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ABSTRACT 

 

An understanding of groundwater flow is essential in many aspects of mining.   This is 

especially true for the sandstones of the Manitou Falls Formation, which overlie 

uranium deposits in the Athabasca Basin of northern Saskatchewan.  Experience has 

shown that the hydraulic conductivities of these sandstones can be relatively high, 

especially in zones containing natural fractures, thus leading to potentially problematic 

groundwater inflow rates.  This thesis presents the results of a study of hydraulic 

conductivity of the Manitou Falls Formation, in which detailed core logging and 

laboratory testing were undertaken for samples from two boreholes at the McArthur 

River mine site. Results from the logging and laboratory testing were interpreted in 

context provided by multiple packer tests conducted in these boreholes.  Through core 

logging, indicators of conductive zones were identified.  These indicators include 

fracture orientation (sub-vertical fractures were found to have more of an impact on 

conductivity than horizontal fractures), infilling, and staining. The laboratory testing 

program involved the measurement of hydraulic conductivities of fractured core samples 

across a span of effective confining pressures representative of in-situ conditions.  

Changes in fracture aperture were simultaneously recorded at each confining pressure 

level. It was found that theoretical relationships between aperture change and fracture 

conductivity represent the observed behavior of the samples reasonably well when 

fracture roughness is accounted for.   The laboratory testing also confirmed the effects 

of fracture staining and infilling on hydraulic conductivity inferred from core logging 

and packer testing results.  

 

The results provide insights into the mechanisms underlying flow in fractured intervals 

of the Manitou Falls Formation, and provide guidance for selecting intervals to 

investigate during future packer testing in this formation. 

  

 

 



   
 

iii 
 

ACKNOWLEDGMENTS 

 

First and foremost I’d like to thank Chris Hawkes for his hard work and patience with 

this thesis; and Doug Milne, and Rashid Bashir for their guidance in establishing my 

project. 

I would like to thank my father, Gordon Thomson.  He’ll forever be in our hearts.  

Without him I wouldn’t have found my way into this field and so many other things.  

My sister Carol, for the support, proofreading and formatting help.  My mom, Marge 

Thomson, who has always been there for me, I wouldn’t be the person I am today 

without her. 

Finally I’d like to thank my wife Brenna, for all of the encouragement to get me through 

the slow progressing times.  



   
 

iv 
 

TABLE OF CONTENTS 

 

PERMISSION TO USE ............................................................................... i 

ABSTRACT ................................................................................................. ii 

ACKNOWLEDGMENTS ......................................................................... iii 

TABLE OF CONTENTS ........................................................................... iv 

LIST OF FIGURES ................................................................................... vi 

LIST OF TABLES ..................................................................................... ix 

LIST OF SYMBOLS ................................................................................... x 

CHAPTER 1 INTRODUCTION ................................................................ 1 

1.1 BACKGROUND ................................................................................................................................ 1 

1.2 OBJECTIVES ..................................................................................................................................... 2 

1.3 SCOPE ................................................................................................................................................ 3 

1.4 STRUCTURE ..................................................................................................................................... 3 

CHAPTER 2 LITERATURE REVIEW .................................................... 5 

2.1 GEOLOGICAL SETTING OF THE STUDY AREA ......................................................................... 5 

2.2 SHAFT SINKING HISTORY IN THE STUDY AREA ...................................................................... 7 

2.3 DISCONTINUITIES IN A ROCK MASS ........................................................................................ 10 

2.3.1 Fracture Characterization and Orientation Bias Effects .......................................................... 12 

2.3.2 Fracture Roughness ................................................................................................................... 12 

2.3.3 Fracture Aperture ...................................................................................................................... 16 

2.3.4 Contact Area .............................................................................................................................. 19 

2.3.5 Joint Stiffness ............................................................................................................................. 20 

2.4 FLUID FLOW IN ROCK MASSES .................................................................................................. 21 

2.4.1 Continuum Method .................................................................................................................... 23 

2.4.2 Discrete Fracture Flow Method ................................................................................................ 24 

2.4.3 Non Ideal Fracture Flow Behavior ........................................................................................... 26 

2.4.4 Analysis of Non-Ideal Fracture Flow ........................................................................................ 28 

CHAPTER 3 FIELD INVESTIGATIONS ..............................................31 

3.1 BACKGROUND .............................................................................................................................. 31 

3.2 FOCUSED STUDY OF BOREHOLE MC-316 ................................................................................ 36 

3.2.1 Packer Testing Results............................................................................................................... 36 

3.2.2 Fracture Orientation for MC-316 ............................................................................................. 38 

3.2.3 Fracture Characterization ......................................................................................................... 40 

3.2.4 Analysis of Fracturing – Hydraulic Conductivity Relationships ............................................... 44 

3.3 ANALYSIS OF BOREHOLE SP-001 .............................................................................................. 57 



   
 

v 
 

3.4 SUMMARY ...................................................................................................................................... 67 

CHAPTER 4 LABORATORY TESTING ..............................................68 

4.1 INTRODUCTION ............................................................................................................................ 68 

4.2 MATRIX TESTING ......................................................................................................................... 68 

4.3 FRACTURE TESTING .................................................................................................................... 70 

4.3.1 Sample Selection ........................................................................................................................ 70 

4.4 TESTING PROCEDURES ............................................................................................................... 75 

4.5 FRACTURE TESTING RESULTS .................................................................................................. 79 

4.6 MEASUREMENT OF FRACTURE CLOSURE .............................................................................. 84 

4.7 MEASUREMENT OF INITIAL MECHANICAL FRACTURE APERTURE ................................. 88 

4.8 ASSESSING THEORETICAL APERTURES .................................................................................. 90 

4.9 LAMINAR FLOW INVESTIGATION ............................................................................................ 96 

4.10 SENSITIVITY OF FRACTURE ROUGHNESS ............................................................................ 96 

4.11 SUMMARY .................................................................................................................................... 97 

CHAPTER 5 INTEGRATION OF LABORATORY AND FIELD 

DATA...........................................................................................................99 

5.1 HYDRAULOC CONDUCTIVITY AS A FUNCTION OF SCALE OF INVESTIGATION ............ 99 

5.2 ROCK MASS HYDRAULIC CONDUCTIVITY, KEQ-FIELD ............................................................... 99 

5.3 COMPARING SCALES OF INVESTIGATION ............................................................................ 102 

5.4 STRESS AND HYDRAULIC CONDUCTIVITY .......................................................................... 105 

5.6 SUMMARY .................................................................................................................................... 109 

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS .........110 

6.1 CONCULSIONS ............................................................................................................................. 110 

6.2 RECOMMENDATIONS ................................................................................................................ 112 

REFERENCES .........................................................................................113 

APPENDIX – REPORTS FROM GR PETROLOGY .........................117 

 

 

  



   
 

vi 
 

LIST OF FIGURES 

 

FIGURE 1.1 – MAP OF THE ATHABASCA BASIN, AFTER ALDRIN RESOURCES, 2014) ...................................... 2 

FIGURE 2.2 – FLOW FROM A GROUT COVER HOLE SHAFT #2 AT MCARTHUR RIVER (BEATTIE, 2007) ............ 8 
FIGURE 2.3 MEASUREMENT OF ROUGHNESS ON THE SCALE OF SEVERAL MILLIMETERS (AFTER LOUIS, 

1969) ........................................................................................................................................ 13 

FIGURE 2.4 MEASUREMENT OF MICRO ROUGHNESS K ON THE SCALE OF TENS OF MIRONS (AFTER LOUIS, 

1969) ........................................................................................................................................ 13 

FIGURE 2.5 JRC ROUGHNESS PROFILES (AFTER BARTON AND CHOUBEY, 1977) .......................................... 15 

FIGURE 2.6 MEASURING JRC USING THE AMPLITUDE AND A STRAIGHT EDGE, BARTON, 1982 ..................... 15 

FIGURE 2.7 RELATIONSHIP OF HYDRAULIC AND MECHANICAL APERTURE, (AFTER VOEGELE, 1981) ........... 18 

FIGURE 2.8 HYDRAULIC AND MECHANICAL APERTURE IN REALTION TO JRC (AFTER BARTON 1985) ......... 19 

FIGURE 2.9 MATCHED FRACTURE IMAGE SCANS (HAKAMI AND LARSON, 1996) .......................................... 20 

FIGURE 2.10 CHANGE IN APERTURE VS. NORMAL STRESS (AFTER GOODMAN, 1989) .................................. 21 

FIGURE 2.11 FLOW SCENARIOS THROUGH A ROCK MASS (COOK, 2003) ........................................................ 22 
FIGURE 2.12 FLOW REGIMES AS A FUNCTION OF SURFACE ROUGHNESS AND REYNOLD’S NUMBER (AFTER 

LOUIS, 1969) ............................................................................................................................ 28 

FIGURE 2.13 SHAPES OF JOINT WALLS USED IN EXPERIMENTS BY LIMIZE (1955) (AFTER LOUIS, 1969) ........ 29 

FIGURE 3.1SAMPLE OF CORE LOGGING FOR BOREHOLE MC-316 (PROVIDED BY GOLDER ASSOCIATES) ...... 34 
FIGURE 3.2 SAMPLE OF GEOPHYSICAL LOGGING FOR BOREHOLE MC-316 (PROVIDED BY GOLDER 

ASSOCIATES, 2009) .................................................................................................................. 35 

FIGURE 3.3 HYDRAULIC CONDUCTIVITY VERSUS DEPTH FOR PILOT BOREHOLE MC-316 ............................. 39 

FIGURE 3.4 STEREONET OF FRACTURE DATA FROM MCARTHUR RIVER SHAFT PILOT HOLE MC-316 ........... 40 

FIGURE 3.5 RESULTS FROM GR PETROLOGY CONSULTANTS ....................................................................... 41 

FIGURE 3.6 STAINED FRACTURE WITH INFILLING ......................................................................................... 42 

FIGURE 3.7 FRACTURE WITH MODERATE-HEAVY LIMONITE STAINING ......................................................... 43 

FIGURE 3.8 FRACTURE CORE THAT HAS TWO VERTICAL JOINT SETS AND SHOWS SIGNS OF FLOW ................. 43 

FIGURE 3.9 LARGE CRYSTAL GROWTH FOUND IN CORE ................................................................................ 44 

FIGURE 3.10 HYDRAULIC CONDUCTIVITY VS. FRACTURE FREQUENCY, MC-316 .......................................... 46 

FIGURE 3.11 HYDRAULIC CONDUCTIVITY VS. RDQ, MC-316 ...................................................................... 47 

FIGURE 3.12 FRACTURES VS. HYDRAULIC CONDUCTIVITY, MC-316 ............................................................ 48 

FIGURE 3.13 NUMBER OF HORIZONTAL FRACTURES PER 5 M INTERVAL, MC-316 ........................................ 50 

FIGURE 3.14 NUMBER OF SUB-VERTICAL FRACTURES PER 5 M INTERVAL, MC-316 ..................................... 51 

FIGURE 3.15 HORIZONTAL FRACTURES VS. HYDRAULIC CONDUCTIVITY, MC-316 ....................................... 52 

FIGURE 3.16 SUB-VERTICAL FRACTURES VS. HYDRAULIC CONDUCTIVITY, MC-316 .................................... 53 
FIGURE 3.17 NUMBER OF SUB-VERTICAL FRACTURES WITH STAINING OR QUARTZ CRYSTALS PER 5 M 

INTERVAL, MC-316 .................................................................................................................. 55 

FIGURE 3.18 THIS SECTION ON QUARTZ-LINED FRACTURE, MC-316 ............................................................ 56 

FIGURE 3.19 A DISCRETE FEATURE FOUND AT A DEPTH OF 218 M, MC-316 ................................................. 57 

FIGURE 3.20 HYDRAULIC CONDUCTIVITES MEASURED BY PACKER TESTING OF BOREHOLES SP-001 ........... 59 

FIGURE 3.21 CRYSTALS PRESENT IN AN OPEN JOINT AT 197.3 M, MC-316 ................................................... 60 

FIGURE 3.22 VIEW OF JOINT OPENNESS, 197.3 M DEPTH, SP-001 ................................................................. 60 

FIGURE 3.23 QUARTZ-LINED OPEN JOINT AT 150 M DEPTH, SP-001 ............................................................. 61 

FIGURE 3.24 TOTAL FRACTURES PER 5 M INTERVAL VS. DEPTH, SP-001 ...................................................... 63 

FIGURE 3.25 SUB-VERTICAL FRACTURES PER 5 M INTERVAL VS DEPTH, SP-001 .......................................... 64 

FIGURE 3.26 SUB-VERTICAL FRACTURES PER 5 M INTERVAL VS. DEPTH, SP-001 ......................................... 65 



   
 

vii 
 

FIGURE 3.27 SUB-VERTICAL FRACTURES WITH STAIN PER 5 M INTERVAL VS. DEPTH, SP-001 ...................... 66 

FIGURE 3.28 CLOSED STAINED FRACTURE IN CORE, SP-001 ......................................................................... 67 

FIGURE 4.1 PHOTOGRAPH OF SAMPLE 1 (TEST RUN) ..................................................................................... 71 

FIGURE 4.2 PHOTOGRAPH OF SAMPLE 2 (MEDIUM STAIN)............................................................................. 72 
FIGURE 4.3 PHOTOGRAPH OF SAMPLE 3 (WHICH WAS OBSERVED TO HAVE HEAVY IRON-STAINING AFTER 

TESTING, WHEN THE SAMPLE WAS PULLED APART) ................................................................... 72 

FIGURE 4.4 PHOTOGRAPH OF SAMPLE 4 (PARTIALLY QUARTZ-FILLED) ........................................................ 72 

FIGURE 4.5 PHOTOGRAPH OF SAMPLE 5 (MEDIUM STAIN, LOOSE SAND GRAINS) .......................................... 73 
FIGURE 4.6 PHOTOGRAPH OF SAMPLE 6, PRIOR TO CUTTING THE ENDS SQUARE FOR TESTING (HEAVY STAIN)

 ................................................................................................................................................. 73 

FIGURE 4.7 FRACTURE SCAN LINES FROM LAB SAMPLES .............................................................................. 74 

FIGURE 4.8 DISPLAYS A PICTURE OF THE SKINFLEX SETTING IN A MOLD AROUND THE SAMPLE ................... 77 

FIGURE 4.9 A FULLY JACKETED AND INSTRUMENTED FRACTURE CORE SAMPLE PRIOR TO TESTING ............. 77 
FIGURE 4.10 EQUIVALENT HYDRAULIC CONDUCTIVITY AS A FUNCTION OF EFFECTIVE CONFINING PRESSURE, 

SAMPLE 2.................................................................................................................................. 81 

FIGURE 4.11 EQUIVALENT HYDRAULIC CONDUCTIVITY AS A FUNCTION OF EFFECTIVE CONFINING PRESSURE, 

SAMPLE 3.................................................................................................................................. 81 

FIGURE 4.12 EQUIVALENT HYDRAULIC CONDUCTIVITY AS A FUNCTION OF EFFECTIVE CONFINING PRESSURE, 

SAMPLE 4.................................................................................................................................. 82 

FIGURE 4.13EQUIVALENT HYDRAULIC CONDUCTIVITY AS A FUNCTION OF EFFECTIVE CONFINING PRESSURE, 

SAMPLE 4.................................................................................................................................. 82 

FIGURE 4.14 EQUIVALENT HYDRAULIC CONDUCTIVITY AS A FUNCTION OF EFFECTIVE CONFINING PRESSURE, 

SAMPLE 6.................................................................................................................................. 83 

FIGURE 4.15 EQUIVALENT HYDRAULIC CONDUCTIVITY FOR EACH FRACTURED SAMPLE, MEASURED UPON 

REACHING AN EFFECTIVE CONFINING PRESSURE BETWEEN 6000 AND 7000 KPA FOR THE FIRST 

TIME ......................................................................................................................................... 83 

FIGURE 4.16 CHANGE IN CIRCUMFERENCE VERSUS EFFECTIVE CONFINING PRESSURE ................................. 85 

FIGURE 4.17 CHANGE IN APERTURE VS. EFFECTIVE CONFINEMENT PRESSURE OF SAMPLE 2 ......................... 86 

FIGURE 4.18 CHANGE IN APERTURE VS. EFFECTIVE CONFINEMENT PRESSURE OF SAMPLE 5 ......................... 86 

FIGURE 4.19 CHANGE IN APERTURE VS. EFFECTIVE CONFINEMENT PRESSURE OF SAMPLE 5 ......................... 87 

FIGURE 4.20 MEASURED CHANGE IN MECHANICAL APERTURE VERSUS THE EQUIVALENT HYDRAULIC 

CONDUCTIVITY OF SAMPLES 2,3,5 AND 6  ................................................................................. 88 

FIGURE 4.21 HYDRAULIC CONDUCTIVITY VERSUS MEASURED APERTURE .................................................... 90 

FIGURE 4.22 HYDRAULIC CONDUCTIVITY VERSUS APERTURE OF SAMPLE 2.................................................. 91 

FIGURE 4.23 HYDRAULIC CONDUCTIVITY VERSUS APERTURE OF SAMPLE 5 ................................................. 91 

FIGURE 4.24 HYDRAULIC CONDUCTIVITY VERSUS APERTURE OF SAMPLE 6 ................................................. 92 

FIGURE 4.25 HYDRAULIC CONDUCTIVITY VERSUS APERTURE REDUCTION OF SAMPLE 2 .............................. 93 

FIGURE 4.26 HYDRAULIC CONDUCTIVITY VERSUS APERTURE REDUCTION OF SAMPLE 5 .............................. 94 

FIGURE 4.27 HYDRAULIC CONDUCTIVITY VERSUS APERTURE REDUCTION OF SAMPLE 6 .............................. 94 

FIGURE 4.28 THEORETICAL HYDRAULIC CONDUCTIVITY VERSUS APERTURE ............................................... 92 

FIGURE 4.29 ESTIMATED FRACTURE FLOW OVER A TANGE OF MICRO ROUGHNESS VALUES RA  ................... 97 
FIGURE 5.1 THREE DIMENSIONAL FLOW SIMPLIFIED IN A MATCH STICK MODEL (AFTER WARREN, 1962, AND 

AGUILERA, 1987) ................................................................................................................... 101 

FIGURE 5.2 COMPARISONS OF LAB AND FIELD DATA .................................................................................. 103 

FIGURE 5.3 HYDRAULIC CONDUCTIVITY DATA OVER A RANGE OF SCALES, AFTER CHUSER 1992 .............. 104 

FIGURE 5.4 COMBINED THEORETICAL DEPTH VS ROCK MASS HYDRAULIC CONDUCTIVITY ......................... 106 



   
 

viii 
 

FIGURE 5.5HYDRAULIC CONDUCTIVITY WITH DEPTH (AFTER INGEBRITSEN AND MANNING, 1999) ........... 107 

 

  



   
 

ix 
 

LIST OF TABLES 
TABLE 2.1 CLASSIFICATION OF MECHANICAL APERTURE SIZES (LEE AND FARMER, 1993) ........................... 17 

TABLE 3.1 REGRESSION VALUES FROM HYDRAULIC CONDUCTIVITY VS. FRACTURE FREQUENCY GRAPHS ... 49 

TABLE 4.1 MATRIX HYDRAULIC CONDUCTIVITY AND POROSITY VALUES FROM BOREHOLE MC-316 ........... 69 

TABLE 4.2  DYNAMIC ELASTIC MATRIX PROPERTIES .................................................................................... 69 

TABLE 4.3 LIST OF FRACTURED SAMPLES THAT WERE TESTED IN THIS WORK ............................................... 71 

TABLE 4.4  MEASURED AVERGAE MECHANICAL APERTURE VALUES ............................................................. 89 

TABLE 5.1 LIST OF FRACTURED SAMPLES AND HYDRAULIC CONDUCTIVUTIY ............................................. 101 

  



   
 

x 
 

LIST OF SYMBOLS 

 

A = cross sectional area 

ah = hydraulic aperture 

am = mechanical aperture  

fc = fracture count 

i = hydraulic head gradient 

JCS = Joint Compressive Stress 

JRC = Joint Roughness Coefficient 

K = hydraulic conductivity 

K = hydraulic conductivity  

Keq = equivalent hydraulic conductivity from lab testing 

Keq-field = equivalent hydraulic conductivity of a rock mass at the field scale  

L = Length 

n = porosity 

Pc' = effective confining pressure 

q = darcian velocity  

Q = flow rate 

ra  = micro roughness 

rh = hydraulic radius (commonly denoted as b in fracture flow) 

RMR = Rock Mass Rating 

RQD = Rock Quality Designation 

S = fracture spacing 

TRC = Total Core Recovery  

V = seepage velocity 



   
 

xi 
 

w = Width 

αo = Angle of friction 

ϕr = Residual Friction Angle  

µ = kinematic viscosity 

v = dynamic viscosity 

σno = Normal Stress 

 



   
 

1 
 

CHAPTER 1 INTRODUCTION 

 

1.1 BACKGROUND 

The Athabasca basin is located in northern Saskatchewan, Canada (Figure 1.1).  It is 

currently a major source of the world’s uranium. The uranium deposits are found at or 

below an unconformity where sandstones of the Manitou Falls Formation are underlain 

by crystalline basement rocks. The Manitou Falls Formation is extensive across the 

Athabasca Basin, and is a hydrogeologically complex set of units that offers many 

challenges during mine development such as shaft sinking. Predicting and mitigating 

groundwater inflow is a major priority during the process of shaft sinking through the 

sandstone.  The research presented in this thesis was undertaken to explore the author’s 

hypothesis that general trends in hydraulic conductivity in the Manitou Falls Formation 

can be obtained from core logging; more specifically, that focusing core logging efforts 

on natural fractures and indicators of flow can help to identify zones where more 

detailed analyses such as packer testing should be undertaken in order to characterize 

inflow potential.   
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Figure 1.1 - Map of the Athabasca Basin (after Aldrin Resources, 2014) 

 

1.2 OBJECTIVES 

 

The primary goal of this research was to assess the hydraulic conductivity of the 

sandstones of the Manitou Falls Formation.  Given that this sandstone was thought to be 

fracture dominated, secondary objectives were to assess the relative contributions of 

matrix and fractures to flow, and to characterize the fracture network using core from 

shaft pilot holes, interpreted in the context provided by packer testing. 
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1.3 SCOPE 

 

The scope of this research includes two main components: field data investigation, and 

lab testing of core samples.  In the field data investigation, the objective was to use 

previously conducted packer testing information and compare it to core logging results 

(some previously conducted by consultants, and some – for selected intervals – logged 

in greater detail by the author of this thesis).  This was conducted on two shaft pilot 

holes from the McArthur River Mine site: MC-316 and SP-002.  The lab testing  was 

undertaken to assess samples for hydraulic conductivity while mimicking in-situ 

conditions as closely as possible.  This provided the opportunity to explore the 

relationships between stress, hydraulic conductivity, fracture aperture, and other fracture 

attributes. 

 

The study area for this research comprises the Athabasca Basin in northern 

Saskatchewan, Canada. More specifically, this research focused on the hydraulic 

properties of Manitou Falls Formation, using data obtained from Cameco Corporation’s 

McArthur River Mine site. 

 

1.4 STRUCTURE 

 

The main body of this thesis is divided into four sections; literature review, field work, 

lab testing, and a discussion which focuses on the effects of scale of investigation on 

hydraulic conductivity.   

 

Chapter 2 (literature review) introduces the background and theory that will be discussed 

throughout this thesis.  

 

Chapter 3 (field work) presents data from two shaft pilot holes and analyses the 

relationships between core logging observations and hydraulic conductivities measured 

through packer testing.  
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Chapter 4 (lab testing) presents the methodologies and results for lab testing that was 

conducted on core samples from one of the pilot holes; tests that were designed based on 

the analysis of field data in Chapter 3.  

 

Results from Chapters 3 and 4 are related to practical applications in Chapter 5.  The 

effect of scale for different types of testing are compared to assess the effectiveness and 

practicality of core logging, packer testing and lab testing. The relationship between 

stress (hence depth) and hydraulic conductivity are also investigated. 
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CHAPTER 2 LITERATURE REVIEW 

 

2.1 GEOLOGICAL SETTING OF THE STUDY AREA 

 

The Manitou Falls Formation is a sandstone-dominated stratigraphic unit that 

encompasses or overlies the majority of all known Uranium deposits in the Athabasca 

Basin. There is a major unconformity below the Manitou Falls Formation, with 

underlying basement rocks that are crystalline (Ramaekers et al., 2001). The age of the 

basin is poorly understood.  Based on the weathering of the crystalline rocks, the 

sandstone is thought to be much younger than the 1.75 Ga age of the metamorphic rocks 

it is derived from.(Yeo et al., 2002).  Figure 2.1 displays a simplified cross section of 

geology of the Athabasca Basin with some features that lead to uranium mineralization.  

The McArthur River deposit is depicted in the centre of the figure.  The Manitou Falls 

Formation (MF) can be further subdivided into four members.  The thicknesses of these 

layers vary from site to site, and may be truncated depending on their location in the 

Athabasca Basin. 
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Figure 2.1 - Geology of uranium deposits. MFa is not shown here, but it is present 

beneath MFb is some regions (after Jefferson et al, 2007) 

 

The MFa member is the oldest and most variable member in the Manitou Falls 

Formation. It can be identified by interbedded sandstone and conglomerate with the 

presence of 2% or greater clast-supported conglomerates (Ramaekers, 1990).  The MFb 

member is thought to have originated in a humid climate; with deposition occurring as 

an alluvial braid plain characterized by broad channels (Jefferson et al., 2003).  It 

predominantly consists of sandstone between two conglomerate-bearing intervals 

(Ramaekers, 1990).  The MFc member can be characterized by a conglomerate-free 

medium to very coarse-grained sandstone (Ramaekers, 1990).  Thin granular layers are 

common with a thickness of less than 2 cm.  The MFd member appears to be very 

similar to the MFc member (Ramaekers, 1990; Jefferson et al., 2003).  All of the MF 

members contain interstitial clay which is rich at the base and thins upward (Yeo et al., 

2002).   
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2.2 SHAFT SINKING HISTORY IN THE STUDY AREA 

 

As of 2015, Cameco Corporation (Cameco) had sunk five shafts in the Athabasca Basin. 

The high hydraulic conductivity and recharge rates present a challenging environment 

for shaft sinking.  Traditionally, cover grouting has been used to minimise inflow 

potential. Cover grouting is a step-wise process by which grout is injected into boreholes 

fanning out radially from the shaft at selected depth intervals during shaft sinking, in 

order to create a grout curtain that surrounds the shaft along its full length.  Four probe 

holes are initially drilled in each quadrant to assess the inflow potential.  If the probe 

holes indicate high flow potential, a grout cover is then constructed. The four holes are 

utilized in the grout cover with another 12 holes added to complete a 16 hole grout 

curtain. Figure 2.2 shows a hole producing a flow of approximately 50 m3/hr.  The 

potential for large inflows from probe holes can create a risk of flooding.  Two probe 

holes in the sinking of Shaft 3 at McArthur River encountered inflows of approximately 

125 m3/hr, causing substantial delays (Beattie, 2007).  Ground freezing may be utilized 

in upcoming projects to mitigate the risks associated with the installation of a grout 

curtain.  A detailed understanding of the distribution of hydraulic conductivity is 

essential to planning any mining activities in an environment like the Athabasca Basin.      
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Figure 2.2 - Flow from a grout cover hole, Shaft #2 at McArthur River (Beattie, 2007) 

 

Substantial data sets are collected during exploration and preparation for shafts.  Core 

logging, packer testing, and down hole geophysics are the primary sources of 

information. The process of sinking a shaft also yields many useful observations that can 

aid in synthesizing the borehole data.  These observations are a starting point for further 

research on key factors that control flow potential through a rock mass.  

  

Packer testing is used to measure the bulk hydraulic conductivity of selected intervals 

which are isolated by inflating packers in the borehole.  A pressure (head) perturbation 

is induced in the rock mass by injecting or removing water.  The response of the 

hydraulic pressure is recorded and in turn used to calculate the hydraulic conductivity.   
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The Manitou Falls Formation has proven to be the source of all major inflows 

encountered during the sinking of shafts in the Athabasca Basin (Golder Associates, 

2002).  Packer testing conducted by Golder Associates (1998) shows the hydraulic 

conductivity of the Manitou Falls formation is, on average, an order of magnitude higher 

than that of the basement rocks.  

 

Based on  a report by Golder Associates (1999), there are three main fracture sets that 

have been encountered in the exploration holes in the Manitou Falls Formation.  The 

fracture sets appear to be consistent in all holes from site to site.  The main fracture set 

coincides with the horizontal bedding planes.   Spacing of the bedding planes range 

from several centimetres to several meters.  The second and third fracture sets are 

vertical to sub-vertical and are perpendicular to one another.  The sub vertical fracture 

sets are thought to be the largest contributors to hydraulic conductivity (Golder 

Associates, 2002). Grouting records during shaft sinking have indicated that fractures 

generally become tighter and less continuous with depth.   

 

The conditions of all fractures in the study area vary considerably. The majority of 

surfaces are fresh with little infilling; however, in some areas significant infilling is 

present (Golder Associates, 2002).   Golder Associates’ core logs have noted that there 

is limonite staining present on a portion of the fractures observed.  Limonite is a term 

generally used in the Athabasca basin for any iron oxide-hydroxide which cannot be 

defined compositionally or mineralogically.  The oxidization is yellowish brown when 

loose or can be found as a blackish stain when more intact (Mahoney, 2009).    

Limonization is thought to be associated with meteoric waters, and can be useful in 

identifying large structures that may extend near surface.   Limonization can alter all 

aspects of the sandstone to the point where previous minerals and fabric may not be 

identifiable.  Due to limonization being associated with migrating waters, the greatest 

degree of alteration occurs in fractures.   
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Golder Associates (1998) suggest that groundwater inflow occurred upward via sub-

vertical fractures through the shaft floor during shaft sinking, rather than through 

horizontal fractures seen in shaft walls.  This was later supported in a report by Golder 

Associates (2002).  During the sinking of shaft number one at Cigar Lake, sub-vertical 

fractures ranged from five to eight meters apart, and could be seen for several tens of 

meters on the shaft walls.  The majority of the flow into the shaft was through these sub-

vertical fractures.  Flow was also observed through horizontal fractures; however, they 

typically appeared to be in connection with sub-vertical fractures.   

 

2.3 DISCONTINUITIES IN A ROCK MASS  

 

Multiple types of discontinuities can exist in a rock mass, including fractures, Joints, 

faults, cracks, fissures, bedding planes, and shear zones. Each type of discontinuity has 

unique origins and characteristics. Faults and shears are failure surfaces that have 

experienced lateral movement, and are generally differentiated based on the scale of 

movement (i.e., large-scale faults; small-scale shears).  Joints occur through changes in 

stresses in the rock and results in failure surfaces that have separated, often in sub-

parallel sets, with no lateral offset between opposing faces (Lee and Farmer, 1993).  

Fissures are cracks that are small in aperture and of limited length.   To accurately 

deduce what type of discontinuity is present, a large amount of information needs to be 

collected.  In many cases it is not feasible to collect this information.  The majority of 

the discontinuities described in this thesis are joints.  The common term used for the 

study of flow through rock mass discontinuities is fracture flow.  For this reason all 

discontinues are referred to as fractures for this thesis.  

 

Fractures are usually the primary conduits for fluid and control fluid flow through the 

majority of rock masses. The bulk hydraulic conductivity of a rock mass therefore is 

primarily dependent on these fractures.  Flow in fractured media is a complex process 

that is dependent on a wide range of characteristics.  Brown outlines these 

characteristics in 1981 ISRM report (Brown); Suggested Methods for Quantitative 
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Description of Discontinuities in Rock Masses. Selected parameters from the report that 

pertain to rock mass flow are described below 

 

 Orientation: describes a fracture’s orientation in 3-dimensional space. Generally 

reported using the strike and dip, or dip and dip direction, of the fracture.  

 Spacing: the measure of the perpendicular distance measured from one fracture 

to the next.  For practical purposes an average is most often given to represent an 

interval of fractures.   

 Persistence:  the length of the fracture that can be seen day-lighting on exposed 

surfaces (e.g., shaft walls).  It indicates a lower bound for the fracture length.  

Very little information on persistence can be derived from diamond drilling, so it 

will not be used much in this research.   

 Roughness: the surface roughness and waviness relative to the mean plane of the 

fracture.  Roughness contributes to head loss during fluid flow within a fracture, 

and influences shear strength. 

 Aperture: the perpendicular distance between fracture surfaces. It can be 

expressed as the distance from the mean of asperities on one side of the fracture 

to the other.  

 Filling: material in a fracture that separates the wall rock.  Filling materials may 

include sand, silt, clay, and gouge.  Healed fractures occur when minerals grow 

within the fracture and fill the fracture void; the most common materials are 

quartz and calcite.  Staining in the form of mineral coating such as limonite on 

wall surfaces is also a form of infilling.  

 Number of sets: The number of fracture sets that make up the fracture network.   

 Contact area: the contact area between opposing faces of a fracture reduces 

flow by limiting flow paths. 

 

It is difficult to characterize  the majority of these parameters because they cannot be 

directly measured; most can only be estimated empirically or analytically (Lee and 

Farmer, 1993).  A further difficulty is the fact that these parameters can be quite variable 

within a given study area.  
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2.3.1 Fracture Characterization and Orientation Bias Effects 

 

Characteristics of natural fractures can be obtained from fracture traces that daylight on 

mapped surfaces or are intersected by diamond drill cores.  Mapped faces offer the most 

complete picture of rockmass fractures , though it must be noted that mapping on an 

exposed face results in a bias towards the fracture set(s) that are oriented normal to the 

face.  This bias should be taken into consideration when calculating fracture spacing and 

length. Diamond drilling is the most direct way to map subsurface rock without mining 

through it.  Through core analysis, an understanding of fracture orientations and 

conditions can be obtained.  However, diamond drill cores have a similar bias towards 

fracture set(s) normal to the core axis.  Further, fracture lengths cannot accurately be 

determined due to the small diameter of the core.  Fractures along the core axis seldom 

appear in the core, even if they are closely spaced.  

 

2.3.2 Fracture Roughness 

 

Fracture roughness is a challenging parameter to define and measure.  The difficulty in 

determining roughness mainly occurs in the question of scale.  Micro roughness refers to 

small scale roughness, which is traditionally measured as the largest amplitude over a 

given interval.  Louis (1969) defines it as height from the lowest valley to the highest 

peak in a given interval length.   Figures 2.3 and 2.4 are examples of roughness 

measurement by Louis (1969).  The first is over a scale of several millimetres and the 

second is over a scale of tens of microns.  It is up to the individual conducting 

measurement to determine the proper scale of measurement. 

 

Larger-scale roughness, over tens of centimetres, may be better suited as a measure of 

tortuosity.  Both the name and definition of larger-scale roughness varies; some 

examples are macro roughness (Louis, 1969), waviness (Goodman, 1973), and 

angularity (Sharp, 1970).   A considerable amount of ambiguity exists in literature as to 

what is the ideal scale to measure small scale and large-scale roughness.   Roughness 
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can measured as the total amplitude or the change in angle of the fracture surface (from 

one location to the next), or a combination of the two.  

 

 
Figure 2.3 - Measurement of roughness on the scale of several millimeters (after Louis, 

1969) 

 

 

 

 
Figure 2.4 - Measurement of micro roughness k on the scale of tens of microns (after 

Louis, 1969) 

 

The Joint Roughness Coefficient, also known as JRC, was developed by Barton and 

Choubey (1977).  The system has a rating that is based on a series of 10 cm long 

fracture traces, rated from 0 (least rough) to 20 (most rough).   The 10 traces that 

comprise the scale are shown in Figure 2.5.  Three methods are given to assess the JRC 

value.  The first is by drawing traces of a joint surface and then visually comparing them 

to the standard traces in Figure 2.5. An advantage of this method is that the traces take 
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into account the height of the asperities, their regularity and directional trend (Lee and 

Farmer, 1993).   It is a simple and quantitative assessment that can be obtained in the 

field with limited effort.  However, this method of visually determining JRC induces a 

degree of subjectivity.  A second measurement method, which avoids this subjectivity, 

involves a tilt test of a fracture sample.  The sample is tilted until the fracture slides.  

The angle at which movement occurs can be used to calculate JRC using the following 

equation: 

 

)log(
no

r

o

JCS
JRC



 
  [2.1] 

 

Where αo is the angle at which the sample slides in degrees, ϕr  is the residual fraction 

angle in degrees, JCS is the joint compressive strength in MPa, and σno is the normal 

stress which is assumed to be 0.001MPa for a slide test.  Since the calculation requires 

residual friction angle and joint compressive strength, it is impractical for most 

applications.  Using the third method, developed by Barton and Bandis (1982), the 

maximum amplitude of a joint over a given length is measured to compute JRC using 

the following equation: 

 

L

a
JRC 400  [2.2] 

 

Where a is the maximum amplitude of the profile and L is the length of the profile.  

Figure 2.6 shows a profile with an example of amplitude measurement.   
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Figure 2.5 - JRC roughness profiles (Barton and Choubey, 1977) 

 

 

 

Figure 2.6 - Measuring JRC using the amplitude and a straight edge (Barton and Bandis, 

1982) 
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Fracture surface traces can be digitized using a Laser Roughness Profilometer (LPR), 

and the digital dataset used to calculate various roughness parameters. For example, JRC 

can be calculated using equation 2.2.  A portable LPR was designed and built at the 

University of Saskatchewan by Milne et al. (2009).  The LRP scans and records joint 

surface coordinates along a 15 cm profile.  

 

2.3.3 Fracture Aperture 

  

Fracture aperture (or fracture width) refers to the distance separating two fracture faces. 

Aperture can be quite variable over the extent of a fracture, and is challenging to 

characterize in practical engineering problems. The physical distance between two 

fracture faces is termed mechanical aperture, am.  Six classes of mechanical aperture are 

shown in Table 2.1.  True aperture, or mechanical aperture am, is rarely used for 

groundwater engineering.  Hydraulic aperture, ah, is a measurable equivalent aperture 

based on hydraulic properties. In fracture flow analysis, hydraulic aperture, ah, is 

commonly used. This describes the effective aperture of the flow path through the 

fracture. To visualise fracture flow, the analogy of two flat planes with flow occurring in 

the space between them is often used (Snow, 1969).  However in reality fractures are not 

flat, smooth, or continuous.  Micro roughness adds resistance, apertures are erratic, and 

the planes are undulating. 

 

Measurement of fracture aperture under in-situ conditions generally cannot be done.  It 

is commonly measured as seen in a day lighting fracture, but there is no way of easily 

measuring properties of a closed aperture in-situ.   
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Table 2.1 – Classification of mechanical aperture sizes (Lee and Farmer, 1993) 

 

Mechanical Aperture (mm) Class 

<0.1 Very tight 

0.10 - 0.25 Tight 

0.25 – 0.50 Partially open 

0.50 – 2.50 Open 

2.50 – 10.0 Moderately wide 

<10 Wide 

 

 

 

Many methods have been attempted to determine the mechanical aperture of a fracture.  

Hakami and Larson (1996) injected a florescent resin into a fracture.  The fracture was 

pressurized while the resin set in order to mimic in-situ conditions.  Thin sections of the 

fracture were taken and imaged to obtain aperture measurements. 

 

Sophisticated imaging techniques can be used such as an ultrasound (Jensen et al., 

2005), x-ray (Johns et al., 1993), or synchrotron x-ray microtomography (Robb et al., 

2007) to get highly detailed images of fractures. These fracture images can be analysed 

to estimate mechanical aperture.  Sharp et al. (2014) utilized high resolution X-ray 

tomography with promising results.  No methods have been developed to efficiently and 

economically obtain mechanical aperture.  Correlations of mechanical aperture to 

hydraulic aperture have been successfully used as a practical method of obtaining 

mechanical aperture.     

 

The relationship between mechanical and hydraulic apertures has been investigated by 

several researchers.  Voegele (1981) combined the results on one graph, which is shown 

in Figure 2.7.  Barton (1985) Combined JRC with the data to compile a relationship 

between aperture and JRC.  This relationship can be used to determine a mechanical 

aperture value from a calculated hydraulic aperture.  Figure 2.8 displays this 

relationship.  The following is the relationship developed by Barton   
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𝑎ℎ =
𝐽𝑅𝐶2.5

(
𝑎𝑚

𝑎ℎ
⁄ )

2 (𝜇𝑚) [2.3] 

 

Where ah represents hydraulic (smooth-walled) fracture aperture in µm.  

 

 

 
Figure 2.7 - Relationship of hydraulic and mechanical aperture (after Voegele, 1981) 
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Figure 2.8 - Hydraulic and mechanical aperture in relation to JRC (after Barton, 1985) 

 

2.3.4 Contact Area 

 

Contact area is important in determining the amount of open fracture area that is able to 

conduct flow.  Field measurement of contact area is effectively impossible due to the 

fact that the fracture must be opened to be analysed, thus destroying the in-situ 

characteristics of the sample. 

 

A more sophisticated method of analysing contact area is scanning opposing faces of a 

fracture in three dimensional space and matching the two faces with modeling software, 

as illustrated in Figure 2.9.  The change of contact area with stress can be estimated with 

poroelastic modeling.  Sophisticated imaging techniques used to determine aperture 

require highly detailed images of fractures.  These images can be processed to determine 
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contact area.  

 

Figure 2.9 - Matched fracture image scans (Hakami and Larson, 1996) 

 

 

2.3.5 Joint Stiffness 

 

Joint stiffness is a parameter that characterizes the change in fracture aperture resulting 

from a change in normal stress (i.e., load acting normal to the fracture plane, divided by 

total fracture surface area). Fracture closure occurs by elastic compression of asperities 

or/or permanent deformation.  In general, joint stiffness decreases as normal load 

increases. As a fracture closes with increasing normal load, an increasing number 

asperities come in contact with one another, thus distributing load across a larger surface 

area and increasing the resistance to closure.  A typical joint stiffness response can be 

seen in Figure 2.10, in which Goodman (1989) illustrates fracture closure (Δa) vs 

normal stress (σ).  This figures shows that joint stiffness decreases with increasing 

normal stress, and at sufficiently high stresses may approach a condition in which 

normal load is fully distributed across the fracture and no more closure will take place 

unless shearing occurs.  



   
 

21 
 

 

 

Figure 2.10 – Change in aperture vs normal stress (after Goodman, 1989) 

 

 

 

2.4 FLUID FLOW IN ROCK MASSES  

 

A rock mass is comprised of two components: 1) intact rock (matrix), and 2) fractures.  

Fluid flow through a rock mass depends on the properties of the matrix, fractures and 

the interaction between the two.   Matrix flow results from the flow through 

interconnected pores within the rock.  If pores are not directly connected, flow still may 

occur along mirco-discontinuities, intra-crystalline defects and fissures at crystal 

interfaces (Lee and Farmer, 1993).  The hydraulic conductivity of the rock matrix can 

vary significantly and depends on the aperture of the pores and their interconnectivity.  

As discussed, racture flow also occurs (often predominantly) through the fractures in a 

rock mass. Fractures act as conducts to flow and can be large sources of inflow.  

  

The interaction between these two processes can be very complex.  Figure 2.11 

illustrates five simplified scenarios of flow through a rock mass.  In Figure 2.11(a) a 

homogeneous environment is shown in which simple isotropic flow can be expected 

from matrix alone.  The heterogeneous environment shown in Figure 2.11(b), results in 

ΔamaxΔamax

Δa

σ
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matrix flow that has a preferential flow direction.  Figure 2.11(c) illustrates a fracture in 

a conductive porous medium.  This is one on the most complex flow situations in which 

the fractures and porous medium can both significantly contribute to the overall flow 

potential.  Figure 2.11(d) displays a fracture in a tight porous medium. In this situation, 

the flow is fracture dominated; however, there is minor influence from the matrix.   

Figure 2.11(e) illustrates fracture through an impermeable medium. In this situation 

flow is completely fracture dominated as the matrix is incapable of conducting fluid.   

 

 
Figure 2.11 - Flow scenarios through a rock mass (Cook, 2003) 

 

Analysis of flow through a rock mass depends primarily on the relationship between 

matrix and fracture flow. Two main approaches are used when studying flow through a 

rock mass.  The traditional and simpler approach is called the continuum method, in 

which the rock mass is treated as a porous medium and the effects of individual 

fractures are ignored.   

 

The alternative approach is to assess the fractures individually and study the flow on a 

much smaller scale.  The contribution of the matrix can be added into the analysis.  The 

fracture analysis method requires a significant amount of data to conduct a proper 

analysis. 
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2.4.1 Continuum Method 

 

For the continuum method, the rock mass is treated as a continuous porous medium 

which has constant transport properties over the representative volume (REV) of the 

rock mass.   The effects of fractures and the matrix are averaged over the extent of the 

REV to obtain representative properties of the rock mass.  This approach works well 

when inflow is being determined on a large scale.  In rock masses that are highly 

fractured, the effects of individual fractures are less significant on a large scale, so the 

continuum method is well suited.  Limitations arise when a small number fractures 

control the behaviour of the representative volume, in which case, assumptions of 

constant properties over the length of such a rock mass may not be tolerable.   

 

The process of fluid transport through a porous medium is characterized by Darcy’s law, 

as follows: 

 

 

KiAQ   [2.4] 

 

Where Q is flow in m3/s, K is the hydraulic conductivity of the medium in m/s, i is the 

hydraulic head gradient at the point of measurement (dimensionless; m of head per unit 

length, in m), and A is the cross-sectional area of the medium in which flow is occurring 

(m2).  This equation can be simplified to solve for Darcian Velocity or specific 

discharge by removing area from the equation, as follows:   

 

 Kiq      [2.5] 

 

The Darcian Velocity assumes flow occurs through the entire cross-sectional area.  In 

reality, flow occurs only through the pore space.  The true velocity, or seepage velocity, 

is the velocity of the pore fluid as it travels through the pores in a rock mass.  Only a 

fraction of the bulk volume is available for flow, and the flow path is generally tortuous, 
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so a larger velocity results.  To calculate seepage velocity the Darcian Velocity is 

divided by the porosity of the sample as shown. 

 

n

Ki
V           [2.6] 

 

Where V is the seepage velocity, K is the hydraulic conductivity (m/s), i is the pressure 

gradient (m of water) and n is the porosity of the sample.   

 

The continuum approach assumes laminar flow through a saturated isotropic 

homogeneous medium. Further, many applications of the continuum method assume 

that steady state conditions exist, because this simplifies analysis.  Collectively, these 

assumptions limit its applicability.  

 

2.4.2 Discrete Fracture Flow Method 

 

The alternative to the equivalent porous medium approach is the discrete network 

model, in which each fracture is modeled individually in a rock mass. In some 

situations, a single equivalent fracture can replace several related fractures (Lee and 

Farmer, 1993).  However, in most cases the effect of the matrix is assumed to be 

negligible.   In more sophisticated models, fracture-matrix interactions are included as 

well.  Selection between the models usually depends on the information available and 

the heterogeneity of the rock mass (Lee and Farmer, 1993)  

 

To more accurately assess flow through a rock mass, the role of the fractures in the rock 

mass must be properly understood.  Fractures often control the behaviour of a rock 

mass.  The ability to predict the flow behaviour in fractures leads to a better ability to 

predict the flow behaviour through a rock mass.  

 

Fractures can be simulated in a variety of methods.  For example, early methods were 

developed by comparing joint flow to pipe flow.  Poiseuille’s law is the most basic 
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equation used; it was developed for a circular conduit.  Current fracture flow equations 

evolved from Poiseuille’s equations. Poiseuille conducted experiments of controlled 

flow through glassware in the early 1800’s (Sutera and Skalak, 1993).  His test consisted 

of precise observations of fluid through a narrow tube with control over pressure and 

temperature. 

 

Romm (1966) demonstrated how the Poiseuille law could be adapted to represent 

laminar flow through a set of smooth parallel plates with a constant hydraulic aperture 

ah (Romm, 1966), which is referred to as the  parallel plate law, equation [2.7].   

 

 2

12
ha

g
K




   [2.7] 

 

Where K is the hydraulic conductivity, measured in m/s, g is the acceleration due to 

gravity at 9.81 m/s2, µ is the dynamic viscosity which has a value of 1.0 (Pa·s), ρ is the 

density of water, 1000 kg/m3 under standard temperatures and pressure, and ah, is the 

aperture in meters.  

 

When equation [2.7] is solved for flow rate the result is dependent on the cube of the 

aperture; this form of the equation is commonly referred to as the cubic law (Lee and 

Farmer, 1993). 

         

 

Smooth parallel plate flow has been studied in depth by Snow (1969), Romm (1966), 

Louis (1969), Baker (1955) and many more.  The topic has been studied under a wide 

range of conditions demonstrating that the equation is usually accurate, but loses 

accuracy in tight rough fractures where the flow path is more difficult to define.  

 

 

 



   
 

26 
 

2.4.3 Non Ideal Fracture Flow Behavior  

 

Natural fractures are rough with variable apertures. Small scale roughness can cause 

eddies and velocity changes in flow that result in head loss and a reduction in flow.  

Large scale roughness or waviness increases the length and tortuosity of the  

flow path, which results in extra energy loss. These effects may cause flow to become 

turbulent which results in further energy loss.    

 

The parallel plate law has several conditions that are not met under many natural 

circumstances.  Laminar flow is one of these assumptions.  Both laminar and turbulent 

flows can exist in a fracture.  The form of flow occurring throughout a fracture is a 

function of the roughness, the aperture of the fracture and the velocity of water through 

it. The Reynolds number, Re, is a ratio that is used to assess if a flow is laminar or 

turbulent.  The Reynolds number itself is the ratio of the inertial forces to the viscous 

forces in a flow system (Iwai, 1976).The Reynolds equation for fracture flow is derived 

from that of a long and wide channel with a rectangular cross section (Sarkar et al., 

2004) and can stated as follows: 

 



 haV
Re 

  [2.9] 

 

Where ah is the hydraulic aperture in metres, V is the flow velocity in m/s,  µ is the 

dynamic viscosity and ρ is the density of water.   In pipe flow a Reynolds number of 

2300 or greater usually indicates turbulent flow, and less than 2300 is laminar.  In non-

ideal pipe flow, roughness and aperture both affect this boundary value of 2300.  

Fracture roughness affects flow by causing increased friction along the fracture wall and 

increasing the tortuosity of the flow path, both of which lead to turbulent flow.  The 

surface roughness index, S, is a commonly used method for quantifying fracture 

roughness.   

 

𝑆 =
𝑟𝑚

𝑎ℎ
   [2.10] 
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Where rm is the micro roughness, and ah is the hydraulic aperture. The surface roughness 

index is the primary method used in determining if flow is parallel or non-parallel. 

Parallel flow being considered two straight edges of the fracture, whereas non parallel 

indicates a more tortuous flow path.  Non parallel flow occurs when S > 0.333. 

Figure 2.12 shows the manner in which S and Re determine if a flow is laminar or 

turbulent. 
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Figure 2.12 - Flow regimes as a function of surface roughness and Reynold's number 

(after Louis, 1969) 

 

2.4.4 Analysis of Non-Ideal Fracture Flow  

 

Limize conducted the first systematic analysis of controlled flow through simulated 

fractures in 1955 (from Louis, 1969).  He tested a range of 20 cm joint models, as shown 

in Figure 2.13, to assess the influence of the position of the joints, width of the joints, 
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roughness, shape and structure of the joint walls.  Tests were run on eight different 

idealised fracture shapes at varying apertures.   

 

 
Figure 2.13 - Shapes of joint walls used in experiments by Limize, flow directing being 

left to right (after Louis, 1969) 

 

 

Louis (1969) conducted research several years after Limize; however he was initially 

unaware of Limize’s work.    Both researchers came to similar conclusions through their 

independent tests.  Louis ran laboratory tests on fractures similar to Limize’s; however 

he simulated real fractures with varying shapes and roughness, unlike Limize’s idealised 

fracture shapes.  Louis’s goal was to conduct tests in smooth, rough, and open joints.  

He also studied the effects of infilling may have on a fracture.  Both Limize and Louis 

developed semi-empirical equations that described non-parallel fracture flow under 

laminar and turbulent conditions.  Louis’ equation for laminar non-parallel fracture flow 

is displayed as follows:  
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Where ρ = density, g = acceleration due to gravity, µ = kinematic viscosity, ra = micro 

roughness, and ah = hydraulic aperture. 

 

Using equations 2.3 and 2.12 Scesi and Gattinoni (2005) derived an equation for laminar 

non-parallel flow based on JRC as follows:  
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   [2.12]

 

 

Where v = dynamic viscosity, and JRC = Joint Roughness Coefficient.  Since JRC is a 

dimensionless parameter, the units of the equation do not work out.  This is because an 

empirical relationship was used to derive the equation.  The effects of this will be 

explored later in Chapter 4.    
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CHAPTER 3 FIELD INVESTIGATIONS 

3.1 BACKGROUND 

 

Cameco collected a substantial data set during investigations for eight shaft locations in 

the Athabasca Basin.  Data was retrieved from boreholes that were drilled in preparation 

for shaft sinking.  Of the eight shafts, five were completed at the time of this study 

including McArthur River shafts 1, 2, and 3 and Cigar Lake shafts 1 and 2. The three 

shafts that were still in the planning stage included shafts 1 and 2 at the potential 

Millennium mine, and shaft 4 at McArthur River.   Approximately two years into this 

research project, an additional two holes (SP-001 and SP-002) were drilled to further 

prepare for shaft 4 at McArthur River.  Data collection and analysis for those holes was 

conducted by SRK Consulting (SRK).  

A range of tests had been conducted on each borehole to investigate the conditions that 

were to be encountered during shaft sinking.   Core logging had also been conducted on 

all boreholes.  The nature of the data obtained from the core logs was reasonably 

consistent.  The strength, color, composition, and condition of the core and fractures had 

been logged by the aforementioned contractors.   Drilling-induced fractures had been 

differentiated from natural fractures and were left out of the logs.  Fracture properties 

that were noted included orientation, colour, staining, infilling, frequency, roughness 

and RQD (Rock Quality Designation).  From the core logging details, the core was 

usually classified into the empirical descriptive relationships of RMR (Rock Mass 

Rating) and Q (Quality Designation).  Figure 3.1 shows an example of data collected by 

Golder for one of the McArthur River Shaft 4 pilot boreholes; borehole  MC-316. 
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Down hole geophysical surveys were conducted following the drilling of each borehole.  

The selection of surveys varied from borehole to borehole.  Methods used included 

caliper, natural gamma-ray, gamma-gamma (density), neutron, fluid temperature, 

resistivity, spontaneous potential, acoustic borehole imaging, optical borehole imaging, 

and sonic logs.  Figure 3.2 displays an example of logs provided by Golder (2009).  

 

Packer testing is a primary method of hydrogeological assessment.  It is used to measure 

the bulk hydraulic conductivity of a selected interval, which is isolated by inflating 

packers in the borehole.  The rock mass is stimulated by injecting or withdrawing water.  

The response of the hydraulic pressure is recorded and in turn used to calculate the 

hydraulic conductivity.   Packer test intervals ranged from 3 m to 70 m. 

    

Relating packer testing to core logging, yields insight on the distribution of conductive 

features over a test interval.  In most cases hydraulic conductivities are controlled by the 

presence of one or two features.  Klimczak et al (2010) demonstrated that discontinuities 

that have a large hydraulic conductivity are the result of a large aperture, and due to the 

mechanisms of formation, larger apertures coincide with larger discontinuity lengths.  

Packer tests highlight intervals with a high bulk hydraulic conductivity number, which 

require in depth analysis to help qualify where the highest flow potential within the 

interval occurs. 

 

Testing methods that were used on each borehole varied significantly, which made a 

comparison of results between boreholes difficult.  A detailed investigation of pilot 

borehole MC 316 was selected for a focused study due to the comprehensive nature of 

the available data set.  A review and analysis of the MC-316 dataset is given in the 

following section, followed by a review and analysis of data for borehole SP-001. 
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Three main fracture sets have been consistently encountered from exploration holes in 

the Manitou Falls Sandstone (Golder Associates, 1999).  The dominant fracture set 

occurs along horizontal bedding planes and has a spacing of several centimeters to 

several meters.  The second and third fracture sets are vertical to sub-vertical and are 

perpendicular to one another.  The two sub-vertical fracture sets have spacings between 

several centimeters to tens of meters.  It should be noted that the observed spacing of the 

sub-vertical sets have been made from vertical boreholes which are near parallel to the 

fracture sets.  True fracture spacing is almost certainly much closer than observed.    
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Figure 3.1 - Sample of core logging data for borehole MC-316 ( Golder Associates, 

2009).  Where, TCR is Total Core Recovery, RQD is Rock Quality Designation, and 

fracts/run, is the number of fractures encountered per run.  
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Figure 3.2 - Sample of geophysical logging for borehole MC-316 (provided by Golder 

Associates, 2009) 
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3.2 FOCUSED STUDY OF BOREHOLE MC-316  

 

3.2.1 Packer Testing Results 

 

Packer testing is likely the most common method used for assessing rock mass hydraulic 

conductivity, though there are several challenges associated with this test.  Hydraulic 

conductivity (K) values can range over approximately eight orders of magnitude, with 

depth-wise K variations often occurring on length scales smaller than the packer 

interval.  As such, packer test results can be very sensitive to packer placement.    

Common sources of error in packer testing include: flow short-cutting, non Darcian 

flow, and misinterpretation of initial equilibrium conditions.  There can also be a 

significant error in the curve fitting used to interpret the results, as test datasets often 

don’t match the idealize curves used in the fitting process.   

With these error sources and sensitivities in mind, it should be recognized that the 

hydraulic conductivity values from packer tests are best regarded as order-of-magnitude 

estimates.  Nevertheless, these are believed to represent the best practically-available 

estimates of in-situ hydraulic conductivity, and are useful for identifying zones of 

relatively high and low hydraulic conductivity.    

MC-316 had a comprehensive packer testing program.  For rock masses possessing 

fractures which dominate flow, the interpreted hydraulic conductivities from packer 

testing represents equivalent continuum values.   Figure 3.3 shows hydraulic 

conductivities for various intervals versus depth.  The hydraulic conductivities displayed 

are the average of values determined through falling head tests and constant rate 

injection tests. The results are quite variable and there are no obvious trends with K and 

depth.   
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Figure 3.3 - Hydraulic conductivity versus depth for pilot borehole MC 316 
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3.2.2 Fracture Orientation for MC-316 

 

As noted in section 2.2, previous investigations have stated that three fracture sets are 

present in the Manitou Falls Formation at the McArthur River Mine; one horizontal, and 

two sub-vertical (Golder, 1997, 1998, 2002, Beattie, 2007).   Figure 3.4 displays a 

stereonet generated from fracture data for the Manitou Falls Formation, extracted from 

an optical borehole image log run by Golder (2009) for borehole MC-316. The figure 

shows the poles for all of the interpreted fracture planes, and contours of fracture density 

as determined using the Terzaghi correction to estimate the true distribution.  This figure 

shows two clear fracture sets; one sub-horizontal, and one sub-vertical (striking east-

west). Though sub-vertical fractures with other strike directions are present, they do not 

form a well-defined fracture set. No image data was available for SP-001, which is 

discussed later, so it was not possible to assess the fracture sets in that borehole.  For 

simplicity, in this work it is assumed that the previously reported scenario (i.e., one 

horizontal fracture sets plus two sub vertical fracture sets) is broadly representative 

(though further investigation of this matter is recommended).   
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Figure 3.4 - Stereo net of fracture data from McArthur River shaft pilot hole MC-316.  

Black dots show poles to fracture planes, in a lower-hemisphere equal angle projection, 

and contours show Terzaghi-corrected fracture densities. 
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3.2.3 Fracture Characterization 

 

Original core logging was not focused specifically on a hydrogeological assessment.  To 

gain a further understanding of the properties of the Manitou Falls Formation, two site 

visits were conducted; Nov 10, 2009 and June 11, 2010.  The core of shaft pilot 

borehole MC-316 was re-logged focusing on whether fractures were healed, 

discontinuous, and contained staining, infilling or gouge. The hole was logged from 

surface to a depth of 460 m, where basement rocks were encountered.  The basement 

rocks below the sandstone are much tighter and have a lower hydraulic conductivity.  

Fracture properties relating to flow would not be consistent over the two units so 

analysis focused solely on the Manitou Falls Formation.  Core for the interval ranging 

from 270.57 m to 285.52 m was missing.  From core photos it was determined that there 

are two sub-vertical fractures in this interval, and estimates of their attributes were made 

for use in this analysis.   

 

Packer test records were used as a reference during the core logging conducted during 

this site visits.  Generally, it was observed that zones with iron staining coincided with 

intervals of elevated hydraulic conductivity.  Sub-vertical fractures seemed to be most 

prominent in higher hydraulic conductivity zones, and these fractures contained a large 

degree of staining.  Nine core samples were obtained from site and brought back to the 

rock mechanics laboratory at the University of Saskatchewan for further investigation.   

Figure 3.5 and 3.6 shows a highly altered piece of core taken from a depth within the 

interval of highest measured hydraulic conductivity.  

 

Several interesting trends were observed in the core.  Iron staining, identified as limonite 

by Cameco, was most concentrated on fracture surfaces in the intervals of high 

hydraulic conductivity.  To further investigate the staining on the fractures several 

samples were sent to GR Pertrology Consultants for X-Ray Diffraction (XRD) and      

X-ray Energy Dispersive Spectrometry (EDS) analyses.  An example of the results is 

shown in Figure 3.5. 



   
 

41 
 

Scanning Electron Microscopy (SEM) analyses were also conducted.  The weathered 

surfaces were found to be iron and manganese rich compared to the matrix, and with 

minor amounts of calcium and titanium.  No manganese, calcium and titanium were 

found in the matrix.  The matrix was primarily composed of quartz.  Kaolinite, illite, 

siderite and pyrite were found also found on the stained surfaces.  Full results from the 

reports from GR Petrology Consultants can be seen in appendix 1.   

 

 

Figure 3.5 - Results from GR Petrology Consultants.  Top left is a picture of the sample; 

top right is EDS; bottom left is SEM; and bottom right is EDS analysis.  

 

Sub–vertical fractures (fractures with an angle less than 25° to the core axis) showed 

more signs of flow than the horizontal fractures in the higher hydraulic conductivity 

zones.  There were also areas where all fractures, regardless of orientation, showed no 

signs of flow.  Figures 3.6 through 3.9 show several fractures with signs of flow 
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alteration.  The feature in Figure 3.9 was in the interval of greatest measured hydraulic 

conductivity, yet the fracture shown was the only one in that interval that showed signs 

of flow.   The large crystals and prevalent alteration may be another indicator of flow.  

The quartz crystals observed were 3 to 8 mm in height, which would require a large 

apertures; in locations where apertures of this magnitude are not entirely filled with 

crystals, it seems reasonable to expect that hydraulic conductivities would be extremely 

high.  

    

 
Figure 3.6 - Stained fracture with infilling, 301.77 m depth, MC-316 
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Figure 3.7 - Fracture with moderate-heavy limonite staining, 306.6 m depth, MC-316 

 

 

Figure 3.8 - Fractured core that has two vertical joint sets and shows signs of flow, 

214 m depth, MC-316 
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Figure 3.9 - Large crystal growth found in core, 214 m depth, MC-316 

 

 

3.2.4 Analysis of Fracturing – Hydraulic Conductivity Relationships  

 

As noted in section 2.3, flow through a rock mass can occur through the fractures and 

the matrix.  Based on prior experience and observations made on site, it was deemed 

likely that flow in the Manitou Falls Formation is fracture dominated.  This belief was 

later confirmed through laboratory testing which is presented Chapter 4, but it was also 

supported based a comparison of packer test data to observed fracture attributes. 

 

With flow occurring predominantly through fractures, it can be expected that hydraulic 

conductivity would correlate strongly to fracture frequency.  Figure 3.10 displays 

fracture frequency and hydraulic conductivity with depth.  Fracture frequency 

corresponds well to two of the high potential flow intervals but fails to give an 

indication of the interval from 213 m to 245 m.  Another method of describing the 
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fracture frequency is Rock Quality Designation (RQD).  RQD is described as the 

percentage of core, in a core run, that is comprised of intact segments10 cm or greater in 

length.  RQD and hydraulic conductivity versus depth can be seen in Figure 3.11.  The 

results are similar to Figure 3.10, and offer little additional insight.   As seen in Figures 

3.10 and 3.11, a higher hydraulic conductivity can be expected if fractures are closely 

spaced.  Inversely, it is shown that a low number of fractures does not necessarily 

indicate a low hydraulic conductivity, which is why the interval from 213 m to 245 m 

depth was not highlighted in Figures 3.10 and 3.11.  If fractures control flow, but the 

total number of fractures is not necessarily indicative of a high hydraulic conductivity, 

other properties of the facture must play a prominent role as well.   

    

To further compare the relationship between fractures and hydraulic conductivity, the 

hydraulic conductivity was graphed against the fractures per meter that were observed in 

the hydraulic conductivity interval (Figure 3.12).  To account for varying lengths of 

packer intervals, the fracture count was normalized per 5 meters.  An exponential trend 

line was fitted, with an R2 value of 0.281, which is statistically significant at the P = 

0.05 level.  A P-value of less 0.05 was chosen to signify that the relationship is 

statistically meaningful and rejects the null hypothesis (DeCoursey, 2003). 
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Figure 3.10 - Hydraulic conductivity versus fracture frequency, MC-316.  Shaded 

regions highlight zones of high hydraulic conductivity.  
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Figure 3.11 - Hydraulic conductivity versus RQD, MC-316.  Shaded regions highlight 

zones of high hydraulic conductivity. 
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Figure 3.12 - Fractures versus hydraulic conductivity, MC-316 

 

As noted in section 3.1, it has been proposed that larger inflow potential occurs in areas 

that have a greater number of sub-vertical fractures.  This is due to better rock mass 

connectivity (e.g., communication between permeable beds and/or bedding-parallel 

fractures enabled by sub-vertical fractures) as well as the sub-vertical fractures possibly 

being more conductive.  Though two sub-vertical fracture sets are believed to exist in 

the study area, it was not possible to distinguish between them because core orientation 

was not measured as it was drilled.  The two fracture sets were therefore treated as one 

for analysis purposes.  Upon separating the horizontal fractures from the sub-vertical 

fractures, more trends started to emerge.   Figures 3.13 and 3.14 show horizontal and 

sub-vertical fractures per 5 meter interval. Based on visual examination of Figure 3.13, 

horizontal fractures seem to have no obvious relationship hydraulic conductivity. 
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In Figure 3.14, sub-vertical fractures often appear to increase in frequency at depth 

intervals of relatively high hydraulic conductivity.  The relationship is not perfect, 

however. For example, there is not much of an increase in fracture frequency in the high 

hydraulic conductivity interval from 200 m to 250 m, nor is there an increase in sub-

vertical fracture frequency between 450-500 m, where an increase in hydraulic 

conductivity is observed.  

 

Figures 3.15 and 3.16 were generated to investigate the impact of sub-vertical and 

horizontal fracture frequencies on hydraulic conductivity through regression analysis.  

Table 3.1 summarizes the results.   Figure 3.15 displays an exponential trend line 

relating hydraulic conductivity to the number of horizontal fractures per metre. R2 = 

0.0688 was obtained for this trend line, which is statistically insignificant at the P = 0.05 

level.  Sub-vertical fracture frequency (Figure 3.16) shows a stronger correlation; i.e., an 

exponential trend line fit to these data achieved R2 = 0.317, which is statistically 

significant at the P = 0.05 level.  The sub-vertical fractures prove to be a better indicator 

of hydraulic conductivity.   Based on the data from borehole MC-316, it appears likely 

the sub-vertical fractures influence the hydraulic conductivity of the Manitou Falls 

Formation in the study area. 

 

Table 3.1 Regression Values from Hydraulic Conductivity vs. Fracture Frequency 

Graphs 

 R2 Value Significant at P=0.05 

Total fractures per meter (Figure 3.12) 0.281 Yes 

Horizontal fractures per meter (Figure 3.15) 0.0688 No 

Sub-vertical fractures per meter (Figure 3.16) 0.317 Yes 
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Figure 3.13 - Number of horizontal fractures per 5 m interval, MC-316 
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Figure 3.14 - Number of sub-vertical fractures per 5 m interval and hydraulic 

conductivities, MC-316 
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Figure 3.15 - Horizontal fractures versus hydraulic conductivity, MC-316 
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Figure 3.16 - Sub-vertical fractures versus hydraulic conductivity, MC-316 

 

Additional data on the condition/properties of sub-vertical fractures may also provide 

indications of elevated hydraulic conductivity.  Oxidization in the form of iron staining 

is a strong indication of flow.  As water flows through a fracture, iron may be oxidized. 

Generally, the more water the more staining.  Infilling generally occurs when minerals 

precipitate out of water in the fractures.  Fractures can be completely healed if the 

infilling fills the fracture.  In this study, healed fractures were not classified as fractures 

as they have no contribution to flow.  Partial infilling can indicate the fracture is still 

flowing.      
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To assess the effects of staining, the number of sub vertical fracture with staining per 5 

m interval was graphed against depth (see Figure 3.17).  This figure also shows the 

number of joints with quartz crystals per 5 m interval.  Fractures with quartz crystals 

tend to appear when there is an increase in hydraulic conductivity.  Sub-vertical 

fractures with staining and quartz crystals appear in two concentrations that coincide 

with two of the spikes in hydraulic conductivity at approximately 150 m and 400 m 

depth.  Large quartz crystals (>1 mm) in fractures indicate that apertures must be large 

and likely result in a larger hydraulic conductivity. The two indicators are the result of 

very different processes but both may indicate a current state of elevated hydraulic 

conductivity.   

 

The intervals possessing the most prominent quartz crystal growth (see Figures 3.8 and 

3.9) coincides with a high hydraulic conductivity interval from 397 m to 419 m in depth.  

To investigate the relationship of these quartz crystals to the quartz-rich matrix, a thin 

section was cut normal to the fracture surface.  In Figure 3.18, the quartz crystals within 

the fracture can be seen on the right side of the section.  It is evident, based on crystal 

size and texture, that the quartz near the right edge of the image grew subsequent to the 

creation of a large-aperture fracture. Observation of the core on a larger scale (e.g., see 

Figures 3.8 and 3.9) indicates that this large-aperture fracture is only fully occluded by 

quartz crystals in localized areas. This suggests that its hydraulic conductivity should be 

very high where it is partially or fully lacking quartz crystals.  
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Figure 3.17 - Number of sub-vertical fractures with staining or quartz crystals per 5 m 

interval, MC-316 
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Figure 3.18 - This section on quartz-lined fracture, MC-316 

 

Isolated features may be responsible for a large portion of local flow.  When logging 

core, close attention should be given to sub-vertical fractures that are continuous with 

heavy staining.  Figure 3.19 shows a set of sub-vertical fractures found at a depth of 

214 m.  The fractures highlighted are likely the cause of the high hydraulic conductivity 

interval that was not identified based on the fracture – hydraulic conductivity 

relationships shown in Figures 3.16 and 3.17.  

 

2 cm
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Figure 3.19 - A discrete feature found at a depth of 218 m, MC-316 

 

 

3.3 ANALYSIS OF BOREHOLE SP-001  

 

To extend the findings extracted from the study of borehole MC-316, a subsequent shaft 

pilot borehole (SP-001) was examined on Oct 20, 2010.    The same investigation 

techniques described for MC-316 were used on SP-001.  The core had been logged by 

SRK in detail in advance of this author’s site visit. Review of these logs conducted as 

part of this research project led the author to the conclusion that the logging had been 

well executed and that reporting was clear and comprehensive.  It should be noted that 

packer testing intervals for SP-001 were 30-50 m whereas MC-316 was tested at 

intervals of 10 to 30 m, hence vertical resolution is lower and average effects 

(“smearing”) are more pronounced for SP-001.  Given SRK’s log as a sound and 

reliable starting point, the author focused on features most likely to be associated with 

high inflow potential.  Hydraulic conductivity values provided by SRK (see Figure 3.20) 

were used as a benchmark when analyzing core. 
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Quartz crystals were observed in several joints in the SP-001 cores. In many cases the 

crystals appear to have grown from opposing faces of a fracture, with well-formed 

euhedral crystals occurring on both faces. This suggests significant “openness” of the 

fracture.  .  Examples of these can be seen in figures 3.21 to 3.23.   

 

Similar to borehole MC-316, the fractures with quartz crystals in SP-001 were generally 

observed to coincide with zones of elevated hydraulic conductivity.  At 128.3 m, 

partially open fractures were observed with quartz lining the joint faces.  At roughly 150 

m depth, similar fractures were observed, as shown in Figure 3.21.  At 194.5 m – 195 m 

and 197.2 m - 198.8 m, open fractures were observed with crystal sizes typically 1 - 2 

mm.  
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Figure 3.20 - Hydraulic conductivities measured by packer testing of borehole SP-001 
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Figure 3.21 - Crystals present in an open joint at 197.3 m depth, SP-001 

 

 

 

Figure 3.22 - View of joint openness, 197.3 m depth, SP-001 
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Figure 3.23 - Quartz-lined open joint at 150 m depth, SP-001 

 

Results from analysis of core logging data for borehole SP-001 are shown in Figures 

3.24 through 3.27.  The total number of fractures seen was lower than MC-316.  This 

may be partially due to the triple tube coring process that was used for SP-001.  The 

coring technique minimizes drill induced damage resulting in fewer fractures.   On MC-

316, obvious drill induced fractures were dismissed, however as the author later 

discovered, some drill induced fractures on micro defects with staining were most likely 

included.  On SP-001, many cracks, micro defects and partial fractures were closed (see 

Figure 3.28).  These closed fractures were not counted in this analysis, but because of a 

difference in drilling techniques the same features most likely would have been assessed 

as fractures on MC-316.  This presents an error in comparing the two boreholes, 

primarily due to drilling techniques and assessing the core compared to its in-situ 

condition.      

Due to the lower number of fractures on SP-001, a poorer sample size was available for 

plotting.   Analysis methods from MC-316 still apply on SP-001; however, more 

attention needs to be paid to specific fractures rather than a density of fractures.  Sub-

vertical fractures with staining were encountered in every zone of larger hydraulic 

conductivity.  This observation generally agrees with conclusions drawn from MC-316.  
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Quartz lined crystals appeared in the highest hydraulic conductivity intervals, most 

likely due to their larger apertures.  Both staining and the presence of quartz can 

correspond to a higher hydraulic conductivity.  

Quartz crystals and iron staining are believed to derive from separate origins.  The 

staining observed on the fractures resulted from oxidization reactions that occurred 

when meteoric water, which is oxygen rich, reacted with iron in the sandstone.  Quartz 

crystal growth resulted from hydrothermal processes, which implies that the quartz 

crystals originated when the sandstone was more deeply buried, hence at an earlier time 

than the staining.   



   
 

63 
 

 

 

Figure 3.24 - Total fractures per 5 m interval and hydraulic conductivity versus depth, 

SP-001 
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Figure 3.25 – Sub-vertical fractures per 5 m interval and hydraulic conductivity vs 

Depth, SP-001.  
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Figure 3.26 - Total fractures with stain per 5 m interval and hydraulic conductivity 

versus depth, SP-001 
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Figure 3.27 – Sub vertical fractures with stain per 5 m interval and hydraulic 

conductivity vs Depth, SP-001. 
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Figure 3.28 - Closed stained fracture in core, SP-001 

 

3.4 SUMMARY 

 

General trends in rock mass hydraulic conductivity can be obtained from core logging.  

Staining of sub-vertical fractures and the presence of quartz generally indicate a high 

hydraulic conductivity.  Fractures that appear to have larger apertures may also be 

indicative of a larger flow potential.  Basic logging can yield important data that can be 

cheaply and efficiently collected. Such data can help identify intervals of high inflow 

potential, but not as a predictive tool; packer testing remains the most confident method 

of identifying such intervals
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CHAPTER 4 LABORATORY TESTING 

 

4.1 INTRODUCTION 

 

Core samples were collected during the site visits mentioned in Chapter 3 and shipped to 

the University of Saskatchewan Rock Mechanics Laboratory for further analysis.   

Laboratory testing was conducted to assess the hydraulic conductivity of the fractures 

and matrix in a controlled environment.  The majority of the testing focused on the 

hydraulic conductivity of fractures.  A test was designed in a triaxial cell to measure the 

hydraulic conductivity of core containing sub-vertical natural fractures while mimicking 

in-situ conditions.  Fracture closure was measured to investigate the relationship 

between stress, aperture, and hydraulic conductivity.   

 

4.2 MATRIX TESTING  

 

Analysis of intact rock matrix properties was conducted on four 25 mm diameter core 

samples that were extracted from larger intact samples.  The porosities of these samples 

were measured by the gravimetric method (i.e., based on a comparison of dry mass and 

water-saturated mass). Matrix hydraulic conductivities were measured at nominal 

confining pressure (< 100 kPa) using a Ruska Liquid Permeameter. Table 4.1 displays 

the results of these measurements.
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Table 4.1 – Matrix hydraulic conductivity and porosity values from borehole MC-316 

Depth of Sample (m) Porosity (%) Hydraulic Conductivity 

(m/s) 

306.6 7.7 3.18 x 10-10 

335.4 8.5 1.03 x 10-10 

377.1 6.4 2.8 x 10-11 

377.2 3.0 1.89 x 10-11 

 

 

Dynamic elastic properties were determined on the same four samples using the pulse 

velocities of compressional (p) and shear (s) waves. The tests were conducted and 

analyzed as outlined in ASTM D2845 – 08 (ASTM, 2008).  The results are listed in 

Table 4.2.   

 

Table 4.2 – Dynamic elastic properties of intact samples 

Depth of Sample (m) Bulk Density 

(kg/m3) 

Young’s Modulus 

(GPa) 

Poisson’s Ratio  

306.6 2427 56.7 0.17 

335.4 2403 47.0 0.23 

377.1 2381 62.0 0.18 

377.2 2550 66.6 0.18 
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4.3 FRACTURE TESTING  

 

4.3.1 Sample Selection 

 

Of the core samples brought to the Rock Mechanics Laboratory for further analyses, six 

fractured samples were ultimately selected for hydraulic conductivity testing.  The first 

sample was a trial run using new testing equipment and procedures, complications were 

encountered so no further analysis was done on this sample.     

Table 4.3 presents a summary of the six samples used for fracture testing; photographs 

of these samples are shown in Figures 4.1 through 4.6.  The samples all contained 

fractures that day-lighted on both ends.  Fractures with a variety of attributes (notably 

staining and quartz infilling) were selected, to assess the variability of hydraulic 

conductivity as a function of these attributes. Three of the five samples analyzed in 

detail were fully parted along the fracture plane when they were found in the core box.  

Though the fracture surfaces did not contain any obvious signs of coring and handling-

related damage, it is possible that the mating of their surfaces during the lab testing was 

not identical to in-situ conditions. Two of the samples, though containing a through-

going fracture, were mated (i.e., closed and intact) when found in their core boxes, and 

remained mated throughout sample preparation and testing. As such, it is felt that the 

mating of these fractures during the lab testing should match in-situ conditions. Joint 

Roughness Coefficient (JRC) values were found by scanning the surface of the fractures 

using a laser profilometer and assigning a value to the resulting trace.   Regrettably the 

mated samples were not scanned prior to aperture testing (see section 4.7) which 

rendered surface scanning impossible.  The four available fracture scans are displayed in 

Figure 4.7.  JRC was determined from the amplitude of the fracture profile using 

equation [2.2].  Amplitude was measured as the total difference in height from the 

highest point to the lowest point occurring over the 10 cm section.  Micro roughness ra 

was also measured from the fracture profile and is determined as the largest change in 

amplitude over a 5 mm span on any interval of the scan.  In Figure 4.7, the location of 

the ra calculation is marked with a green square.    
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Table 4.3 – List of fractured samples tested in this work 

Sample 

No. 

Hole Depth (m) Description JRC 

Values 

Micro 

Roughness 

(mm) 

Separated 

on 

fracture 

surface? 
1 MC-316 301.77 - 302.32 Clean  13 0.97 yes 

2 MC-316 335.44 – 335.76 Medium stain 13 1.00 yes 

3 SP-001 132.8 – 133.1 Heavy stain    no 

4 SP-001 150.0 – 150.3 Partially quartz-filled   no 

5 MC-316 306.60 – 306.87 Medium stain, loose sand 

grains 

18 1.26 yes 

6 SP-001 288.7 – 289.0 Very heavy stain 15 1.63 yes 

 

 

 

 

 
Figure 4.1 - Photograph of sample 1 (test run) 
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Figure 4.2 - Photograph of sample 2 (medium stain) 

 

 
Figure 4.3 - Photograph of sample 3 (which was observed to have heavy iron-staining 

after testing, when the sample was pulled apart) 
 

 

 
Figure 4.4 - Photograph of sample 4 (partially quartz-filled) 
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Figure 4.5 - Photograph of sample 5 (medium stain, lose sand grains) 

 

 

 
Figure 4.6 - Photograph of sample 6, prior to cutting ends square for testing (heavy 

stain) 
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Figure 4.7 - Fracture scan lines from lab samples. JRC values are determined by the 

maximum peak-to-trough amplitude over the 10 cm scan.  ra is the largest change in 

amplitude is any 5 mm section of the 10 cm scan   
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4.4 TESTING PROCEDURES  

 

The diameters of the samples tested were 63 mm ( 1 mm), and the lengths (after 

cutting) varied from 97 to 146 mm.  The ends of the samples were cut at a length greater 

than 1.5 times the diameter of the sample. The cut samples were saturated in distilled 

water for a period of 48 hours or more.  Once saturated, each sample was sandwiched 

between a pair of porous stainless steel disks (1 cm thick, each), which distributed pore 

fluid over the surface of each sample end.  A heat shrinkable Teflon jacket was used to 

enclose each sample and the porous disks at its ends.  With the jacket and platens in 

place, the sample was saturated again for a period greater than twelve hours.  A layer of 

elastomer (Skinflex) was set around each end of the Teflon jacket using a purpose-built 

mold, sealing the sample, porous plates, platens, and jacket in place. Figure 4.8 displays 

a picture of the Skinflex setting in a mold around the sample.  Loading platens each 

contained a single pore fluid port near the platen center (to supply or collect fluid).   

Pore fluid was injected through the top platen into the porous plate and distributed into 

the sample.  At the bottom of the sample the fluid was gathered through the porous plate 

into a collection port on the other platen.    

 

A strain chain was placed around the middle of the sample.  The chain was used to 

measure circumferential displacement, which was ultimately used to estimate fracture 

closure (change in aperture) during testing. Figure 4.9 shows sample 2, fully prepped for 

the cell.  

 

Once the sample was connected, the lines were vacuumed to remove all air from the 

system.  The cell was then sealed and filled with oil.  The oil pressure was controlled 

using a syringe pump and a transducer within the cell.  The sample was pressured to 

simulate in-situ pressures of the rock while measuring fracture closure with the strain 

chain. 
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A syringe pump was used to supply a constant flow rate of water to one end of the 

sample.  The other end of the sample was vented to atmosphere.  The flow rate at the 

outlet pipe was measured and compared against the input flow rate, to confirm that 

steady-state flow conditions were reached.  The pressure at the inlet end of the sample 

was measured with a transducer. To correct for pressure drop within the apparatus, a test 

was conducted with no sample (i.e., two porous disks sandwiched between platens), and 

pressure drop as a function of injection rate was measured.   The collected data was then 

corrected for this systematic error in the apparatus. 

 

During initial trial testing for sample 1, the jacket ruptured at high confining pressure at 

a point adjacent to an open fracture segment where there were relatively sharp edges.  In 

the final five tests, two layers of Teflon heat shrink were used to jacket the sample and 

mitigate the potential for leakage of hydraulic oil from the  cell into the sample.  Sample 

six had a relatively large aperture which was covered by thin tin plates to avoid rupture.   

 

Near the end of the test on sample 2, pressure within the sample began to increase, 

unexpectedly.  It was discovered that the oil used to pressurize the sample had 

penetrated between the interface of the Skinflex and the Teflon jacket.  In the 

subsequent four tests, hose clamps were installed and tightened around the Skinflex at 

the Skinflex-Teflon interface, and a bead of silicone sealant that was applied at this 

interface.  
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Figure 4.8 - Skinflex setting in a mold around a fractured core 

 

 
Figure 4.9 - A fully jacketed and instrumental fracture core sample prior to testing.  

Note hose clamps, not shown here, were  placed around the innermost edge of each 

Skinflex jacket for samples 3 through 6. 

Strain chain

Skinflex jacket

Water inlet line

Sample enclosed in 
Teflon jacket

Triaxial cell base

Platen
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The equivalent hydraulic conductivity (Keq) was calculated for each sample tested.  Keq 

was calculated using the corrected pressure drop across the sample, the specified flow 

rate, and the cross sectional-area and length of the sample.  The assumption that the 

relationship between flow rate and pressure was controlled by Darcy’s law was made. 

See section 4.10 for an assessment of flow conditions. 

 

The term equivalent hydraulic conductivity is used here to denote the hydraulic 

conductivity that an intact sample of the same size would possess in order to flow at the 

same rate at the pressure drop that was measured during the test (i.e., the matrix 

permeability of an equivalent continuum). The equivalent hydraulic conductivities 

presented in this chapter may be regarded as the hydraulic conductivity per meter 

squared of cross-sectional area, for an impermeable matrix containing a fracture trace 

length (in the cross-sectional plane) of approximately 20 m (based on a fracture trace 

length of roughly 60 mm for each of the samples tested, with a cross-sectional area of 

roughly 3000 mm2 each). Assuming parallel, equally-spaced fractures oriented normal 

to a cross-sectional plane of rock mass that is 1 m by 1 m, this would correspond to a 

fracture spacing of 50 mm.  As shown in Chapter 5, proper scaling of the conductivities 

measured on these samples to field conditions can be done, if an appropriate fracture 

spacing for a rock mass is known (or assumed). 

 

The goal of the fracture testing was to measure hydraulic conductivities as a function of 

effective confining pressure. A range extending up to the maximum value of mean 

effective in-situ stress for the study site (estimated to be between 6000 and 7000 kPa) 

was used.  It was desired to measure hydraulic conductivities as effective confining 

pressures were cyclically increased then decreased, to assess if hysteresis is observed.  

In some cases, it was not possible to achieve the targeted number of load cycles due to 

test failure (e.g., jacket leakage) or time constraints (e.g., long testing times required for 

low hydraulic conductivity samples).  For the final test (sample 6), the final cycle was 

conducted to a significantly higher effective confining pressure (18000 kPa) in order to 

assess the limits of the testing system. 
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4.5 FRACTURE TESTING RESULTS  

 

 

Figures 4.10 through 4.14 show the equivalent hydraulic conductivities (Keq) measured 

as a function of effective confining pressure (Pc') for samples 2 through 6.  With the 

exception of sample 4, the Keq values measured are orders of magnitude greater than the 

values measured on intact samples.   This suggests that fracture flow is the dominant 

transport mechanism in samples 2, 3, 5 and 6.  As expected, Keq for the fractured 

samples decreased with increasing confinement.   In all cases, Keq measured at 

maximum Pc' was more than an order of magnitude smaller than the initial value, which 

was measured at low Pc'.  For the samples that were subjected to two or more loading 

cycles (i.e., samples 2, 3, 5 and 6), hysteresis was observed; i.e., Keq was less sensitive to 

Pc' upon initial unloading from the maximum Pc' value reached at a given stage in a 

testing sequence.   Upon re-loading, the form of the Keq – Pc' curve was generally similar 

to the unloading curve.  It is suggested that the behaviour observed during unloading is 

likely more representative of in-situ behavior, given that the behavior observed during 

initial loading is affected by the reversal of aperture increase that occurred during coring 

and sample handling.  

 

For samples 2 through 5, which were loaded to a maximum Pc' less than 9000 kPa, the 

general form of the Keq – Pc' curves is concave upwards. For sample 6, which was 

loaded to a maximum Pc' of 18000 kPa, a more complex behavior was observed, with 

more of a concave-downwards form during loading to progressively higher Pc' values.  

This behavior is suggestive of the type of response expected for a porous medium that is 

being loaded above its pre-consolidation stress level. 

 

To provide a consistent basis for comparing Keq values amongst all of the samples, the 

value measured upon reaching a Pc’ value between 6000 and 7000 kPa, for the first 

loading sequence, was recorded and plotted in Figure 4.15. Of these samples, Keq of the 

sample with the heaviest staining (sample 6; 2.3 x 10-6 m/s) was significantly greater 

than the samples with medium staining (samples 2 and 5; 9.9 x 10-8 and 1.3 x 10-7 m/s, 

respectively).   
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The only sample tested with partial infilling of quartz (sample 3) had the lowest Keq 

value.  This is not viewed as a representative result on the whole. Based on core logging 

and packer testing of these boreholes, partial infilling with quartz crystals is believed to 

be an indicator of potentially high hydraulic conductivity.  Once the core of sample 3 

was open is was observed that the fracture was not continuous, hence flow through the 

matrix would have occurred. This was qualitatively confirmed by the core inspection 

conducted during this project, given that partially quartz-filled fractures were observed 

with apertures locally in the vicinity of 2-10 mm. These fractures were noted to 

correspond to high-conductivity zones identified in the packer tests. These samples were 

deemed unsuitable for laboratory testing, however, partly due to the assessment that 

these fracture surfaces had been mechanically damaged during coring and handling, and 

partly because the hydraulic conductivities measured at the core scale would likely have 

been too high to measure.   

 

Samples 3 and 4 were both partially cemented when tested.  Both of the samples were 

separated after the lab testing was completed. Sample 3 showed moderate to heavy 

staining which suggests that it had experienced significant flow in-situ.   
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Figure 4.10 - Equivalent hydraulic conductivity as a function of effective confining 

pressure, sample 2 

 

 

 
Figure 4.11 - Equivalent hydraulic conductivity as a function of effective confining 

pressure, sample 3 
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Figure 4.12 - Equivalent hydraulic conductivity as a function of effective confining 

pressure, sample 4 

 

 

 
Figure 4.13 - Equivalent hydraulic conductivity as a function of effective confining 

pressure, sample 5 
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Figure 4.14 - Equivalent hydraulic conductivity as a function of effective confining 

pressure, sample 6 

 

 

 
Figure 4.15 - Equivalent hydraulic conductivity for each fractured sample, measured 

upon reaching an effective confining pressure between 6000 and 7000 kPa for the first 

time 
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4.6 MEASUREMENT OF FRACTURE CLOSURE  

 

This section describes the procedures used to analyze the change in mechanical fracture 

aperture as a function of effective confining pressure to enable an assessment of the 

relationship between mechanical aperture and hydraulic conductivity.  During the 

experiments, circumferential displacements were measured.  A component of the 

displacements was due to elastic deformation of the intact rock matrix, and a component 

was due to deformation (opening / closing) of the fracture.  In order to determine the 

latter component, it was necessary to subtract the matrix deformation from the measured 

deformation.   

 

Sample 4 had a low hydraulic conductivity and a low change in circumference 

compared to the other samples tested.  When pried apart, it was observed that the 

fracture did not extend entirely through the sample.   The Keq of the sample was 1.9 x 

10-10 m/s, which falls within the range of matrix testing results (1.89 x 10-11 to 3.18 x   

10-10 m/s).  The sample was hence regarded as effectively intact matrix and suitable to 

use as an indicator of matrix compressibility. The effects of compressibility due to 

effective stress were calculated and subtracted from the other samples (2, 3, 5, 6) to 

determine a corrected change in circumference, and in turn a corrected change in 

aperture.     Figure 4.16 illustrates the manner in which the correction was applied for 

one of the samples.  Figure 4.16 a) shows raw circumferential displacement for samples 

3 and 4;  b) displays the corrected circumferential displacement of sample 3 based on 

sample 4; c) displays the resulting change in aperture, which is taken as half of the 

corrected circumferential displacement.     

 

Change in aperture versus the effective confining pressures for samples 2, 5, and 6 are 

shown in Figures 4.17 – 4.19 (sample 3 and 4 are included in Figure 4.16).   
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Figure 4.16 - Illustration of method used to interpret fracture aperture change from 

circumferential deformation measurements: a) measured change in circumference versus 

effective confining pressure for sample 3 and 4 (“intact” sample; deformation due solely 

to matrix deformation); b) change in circumference due solely to fracture deformation 

(matrix deformation subtracted from measured circumferential deformation); c) change 

in aperture versus confining pressure for sample 3. 
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Figure 4.17 - Change in aperture versus effective confining pressure of sample 2.  The 

chain used to measure circumferential displacement used an elastic to create tension. 

During testing of sample 2, creep in the elastic band caused the chain to relax over the 

course of the test, causing the measured change in circumference to creep to a lower 

value.  The elastic was replaced with a spring that prevented this on subsequent tests.  

Graphs from here on dealing with the aperture of sample 2 will only show the 3rd cycle, 

where the creep error was the least. 

 

 

Figure 4.18 - Change in aperture versus effective confining pressure of sample 5 
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Figure 4.19 - Change in aperture versus effective confining pressure of sample 6 
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the results from the tests of samples 2, 3, 5, and 6 are combined on Figure 4.20.  As 
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Figure 4.20 - Measured change in mechanical aperture versus the equivalent hydraulic 

conductivity of samples 2, 3, 5 and 6 
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Based on fracture volume and the length and width of the fracture an average aperture 

was calculated.  Table 4.4 summarizes the calculated apertures, and the corresponding 

hydraulic conductivities measured at effective confining pressures similar to those used 

during the aperture measurements.   

 

 

Table 4.4 – Estimated mechanical aperture values 

Sample Number Average Mechanical 

Aperture, mm 

Measured keq, m/s 

Sample 2 0.270 4.3E-07 

Sample 3 0.279 9.7E-08 

Sample 4 0.770 2.1E-09 

Sample 5 0.127 1.2E-06 

Sample 6 0.277 3.9E-06 

 

 

When comparing aperture measurements and corresponding hydraulic conductivity 

values, one grossly anomalous results is evident; most notably, the high aperture 

measured on sample 4, which had the lowest hydraulic conductivity.  This anomaly is 

deemed to be due to experimental error.  The surfaces on sample 4 were not mated well, 

and a noticeable offset was discovered after the urethane had set.  This would have 

caused a misfit with the asperities, creating an artificially large aperture.      

 

Figure 4.21 shows the hydraulic conductivities of samples 2, 3, 5 and 6 versus their 

respective apertures using the estimated initial average aperture values and aperture 

changes resulting from confining pressure change.  Samples 5 and 6 seem to follow a 

similar trend; however, the results from 2 and 3 do not match up.  Due to the lack of a 

clear and consistent trend for all samples, the data does not completely validate the 

experimental method used for aperture estimation, and the results presented in Table 4.4 

should be regarded with caution. 
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Figure 4.21 - Hydraulic conductivity versus measured aperture 

 

4.8 ASSESSING THEORETICAL APERTURES  
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presented in Chapter 2. In summary, equation 2.7 represents an idealized situation of 
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effects by using micro roughness.  Equation 2.12 adapts equation 2.11 to use JRC as a 

roughness parameter.  To assess these three equations they were graphed against the test 

data generated during this research.  In the first set of graphs, figures 4.22 to 4.24, 

equivalent hydraulic conductivity versus aperture is graphed.  Samples 2, 5, and 6 were 

used for comparison as they are the only samples with micro roughness and JRC 

estimates.  The sample apertures presented were calculated as described in section 4.7. 
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Figure 4.22 - Hydraulic conductivity versus aperture of sample 2                               

where JRC = 13 and ra = 1.00 mm 

 

 

Figure 4.23 - Hydraulic conductivity versus aperture of sample 5              

            where JRC = 18 and ra = 1.26 mm 
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Figure 4.24 - Hydraulic conductivity versus aperture of sample 6  

where JRC = 15 and ra = 1.63 mm 
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first measured value of Keq.  In essence, this approach assumes that each theoretical 

relation is valid for the first measurement, then all changes are measured relative to this 

measurement point. The theoretical relationships determined in this way for samples 2, 

5, and 6, are graphed alongside the corresponding lab measurements in Figures 4.25 to 

4.27, respectively.   

 

The trends of the two relations that use roughness (i.e., equations 2.11 (Louis,1969) and 

2.12 (Scesi and Gattinoni, 2007)), are better aligned with the test data than the parallel 

plate estimate.  This suggests that these equations provide more accurate representations 

of the relationships between hydraulic conductivity and aperture.  Based on Figures 2.24 

to 2.27, Scesi and Gattinoni’s (2007) equation, which is based on JRC, provides a 

slightly closer match to the lab data in two out of three cases. This is noteworthy 

because JRC is a practical and more commonly used roughness parameter in many 

applications.  

 

 
Figure 4.25 - Hydraulic conductivity versus aperture reduction of sample 2 
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Figure 4.26 - Hydraulic conductivity versus aperture reduction of sample 5 

 

 
Figure 4.27 - Hydraulic conductivity versus aperture reduction of sample 6 
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The goal of laboratory testing was to confirm observations made in core logging and 

attempt to obtain comparable hydraulic conductivity values. Unfortunately, the features 

that most likely had the largest hydraulic conductivity were not testable.  The apertures 

seen in the open, quartz-lined fractures were estimated to range from 2 to 10 mm.  To 

estimate the effects of these features, a graph of the three theoretical equations was 

made over this range; see Figure 4.28.  For this calculation, average roughness values 

were assumed (ra  = 1.0 mm and JRC = 10).   

 
Figure 4.28 - Theoretical hydraulic conductivity versus aperture                                

where JRC = 10 and ra = 1.00 mm 

 

It is apparent that there is a significant increase in hydraulic conductivity with aperture.   

The Figure shows the significance of having fractures open more than 1 mm.  This 

supports the hypothesis that the open quartz lined fractures may be very conductive.  

The graph also demonstrated the deviation of the three theoretical methods when pushed 

to extreme values.   
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4.9 LAMINAR FLOW INVESTIGATION  

 

To investigate the validity of assuming a laminar flow, the Reynolds number was 

calculated for sample 6, for which the largest flow rate (10 ml/min) was achieved during 

testing.  Conservatively (for the purpose of this analysis) estimating a hydraulic aperture 

of 0.1mm, at a temperature of 20oC, a Reynolds number of 2.69 was calculated.  This is 

well below the commonly accepted threshold number of 2300 for turbulent flow(Sarkar, 

2004).  Based on Figure 2.11 the lowest threshold for laminar flow is 200, for a rough 

surface.   By either of these estimates, the assumption of using laminar flow appears 

valid.   

 

 

4.10 SENSITIVITY OF FRACTURE ROUGHNESS  

 

The equations used above use fracture roughness as a primary input parameter.  To 

investigate the effect of roughness on fracture hydraulic conductivity, a sensitivity 

analysis was conducted.   Using equation 2.1 (based on Louis, 1969), , hydraulic 

conductivity were calculated over an extreme range of micro roughness values (0.1 mm  

to 10 mm) and graphed against aperture.  The results, shown in Figure 4.29, suggest that 

roughness can affect hydraulic conductivity by several orders of magnitude.  This 

verifies that roughness is an important parameter to consider when characterizing 

fractures.  
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Figure 4.29 – Estimated fracture flow over a range of micro roughness values ra        

 

4.11 SUMMARY  

 

It was verified that the hydraulic conductivity of the matrix of the Manitou Falls 

Formation sandstones of the Athabasca Basin near McArthur River mine site is low 

enough to consider the sandstone as fracture dominated with respect to flow.   Six 

samples were tested  to determine the equivalent hydraulic conductivity, Keq, of 

fractures through the core samples under simulated in-situ conditions.  The heavily 

stained sample showed the highest Keq of the samples tested, which verified the 

identification of the fractures with potentially high hydraulic conductivity based on 

staining.  The fracture containing voids with quartz crystals proved to have poor 

connectivity, hence low hydraulic conductivity.    Since the apertures measured on this 

sample were smaller than 0.2 mm and voids observed in the field were up to 10 mm, it is 

suggested that the lab results are not representative. The presence and shape of the 

euhedral crystals indicate that relatively large fracture apertures most likely exist, hence 
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hydraulic conductivities may be relatively high. Theoretical relations between fracture 

aperture and conductivity were found to be significantly more accurate when fracture 

roughness is accounted for. 
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CHAPTER 5 INTEGRATION OF LABORATORY AND FIELD 

DATA 

 

5.1 HYDRAULOC CONDUCTIVITY AS A FUNCTION OF SCALE OF 

INVESTIGATION  

 

The concept of representative hydraulic conductivity for a bulk rock mass is based on 

the assumption that the volume of investigation of a rock mass is large enough so that 

the behavior of the medium can be described with Darcy’s law.  In a fractured medium, 

this implies that the connectivity of the fractures creates a system that behaves in an 

equivalent manner to a porous medium.  This assumption holds true in many situations 

and was assumed to be valid, at the field scale, for this study.  With decreasing scale of 

investigation, however, individual fractures have a greater influence on overall flow as 

the number of fractures also decreases. This complicates the comparison of small-scale 

measurements (such as the lab testing results presented in Chapter 4) and field-scale 

results. This chapter attempts to upscale the results obtained on fractures tested at the lab 

scale, to assess their relevance at the large scale.  The relationship between depth-related 

stress increase and hydraulic conductivity is also explored. 

5.2 ROCK MASS HYDRAULIC CONDUCTIVITY, Keq-field 

 

As discussed in section 4.4, the equivalent hydraulic conductivity (Keq) values 

interpreted from the lab testing are based on an average fracture spacing of 50 mm (i.e., 

0.05 m). As such, the following equation was used to convert Keq to a field-scale 

equivalent, Keq-field: 

Keq-field = (0.05 / S) * Keq [5.1] 

Where S is the fracture spacing (in m) determined for the rock mass of interest.
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In order to use this equation appropriately, two corrections were required. 

Firstly, in order to compensate for the biasing effect of spacing measurements made 

along a single trajectory (i.e., the borehole axis), the Terzaghi correction was applied to 

get the corrected fracture spacing St: 

𝑆𝑡 = 𝐿 (
sin 𝛼 

𝑓𝑐
)    [5.2] 

 

Where S is the adjusted fracture frequency, L is the length of the interval studied, fc is 

the fracture count for the interval, and α is the average angle of fracture planes measured 

relative to the borehole axis. 

The second correction pertained to the fact that flow measured in the lab was one-

dimensional (i.e., parallel to the core axis, along a single fracture). As noted in Section 

2.2, the majority of flow in the Manitou Falls Formation is believed to be carried by two 

orthogonal, sub-vertical fracture sets. As such, the fracture spacings interpreted from the 

total number of fractures observed in the field data, were multiplied by two prior to 

substitution into equation 5.1.  As such, the Keq-field values resulting from these 

calculations represent the equivalent hydraulic conductivities of the rock mass for flow 

occurring in two orthogonal directions (i.e., parallel to each sub-vertical fracture set, as 

illustrated in the right-hand side of Figure 5.1). Though the bi-linear flow system 

implied by this approach is not identical to the radial flow system assumed in the 

interpretation of packer testing results, it is deemed to be suitable to enable a rough 

comparison between these two data types.  

An equivalent field-scale hydraulic conductivity was calculated for each borehole 

interval containing a sample that was measured in the lab testing program. For each 

sample, a 20 m interval (10 m above and 10 m below the sample depth) was used to 

calculate the fracture spacing and mean fracture angle. The results are listed in 

Table 5.1. 
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Figure 5.1 - Three dimensional flow simplified in a match stick model (after Warren, 

1962 and Aguilera, 1987) 

 

Table 5.1 – List of fractured samples and Hydraulic Conductivity 

Sample 

No. 

Hole Depth 

(m) 

Keq 

(m/s) 

Fracture 

Spacing, 

S (m) 

Flow 

Direction 

Adjusted 

Fracture 

Spacing 

(m) 

Average 

α (o) 

Corrected 

Fracture 

Spacing, St 

(m) 

Keq-field 

(m/s) 

2 
MC-

316 

335.44 – 

335.76 
4.3E-07 3.4 6.7 18 2.06 2.09X10-8 

3 
SP-

001 

132.8 – 

133.1 
9.7E-08 5 10.0 37 4.02 2.4x10-9 

4 
Sp-

001 

150.0 – 

150.3 
2.1E-09 5 10.0 25 2.76 7.61x10-11 

5 
MC-

316 

306.60 – 

306.87 
1.2E-06 20 40.0 7 4.88 2.46x10-8 

6 
SP-

001 

288.7 – 

289.0 
3.9E-06 6.2 12.4 14 1.66 2.35x10-7 
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5.3 COMPARING SCALES OF INVESTIGATION 

 

The field adapted equivalent hydraulic conductivity, Keq-field and the hydraulic 

conductivity from packer tests are show in Figure 5.2.  The results, especially at shallow 

depths, reflect some differences between the two methods.  One difference is in assumed 

flow regimes (bi-linear for the lab testing; radial for the packer testing).  Another 

significant difference comes from the limitations of testing open fractures in the 

laboratory. Several fractures were observed with apertures thought to be several times 

larger than those tested in the lab. The effects of larger apertures were demonstrated with 

the theoretical results in Chapter 4, Figure 4.28. The results are also supported by findings 

of Winkler and Reichl (2014), who concluded that to truly characterize an aquifer tests at 

multiple scales must be conducted.   
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Figure 5.2 - Comparisons of lab and field data. Core samples from lab data originate 

from both MC-316 and SP-001 
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Figure 5.3 contains a compilation of measured hydraulic conductivities over a broad 

range of scales. Packer testing results from MC-316 and SP-001 have been added in 

blue. Lab testing data is shown in red (fractured samples) and green (matrix).   

 

The lab measurements made in this research are in the typical range for the field results.  

The lab-scale values were generally lower than the packer test results.  This can be 

attributed to the fact that fractures responsible for maximum hydraulic conductivity 

values are in a state that could not be sampled and tested in the lab.  This highlights a 

limitation of lab testing in general.   

 

 
Figure 5.3 - Hydraulic conductivity data over a range of scales (after Clauser, 1992) 
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5.4 STRESS AND HYDRAULIC CONDUCTIVITY  

 

A relationship between stress and hydraulic conductivity was observed during lab 

testing.  Increasing effective confining pressure caused fracture closure and a reduction 

in the hydraulic conductivity, though the magnitude of the effect diminished with 

increasing confining pressure.  This is consistent with the relationship between aperture 

(hence conductivity) and stress observed in laboratory data (see sections 4.5 and 4.6), 

and generally reported in rock mechanics literature (see section 2.3.5).  It thus seems 

reasonable to expect that such an effect should occur in-situ, where effective stress 

increases with depth.    

Figure 5.4 shows calculated rock mass hydraulic conductivity versus theoretical depth 

for all five fractured samples that were tested.  Pressure for each test was converted to 

depth assuming a 2:1 horizontal to vertical stress ratio, and an average rock specific 

gravity of 2.4.  All of the samples show a trend of reduced rock mass hydraulic cond
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uctivity with increasing depth due to the closure of the fractures.  The hydraulic 

conductivities from packer tests from 15 drill holes at McArthur River are shown in 

Figure 5.4.  No apparent trends can be seen with depth for the packer test data, and the 

conductivities interpreted from packer testing tend to be significantly greater than the 

lab-derived depth profiles.  It should be noted that in some of the drill holes the packer 

testing methods were not consistent, and testing often focused on the zones presumed to 

have higher hydraulic conductivity.   

 

Figure 5.5 displays compilation of hydraulic conductivity with depth from various 

locations.  It supports the trend predicted using the lab data, as does a study by Rutqvist 

and Stephansson (2002). The depths ranges tested far exceed those conducted in this 

study.  Figure 5.6 is split into two parts; the lower part is labeled with the mechanisms 

acting on the fractures.  All data in the Manitou Falls sandstone falls under the brittle 

deformation part of the graph, but the depth interval analyzed in this study might be too 

small to reveal a trend, especially considering the heterogeneity in fracture attributes and 

spacings. 
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Figure 5.4 – Theoretical rock mass hydraulic conductivity (calculated from laboratory 

data) against depth, compared to packer testing results compiled for 15 drill holes at the 

McArthur River mine site.  
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Figure 5.5 - Hydraulic conductivity with depth (after Ingebritsen and Manning, 1999) 
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5.6 SUMMARY 

 

The scale of interpretation for a given test type is an important factor to consider when 

assessing hydrogeological information.  Testing on the small scale tends to 

underestimate the range of hydraulic conductivity values occurring at the large scale.  

 

For a given fracture, effective stress has been found to influence hydraulic conductivity 

causing a general decrease in hydraulic conductivity with depth due to fracture closure.  

However variations in fracture attributes and spacing can obscure this trend.
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CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 

6.1 CONCULSIONS  

 

General trends in hydraulic continuity can be obtained from core logging data. By 

focusing efforts on indicators of flow, a good understanding of potential inflow can be 

obtained prior to conducting more sophisticated and expensive testing. The core-based 

techniques applied to the Manitou Falls Formation in this work do not give accurate 

estimates of field-scale hydraulic conductivity, but they can identify zones where more 

detailed packer testing and geophysical assessment of the rock are warranted.  In the 

cores studied, it was found that an increase in sub vertical fractures generally indicated a 

potential increase in hydraulic conductivity.  Similarly, fractures showing oxidization or 

other staining (most notably, limonite) tended to be associated with zones of elevated 

hydraulic conductivity.  Open quartz-lined fractures were also observed in zones of high 

hydraulic conductivity.  Based on observations noted for these fractures, it appears they 

have apertures of several millimeters and would be significant conduits of flow. 

Through lab testing it was verified that hydraulic conductivities of the Manitou Falls 

sandstone matrix are low relative to fractures, and the matrix may be considered 

impermeable for most practical applications.  This verifies the author’s initial hypothesis 

that flow in this sandstone is predominantly fracture controlled  

Six fractured core samples were tested in a cell to determine the equivalent hydraulic 

conductivity, Keq, under simulated in-situ conditions.  The heavily stained sample 

showed the highest Keq of the samples tested, which verified this author’s interpretation 

of core logging and packer testing data.  Laboratory testing of the fracture containing 

quartz crystals did not directly confirm observations based on core logging and packer 

testing, as this sample actually had the lowest hydraulic conductivity.  Closer inspection 

revealed that the areas of open aperture in this sample were small (sub-millimeter) and 

poorly connected, compared to other fractures that were observed to be well connected 

with apertures up to 10 mm.  It is presumed that laboratory testing of the latter intervals, 
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had it been possible, would have confirmed that these features are large conduits of flow 

in situ. 

The laser roughness profilometer (LRP) proved to be a quick and easy field tool to 

extract JRC and micro roughness from a fracture.  Equations accounting for fracture 

roughness (e.g., Louis, 1969) proved to be more effective than the smooth-walled 

fracture model for relating fracture aperture to hydraulic conductivity.   

Testing of individual fracture samples is not efficient or the most productive method of 

estimating bulk hydraulic conductivity.  It does highlight the complexity of rock mass 

flow.  At smaller scales individual fractures become more important.  The scale of 

information required is a critical starting point when designing a program to test for 

hydraulic conductivity.  Core logging can be a powerful tool to characterize a rock mass.  

As a drill hole is being advanced attention to the degree of staining, fracture orientation 

and spacing, and indications of open fractures is critical to an efficient packer test 

program.  Once packer testing is complete fractured samples can be tested to gain a 

detailed understanding of the features underlying the hydraulic behavior of the rock 

mass.   

Hydraulic conductivity of a rock mass is generally expected to decrease with depth due 

to the increase of stress, which results in fracture closure.  This trend was not clearly 

observed in this investigation, however, due to rock mass heterogeneity. 
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6.2 RECOMMENDATIONS  

 

It was not feasible to obtain roughness measurements for all of the samples collected.  

More measurements of this type are recommended, and they would provide more insight 

into the relationship between roughness and hydraulic conductivity. 

The pursuit of a method to estimate mechanical apertures with greater precision is 

recommended.  High resolution x-ray techniques have proved reliable in other 

applications, but were not feasible for this project.  A dependable estimate of fracture 

aperture would complement the flow testing that was conducted. 

More investigation of fracture (joint) set orientations should be undertaken to assess if 

three sets truly are consistently present in the Manitou Fall Formation.   

It may be possible to model fracture flow  using distributions of fractures and fracture 

hydraulic conductivity.  In addition to collecting additional field data, it is recommended 

that a more rigorous modeling method for upscaling laboratory and borehole 

measurements should be developed. 

Fractures with clay infilling were not recorded during core logging, as fractures were 

considered either stained or clean.  If clays are present, they may clog fractures and 

reduce flow.  The effects of the clay infilling were not tested or explored during this 

investigation.  Further study on the presence of clay, and its effects on flow, is 

recommended.  
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XRD, SEM, and Elemental Analysis of Five Solid Samples  

University of Saskatchewan  

 

  

Summary of Analyses  

  

Five solid samples were submitted by University of Saskatchewan for bulk X-ray Diffraction 

Analysis (XRD), elemental analysis by X-ray Energy Dispersive Spectrometry (EDS) and 

Scanning Electron Microscopy (SEM).  

  

Quantitative elemental analysis was performed by an Oxford INCA microanalysis system 

attached to a JEOL JSM-6610 scanning electron microscope.  The INCA system was designed to 

obtain standardless quantitative elemental analysis from rough samples by SEM.  The INCA 

system has enhanced light element capabilities, and is able to identify beryllium (Be), and quantify 

boron (B), and carbon (C).  

  

The following Tables, Figures and Plates are included in this report:  

• Table A:  Bulk Fraction X-Ray Diffraction Data  

• Table B:  Comparison of Elemental Composition by EDS and XRD  

• Plates 1 to 5: Photographs and EDS Results  

• Tables 1 to 5: EDS and XRD Results  

• Figures 1 to 5: Bulk X-Ray Diffractograms  

  

The following samples were analyzed:  

•  GR-001:  MC316 321.14 Rust Weathered Surface  

•  GR-002:  MC316 321.14 Grey Weathered Surface  

•  GR-003:  MC316 321.14 Matrix  

•  GR-004:  SP001 288.8 Grey Weathered Surface  

•  

  

GR-005:  SP001 288.8 Matrix  
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Summary of XRD Results  

  

X-ray diffraction analysis was conducted on samples GR-001 to GR-005.  Sample GR-001 consists 

of 98% silicates (mainly quartz) and minor amounts of iron sulphide and iron carbonate scale.  

Samples GR-002 and GR-004 are composed of 100% quartz.  Samples GR-003 and GR005 both 

contain 96% quartz and minor amounts of illite and microcline.  Sample GR-005 also contains 

minor amounts of kaolinite.   

  

Comparison of EDS and XRD Results  

  

In many cases the EDS weight percent calculation for some of the elements is different from the 

XRD weight percent calculation. EDS analysis identifies and quantifies elements present in both 

crystalline and non-crystalline components. XRD analysis only detects elements in crystalline 

compounds because only crystalline components of the sample diffract X-rays. Thus our XRD 

weight percent calculation can only include those elements present in the crystalline compounds. 

It must be emphasized that each element identified by X-ray diffraction analysis should also be 

detected by EDS; however, the reverse is not necessarily true.  

  

Table B summarizes the following comments regarding the comparison of EDS and XRD results.  

  

Sample GR-001 showed a moderate-good  correlation between the XRD and EDS results.  

Minor differences with respect to carbon, oxygen, aluminum, silicon and iron were found in 

sample GR-001.  

• Carbon was measured at 5.68% in the elemental analysis, while XRD analysis detected  

0.05% carbon.  

• In the elemental analysis, oxygen forms 48.02% of the sample, whereas XRD analysis 

calculated oxygen to be 52.54%.  
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• Aluminum represents 2.61% in the EDS analysis, while XRD analysis calculated 

aluminum to be 0.49%.  

• Silicon was measured at 37.96% in the elemental analysis, whereas XRD analysis 

calculated silicon to be 45.34%.  

• Iron represents 3.96% in the EDS analysis, while 0.71% iron was detected in XRD 

analysis.  

The EDS results for carbon, aluminum and iron are greater than the XRD results indicating the 

presence of non-crystalline carbon, aluminum and iron bearing compounds.  The XRD results for 

oxygen and silicon are greater than the EDS results indicating these elements occur in 

wellcrystalline compounds.  

  

Sample GR-002 showed a moderate-good correlation between the XRD and EDS results.  

 Significant differences with respect to carbon and silicon were observed in sample GR-002.  

• EDS analysis detected 20.97% carbon, whereas XRD analysis did not detect carbon.  

• Silicon was measured at 25.67% in the elemental analysis, while 46.74% silicon was 

detected in XRD analysis.  

Minor differences with respect to oxygen, aluminum and iron were noted in sample GR002.  

• In the elemental analysis, oxygen forms 44.20% of the sample, whereas XRD analysis 

calculated oxygen to be 53.26%.  

• Aluminum was measured at 2.05% in the elemental analysis, while XRD analysis detected 

no aluminum.  

• In the elemental analysis, iron forms 4.09% of the sample, whereas XRD analysis did not 

detect iron.  

The EDS results for carbon, aluminum and iron are greater than the XRD results indicating the 

presence of non-crystalline carbon, aluminum and iron bearing compounds.  The XRD results for 

oxygen and silicon are greater than the EDS results indicating these elements occur in 

wellcrystalline compounds.  

  

Sample GR-003 showed a good correlation between the XRD and EDS results.  
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 Minor differences with respect to carbon, oxygen, aluminum and silicon were found in 

sample GR-003.  

• Carbon represents 4.70% in the EDS analysis, while XRD analysis detected no carbon.  

• EDS analysis detected 48.80% oxygen, while 53.07% oxygen was detected in XRD 

analysis.  

• Aluminum was measured at 4.21% in the elemental analysis, while XRD analysis 

calculated aluminum to be 0.69%.  

• Silicon represents 39.50% in the EDS analysis, while XRD analysis detected 45.77% 

silicon.  

The EDS results for carbon and aluminum are greater than the XRD results indicating the presence 

of non-crystalline carbon and aluminum bearing compounds.  The XRD results for oxygen and 

silicon are greater than the EDS results indicating these elements occur in wellcrystalline 

compounds.  

  

Sample GR-004 showed a good correlation between the XRD and EDS results.  

 Moderate differences with respect to carbon and silicon were noted in sample GR-004.  

• Carbon was measured at 17.75% in the elemental analysis, while XRD analysis did not 

detect carbon.  

• EDS analysis detected 31.46% silicon, while 46.74% silicon was detected in XRD 

analysis.  

Minor differences with respect to oxygen and iron were noted in sample GR-004.  

• In the elemental analysis, oxygen forms 44.54% of the sample, whereas XRD analysis 

calculated oxygen to be 53.26%.  

• Iron represents 2.47% in the EDS analysis, while no iron was detected in XRD analysis. 

The EDS results for carbon and iron are greater than the XRD results indicating the 

presence of non-crystalline carbon and iron bearing compounds.  The XRD results for 

oxygen and silicon are greater than the EDS results indicating these elements occur in 

well-crystalline compounds.  

  

Sample GR-005 showed a good correlation between the XRD and EDS results.  
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 Moderate differences with respect to carbon and silicon were observed in sample GR-005.  

• In the elemental analysis, carbon forms 15.31% of the sample, while XRD analysis did not 

detect carbon.  

• EDS analysis detected 33.73% silicon, while XRD analysis detected 45.78% silicon.  

A minor difference with respect to oxygen was observed in sample GR-005.  

•  In the elemental analysis, oxygen forms 48.09% of the sample, whereas XRD analysis 

calculated oxygen to be 53.20%.  

The EDS result for carbon is greater than the XRD result indicating the presence of noncrystalline 

carbon bearing compounds.  The XRD results for oxygen and silicon are greater than the EDS 

results indicating these elements occur in well-crystalline compounds.  

  

GR Petrology usually mounts a ground sample on a glass slide for X-ray diffraction analysis. The 

X-ray beam scans an area of approximately 250mm2; however, the electron beam in the EDS that 

generates the elemental analysis scans a much smaller area of approximately 6mm2. We attempted 

to obtain the elemental analysis from the most representative area of the sample; however, the 

irregular distribution of the materials in the sample may have skewed the EDS results in some 

instances.  

  

Apparent differences in the elemental weigh percent calculation of the above-mentioned elements 

are a function of:  

1) The presence of non-crystalline components in the sample.  

2) The difference in the area analysed by both methods.  
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Description of Samples  

  

 GR-001:  MC316 321.14 Rust Weathered Surface  

  

The scanning electron photomicrograph on the facing page (lower left) shows sample GR-001 

consists of angular, subangular and subrounded, very fine sand size to medium sand size particles.  

The upper left photograph illustrates the bulk sample.  

  

Oxygen (O) and silicon (Si) dominate the elemental spectrograph, respectively forming about 

48.0% and 38.0% of the sample.  Carbon (C), aluminum (Al) and iron (Fe) are moderately 

abundant, respectively forming about 5.7%, 2.6% and 4.0% of the sample.  Trace to minor amounts 

of magnesium (Mg), phosphorus (P), sulphur (S), potassium (K), titanium (Ti) and copper (Cu) 

are present.  

  

The sample generated a good quality diffractogram indicating the sample is mainly composed of 

crystalline compounds. X-ray diffraction analysis shows the crystalline components of the sample 

consist of about 98% silicates (quartz [SiO2], illite-2m1 (nr)  

[(K,H3O)Al2Si3AlO10(OH)2] and microcline [KAlSi3O8]), 1% iron sulphide scale or corrosion 

products (pyrite [FeS2]) and 1% iron carbonate scale (siderite [FeCO3]).    

  

Elemental analysis also suggests the presence of non-crystalline carbon, aluminum and iron 

bearing compounds. Trace volumes of magnesium, phosphorus, titanium and copper bearing 

compounds were detected during elemental analysis.  
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ELEMENTS: 
DOMINANT: O, Si MODERATE: C, Al, Fe 

COMMON: MINOR-TRACE: 

COMPOUNDS: 
Formula Name Percentage 

SiO 
2 

Quartz % 95.6 
K,H ( 

3 
O)Al 

2 
Si 

3 
AlO 

10 
) ( OH 
2 

Illite-2M1 (NR) 2.2 % 
KAlSi 

3 
O 

8 
Microcline 0.7 % 

FeS 
2 

Pyrite 1.0 % 
FeCO 

3 
Siderite 0.5 % 

100.0 % 

COMMENTS: 
The sample generated a good quality diffractogram indicating the sample is mainly composed of crystalline 
compounds. X-ray diffraction analysis shows the crystalline components of the sample mainly consist of silicates 
about ( ). 98 % Iron sulphide scale or corrosion products and iron carbonate scale occur in minor amounts. Elemental 

analysis also suggests the presence of non-crystalline carbon, aluminum and iron bearing compounds. Trace volumes 
of magnesium, phosphorus, titanium and copper bearing compounds were detected during elemental analysis. 

TABLE 1:  EDS and XRD Results 

 University of Saskatchewan;  Sample ID: MC316 321.14 Rust Weathered Surface 

GR 16019-01 2010 

Mg, P, S, K, Ti, Cu 

ABUNDANCE OF COMPOUNDS 
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XRD, SEM, and Elemental Analysis of Five Solid Samples  

University of Saskatchewan  

 

  

 GR-002:  MC316 321.14 Grey Weathered Surface  

  

The scanning electron photomicrograph on the facing page (lower left) shows sample GR-002 

consists of angular, subangular and subrounded, very fine sand size to medium sand size particles.  

The upper left photograph illustrates the bulk sample.  

  

Carbon (C), oxygen (O) and silicon (Si) dominate the elemental spectrograph, respectively forming 

about 21.0%, 44.2% and 25.7% of the sample.  Aluminum (Al) and iron (Fe) are moderately 

abundant, respectively forming about 2.1% and 4.1% of the sample.  Trace to minor amounts of 

sodium (Na), magnesium (Mg), phosphorus (P), sulphur (S), potassium (K), calcium (Ca), titanium 

(Ti), chromium (Cr), manganese (Mn) and copper (Cu) are present.  

  

The sample generated a moderate quality diffractogram indicating the sample is composed of both 

crystalline and non-crystalline compounds. X-ray diffraction analysis shows the crystalline 

components of the sample consist of 100% silicates (quartz [SiO2]).    

  

Elemental analysis also suggests the presence of non-crystalline carbon, aluminum and iron 

bearing compounds. Trace to minor volumes of sodium, magnesium, aluminum, phosphorus, 

sulphur, potassium, calcium, titanium, chromium, manganese, iron and copper bearing compounds 

were detected during elemental analysis.  
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ELEMENTS: 
DOMINANT: C, O, Si MODERATE: Al, Fe 

COMMON: MINOR-TRACE: 

COMPOUNDS: 
Formula Name Percentage 

SiO 
2 

Quartz 100.0 % 

100.0 % 

COMMENTS: 
The sample generated a moderate quality diffractogram indicating the sample is composed of both crystalline and non- 
crystalline compounds. X-ray diffraction analysis shows the crystalline components of the sample consist of % 100 
silicates. Elemental analysis also suggests the presence of non-crystalline carbon, aluminum and iron bearing 
compounds. Trace to minor volumes of sodium, magnesium, aluminum, phosphorus, sulphur, potassium, calcium, 
titanium, chromium, manganese, iron and copper bearing compounds were detected during elemental analysis. 

TABLE 2:  EDS and XRD Results 

 University of Saskatchewan;  Sample ID: MC316 321.14 Grey Weathered Surface 

GR 16019-02 2010 

Na, Mg, P, S, K, Ca, Ti, Cr, Mn, Cu 

ABUNDANCE OF COMPOUNDS 

0.0 % 

                          

0 % 

10 % 

20 % 

30 % 

40 % 

50 % 

60 % 

70 % 

% 80 

90 % 

100 % 
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XRD, SEM, and Elemental Analysis of Five Solid Samples  

University of Saskatchewan  

 

  

 GR-003:  MC316 321.14 Matrix  

  

The scanning electron photomicrograph on the facing page (lower left) shows sample GR-003 

consists of aggregates of angular, subangular and subrounded, very fine sand size to medium sand 

size particles.  The upper left photograph illustrates the bulk sample.  

  

Oxygen (O) and silicon (Si) dominate the elemental spectrograph, respectively forming about 

48.8% and 39.5% of the sample.  Carbon (C), aluminum (Al) and potassium (K) are moderately 

abundant, respectively forming about 4.7%, 4.2% and 2.1% of the sample.  Trace to minor amounts 

of magnesium (Mg), calcium (Ca), titanium (Ti), iron (Fe) and copper (Cu) are present.  

  

The sample generated a good quality diffractogram indicating the sample is mainly composed of 

crystalline compounds. X-ray diffraction analysis shows the crystalline components of the sample 

consist of 100% silicates (quartz [SiO2], illite-2m1 (nr) [(K,H3O)Al2Si3AlO10(OH)2] and 

microcline [KAlSi3O8]).    

  

Elemental analysis also suggests the presence of non-crystalline carbon and aluminum bearing 

compounds. Trace to minor volumes of carbon, magnesium, calcium, titanium, iron and copper 

bearing compounds were detected during elemental analysis.  
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ELEMENTS: 
DOMINANT: O, Si MODERATE: C, Al, K 

COMMON: MINOR-TRACE: 

COMPOUNDS: 
Formula Name Percentage 

SiO 
2 

Quartz % 95.9 
K,H ( 

3 
O)Al 

2 
Si 

3 
AlO 

10 
OH ) ( 

2 
Illite-2M1 (NR) 3.0 % 

KAlSi 
3 
O 

8 
Microcline 1.1 % 

% 100.0 

COMMENTS: 
The sample generated a good quality diffractogram indicating the sample is mainly composed of crystalline 
compounds. X-ray diffraction analysis shows the crystalline components of the sample consist of % 100 silicates. 
Elemental analysis also suggests the presence of non-crystalline carbon and aluminum bearing compounds. Trace 
to minor volumes of magnesium, calcium, titanium, iron and copper bearing compounds were detected during 
elemental analysis. 

TABLE 3:  EDS and XRD Results 

 University of Saskatchewan;  Sample ID: MC316 321.14 Matrix 

GR 16019-03 2010 

Mg, Ca, Ti, Fe, Cu 

ABUNDANCE OF COMPOUNDS 

0.0 % 

                          

% 0 

% 10 

% 20 

30 % 

40 % 

% 50 

60 % 

70 % 

80 % 

90 % 

% 100 
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XRD, SEM, and Elemental Analysis of Five Solid Samples  

University of Saskatchewan  

 

  

 GR-004:  SP001 288.8 Grey Weathered Surface  

  

The scanning electron photomicrograph on the facing page (lower left) shows sample GR-004 

consists of angular, subangular and subrounded, coarse silt size to medium sand size particles  The 

upper left photograph illustrates the bulk sample.  

  

Oxygen (O) and silicon (Si) dominate the elemental spectrograph, respectively forming about  

44.5% and 31.5% of the sample.  Carbon (C) is common, forming about 17.8% of the sample.  Iron 

(Fe) is moderately abundant, forming about 2.5% of the sample.  Trace to minor amounts of 

sodium (Na), magnesium (Mg), aluminum (Al), sulphur (S), chlorine (Cl), potassium (K), calcium 

(Ca), titanium (Ti), chromium (Cr), manganese (Mn), nickel (Ni) and copper (Cu) are present.  

  

The sample generated a moderate quality diffractogram indicating the sample is composed of both 

crystalline and non-crystalline compounds. X-ray diffraction analysis shows the crystalline 

components of the sample consist of 100% silicates (quartz [SiO2]).    

  

Elemental analysis also suggests the presence of non-crystalline carbon and iron bearing 

compounds. Moderate volumes of carbon bearing compounds, as well as trace to minor volumes 

of sodium, magnesium, aluminum, sulphur, chlorine, potassium, calcium, titanium, chromium, 

manganese, iron, nickel and copper bearing compounds were detected during elemental analysis.  
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ELEMENTS: 
DOMINANT: O, Si MODERATE: Fe 

COMMON: C MINOR-TRACE: 

COMPOUNDS: 
Formula Name Percentage 

SiO 
2 

Quartz 100.0 % 

100.0 % 

COMMENTS: 
The sample generated a moderate quality diffractogram indicating the sample is composed of both crystalline and 
non-crystalline compounds. X-ray diffraction analysis shows the crystalline components of the sample consist of 
100 % silicates. Elemental analysis also suggests the presence of non-crystalline carbon and iron bearing 
compounds. Trace to minor volumes of sodium, magnesium, aluminum, sulphur, chlorine, potassium, calcium, 
titanium, chromium, manganese, iron, nickel and copper bearing compounds were detected during elemental 
analysis. 

TABLE 4:  EDS and XRD Results 

 University of Saskatchewan;  Sample ID: SP001 288.8 Grey Weathered Surface 

GR 16019-04 2010 

Na, Mg, Al, S, Cl, K, Ca, Ti, Cr,  
Mn, Ni, Cu 

ABUNDANCE OF COMPOUNDS 

0.0 % 

                            

% 0 

10 % 

20 % 

30 % 

40 % 

50 % 

60 % 

70 % 

% 80 

% 90 

100 % 

141



  

 

0 

5
0
0 

1
0
0
0 

1
5
0
0 

Q
u
a
rtz

 - S
iO

 2 

1
0 

2
0 

3
0 

4
0 

5
0 

6
0 

T
w

o
-T

h
e
ta

 (d
e
g

) 

R
e

d
 - R

a
w

 D
a

ta
 

B
la

c
k
 - T

h
e
o

re
tic

a
l P

a
tte

rn
 

F
ig

u
re

 4
:  G

R
 1

6
0

1
9

-0
4

 2
0

1
0
 

U
n

iv
e

rs
ity

 o
f S

a
s
k
a

tc
h

e
w

a
n
 

S
a

m
p

le
 ID

: S
P

0
0

1
 2

8
8

.8
 G

re
y
 W

e
a
th

e
re

d
 S

u
rfa

c
e
 

142



  

 

S
a

m
p

le
 ID

: S
P

0
0

1
 2

8
8

.8
 M

a
trix

 

E
le

m
e
n
ta

l S
p
e
c
tro

g
ra

p
h
 

0
 

5
 

1
0
 

1
5
 

2
0
 

2
5
 

3
0
 

3
5
 

4
0
 

4
5
 

5
0
 

C
 

O
 

M
g

 
A

l 
S

i 
K

 
C

u
 

1
5

.3
1 

4
8

.0
9 

0
.0

8 
1

.8
4 

3
3

.7
3 

0
.6

3 
0

.3
2 

Q
u

a
n

tita
tiv

e
 E

le
m

e
n

ta
l D

is
trib

u
tio

n
 

143



 

 

XRD, SEM, and Elemental Analysis of Five Solid Samples  

University of Saskatchewan  

 

  

 GR-005:  SP001 288.8 Matrix  

  

The scanning electron photomicrograph on the facing page (lower left) shows sample GR-005 

consists of angular and subangular, coarse silt size to coarse sand size particles.  The upper left 

photograph illustrates the bulk sample.  

  

Oxygen (O) and silicon (Si) dominate the elemental spectrograph, respectively forming about  

48.1% and 33.7% of the sample.  Carbon (C) is common, forming about 15.3% of the sample.  

Trace to minor amounts of magnesium (Mg), aluminum (Al), potassium (K) and copper (Cu) are 

present.  

  

The sample generated a good quality diffractogram indicating the sample is mainly composed of 

crystalline compounds. X-ray diffraction analysis shows the crystalline components of the sample 

consist of 100% silicates (quartz [SiO2], kaolinite [Al2Si2O5(OH)4], illite-2m1 (nr) 

[(K,H3O)Al2Si3AlO10(OH)2] and microcline [KAlSi3O8]).    

  

Elemental analysis also suggests the presence of non-crystalline carbon bearing compounds. 

Moderate volumes of carbon bearing compounds, as well as trace volumes of magnesium and 

copper bearing compounds were detected during elemental analysis.  
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ELEMENTS: 
DOMINANT: O, Si MODERATE: 

COMMON: C MINOR-TRACE: 

COMPOUNDS: 
Formula Name Percentage 

SiO 
2 

Quartz 96.1 % 
Al 

2 
Si 

2 
O 

5 
( OH ) 

4 
Kaolinite 1.7 % 

( K,H 
3 
O)Al 

2 
Si 

3 
AlO 

10 
) ( OH 
2 

Illite-2M1 (NR) 1.7 % 
KAlSi 

3 
O 

8 
Microcline 0.5 % 

100.0 % 

COMMENTS: 
The sample generated a good quality diffractogram indicating the sample is mainly composed of crystalline 
compounds. X-ray diffraction analysis shows the crystalline components of the sample consist of 100 % silicates. 
Elemental analysis also suggests the presence of non-crystalline carbon bearing compounds. Trace volumes of 
magnesium and copper bearing compounds were detected during elemental analysis. 

TABLE 5:  EDS and XRD Results 

 University of Saskatchewan;  Sample ID: SP001 288.8 Matrix 

GR 16019-05 2010 

Mg, Al, K, Cu 

ABUNDANCE OF COMPOUNDS 

% 0.0 

                          

% 0 

% 10 

20 % 

% 30 

40 % 

% 50 

60 % 

70 % 

% 80 

90 % 

100 % 
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Elemental Analysis and Thin Section Photography of Two Solid Samples 

University of Saskatchewan  

 

  

Summary of Analyses  

  

Two solid samples were submitted for Elemental Analysis by EDS and Thin Section Photography 

and Description.  

  

Quantitative elemental analysis was performed by an Oxford INCA microanalysis system 

attached to a JEOL JSM-6610 scanning electron microscope.  The INCA system was designed to 

obtain standardless quantitative elemental analysis from rough samples by SEM.  The INCA 

system has enhanced light element capabilities, and is able to identify beryllium (Be), and quantify 

boron (B), and carbon (C).  

  

The following Tables and Plates are included in this report:  

• Table C:  Elemental Analysis by EDS  

• Plates 1 to 7: Thin Section and SEM Photographs   

  

The following samples were analyzed:  

• GR-003:  MC316 321.14 (Weathered Surface and Matrix)  

• GR-005:  SP001 288.8 (Weathered Surface and Matrix)  
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Elemental Analysis and Thin Section Photography of Two Solid Samples 

University of Saskatchewan  

  

Discussion of EDS Results  

  

Table C shows the results of the elemental analysis.  For each sample, EDS readings for two spots 

on the weathered surface are shown, along with the EDS results for one spot on the internal matrix.  

  

Sample GR-003  

Compared to the matrix, the weathered surface is manganese (Mn) and iron (Fe) rich in the first 

spot shown, and carbon (C) and iron (Fe) rich in the second spot shown.  The first spot also 

contained minor amounts of calcium (Ca) and titanium (Ti).  We expect that some of the carbon 

(C) is organic in origin.  Note that calcium (Ca), manganese (Mn) and titanium (Ti) were not 

detected in the matrix.  Plate 3 shows a macro photograph of the SEM stub with the weathered 

surface shown at N-7 and the matrix shown at E-7 in View A.  

  

Sample GR-005  

In both spots analyzed, the weathered surface is carbon (C), manganese (Mn) and iron (Fe) rich 

when compared to the matrix. The weathered surface also contains trace amounts of sodium (Na), 

phosphorus (P) and chlorine (Cl). We expect that some of the carbon (C) is organic in origin.  Plate 

7 shows a macro photograph of the SEM stub with the weathered surface shown at N-5 and the 

matrix shown at E-9 in View A.  

 

 

 

 

 

 

 

 

 

150



 

 

Thin Section Photomicrographs and Descriptions –  

Plate 1 University of Saskatchewan  
  
  

Sample No. GR-003: MC316 321.14  

  
A-D Views of poorly sorted quartzarenite or quartzose sublitharenite with pores blocked by detrital 

illite clay (large purple arrows) and an iron, manganese and titanium rich pore fill (large 

orange arrows).  The dark brown pore fill characteristic of the weathered surface is likely 

organic rich and thus is not detected by XRD analysis.  Cross polarized view D clearly 

shows monocrystalline quartz grains (solid grey and white) are the principal framework 

component. Photo A PPL x10; Photo B PPL x100; Photos C+D PPL,XPL x32  

  Photo A PPL x10; Photo B PPL x100; Photos C+D PPL,XPL x32  
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Thin Section Photomicrographs and Descriptions –  

Plate 2 University of Saskatchewan  
  
  

Sample No. GR-003: MC316 321.14  

  
A-D Closer views showing brown organic rich pore fill (large purple arrows) associated with the 

weathered surface.  Elemental analysis indicates the pore fill contains higher iron levels 

compared to the interior of the sample.  In addition manganese, calcium, and titanium were 

only detected in the brown weathered material.  XRD analysis suggests the brown 

weathered material contains some volume of illite, siderite and pyrite.  Pore blocking 

detrital illite clay (large orange arrows) significantly lowers porosity (blue) and inhibited 

development of quartz cement (medium black arrows).  Note zircon heavy minerals (D-12, 

View C; J-9, P-3, View D).  Pore filling pyrite (medium purple arrows) locally blocks 

porosity.  

  Photos A-B PPL x100; Photos C-D PPL x200  
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Scanning Electron Photomicrographs and Descriptions –  

Plate 3 University of Saskatchewan  
  
  

Sample No. GR-003: MC316 321.14  

  
A  Macro photograph of SEM stub.  External brown/black weathered surface is visible on two 

pieces of the sample at right and center.   Two lighter colored pieces from interior of sample are 

on the left.  

B-D  Views of weathered surface.  Note fibers (Views C and D) which are likely of organic 

origin.   

  

  Photo A x10; Photo B x100; Photo C x400; Photo D x1000  
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Thin Section Photom icrographs and Descriptions – 

 Plate 4 University of Saskatchewan  
 

  
Sample No. GR-005: SP001 288.8   

  

  
A-D Views of moderately sorted quartzarenite or quartzose sublitharenite with pores blocked by 

detrital illite clay (large purple arrows) and authigenic kaolinite (large red arrows).  Note a 

thinner manganese rich weathering pore fill (large orange arrows).  The dark brown pore 

fill characteristic of the weathered surface is likely organic rich and thus is not detected by 

XRD analysis.  Cross polarized view D clearly shows monocrystalline quartz grains (solid 

grey and white) are the principal framework component.   

  Photo A PPL x10; Photo B PPL x100; Photos C+D PPL,XPL x32  
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Thin Section Photomicrographs and Descriptions –  

Plate 5 University of Saskatchewan 
  

Sample No. GR-005: SP001 288.8   
  
A-D  Closer views showing brown organic rich pore fill (large orange arrows) associated with 

the weathered surface.  Elemental analysis indicates the pore fill contains high levels of 

carbon and manganese, and lower levels of sodium, phosphorus and chlorine; none of 

which were detected in the interior of the sample. Pore blocking detrital illite clay (large 

purple arrows) and associated well formed authigenic kaolinite booklets (large red 

arrows) significantly lower porosity (blue) and inhibited development of quartz cement 

(medium black arrows).     

 Photos A-B PPL x100; Photos C+D PPL,XPL x100  
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 Thin Section Photomicrographs and Descriptions –  

Plate 6 University of Saskatchewan 

  
A-B  Closer views of the brown pore fill, illite (large purple arrows) and kaolinite (large red 

arrows).    

  Photos A-B PPL x200;   
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Scanning Electron Photomicrographs and Descriptions - Plate 7 

University of Saskatchewan  
  
  
  

Sample No. GR-005: SP001 288.8  

  
A Macro photograph of SEM stub.  External brown/black weathered surface is visible on 

piece of the sample at right.  Two  

pieces from interior of sample are on the left.  

B View of weathered surface.    

C-D Views of interior of sample.  View C mainly shows illite and kaolinite rich pore filling clays 

(large red arrows) left behind when the sample was broken apart, with monocrystalline 

quartz (large yellow arrows) visible in a few places.  View D mainly shows quartz 

fragments.  

  Photo A x10; Photo B x200; Photo C x100; Photo D x1000  
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