terminal set z={x,y} where x and y 

are independent variables (Sette and Boullart, 2001).  

 
Figure 3.6. Tree structure symbolic regression GP model for estimation of predictant Y. 

 

GP begins to search in the search space of randomly generated models of initial 

generation. The fitness measure is used to evaluate how well each individual in the 

population performs. Fitness is usually measured by the errors produced by individual 

models (error-based fitness measure). Each model in the population is run using a 

number of provided data instances (training dataset) to measure the performance of each 

individual over a variety of representative different situations (Koza, 1992). A scalar 

fitness value is assigned to each individual using the defined fitness evaluation function. 

Base on the assigned fitness values, some individuals in the population perform better 

than others with smaller error values, which means that they have higher chance to be 

selected for the next step of GP. 

6.5 ZXY
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In the second step, genetic operators, based on the Darwinian principles of 

reproduction and survival, are used to create the next generation. Individuals with better 

performance are allowed to survive and be reproduced in the next population, called 

mating pool, using the fitness-proportionate reproduction operator. This operation 

improves the average of fitness of the population (Koza, 1992). Mating pool is an 

intermediate stage in transforming from current generation to the next generation. In the 

mating pool, two other operations are performed on the reproduced individuals, namely 

crossover and mutation. Crossover acts on specific percentage of the mating pool 

population, crossover probability (Pc), and results in the creation of new individuals in 

the population. Crossover exploits two individuals (parents), selected based on their 

fitness, and splits each parent at the crossover point into two fragments (sub trees), 

which are swapped between the parents to create two new offspring (Fig. 3.7). The 

offspring (new models) are improved individuals, compared to their parents, which carry 

some genetic properties from each of them.  

 
Figure 3.7. Crossover operation on two selected individuals. 
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Mutation operates on the population individuals in proportion to the mutation 

probability (Pm). A string is randomly selected from the mating pool and it undergoes 

some changes at the randomly selected mutation point (Fig. 3.8). The mutation operation 

also results in new individuals, which increases the genetic diversity of the population 

(Koza, 1992). The remaining percentage of the population participates in the 

reproduction operation corresponding to reproduction probability (Pr), which simply 

reproduces individuals from the mating pool to the next generation. Reproduced and 

newly created individuals resulted from genetic operations of reproduction, crossover, 

and mutation form the next generation of GP search space. 

 
Figure 3.8. mutation operation on a selected individual. 

 

The described evolutionary process is performed iteratively over several 

generations until some termination criterion is satisfied. The termination criterion might 

be a maximum number of generations or some measure of the goodness of the generated 

solution and stop the algorithm once the solution is found (Koza, 1992). The result of the 

GP algorithm, which is a GP-evolved model for the investigated problem, based on the 

termination criterion, is either the best found model or the best individual of the last GP 

generation.  

Major steps in the implementation of GP to solve a problem, e.g. evolution of 

AET models in the current study, include determination of functional and terminal sets, 

fitness measure, initializing method, selection method, levels of GP parameters over the 
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run (crossover and mutation probabilities, population size), and the termination criterion. 

The functional set, which was introduced to GP, included {+, -,*, /}. The terminal set 

was defined as {Rn, Tg, Ta, Ws, RH}. Root mean squared error (RMSE) was selected as 

the fitness function for evaluating individual performance and further fitness-based 

selection. Ramped-half-and-half method was adopted for initializing the first generation 

tree structures. This initializing method increases the diversity of the tree structures 

using various shapes and sizes by mixing two common methods of tree initializing, 

namely, full method and grow method. Further descriptions of initializing methods can 

be found in Koza (1992) and Banzhaf et al. (1998).  

The next important issue in the implementation of GP is the fitness-based 

selection method. Selection method determines the manner by which the individuals are 

selected based on the assigned fitness values for further GP operations (e.g. crossover, 

mutation). Roulette wheel selection method was employed for implementing selection 

operation in the GP runs. Roulette wheel method is the simplest selection scheme that 

follows a stochastic algorithm. In this method, individuals are attached to contiguous 

slices of a roulette wheel; each slice is proportional in size to the fitness value of the 

attached individual. A random number is generated and the individual whose slice spans 

the random number is selected. Following this method, individuals with better fitness 

values were given larger chance to be selected and passed into the next generation. 

Several different levels of GP parameters; crossover and mutation probabilities, number 

of evaluated generations, and the size of population, were executed for obtaining 

symbolic regression AET models using the training subset. The termination criterion for 

each GP run was the identified maximum number of generations. The performances of 

the generated symbolic equations were assessed using the cross-validation subset to 

select the best equation (model). The selected symbolic equation was then tested using 

the unseen testing subset to evaluate the predictive accuracy and generalization ability of 

the proposed model.  

Data subsets that were used with the GP technique were exactly the same as 

those used with the ANNs. The data were normalized by dividing the values of variables 

by their corresponding maximum values. In this way, all variables could have 
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dimensional consistency during the GP implementation (Parasuraman et al., 2007). In 

this study, GPLAB (Silva, 2005), GP toolbox for MATLAB, was used for the 

implementing of the GP technique and generating mathematical models based on the 

datasets where AET is a dependent variable as a function of the five independent 

variables: Rn, Tg, Ta, Ws, and RH. 

 

3.4.3 Multilinear regression (MLR) 

Linear regression is a conventional approach in the statistical modeling of the 

relationship between variables in which the unknown parameters of the regression model 

are estimated using the data instances. Multilinear regression (MLR) is a statistical 

model that contains more than one predictor variable. The general form of the first order 

MLR model is: 

       [3.7] 

where Y is the dependent variable (predictant) that is represented as a function of n 

independent variables (predictors), X. β0 is the unknown intercept, β1, ... , βn are the 

unknown coefficients (also called partial regression coefficients) of the function, and ε is 

the random error term with assumed normal distribution.  

Since the statistical regression is the simplest and most straight forward form of a 

model, it is usually the first modeling approach that is adopted and investigated for 

modeling of a relationship (Laverty, 2009) and might be considered as a benchmark 

modeling approach. Many nonlinear models can be represented in the form of linear 

models by appropriately transforming any or all of the independent variables. In this 

way, nonlinear models are linearized and the unknown parameters are estimated 

(specified) using the simple method of linear regression. Equation (3.7) is the standard 

form of the MLR, which includes only the first order of the independent variables. Two 

other forms of the MLR, which were employed for the statistical modeling of AET 

process in this study, are given below: 
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           [3.8] 

  [3.9] 

Equation (3.8) includes the linear terms and the cross-product terms of the two predictor 

variables, which are referred to as interaction effect. Interaction refers to the effect that a 

change in a predictor variable can have on the predictand depends on the level of the 

other predictor variable(s) (ReliaSof’s DOE++ software User’s Guide, 2008). In Eq. 

(3.9), in addition to the already defined terms of linear and interaction, the higher order 

terms (second order here) of the predictor variables are considered. Both given 

regression functions, Eq. (3.8) and (3.9), are still linear because the models are linear in 

parameters (ReliaSof’s DOE++ software User’s Guide, 2008). Consequently, they can 

be expressed in the general form of Eq. (3.7), using the appropriate transformations such 

as x1=X1.X2 and x2=X1
2
, and then the unknown parameters are specified using the data 

samples. This approach was used in this study for fitting the statistical regression models 

for the estimation of AET. 

The experimental data of AET including the first and second orders of five 

independent variables and all their two-factor interactions were statistically analyzed 

using a statistical analysis software (SAS/STAT® software, 2003). All data subsets 

employed in the statistical analysis were exactly the same as those used with ANNs and 

GP techniques. Using the training subset, two different MLR equations were developed 

by following the functional forms of the Eq. (3.8) and (3.9). In addition, as a baseline 

comparison, a simple first order regression equation (Eq. 3.7) was fitted to the data using 

the linear factors of the meteorological variables; Rn, Tg, Ta, Ws, and RH. The best 

equation was selected based on the error statistics associated with the cross-validation 

dataset.  

In the first developed statistical model, the input variables introduced to the 

SAS/STAT® software included the linear factors of the meteorological variables, Rn, Tg, 

Ta, Ws, and RH, and all of their two-factor interactions, TaTg, TaRH, TaRn, TaWs, TgRH, 
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TgRn, TgWs, RHRn, RHWs, and RnWs. For the second statistical model, in addition to the 

already defined input variables, the second orders of the meteorological variables, Rn
2
, 

Tg
2
, Ta

2
, Ws

2
 and RH

2
, were also considered. The stepwise selection method was 

performed to fit the multilinear regression equations and to assess the significance of the 

introduced variables on the AET process. The stepwise method uses both forward and 

backward selection techniques for finding the best model that is also adequately simple 

(containing all important variables). The least squares method was employed for 

identifying the unknown parameters of the MLR models. In this method, the regression 

parameters of β0, β1, β2,…, βm are estimated to minimize the residual sum of squares 

(RSS) (Eq. 3.10) between observed and predicted values provided by the model over 

fitness cases (training subset). RSS fitness function is defined as: 

RSS=          [3.10] 

where Yi, Yi´, and N are observed value, predicted value, and number of training 

samples, respectively. To identify the terms having significant effects on AET, the tests 

of hypothesis was conducted at 95% confidence level.  

 

3.5 HYDRUS-1D model 

The main idea behind the use of the HYDRUS model was to compare a currently 

available AET estimation model with the proposed data driven models. The predictive 

abilities of some data driven models, e.g. ANNs and GP, have already been compared 

with that of the widely used standard FAO Penman-Monteith (PM) method 

(Parasuraman, et al., 2007). However, the standard PM method estimates the potential 

evapotranspiration, since it assumes that the soil moisture is not a limiting factor. 

Therefore, this comparison with the data driven AET models may not seem appropriate. 

In order to perform such comparison more reasonably, one of the available methods for 

estimation of AET was employed, through using HYDRUS-1D software modeling 

package (Version 4.0; Šimunek et al., 2006), and its performance was compared with 

those of the developed data driven models.  
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One of the most widely used methods for the estimation of AET is to make use 

of meteorological data and the commonly available reference evapotranspiration (ETo) 

models and compute the AET using the soil wetness function (f(θrel)), Eq. (3.11), 

(Dingman, 2002). Soil wetness function describes the relationship between AET/ETo 

and relative water content, θrel. 

          [3.11] 

where  is defined as: 

          [3.12] 

where θ, θpwp, and θfc are the current water content, permanent wilting point, and field-

capacity of the soil. HYDRUS-1D is a physically based software package simulating the 

water, heat, and solute movement in one-dimensional variably-saturated media. 

HYDRUS-1D model can simulate the rate of actual evapotranspiration based on the 

described method incorporated with some numerical methods. In this model, ETo is 

estimated with the FAO recommended PM equation (Monteith, 1981; Monteith and 

Unsworth, 1990; FAO, 1990), which is the widely adopted physically based model for 

the modeling of ET. Then, the rate of AET is estimated using the PM-predicted ETo, 

simulated soil moisture profile, and evaporation rate, which is described below.  

For this type of AET modeling, in addition to the meteorological data of Rn, Ta, 

RH, and Ws, the data of leaf area index (LAI) and rainfall were also required. The data of 

LAI were available on an approximately weekly basis, which were disaggregated to 

hourly basis using linear interpolation for consistency with temporal resolution of other 

meteorological data. Rainfall data were also available in event-based records for which 

some aggregation procedure was performed to obtain hourly rainfall data. Hydraulic 

conductivities of the soil layers were optimized through an inverse simulation procedure 

in HYDRUS-1D model. Other required physical and hydraulic parameters of the soil 

were selected based on the previously conducted research on the same soil type 
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(Shurniak, 2003). Using HYDRUS-1D software, ETo was determined with the FAO 

recommended PM combination equation (FAO, 1990): 

    
 

 
 

       

             
 

             

             
       [3.13] 

where ETo is the rate of potential evapotranspiration from reference crop [mm h
-1

], λ is 

the latent heat of vaporization [MJ kg
-1

], Rn is net radiation at surface [MJ m
-2

 h
-1

], G is 

the soil heat flux [MJ m
-2

 h
-1

], ρ is the air density [kg m
-3

], cp is the specific heat of soil 

moisture [kJ kg
-1

 
o
C

-1
], (es-ea) is the vapour pressure deficit [kPa], es is the saturation 

vapour pressure at temperature T [kPa], ea is the actual vapour pressure [kPa], rc is the 

crop canopy resistance [s m
-1

], ra is the aerodynamic resistance [s m
-1

], γ' is the 

psychrometric constant [kPa 
o
C

-1
], and Δ is the slope of the vapour pressure curve [kPa 

o
C

-1
] (HYDRUS-1D Software Package User’s Manual, 2008).  

Estimated ETo was partitioned into potential soil evaporation and potential plant 

transpiration using the LAI information. Actual transpiration was then calculated from 

the obtained potential transpiration and the plant water stress function proposed by Van 

Genuchten (1978). The gradient of simulated water pressure head in the soil profile 

along with the soil hydraulic conductivity were used for the simulation of actual 

evaporation rate from the soil surface. Simulated evaporation was compared with the 

calculated potential evaporation to give the actual rate of soil evaporation. This 

comparison is performed because the PM model sometimes overestimates the rate of 

evaporation. If the PM-estimated evaporation is larger than the simulated evaporation, 

the simulated value is given as the actual rate of evaporation. Estimated values of actual 

evaporation and transpiration were aggregated to estimate the actual rate of 

evapotranspiration (AET). Because the HYDRUS model was not within the main scope 

of this thesis, the detailed methodology associated with this type of modeling is not 

provided here. Detailed description of AET simulation using HYDRUS-1D can be found 

in HYDRUS-1D Software Package User’s Manual (2008). HYDRUS model was used 

for estimation of AET in years 2005 and 2006 out of which the model comparison was 

performed only based on the 2005 dataset. The reason for using 2005 data was that the 

data driven models were trained using a large portion of 2006 data on which they 
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expectedly perform well. As a result, a fair model comparison can be performed using 

the dataset of the year 2005.  

 

3.6 Evaluation of models’ Performance  

The performances of the data driven models; ANNs, GP, and multilinear 

regression models, as well as the HYDRUS-1D model were evaluated to compare their 

predictive accuracies based on three statistical criteria: Pearson’s correlation coefficient 

(R), root mean squared error (RMSE), and mean absolute relative error (MARE), which 

were calculated as follows: 

      [3.14] 

        [3.15] 

        [3.16] 

where Oi, Pi, , and  are observed values, simulated values, mean of simulated, and 

mean of observed values, respectively. N is the number of instances in the dataset. In 

addition to the above mentioned statistics, akaike’s information criterion (AIC) was used 

for characterizing and comparing the goodness of fit of the obtained data driven models. 

The AIC provides a measure of model quality, which rewards a model for goodness of 

fit, but also penalizes it for unnecessary parameters. AIC is widely used for model 

selection and is defined as (Akaike, 1974; Russo et al., 1991): 

                
   

   
             [3.17] 
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where SSE, k, and l are summation of squared error, number of observations and number 

of parameters to be optimized during modeling. Smaller AIC value indicates more 

approprite model. 

 

3.7 Wavelet Analysis 

Natural functions, e.g. meteorological and hydrological processes, operate over a 

wide range of spatial and temporal scales leading to spatial/temporal variability of 

interacting mechanisms. AET is a hydrometeorological signal (variable) interacting with 

several temporally/spatially variable meteorological signals. Evaluation of dominant 

cyclic variations in the AET and correlated meteorological signals improves the 

understanding of the mechanism as well as its modeling. In this study, only temporal 

scaling of the variables time series was investigated whereas the spatial variability of the 

AET and meteorological signals was not considered. 

Temporal cyclic variations of natural processes are not usually stationary and 

contain several localized and transient frequency events. Therefore, conventional 

frequency domain analysis such as Fourier transform can not reveal the localized natural 

cyclic events, because in this kind of transformations the temporal variations of the 

signal is separated at different scales only (Si, 2008). Wavelet analysis (WA) provides a 

tool for decomposing the variations of a time series signal into time and scale 

(frequency) domains; allowing the identification and analysis of dominant temporal 

cyclic events.  Theoretical description and a complete introduction of WA can be found 

in Daubechies (1992) and Lau and Weng (1995). Torrence and Compo (1998) developed 

an easy-to-use wavelet analysis toolkit, which includes statistical significance testing for 

improving the qualitative nature of the WA. The same approach as Torrence and Compo 

(1998) was employed in this study for WA of AET and meteorological time series.  

The basic component of WA is the wavelet transformation in which the studied 

function is represented by wave-like oscillating functions. The choice of the wavelet 

function is of high importance within the wavelet transformation. Wavelet function is a 

small finite-length oscillating mathematical function (small wave) (Polikar, 1996), 



 54 

which represents the data in terms of frequency component (Graps, 1995). Wavelet 

functions are defined in different forms, namely mother wavelets, to have specific 

properties for information extraction of different types of signals. Figure 3.9 shows some 

examples of mother wavelets. 

 
Figure 3.9. Examples of mother wavelet functions; (a) Mexican Hat, (b) Morlet, and (c) 

Meyer. 

 

The term wavelet function generally refers to two types of wavelet functions, 

namely orthogonal and non orthogonal (Torrence and Compo, 1998). Orthogonality 

stems from the mathematical properties of the wavelet function. If the inner product of 

the basis functions (modulated versions of a mother wavelet) equals zero, the wavelet is 

said to be orthogonal. It means that a set of scaled wavelet functions, associated with 

different scales, do not have any similar (mutual) components (Polikar, 1996). 

Otherwise, the wavelet function is said to be non-orthogonal. Orthogonal wavelets are 

mainly used for decomposition of a signal into specific (preferably minimum) frequency 

bands, which reduces the computation time and provides properties for easier 

reconstruction of the original signal (Polikar, 1996). This type of wavelet analysis is 

usually referred to as discrete wavelet transformation, which may not provide a 

physically meaningful analysis all the time (Si, 2008). 

Non-orthogonal wavelets are usually used for continuous wavelet transformation 

(CWT) of time series signals in which a continuous set of frequencies are examined. 

CWT results in a highly redundant time-scale resolution of the signal, which on one 

hand induces some uncertainties in the reconstruction of the signal and, on the other 

hand, provides better scale analysis of the time series (Si, 2003; He et al., 2007). 

Because of the wide range of possible dominant frequencies that can be obtained using 
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CWT, Coulibaly and Burn (2004) indicated that the CWT is more appropriate for 

analysis of geophysical and hydrological time series. For the current study, scale 

analysis of the time series data were of interest, so the CWT was employed and is 

described here. 

 

3.7.1 Continuous wavelet analysis 

As it was mentioned earlier, the choice of wavelet function is an important 

component in the wavelet transformation. Wavelet function can be a real or complex 

function. Complex wavelet functions make it possible to extract the information of both 

amplitude and phase, which is more suitable for analyzing the signal’s oscillatory 

behaviour (Torrence and Compo, 1998). Morlet, Mexican Hat, and Haar are some of the 

mother wavelets usually employed in the CWT out of which the Morlet is a complex 

function. Depending on specific information one might be interested in, different 

wavelet functions can be selected. The selected mother wavelet must satisfy some non-

restrict requirements, which assure the success of reconstruction procedure. This 

mathematical condition is called the ―admissibility condition‖ at which the wavelet 

function should have zero mean and quickly decay in both time and scale space (Farge, 

1992). The latter condition represents the localization quality of the function in time and 

space scale. 

Morlet is a complex and non-orthogonal wavelet that provides sufficient 

resolution (localization) in time and scale domains (Grinsted et al., 2004; Si, 2008). 

Morlet function, with non-dimensional frequency parameter (ω0) equal to 6, has been 

shown to successfully work for the analysis of observed time series in different 

hydrological applications (Lafreniere and Sharp, 2003; Anctil and Tape, 2004; Coulibaly 

and Burn, 2004; Labat et al., 2005; Si and Zelek, 2005; Coulibaly, 2006). This Morlet 

wavelet was used for the current wavelet transformation, which is an exponential 

oscillatory function defined as (Torrence and Compo, 1998): 

        [3.18] 
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where η and ω0 are non-dimensional time and frequency parameters. The Morlet 

wavelet with ω0 = 6 was adopted to satisfy the admissibility condition (Farge, 1992). 

The CWT of a discrete time series data of xi (i=1,2,…,N) is defined as the inner 

product (convolution) of time series signal with the scaled and translated version of 

mother wavelet function, ψo(η), according to a specific scale (s) and time location (η), 

which is given as: 

        [3.19] 

where ψη,s(t) is the normalized wavelet function and (*) represents the complex 

conjugate. Wavelet function is normalized to ensure that the wavelet transform at each 

scale is not weighted by the magnitude of the scale, which makes a direct comparison of 

wavelet coefficients at different scales possible (Torrence and Compo, 1998). 

Normalized wavelet function is defined as: 

         [3.20] 

where η and s are associated with the time location (translation) and scale resolution at 

which the wavelet transformation is performed. Localization of the time series signal 

into time and scale domains (multiresolution representation of signal) is implemented, 

first, by modulating the mother wavelet, corresponding to the current scale, and shifting 

the scaled wavelet (also called daughter wavelet) through the signal to the end and 

performing the convolution at each discrete time location. This results in the time 

localization of the signal. The procedure is repeated, in the second step, for each scaled 

wavelet, corresponding to different values of scale, to localize the signal in the scale 

domain. Wavelet coefficients are computed for all time and scale steps (η,s) to give the 

multiresolution representation (or CWT) of the signal. Scaled and translated wavelet at 

scale s and time location η is computed by: 
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        [3.21] 

According to the mathematical definition of CWT, WA investigates the 

resemblance of the wavelet function with the in hand signal in the sense of frequency 

content (Polikar, 1996). In other words, ―if the signal has a major component of the 

frequency corresponding to the current scale, then the wavelet at the current scale will be 

similar or close to the signal at the particular location where this frequency component 

occurs. Therefore, the CWT coefficient at this point in the time-scale plane will be a 

relatively large number‖ (Polikar, 1996) and will spike in the contour plot of CWT 

spectrum. Computation of CWT using Eq. (3.19) can become considerably faster if it is 

implemented in the Fourier space (Torrence and Compo, 1998). Briefly, through this 

method, the product of Fourier transform of the signal and wavelet function is computed 

and then the inverse Fourier is performed on the result to give the signal’s CWT. Further 

explanation on this approach can be found in Torrence and Compo (1998). The same 

methodology was employed in the current study for performing the CWT. 

For implementing CWT, it is required to identify the set of analyzed scales a 

priori. In continuous wavelet analysis, the investigated scales must be incremented 

continuously to create a complete picture of the wavelet transform. Theses set of scales 

(s) can be generated using fractional powers of two (Torrence and Compo, 1998): 

      [3.22] 

where s0 is the smallest scale and J determines the maximum number of scales to be 

investigated. δj is the scale step size whose value depends on the selected wavelet 

function. For Morlet wavelet, δj value of 0.5 is the largest value that can also provide 

adequate scale sampling (Torrence and Comp, 1998). For the current analysis, the scale 

step size of δj = 0.083 and the maximum examined scales of SJ = 16 and 48 hours were 

selected for performing the transformation. The smallest scale (S0) was selected as 

approximately equal to 2δt, where δt is the time step of the measured time series data. 
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The time step of the AET and meteorological variables is an hour (δt = 1) and 

subsequently S0 = 2 hours. 

Complex wavelet function, e.g. Morlet, results in complex wavelet coefficients 

constitute of real and imaginary parts or amplitude,          , and phase, 

                                , respectively. For convenient description of 

time series cyclic variations, it is common to use wavelet power spectrum, defined 

as            , instead of continuous wavelet spectrum. The obtained wavelet power 

spectrum was also normalized for easier comparison with different wavelet spectra. In 

this normalization, the wavelet power spectrum was divided by the variance of the time 

series (ζ
2
),               (Torrence and Compo, 1998).

 
 

The cone of Influence (COI) has been defined in the wavelet spectrum to clarify 

the areas that are considerably affected by the zero paddings at the ends of the time 

series signal. Time series data are padded by zeros at both edges to overcome the 

problem caused by their finite lengths. These zero values decrease the magnitude of 

wavelet power at the areas close to the edge from which the COI distinguishes regions 

that are not or negligibly influenced. Length of COI (or e-folding time (Torrence and 

Compo, 1998)), is estimated for each examined scale using a mathematical expression, 

which is defined as a function of scale. Structural form of this function depends on the 

type of selected mother wavelet. For Morlet wavelet, the length of COI at each scale (s) 

was defined as s 2 . 

In WA, the wavelet scale is not necessarily equal to the inverse of Fourier 

frequency (Fourier period (λωt)) but they are usually related to each other by analytical 

relationship. For the Morlet wavelet with ω0 = 6, the wavelet scale almost equals the 

Fourier period (λωt=1.03 s) (Torrence and Compo, 1998). Therefore, either scale or 

period terms can be used for the representation of frequency modes. 
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3.7.2 Statistical significance test 

Most of the natural processes (e.g. geophysical and hydrological) are affected 

with background color noise (white or red noise). The effect of noise is reflected on the 

signal’s wavelet power spectrum. It is essential to identify the powers caused by the 

background noise and distinguish them from the actual wavelet power peaks (significant 

time series cyclic features). Torrence and Compo (1998) developed a statistical 

significance test for wavelet power spectra to establish significant levels. Following 

Torrence and Compo (1998), a statistical significance test was implemented by 

modeling the appropriate background noise (either white or red) and then testing the 

significance of the power spectrum peaks against the modeled background noise at 

certain statistical significance level. In this approach, a null hypothesis was established 

to examine if the wavelet peaks were significantly different from the noise spectrum 

generated by a stationary noise process. In other words, by significance test, it was 

investigated if the peaks of the wavelet spectrum represented some true cyclic features 

or they were just caused by noise.  

White noise is a random signal with equal power at all frequencies, which 

appears as a flat power spectrum in time-scale domain. Red noise refers to the temporal 

fluctuations that have higher amplitude at lower frequencies and lose the magnitude as 

the frequency increases. Most of the geophysical time series are contaminated with red 

noise background signals (Grinsted et al., 2004). If the time series data are completely 

random, white noise is assumed as the background noise; however, most of the 

hydrometeorological time series data are auto-correlated for which the red noise is more 

appropriate to describe the background noise (Si, 2009). According to Hasselmann 

(1976), lag-1 auto regressive process (AR [1]) is a suitable background noise for many 

climatological applications. Following Torrence and Compo (1998) calculations, a 

simple theoretical AR [1] red noise model was employed in this study for modeling the 

background time series red noise (xn) given by: 

         [3.23] nnn zxx  1 
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where x0 = 0, zn is the Gaussian white noise, and α is the lag-1 autocorrelation 

coefficient that can be estimated from observed time series (Allen and Smith, 1996). 

It was shown by Torrence and Compo (1998) that the local wavelet power 

spectrum of the theoretical red noise, at every randomly selected time location, is on 

average identical to the Fourier transform of the noise time series. Consequently, the 

wavelet power spectrum of the red noise process can be estimated by the Fourier power 

spectrum given as (Grinsted et al., 2004): 

   
    

          
          [3.24] 

where Pq is Fourier transform of red noise signal and q is the frequency index.  

In the described statistical significance test, it is assumed that the time series 

variables have random normal distribution. Most natural time series data do not follow 

the Gaussian (normal) probability distribution function (pdf), but can be transformed to 

make them as close as possible to normal distribution. Most of the studied time series in 

this study do not have normal distribution. As a result, following Grinsted et al. (2004), 

the probability distribution of the time series data were converted to rectangular 

distribution (uniform distribution) to make them close to normal distribution. Fourier 

power spectrum of the theoretical noise, which is the square of the normally distributed 

spectrum, has chi-square (χ
2
) distribution with two degrees of freedom,   

 , 

corresponding to the real and imaginary parts. Statistical significance test was performed 

at 95% confidence level. To perform the test, the 95% line was developed by 

multiplying the red noise spectrum by the 95
th

 percentile value of   
 . Wavelet peaks 

were compared with this 95% line and the peaks that were above this confidence line 

were identified as cyclic features that are significantly different from background red 

noise at 95% confidence level.  
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3.7.3 Cross wavelet analysis 

Cross wavelet analysis is an extension to WA, which examines the linear 

correlation between two time series. Cross wavelet analysis identifies the high common 

power of two time series signal in the time–scale domain. Cross wavelet spectrum 

between two processes, X and Y, is estimated by (Torrence and Compo, 1998): 

                            
      

[3.25] 

where          
 

and          
 

are the continuous wavelet transforms of the 

investigated time series, X and Y, and (*) indicates the complex conjugate. Cross 

wavelet spectrum is complex and can be decomposed into amplitude and phase. Local 

relative phase between X and Y is estimated by the complex argument (phase), 

                                 and the cross wavelet power is also defined 

as          . The phase information in the cross wavelet spectrum gives the phase 

angle difference between the components of the two time series. 

Using cross wavelet spectrum, cyclic features at which the underlying time series 

are covarying can be detected. The covariations of two signals demonstrate the existence 

of a link, in some way, between the underlying processes and also the fact that the 

information of one process is capable of predicting the other process. This information is 

very useful when it is of interest to find out the processes that have correlation (or strong 

correlation) with a target time series, e.g. AET here. The signals, which are showing to 

have high common power with the target signal in the cross wavelet spectrum, can be 

used as predictors in the estimation of temporal variations of the target time series. This 

is important information in the modeling of complex processes, e.g. 

hydrometeorological processes, in which determination of important predictors (input 

variables) is essential and a challenging task.  

Physical understanding of the AET mechanism indicates possible causality 

between the meteorological variables and the AET signal. The strength of the 

relationship between AET and each of the available meteorological variables can be 

investigated using cross wavelet transformation. The meteorological variables, whose 
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covariations with the AET time series were investigated in this study, include Rn, Tg, Ta, 

RH, and Ws.  

Statistical significance test of the cross wavelet power spectrum against the 

background red noise was conducted at 95% confidence level using the theoretical 

Fourier spectra of the two underlying time series,   
 and   

 , following the Torrence and 

Compo (1998) suggested testing approach. The distribution of the cross wavelet power 

of two time series is given as: 

                     

    
 

     

 
   

   
        [3.26] 

where σx and σy are standard deviations of the two time series, X and Y, Zν(p) is the 

confidence level at the probability p, 95% here, for the pdf of the cross wavelet 

spectrum, which can be derived from the square root of the product of two chi-square 

distributions (Jenkins and Watts, 1968). For the complex wavelet used in this study, ν, 

degrees of freedom, equals to 2 and Z2(95%) = 3.999. More description on the 

development of cross wavelet significance test can be found in Torrence and Comp 

(1998). 

One of the important issues in the cross wavelet analysis is the misconception of 

the peaks in the cross wavelet spectrum. Since the cross wavelet spectrum is obtained 

using the univariate power spectra, some of the seemingly high power features might be 

caused by strong powers of one variable power spectrum only, while the other variable 

power at the same time-scale location is average. Therefore, every large cross wavelet 

power does not necessarily indicate high powers in univariate spectra of both variables 

nor strong correlation between them (Schaefli et al, 2007; Si, 2008). Consequently, 

significant peaks in the cross wavelet spectrum should be interpreted (or strong 

correlation between two variables should be identified) based on the detected high 

powers in the univariate power spectrum (Si, 2008). In addition, consistency of phase 

information in the significant areas of cross wavelet spectrum can help in differentiating 

between true covarying features and false high powers. 
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The cross wavelet technique- is capable of investigating the covariation of only 

two signals at a time. So, interaction effects that multiple different underlying time series 

may have on each other cannot be considered in this type of analysis. The interaction 

among different meteorological processes, whose correlations with AET were studied 

here, is expected based on the physical understanding of the investigated system. In the 

current study, cross wavelet transformation was also employed for extracting the 

significant common features between the target time series of AET and the time series 

induced by the GP-evolved models. This analysis was implemented to investigate the 

correlation between a modeled AET signal, obtained from different composition of 

meteorological signals, and the observed AET time series in terms of cyclic temporal 

variations. In this analysis, it was important to investigate the influence of multiple 

meteorological variables together on the estimation of AET cyclic variations.  

In this approach, 35 GP models were generated at different levels of GP 

parameters using the continuous time series data (night-time and day-time data) of the 

year 2006 as the training dataset. The data that were used for evolving the GP models 

were exactly the same as those used for the wavelet analysis. Four optimum GP models, 

which constituted of different predictor variables and functional forms, were selected 

and employed for estimating the AET time series. Cross wavelet analysis was then used 

to investigate covariations between predicted and observed AET signals in the time-

scale domain. 

Both continuous and cross wavelet analysis were implemented using the 

software package developed for MATLAB and provided on-line by Grinsted et al. 

(2004) (http://www.pol.ac.uk/home/research/waveletcoherence/). Wavelet and cross 

wavelet analysis were basically of interest to examine the temporal cyclic variations 

occurring during day-time (8:00 AM to 8:00 PM) of the AET and meteorological time 

series. However, wavelet transformation can only be performed on complete 

(continuous) time series but not non-continuous time series such as day-time data. To 

obtain accurate wavelet analysis, which were also associated only with the day-time 

variations, wavelet and cross wavelet analysis were performed using the complete time 

series data (day-time and night-time data). Then, the wavelet coefficients (spectrum 

http://www.pol.ac.uk/home/research/waveletcoherence/
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segments), which were associated with night-time data were cut out to give the spectrum 

of the day-time only time series data. Wavelet spectra provided in the next chapter are 

all associated with the day-time only time series.  
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CHAPTER 4. RESULTS AND DISCUSSION 
 

The results of data driven modeling and digital signal processing (wavelet 

analysis) of time series are provided in this chapter. The actual evapotranspiration (AET) 

models developed using neural networks (ANNs), genetic programming (GP), and 

multilinear regression (MLR) are presented, analyzed, and compared in the data driven 

modeling section. The utility of the data driven AET models is also compared with that 

of HYDRUS-1D model, which makes use of conventional Penman-Monteith (PM) 

model for the prediction of AET. Continuous wavelet analysis and cross wavelet 

analysis were carried out for the analysis of intermittent variations in the AET and the 

time series of the meteorological variables in order to explore common covariances 

existing between AET and each of the meteorological signals. The wavelet analysis 

(WA) was examined as a possible pre-modeling tool for determination of appropriate 

AET model inputs (predictors).  

 

4.1 Data driven modeling 

4.1.1 Overview 

Using three data driven techniques: ANNs, GP, and traditional statistical 

regression, different AET estimation models were developed. The models were analyzed 

and compared in terms of prediction accuracy, generalization ability, 

complexity/simplicity of the modeling approach, and model usage. The comparison was 

conducted to identify the most efficient technique, out of the studied three data driven 

techniques, for the prediction of the AET process. The results of the data driven models 

were compared with those of the HYDRUS-1D model in order to identify the possible 

advantages of the proposed models over one of the available methods for the estimation 

of actual evapotranspiration.  
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4.1.2 Data driven modeling data 

The three different data subsets, namely, training, testing, and cross-validation, 

which were employed for the modeling purposes, were selected from a randomly 

generated population of 100 groups of data subsets. The selection procedure was 

conducted based on the statistical characteristics, e.g. mean and standard deviation, of 

the AET data. The group of data subsets with relatively similar statistical properties was 

selected for the current modeling task. The statistical characteristics of the selected data 

subsets are tabulated in Table 4.1. The similarities among the statistical characteristics of 

the three subsets indicate that the instances used at different stages of the modeling 

process are representing the same population to be modeled. 

Table 4.1. Statistical Characteristics of data subsets employed for data driven modeling. 

Dataset 
Minimum 

(mm/h) 

Maximum 

(mm/h) 

Mean 

(mm/h) 

SD
1 

(mm/h) 
CV

2
 Skew 

Length of 

dataset 

Training -0.06 0.67 0.24 0.13 0.55 0.27 604 

Testing 0.01 0.62 0.24 0.13 0.55 0.37 402 

Cross-validation -0.01 0.60 0.24 0.13 0.54 0.35 201 
1
 Standard deviation 

2
 Coefficient of Variation    

   

 

4.1.3 Artificial Neural Network (ANN) model 

 Development of optimum ANN model  

In order to adopt the most appropriate training algorithm and network geometry, 

the influence of number of hidden neurons on the performance measures of two training 

algorithms; Levenberg-Marquardt and Bayesian-regularization, was examined and the 

results are illustrated in Figure 4.1. It appears that Levenberg-Marquardt training 

algorithm is more sensitive to the number of hidden neurons; represented by larger 

fluctuations in the error measures with respect to the number of hidden neurons than the 

Bayesian-regularization algorithm. Figure 4.1a indicates that the Levenberg-Marquardt 

algorithm leads to lower values of correlation coefficient (R) for all numbers of hidden 

neurons compared to the Bayesian-regularization algorithm. Figs. 4.1b and 4.1c show 

that Levenberg-Marquardt algorithm results in higher values of RMSE and MARE than 
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Bayesian-regularization for all numbers of hidden neurons. This finding indicates that 

the Bayesian-regularization training algorithm performs more efficiently than the 

Levenberg-Marquardt algorithm on the subset under consideration. This might be 

attributed to some hindrance caused by the use of redundant network parameters 

(weights and biases) in the output estimation of the network trained by Levenberg-

Marquardt algorithm, while the networks trained by Bayesian-regularization training 

algorithm use only the effective network parameters for computing the output (Izadifar 

and Elshorbagy. 2010). Among the 28 assessed ANN models, the ANN model with 

eight hidden neurons trained by Bayesian-regularization algorithm resulted in relatively 

better statistical measures; R of 0.89, RMSE of 0.06 mm/h, and MARE of 0.28 when 

evaluated using the cross-validation subset. Therefore, eight hidden neurons were 

adopted for the ANN model for the rest of the modeling process. 

 
Figure 4.1. The influence of number of hidden neurons on the network performance for 

two training algorithms using the cross-validation subset: −, Levenberg-Marquardt; ---, 

Bayesian-regularization. 

 

 Testing the developed ANN model  

The predictive ability of the developed ANN model on completely unseen subset 

was examined using the testing subset. The ANN model with eight hidden neurons was 

applied to the testing subset, and the error measures were computed. Table 4.2 presents 

the performance statistics of the ANN model on the testing subset as well as the training 

and the cross-validation subsets. Low values of RMSE and MARE, and high values of 

correlation coefficient on the testing subset indicate the good generalization ability of 

the developed ANN model in the estimation of hourly AET values. 
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Table 4.2. Performance statistics of ANN model with 8 hidden neurons for three subsets. 

Statistics Training Cross validation Testing 

RMSE  0.06 0.06 0.07 

MARE 0.40 0.28 0.31 

R 0.89 0.89 0.86 

 

The statistical performance measures (Table 4.2) basically examine the 

prediction accuracy of the developed ANN model from an overall point of view using 

the mean of errors and the general correlation between observed and predicted AET 

values. In order to evaluate the performance of the ANN model more precisely, the 

observed and the predicted values of AET were visually compared for a typical data 

range of 100 data points from the testing subset (Figure 4.2). The visual comparison of 

predicted and observed AET values indicates that the ANN model was able to properly 

capture the variation of AET. However, some of the large AET values have been 

underestimated by the ANN model showing its relative weakness in the estimation of 

AET values with larger magnitude. However, considering the complexity of the hourly 

AET values, the ANN model performs well with regard to matching the pattern and the 

trend of the observed values. 

 
Figure 4.2. Visual comparison between the ANN predicted and the observed testing data 

of AET: --, observed values; , predicted values. 
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 Important (significant) input variables for AET modeling 

For the five available meteorological variables, Rn, Tg, Ta, RH, and Ws, 26 

different input combinations could be assessed, which were already described in the 

previous chapter. In order to examine the importance of each input combination, the 

associated optimum ANN model, with optimized architecture and training algorithm, 

was developed using the training and the cross-validation subsets, and the network 

performance was evaluated using the testing subset. The primary results indicated that 

net radiation (Rn) is a crucial factor in the estimation of AET; its exclusion from the 

input set causes serious deterioration of the performance of the ANN models. For 

instance, ANN model with the predictors set of Tg, Ta, RH, and Ws (excluding Rn) 

resulted in the performance measures of 0.11 mm/h, 0.69, and 0.54 for the RMSE, 

MARE, and R, respectively, when applied to the testing subset (Table 4.3). The 

significant role of net radiation, as the main source of energy, in the AET mechanism is 

expected based on the physics of the AET process. As a result, the rest of the analysis 

was performed only for the input subsets, which include Rn as one of the predictors. 

Consequently, the total number of investigated input combinations decreased from 26 to 

16. Table 4.3 shows the performance statistics of ANN models trained using 16 different 

combinations of inputs. 

The best performance of ANNs was obtained when all five meteorological 

variables were used for the modeling of AET; however, ANN models, which employed 

the predictor combinations of ―Rn, Tg, RH, Ws‖; ―Rn, Tg, Ta, RH‖; ―Rn Tg, Ta, Ws‖; ―Rn, 

Ta, RH, Ws‖; ―Rn, Tg, RH‖; and ―Rn, Tg, Ws‖, also resulted in comparable performances. 

Among the input combinations of two factors only, the ANN model with predictor set of 

Rn and Tg performed fairly well, which shows the possibility of using fewer number of 

predictors for estimating AET in an efficient and parsimonious way.  

Obtaining acceptable prediction accuracies from different combinations of inputs 

demonstrates the difficulty of determining the significant input variables for modeling 

the AET process. Thus, the trial-and-error procedure using the ANN technique might not 

be the best approach for identifying the important AET predictors. This difficulty can 

also be associated with the complexity of the AET process itself. The interaction among 
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multiple processes and variables involving the AET makes it possible, for ANN model, 

to sufficiently capture the variations of AET by using different combinations of 

variables. It is understood from the results that determination of a unique set of 

meteorological variables might not be necessary for the estimation of AET. Instead, the 

effort can be concentrated on the determination of the most efficient and parsimonious 

set of predictor variables. 

Table 4.3. Performance statistics of ANN models with different combinations of inputs. 

Input 

combination 

 

 

Training Cross-validation Testing 

RMSE* MARE R RMSE MARE R RMSE MARE R 

Rn,Tg,Ta,RH,Ws 0.06 0.40 0.89 0.06 0.28 0.89 0.07 0.31 0.86 

Rn,Tg,RH,Ws 0.06 0.43 0.88 0.06 0.28 0.88 0.07 0.33 0.86 

Rn,Tg,Ta,RH 0.06 0.43 0.88 0.06 0.31 0.88 0.07 0.32 0.86 

Rn Tg,Ta,Ws 0.07 0.44 0.87 0.07 0.29 0.87 0.07 0.33 0.85 

Rn,Ta,RH,Ws 0.07 0.49 0.85 0.07 0.30 0.87 0.07 0.36 0.83 

Tg,Ta,RH,Ws 0.12 0.87 0.61 0.10 0.71 0.62 0.11 0.69 0.54 

Rn, Tg,RH 0.06 0.44 0.88 0.06 0.30 0.88 0.07 0.34 0.86 

Rn,Tg,Ws 0.07 0.42 0.87 0.07 0.29 0.86 0.07 0.32 0.85 

Rn,Tg,Ta 0.07 0.48 0.85 0.07 0.31 0.87 0.07 0.35 0.84 

Rn,RH,Ws 0.07 0.47 0.85 0.07 0.29 0.86 0.07 0.37 0.83 

Rn,Ta,RH 0.07 0.54 0.84 0.07 0.35 0.86 0.07 0.40 0.83 

Rn,Ta,Ws 0.07 0.54 0.83 0.07 0.32 0.86 0.07 0.37 0.83 

Rn,Tg 0.07 0.57 0.85 0.06 0.34 0.87 0.07 0.42 0.84 

Rn,RH 0.07 0.53 0.82 0.07 0.36 0.87 0.07 0.49 0.82 

Rn,Ws 0.08 0.53 0.79 0.08 0.35 0.82 0.09 0.45 0.77 

Rn,Ta 0.08 0.51 0.83 0.07 0.34 0.85 0.08 0.43 0.82 

*RMSE in mm/h   

 

4.1.4 Genetic Programming (GP) model 

Using GPLAB (Silva, 2005) several equation-based GP models were generated 

at 42 different levels of GP parameters including crossover probability, mutation 

probability, number of generations, and population size. Table 4.4 presents the values of 

RMSE, MARE, and R along with the associated GP parameters obtained with the best 

eight models generated by GP. The optimum GP models that resulted in the best 

statistics associated with the cross-validation subset are given below (Equations 4.1-4.8): 
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RHTRAET gn 104.001.0148.0013.0       [4.1] 

gng TRTAET 33 1049.91054.5018.0        [4.2] 

274233 1064.8107.2105.3102.90784.0 aagngngn TTTRTRTRAET  
  

           [4.3] 

gngn TRTRAET 33 1037.71088.1063.0039.0  
    

[4.4] 

ggn TTRAET 33 10569.210836.70696.0        [4.5] 

ngng RTRTAET 33 1085.6011.0101.30633.0       [4.6] 

ana TRTAET 33 1035.61023.20775.0        [4.7] 

an TRAET 005.0129.0          [4.8] 

where, AET, Rn , Tg , Ta, and RH are the rate of actual evapotranspiration [mm h
-1

], net 

radiation [MJ], ground temperature [
o
C], air temperature [

o
C], and relative humidity 

[fraction], respectively. 

Table 4.4. The best generated GP-based models using various GP parameters for the 

cross-validation subset. 

Model 
Crossover 

prob. 

Mutation 

prob. 

No. of 

generation 

Population 

size 

RMSE

(mm/h) 
MARE R 

Eq. 4.1 0.6 0.2 50 60 0.06 0.37 0.88 

Eq. 4.2 0.5 0.2 60 70 0.07 0.34 0.86 

Eq. 4.3 0.6 0.3 60 60 0.07 0.37 0.86 

Eq. 4.4 0.7 0.5 50 300 0.07 0.35 0.85 

Eq. 4.5 0.5 0.2 200 100 0.07 0.43 0.86 

Eq. 4.6 0.7 0.4 200 50 0.07 0.44 0.86 

Eq. 4.7 0.8 0.3 100 40 0.07 0.46 0.85 

Eq. 4.8 0.6 0.3 50 80 0.08 0.40 0.85 
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The optimum GP-evolved models are structurally simple, characterizing the 

variation of AET as semi-linear functions of meteorological variables, since the models 

are linear in parameters. Most (six out of eight) of the presented GP models contain Rn 

and Tg as AET predictors. The appearance of RH (one out of eight times) and Ta (three 

out of 8 times) was limited in the developed models. Interestingly, Ws never came up as 

an important predictor in the presented optimum AET models, which means that GP did 

not find wind speed to be an effective component in the estimation of hourly AET. The 

simplicity of the models seems to be interesting, especially when the error measures also 

indicate relatively good generalization ability of the models based on the testing subset 

(Table 4.5). It is perceived from the GP models that the AET mechanism can be 

characterized by structurally simple models, which are also not physically complex. This 

can be considered as a strong advantage of the GP technique that searches for any 

possible combination of predictors that can properly model the AET process. Thus, GP 

might generate some AET models with structures that might not be readily explainable 

in light of the intuitive understanding of the AET physics.  

Table 4.5. Performance statistics of the GP-based models using testing subset. 

Model  RMSE(mm/h) MARE R 

Eq. 4.1 0.07 0.35 0.85 

Eq. 4.2 0.08 0.32 0.83 

Eq. 4.3 0.07 0.32 0.82 

Eq. 4.4 0.08 0.32 0.82 

Eq. 4.5 0.07 0.39 0.83 

Eq. 4.6 0.07 0.40 0.83 

Eq. 4.7 0.07 0.41 0.81 

Eq. 4.8 0.09 0.36 0.79 

 

Based on the equation-based GP models, the contribution of each meteorological 

variable in the estimation of AET can also be discussed. This is only possible by using 

the normalized form of the equations in which all input variables receive their values 

from a consistent range (e.g. less than 1). Then the contribution of each input variable or 

factor to the AET can be assessed based on the associated coefficient’s magnitude. A 

selective set of models, which includes only GP models with different physical 

structures, was identified and the input variables were normalized for further analysis. 
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The selected models, Eq. (4.1), (4.2), (4.3), (4.4), and (4.7), are rewritten, in order, as 

follow: 

HRTRAET gn
 095.0285.0385.0013.0      [4.9] 

gng TRTAET  53.015.0018.0        [4.10] 

232
10976.0424.049.0514.00784.0 aagngngn TTTRTRTRAET     [4.11] 

gngn TRTRAET  412.0051.0164.0039.0      [4.12] 

ana TRTAET  396.0075.00775.0       [4.13] 

In these normalized equations, input variables, which are associated with the models’ 

linear coefficients (e.g. T'g, T'gR'nT'a, and R'n
2
T'g), are normalized inputs by dividing each 

of them by its corresponding maximum values and AET is the rate of actual 

evapotranspiration [mm h
-1

]. These normalized models were only developed and used 

for interpreting the contribution of different inputs to the estimation of AET. 

Equation (4.9) indicates that AET can be estimated as a simple linear function of 

R'n, T'g, and RH', which is highly dominated by the net radiation and ground temperature 

variables. Equation (4.10) also has a simple structure describing the AET process as a 

nonlinear function, of only net radiation and ground temperature, which is dominated by 

the two-factor interaction of R'n and T'g. The average contribution of each input term to 

the estimation of AET can be computed and compared to obtain better insight into the 

influence of different inputs on the AET. This was implemented by applying the models 

to the data and computing the partial magnitudes of the AET values that each input term 

contributes. Then, the associated averages were taken over the available instances. The 

interaction factor of R'nT'g has larger contribution to the estimation of AET than the T'g, 

individually, with the average contribution magnitude of 0.15 and 0.10 mm/h for the 

terms 0.53R'nT'g and 0.15T'g, respectively. This indicates that when some factors are 

interacting, their interactions influence the individual contribution of each variable to the 
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AET mechanism. Consequently, the interaction term (factor) is more responsible for 

AET variations than the individual variables. In Eq. (4.11), the air temperature (T'a) 

variable has been included in addition to the R'n and T'g. The air temperature has 

appeared both as an individual variable and as an interacting factor in the three-factor 

interaction term of R'nT'gT'a. According to the coefficients associated with these 

variables in Eq. (4.11), T'a can affect the rate of AET only through the influence it might 

have on the R'n and T'g (interacting coefficient of 0.424 compared to that of air 

temperature, 0.000976). The structure of Eq. (4.12) also confirms the importance of 

interaction effects of multiple variables rather than the individual processes. The 

combined component of R'nT'g is more responsible for the variation of AET than the R'n 

and T'g individually. The average contribution magnitude of each of the terms 

0.412R'nT'g, 0.164R'n, and 0.051T'g in the estimation of AET values are 0.12, 0.05, and 

0.03 mm/h, respectively. Equation (4.13) demonstrates that the AET mechanism can 

even be characterized as a simple semi-linear function of R'n and T'a only, which are 

commonly available meteorological measurements. Again, the AET model is dominated 

by the interaction factor of the two variables. The interaction and individual terms of 

0.396R'nT'a and 0.075T'a are contributing to the estimation of AET by the average 

magnitude of 0.11 and 0.05 mm/h, respectively. 

Although the generated models, based on error measures, are performing well 

and relatively similar, they are using different combinations of inputs with different 

mathematical structures. This demonstrates that precise identification of the 

meteorological variables driving the AET process is not an easy and straightforward 

task, where different combinations of inputs may result in relatively good AET 

estimation (Izadifar and Elshorbagy, 2010). The results obtained from the GP-evolved 

models indicate that the hourly AET process can be estimated by both linear and 

nonlinear relationships. The prediction accuracy of the AET models, using the GP 

technique, could vary within a possible range of 0.07 to 0.09 (mm/h), 0.32 to 0.41, and 

0.79 to 0.85 for RMSE, MARE and R, respectively. Using the above-listed GP models, 

one may choose one of them for estimating the rate of AET based on the meteorological 

data that are available. Thus, the proposed GP models can suit different conditions of 

data availability.  
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The prediction accuracy of the GP-evolved models can also be investigated using 

the visual comparison between the observed and predicted AET. This was performed for 

the previously analyzed set of GP models, Eq. (4.1), (4.2), (4.3), (4.4), and (4.7), for a 

typical data range of 100 data points from the testing subset. Figure 4.3a to d shows that 

Eq. (4.1), (4.2), (4.3), and (4.4) are performing well in capturing the variation and the 

trend of the AET; however, they are slightly missing larger magnitude values of AET. 

Figure 4.3e, shows that the GP model, which estimates the AET only as a function of Rn 

and Ta (Eq.4.7), has the ability to predict the variation of AET but is performing slightly 

poorer with regard to the estimation of extreme AET values, compared to other 

investigated GP models (Equations 4.1-4.4).  

 
Figure 4.3. Visual comparison between the observed and the GP predicted AET values 

of testing data using (a) Eq. (4.1), (b) Eq. (4.2), (c) Eq. (4.3), (d) Eq. (4.4), and (e) Eq. 

(4.7): --, observed values; , predicted values. 
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4.1.5 Statistical MultiLinear Regression (MLR) model 

Equations (4.14) and (4.15) present the two multilinear regression (MLR) models 

resulting from the statistical analysis performed using SAS/STAT® software. 

sagasngn WTTTWRRHTRAET 001.00004.0012.019.0023.016.0091.0 

           [4.14] 

 [4.15] 

The summary of the statistical analysis conducted for determining the factors that 

have significant effects on AET is given in Table 4.6. In model 1 (Eq. 4.14), Rn, Tg, RH, 

and the two-factor interactions of TaTg, TaWs and RnWs were identified as the significant 

factors for the AET process at 95% confidence level. When the quadratic forms of input 

variables were also considered, in model 2 (Eq. 4.15), RH was no longer included in the 

equation; however, Rn and Tg were still identified as significant variables. The second 

orders of net radiation, Rn
2
, ground temperature, Tg

2
, and wind speed, Ws

2
, also became 

significant as p-values are less than the significance level of 0.05. The effects of two-

factor interactions also changed as the quadratic forms of input variables were included 

in the analysis. In model 2 (Table 4.6), the two-factor interactions of RnTg, RnWs, TgWs, 

and TaRH demonstrate significant effect on AET. By the significant interaction effect, of 

RnWs for instance, it means that the wind speed contributes to the AET process but its 

contribution depends on the value of net radiation.  

Model 1, Eq. (4.14), resulted in the Pearson’s coefficient (R) of 0.87, RMSE of 

0.06 mm/h and MARE of 0.34 based on the cross-validation subset. However, R 

improved up to 0.88, and MARE reduced to 0.32 when the second orders of variables 

were also taken into account (model 2, Eq. 4.15), as given in Table 4.7. Model 1 

logically indicates that net radiation and ground temperature are positively correlated to 

AET and relative humidity is negatively correlated to the AET. The structure of model 2 

(Eq. 4.15) demonstrates that the quadratic forms of Rn, Tg and Ws are negatively 

contributing to the AET process. Inverse influence of second order net radiation (Rn
2
), 

RHTWTWRTR

WTRTRAET

asgsngn

sgngn

010.00013.00069.00038.0

0016.00012.00426.00546.01548.04086.0 222




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ground temperature (Tg
2
), and wind speed (Ws

2
) might not refer to any physical process 

and might be just included for numerical adjustments of model and for achieving better 

fitness. The effect of each interaction term on AET can be described based on the values 

taken by each component of the two-factor interaction term.  

Table 4.6. Variables with significant effect on actual evapotranspiration. 

Variable p-value<0.05 

Model 1: 

Rn <0.0001 

Tg <0.0001 

RH <0.0001 

RnWs <0.0001 

TaTg <0.0001 

TaWs <0.0001 

 

Model 2:  

Rn <0.0001 

Tg <0.0001 

Rn
2
 <0.0001 

Tg
2
 <0.0001 

Ws
2
 0.0054 

RnTg 0.0120 

RnWs 0.0094 

TgWs <0.0001 

TaRH <0.0001 

Individual variables and two-factor interactions not given in this table were identified 

to be insignificant. 

 

Table 4.7. Performance statistics of the MLR models for cross-validation subset. 

Statistics RMSE(mm/h) MARE R 

Model 1 0.06 0.34 0.87 

Model 2 0.06 0.32 0.88 

 

Both statistical models can also be presented in a normalized form in which each 

contributing input variable (either linear, interaction, or quadratic) receives a value less 

than 1. This was implemented following the same approach used in the normalization of 

the equation-based GP models. The normalized models can be used for the identification 
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of variables having more contribution, to the estimation of AET, than others. The 

normalized form of the regression models (Eq. 4.14 and Eq. 4.15) are given, in order, as: 

saga

sngn

WTTT

WRHRTRAET





242.035.0

161.0173.0623.0418.0091.0
   [4.16] 

HRTWTWRTR

WTRTRAET

asgsngn

sgngn





159.0263.0093.0212.0

123.0881.0289.048.1404.0409.0
2 22

  [4.17] 

In Eq. (4.16) the coefficient associated with the ground temperature is larger than 

the coefficients associated with other variables indicating that ground temperature has 

more contribution to the estimation of AET values than other variables. The magnitude 

of the average contribution of 0.623T'g is equal to 0.42 mm/h, which is high compared to 

those of 0.418R'n (0.13 mm/h), 0.35T'aT'g (0.16 mm/h), and 0.173RH' (0.10 mm/h). The 

T'g variable was also given large coefficients in both forms of linear and quadratic in Eq. 

(4.17). Quantitative analysis of the variables’ contribution to the estimation of AET 

indicated that, in model 2, the input terms of 1.48T'g and 0.881T'g
2
 have, in order, the 

average contribution of 1 and 0.42 mm/hr, which is high in comparison with that of 

0.404R'n, 0.13 mm/h.  

As a baseline comparison, a simple first order MLR model was also investigated 

for the estimation of hourly AET variations. For fitting the standard first order MLR, 

only the first orders of meteorological variables were statistically analyzed and the fitted 

model was obtained as: 

sagn WRHTTRAET 0097.0179.00043.0015.0133.0018.0    [4.18] 

where dependent and independent variables are exactly the same as the previously 

presented MLR models. The above linear regression model resulted in the Pearson’s 

coefficient (R) of 0.87, RMSE of 0.06 mm/h and MARE of 0.38 when applied to the 

cross-validation subset. First order MLR (Eq. 4.18) performed relatively worse than 

model 1 and 2 (Eq. 4.14 and 4.15) in terms of MARE (Table 4.7). The normalized form 

of the given MLR model is: 
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sagn WHRTTRAET  085.0163.0145.0394.0347.0018.0   [4.19] 

The average contribution of the variable terms, in order of their presence in the model, 

are 0.11, 0.28, 0.09, 0.09, and 0.02 mm/h. Ground temperature and net radiation were 

given larger coefficient values than other variables indicating that they have more 

contribution to the AET values. This was also confirmed by the average contribution 

values. For the rest of the analysis, only the earlier proposed MLR models of 1 and 2 

(Eq. 4.14 and 4.15) were considered. 

Figure 4.4 illustrates the scatter plots of the predicted values by the MLR models 

versus the observed data. A slight improvement can be observed when model 2 is used, 

which has also the quadratic form of factors. However, some statistical analysis is 

needed to identify if the difference between the two models is significant. Comparing 

the general statistical characteristics of residuals resulted from model 1 and model 2 

shows that the two proposed regression models are not performing substantially 

different. The mean and variance of residuals from model 1 are –0.002 and 0.005, 

respectively, which are very close to those of model 2; -0.001 and 0.004. The difference 

between the mean and the variance of the errors from the two models is only 0.001. The 

probability distribution, which was fitted to the errors of model 1, is the same as that of 

model 2, and it is LogLogistic distribution with relatively similar shape and scale 

parameters (Fig. 4.5).  

In order to select one MLR model out of the two developed ones, the akaike 

information criterion (AIC) was computed for both models. The AIC values for model 1 

and 2 are equal to -1597.7 and -1648.9, respectively, showing that model 2 is better than 

model 1. As a result, model 2 is considered as the MLR equation for the prediction of 

AET as a function of meteorological variables. Figure 4.6 illustrates the visual 

comparison between the observed and the predicted values of AET estimated by MLR 

models 1 and 2 for a typical data range of 100 data points from the testing subset.  
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Figure 4.4. Scatter plots of predicted values resulted from (a) MLR model 1 and (b) 

MLR model 2 versus measured data using testing subset. 

 

 
Figure 4.5. Probability distribution of the MLR models errors. 
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Figure 4.6. Visual comparison between the predicted values by (a) model 1 and (b) 

model 2 and the observed testing data of AET: --, observed values; , predicted values. 

 

4.2 Comparison among AET estimation models  

4.2.1 Conventional model comparison approach  

The performances of the models from the three proposed techniques; ANNs, GP, 

and the MLR, were compared based on the testing subset. It can be seen (Table 4.8) that 

ANN and regression models demonstrate relatively close performances based on the 

RMSE and R statistics; however, the MARE of the regression model is slightly better 

than that of the ANN model. The equation evolved by GP resulted in slightly larger 

MARE value compared to those of ANN and the MLR models. Despite discrepancies 

among the statistics, the differences are small, which implies that the models have 

comparable performances for estimating AET based on the meteorological variables. 

Test of hypothesis was performed using SAS/STAT® software to compare the general 

statistical characteristics of the residuals of the various models (Table 4.9). P-values 

associated with each pair of models are given in Table 4.10. Large P-values imply that 

there is no significant difference between the means and variances of the errors at 95% 

confidence level. Consequently, no substantial difference can be perceived among the 

predictive abilities of the proposed models. Furthermore, the errors produced by all three 

models follow the same probability distribution of LogLogistic (Figure 4.7). 
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Table 4.8. Performance statistics of different models using testing subset. 

Model RMSE(mm/h) MARE R 

ANN 0.07 0.31 0.86 

GP (Eq. 4.1) 0.07 0.35 0.85 

MLR 0.07 0.29 0.86 

 

Table 4.9. General statistical characteristics of errors obtained from different models. 

Model Mean  Variance 

ANN -0.003 0.004 

GP (Eq. 4.1) -0.002 0.005 

MLR -0.001 0.004 

 

Table 4.10. A comparison among the statistical characteristics of errors obtained from 

different models at 0.05 significant level. 

 Means of errors  Variances of errors 

Groups P-value  P-value 

ANN & GP 0.75  0.60 

MLR & GP 0.84  0.47 

MLR & ANN  0.60  0.84 

 

 

Figure 4.7. Probability distribution of the data driven models errors. 
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Figure 4.8 illustrates the scatter plots of the predicted AET values by ANNs, GP, 

and the MLR model (model 2), respectively, versus observed data, using the testing 

subset. Based on the visual comparison, no substantial difference can be observed 

among the predictive abilities of the proposed models, except that the variability in the 

scatter plot of the MLR model (Fig. 4.8c) is slightly less than those of ANN and GP 

models.  

 
Figure 4.8. Scatter plots of predicted actual evapotranspiration (AET) versus observed 

AET by (a) ANN, (b) GP (Eq. 4.1), and (c) MLR model using testing subset. 

 

4.2.2 Rigorous model evaluation approach  

In order to evaluate the generalization ability of the developed models in a more 

realistic and rigorous way, all of the optimum models obtained from the ANNs, GP, and 

the regression techniques, using the 2006 data, were employed for the prediction of 

actual evapotranspiration of a different year (2005). This assessment was also conducted 

to identify the possible superiority of any of the proposed models for future prediction 

applications. The 2005 dataset, which was used for implementing the rigorous 

generalization test, has different statistical properties from the year 2006 dataset, which 

was employed for training and testing during model development (Table 4.11). Applying 

the developed models to a statistically different dataset helps to evaluate and compare 

the models’ predictive abilities on instances from a statistically different population. The 

hourly meteorological variables of Rn, Tg, Ta, Ws, and RH of the year 2005 were used as 

the inputs of the optimum models, including ANN, GP (Eq. 4.1 and Eq. 4.2) and the 

MLR model 2 (Eq. 4.15) to estimate the AET.  
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In addition to the developed data driven models, the rate of AET in the 2005 was 

estimated using the physically-based HYDRUS-1D model. The meteorological 

variables, including Rn, Ta, Ws, RH, precipitation, vegetation factor, LAI, and 

physical/hydraulic parameters of soil were used as inputs for estimation of AET by 

means of HYDRUS-1D software package. The performance of the HYDRUS model was 

compared with those of the developed data driven models.  

Table 4.11. Statistical characteristics of AET data of the years 2005 and 2006. 

Year 
Minimum 

(mm/h) 

Maximum 

(mm/h) 

Average 

(mm/h) 

Median 

(mm/h) 

SD* 

(mm/h) 

Coefficient 

of variation 

2005 -0.05 0.68 0.18 0.16 0.12 0.65 

2006 -0.06 0.67 0.24 0.23 0.13 0.55 

*Standard deviation 

 

 Comparative generalization abilities  

A comparison among the performance statistics of the data driven models, used 

for the prediction of AET in 2005, is given in Table 4.12. It is apparent that GP and 

regression models are performing better than the ANN model with lower error measure 

values and higher correlation coefficients. However, in terms of MARE, the GP model 

performed better than the regression model. GP and the regression techniques were able 

to capture the semi-linearity of the AET process and to characterize it by simple 

equations. However, the ANN model, because of its structure, tried to fit a complex non-

linear model to the AET process, which was unnecessary and resulted in its poor 

performance in generalization. Based on the RMSE and correlation coefficient (R) 

metrics, GP and regression models have comparable generalization abilities.  

Table 4.12. Performance statistics of different models using 2005 data. 

Model RMSE(mm/h) MARE R 

ANN 0.10 0.91 0.78 

GP    

- Equation (4.1) 0.07 0.55 0.82 

- Equation (4.2) 0.06 0.47 0.85 

MLR    

- Model 2 0.07 0.57 0.85 

HYDRUS-1D  0.08 0.48 0.79 
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For better interpretation of models’ performances, further analysis was 

conducted. Scatter plots of the predicted AET values by data driven models versus 

observed values, using the 2005 dataset, are illustrated in Fig. 4.9. It can be seen in 

Fig.4.9a that the ANN model is overestimating most of the AET values in 2005, which 

was expected from the large value of MARE. Figure 4.9b and c indicate that the GP and 

MLR (model 2) models are performing well and relatively similar on the estimation of 

AET in 2005. This demonstrates the superiority of GP and regression models over the 

ANN with regard to the generalization ability. The performances of the proposed data 

driven models can also be compared with regard to large AET values for the cases when 

high AET values are of interest to be predicted. A comparison was conducted among the 

performance statistics of the ANN, GP, and MLR models on the AET values, which are 

above a specified threshold value of 0.30 mm/hr (84
th

 percentile threshold, which is 

mean plus standard deviation of normally distributed dataset). The results are presented 

in Table 4.13 and indicate that the models have relatively similar performances on the 

estimation of large AET values although, in terms of overall prediction ability, GP and 

MLR models performed better than the ANN. 

Table 4.13. Performance statistics of different models on the AET values above the 84
th

 

percentile threshold using 2005 data. 

Model RMSE(mm/h) MARE R 

ANN 0.08 0.15 0.80 

GP (Eq. 4.2) 0.10 0.20 0.83 

MLR 0.08 0.15 0.82 

 

The two different types of comparison discussed above highlight the importance 

and also the reliability of the approach one may use for comparison purposes in the 

modeling process. In the first approach, the unseen testing subset, which was coming 

from the same year (statistical population) that was used for developing (training) the 

models, was employed for testing the generalization ability of the models. Based on this 

comparison, no considerable difference was observed among the three proposed data 

driven models in terms of models’ generalization ability. However, using the second 

approach; testing the developed models using data from a different year, led to a more 

realistic assessment of the predictive accuracy, which revealed the discrepancies among 
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the data driven models much better. Consequently, the choice of the testing dataset on 

which the generalization ability of the models is evaluated is important, and in the case 

of inappropriate and/or insufficient testing data, incorrect conclusions might be made. 

 

Figure 4.9. Scatter plots of predicted actual evapotranspiration (AET) versus observed 

AET by (a) ANN, (b) GP (Eq. 4.2), (c) MLR, and (d) HYDRUS model using 2005 data. 

 

Another point of interest, which was observed in this analysis, is the issue of 

representation of a set of optimum GP equations instead of representing only the best GP 

equation. Out of the best GP-evolved models, Eq. (4.1), as an example, performed better 

than Eq. (4.2) when they were applied to the testing dataset of 2006. However, Eq. (4.2) 

had better performance than that of Eq. (4.1) when 2005 data were tested. This indicates 

that no single GP equation can be adopted as the best GP model, and thus, representation 
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of a set of GP equations as the optimum GP models is necessary (Parasuraman and 

Elshorbagy, 2008). 

 Comparison with the HYDRUS-1D model 

The HYDRUS-1D model uses the PM method along with the information about 

vegetation and soil moisture condition for estimating the rate of AET. The results 

indicated that the HYDRUS model is performing similar to the GP and better than the 

regression model on 2005 dataset in terms of MARE (Table 4.12). Based on the 

performance statistics of RMSE and correlation coefficient (R), HYDRUS model is 

performing better than ANN but not as good as GP and regression models. The scatter 

plot of HYDRUS-predicted AET values, Fig. 4.9d, shows that HYDRUS model is 

generally performing well in the prediction of AET in 2005, compared to the ANN. In 

comparison to the scatter plots of the GP and regression models (Fig. 4.9b and c), 

HYDRUS-predicted AET values are scattered more widely around the 1:1 line than 

those of GP and MLR, especially for large AET values. 

The results of applying HYDRUS-1D model, along with the other proposed 

models, for the prediction of AET in 2006 (Table 4.14) indicated that the employed 

HYDRUS model might not necessarily perform better than or comparable to the ANN, 

GP, and MLR models at all times. Consequently, a physically-based model, such as 

HYDRUS-1D, which exploits the widely used PM method and considers soil moisture, 

might be inferior to the data driven models for the prediction of AET in terms of 

prediction accuracy. The currently used HYDRUS-1D model was not calibrated for the 

specific vegetation cover in the studied site, which might influence the performance of 

the model. 

Table 4.14. Performance statistics of different models using 2006 data. 

Model RMSE(mm/h) MARE R 

ANN 0.06 0.45 0.88 

GP    

- Equation (4.1) 0.07 0.52 0.86 

- Equation (4.2) 0.07 0.46 0.84 

MLR    

- Model 2 0.06 0.41 0.88 

HYDRUS-1D  0.13 0.61 0.71 
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 General comparison of the proposed AET models 

The proposed AET estimation models can also be compared in terms of their 

complexity and efficiency. The AIC can be used as an index for assessing the 

complexity and the fitness of the models. The number and the data availability of the 

various inputs and the simplicity/complexity of the model usage can also be investigated 

for better comparison of the proposed models. Table 4.15 provides the AIC values 

associated with the proposed data driven models as well as their sum squared error 

(SSE) values. The AIC values were computed based on the training dataset because data 

driven models were trained and developed using this subset of data. Based on the AIC 

values, the ANN and MLR (model 2) models have better fitness to the data than the GP 

models although they are more complex based on the number of input variables and 

optimized parameters. This is mainly because of their smaller SSE values compared to 

those of GP models (Table 4.15). The GP model (Eq. 4.1) also has a comparable AIC 

value, which indicates its goodness of fit though it is simple in terms of the number of 

inputs and estimated parameters. 

Table 4.15. Akiak information criterion and sum squared error of the data driven models 

and their required inputs. 

Model AIC SSE  No. of required 

input variables 

No. of optimized 

parameters 

ANN -1640.31 2.16 5 24 

GP     

- Equation (4.1) -1516.44 2.83 3 4 

- Equation (4.2) -1391.04 3.50 2 3 

MLR      

- Model 2 -1648.92 2.23 5 10 

  

 

The ANN technique provides an implicit model from which no explicit 

information about the AET process can be easily obtained. As a result, ANN models 

might be used when prediction of AET is the only concern of the modeling process. In 

other words, accurate estimation of AET is more important than the understanding of 

AET mechanism itself. Furthermore, the significant input variables that are employed 

for AET estimation in the ANN model cannot be explicitly/easily identified, since the 

associated information is stored in the network connection weights and cannot be easily 
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interpreted. For the end user, application of ANN models is also not as easy as the 

equation-based models. The GP and MLR models are both equation-based models and 

are of interest for hydrologists and modellers because of their transparency and 

simplicity in application and usage. Explicit form of equation-based models, such as GP 

and MLR, makes it possible to extract some information about the physics of the 

process. The GP model has the advantage of using fewer input variables (Table 4.15) 

and also has simpler and more realistic structure than the regression model. 

Consequently, the GP model becomes more applicable when a limited number of 

meteorological variables is available or can be measured. From this point of view, GP is 

more efficient than the MLR for the prediction of AET. In addition, the simple structure 

of the GP models makes it easy for the users to understand how input variables are 

contributing to the AET process. This can also be achieved from the MLR equation; 

however, it is not as easy as the GP model because of the structural complexity of the 

MLR models.  

The HYDRUS model that was employed for the estimation of AET required the 

rainfall and LAI information, in addition to the meteorological variables used in the data 

driven techniques. The information of LAI was measured in weekly basis and was 

disaggregated to the hourly basis for consistency with the time resolution of other 

variables. Disaggregation of data involves some uncertainty, which most probably has 

been propagated to the estimated AET values. Indirect estimation of AET using the 

HYDRUS model also introduces some uncertainty in the predictions. This is because the 

AET is calculated from its partitioned components (actual evaporation and 

transpiration), which are separately estimated using the standard PM model and 

simulated soil moisture profile where the latter is also a source of uncertainty in the 

model. These uncertainties, embedded in the estimated AET values, are considered as 

disadvantage in the modeling process. In addition, requirement of additional input 

variables, such as LAI and hourly rainfall, which are not readily available data for most 

case studies, is considered also a disadvantage of HYDRUS model compared to the 

proposed data driven models.  

 



 90 

4.3 Wavelet analysis  

4.3.1 Overview 

Using the software package developed for MATLAB and provided on-line by 

Grinsted et al. (2004), continuous wavelet transform of the meteorological variables 

(predictors) and AET (predictand) time series was performed for identifying the 

dominant temporal cyclic events. In addition to continuous wavelet transform, the cross 

wavelet transform between each predictor variable and the AET signal was performed 

for identifying the possible covariances, which represent the influence of the predictor 

on the variations of AET. In general, the utility and applicability of WA were examined 

for identifying, prior to the modeling, the important variables that influence the hourly 

AET, and also to improve the understanding of the AET mechanism. In the following 

sections, the results and discussions will mainly focus on the small-scale variations (less 

than 16 hours), since these features are of interest in this study.  

 

4.3.2 Continuous wavelet analysis 

As it was described in the previous chapter, the length of cone of influence (COI) 

is defined as a function of scale (e.g. s 2  for Morlet wavelet) and increases with the 

scale. Since the studied range of scales mainly constitute of small scales (less than 16 

hours), for all spectra shown hereafter, edge effects (COI) are negligible near both end 

regions of the wavelet transformation, and consequently, cannot be seen in the spectra. 

The thick black contour lines, seen in the wavelet spectra hereafter, enclose areas in 

which the values of wavelet powers are significantly greater than the background red 

noise at 95% confidence level. Black contour lines might be seen only as black areas in 

the spectra because the small-scale wavelet is narrow in time domain (high time 

resolution) and the peaks appear very sharp. The wavelet power spectra are represented 

by colors, whose scales are presented by color bars. The color scales in the hereafter 

wavelet spectra indicate the increase of the wavelet power from dark blue to red.  
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Daily variations are apparently the known cyclic pattern in the meteorological 

signals. Continuous wavelet transformation (CWT) conducted at scale range of 2 to 48 

hours confirmed the presence of such diurnal cyclic variations. Figure 4.10 shows 

noticeably strong wavelet powers at the scale band of 16 to 32 hours, which is most 

likely due to the diurnal cyclic variations in the AET and Rn time series, as example. 

Similar spectra for other meteorological signals of Tg, Ta, RH, and Ws are provided in 

Appendix A. Strong wavelet powers at the band scale of 16 to 32 hours indicates that the 

larger-scale cyclic events are the dominant source of temporal variations in the studied 

time series. Consequently, small-scale cyclic events (e.g. less than 16 hours) may not 

play a considerable role in inducing the signals’ temporal variations. In this study, the 

small-scale cyclic events were of interest to be investigated though they are not the main 

source of temporal variations. This is because the small-scale (hourly) variations and 

modeling of AET were the focus of this study, and the WA was examined for 

identifying the most important input variables in the estimation of small-scale AET 

values. 

 
Figure 4.10. Continuous wavelet power spectrum of hourly time series for the scale 

range of 2 to 48 hours; (a) AET, (b) Rn. The thick black contours show the 95% 

confidence level against red noise. 

 



 92 

Figure 4.11 shows continuous wavelet spectrum of the daytime hourly AET 

signal. Several wavelet peaks were found to be significantly different from the 

background red noise at scales of 2 to 8 hours, which were regularly observed along the 

studied period (growing season of 2006). The significant powers appeared at the scales 

of 2-4 hours are more frequent than those appeared at 4-8 hours showing that most of the 

short-time intermittent variations in the AET time series are probably produced by the 2-

4 hours scale cyclic events. 

 
Figure 4.11. Continuous wavelet power spectrum (top) and time series of hourly AET 

(bottom). The thick black contours show the 95% confidence level against red noise. 

 

Wavelet power spectrum of Tg signal is shown in Fig. 4.12 and exhibits no 

specific significant cyclic behaviour at scales less than 8 hour. The only cyclic features, 

which were identified to be significantly different from red noise, were at the scales of 8 

to 16 hours. Detected features did not show high magnitude powers (mostly in green), 

which demonstrate the weak contribution of small-scale cyclic events in the temporal 

variations of Tg time series. This can also be observed in the zoomed time series of a 

typical 48-hour window of Tg signal (Figure 4.13). The time series of Tg does not exhibit 
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as much short-time cyclic variations, e.g., less than daily, compared to that of AET. This 

might be attributed to the physics of the Tg time series, which changes gradually over the 

short terms and is not immediately influenced by sudden fluctuations in the atmospheric 

condition. Similar comparison between AET and other meteorological time series for a 

typical time-window of 48 hours are provided in Appendix B. 

 
Figure 4.12. Continuous wavelet power spectrum (top) and time series of hourly Tg 

(bottom). The thick black contours show the 95% confidence level against red noise. 
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Figure 4.13. Time series of AET and Tg for a typical time-window of 48 hours. 

 

Figure 4.14 demonstrates limited detected cyclic features in the wavelet power 

spectrum of Ta, which are different from the background red noise at scales of 2 to 8 

hours. The significant wavelet peaks that were identified at scales 8 to 16 hours do not 

contain large magnitude powers. Consequently, Ta signal might not contain considerable 

small-scale cyclic variations. The wavelet power spectrum of RH (Fig. 4.15) shows 

significant peaks at scales of 2-8 hours at several time locations along the studied period. 

Wavelet powers of RH spectrum at very small scales (around 2 hours) are not 

significantly different from the background red noise. 
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Figure 4.14. Continuous wavelet power spectrum (top) and time series of hourly Ta 

(bottom). The thick black contours show the 95% confidence level against red noise. 

 

  
Figure 4.15. Continuous wavelet power spectrum (top) and time series of hourly RH 

(bottom). The thick black contours show the 95% confidence level against red noise. 
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Cyclic temporal variations of Rn were identified to be significantly different from 

the red noise at small-scale band of 2 to 8 hours (Fig. 4.16). These significant cyclic 

features appeared quite frequently along the studied time duration especially at scales of 

2-4 hours. Wavelet analysis of the Ws signal exhibited significant cyclic features at 

scales of 2 to almost 7 hours and 8 to 16 hours (Fig. 4.17). Small-scale cyclic features 

(2-4 hours) appeared more frequently than the larger-scale features (8-16 hours).  

 
 

Figure 4.16. Continuous wavelet power spectrum (top) and time series of hourly Rn 

(bottom). The thick black contours show the 95% confidence level against red noise. 
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Figure 4.17. Continuous wavelet power spectrum (top) and time series of hourly Ws 

(bottom). The thick black contours show the 95% confidence level against red noise. 

 

Out of the analyzed time series, the AET, Rn, RH, and Ws exhibited frequent 

small-scale cyclic features, which were found to be significantly different from the 

background red noise. No specific significant small-scale cyclic features were detected 

in the wavelet spectra of Tg and Ta, which could be attributed to two possible reasons. 

First, temporal variations of air and ground temperature signals do not involve 

considerable small-scale cyclic features and are mostly generated by larger-scale cyclic 

trends. Second, the likely existing small-scale cyclic variations are not large enough, in 

magnitude (because of slight changes of these variables in small time scales), to be 

differentiated from the background red noise and consequently, cannot be detected as 

significant cyclic features in the wavelet power spectrum.  

As it was discussed earlier in this section, although several small-scale cyclic 

features were found in the wavelet spectra of the time series, they might not substantially 

contribute to the temporal variations of the considered signals. The reason is that larger-
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scale features (scales of 16 to 32 hours) were observed to induce the major temporal 

variations in most of the studied time series (Appendix A).  

 

4.3.3 Cross wavelet analysis 

It can be seen from the cross wavelet spectrum of AET-Rn (Fig. 4.18) that both 

time series have common significant powers at scales of 2 to 8 hours along the studied 

period. This demonstrates the significant linear correlation between AET and Rn signals 

at small scales at 95% confidence level. To be more specific, the significant AET-Rn 

correlations appeared at particular time locations but not continuously along the time 

axis. This means that the linear covariation of these two time series becomes 

significantly different from red noise only at some periods of time, which is more likely 

due to the low magnitude of variations at small scales compared to that of larger scales 

(e.g. diurnal). In other words, there might be non-noise small-scale covariances between 

the time series; however, since they are not major source of variations in the time series 

and are low in magnitude, associated cross wavelet powers cannot be distinguished from 

background noise. Significant powers of AET-Rn cross wavelet spectrum imply that 

small-scale variation of AET can be explained by Rn time series. Phase information is 

provided in the cross wavelet spectra using arrows. Pointing right and left arrows show, 

in order, in-phase and anti-phase relationship between the two time series. Pointing 

straight down arrows indicate that one time series leads the other by 90
o
. Fig. 4.18 

indicates the in-phase relationship between AET and Rn at significant areas. By in-phase, 

it means that the two time series are positively correlated. The relationship between AET 

and Rn was observed to be not necessarily in-phase over all detected significant areas, 

since there are some cases when other involved factors affect the conventional cause and 

effect relationship between the two signals. Varying (not fixed) phase information was 

also observed in the cross wavelet spectra between AET and other considered 

meteorological signals, which might be attributed to the range of studied scales (small-

scales). Small-scale cyclic events are not the dominant source of variation in the studied 

time series and consequently, might not carry solid phase information. Larger-scale 

features, which have more contribution to the temporal variations, contain less varying 
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and more reliable phase information. Associated cross wavelet spectra, which contain 

the phase information of extended range of scales of up to 48 hours, between AET and 

each of the five meteorological time series are provided in the Appendix C. 

 
Figure 4.18. Cross wavelet transform of the AET-Rn time series. The thick black 

contours show the 95% confidence level against red noise. Pointing right and left arrows 

show in-phase and anti-phase relationship, respectively. 

 

Cross wavelet transform of AET and RH exhibited significant common features 

at the scale band of 2 to 8 hours (Fig. 4.19). Significant correlation between AET and 

RH indicates that the RH signal can describe some of the small-scale variations of AET. 

Although the magnitude of linear correlation between the two time series might not be 

identified quantitatively, it is seen that RH has a significant cause and effect relationship 

with the AET signal at small scales. Similar to the AET-Rn cross wavelet spectrum, 

phase relationship between AET and RH was not stable. However, some anti-phase 

relationship can be observed at specific time-scale locations. By anti-phase it means that 

the AET and RH are negatively correlated to each other. Unstable phase relationship, at 

low scales, also demonstrates the complexity that exists in the short-time variations of 

AET and its relationship with the involved meteorological factors, which cannot be 

easily explored by using the cross wavelet transformation. More consistence anti-phase 
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relationship was observed between AET and RH time series at larger-band scale of 16 to 

32 (Fig. C.3, Appendix C). 

 
Figure 4.19. Cross wavelet transform of the AET-RH time series. The thick black 

contours show the 95% confidence level against red noise. Pointing right and left arrows 

show in-phase and anti-phase relationship, respectively. 

 

Ws time series also exhibited significant covariances with AET signal at scales of 

2 to 8 hours (Fig. 4.20), which were more frequent at scales less than 4 hours. All of the 

significant small-scale features found in individual wavelet transform of the Ws time 

series were not detected as common features between AET and Ws at 95% confidence 

level. It indicates that only specific numbers of short-time cyclic variations of Ws are 

linearly correlated to the small-scale cyclic variations of AET. Overall, the results of 

cross wavelet analysis of AET and Ws demonstrate the existence of linear correlation at 

small scales. Phase information of AET-Ws spectrum illustrates both in-phase and anti-

phase relationship between the variations of the two analyzed signals. 
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Figure 4.20. Cross wavelet transform of the AET-Ws time series. The thick black 

contours show the 95% confidence level against red noise. Pointing right and left arrows 

show in-phase and anti-phase relationship, respectively. 

 

As it was expected from the individual wavelet spectra of AET and Tg, no 

specific significant common power was found at small scales in the cross wavelet 

transform of AET-Tg (Fig. 4.21). This might be attributed to two possible reasons; first, 

the presence of non-linear correlation between AET and Tg at small scales, which cannot 

be identified by the current cross wavelet analysis. Second, for a time series like Tg, 

which is not varying much over short time intervals (e.g. hourly), small-scale cyclic 

features do not have high powers at scales of 2-8 hours and result in low cross wavelet 

powers of AET-Tg spectrum that cannot be differentiated from background red noise. 



 102 

 
Figure 4.21. Cross wavelet transform of the AET-Tg time series. The thick black 

contours show the 95% confidence level against red noise. Pointing right and left arrows 

show in-phase and anti-phase relationship, respectively. 

 

Cross wavelet spectrum of AET-Ta shows limited detected features in the time-

scale domain in which the two signals were linearly correlated and the power was 

significantly different from red noise at 95% confidence level compared to those of 

AET-Rn, AET-RH, and AET-Ws (Fig. 4.22). Considering the rare significant peaks 

detected in the band scales of 2 to 8 hours of Ta univariate power spectrum (Fig. 4.14), 

the identified powers in the cross wavelet spectrum might not indicate significant 

covariations between the two signals. The significant common powers in the cross 

wavelet spectrum of AET-Ta were most probably caused by the strong powers of 

univariate AET spectrum only, which were more frequent than those of Ta over the 

studied time period. Consequently, no specific and reliable cause and effect relationship 

can be perceived between AET and Ta time series at small scales. However, strong linear 

correlation, which was significantly different from background red noise, was observed 

between AET and Ta at about diurnal scale (scale band of 16 to 32 hours) when the 

range of studied scales was extended up to 48 hours, Fig. 4.23. The same strong 

correlation was also observed between AET and Tg at band scale of 16 to 32 hours, 

which the associated spectrum is provided in Fig. C.2 in Appendix C. Similar cross 
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wavelet spectra between AET and other considered meteorological signals, for the scale 

rang of 2 to 48 hours, are available in Appendix C. 

 
Figure 4.22. Cross wavelet transform of the AET-Ta time series. The thick black 

contours show the 95% confidence level against red noise. Pointing right and left arrows 

show in-phase and anti-phase relationship, respectively. 

 

 
Figure 4.23. Cross wavelet transform of the AET-Ta time series for the scale range of 2 

to 48 hours. The thick black contours show the 95% confidence level against red noise. 

Pointing right and left arrows show in-phase and anti-phase relationship. 
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The results of the cross wavelet analysis determined, to some extent, the 

meteorological variables that have significant linear correlation with the AET signal at 

small scales at 95% confidence level. Based on the cross wavelet analysis, Rn, RH, and 

Ws time series exhibited significant correlation with the AET signal and therefore, they 

are the important variables in the prediction of small-scale AET variations. Based on the 

values provided on the scales (color bars) of the cross wavelet spectra, Rn exhibited 

stronger correlation with AET than RH, which is stronger than Ws, with maximum cross 

wavelet power magnitudes of 256, 16, and 8, respectively. Unfortunately, the results of 

the cross wavelet analysis cannot be interpreted in a precise quantitative way to identify 

the importance of one variable over others in the prediction of AET at specific scales (or 

band scales). In addition, significant powers detected in the univariant wavelet spectra 

must always be considered when significant cross wavelet powers are interpreted. This 

is to avoid false common powers, which might be created by the large magnitude powers 

of one univariate spectrum only. 

Based on the cross wavelet analysis, ground temperature has no important linear 

correlation with the AET time series at small scales. As a result, one might not select Tg 

as a predictor in the estimation of AET. However, the results of the data driven modeling 

demonstrated the importance of ground temperature in the prediction of AET. This 

inconsistency might be attributed to the previously mentioned ability of cross wavelet 

analysis in identifying only linear correlations between time series. As a result, any 

existing non-linear correlation between each pair of signals remains undiscovered using 

cross wavelet analysis. Another possible reason for insignificant common powers in 

AET-Tg cross wavelet spectrum is that the cross wavelet analysis can investigate the 

correlation between only two time series at a time (not multiple time series), which 

ignores the possible effect of other factors interacting with the considered signals. The 

importance of interaction effects, which exist among the variables involved in the AET 

process, was observed in the results of the data driven modeling. The above-mentioned 

limitations of cross wavelet analysis affect the accuracy of the correlation analysis of 

time series for determining the most important AET predictors. 
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The other issue, which most probably resulted in the inconsistency between the 

findings of wavelet analysis and data driven modeling is the time-scale at which the 

temporal variations of signals were investigated using wavelet analysis or modeled by 

data driven techniques. The results of the cross wavelet analysis at the larger-scales 

(scale range of 16 to 32 hours, Appendix C) were in agreement with the results of the 

data driven models, regarding the most effective variables in the prediction of AET. 

Cross wavelet analysis exhibited strong linear correlation between AET and Tg at about 

diurnal scale approximately over the whole studied period. As a result, it can be 

perceived that the proposed data driven models mainly characterized the larger-scale 

variations of AET (the dominant cyclic patterns) for which Rn and Tg were found to be 

the most effective predictors. The cross wavelet analysis, conducted in the present study, 

concerned more about the small-scale variations of AET. The results obtained using the 

WA at small scales might be useful in the development of AET models that aim to 

characterize the small-scale temporal variations.  

Wind speed is another example of which the time-scale of its variations is of 

high importance to be considered in the analysis and may result in some conflict. 

Wavelet analysis demonstrated that Ws is one of the important variables in the prediction 

of AET at the small-scale bands (e.g. 2-8 hours). However, Ws was rarely identified by 

the data driven models, GP and MLR, to be an important variable in the estimation of 

AET. Simple visual comparison between AET and Ws time series (Fig. B.2, Appendix 

B), and the univariate wavelet spectrum of Ws at larger scales (Fig. A.4, Appendix A) 

indicated that larger-scale cyclic features (e.g. diurnal) are not the dominant source of 

variations in the Ws time series. Consequently, it is less probable, for Ws, to be identified 

as important input variable by the data driven models, which capture mainly the larger-

scale cyclic patterns. The above-mentioned discussion highlights the importance of the 

time-scale of temporal variations, which might be of interest to be investigated, 

analyzed, and modeled. Depending on the specific time-scale of variations one is 

interested in, the employed modeling technique and/or, for instance, the range of studied 

scales in the wavelet analysis may vary. As a result, it is important to have better 

understanding of different types of temporal variation exist in the investigated time 

series prior to the signal analysis and/or modeling.  
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The correlation between AET and a combination of multiple predictor time series 

can be investigated by using cross wavelet transform between observed AET and GP 

models-predicted AET time series. The results of this specific analysis can highlight the 

importance of multiple combined predictors, rather than individual predictors, in 

explaining the small-scale cyclic variations of AET. The GP-evolved predictor signals 

are composed of different combinations of meteorological variables, which consider the 

effect of multiple predictors together (interaction effects). These GP-predicted AET 

signals also include the non-linear combinations of inputs by which the importance of 

non-linear correlations can also be investigated in the cross wavelet transform.  

The four GP models, which were used as combined predictor signals, are given 

as follow: 
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Cross wavelet transform of observed AET and combined predictors (GP models) 

is shown in Fig.4.24. Significant common features were found to be different from red 

noise at small-scale band of 2 to 8 hours for all four GP-evolved signals. Identified cross 

wavelet powers demonstrate the significant linear correlation between the observed AET 

and combined predictor time series (obtained from GP models). Significant cyclic 

features in the individual wavelet transform of AET (Fig. 4.11) appeared to be 

significant in the cross wavelet spectra of Fig. 4.24, which demonstrates the ability of all 

four combined predictor signals in the estimation of small-scale cyclic variations of 

AET. In other words, the GP technique, which was found to mainly characterize the 



 107 

large-scale (e.g. diurnal) variations of AET, can also capture some of the small-scale 

variations. This can also be observed in the time series comparison of the observed and 

GP-predicted AET signals (Fig. 4.25). The GP models are performing well in the 

estimation of variations that occur at time-scales of less than daily such as the event 

occurred between the data point of 668 to 688 in Fig. 4.25. 

 
Figure 4.24. Cross wavelet transform of the AET and GP-evolved time series by (a) Eq. 

(4.20), (b) Eq. (4.21), (c) Eq. (4.22), and (d) Eq. (4.23). The thick black contours show 

the 95% confidence level against red noise. Pointing right and left arrows show in-phase. 

 

Although, based on the conducted cross wavelet analysis, Rn, RH, and Ws are the 

most important variables in the prediction of AET, the GP-evolved signal of only Rn and 

Tg (Eq. 4.23) was able to fairly capture the small-scale cyclic variations of AET and 

exhibited significant correlation with the AET time series (Fig.4.24d). The same was 

true when the input combination of Rn, Tg and Ta was used as GP-evolved predictor time 

series (Eq. 4.22, Fig. 4.24c). This verifies the importance of the effect of variables’ 
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interaction and/or multiple variables combination (linearly or nonlinearly) in the AET 

mechanism rather than that of each variable individually. For instance, the Tg variable 

might exhibit some covariations with the AET signal at small scales when other 

variables, which are physically interacting with Tg, are also considered simultaneously 

with the Tg time series. Phase information demonstrates the in-phase relationship 

between AET and GP-evolved signals at most of the significant power areas. Based on 

the largest magnitude of the powers in the cross wavelet spectra (color bars of Fig. 4.24), 

AET time series generated by the GP models of Eq.(4.21) and (4.22) exhibited stronger 

covariances with the observed AET than Eq.(4.20) than Eq.(4.23).  

 
Figure 4.25. Visual comparison between the observed and the GP-evolved AET time 

series by (a) Eq. (4.20), (b) Eq. (4.21), (c) Eq. (4.22), and (d) Eq. (4.23) over a typical 

time-window of 72 hours: --, observed values; , predicted values. 

 

Identification of the most important predictor variables, a priori, to describe the 

temporal variations of AET might not be a straightforward task using the cross wavelet 

analysis. In order to identify the important input variables, prior to modeling, it is 
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important to consider, in advance, the capabilities/limitations of the wavelet analysis as 

well as the complexity of the mechanism under consideration.  

 

4.4 Discussion  

Among the proposed models in this study, the GP and MLR models are both 

equation-based. Such explicit equation-based models are more appealing to hydrological 

practitioners because of the transparency and the simplicity of their application. The 

variables that were observed to have the largest contribution to the AET prediction are 

almost the same for both equation-based modeling techniques; indicating that both GP 

and MLR techniques are able to adequately capture the most suitable meteorological 

variables. Based on the GP and MLR models, the meteorological variables, which were 

dominantly contributing to the prediction of AET variations (mainly large-scale, e.g. 

diurnal), include net radiation (Rn) and ground temperature (Tg). Rn is a known variable, 

which is the source of energy and is one of the essential elements in the 

evapotranspiration mechanism. The other important elements that shapes the physics of 

the evaporation are characterized by the surface soil moisture, surface soil temperature, 

and turbulent sensible heat flux (Wang et al., 2004).  

Strong land-atmosphere interaction results in dynamic feedbacks among the 

involved processes in which the land surface states contain important signal of the near 

surface atmospheric condition. Sensible heat flux represents the free and forced 

turbulent transport of heat to the atmosphere caused by surface thermal instabilities and 

turbulent eddies of wind, respectively. Sensible heat flux as an indication of turbulent 

transport in the evaporation mechanism (Obukhov, 1946, cited by Wang et al., 2004) is 

physically related to the state variables of soil moisture and soil temperature (Wang et 

al., 2004). Wang et al. (2004) also found that the near surface humidity condition can be 

captured by the surface variables, such as soil moisture and soil temperature. Soil 

moisture is not easily measurable for most case studies, especially when short temporal 

scale is required for consistency with the time resolution of other variables. For this 

study, the hourly data of soil moisture was not available, and temporal downscaling 



 110 

(disaggregation) of large time-scale soil moisture data to hourly data involves 

uncertainty. Although no information on soil moisture level was considered for the 

modeling purposes, it was observed that the net radiation and soil temperature variables 

(as the dominant inputs in the explicit proposed models) were able to properly 

compensate for the absence of soil moisture information and sufficiently estimate the 

variation of AET. This can be attributed to the influence of the upper soil layer moisture 

on the net radiation, Bowen ratio, and subsequently ground temperature.  

Physical description of the AET mechanism, which can be found in many texts 

and literature (e.g. Dingman 2002; Wang et al., 2004), properly explains the importance 

of soil moisture element and its complex interaction with other land-atmosphere 

variables in the AET process. It was of interest to investigate the level of cause and 

effect relationship between the variations of AET and soil moisture condition in 

comparison with that of AET and meteorological variables, such as Rn and Tg, at small 

time-scales. In order to conduct this comparison, the time series of AET, soil water 

content, Rn, and Tg were visually compared over a typical time-window. Since only the 

six-hourly information of soil moisture was available, the comparison was conducted 

using the six-hour time resolution of data. Figure 2.26 shows the temporal variations of 

six-hour Rn, Tg, soil water content, and AET data series for a typical time-window of 13 

days, which includes the data of daytime only. As it is expected from the physics of soil 

moisture time series, the soil water content varies slightly in time compared to Rn, Tg, 

and AET variables (Fig.4.26). It can be seen that over the time period of 13 days the soil 

water content is decreasing gradually, which results in a reduction in the AET value at 

the end of the time period compared to that at the beginning. Consequently, it is difficult 

to say if the soil moisture would influence the estimation of AET over shorter-time 

periods, e.g. daily or less.   

Temporal intermittent variations observed in the data series of AET, Rn, and Tg 

(Fig. 4.26) mainly reflect the diurnal scale variations, since only daytime six-hour data 

(11:16 AM and 5:16 PM) were considered. Both examined meteorological variables, Rn 

and Tg, exhibit strong correlation with AET at this scale, which confirms the results of 

the data driven models and the wavelet analysis (at larger-scales) regarding the most 
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effective input variables. Figure 4.26 shows that the variations of AET is sometimes 

highly influenced by the variations of Rn, e.g. between June 27
th

 to July 3
th

, and 

sometimes not, e.g. between June 22
th

 to June 24
th

. This indicates that a single signal of 

Rn, for instance, might not be able to capture most of the variations in AET, and both Rn 

and Tg signals are required for estimation of most temporal variations in the AET signal. 

This means that Rn and Tg time series do not carry exactly the same information although 

diurnal variation is the major cyclic pattern in both signals. 

Comparison of temporal variations of time series raises the question of ―does the 

soil moisture considerably affect the small-scale, e.g. six-hour/hourly, variations of 

AET?‖ A model-based test could be implemented to investigate this question and to 

examine the sensitivity of the AET prediction models to the soil moisture information. 

The test was conducted for the modeling of six-hour AET, and several GP-based models 

were developed in two approaches; using and not-using the water content as a predictor. 

The meteorological variables; Rn, Tg, Ta, RH, and Ws, were the fixed predictors in the 

modeling process. The water content information used as input variable was associated 

with the top five centimetres of the soil. 

 

Figure 4.26. Visual comparison of six-hour (day-time) variations of water content (WC), 

Rn, Tg, and AET versus time. 
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It was observed that the soil moisture data might not necessarily improve the 

prediction accuracy of the AET estimation models. Table 4.16 provides a comparison 

between the possible ranges of performance statistics of the two types of developed AET 

models. The detailed results of this test are presented in Appendix D. The time 

resolution of the data in this test was larger than the already analyzed hourly data. It can 

therefore be perceived that for smaller time resolutions, such as hourly, soil moisture 

might not be a highly required input variable. It should also be mentioned that the test 

was conducted using the data of only 2006, which cannot be representative of all 

possible climatic conditions that may happen on the site. As a result, it is recommended 

to extend the test for different possible climatic conditions (dry and wet) to obtain more 

reliable results. 

Table 4.16. Performance statistics of two types of AET models using testing subset of 

six-hour data. 

Model 
RMSE (MJ/6-hour)  MARE  R 
Mean Max. Min.  Mean Max. Min.  Mean Max. Min. 

Including WC* 

in input set  
0.07 0.08 0.07  0.16 0.18 0.15  0.93 0.94 0.92 

Not including 

WC in input set 
0.08 0.09 0.08  0.16 0.17 0.15  0.92 0.93 0.91 

*Water content            

 

Another issue of interest is the vegetation factor (representation of transpiration) 

in the AET mechanism, which was not directly considered in the current modeling 

study. The vegetation factor of leaf area index (LAI) is not readily available variable, 

especially when short time-scale variations; e.g. hourly, are of interest. In order to 

investigate the influence of LAI on the prediction of short-time AET variations, the 

disaggregated hourly time series of LAI, which was already created as an input for the 

HYDRUS-1D model, were compared with the AET time series. Figure 4.27 illustrates a 

comparison between the hourly time series of AET and LAI over a typical time-window 

of six days. It is apparent that transpiration surface area (leaf-area) is not changing 

significantly over short-time intervals; therefore, its contribution to hourly AET might 

be something similar to that of soil moisture factor or even less. The temporal variation 

of LAI might become important and effective, in the estimation of AET, at the larger 
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scales; e.g. weekly or monthly. Visual comparison between the time series of LAI and 

AET over the whole studied period, growing season of 2006, is provided in Appendix E. 

 

Figure 4.27. Visual comparison between hourly variations of leaf area index (LAI) and 

AET versus time. 

 

Since the information of LAI cannot be directly considered in small-scale AET 

prediction models without uncertainty (associated with disaggregated LAI data), other 

readily available variables can be employed as surrogate factors to carry the information 

of vegetation in the AET models. Strong land-atmosphere interaction can be investigated 

to find the links between transpiration and easy-to-measure variables involved in the 

AET mechanism. The rate of transpiration from a canopy is controlled by different 

factors, such as light, vapor-pressure deficit, leaf temperature, and leaf water content 

(Stewart, 1989), which together control the vegetation conductance (leaf resistance), and 

the density of the leaf (foliar) areas (LAI), which in turn controls the extent of 

transpiration surface. The former factors can be represented by solar radiation, relative 

humidity, air temperature, and soil moisture, respectively. The latter factor, leaf area 

density, changes through the growing season and has interaction with ambient 
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hydrometeorological functions, such as the effect of transpiration area on the 

meteorological variables; e.g. relative humidity and ground temperature. Leaf area 

increases through the growing season and shelters the underlying ground area from the 

sun, which affects the variable of ground temperature. The study conducted by Sanchez-

Carrillo et al. (2001) demonstrated that more than 75% of the hourly variance of 

transpiration (in their case study) can be explained by solar radiation and the residues 

can be explained by relative humidity and air temperature.  

The not fully understood process of actual evapotranspiration makes it very 

difficult to mechanistically capture the interactions existed among the state variables to 

present a mathematical relationship between AET and highly correlated meteorological 

variables. Explicit data driven models (e.g. GP and MLR) exhibited their capability in 

efficiently capturing the variations of AET, and inducing symbolic estimation models, 

which are mostly dominated by net radiation and ground temperature. The equation-

based GP technique, which was presented in this study, is not the only capacity of the 

GP as an evolutionary data driven technique. GP can also be implemented to evolve 

program-based models, which can be presented in a code format, but not as explicit 

mathematical expressions (Elshorbagy and El-Baroudy, 2009). The program-based type 

of GP has the advantage of using conditional, comparison, and logical operators in 

addition to the arithmetic operators, which may enhance the predictive capability of the 

model to capture more aspects of the investigated process. This means that the utility of 

GP technique can also be examined using a different implementation tool (e.g., 

Discipulus
TM

) to investigate any further improvement in the prediction accuracy. 

The cross wavelet analysis may not be essentially strong in determining the 

optimum input variables for modeling the small-scale AET variations a priori. However, 

it has the potential to provide deep insight for studying the larger scale variations of 

AET, e.g. diurnal. Among the examined techniques, GP exhibited to be more efficient 

than others in identifying the most relevant meteorological predictors. It should also be 

considered that there is no single data driven technique that could capture all complex 

processes at all times (Elshorbagy and El-Baroudy, 2009). Consequently, different 
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techniques might be capable of efficiently predicting different challenging components 

of the hydrological processes.  
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CHAPTER 5. SUMMARY AND CONCLUSION 
 

This chapter summarizes the work described in this thesis, which includes the 

data driven models for the prediction of actual evapotranspiration (AET), and wavelet 

analysis for investigating the intermittent variations in the AET and meteorological time 

series. Conclusions of the results and analysis, the contribution of the conducted 

research, possible future research, and limitations of the study are also provided in this 

chapter. 

 

5.1 Summary of the study  

The research presented in this thesis focused on the modeling and analysis of 

hourly actual evapotranspiration (AET) in a reconstructed landscape, located in northern 

Alberta, Canada. The study was conducted in two main parts; data driven modeling of 

AET and multiresolution analysis of AET and meteorological time series. Hourly eddy 

covariance (EC)-measured AET data were investigated as the target function, whereas 

the meteorological variables of net radiation, ground temperature, air temperature, 

relative humidity, and wind speed were examined as possible predictors. 

In the first part of the study, AET prediction models were developed using three 

different data driven techniques; artificial neural networks (ANNs), genetic 

programming (GP), and multilinear regression (MLR). The performances of the 

developed AET models were evaluated and a comparative analysis was conducted, with 

regard to the predictive and generalization abilities of the models, to identify the 

possible superiority of one modeling approach over the others. In addition, the result of 

the data driven models were compared with those of HYDRUS-1D; a physically-based 

model, as a possible alternative to the proposed data driven models for the estimation of 

AET.  

In the second part of the study, the capability of the wavelet analysis was 

examined for possible identification of the most important variables in the modeling of 

AET, a priori. This was implemented by performing the continuous wavelet 
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transformation for multiresolution analysis of the temporal variations of the various 

signals, and for exploring the dominant frequency events. Then, cross wavelet analysis 

was performed between the AET time series and each of the meteorological signals, in 

order to find any significant covariances, which show the strong cause and effect 

relationship between them.  

 

5.1.1 Data driven modeling 

The ANN model with eight hidden neurons trained by Bayesian-regularization 

algorithm was found to be the best ANN model, with reasonable generalization ability. 

The optimum models generated by GP were linear and non-linear equations predicting 

AET as a function of net radiation, ground temperature, air temperature, and relative 

humidity. Although some of the GP-evolved models were nonlinear and contained 

interactions and/or second orders of variables, the models were all linear in parameters. 

Thus, it can be said that GP was able to model the complex process of AET as semi-

linear functions of meteorological variables, which also had good predictive abilities. 

Almost half of the optimum GP models estimated AET only as a function of net 

radiation and ground temperature. The statistical analysis also revealed that net radiation 

and ground temperature were the most dominant climatic variables for predicting actual 

evapotranspiration. Furthermore, interaction effects of some meteorological variables 

were shown to be important in the modeling of AET. The contribution of the interaction 

effects in the estimation models was sometimes even more than those of the individual 

variables.  

A comparative analysis of the models’ predictive abilities indicated that the GP 

and MLR models have better generalization ability than the ANN models for estimating 

the hourly actual evapotranspiration as a function of meteorological variables in the case 

study presented in this thesis. In comparison with the data driven models, the HYDRUS-

1D model performed on par to other models in one year of data (2005) but poorer in 

another year (2006) for the estimation of AET. This indicated that a physically-based 

model, such as HYDRUS-1D, might be inferior to the data driven models in terms of the 
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overall prediction accuracy. Compared to the ANNs, the important advantage of the GP 

and MLR models is the representation of the explicit equations, which can be easily 

interpreted. In addition, GP and MLR models are simpler in the application and usage 

than the ANN model. The GP-evolved models required fewer input variables than the 

MLR. The interesting point is that the performances of the GP and regression models are 

close to each other, although the numbers and combinations of the employed inputs are 

quite different for each model. 

 

5.1.2 Wavelet analysis 

In this study, wavelet analysis was mainly focused on the small-scale temporal 

variations of time series, since variations of AET at small time-scale (hourly) was of 

interest to be investigated and modeled. Wavelet analysis was also extended to larger-

scales to have a brief overview of other possible cyclic variations exist in the time series. 

Continuous wavelet transformation was performed for the hourly time series of the AET 

and the five meteorological variables of Rn, Tg, Ta, RH, and Ws. The continuous wavelet 

spectra of AET, Rn, RH, and Ws exhibited significant powers at small scales (e.g. 2-8 

hours); however, no specific cyclic features were detected in those of Tg and Ta. 

Extension of the range of scales to larger values demonstrated the presence of strong 

cyclic features at around diurnal scale in most of the studied time series, including Tg 

and Ta. It was observed that the contribution of larger-scale cyclic features to the total 

time series variations is considerably higher than those of small scales. In other words, 

larger-scale (e.g. diurnal) cyclic patterns can be perceived as the major source of 

temporal variations in the AET and most of the meteorological time series.  

Cross wavelet analysis between AET and each of the meteorological time series 

over the range of small scales demonstrated significant linear covariations between AET 

and Rn, RH, and Ws time series. This implies that these meteorological variables are 

important in explaining the small-scale variations of AET. As it was expected from the 

univariate spectrum of Tg and Ta, cross wavelet spectra of AET-Tg and AET-Ta, did not 

exhibit any specific covariations at small scales. However, when the cross wavelet 
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analysis was extended to larger range of scales, stronger covariances were observed 

between AET and Rn, RH, Tg, and Ta time series, which were significant at the band 

scale of 16 to 32 hours (more likely due to diurnal variations). This indicates that the 

variables of Tg and Ta are important predictors for the estimation of larger-scale 

variations of AET. Consequently, prior-to-modeling identification of the most important 

input variables for the estimation of AET depends on the time-scale of variations, which 

is of interest to be modeled. It can subsequently be perceived that the GP and MLR 

models, which presented the Tg variable as one of the important inputs, may mainly 

capture the larger-scale variations of AET. The wavelet analysis, conducted in this 

study, revealed the importance of time-scale issue in the analysis and modeling of 

temporal variations exist it the AET and meteorological time series.  

 

5.2 Conclusion 

In conclusion, the investigated data driven modeling techniques were promising 

for the estimation of the hourly AET mechanism using the observed data, without 

assuming or applying significant knowledge of the physics of the process. The choice of 

the testing dataset was found to be important for realistically assessing the generalization 

ability of the proposed data driven models and also for the determination of the possible 

superiority of any of the modeling techniques over others. Among the examined data 

driven modeling techniques, genetic programming (GP) and MLR were found to 

perform similarly and better than the ANN model with regard to generalization ability. 

The GP-evolved models also had the advantage of being structurally simple and 

requiring fewer input variables, which is of interest for many hydrological practitioners.  

Furthermore, the proposed equation-based models, using GP and MLR, showed 

that the AET process has the potential to be estimated by structurally simple (e.g. semi-

linear) models. Equation-based AET models made it possible to extract some 

information about the physics of the process. It was observed that the meteorological 

variables of Rn and Tg have larger contribution, than other variables, to the estimation of 
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AET. In addition, the interaction effects of the meteorological variables were found to be 

important and effective in the estimation of AET.  

The results of wavelet analysis improved the understanding of the AET 

mechanism by revealing the importance and contributions of different time-scale cyclic 

variations exist in the AET time series. This highlights the issue of time-scale and the 

importance of its consideration in the modeling and prior-to-modeling input selection 

procedure. Although several small-scale cyclic features were detected in the AET signal, 

larger-scale variations were found to be the major frequency events at which the 

predictant-predictor (AET-meteorological variables) correlation analysis was more clear 

and reliable. GP and MLR models were noted to mainly model the larger-scale 

(dominant) temporal variations of AET, although short time-scale (hourly) data were 

employed for training and developing the models. 

Consistency between the results of data driven modeling (especially GP) and 

wavelet analysis, regarding the most important predictor variables, at large time-scales 

(e.g. diurnal) indicated that wavelet analysis can be employed as a guide for identifying 

the most linearly correlated predictors for the modeling of AET. However, limitations of 

such signal analysis tool should be considered when it is used for input determination 

prior to modeling. Wavelet analysis helped to perceive the difference between the 

predictive abilities of various models from a new perspective, which is the time-scale of 

variations that the models characterize. For instance, when the performances of two 

prediction models are compared, it should be noted if both models are capturing the 

same time-scale of variations. Consideration of this point can make the models’ 

comparative analysis more accurate and fair.  

 

5.3 Contribution of the research 

In this study, actual evapotranspiration as one of the major components of the 

hydrological cycle was modeled using data driven modeling techniques in a 

reconstructed watershed. Determination of the most suitable and efficient prediction 

model is important for accurate assessment of AET in a reconstructed watershed in 
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which understanding of the various hydrological processes is essential for improvement 

and development of sustainable reclamation strategies. 

The proposed AET data driven models can be used for practical estimation of the 

AET in the studied reconstructed site using the conventional meteorological variables. 

Using the developed equation-based GP models, the hourly values of AET can be 

estimated using a few and readily available numbers of meteorological variables, which 

are usually measured, or can be measured, in most weather stations. Although the 

proposed models were basically developed for the estimation of hourly AET, the AET 

values associated with larger time scales can also be obtained by aggregating the hourly 

AET values. The AET models represented in this study were local models, which might 

be applicable for AET estimations in similar case studies. However, it should be first 

verified if the climatic conditions and the general characteristics of the considered sites 

are similar to that of the site used for model development. Further studies can be 

conducted on assessing the performance of the locally proposed models on other 

reconstructed sites. In the case of availability of measured AET and meteorological 

variables, data driven techniques can be easily used for developing local AET models. 

This kind of modeling could be more efficient and easier than the physically-based and 

empirical modeling approaches, which require large number of measured inputs and 

estimation of models parameters. 

Although data driven models do not require any knowledge about the underlying 

process, better understanding of the investigated function and identification of the most 

important predictor variables, prior to the modeling, can improve the efficiency and the 

predictive ability of the model. The results of this study demonstrated that wavelet 

analysis can be used as a tool for this purpose. This study also revealed the importance 

of the time-scale of variations, under consideration, in the analysis and modeling of 

hydrological time series. This finding could improve the current understanding of the 

AET variations as well as its correlation with the predictor variables, which can be very 

helpful in the interpretation of prediction models. Temporal variations of a hydrological 

time series might occur at different time-scales, and different prediction models might be 

suitable for capturing each of them. In addition, the cause and effect relationship 
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between hydrological predictant and predictors may vary when the investigated time-

scale of variation is changed. This kind of information can be employed for the analysis 

and modeling of any hydrological time series, which enhances the success of the 

modeling procedures and consequently, improves the understanding and monitoring of 

the reconstructed watershed hydrology.  

 

5.4 Future work 

Some of the possible extensions to the current research study, associated with the 

inductive modeling of hydrological processes in the reconstructed watersheds, are as 

follows: 

 Extending the GP modeling of AET and wavelet analysis of time series at 

different time-scales (e.g. daily or larger) would help to have better 

understanding of the GP models’ prediction abilities at different time-scales and 

the applicability of wavelet analysis for prior-to-modeling determination of AET 

model inputs; 

 Performing cross wavelet analysis between each pair of the meteorological 

variables can help to identify the input variables, which have inter-dependency 

and carry the same information to the model, and clean the final set of important 

input variables from redundant variables.  This may help in redundancy handling 

and determining the most efficient and parsimonious set of model’s important 

input;  

 Studying the influence of soil moisture on the AET prediction models can be 

extended to include dry and wet years. Also, the soil moisture content data of the 

root zone of the soil layer should be included. This helps to investigate the effect 

of soil moisture on AET in dry conditions when required water mostly provided 

from lower layers of the soil; and 
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 Continuous and cross wavelet analysis can be employed for comparing the 

performances of different models in terms of their abilities in capturing different 

time-scales variations.  

 

5.5 Study limitations  

Some of the limitations and assumptions involved with this study are as follows: 

 For the modeling and analysis of AET mechanism, only two years of data were 

available and used in this study, which might not be sufficient for accurate 

modeling and model assessment. Two years of data may not include all extreme 

conditions; 

 The functional set selected for performing the GP algorithm was limited to 

simple arithmetic functions. Several different functional operators can be used 

for developing the equation-based GP models.  

 For investigating soil moisture effect on the prediction of six-hour AET, the 

water content information of only top five centimetres of the soil was considered;  

 In the HYDRUS model, crop coefficient was assumed to be one, which means 

that the vegetation was assumed to have similar aerodynamic and surface 

characteristics as reference surface in the PM equation. This assumption was 

made because the mentioned information was not available for the vegetation 

cover in the studied site; and  

 For the statistical analysis, time series data were assumed to have normal 

distribution.
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Appendix A 

Continuous wavelet transformation of meteorological variables of Tg, Ta, RH, 

and Ws for the scale range of 2 to 48 hours are presented here. In the following figures, 

the thick black contour lines enclose the areas in which the wavelet power is significant 

at the confidence level of 95%.  

 
Figure A. 1. Continuous wavelet power spectrum of hourly Tg time series for the scale 

range of 2 to 48 hours. The thick black contours show the 95% confidence level against 

red noise. 

 

 
Figure A. 2. Continuous wavelet power spectrum of hourly Ta time series for the scale 

range of 2 to 48 hours. The thick black contours show the 95% confidence level against 

red noise. 
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Figure A. 3. Continuous wavelet power spectrum of hourly RH time series for the scale 

range of 2 to 48 hours. The thick black contours show the 95% confidence level against 

red noise. 

 

 
Figure A. 4. Continuous wavelet power spectrum of hourly Ws time series for the scale 

range of 2 to 48 hours. The thick black contours show the 95% confidence level against 

red noise. 
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Appendix B  

A visual comparison between AET and meteorological time series of RH, Ws, Ta, 

and Rn for a typical time-window of 48 hours are presented here in the following figures.  

 
Figure B. 1. Time series of AET and RH for a typical time-window of 48 hours. 

 

 
Figure B. 2. Time series of AET and Ws for a typical time-window of 48 hours. 
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Figure B. 3. Time series of AET and Ta for a typical time-window of 48 hours. 

 

 
Figure B. 4. Time series of AET and Rn for a typical time-window of 48 hours. 
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Appendix C 

Cross wavelet spectra of AET and the meteorological signals of Rn,Tg, RH, and 

Ws, for an extended range of scales of 2 to 48 hours are presented here in the following 

figures. 

 
Figure C. 1. Cross wavelet spectrum between AET and Rn time series for the scale range 

of 2 to 48 hours. 

 

 
Figure C. 1. Cross wavelet spectrum between AET and Tg time series for the scale range 

of 2 to 48 hours. 
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Figure C. 3. Cross wavelet spectrum between AET and RH time series for the scale 

range of 2 to 48 hours. 

 

 
Figure C. 2. Cross wavelet spectrum between AET and Ws time series for the scale range 

of 2 to 48 hours. 
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Appendix D 

The results of a model-based test in which the importance of soil moisture in the 

prediction of six-hour AET was assessed, are presented here. In this test, the six-hour 

eddy covariance (EC)-measured latent heat was modeled using GP technique in two 

approaches; using and not-using the water content information as input. In the first 

approach, the predictor set, namely 5-input set, include the meteorological variables of 

net radiation (Rn), ground temperature (Tg), air temperature (Ta), relative humidity (RH), 

and wind speed (Ws). In the second approach, in addition to the above mentioned 

meteorological variables, the soil water content at the current prediction time and at the 

previous six and 12 hours were also included in the input set (8-input set). The water 

content data were associated with the top five centimetres of the soil. The dataset that 

was used for this test includes the six-hour day-time data of the year 2006. Disregarding 

the missing data, the total number of instances for this test was 193, which was 

randomly divided into two data subsets of training and testing. The training and testing 

subsets constitute of 129 instances (67%) and 64 instances (33%) of the data, and were 

employed for developing and testing the GP models, respectively. Several equation-

based GP models were generated at about 50 different levels of GP parameters, and the 

best six models, corresponding with both investigated approaches, were selected based 

on the testing sub dataset and are given as follows: 

i. Not considering the water content factor in the input set (5-input set): 
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ii. Considering water content factor in the input set (8-input set): 
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where sagn WRHTTRWCWCWCAET  and , , , , , , ,, 21 are, in order, the rate of actual 

evapotranspiration [MJ], water content at current time, at six hours lag, and at 12 hours 

lag, net radiation [MJ], ground temperature [
o
C], air temperature [

o
C], relative humidity, 

and wind speed [m/s].  

A comparison between the performance statistics of the GP models, obtained 

from the two different approaches, is presented in Table D.1. No considerable 

improvement can be perceived from the 8-input AET models in terms of error measures 

and correlation coefficient compared to the 5-input models. General statistical 

characteristics of the models errors (Table D.2) also demonstrate the similarity between 

the performances of 8-input and 5-input models. This indicates that inclusion of water 

content information, as predictor variable, may not be effective in improving the 

prediction ability of the six-hour AET models.  

Table D. 1. Performance statistics of two types of AET models using testing subset of 

six-hour data. 

Model 
 RMSE  MARE  R 

 Mean Max. Min.  Mean Max. Min.  Mean Max. Min. 

8- input set  0.07 0.08 0.07  0.16 0.18 0.15  0.93 0.94 0.92 

5-input set  0.08 0.09 0.08  0.16 0.17 0.15  0.92 0.93 0.91 

 

Table D. 2. General statistical characteristics of errors obtained from the best six models 

of each type of GP models. 

Model Mean  Variance Minimum Maximum 

8-input set 0.01 0.005 -0.22 0.23 

5-input set 0.02 0.006 -0.24 0.27 

 

Scatter plots of predicted AET values by 8- and 5-input set GP models versus 

observed data (Fig. D 1), and visual comparison among modeled and observed data 

series (Fig. D. 2) also confirms the similarity between the predictive abilities of the AET 

models. Furthermore, the errors produced by the 8-input and 5-input GP models follow 

similar probability distribution (Fig. D. 3). 
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Figure D. 1. Scatter plots of predicted values resulted from (a) 8-input model (Eq. D.7) 

and (b) 5-input model (Eq. D. 1) versus measured data using testing subset. 

 

 
Figure D. 1. Visual comparison among the observed and the GP predicted AET values of 

testing subset using 8-input model (Eq. D. 7), red line, and 5-input model (Eq. D. 1), 

yellow line. 
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Figure D. 3. Probability distribution of the GP-evolved AET models errors. 
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Appendix E 

The LAI and AET data in the below figure are normalized values by subtracting 

the data from the associated mean value and dividing by the standard deviation. 

 
Figure E.1. Visual comparison between hourly variations of leaf area index (LAI) and 

AET versus time over the entire studied period. 
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