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ABSTRACT 

In the ewe, one to three antral follicles emerge or grow from a pool of small antral 

follicles (1 to 3 mm in diameter) every 3 to 5 days and reach diameters of ≥5 mm before 

regression or ovulation. Each follicular wave is triggered by a peak in serum 

concentrations of FSH. It is not clear what characteristics of an FSH peak cause 

follicular wave emergence and what aspects of development of a follicular wave are 

regulated by its preceding FSH peak.  

In Experiment 1, we found that the amplitude of FSH peaks decreased, while basal 

serum FSH concentrations increased across the inter-ovulatory interval (P < 0.05). 

However, there were no associated changes in the growth, static or regression phases of 

follicular waves or the number and size of follicles in a wave. In Experiment 2, using 

computer-assisted quantitative echotextural analysis, we found that the numerical pixel 

value (NPV) for the wall of anovulatory follicles emerging in the third wave of the cycle 

was significantly higher than for waves 1 and 2 at the time of wave emergence but it 

decreased as follicles reached maximum follicular diameter (P < 0.05). A tendency for a 

similar pattern for the wall of follicles in the last wave of the cycle was also observed (P 

= 0.07).  

In Experiment 3, treatment with ovine FSH (oFSH) increased the amplitude of an FSH 

peak by 5 to 6 fold. This treatment increased estradiol production (P < 0.05) but had 

little effect on other characteristics of the subsequent follicular wave. Daily injections of 

oFSH (Experiment 4) for four days, resulted in the occurrence of 4 discrete peaks in 

serum FSH concentrations. Each injection of oFSH resulted in the emergence of a new 

follicular wave.   

In Experiment 5, six cyclic ewes received oFSH (0.1 µg/kg, sc) every 6 h for 42 h, to try 

to give a gradual increase in the leading slope of an FSH peak. Serum FSH 

concentrations increased in oFSH treated ewes (P < 0.05) resulting in an additional peak 

between two endogenously driven FSH peaks and therefore, did not give the planned 

gradual leading slope to an FSH peak. Ovine FSH treatment occurred in the early growth 

phase of wave 1 of the inter-ovulatory interval and increased the growth rate of growing 
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follicles in that wave, compared to control ewes (P < 0.05). This apparently induced 

dominance in follicles in wave 1, causing them to suppress wave emergence in response 

to the injected FSH. In Experiment 6, oFSH was infused constantly (1.98 µg/ewe/h, iv, n 

= 6) for 60 h. Infusion of oFSH maintained serum FSH concentrations at a level similar 

to the zenith of a peak. This resulted in a superstimulatory effect with a peak in the mean 

number of large follicles on Day 2 after the start of FSH infusion (P < 0.001).  

A hormonal milieu similar to low serum progesterone concentrations was created by 

treatment of ewes with prostaglandin and medroxyprogesterone acetate (MAP) sponges 

(Experiment 7). This treatment delayed regression of the penultimate follicular wave of 

a cycle. However, the delayed follicular atresia was accompanied by a greater degree of 

apoptosis in somatic cells of follicles growing in the penultimate wave compared to 

those in the final wave of the cycle, when collected one day before expected ovulation. 

In conclusion, trends in basal serum concentrations of FSH and peaks in serum FSH 

concentrations, across the estrous cycle, are associated with changes in the image 

attributes of follicles emerging later in the estrous cycle, perhaps reflecting a greater 

readiness of those follicles for ovulation and formation of CL. The ovine ovary can 

respond to discrete peaks in serum FSH concentrations with the emergence of new 

follicular waves on a daily basis. This led us to conclude that follicular dominance is not 

evident in the ewe and peaks in serum FSH concentrations are likely to be driven by 

some endogenous rhythm that is unrelated to ovarian follicular secretory products. 

However, direct dominance can be induced by giving supplemented FSH during the 

growth phase of a follicle. Extended exposure of ovine ovaries to the serum 

concentrations of FSH found at the zenith of a peak overrides the mechanisms that 

recruit follicles into a wave and induces a superovulatory response in cyclic ewes. 

Finally, an increase in the incidence of apoptosis occurs in antral follicles in sheep that 

have an extended lifespan, prior to any morphological changes detectable by 

ultrasonography. This would seem to cause decreased follicular viability and lowered 

fertility of the oocytes that the follicles contain.  
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CHAPTER 1:   LITERATURE REVIEW 

1.1. Introduction  

The ovary is an important functional unit of the female reproductive system. It is a very 

dynamic organ system, and undergoes major morphological and functional changes over 

a relatively short period of time and in a repeated manner. Intricate processes in the 

ovary, such as follicle formation, oocyte maturation, cellular proliferation, 

differentiation and apoptosis, ovulation and formation of the corpus luteum occur in a 

cyclic manner (estrous or menstrual cycle). The physiological mechanisms regulating 

such phenomena such as the growth of a follicle from 40 µm to 5-6 mm in diameter, the 

associated cytoplasmic and nuclear maturation of the oocyte, selection of ovulatory 

follicles(s), growth of the corpus luteum by about 25 fold in 12 days, and timed luteal 

regression in the absence of pregnancy have been interesting for researchers for many 

years. 

The introduction of real-time ultrasonography led to significant advances in our 

understanding of ovarian physiology. Moreover, developments in cell and molecular 

biological techniques have greatly helped to increase our knowledge of the regulation of 

the growth of ovulatory follicles in several species such as humans, cattle and sheep. 

In the research described in this thesis, certain aspects of the regulation of ovarian antral 

follicular waves were investigated in sheep. Major techniques applied in the 

experimentations described, included transrectal ultrasonography, computer-assisted 

image analysis, radioimmunoassay and TUNEL staining. Literature reviewed in this 

chapter focuses on our current understanding of ovarian follicular development and its 
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regulation in sheep. Where useful information was lacking for sheep, pertinent 

references to the literature for other domestic species, laboratory animals and primates 

have been used. 

1.2. Reproductive cyclicity in the ewe 

A period of reproductive cyclicity starts after puberty in females of most mammalian 

species which provides them with repeated opportunities to become pregnant (Senger 

2005). In animal species, each reproductive cycle is referred to as an estrous cycle. 

Estrus is defined as a state of sexual excitability during which the female is sexually 

receptive for the male to copulate (Senger 2005). In the ewe, estrus lasts for 24 to 48 h, 

depending on the breed (Land 1970a, Land et al. 1973), and occurs recurrently every 14 

to 18 days, with an average cycle length of 17.5 days (Marshall 1904). The length of the 

ovine estrous cycles is remarkably constant from cycle to cycle (McKenzie and Terrill 

1937), with only small differences (≤1 day) among breeds of sheep (McKenzie and 

Terrill 1937) and little effect of age (Asdell 1946, Hafez 1952). Major variations in the 

length of estrous cycles are mainly caused by abnormal function of the reproductive 

system in this species. Longer estrous cycles of about twice the normal length were 

occasionally reported (McKenzie and Terrill 1937). It was suggested that such cycles 

reflected a lack of behavioral estrus and/or ovulation in between two estrous cycles 

(Goodman 1994). The occurrence of long cycles in the ewe can also result from the 

prolonged lifespan of corpora lutea (CL) (O'Shea et al. 1986). Shorter estrous cycles 

were mainly reported during the transition from anestrous to the breeding season and 

during the post-partum period (Bartlewski et al. 1999d, Bartlewski et al. 2000a). The 
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occurrence of these cycles was related to an inadequate luteal phase, caused by improper 

formation of a CL or its premature regression (Hunter 1991).  

A dominant feature of ovine reproductive cyclicity is a season dependent cessation 

(anestrus) and restoration (breeding season) of recurrent estrous cycles (Marshall 1904, 

Hafez 1952). Therefore, the ewe is considered a seasonally polyestrous animal (Hafez 

1952). In most breeds of sheep, normal estrus cycles occur during the autumn and 

winter; however, the length of the breeding season and anestrus vary depending on the 

breed and geographical latitude (Goodman 1994). In the regions of high latitude, the 

breeding season is limited to the period between late summer and winter, while in areas 

closer to the equator, there is no distinct anestrus season and estrous cycles are 

maintained throughout the year (Robinson 1959, Robinson 1980, Robinson 1988). The 

duration of exposure to light or photoperiod is a major determinant of the onset of the 

breeding season or anestrus in sheep (Legan and Karsch 1980). In the ewe, the average 

length of pregnancy is 150 days (Senger 2005); therefore, the annual rhythm of 

reproductive activity favors lambing in the spring, when proper environmental 

conditions support the survival of offspring (Gordon 1997). Although an annual 

reproductive rhythm drives the occurrence of ovine estrous cycles and ovulation 

(Goodman 1994), development of ovarian antral follicles appears to continue throughout 

the anestrus period (Hutchinson and Robertson 1966, Smeaton and Robertson 1971, 

McNatty et al. 1984, McNeilly 1984, Bartlewski et al. 1998).  

The estrous cycle consists of two major phases, the follicular phase and the luteal phase 

(Senger 2005). The follicular phase (about 20% of the estrous cycle) is characterized by 

the presence of growing follicles as the primary ovarian structures and secretion of 
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estradiol as the primary reproductive hormone (Senger 2005). During the luteal phase 

(about 80% of the estrous cycle), corpora lutea (CL) and progesterone are the main 

ovarian structures and reproductive hormone, respectively (Senger 2005). The follicular 

phase can be sub-divided into pro-estrus and estrus (Arthur et al. 1989, Senger 2005). 

Pro-estrus is characterized by a transition in the estroids secreted by the ovary from 

progesterone to estradiol, emergence and growth of ovulatory follicle(s) and a marked 

increase in secretory activity of the entire reproductive system (Arthur et al. 1989, 

Goodman 1994, Senger 2005). Estrus, the period of sexual receptivity and mating, is 

characterized by distinct behavioral symptoms (Senger 2005). During estrus, the ewe 

shows a willingness to accept the ram and ‘stands’ for him to mount and mate her 

(Senger 2005). In the ewe, ovulation occurs 24 to 30 h after the onset of estrus, and is a 

spontaneous process, independent of the act of coitus (McKenzie and Terrill 1937, 

Robertson 1969, Quirke et al. 1979, Goodman 1994). The luteal phase of the estrous 

cycle can also be sub-divided into metestrus and diestrus (Arthur et al. 1989, Senger 

2005). Metestrus, follows immediately after estrus and is characterized by the formation 

of a functional corpus luteum and a hormonal transition from secretion of estradiol to 

progesterone (Senger 2005). Prior to the transformation of the ovulated follicle into a 

CL, a structure called the corpus hemorrhagicum forms at the site of ovulation due to the 

rupture of blood vessels in the follicular wall (Senger 2005).  Diestrus is characterized 

by maximum function of the CL and high progesterone secretion (Senger 2005). 

Reproductive cyclicity is controlled by the neuro-endocrine system, particularly the 

delicate interactions within the hypothalamic-pituitary-ovarian axis (Goodman 1994). 
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1.3. Hormonal profiles during the estrous cycle in the ewe 

The main neuro-endocrine hormones involved in regulation of reproductive cyclicity 

include gonadotropin releasing hormone (GnRH) from the hypothalamus and follicle 

stimulating hormone (FSH), luteinizing hormone (LH), prolactin and oxytocin, released 

by the pituitary gland (Driancourt 2001). Estrogens and inhibins secreted by ovarian 

antral follicles, progesterone and oxytocin produced by CL, and prostaglandin F2α 

(PGF2α) secreted by the uterine endometrium are also important (Scaramuzzi et al. 

1993).   

1.3.1. Secretion of GnRH 

The hypothalamus plays a key role in the regulation of the estrous cycle by secretion of 

GnRH which in turn stimulates the release of the gonadotropins FSH and LH (Arthur et 

al. 1989, Senger 2005). There are two distinct modes of GnRH release from the 

hypothalamus (Clarke 2002b, Clarke and Pompolo 2005). One mode consists of GnRH 

secretion in relatively small pulses lasting about 4 to 5 min (Clarke 2002b). GnRH-pulse 

frequency is greater during the follicular phase of the estrous cycle (1 to 2 per h), 

compared to the luteal phase (1 to 2 per 6 h) (Moenter et al. 1991, Clarke and Pompolo 

2005, Oakley et al. 2009). This mode of GnRH release is referred to as a tonic/episodic 

mode (Senger 2005).  The ventromedial nucleus and the arcuate nucleus are the two 

hypothalamic nuclei identified for tonic secretion of GnRH (Senger 2005). The second 

mode of GnRH release is known as the surge mode (Clarke and Pompolo 2005). The 

preoptic nucleus, the anterior hypothalamic area and the superchiasmatic nucleus are the 

hypothalalmic nuclei that compose the surge center and are involved in surge release of 
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GnRH (Senger 2005). In the absence of progesterone, exposure of the surge center to a 

threshold level of estrogen results in the release of a large amount of GnRH from 

terminals of the neurons located in the surge centre (Clarke 1995a). The surge release of 

GnRH lasts 36 to 48 h and begins prior to and extends beyond the LH surge (Moenter et 

al. 1991, Caraty et al. 2002). In sheep, hypothalamic-hypophyseal portal GnRH 

concentrations during each peak are about 40-fold greater than the basal concentrations 

(Moenter et al. 1991).  

1.3.2. Secretion of gonadotropins 

Although there is general agreement that GnRH regulates the release of both LH and 

FSH, discrepancies in the secretory patterns of LH and FSH are noted both in 

physiologic (Mais et al. 1987, Hall et al. 1992) and pathophysiologic situations (Bishop 

et al. 1972a, Bishop et al. 1972b, Chappel and Barraclough 1976, Kalra 1976, Strobl and 

Levine 1988, Normolle et al. 1997). Gonadotrope cells in the anterior pituitary gland are 

responsible for synthesis and release of the gonadotropins LH and FSH (McNeilly et al. 

2003). In sheep, both LH and FSH have been identified in the same gonadotropes and 

detection of cells expressing only LH or FSH is rare (Taragnat et al. 1998). Release of 

FSH from the gonadotropes occurs mainly through a constitutive pathway with little 

storage, while LH is stored in gonadotropes (McNeilly et al. 2003).  

Release of LH from the gonadotropes is closely tied to the different modes of GnRH 

secretion; therefore, two distinct patterns of secretion are also described for LH; 

tonic/basal release in pulses and a surge release (McNeilly et al. 2003, Senger 2005). 

The gonadotropes have specific membrane receptors for GnRH (Stojilkovic et al. 1994). 
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Pulsatile LH release has been detected throughout the ovine estrous cycle by intensive 

blood sampling, with one pulse every 3 to 4 h (pulse amplitude of 1.6 ng/mL) during the 

mid-luteal phase or every 20 to 30 min just before the preovulatory LH surge (pulse 

amplitude of 0.7 ng/mL) (Baird 1978, Rawlings and Cook 1993). The preovulatory LH 

surge induces ovulation and formation of CL (Goodman 1994). In the ewe, the LH surge 

occurs around 14 h before ovulation and lasts for 8 to 12 h (Scaramuzzi et al. 1970, Bolt 

et al. 1971, Arthur et al. 1989, Moenter et al. 1990). In Western White Face ewes the 

average preovulatory LH surge peak was reported to be about 39 ng/mL (Rawlings and 

Cook 1993) (Fig 1.1., Top panel).       

Based on blood samples collected from the hypothalamic-hypophyseal portal system, it 

appears that secretion of FSH from the anterior pituitary gland follows an episodic and a 

basal (constitutive) release pattern (Padmanabhan and McNeilly 2001).The assessment 

of secretory patterns of FSH in blood samples from peripheral blood vessels is hampered  

by the long half-life of FSH in circulation (≈ 2 h) and the lack of readily available assays 

to detect the different isoforms of FSH (Padmanabhan and McNeilly 2001). No pulsatile 

secretory pattern has been identified for FSH in blood samples collected from peripheral 

blood vessels (Bister and Paquay 1983, Wheaton et al. 1984, Wallace and McNeilly 

1986). The episodic release of FSH seen in the hypothalamic-hypophyseal portal system 

includes both GnRH-associated and non GnRH-associated pulses of FSH (Padmanabhan 

and Sharma 2001). The basal/constitutive portion of FSH secretion is by far the major 

secretory component (Padmanabhan and McNeilly 2001, Padmanabhan and Sharma 

2001) and reflects the availability of translatable FSHβ mRNA (Muyan et al. 1994, 

Farnworth 1995). The occurrence of peaks in serum FSH concentrations with a 4- to 5-d 
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rhythm has been detected in cyclic, anestrous and pregnant ewes (Bister and Paquay 

1983). In the ewe, the duration of each peak in FSH concentrations lasts between 3 to 4 

days (Bartlewski et al. 1999a, Duggavathi et al. 2005a). Peaks in serum FSH 

concentrations are associated with follicular wave emergence (Ginther et al. 1995, Souza 

et al. 1997, Bartlewski et al. 1998, Bartlewski et al. 2000a, Bartlewski et al. 2000b, 

Evans et al. 2000) (Fig 1.2.). A preovulatory surge release of FSH has also been 

described in the ewe (Fig 1.1, Top panel) (Baird et al. 1991, Wheaton et al. 1984). This 

FSH surge reaches a peak magnitude of 4.36 ± 0.39 ng/mL and occurs simultaneously 

with the preovulatory surge release of LH (Rawlings and Cook 1993).  

1.3.3. Regulation of LH secretion 

1.3.3.1. Hypothalamic regulation 

Secretion of LH is closely governed by GnRH release. In sheep, LH pulses are 

invariably preceded or accompanied by GnRH pulses (Levine et al. 1982); this has been 

verified by measurements of GnRH concentrations in samples taken directly from portal 

blood or median eminence perfusates (Clarke and Cummins 1982, Levine et al. 1982). 

The amplitude of LH pulses has also been reported to be correlated with the amplitude 

of GnRH pulses (Levine et al. 1982). It has been shown that some small GnRH pulses 

are not followed by corresponding LH pulses (Clarke and Cummins 1982, Levine et al. 

1982). It has been suggested that these GnRH pulses are involved in the synthesis of LH 

for cellular storage. In the ewe, pulsatile release of LH is also maintained during 

anestrus (Scaramuzzi and Baird 1977, Clarke 1988, Barrell et al. 1992); however, the 
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frequency and the amplitude of GnRH/LH pulses are decreased in the anestrous season, 

compared to the breeding season (Thiery et al. 2002, Clarke and Pompolo 2005).  

1.3.3.2. Pituitary regulation 

LH release occurs primarily through a GnRH-induced pathway. GnRH activates and 

maintains LHβ gene expression (McNeilly et al. 2003, Pawson and McNeilly 2005). 

However, there is little association between LHβ mRNA concentrations in the anterior 

pituitary and plasma concentrations of LH (Pawson and McNeilly 2005). In sheep, LHβ 

transcription even decreases during the follicular phase of the estrous cycle and during 

the LH surge (Brown and McNeilly 1997). Changes in LH release throughout the 

estrous cycle appear to be independent of LHβ gene expression (Pawson and McNeilly 

2005) and to be mainly associated with the function of intra-cellular stores of LH 

(McNeilly et al. 2003). Within the gonadotrope, LH is mainly stored in electron-dense 

granules (Currie and McNeilly 1995) in association with the storage protein 

secretogranin II which organizes formation of these granules (Crawford and McNeilly 

2002, Crawford et al. 2002, Crawford et al. 2004). Exocytosis of the LH granules and 

the number of gonadotropes that participate in LH release are both regulated by GnRH 

stimulation (McNeilly et al. 2003). Movement of LH granules within gonadotropes to 

the cell membrane, a feature referred to as polarization, plays an important role in the 

coordinated release of LH by these cells (Currie and McNeilly 1995, McNeilly et al. 

2003). This effect probably occurs due to increased exposure to estradiol (Thomas and 

Clarke 1997). Any possible role of LH granules in basal release of LH needs to be 

investigated (Pawson and McNeilly 2005). Inhibin and activin appear to have no effect 

on LHβ subunit mRNA expression (Mercer et al. 1987, Gharib et al. 1990).   
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1.3.3.3. Regulation by gonadal steroids 

In the ewe, estradiol and progesterone exert both direct and indirect regulatory effects on 

LH secretion (McNeilly et al. 2003). The amplitude and frequency of LH pulses are 

regulated by estradiol and progesterone, respectively (Bjersing et al. 1972, Karsch et al. 

1979, Goodman and Karsch 1980, Rawlings et al. 1984, Wheaton et al. 1984). With the 

demise of the corpus luteum at the end of the luteal phase, serum progesterone 

concentrations decline; this results in an increase in GnRH secretory pulse frequency 

and accordingly, LH pulse frequency as the negative feedback effect of progesterone is 

removed (Clarke et al. 1987, Moenter et al. 1991, Clarke 1995a, Clarke 1995b). During 

the luteal phase of the estrous cycle estradiol, in concert with progesterone, exerts a 

negative feedback effect, resulting in decreased LH secretion (Moenter et al. 1991). The 

negative feedback effect of estradiol on LH secretion occurs mainly at the level of the 

hypothalamus (Goodman and Karsch 1980, Goodman and Karsch 1981, Goodman and 

Knobil 1981, Clarke et al. 2001, Clarke 2002a, Clarke 2002b). There is also a decreased 

responsiveness of the pituitary gland to GnRH during the luteal phase of the cycle 

(Clarke 1995b). However, during the follicular phase of the cycle, when serum estradiol 

concentrations increase in the absence of progesterone, a ‘switch’ from negative to 

positive feedback occurs and the progressive increase in serum estradiol concentrations 

culminate in the triggering of a preovulatory surge of GnRH and LH secretion (Clarke 

2002a). Concurrently, gonadotropes become remarkably responsive to GnRH (Herman 

and Adams 1990, Clarke 1995a, Clarke 2002a). The preovulatory surge in serum LH 

concentrations, during the follicular phase of the estrus cycle, is clearly triggered by 

decreased progesterone and increased estradiol secretion (Scaramuzzi et al. 1970, Bolt et 
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al. 1971, Baird and Scaramuzzi 1976, Karsch et al. 1980, Jeffcoate et al. 1984, Rawlings 

et al. 1984, Kaynard et al. 1988, Moenter et al. 1990, Joseph et al. 1992, Pawson and 

McNeilly 2005). Estradiol failed to induce an LH surge in ovariectomized ewes treated 

with progesterone (Legan and Karsch 1979); this was due to a lack of high frequency 

GnRH pulses (Legan and Karsch 1979) and a decreased sensitivity of gonadotropes to 

estradiol (Koligian and Stormshak 1977).  

1.3.4. Regulation of FSH secretion 

1.3.4.1. Hypothalamic regulation 

In the ewe, a small amount of FSH is secreted concurrent with the preovulatory 

GnRH/LH surge (Baird and McNeilly 1981, Baird et al. 1981). Collecting samples from 

hypophysial portal (Padmanabhan et al. 1997) or cavernous sinus (Clarke 2002b) blood 

also showed pulses in FSH secretion; however, only a small proportion of GnRH pulses 

were associated with FSH pulses and there was no trace of FSH pulses in peripheral 

blood vessels. Moreover, blocking the GnRH input by GnRH antagonist treatment did 

not interrupt episodic FSH secretion, indicating the existence of GnRH-independent 

FSH pulses (Padmanabhan et al. 2003). It appears that basal/constitutive FSH secretion 

which accounts for the major portion of FSH in circulation, occurs independent of 

pulsatile GnRH stimulation (Padmanabhan et al. 2002). However, a complete blockade 

of GnRH signals, after GnRH agonist treatment, resulted in decreased serum 

concentrations of FSH, associated with reduced mRNA expression for FSHβ subunit in 

the ewe (McNeilly et al. 1991). Moreover, it has been suggested that the frequency of 

GnRH pulses can affect gonadotropin secretion, with low GnRH pulse frequency 
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favoring FSH secretion and high frequency pulses increasing LH secretion 

(Padmanabhan and McNeilly 2001). Therefore, GnRH is essential for FSHβ gene 

expression, but it has only minimal regulatory effects on pulsatile and constitutive 

secretion of FSH. The existence of a separate hypothalamic releasing factor for FSH has 

also been suggested; however, the identity of such a factor is still unknown 

(Padmanabhan and McNeilly 2001). In the ewe, major fluctuations in serum FSH 

concentrations occur rhythmically every 3 to 5 days and are referred to as FSH peaks. 

The mechanisms involved in regulation of the periodicity of FSH peaks needs to be 

investigated in the ewe.  

1.3.4.2. Pituitary regulation 

It has been shown that activins, follistatin and also inhibins can be produced in the 

pituitary gland (Mather et al. 1992, Gregory and Kaiser 2004) and act as autocrine or 

paracrine factors to regulate the production of FSH (Knight and Glister 2001, 

Padmanabhan and Sharma 2001). Intra-gonadotrope activin stimulates transcription of 

the FSHβ subunit (McNeilly et al. 2003). This effect of activin is intensified by a 

synergistic effect with GnRH (Miller et al. 2002, Nicol et al. 2004). Moreover, it has 

been suggested that activin stabilizes FSHβ mRNA (Attardi and Winters 1993). 

Follistatin, produced by the pituitary, is an activin binding protein and hence, can 

negatively affect the action of activin (Farnworth 1995). It has been reported, based on 

in vitro studies, that the bone morphogenetic proteins (BMPs) show an inhibitory effect 

on the secretion of FSH from ovine pituitary gonadotropes (Faure et al. 2005). It has 

been suggested that this effect of BMPs involves preventing the activin-mediated 
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induction of FSH mRNA production and is synergistic with the negative effects of 

estradiol on FSH secretion (Faure et al. 2005). 

1.3.4.3. Gonadal regulation 

Estradiol is a key regulator of FSH secretion in the female (Mann et al. 1990, Baird et al. 

1991, Clarke 2002a), acting directly at the level of the pituitary by suppressing FSHβ 

mRNA transcription (Miller et al. 2002). Estrogen effects are through estrogen receptor 

alpha (ERα) which is present in gonadotropes (Sheng et al. 1998, Tobin et al. 2001). 

Ovarian inhibin plays an important role in the modulation of the action of activin 

(Martin et al. 1988, Baird et al. 1991, Mann et al. 1992). Inhibin binds to the activin type 

II receptor and therefore, blocks the action of activin (Bernard et al. 2001, Bernard et al. 

2002). In sheep, an inverse relationship was found between serum concentrations of 

inhibin A and FSH (Knight et al. 1998). Moreover, immunization against, or injection of 

inhibin, during the ovine estrous cycle, increased or decreased serum FSH 

concentrations, respectively; these effects were exerted via changes in FSHβ mRNA 

levels (Mann et al. 1989, Brooks et al. 1992, Clarke et al. 1993). However, the pattern of 

serum concentrations of inhibin A and the daily fluctuations in FSH concentrations 

associated with antral follicular growth and development in either cyclic (Souza et al. 

1998) or anestrous ewes (Evans et al. 2001a) do not appear to be inversely related. It 

appears that inhibin exerts an overall level of negative feedback on FSH secretion but is 

not involved in the acute regulation of the day-to-day fluctuations in the serum FSH 

concentrations (Baird et al. 1991). Effect(s) of progesterone on FSH secretion are not 

clear. While some authors reported no effects of progesterone infusion on FSH secretion 
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(Dluzen and Ramirez 1987), others reported a suppressive effect of progesterone on FSH 

release from isolated ovine gonadotropes (Tsonis et al. 1986).  

1.3.5. Secretion of estradiol 

In the ewe, estradiol is secreted by antral follicles in a pulsatile manner (Baird 1978). 

There is a temporal association between LH pulses and transient increases in the 

secretion of estradiol-17β in cyclic (Baird and Scaramuzzi 1976, Baird et al. 1976) and 

anestrous ewes (Scaramuzzi and Baird 1977). An increase in estradiol secretion can be 

detected even within 5 min after a pulse of LH (Baird 1978, Martin 1984). Estradiol is 

mainly produced by large (≥5 mm in diameter), non-atretic ovarian follicles (Bjersing et 

al. 1972, Evans et al. 2000). Periodic increases in serum estradiol concentrations have 

also been reported in cyclic ewes, with 3 or 4 peaks (peak amplitude of 4.6 ± 0.6 

pg/mL), lasting 3 to 4 days each (Bartlewski et al. 1999a), during each estrous cycle 

(Scaramuzzi et al. 1970, Cox et al. 1971a, Cox et al. 1971b, Campbell et al. 1995, 

Bartlewski et al. 1999a). Application of frequent ultrasonographic examination of the 

ovaries revealed a synchrony between the occurrence of peaks in serum estradiol 

concentrations and the end of the growth phase of the largest follicle in a follicular wave 

(Souza et al. 1998, Bartlewski et al. 1999a, Bister et al. 1999) (Fig 1.1., Bottom panel). 

Binding of LH to its receptor on the follicular theca cells, enhances synthesis of 

androgens (Senger 2005). Androgens produced in the theca cells, diffuses into the 

granulosa cells, where androgens are used as substrate for the synthesis of estradiol after 

activation of the aromatase enzyme by FSH (Carson et al. 1979, Fortune and Quirke 

1988, Armstrong et al. 1998). During the follicular phase of the estrous cycle, 

maturation of the preovulatory follicles, together with increased expression of LH 
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receptors in both theca (primarily) and granulosa cells, induces increased estradiol 

secretion (Carson et al. 1979, Armstrong et al. 1981, England et al. 1981, Webb and 

England 1982). Estradiol production by the preovulatory follicle(s) increases in response 

to the progressive rise in LH secretion during the LH surge; however, once serum LH 

concentrations exceed a threshold (about 5 ng/mL), the prevulatory follicle(s) is no 

longer capable of responding to LH by producing estradiol (Baird 1978). In sheep, 

serum estradiol concentrations drop within 16 to 24 h of the LH surge and progesterone 

concentrations increase in the follicular fluid at the time of LH surge (Baird 1978, 

England et al. 1981, Wheaton et al. 1988, Campbell et al. 1990, Baird et al. 1991).  

1.3.6. Secretion of progesterone 

Progesterone is produced by the corpus luteum (CL), a temporary endocrine gland which 

usually forms after ovulation by transformation of the follicular cells into luteal cells 

(Juengel and Niswender 1999) (Figure 1.2.). The corpus luteum is composed of small 

and large luteal cells which originate from follicular theca and granulosa cells, 

respectively (Niswender et al. 2000, Senger 2005). By formation and maturation of the 

CL, serum progesterone concentrations increase from the day of ovulation to day 11 

after ovulation and then drop to a nadir by day 15 after ovulation in the ewe (Edgar and 

Ronaldson 1958, Bartlewski et al. 1999a) (Fig 1.1., Bottom panel). Secretion of 

progesterone occurs in a pulsatile manner, with an average of 8 pulses in 24 h during the 

luteal phase (Alecozay et al. 1988). Although there is no temporal association between 

the occurrence of progesterone and LH pulses (Baird and Scaramuzzi 1976), LH is the 

main hormone involved in the regulation of luteal production and secretion of 

progesterone (Schomberg et al. 1967, Niswender et al. 1986). Treatment of ewes with 
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LH caused an increase in progesterone secretion (McCracken et al. 1971, Baird and 

Collett 1973). Furthermore, in hypophysectomized ewes, administration of LH 

maintained luteal function (Kaltenbach et al. 1968). On the other hand, premature luteal 

regression has been reported in normal ewes treated with LH antisera (Fuller and Hansel 

1970). Small luteal cells respond to LH with increased secretion of progesterone 

(Niswender et al. 2000). However, large luteal cells, responsible for most progesterone 

secretion, are not responsive to LH (Goodman 1994).  

Although serum progesterone concentrations appear to vary among different breeds of 

sheep, reported observations have been contradictory. Some authors reported a higher 

serum progesterone concentration in prolific ewes, compared to non-prolific breeds 

(Quirke et al. 1979, Cahill et al. 1981); however, others (Bartlewski et al. 1999d) have 

shown a greater serum progesterone concentrations in non-prolific ewes. The latter 

concept is supported by studies in which sub-luteal serum progesterone concentrations 

prolonged the lifespan of large antral follicles (Johnson et al. 1996, Vinoles et al. 1999) 

and resulted in an increase in ovulation rate of non-prolific ewes (Bartlewski et al. 

2003).  

1.3.7. Secretion of inhibins, activins and follistatin 

Inhibins and activins are members of the transforming growth factor β (TGF-β) 

superfamily which have a disulphide-linked dimeric glycoprotein structure (de Kretser et 

al. 2000, Knight and Glister 2003). Inhibins are composed of a unique α subunit and 

either a βA (inhibin A) or a βB (inhibin B) subunit (Knight and Glister 2001). Follistatin 

is a cysteine-rich monomeric glycoprotein and does not belong to the TGF-β 
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superfamily (Knight and Glister 2001). Follistatin acts as a binding protein to activin 

(Knight and Glister 2001). It has been suggested that follistatin neutralizes the biological 

activities of activin (Mather et al. 1993) and several bone morphogenetic proteins 

(Iemura et al. 1998). In the ewe, circulating concentrations of follistatin do not change 

during the estrous cycle and pregnancy (Xia et al. 2003). Expression of mRNA encoding 

follistatin is similar in ovine granulosa cells of growing preantral, antral and early static 

phase follicles and at different stages of the estrous cycle, but it is low in granulosa cells 

of preovulatory follicles (Tisdall et al. 1994).  

Encoding genes for both inhibin A and B are expressed in the granulosa cells of ovarian 

antral follicles in sheep (Tisdall et al. 1994). It appears that large ovarian follicles are the 

main source of inhibin, since its expression is positively related to the size of follicles 

and their ability to secret estradiol (Campbell and Baird 2001). In ewes with ovarian 

autotransplants, significant changes in the circulating concentrations of inhibin A only 

concurred with the development of the largest follicle of the first follicular wave of a 

cycle (Souza et al. 1998). In another study no association between the development of 

follicular waves and fluctuations in serum concentrations of inhibin A was noted (Evans 

et al. 2001a). Potential effects of inhibin B in regulation of FSH secretion are unclear in 

sheep (McNeilly et al. 2003). Results from in vitro studies have shown that inhibin B is 

about 10 times less potent in suppression of FSH secretion from ovine gonadotropes 

when compared to inhibin A (Robertson et al. 1996).  
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Fig. 1.1. Schematic representation of changes in serum concentrations of FSH, LH 
(Top panel) and progesterone and estradiol (Bottom panel) during an inter-
ovulatory interval in the ewe. Except for high concentrations during preovulatory 
surge, serum LH concentrations remain at basal level throughout the luteal phase. Pulses 
of LH secretion can be detected in samples taken frequently from peripheral blood 
vessels. FSH secretion remains almost non-pulsatile and transient peaks in serum FSH 
concentrations are detectable every 4 to 5 d during an inter-ovulatory interval. Periodic 
peaks in serum estradiol concentrations ocurr during each inter-ovulatory interval and 
those peaks appear to coincide with nadirs in serum concentrations of FSH. Circulating 
concentrations of progesterone increase from day 0 to day 11 and then reach a nadir by 
day 15 after ovulation.  
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1.4. Follicular growth and development 

1.4.1. Folliculogenesis 

In mammals, follicular development consists of a series of events which begin after 

conception by development of the ovary, and terminate with ovulation of a mature 

follicle. Development of the ovary during the prenatal period requires germ cell 

migration, proliferation, and association with somatic cells. These processes lead to 

establishment of a finite reserve of primordial follicles from which follicular 

development occurs over the entire reproductive lifespan (Picton 2001). A primordial 

follicle is composed of a primary oocyte surrounded by a single layer of squamous 

somatic cells (pre-granulosa cells) (Land 1970a). Primordial follicles are located in a 

thin layer in the outermost part of the ovarian cortex (Picton 2001). In ewe lambs, the 

size of this reserve or resting pool of primordial follicles has been estimated to be 

between 40,000 to 300,000 (Driancourt 2001). Some authors have suggested that 

renewal of the resting ovarian follicular pool continues during the postnatal period in 

mice (Johnson et al. 2004) and humans (Bukovsky et al. 2004). This concept needs to be 

further investigated. On a near daily basis a small number of quiescent primordial 

follicles enter into a growing pool and develop into primary follicles (van and Rodgers 

1996). A primary follicle is composed of a primary oocyte surrounded by single layer of 

cuboidal granulosa cells (McNatty et al. 1999, Driancourt 2001). Markers of cell 

proliferation, such as proliferating cell nuclear antigen, have been identified in the 

somatic cells of primary follicles (Wandji et al. 1997, Fortune 2003). When primary 

follicles develop into secondary follicles, they are characterized by having two or three 
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layers of granulosa cells (Driancourt et al. 1991, Fortune 2003). By further growth, 

secondary follicles become tertiary or early antral follicles (more than three layers of 

granulosa cells). Antral follicles have a fluid filled antrum within the granulosa cells 

(Lundy et al. 1999). Antral follicles grow under the effect of gonadotropins and acquire 

steroidogenic capability as mature Graafian follicles (Hay and Moor 1975). 

Development of primordial follicles into preantral and preovulatory stages requires 

several months and several weeks, respectively (Driancourt 2001). In the ewe, growth of 

primordial follicles to the early antral stage (180-250 µm in diameter) takes an average 

of 130 days (Cahill and Mauleon 1980, Cahill and Mauleon 1981, Picton et al. 2008). It 

takes about 24 to 35 days for preantral follicles to reach 0.5 mm, 5 days to reach 2.2 mm 

and about 4 days to reach a preovulatory size of 4.5 to 5 mm in diameter (Turnbull et al. 

1977, McNeilly 1984).  

1.4.2. The early stage of follicular development 

Early follicular development covers the period of follicular growth between the 

primodial and preantral stages (Cahill and Mauleon 1980, Cahill and Mauleon 1981). 

Initiation of growth of primordial follicles can be described in two distinct phases 

(Picton 2001). First there is a transformation of the squamous pregranulosa cells into a 

cuboidal form and their entrance into the cell cycle required for proliferation. The 

second phase is characterized by an increase in the number of granulosa cells (Picton 

2001). Mechanisms involved in the initiation and regulation of early follicular 

development are unclear. It is thought that early follicular development is a gondotropin-

independent stage (McNatty et al. 1981a, McNatty et al. 1981b). In mice, primordial 

follicles do not express functional receptors for FSH and LH (O'Shaughnessy et al. 
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1997). Although expression of FSH receptors has been detected on granulosa cells of 

primary follicles in sheep, their proper functioning through adenylyl cyclase has not 

been confirmed (Fortune et al. 1999). It has been suggested that paracrine activators of 

cyclic AMP (cAMP), such as vasoactive intestinal polypeptide and norepinephrine, are 

involved in the initiation of follicular growth (Mayerhofer et al. 1997). It has been 

shown that primordial follicles and pregranulosa cells respond to activation of the cyclic 

AMP (cAMP) pathways with expression of aromatase and FSH receptors (McGee and 

Hsueh 2000). It is also been suggested by many authors that factors released by the 

oocyte are involved in initiation of primordial follicle growth and that those factors may 

moderate the actions of the gonadotropins FSH and LH on preantral and antral follicle 

growth (McGee and Hsueh 2000, Eppig 2001, Knight and Glister 2006, McNatty et al. 

2007, Webb and Campbell 2007, Webb et al. 2007). Major suggested regulators of 

follicular growth include epidermal growth factor (EGF) (Qu et al. 2000) and its 

receptor; activin (Hulshof et al. 1997, Telfer et al. 2008); insulin like growth factor I 

(IGF-I) and its binding proteins (Thomas et al. 2007); members of the transforming 

growth factor-β (TGF- β) superfamily (Knight and Glister 2006) such as somatic derived 

anti-Mullerian hormone (AMH), oocyte derived growth differentiation factor-9 (GDF-9) 

(McGrath et al. 1995, Dong et al. 1996); and the bone morphogenetic proteins (BMPs) 

especially BMP4, BMP7 and BMP15 (Shimasaki et al. 1999, Otsuka et al. 2001, 

Shimasaki et al. 2003). 

1.4.3. Antral follicular waves in the ewe 

Generally, two stages of ovarian antral follicular growth have been identified in most 

domestic species (Mihm and Bleach 2003). An earlier stage, when antral follicles are 
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independent of gonadotropins, is referred to as a ‘slow growth phase’ (Cahill and 

Mauleon 1981, Lussier et al. 1987). This stage is followed by a ‘fast growth phase’, 

during which, antral follicles require gonadotropin support for further growth and 

development (Sunderland et al. 1994). In sheep, growth of antral follicles up to 2 mm in 

diameter is believed to occur independently of gonadotropins (Driancourt 2001). The 

‘fast growth phase’ of ovarian antral follicles is described by an established follicular 

growth model known as the ‘wave-like growth pattern’. In the ewe, a follicular wave is 

defined as the growth of a single follicle, or simultaneous growth of two or more 

follicles, from 2 to 3 mm in diameter to an ostensibly ovulatory size of ≥5 mm in 

diameter before regression (anovulatory wave) or ovulation (ovulatory wave) 

(Duggavathi et al. 2003a, Duggavathi et al. 2004). Follicles in a wave emerge or grow 

from the pool of small follicles within a period of 24 h (Bartlewski et al. 1998, 

Bartlewski et al. 1999a, Duggavathi et al. 2003a). Some characteristics of follicular 

development are well defined and extensively used by researchers to address the pattern 

of follicular growth and establishment of follicular waves in domestic ruminants 

(Ravindra et al. 1994, Bartlewski et al. 1998, Ginther et al. 1995, Bartlewski et al. 

2000b, Evans et al. 2000, Driancourt 2001, Duggavathi et al. 2004, Adams et al. 2008, 

Peter et al. 2009). These elements, known as follicular dynamics or follicular wave 

dynamics mainly include the following parameters: 

Follicle emergence or follicular wave emergence is the beginning of the growth of a 

group of follicles (in sheep: usually 1 to 3 follicles) from the minimum recordable size 

(2 to 3 mm in sheep) to ≥5 mm in diameter. The growth phase of a follicular wave is the 

period of time between emergence of a follicle (in sheep: from 2 or 3 mm in diameter) 
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and achievement of maximum size. The regression phase refers to the time taken by a 

follicle to regress from the maximum to its minimal recordable size. The time period 

between the end of the growth phase and the onset of the regression phase is defined as 

the static phase (Goodman and Hodgen 1983, Schrick et al. 1993, Ravindra et al. 1994, 

Bartlewski et al. 1999b). In sheep, the number of follicles in a wave is defined as the 

number of follicles growing from 2 or 3 mm to ≥5 mm in diameter in each follicular 

wave. The Growth or regression rate of a follicle is the change in size of a follicle 

during the growth or regression phase divided by the length of that period, respectively. 

Follicle recruitment is characterized by the synchronized growth of a group of ovarian 

antral follicles that become responsive to gonadotropic stimuli and enter a wave. By a 

selection process, a limited numbers of recruited follicles gain support to continue their 

growth to an ovulatory size and avoid atresia. Dominance is referred to as the ability of a 

large selected antral follicle (dominant follicle) of a wave to survive and develop further 

in an endocrine milieu suppressive to other co-existing follicles (subordinate follicles) 

(Ginther et al. 1996).  

Since ovarian follicular dynamics has been most thoroughly studied in cattle (Adams et 

al. 1992, Adams and Pierson 1995), it will be beneficial to compare follicular dynamics 

in sheep to that of cattle. In cattle, the occurrence of either two or three follicular waves 

in an orderly succession during the estrous cycle is most common (Rajakoski 1960, 

Ginther et al. 1996), with an inter-wave interval of 7 to 10 days (Pierson and Ginther 

1988, Savio et al. 1988, Sirois and Fortune 1988, Knopf et al. 1989). Emergence of each 

follicular wave in cattle is preceded by a transient peak in circulating FSH 

concentrations (Adams et al. 1992, Adams et al. 2008). Emergence is marked by an 
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increase in the number of small antral follicles in the ovary. This has been characterized 

as 8 to 41 follicles, 3 to 4 mm in diameter (Adams et al. 1992, Adams and Pierson 1995, 

Adams 1999) or 6 to 9 follicles in the size range of 4 to 6 mm in diameter (Gong et al. 

1993, Ginther et al. 1996).  

During the next few days, one follicle is selected to continue growth (dominant follicle), 

whereas the others become atretic and regress (subordinate follicles) (Ginther et al. 

1989, Adams et al. 2008). The selection process of a dominant follicle is referred to as 

deviation (Ginther et al. 1996), which in cattle, occurs over a time period of about 8 h 

(Ginther et al. 1999). It has been shown in cattle, that all recruited follicles in a wave are 

capable of becoming the dominant follicle (Ginther et al. 1996). When the dominant 

follicle is selected, that follicle suppresses the growth of all other subordinate follicles in 

the existing wave, and prevents the emergence of a new follicular wave (Ginther et al. 

1996, Adams et al. 2008). In cows, the dominant follicle of the last follicular wave of the 

estrous cycle is commonly the ovulatory follicle (8 to 20 mm in diameter) of that cycle 

(Ginther et al. 1996). 

The introduction of real-time ultrasonography and application of frequent transrectal 

ultrasonographic examination of the ovaries, have led to a breakthrough in our 

understanding of follicular wave dynamics in both cyclic and anestrous ewes (Ravindra 

et al. 1994, Schrick et al. 1993,Ginther et al. 1995, Bartlewski et al. 1998, Leyva et al. 

1998, Bartlewski et al. 1999a, Gibbons et al. 1999, Vinoles et al. 1999, Evans et al. 

2000, Duggavathi et al. 2003a,). In the ewe, antral follicular waves occur every 4 to 5 

days during both the breeding season and seasonal anestrus (Ginther et al. 1989, 

Bartlewski et al. 1998, Bartlewski et al. 2000b, Bartlewski et al. 2000c, Evans et al. 
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2000). During the breeding season, 3 or 4 follicular waves commonly occur in each 

estrous cycle (Noel et al. 1993, Ginther et al. 1995, Bartlewski et al. 1999a, Duggavathi 

et al. 2004). As in cattle, emergence of each follicular wave in the ewe has been shown 

to be associated with a preceding transient peak in serum FSH concentrations (Noel et 

al. 1993, Ginther et al. 1995, Bartlewski et al. 1998, Souza et al. 1998, Bartlewski et al. 

1999a, Evans et al. 2000, Evans et al. 2001a, Duggavathi et al. 2003a, Duggavathi et al. 

2004). Emergence of follicular waves has also been reported up to d 26 of pregnancy in 

sheep (Bartlewski et al. 2000a). In the ewe, each follicular wave is characterized by 

emergence of 1 to 3 follicles that grow from 2 to 3 mm to ≥5 mm in diameter before 

regression or ovulation (Ravindra et al. 1994, Ginther et al. 1995, Bartlewski et al. 

1999a, Evans et al. 2000, Vinoles et al. 2001). Unlike in cattle, it has been demonstrated 

in many studies that emergence of follicular waves in sheep are not associated with a 

temporal increase in the number of small (2 to 3 mm in diameter) antral follicles in the 

ovary (Ginther et al. 1995, Gibbons et al. 1999, Evans 2003, Duggavathi et al. 2004). A 

suppressive effect on the growth of small follicles has been suggested for the largest 

follicles of a wave emerging in the early luteal phase (Vinoles et al. 1999) or the 

follicular phase (Ravindra et al. 1994) of the estrous cycle. However, in vitro studies did 

not show any inhibitory effect of the dominant follicle on cell division in small follicles 

in the ewe (Driancourt et al. 1991). Emergence and growth of more than one follicle in 

each follicular wave in sheep indicates that deviation possibly does not take place during 

the development of follicular waves. In the ewe, ovulatory follicles mainly originate 

from the final follicular wave of the cycle, as in cattle (Ginther et al. 1995, Bartlewski et 

al. 1999a); however, some prolific breeds have been shown to ovulate follicles from 

both the final and penultimate waves of the estrous cycle (Bartlewski et al. 1999a, 
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Gibbons et al. 1999). Again, in contrast to cattle, the presence of a large healthy follicle 

at the time of FSH treatment did not influence the consequent ovulation rate in sheep 

(Driancourt et al. 1991, Gonzalez-Bulnes et al. 2002a); indicating that the mechanism of 

dominance described in cattle is not as active in sheep (Ginther et al. 1989).  

1.5. Hormonal control of antral follicular growth and development  

1.5.1. Gonadotropic hormones 

Gonadotropins play a central role in the regulation of antral follicular growth and 

development (Baird and McNeilly 1981, Ireland 1987, Picton et al. 1990). In sheep, 

expression of FSH receptors has been reported as early as the primary follicle stage 

(Tisdall et al. 1995). The quantity of FSH receptors increases as a follicle grow to ≥2 

mm in diameter (Carson et al. 1979). In large preantral follicles LH receptors can be 

detected in the theca cells (Logan et al. 2002). In sheep, LH receptors are also expressed 

in granulosa cells of growing follicles but only when antral follicles are about 4 mm in 

diameter (Logan et al. 2002). It has been shown that both FSH and estradiol can induce 

synthesis of LH receptors by the granulosa cells (Uilenbroek and Richards 1979, 

England et al. 1981). These findings suggest that earlier stages of antral follicular growth 

are mainly FSH dependent, while terminal stages of antral follicular growth are 

controlled by LH (Campbell et al. 1995). In GnRH-suppressed ewes, treated with a 

GnRH agonist, FSH alone, but not LH alone, can stimulate the growth of follicles to a 

prevulatory size (Picton et al. 1990). Withdrawal of FSH in the presence of LH results in 

the maintenance of preovulatory follicles in 50 to 55% of GnRH-antagonist treated ewes 

(Campbell et al. 1999). As in cattle, it has been shown by many authors, that emergence 
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of each follicular wave in the ewe is preceded by a transient peak in serum FSH 

concentration, during both the breeding season (Ginther et al. 1995, Bartlewski et al. 

1999a, Bister et al. 1999, Bartlewski et al. 2000b, Evans et al. 2000, Duggavathi et al. 

2005a, Duggavathi et al. 2005b) and seasonal anestrus (Bartlewski et al. 1998, 

Bartlewski et al. 2000c, Evans et al. 2001a). 
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Fig. 1.2. Schematic demonstration of ovarian antral follicular waves and formation 
of a corpus luteum (CL) during an inter-ovulatory interval. Four follicular waves 
are shown here. In sheep, a follicular wave is defined as the growth of 1 to 3 follicles 
from the pool of small follicles (2 to 3 mm in diameter) in the ovary to ≥5 mm in 
diameter, followed by regression (anovulatory wave) or ovulation (ovulatory wave). 
Emergence of each follicular wave is associated with a transient peak in serum FSH 
concentrations (dark blue line) preceding that wave. * indicates preovulatory FSH surge 
that is coincidental with preovulatory LH surge (not shown). The corpus luteum forms 
by transformation of follicular cells (after ovulation) into luteal cells. Regression of the 
CL starts approximately 10 days after ovulation in the ewe and initiates the cascade of 
events that lead to the next ovulation. 
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1.5.2. Gonadal steroids  

Based on the hypophysectomized rat model, it has been suggested that ovarian estrogens 

increase the response of ovarian follicles to gonadotropins (Richards 1994). Further 

studies in rodents confirmed that estradiol is required for the early stages of 

folliculogenesis (Findlay et al. 2000, Richards 2001, Britt and Findlay 2003). Moreover, 

treatment with estradiol has been shown to increase synthesis of LH receptors in 

granulosa cells of mature ovarian follicles in rats, via a synergistic effect with FSH 

(Richards et al. 2002). Estradiol treatment in sheep (Meikle et al. 2001) and cattle (Bo et 

al. 1993) induced atresia of large antral follicles and resulted in emergence of a new 

follicular wave.  

Progesterone may alter follicular development in response to gonadotropins in both CL-

bearing and non-CL-bearing ovaries (Rexroad and Casida 1977, McLeod and Haresign 

1984, Hunter and Armstrong 1987, Scaramuzzi and Downing 1999). It has been shown 

that subluteal or submaximal concentrations of progesterone prolonged the lifespan of 

large antral follicles in cyclic ewes (Johnson et al. 1996, Vinoles et al. 1999). Some 

authors reported a lower circulating serum concentration of progesterone during the 

luteal phase of the estrous cycle in prolific ewes, compared to non-prolific breeds 

(Bartlewski et al. 1999a). This was associated with a greater ovulation rate in prolific 

ewes, with follicles from the penultimate wave have a prolonged lifespan and ovulating 

with those growing in the final wave of the estrous cycle (Bartlewski et al. 1999a, 

Gibbons et al. 1999). Whether this effect of progesterone is mediated by changes in LH 

pulse frequency is not clear (Leyva et al. 1998, Bartlewski et al. 2003).  
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1.5.3. Paracrine regulators of follicular growth 

Some of the more frequently described paracrine/autocrine factors that have been 

suggested to affect the growth of antral follicles in sheep include ovarian inhibins and 

activins (Cahill et al. 1985, Findlay 1993); bone monrphgenetic proteins (BMPs) (Souza 

et al. 2002); transforming growth factor α (TGFα) (Teerds and Dorrington 1992); 

epidermal growth factor (EGF) (Skinner et al. 1987); and insulin like growth factors and 

their binding proteins (Monget and Monniaux 1995, Monget et al. 2002).  

The granulosa cells of ovine antral follicles secret inhibin (Knight and Glister 2001) and 

therefore, it can be detected in follicular fluid in high concentrations (Tsonis et al. 1986). 

In the presence of gonadotropins, inhibin increased the steroid production of ovine 

granulosa cells in vitro (Campbell et al. 1995). It has been shown that activin induces the 

proliferation of rat granulosa cells in vitro (Miro and Hillier 1996). In an activin 

knockout mice model, follicular development was arrested at an early antral stage 

(Matzuk et al. 1996). These evidences suggest an important role for activin in regulation 

of granulosa cell proliferation. In the ewe, BMPs are secreted by follicular theca cells 

(Liao et al. 2003, Shimasaki et al. 2003) and the oocyte (Eppig 2001). In sheep, BMPs 

appear to be involved in granulosa cell differentiation (Souza et al. 2002). In vitro 

studies using immature rat ovaries have shown that follicular theca cells secret TGFα 

(Teerds and Dorrington 1992) and EGF (Skinner et al. 1987), while their respective 

receptors can be detected on the follicular granulosa cells in sheep. In ovary 

autotransplanted ewes, infusion of antral follicles with TGFα acutely suppressed 

estradiol, inhibin and androstendione production and was followed by atresia of large 

antral follicles (Campbell et al. 1994). In cyclic ewes, EGF treatment suppressed 
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estradiol-17β production and hence, inhibited the preovulatory LH surge and behavioral 

estrus (Radford et al. 1987a, Radford et al. 1987b). Suppressed inhibin and estrogen 

production by granulosa cells was also observed in sheep when EGF was directly 

infused into the ovarian artery (Murray et al. 1993). EGF has been shown to sustain the 

health and viability of activated ovine primordial follicles in vitro (Andrade et al. 2005).  

The IGF system is composed of two ligands (IGF-I and II), two receptors and at least six 

binding proteins (IGFBPs) that control the bioavailability of the ligands (Hunter et al. 

2004, Silva et al. 2009). It has been shown that all components of the IGF system are 

expressed in both healthy and atretic follicles in sheep (Munoz-Gutierrez et al. 2005, 

Hastie and Haresign 2006). A simultaneous expression of mRNA encoding components 

of the IGF system has been also detected in the ovine ovary throughout both the 

breeding and non-breeding seasons (Hastie et al. 2004, Hastie and Haresign 2006). IGF-I 

is produced by the follicular granulosa cells (Monget et al. 2002) and its concentration in 

follicular fluid is high during the growth phase of large follicles in sheep (Monget et al. 

1993). In sheep, it has been shown that IGF-I mainly stimulates the proliferation of 

granulosa cells from small follicles, whereas, it increases secretion of progesterone by 

granulosa cells from large follicles (Monniaux and Pisselet 1992, Monget and Monniaux 

1995). Proteolytic degradation of IGFBPs has been also shown to change during the 

growth and atresia of antral follicles in the ewe (Besnard et al. 1996a, Besnard et al. 

1996b). In cattle, IGF-I plays an important role to increase the sensitivity of small antral 

follicles to gonadotropins and acts synergistically with FSH to stimulate follicular 

development (Fortune et al. 2001, Monget et al. 2002). An FSH-dependent regulatory 

mechanism for expression of IGFBPs has been suggested in cattle (Armstrong et al. 
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1998). It appears that the IGF system mediates the preparation of the selected bovine 

dominant follicle to survive and develop under conditions of decreasing FSH and 

increasing LH availability in cattle (Silva et al. 2009). However, more elucidation is 

required regarding the relevance and function of this system for follicular development 

in the ewe.   

Local effects of the CL on follicular development have been investigated in sheep. It has 

been suggested that CL increased the number of all visible follicles in the ovine ovary 

(Dailey et al. 1982). However, other reports showed that the presence of a CL locally 

suppressed the number of follicles ≤3 mm in diameter, while the number of follicles >3 

mm in diameter was not affected (Bartlewski et al. 2001b).  

1.6. Transrectal ultrasonography  

Introduction of real-time ulatrasonographic imaging of the reproductive tract has 

profoundly influenced reproductive research and clinical diagnostics (Pierson and 

Adams 1995). Besides its unique diagnostic applications, ultrasongraphic imaging of the 

reproductive tract allows repeated and non-invasive observations of the same individual. 

In animal species, application of transrectal ultrasonographic examination of the 

reproductive tract was first introduced in the 1980’s and initially used in cattle and 

horses (Ginther 1983, Pierson and Ginther 1984a, Pierson and Ginther 1984b, Adams et 

al. 1987). A few years later, this technique was adapted to study ovarian follicular and 

luteal dynamics in sheep (Schrick et al. 1993, Ravindra et al. 1994, Ginther et al. 1995). 

Some initial attempts failed to show a distinct wave pattern of follicular development in 

sheep (Schrick et al. 1993). However, application of more specific definitions in sheep 
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to characterize the small (2 to 3 mm in diameter) or the ovulatory sized (≥5 mm) 

follicles demonstrated a clear wave-like pattern of follicular development in this species 

(Ginther et al. 1995, Bartlewski et al. 1998, Leyva et al. 1998, Souza et al. 1998, 

Gibbons et al. 1999, Duggavathi et al. 2004,).  

1.6.1. Computer-assisted image analysis 

Computer-assisted analysis of ultrasound images is a valuable extension to 

ultrasonography (Singh et al. 2003). Ulatrasonography is based upon the ability of body 

tissues to reflect or transmit high frequency sound waves (Pierson and Adams 1995). An 

ultrasound image is a two dimensional array of picture elements known as pixels 

(Ginther 1995). Each pixel represents one of 256 shades of grey ranging between 0 

(black) and 255 (white) (Singh et al. 2003). The human eye is capable of distinguishing 

among only 18 to 20 shades of grey (Singh et al. 2003); therefore, quantitative 

evaluation of the changes in the ultrasonographic appearance of the tissue (echotexture) 

is not feasible by the human eye. Complex computer algorithms were designed in order 

to objectively analyze and quantify the range of 256 shades of grey of pixels in 

ultrasound image echotexture (SYNERGYNE Version 2.8®, Saskatoon, SK, Canada) 

(Singh et al. 2003). Image attributes of follicles, representing histomorphology, can be 

utilized to assess stage of development and aspects of physiological function (Singh et 

al. 2003). Image analysis provides investigators with greater quantitative information on 

the echotextural dynamics of antral follicles (Tom et al. 1998b) and CL (Tom et al. 

1998a, Duggavathi et al. 2003b,). The validity of image analysis to predict the 

physiologic status of ovarian follicles has been tested in domestic species, mainly cattle, 

by evaluating correlations among ultrasound image characteristics and histomorphologic 
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and functional attributes of follicles and oocyte viability (Kastelic et al. 1990, Singh et 

al. 2003).  

1.7. General objectives 

With the background information reviewed above, here is a list of general objctives that 

were addressed in the research work described in this thesis: 

Identification of the various phases of the lifespan of follicles (growing, static and 

regression phases) is limited to perform serial ultrasonographic examinations of the 

ovaries on a daily basis. Using computer-assisted image analysis, our first objective was 

to determine if ultrasonographic image attributes changed during development and 

regression of antral follicles in follicular waves in the normal cyclic ewe. Since 

subsequent waves develop at different phases of the cycle and therefore under different 

endocrine milieus, our second objective was to investigate if image attributes of the 

follicular wall and antrum, varied amongst antral follicles emerging at different stages of 

the inter-ovulatory interval. 

Peaks in serum FSH concentration are essential for follicular wave emergence. 

However, it is not clear that what characteristics of FSH peaks (e.g. Height, duration, 

shape) are essential for wave emergence, growth and function. Our third objective was 

to see if the peaks in FSH secretion that precede follicular waves change across the inter-

ovulatory interval and to see if that is accompanied by alterations in any of the 

characteristics of the follicular waves that follow each FSH peak. We hoped this would 

indicate parameters of FSH secretion critical for follicular wave emergence and growth. 

Our fourth objective was to investigate the effects of a 5 to 6 fold increase in FSH peak 
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amplitude, compared to control, untreated ewes, on ovarian follicular wave dynamics in 

cyclic ewes.  

The existence of follicular dominance is unclear in the ewe. Therefore, our fifth 

objective was to test the presence of dominance. This was done by testing whether the 

presence of a large growing follicle in the ovary would suppress emergence of a new 

follicular wave in response to injection of FSH. In addition, we examined how 

frequently follicular waves could be induced by injections of oFSH.  

The FSH peaks that precede the emergence of ovarian follicular waves in the ewe appear 

to vary in characteristics, such as peak height, duration and the shape of the leading and 

trailing slopes of the peak. However, peaks in serum FSH concentrations, with different 

characteristics, can trigger emergence of follicular waves when they reach a required 

threshold. Our sixth objective was to see if a very gradual increase in the leading slope 

of an FSH peak would be detected by the ovary as a proper signal to stimulate 

emergence of a new follicular wave.  

Peak in serum FSH concentrations could be simply defined as a temporary and gradual 

rise in basal concentrations to the threshold levels required for emergence of a follicular 

wave. It is not clear whether a discrete peak is required to signal a follicular wave or 

merely an increase in basal concentrations of FSH to a threshold value. Our seventh 

objective was to see if raising basal serum concentrations of FSH to the concentrations 

seen at the zenith of a peak and maintaining it for several days would allow multiple 

follicle waves to emerge.  
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In prolific breeds of ewe, ovulation of follicles recruited from both final and penultimate 

waves of the cycle has been proposed as the mechanism of increased ovulation rate. The 

prolonged lifespan of follicles growing in the penultimate wave of the cycle assures their 

presence at the time of ovulation. Mechanisms controlling the increased survival of 

penultimate wave follicles in prolific breeds of ewe have not been studied. Using an 

extended follicular lifespan model in the ewe, introduced by Bartlewski et al. (2003), we 

investigated the susceptibility of follicles with a longer lifespan to apoptosis. Our eighth 

objective was to quantify and compare the degree of apoptosis in aged follicles and 

follicles with a normal lifespan in cyclic ewes. 
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CHAPTER 2:  HYPOTHESES 

Ultrasound image attributes of antral follicles will change with the stages of 

development and regression within a follicular wave and will also differ amongst the 

different follicular waves in an estrous cycle. 

Characteristics of the FSH peaks vary across the inter-ovulatory interval and this affects 

the growth patterns of follicles in the following follicular waves. 

An increase in the endogenous FSH peak amplitude to a supra physiological level by 

administration of oFSH will affect the number of follicles recruited into and the growth 

characteristics of the following follicular wave. 

The ovine ovary is capable of responding to frequent, even daily peaks in serum FSH 

concentrations with emergence of a new follicular wave, indicating a lack of follicular 

dominance.  

A new follicular wave with normal follicular dynamics would emerge after an induced 

FSH peak with a gradual leading slope. 

Maintaining elevated basal serum FSH concentrations would induce continuous 

emergence of new follicular waves in the sheep ovary. 

The aged antral follicles of the penultimate wave of the cycle in ewes given 

prostaglandin and MAP will show a greater degree of follicular apoptosis compared to 

follicles in the final wave of the cycle. 
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CHAPTER  3: CHARACTERISTICS OF PEAKS IN SERUM 
CONCENTRATIONS OF FOLLICLE STIMULATING HORMONE (FSH) AND 
ESTRADIOL AND FOLLICULAR WAVE DYNAMICS DURING THE INTER-

OVULATORY INTERVAL IN CYCLIC EWES* 

Toosi BM, Seekallu SV, Barrett DMW, Davies KL, Duggavathi R, Bagu ET and 
Rawlings NC 

3.1. Abstract 

There are 3 or 4 follicular waves in the inter-ovulatory interval of cyclic ewes. Each 

follicular wave is preceded by a transient peak in serum FSH concentrations. Serum 

concentrations of estradiol also increase concurrent to the growth of follicle(s) in each 

wave. In the present study we investigated the patterns of follicular wave development 

and characteristics of FSH and estradiol peaks in all of the follicular waves of the inter-

ovulatory interval and after induction of a supra-physiologic FSH peak in cyclic ewes. In 

Experiment 1, nineteen ewes underwent daily ovarian ultrasonography and blood 

sampling for a complete inter-ovulatory interval. In Experiment 2, seven ewes received 

two injections of oFSH, 8 h apart (1µg/kg; sc) at the expected time of the endogenous 

FSH peak preceding the second follicular wave of the inter-ovulatory interval. In 

Experiment 1, the amplitude of the FSH peaks decreased (up to 50%), while basal serum 

FSH concentrations increased across the inter-ovulatory interval (P < 0.05). Maximum 

follicular diameter was greater (P < 0.05) for wave 1 and 4 (6.0 ± 0.3 and 6.1 ± 0.2 mm, 

respectively) than in waves 2 and 3 (5.3 ± 0.1 and 5.4 ± 0.3 mm, respectively). Lifespan 

was greater for follicles in wave 1 compared to other waves (P < 0.05). Treatment with 

ovine FSH increased the amplitude of an FSH peak by 5 to 6 fold. This treatment 

increased estradiol production (P < 0.05) but had little effect on other characteristics of 

                                                 
* Theriogenology (In Press) 
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the subsequent follicular wave. We concluded that changes in the amplitude and 

duration of the peaks in serum concentrations of FSH that precede follicular waves 

across the inter-ovulatory interval, do not influence the characteristics of the following 

follicular waves. 

3.2. Introduction  

In the ewe, development of ovarian antral follicles occurs in a wave-like pattern (Noel et 

al. 1993, Ravindra et al. 1994, Ginther et al. 1995, Souza et al. 1997, Bartlewski et al. 

1999a, Evans et al. 2000, Driancourt 2001). One to three follicles emerge or grow 

further from a pool of small follicles (1 to 3 mm in diameter) reaching ≥5 mm in 

diameter before regression (anovulatory wave) or ovulation (ovulatory wave) (Ginther et 

al. 1995, Bartlewski et al. 1999a, Driancourt 2001). The average inter-wave interval is 3 

to 5 days, with 3 or 4 follicular waves in the inter-ovulatory interval of cyclic ewes 

(Bartlewski et al. 1999a, Ginther et al. 1999).  Development of each follicular wave is 

associated with a transient peak in serum FSH concentrations, lasting 3 to 4 days with 

the FSH peak zenith occurring within 24 h of wave emergence (Ginther et al. 1995 

Bartlewski et al. 1998, Bartlewski et al. 1999a, Bartlewski et al. 2000b, Driancourt 

2001). Serum concentrations of estradiol also increase concurrent to the growth of 

follicle(s) in each wave, with a peak in serum estradiol concentrations occurring around 

the end of the growth phase of the largest follicle in the wave (Bartlewski et al. 1999a, 

Bartlewski et al. 2000b, Driancourt 2001).   

Peaks in serum FSH concentration are essential for follicular wave emergence (Ginther 

et al. 1995, Bartlewski et al. 1999a, Bartlewski et al. 2000b, Driancourt 2001). 
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Truncation of endogenous FSH peaks resulted in disappearance of follicular waves in 

cyclic ewes (Barrett et al. 2006). Moreover, treatment of ewes with physiologic doses of 

exogenous oFSH to induce an FSH peak, during the inter-wave interval, resulted in 

emergence of a new follicular wave without disruption of the normal pattern of FSH 

peaks and follicular waves (Duggavathi et al. 2004, Duggavathi et al. 2005a). However, 

the mechanism whereby FSH initiates follicular waves is not known, neither do we 

know what characteristics of FSH peaks (e.g. Height, duration, shape) are essential for 

wave emergence, growth and function. Superovulatory doses of FSH stimulate growth 

of a large number of follicles to ovulatory diameters in sheep (Wright et al. 1981, Bari et 

al. 2001, Bartlewski et al. 2008); and, the greater the number of small antral follicles 

present at the time of wave emergence the greater the number of growing follicles after 

administration of a superovulatory dose of FSH (Gonzalez-Bulnes et al. 2000). 

However, doubling the amplitude of an endogenous FSH peak, by administration of 

oFSH did not change the characteristics of the following follicular wave in anestrous 

ewes (Duggavathi et al. 2005a). Whether variations in peak FSH concentrations over a 

wider but still physiologic range, could affect follicular wave dynamics in the ewe, is not 

clear. Investigations in cattle have shown an inverse association between the serum 

concentrations of FSH and the number of follicles ≥3 mm in diameter during follicular 

waves (Burns et al. 2005).  

Ewes with a history of a high ovulation rate have follicular waves with a shorter growth 

phase and smaller maximum follicular diameter when compared with ewes with a 

history of a low ovulation rate (Gibbons et al. 1999). The growth rate of follicles in the 

penultimate follicular wave of the inter-ovulatory interval in prolific ewes was longer 
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compared to non-prolific ewes, resulting in an extended lifespan, and ovulation of those 

follicles with follicles that grew in the final wave of the interval (Bartlewski et al. 

1999a). The role of FSH and estradiol in such variation of the growth and function of 

follicular waves, although poorly understood, may have important implications in the 

regulation of fertility in sheep (Driancourt 2001, Duggavathi et al. 2004, Duggavathi et 

al. 2005a, Barrett et al. 2006). 

Our objective in Experiment 1 of the present study was to see if the peaks in FSH 

secretion that precede follicular waves change across the inter-ovulatory interval and to 

see if that is accompanied by alterations in any of the characteristics of the follicular 

waves that follow each FSH peak. We hoped this would indicate parameters of FSH 

secretion critical for follicular wave emergence and growth. Experiment 2 was designed 

to investigate the effects of a 5 to 6 fold increase in FSH peak amplitude, compared to 

control, untreated ewes, on ovarian follicular wave dynamics in cyclic ewes. We 

hypothesized that characteristics of the FSH peaks vary across the inter-ovulatory 

interval and this affects the growth patterns of follicles in the following follicular waves; 

also, a supra-physiologic increase in the endogenous FSH peak amplitude by 

administration of oFSH will affect the number of follicles recruited into and the growth 

characteristics of the following follicular wave. 
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3.3. Materials and methods 

3.3.1. Experiment 1 

3.3.1.1. Animals 

All Animal experimentation was performed according to the guidelines of the Canadian 

Council on Animal Care and was approved by the local animal care committee. 

Nineteen (5 to 7 years of age), normally cycling, nulliparous Western White Face ewes 

with an average body weight of 78 ± 5.8 kg were used in this study (October-

December). All animals were housed in sheltered dry lots (Saskatoon, SK., Canada; 52 

ºN latitude). Animals received daily maintenance rations of alfalfa pellets with water and 

cobalt iodized salt licks available ad libitum. Estrus was detected with three 

vasectomized crayon-harnessed rams.  

3.3.1.2. Ultrasonography 

Transrectal ovarian ultrasonography was performed with a B-mode, real-time echo 

camera (Aloka SSD 900; Aloka Co. Ltd., Tokyo, Japan) equipped with a stiffened 7.5 

MHz linear array transducer. All ewes underwent daily ultrasonographic examination for 

a complete interovulatory interval, starting two days before the expected day of estrus. 

The day of ovulation was defined as the day on which a large, previously identified 

ovarian follicle (≥5 mm in diameter) was no longer seen (Ravindra et al. 1994; 

Bartlewski et al. 1999a). The size and relative position of all follicles ≥1 to 2 mm in 

diameter were sketched on ovarian charts and also recorded on high grade video tape 

(Fuji S-VHS, ST-120 N; Fujifilm, Tokyo, Japan), using a compatible VCR (Panasonic, 
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Super VHS, AG 1970; Matsushita Electronics of Canada Ltd, Mississauga, ON, 

Canada).  

3.3.1.3. Analysis of follicular data 

Ewes had either three (n = 9) or four (n = 10) follicular waves in their inter-ovulatory 

interval. In ewes with 3 or 4 follicular waves, the first and second follicular waves and 

the ovulatory wave (wave 3 of ewes with 3 waves and wave 4 of ewes with 4 waves) 

were pooled for analysis as in both groups of ewes the follicles emerged on similar days 

of the inter-ovulatory interval. In all ewes, ovulation occurred from the final follicular 

wave in the ovulatory interval. For consistency, when ovulation occurred from both final 

and penultimate follicular waves (two ewes) data for ovulatory follicles from 

penultimate follicular waves were excluded from analysis. The inter-wave interval, 

number of follicles emerging in each follicular wave (follicles which grew from 2 to 3 

mm to ≥5 mm in diameter) and maximum follicular diameter were calculated. The 

length of the growth, static and regression phases as well as the growth and regression 

rates were calculated for all follicles in each follicular wave as defined previously 

(Bartlewski et al. 1999a, Duggavathi et al. 2004). The number of small (1 to 3 mm in 

diameter), medium (4 mm in diameter) and large (≥5 mm in diameter) size follicles were 

counted in each inter-wave interval and were reported as the average per day for each 

size category. Follicle numbers in each inter-wave interval reflected numbers for the 

follicular wave emerging at the onset of the interval. For ovulatory waves, the duration 

between wave emergence and ovulation was calculated.  
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3.3.1.4. Blood sampling 

Blood samples (10 ml) were collected daily into vacutainers (Becton Dickinson, 

Rutherford, NJ, USA) prior to each ultrasound examination and kept at room 

temperature for 24 h. Serum was then harvested and stored at -20 ºC until assayed. 

Concentrations of FSH and estradiol in serum samples collected daily were normalized 

to the day of ovulation (Day 0) for further analysis.  

3.3.1.5. Statistical analysis 

Characteristics of follicular waves, FSH and estradiol peaks were compared amongst 

different waves in the inter-ovulatory interval by one way repeated measures Analysis of 

Variance (SigmaStat® Statistical Software for Windows, Version 2.03, 1997, SPSS Inc., 

Chicago, IL, USA). All values are means ± SEM and statistical significance was set as P 

< 0.05. 

3.3.2. Experiment 2 

3.3.2.1. Animals 

Thirteen cyclic (November-December) Western White Face ewes with an average body 

weight of 83 ± 6.2 kg were randomly divided into treatment (n = 7) and control (n = 6) 

groups. Estrus was synchronized with a 14-day treatment using progestogen-releasing 

intravaginal sponge (Medroxyprogesterone Acetate/MAP, 60 mg; Veramix®, Up-John, 

Orangeville, ON, Canada). The study was conducted in the second cycle after 

synchronization. Estrus detection and all maintenance conditions were the same as those 

in Experiment 1.  
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3.3.2.2. Ultrasonography 

From two days prior to the expected day of estrus, all ewes underwent twice daily 

transrectal ovarian ultrasonography (at 08:00 and 20:00 h) to detect ovulation and a 

growing 4 mm follicle in the first follicular wave of the inter-ovulatory interval. After 

detection of the third follicular wave in the inter-ovulatory interval, ultrasonographic 

examination of the ovaries was done daily until detection of the next ovulation.   

3.3.2.3. Ovine FSH preparation and injection 

One milligram of the ovine FSH (oFSH) used in this study had a biological potency of 

90 x NIH-oFSH-S1 and less than 0.1 x NIH-oLH-S1 (Teri.oFSH/ig.1, Tucker Endocrine 

Research Institute LLC, Atlanta, GA, USA).  The oFSH was prepared in saline with 

0.05% BSA (w/v; Sigma Chemical Co., St. Louis, MO, USA) and 50% 

polyvinylpyrrolidone (w/v; Sigma). Sixty hours after detection of the first growing 4 mm 

follicle post ovulation (expected time of the next endogenous FSH peak), animals in the 

treatment group received two injections of oFSH 8-hour apart (1 µg/kg, sc). Control 

animals were injected with vehicle. With this timing, oFSH or vehicle was given at the 

expected time of the peak in endogenous FSH concentrations associated with the 

emergence of the next follicular wave (designated as wave 2 of the inter-ovulatory 

interval). The dose of exogenous oFSH was intended to increase the amplitude of the 

second endogenous FSH peak in the inter-ovulatory interval by 5 to 6 fold.  
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3.3.2.4. Blood sampling 

Blood samples (10 ml) were taken daily (prior to each ultrasound examination), and at 

08:00, 14:00, 20:00 and 02:00 h from 24 h before to 48 h after treatment, using 

vacutainers (Becton Dickinson). Sera from blood samples was collected and stored as in 

Experiment 1. The pattern of concentrations of FSH and estradiol in serum samples, 

collected daily or every 6 h were normalized to the day of treatment (Day 0).  

3.3.2.5. Analysis of follicular data 

Follicular wave characteristics (similar to Experiment 1) for the wave emerging after 

treatment (wave 2 in the inter-ovulatory interval) were calculated for treatment and 

control ewes and compared between these groups (Table 3.2.). 

3.3.2.6. Statistical analysis 

Characteristics of the peaks in serum concentrations of FSH were compared between 

ewes given oFSH and vehicle-treated ewes by student’s t-test (SigmaStat® Statistical 

Software for Windows, Version 2.03, 1997, SPSS Inc.). Using the same statistical 

method, characteristics of follicular wave 2 (emerging immediately after treatment) and 

its corresponding peak in serum concentrations of estradiol were compared between the 

treatment and control groups. All values are means ± SEM and statistical significance 

was set as P < 0.05. 

3.3.3. Hormone assays and data analysis for Experiments 1 and 2 

Serum concentrations of FSH (Currie and Rawlings 1989) and estradiol (Joseph et al. 

1992) were determined by established radioimmunoassays. The sensitivity of the assays 
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(defined as the lowest concentration of hormone capable of significantly displacing 

labeled hormone from the antibody) for FSH and estradiol were 0.1 ng/mL and 1 pg/mL, 

respectively. For reference sera with mean FSH concentrations of 0.45 or 3.28 ng/mL, 

the intra- and inter-assay CVs were 9.5 or 2.8% and 12.6 or 4.4% respectively. For 

estradiol, the intra- and inter assay CVs for reference sera with mean concentrations of 

7.65 or 23.12 pg/mL were 9.8 or 7.7% and 14.2 or 9.6%, respectively. Peaks in serum 

concentrations of FSH and estradiol, were detected using a cycle detection computer 

program (Clifton and Steiner 1983) modified for Windows® XP. Basal serum FSH and 

estradiol concentrations for each peak (nadir concentration prior to each FSH/estradiol 

peak), peak concentrations, peak amplitude, and peak duration (duration between the 

pre- and post-peak nadirs) were calculated for all follicular waves of the ovulatory 

interval in Experiment 1 and for follicular wave 2 in Experiment 2.  

3. 4. Results 

3.4.1. Experiment 1 

3.4.1.1. Follicular wave characteristics 

Comparisons of characteristics of follicular waves amongst different waves in the 

ovulatory interval are given in Table 3.1. The average inter-ovulatory interval was 17.6 

± 0.2 days. The day of wave emergence for each follicular wave was associated with the 

corresponding day of the peak in serum FSH concentrations. The average number of 

medium size follicles recorded daily (4 mm in diameter) increased to wave 3, and 

declined to the ovulatory wave; numbers were higher in the ovulatory wave than wave 1 

(P < 0.05). The number of large follicles seen daily (≥5 mm in diameter) was higher in 
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waves 2, 3 and the ovulatory wave than in wave 1 and in waves 2 and 3 compared to the 

ovulatory wave (P < 0.05). Follicles that emerged in wave 1 and the ovulatory wave had 

a longer growth phase than follicles that emerged in wave 2 (P < 0.05), and they grew to 

a greater maximum follicular diameter than follicles in waves 2 and 3 (P < 0.05). 

Follicles in the ovulatory wave had a shorter static phase than those in waves 1 and 2 (P 

< 0.05). The duration of the regression phase was greater in wave 1 than that of waves 2 

and 3 (P < 0.05). The mean length of the follicular lifespan was greater (P < 0.05) in 

wave 1 when compared with other follicular waves in the inter-ovulatory interval and 

the shortest lifespan was seen for the ovulatory wave (P < 0.05). A greater inter-wave 

interval was seen between waves 1 and 2 when compared to the interval between waves 

2 and 3 (P < 0.05). 

3.4.1.2. Characteristics of FSH and estradiol peaks 

Characteristics of the FSH peaks preceding follicular waves during the inter-ovulatory 

interval are shown in Fig. 3.1. The basal serum concentrations of FSH preceding FSH 

peaks for wave 3 and the ovulatory wave were higher than those of waves 1 and 2 (P < 

0.001). The amplitude of FSH peaks were greater in waves 1 and 2 in comparison to 

wave 3 and the ovulatory wave (P < 0.001). The duration of FSH peaks preceding wave 

2 were longer than for wave 3 and the ovulatory wave, and for wave 1 were longer than 

for wave 3 (P < 0.05). Comparisons of characteristics of estradiol peaks amongst 

different follicular waves in the inter-ovulatory interval are given in Fig. 3.1. Peak serum 

concentrations of estradiol and peak amplitude were higher in the ovulatory wave in 

comparison to the anovulatory waves of the inter-ovulatory interval. 
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Table 3.1. Comparison of characteristics (Mean ± SEM) of different follicular waves in the inter-ovulatory interval of 

the nineteen cyclic Western White Face ewes in Experiment 1. 
 

a, b, c  Significant difference (P < 0.05) for a parameter among different waves within a row.  * Day 0 = Day of ovulation

 Wave 1 Wave 2 Wave 3 Ovulatory wave 

Day of wave emergence* 
 
Day of FSH peak*  
 
Day of corresponding peak in estradiol concentration*  
 
No. follicles in the wave 
 
No. small ( 1 to 3 mm in diameter) follicles in the inter-
wave interval (follicles/day) 
 
No. medium size ( 4 mm in diameter) follicles in the 
inter-wave interval (follicles/day) 
 
No. large ( ≥5 mm in diameter) follicles in the inter-wave 
interval (follicles/day) 
 
Growth phase (d) 
 
Static phase (d) 
 
Regression phase (d) 
 
Growth rate (mm/day) 
 
Regression rate (mm/day)  
 
Maximum follicular diameter (mm) 
 
Follicular lifespan (d) 
 

0.0 ± 0.1 
 

-0.1 ± 0.1 
 

2.3 ± 0.2 
 

1.9 ± 0.8 
 

13.3 ± 0.5 
 
 

0.8 ± 0.1a 
 
 

1.1 ± 0.1a 
 
 

4.1 ± 0.4a 
 

1.9 ± 0.4a 

 
3.5 ± 0.3a 

 
1.1 ± 0.1 

 
1.3 ± 0.1 

 
6.0 ± 0.3a 

 
9.5 ± 0.4a 

 

5.0 ± 0.2 
 

5.0 ± 0.2 
 

7.0 ± 0.3 
 

1.9 ± 0.8 
 

13.6 ± 0.8 
 
 

1.1 ± 0.2ac 
 
 

2.0 ± 0.1b 
 
 

2.9 ± 0.3b 
 

2.3 ± 0.4a 

 
2.7 ± 0.3b 

 
1.2 ± 0.1 

 
1.4 ± 0.1 

 
5.3 ± 0.1b 

 
8.0 ± 0.4b 

 

8.1 ± 0.2 
 

8.1 ± 0.2 
 

11.1 ± 0.4 
 

1.4 ± 0.7 
 

15.2 ± 1.8 
 
 

1.7 ± 0.2b 
 
 

2.1 ± 0.2b 
 
 

3.3 ± 0.5ab 
 

1.3 ± 0.5ab 

 
2.6 ± 0.4b 

 
1.1 ± 0.1 

 
1.5 ± 0.2 

 
5.4 ± 0.3b 

 
7.3 ± 0.6b 

 

11.3 ± 0.3 
 

11.4 ± 0.3 
 

14.8 ± 0.2 
 

2.1 ± 0.9 
 

13.3 ± 1.3 
 
 

1.3 ± 0.1c 
 
 

1.8 ± 0.2c 
 
 

3.9 ± 0.4a 
 

1.1 ± 0.2b 

 
- 
 

1.2 ± 0.1 
 
- 
 

6.1 ± 0.2a 
 

5.0 ± 0.3c 

Inter-wave interval (d) W1 to W2: 5.2 ± 0.2 a      W2 to W3: 4.3 ± 0.3 b      W3 to W4: 4.4 ± 1.1ab 
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Fig. 3.1. Comparisons of characteristics of peaks in serum concentrations of FSH 
(black bars) and estradiol (grey bars) amongst different follicular waves in the 
inter-ovulatory interval of the nineteen cyclic, Western White Face ewes in 
Experiment 1. Data for follicular waves 1 and 2 and the ovulatory wave in ewes with 
three (n = 9) and four (n = 10) follicular waves in the inter-ovulatory interval were 
pooled for analysis. Data for the third follicular wave represent only those waves in 
animals with four follicular waves in the inter-ovulatory interval. 
a, b, c  Significant differences (P < 0.05) between waves. 
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3.4.2. Experiment 2 

3.4.2.1. Characteristics of FSH and estradiol peaks 

By giving two injections of oFSH, 8-h apart at the expected time of the second 

endogenous FSH peak in the inter-ovulatory interval, the FSH peak amplitude was about 

6-fold greater in the treatment group compared to that of the control group (8.45 and 

1.34 ng, respectively; P < 0.05; Fig. 3.2). Basal serum concentrations of the FSH peak 

(nadir concentrations prior to the treatment) were 1.03 ± 0.22 and 1.29 ± 0.26 ng/mL in 

ewes treated with oFSH and vehicle respectively (P > 0.05). There was no significant 

difference in the duration of the FSH peak between the oFSH- and vehicle-treated ewes 

(3.9 ± 0.3 and 3.8 ± 0.2 d, respectively). The amplitude of the estradiol peaks associated 

with the second follicular wave of the inter-ovulatory interval was greater after treatment 

with oFSH than that in control ewes (3.21 ± 0.42 and 1.90 ± 0.45 pg, respectively; P < 

0.05). However, basal and peak concentrations as well as duration of the estradiol peaks 

did not differ significantly after treatment with oFSH (2.74 ± 0.74 ng/mL, 5.95 ± 0.42 

ng/mL and 3.3 ± 0.4 d, respectively) and vehicle (2.78 ± 0.74 ng/mL, 4.68 ± 0.62 ng/mL 

and 2.5 ± 0.3 d, respectively).   

3.4.2.2. Follicular wave characteristics 

Characteristics of the follicular waves emerging after treatment with oFSH or vehicle are 

compared in Table 3.2. Increasing the amplitude of the FSH peak prior to wave 2 of the 

inter-ovulatory interval resulted in fewer small follicles in the wave (P < 0.05), and a 

lower growth rate of follicles compared to control ewes (P < 0.05).  
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Fig. 3.2. Mean (± SEM) serum concentrations of FSH in oFSH-treated (●; n = 7) 
and control (○; n = 6) cyclic, Western White Face ewes from 6 days before to 13 
days after treatment. FSH peaks for all ewes were normalized to the mean day of 
occurrence of the zenith of the FSH peak for each wave relative to the day of treatment 
(day 0). Treatment included two injections of oFSH (1µg/kg, sc) or vehicle, 8-hour 
apart, with the first injection given 60 h after detection of a growing 4 mm follicle in the 
first follicular wave of the inter-ovulatory interval. This placed the oFSH treatment at 
the time of endogenous FSH peak preceding the second wave of the inter-ovulatory 
interval. Serum FSH concentrations were significantly different (P < 0.05) between the 
two groups of ewes in the samples taken during the period outlined with shading.   
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Table 3.2. Comparison of the characteristics (Mean ± SEM) of follicular waves emerging 
after treatment with oFSH (treatment; n = 7) or vehicle (control; n = 6). Treatment included 
two injections of oFSH (1µg/kg, sc) or vehicle, 8-hour apart, with the first injection given 60 h 
after detection of a growing 4 mm follicle in the first follicular wave of the inter-ovulatory 
interval. This placed the oFSH treatment at the time of endogenous FSH peak preceding the 
second wave of the inter-ovulatory interval in the cyclic Western White Face ewes in Exp. 2. 
 
 

 

 

 

 Wave 2 

 Treatment Control 

Day of wave emergence* 
 
Day of FSH peak*  
 
Day of corresponding peak in estradiol 
concentrations*  
 
No. follicles in the wave 
 
No. small ( 1 to 3 mm in diameter) follicles 
in the inter-wave interval (follicles/day) 
 
No. medium size ( 4 mm in diameter) 
follicles in the inter-wave interval 
(follicles/day) 
 
No. large ( ≥5 mm in diameter) follicles in 
the inter-wave interval (follicles/day) 
 
Growth phase (d) 
 
Static phase (d) 
 
Regression phase (d) 
 
Growth rate (mm/day) 
 
Regression rate (mm/day) 
 
Maximum follicular diameter (mm) 
 
Follicular lifespan (d) 
 
Inter-wave interval (d) 

0.8 ± 0.2 
 

0.9 ± 0.1 
 

2.4 ± 0.7 
 
 

1.6 ± 0.3 
 

13.6 ± 0.4a 

 
 

2.3 ± 0.4 
 
 
 

2.1 ± 0.2 
 
 

2.5 ± 0.2 
 

1.6 ± 0.4 

 
2.5 ± 0.2 

 
0.9 ± 0.1a 

 
0.8 ± 0.1 

 
5.1 ± 0.1 

 
6.9 ± 0.7 

 
3.7 ± 0.4 

1.5 ± 0.3 
 

0.9 ± 0.4 
 

2.7 ± 0.8 
 
 

2.0 ± 0.4 
 

15.6 ± 0.3b 

 
 

1.7 ± 0.3 
 
 
 

1.8 ± 0.2 
 
 

2.1 ± 0.8 
 

1.8 ± 0.5 

 
2.1 ± 0.3 

 
1.3 ± 0.1b 

 
0.9 ± 0.1 

 
5.4 ± 0.2 

 
6.6 ± 0.7 

 
4.6 ± 0.6 

 
a, b Significant differences (P < 0.05) between treatment and control groups.

* Day 0 = Day of treatment 
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3.5. Discussion 

It was interesting that in Experiment 1 the amplitude of the FSH peaks that precede the 

emergence of follicular waves decreased across the inter-ovulatory interval. Although 

not as clear a trend, peak duration also declined suggesting that peaks of greater 

amplitude are also of longer duration. As peak amplitude declined across the period of 

study basal serum FSH concentrations increased, perhaps indicating greater FSH 

concentrations available in the pituitary for basal secretion. Follicle stimulating hormone 

is synthesized and constitutively secreted from gonadotropes in the pituitary gland 

(Padmanabhan and Sharma 2001, Crawford and McNeilly 2002). It has been suggested 

that changes in GnRH pulse frequency can selectively regulate production of FSH and 

LH, with slower frequencies, as seen during the luteal phase of an estrous cycle, 

favoring FSH-mRNA expression levels (Haisenleder et al. 1990, Haisenleder et al. 

1991). This may explain the higher basal FSH concentrations preceding those peaks for 

the follicular waves emerging during the luteal phase of the estrous cycle (waves 3 and 

4).  

The most obvious reason for the decline in FSH peak amplitude across the inter-

ovulatory interval would be the cumulative exposure of the hypothalamic pituitary axis 

to progesterone and estradiol-17β during the luteal phase of the inter-ovulatory interval 

(Nett et al. 2002, McNeilly et al. 2003). It is intriguing that FSH peaks can decline in 

amplitude by up to 50% across the inter-ovulatory interval and yet still induce follicular 

waves. However, peak concentrations of FSH remained unchanged across the inter-

ovulatory interval in Experiment 1. In cyclic ewes given estradiol, truncation of FSH 

peak concentrations to 45% of control values, without changes in basal and mean FSH 
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concentrations, interrupted the emergence of antral follicular waves (Barrett et al. 2006). 

These data suggest the existence of a threshold for serum concentrations of FSH to 

induce the emergence of a follicular wave (Picton and McNeilly 1991, Driancourt 2001, 

Barrett et al. 2006). Superovulatory doses of FSH stimulate the growth of numerous 

ovulatory-sized follicles in sheep (Wright et al. 1981, Bari et al. 2001, Riesenberg et al. 

2001a, Boscos et al. 2002, Gonzalez-Bulnes et al. 2002a). However, the effects of 

superovulatory doses of FSH are not physiological. In a previous study, giving 

exogenous oFSH to create a 2-fold increase in the amplitude of the FSH peak preceding 

a follicular wave, did not change the characteristics of the ensuing follicular wave in 

anestrous Western White Face ewes (Duggavathi et al. 2005a). This observation and the 

results of Experiment 2 of the present study would lead us to conclude that increasing 

FSH peak concentrations above a critical threshold, but within a physiological range, has 

little effect on the growth, lifespan and size of follicles in a wave.  

In Experiment 1, the maximum follicular diameter of the follicles in follicular waves 

was greater for wave 1 and 4 but these waves emerged and grew under different FSH 

backgrounds as described above. Together with the results from Experiment 2 it can be 

speculated that the characteristics of an FSH peak do not affect the maximum follicular 

diameter in the following follicular wave. In a previous study it was noted that the 

characteristics of FSH peaks were not associated with significant differences in the 

diameter of large antral follicles in ewes differ in prolificacy (Bartlewski et al. 1999a, 

Gibbons et al. 1999). In the present study, it is clear that waves 1 and 4 would have 

grown prior to and after the luteal phase of the inter-ovulatory interval when LH pulse 

frequency would be high; it is lower during the luteal phase (Bartlewski et al. 2000b, 
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Driancourt 2001). It has been established that large antral follicles can become LH 

dependent and less dependent on FSH (Ginther et al. 1989, Ginther and Kot 1994). The 

follicles in the waves above would have received enhanced support from LH and 

achieved a greater maximum size. The greater maximum follicular diameter of follicles 

in wave 1 and the ovulatory wave compared to other waves in the luteal phase of the 

estrous cycle, have also been reported in goats and cattle (Ginther et al. 1989, Ginther 

and Kot 1994).  

Although, the peak in serum concentrations of esradiol-17β was greater for the ovulatory 

wave of the inter-ovulatory interval compared to other waves, this difference was not 

great. This emphasizes the role of progesterone in blocking the stimulation of a pre-

ovulatory surge release of LH by estradiol in waves 1 through 3. At the end of the luteal 

phase enhanced LH pulse frequency can stimulate estrogen production by the ovulatory 

follicle (Bartlewski et al. 2000b). It is unclear why the greater LH pulse frequency seen 

early in the inter-ovulatory interval did not give greater estrogen production from 

follicles in wave 1; perhaps this is because pulsed LH secretion would decline (Ginther 

1995, Bartlewski et al. 2000b, Evans et al. 2000) as progesterone secretion increased in 

the early luteal phase concurrent with the growth of follicles in the first wave (Souza et 

al. 1998, Bartlewski et al. 1999a, Bartlewski et al. 1999c, Evans et al. 2002). In 

Experiment 2, enhancing the FSH peak amplitude to the upper end of the physiological 

range did enhance estrogen production from wave 2 of the inter-ovulatory interval.  

In Experiment 1 follicular lifespan was greater for wave 1 and shortest for the ovulatory 

wave. The longer lifespan for follicles in wave 1 was reflected in the long interval from 

wave 1 to wave 2 compared to intervals between other waves. Again, greater LH support 
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was available for waves 1 and 4 giving longer growth phases than for other waves 

(Bartlewski et al. 1999a). It is interesting that the enhanced lifespan for wave 1 involved 

a longer regression phase as well as a longer growth phase. The length of the regression 

phase and FSH peak amplitude both declined across the inter-ovulatory interval. 

However, the major decline in length of the regression phase occurred between wave 1 

and 2. This was most likely as a result of enhanced LH support of wave 1 (greater 

maximum follicle diameter) but not wave 2. The shortened static phase and lifespan for 

ovulatory follicles (wave 4) would obviously reflect the truncation of lifespan by 

ovulation. A possible explanation for the greater average daily number of medium and 

large sized follicles in wave 3 could be the presence of static or regressing follicles from 

waves 1 and 2 (with mean follicular lifespan of 9.5 ± 0.4 and 8.0 ± 0.4 days, 

respectively) simultaneous with development of the third follicular wave.  

In summary, although the ovulatory follicles growing at the end of the inter-ovulatory 

interval do result in greater serum concentrations of estradiol, compared to follicles in 

other follicular waves the difference was minimal. This emphasizes the role of 

progesterone in restraining the ability of estradiol to induce an LH surge at other times in 

the inter-ovulatory interval. In Experiment 2, increasing the serum FSH peak 

concentration by 6 fold compared to control ewes had surprisingly little effect on the 

follicles growing in the subsequent follicular wave; although estradiol production was 

enhanced. The results of both Experiments 1 and 2 would lead us to conclude that 

although peaks in serum concentrations of FSH are required to trigger ovarian antral 

follicular waves in the ewe, variation in peak amplitude and duration and basal serum 
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concentrations of FSH, across the inter-ovulatory interval, do not have a marked 

influence on the characteristics of follicles in those waves.  
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CHAPTER 4:  EVALUATION OF THE ULTRASOUND IMAGE 
ATTRIBUTES OF DEVELOPING OVARIAN FOLLICLES IN THE FOUR 

FOLLICULAR WAVES OF THE INTER-OVULATORY INTERVAL IN EWES† 

Toosi BM, Seekallu SV, Pierson RA and Rawlings NC 
 

4.1 Abstract 

Computer-assisted quantitative echotextural analysis was applied to ultrasound images 

of antral follicles in the follicular waves of an inter-ovulatory interval in sheep. The ewe 

has 3 or 4 waves per cycle. Seven healthy, cyclic Western White Faced ewes underwent 

daily, transrectal, ovarian ultrasonography for an inter-ovulatory interval. Follicles in the 

third wave of the ovulatory interval had a longer static phase than those in waves 1 and 2 

(P < 0.05). The numeric pixel value for the wall of anovulatory follicles emerging in the 

third wave of the cycle was significantly higher than for waves 1 and 2 at the time of 

emergence (156.7 ± 8.09, 101.6 ± 3.72 and 116.5 ± 13.93 respectively) and it decreased 

as follicles in wave 3 reached maximum follicular diameter (P < 0.05). The numeric 

pixel value of the antrum in the ovulatory follicles decreased as follicular diameter 

increased to ≥5 mm in diameter (P < 0.05). The pixel heterogeneity of the follicular 

antrum in wave 1 increased from the end of the growth phase to the end of the regression 

phase for follicles in that wave (P < 0.05). The total area for the wall and antrum of the 

follicles studied, were correlated with follicular diameter in all follicular waves (r = 

0.938, P < 0.01 and r = 0.941, P < 0.01 for the wall and antrum respectively). Changes in 

image attributes of the follicular wall and antrum indicate potential morphological and 

                                                 
† Theriogenology  2009;72(7):902-909 
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functional differences amongst antral follicles emerging at different stages of the inter-

ovulatory interval in cyclic ewes.  

4.2. Introduction 

Ultrasonographic imaging of the reproductive tract is well-developed in different 

domestic animal species (Pierson and Ginther 1986, Adams et al. 1989, Schrick et al. 

1993, Ravindra et al. 1994, Ginther et al. 1995, Souza et al. 1997, Kulick et al. 1999). 

Particular emphasis has been placed on enhancing our understanding of ovarian function 

(Schrick et al. 1993, Ravindra et al. 1994, Ginther et al. 1995, Pierson and Adams 1995, 

Souza et al. 1997, Bartlewski et al. 2000b). Imaging allows repeated, non-invasive, 

visual assessment of changes in ovarian structures with time (Singh et al. 2003). Using 

ultrasonography, wave-like patterns of follicular development were reported in sheep 

(Ravindra et al. 1994, Ginther et al. 1995, Souza et al. 1997). An antral follicular wave 

in the ewe is defined as the emergence or growth of 1 to 3 follicles from a pool of small 

follicles (1 to 3 mm in diameter); the follicles attain diameters of ≥5 mm before 

regression (anovulatory wave) or ovulation (ovulatory wave) (Bartlewski et al. 1999a, 

Duggavathi et al. 2003a). The average inter-wave interval is 4 to 5 days and 3 or 4 

follicular waves emerge in each inter-ovulatory interval (Bartlewski et al. 1999a, 

Duggavathi et al. 2003a). 

Ultrasonography is based upon the ability of body tissues to reflect or transmit high 

frequency sound waves (Pierson and Adams 1995, Aldrich 2007). Reflection or echo of 

the ultrasound beams depends on the relative density and micro-structural organization 

of the tissue (Pierson and Adams 1995, Staren 1996). An ultrasound image is a two 
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dimensional array of picture elements called pixels (Baxes 1994). Each pixel represents 

one of 256 shades of grey ranging between 0 (black) and 255 (white) (Baxes 1994, 

Singh et al. 2003). The human eye is capable of distinguishing among only 18 to 20 

shades of grey (Baxes 1994); therefore, quantitative evaluation of the changes in the 

ultrasonographic appearance of the tissue (echotexture) is not feasible by the human eye 

(Singh et al. 2003). Complex computer algorithms were designed in order to objectively 

analyze and quantify the range of 256 shades of grey of pixels in ultrasound image 

echotexture (Pierson and Adams 1995, Singh et al. 2003).  

Identification of the various phases of the lifespan of follicles (growing, static and 

regression phases) is only feasible with retrospective examination of ultrasonographic 

data collected daily (Singh et al. 1998, Pierson and Adams 1995, Singh et al. 2003). The 

phases of the lifespan of antral follicles and their physiological function have been 

shown to be associated with histomorphologic characteristics of follicles (Singh et al. 

1998, Tom et al. 1998b, Singh and Adams 2000, Vassena et al. 2003a). Therefore, image 

attributes of follicles, representing histomorphology, can be utilized to assess stage of 

development and aspects of physiological function (Singh et al. 1998, Tom et al. 1998b). 

The validity of image analysis to predict the physiologic status of ovarian follicles has 

been tested in domestic species, mainly cattle, by evaluating correlations among 

ultrasound image characteristics and histomorphologic and functional attributes of 

follicles and oocyte viability (Singh et al. 1998, Tom et al. 1998a, Tom et al. 1998b, 

Vassena et al. 2003b, Davies et al. 2006, Duggavathi et al. 2006). Image attributes of 

antral follicles in cattle were found to be related to the cellular and vascular composition 

of the follicular wall and to some aspects of secretory activity of the follicle (Singh et al. 
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1998). Image analysis may eventually allow prediction of the viability of an antral 

follicle and the oocyte it contains (Pierson and Adams 1995, Singh et al. 2003, Vassena 

et al. 2003b).      

Our objective was to determine if ultrasonographic image attributes would be indicative 

of changes during development and regression of antral follicles in follicular waves in 

the normal cyclic ewe. Since subsequent waves develop at different phases of the cycle 

and therefore under different endocrine milieus, we hypothesized that ultrasound image 

attributes of antral follicles would change with the stages of development and regression 

within a follicular wave and would also differ amongst the different follicular waves in 

an estrous cycle. 

4.3. Materials and methods 

4.3.1. Animals 

All animal experimentation was performed in compliance with the guidelines of the 

Canadian Council on Animal Care and was approved by the local animal care 

committee. Seven healthy, normally cycling, nulliparous, Western White Face ewes, 6 to 

7 years of age (average body weight 79.9 ± 4.12 kg), were used in this study 

(November-December). All ewes were housed indoors with lighting set to simulate the 

natural light/dark cycle.  

Animals received daily maintenance rations of alfalfa pellets with water, hay and cobalt 

iodized salt licks available ad libitum. Estrus was synchronized by application of a 

progestogen-releasing intravaginal sponge for 14 days (Medroxyprogesterone Acetate, 
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60 mg; Veramix®, Pharmacia & Upjohn Animal Health, Orangeville, ON, Canada). 

Estrus was detected with two vasectomized crayon-harnessed rams. The study was 

conducted in the second cycle after synchronization.   

4.3.2. Ultrasonography 

All ewes underwent daily transrectal ovarian ultrasonography with an instrument (Aloka 

SSD 900; Aloka Co. Ltd., Tokyo, Japan) equipped with a stiffened 7.5 MHz linear array 

transducer. Ultrasonographic examination of the ovaries began two days before the 

expected day of estrus and continued for a complete inter-ovulatory interval. The day of 

ovulation was defined as the day on which an ovarian follicle ≥5 mm in diameter, which 

had been previously identified, was no longer seen (Bartlewski et al. 1999a). Images of 

all ovarian follicles ≥3 mm in diameter were recorded on high grade video tape (Fuji S-

VHS, ST-120 N; Fujifilm, Tokyo, Japan), using a compatible VCR (Panasonic, Super 

VHS, AG 1970; Matsushita Electronics of Canada Ltd, Mississauga, ON, Canada), for 

image analysis. All equipment and machine settings (near-field, far-field, and overall 

gain) were standardized for optimal ovarian imaging and the settings maintained for the 

study. The diameter and relative position of all follicles ≥3 mm in diameter were also 

sketched on ovarian charts to identify different follicular waves and map the patterns of 

growth and regression of follicles in the waves. The length of the growth, static and 

regression phases for anovulatory follicular waves were calculated as previously defined 

(Bartlewski et al. 1999a).  
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4.3.3. Image acquisition and analysis  

Image analysis was performed for one follicle per wave (growing from 3 mm to ≥5 mm 

in diameter). For consistency, when there was more than one follicle in a wave, the 

follicle that emerged first was analyzed. Images of follicles collected daily from 

emergence (3 mm in diameter) until regression (3 mm in diameter) or ovulation, which 

had the greatest cross-sectional diameter, were digitized at standardized settings. The 

digitized images (resolution of 640×480 pixels and 256 shades of grey) were then 

analyzed with a series of custom-developed computer algorithms optimized for 

ultrasonography (SYNERGYNE Version 2.8©, Saskatoon, SK, Canada).   

4.3.3.1. Image analysis of follicular wall and antrum 

The follicular antrum was outlined at the inner boundary of the follicular wall to 

evaluate its area. The area encompassing the follicular wall was then outlined and the 

area located between the outer and inner boundaries was analyzed. This procedure was 

performed by a single trained individual for all follicles to minimize subjective 

deviation. The numerical pixel value (NPV) was calculated. This metric is the mean 

pixel value (MPV) of the grey-scale values of all the pixels within the outlined area. 

Pixel heterogeneity (PH) was also calculated; this is defined as the standard deviation of 

the values of the selected pixels within an area, from the mean pixel value calculated for 

that area. Area under the curve (AUC) was defined as the area of the sampled region in 

standard scale-bar units.  
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4.3.4. Blood sampling and hormone assays  

Blood samples were collected daily (10 mL) into vacutainers (Becton Dickinson, 

Rutherford, NJ, USA) prior to each ultrasound examination and kept at room 

temperature for 24 h. Serum was then separated and stored at -20 ºC until assayed. 

Serum concentrations of FSH (Currie and Rawlings 1989) and progesterone (Rawlings 

et al. 1984) were determined by established radioimmunoassays. The sensitivity of the 

assays (defined as the lowest concentration of hormone capable of significantly 

displacing labeled hormone from the antibody) for FSH and progesterone were 0.1 and 

0.03 ng/mL, respectively. For reference sera with mean FSH concentrations of 0.93 or 

3.76 ng/mL, the intra- and inter-assay CVs were 6.1 or 3.4% and 6.1 or 3.2%, 

respectively. The intra- and inter assay CVs were 13.2 or 6.3% and 12.1 or 5.9%, 

respectively, for reference sera with mean progesterone concentrations of 0.26 or 1.06 

ng/mL. Peaks in serum concentrations of FSH, in samples taken daily, were detected 

using a cycle detection computer program (Clifton and Steiner 1983).  

4.3.5. Statistical analysis  

Follicular wave characteristics (Table 4.1.) were compared among different waves by 

one way repeated measures Analysis of Variance (SigmaStat® Statistical Software for 

Windows, Version 2.03, 1997, SPSS Inc., Chicago, IL, USA). To investigate daily 

changes of image attributes over the follicular lifespan within each wave and compare 

these attributes among different waves, data were normalized to the first day of follicular 

lifespan and analyzed by two way repeated measures Analysis of Variance (SigmaStat® 

Statistical Software for Windows, Version 2.03, 1997, SPSS Inc.). Main effects were 
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day in follicular lifespan and wave in the inter-ovulatory interval, with day by wave 

interaction. Multiple comparisons were made by Fisher’s least significant difference 

(LSD). Correlations between follicular diameter and the area under the curve for the 

follicular wall and antrum, as well as correlations among the serum progesterone 

concentrations and image attributes of the follicular wall and antrum were analyzed 

using Pearson’s correlation (SigmaStat® Statistical Software for Windows, Version 2.03, 

1997, SPSS Inc.).  All values are means ± SEM. 
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4.4. Results 

4.4.1. General results 

The mean length of the inter-ovulatory interval was 18.3 ± 0.32 days. In six ewes, four 

distinct follicular waves were detected during the ovulatory interval, while one animal 

had three waves. Emergence of each follicular wave was associated with a transient peak 

in circulating FSH concentrations (Fig. 4.1.). Follicular waves 1 and 3 in the ewe with 3 

waves emerged on days 1 and 12 of the inter-ovulatory interval respectively. These days 

were the same as the days of emergence for waves 1 and 4 in the rest of the animals; 

therefore, data were pooled for analysis. In the ewe with 3 waves, wave 2 emerged about 

two days later (Day 6) than wave 2 in the rest of the ewes, and therefore, was excluded 

from analysis. There was no difference in the length of the growth (2.7 ± 0.25 d), and 

regression (2.8 ± 0.23 d) phases between different waves (P > 0.05; Table 4.1.; Fig. 

4.1.). The mean length of the static phase was greater in wave 2 (P < 0.05) compared to 

other waves (Table 4.1.; Fig. 4.1.).  
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Table 4.1. Comparison of wave characteristics (Mean ± SEM) for the follicular waves seen during the inter-ovulatory interval 
in the seven normal cyclic ewes used in this study. 
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abcd P < 0.05   

                                                                                                                      Follicular waves 
 Wave 1 Wave 2 Wave 3 Ovulatory wave 

No. follicles included in analysis 7    6 7 7

No. follicles in the wave 1.3 ± 0.23 1.1 ± 0.11 1.2 ± 0.22 1.1 ± 0.09 

Day of emergence after ovulation (day 0) 
 0.6 ± 0.49a 4.5 ± 0.22b 8.1 ± 0.22c 11.6 ± 0.24d 

Growth phase (d) 
 
Static phase (d) 
 
Regression phase (d) 

2.9 ± 0.48 
 

1.9 ± 0.33a 
 

2.9 ± 0.48 

2.5 ± 0.31 
 

3.0 ± 0.42b 
 

2.7 ± 0.61 

2.7 ± 0.57 
 

1.9 ± 0.63a 
 

2.7 ± 0.22 

3.9 ± 0.52 
 

1.6 ± 0.38a 
 
- 

Growth rate (mm/day) 1.0 ± 0.12 0.9 ± 0.11 1.1 ± 0.19 0.9 ± 0.12 

Regression rate (mm/day) 1.0 ± 0.22 1.0 ± 0.21 0.9 ± 0.13 - 

Maximum follicular diameter (mm) 5.8 ± 0.25 5.2 ± 0.17 5.3 ± 0.18 5.7 ± 0.33 

Inter-wave interval (d)  W1 to W2: 3.9 ± 0.12       W2 to W3: 3.6 ± 0.24       W3 to W4: 3.5 ± 0.33 
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Fig. 4.1. Top panel: Mean (± SEM) serum FSH concentrations in cyclic Western 
White Face ewes. Daily serum concentrations of FSH were normalized to the day of 
ovulation (day 0). Arrows indicate peaks in serum concentrations of FSH detected by the 
cycle detection computer program. Bottom panel: Mean (± SEM) follicular diameter 
of follicles emerging in different follicular waves during the inter-ovulatory interval 
in normal cyclic ewes. Data are normalized to the corresponding mean day of wave 
emergence for each follicular wave after ovulation (day 0).  
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4.4.2. Numerical pixel value (NPV) of the follicular wall and antrum  

No changes were observed in the NPV of the follicular wall in the first and second 

waves of the ovulatory interval as the follicles grew from 3 mm to ≥5 mm and then 

regressed to 3 mm in diameter (P > 0.05; Fig. 4.2). The mean NPV for the wall of 

anovulatory follicles, emerging in the third wave of the inter-ovulatory interval, was 

higher than for wave 1 and 2 at the time of emergence (P < 0.01; Fig. 4.2). For wave 3, 

the mean NPV for the wall decreased to a minimum as the follicles reached their 

maximum follicular diameter around day 3 after emergence (P < 0.05). The NPV of the 

wall for follicles in the ovulatory wave (last wave of the inter-ovulatory interval) tended 

to decrease as they gained maximum follicular diameter (P = 0.07). The mean NPV for 

the follicular antrum in the first, second and third waves of the inter-ovulatory interval 

did not change as the follicular diameter increased from 3 mm to ≥5 mm and then 

decreased to 3 mm by the end of regression (P > 0.05; Fig. 4.2). The mean NPV of the 

antrum for the ovulatory follicles decreased while the follicular diameter increased from 

3 mm to its maximum diameter (P < 0.05).  
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Fig. 4.2.  Changes in the mean (± SEM) numeric pixel value (NPV) of the follicular 
wall and antrum (top and bottom panels respectively) for follicular waves during 
the inter-ovulatory interval in normal cyclic ewes. Data are normalized to the 
corresponding mean day of wave emergence for each follicular wave after ovulation 
(day 0). ab denote significant difference (P<0.05) within days of follicular lifespan. AB  

denote significant difference (P<0.05) at the time of emergence amongst different 
waves. 
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4.4.3. Pixel heterogeneity (PH) of the follicular wall and antarum 

The PH of the follicular wall did not change with growth and regression of follicles in 

each follicular wave and did not differ among different waves in the inter-ovulatory 

interval (P > 0.05; Fig. 4.3.). Pixel heterogeneity for the follicular antrum in the first 

follicular wave of the inter-ovulatory interval increased between the end of the growth 

phase and the late regression phase of follicular development (P < 0.05); however, no 

significant pattern was observed for changes in pixel heterogeneity for the follicular 

antrum in other follicular waves (Fig. 4.3.). 

4.4.4. Area under the curve for the follicular wall and antrum 

The area under the curve for both the follicular wall and antrum were correlated with 

follicular diameter in all follicular waves (r = 0.938, P < 0.01 and r = 0.941, P < 0.01 for 

the wall and antrum, respectively). The mean area under the curve for the follicular wall 

and antrum increased in all waves as follicular diameter increased and then decreased in 

anovulatory waves while follicles regressed (P < 0.01; Fig. 4.4.). 

4.4.5. Serum progesterone concentrations 

Mean serum progesterone concentrations increased gradually between day 2 and 11 after 

ovulation as the corpora lutea formed. Mean serum progesterone concentrations reached 

a peak of 2.2 ± 0.45 ng/mL on day 12 after ovulation (P < 0.01). Luteolysis resulted in a 

dramatic drop in serum progesterone concentrations to basal levels on day 16 after 

ovulation (P < 0.01). Serum progesterone concentrations were not correlated with 
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changes in the numeric pixel value and pixel heterogeneity of the follicular wall and 

antrum in any follicular wave (P > 0.05).  
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Fig. 4.3. Changes in the mean (± SEM) pixel heterogeneity (PH) for the follicular 
wall and antrum (top and bottom panels respectively) for follicular waves during 
the inter-ovulatory interval in normal cyclic ewes. Data are normalized to the 
corresponding mean day of wave emergence for each follicular wave after ovulation 
(day 0). ab denote significant difference (P<0.05) within days of follicular lifespan. 
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Fig. 4.4. Changes in the mean (± SEM) area under the curve (AUC) for the 
follicular wall and antrum (top and bottom panels respectively) for follicular waves 
during the inter-ovulatory interval in normal cyclic ewes. Data are normalized to the 
corresponding mean day of wave emergence for each follicular wave after ovulation 
(day 0).  
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4.5. Discussion  

Our hypothesis that ultrasound image attributes of antral follicles reflect the phases of 

follicle development and regression over an inter-ovulatory interval was partially 

supported. We observed a wave-dependent alteration in the image attributes of antral 

follicles. The mean pixel value of the follicular wall in wave 3 was higher than previous 

anovulatory waves of the ovulatory interval (waves 1 and 2) at the time of emergence 

and the wall of the follicles in wave 3 became darker (decreased NPV) as follicular 

diameter increased. A similar tendency was also seen for ovulatory follicles (Wave 4; P 

= 0.07). No trend in NPV was seen for waves 1 and 2. Echotexture of the follicular wall 

is dependent on the thickness of the wall, degree of vascularization in the theca layer, 

vascular blood flow and the amount of lipid in steroid-producing granulosa and theca 

cells (Singh et al. 1998, Tom et al. 1998b, Singh and Adams 2000, Liu et al. 2007b). 

Investigations using cattle revealed that hypertrophy and proliferation of granulosa and 

theca cells, as well as development of the dense connective tissue of vascular walls, 

were reflected as brighter images with increased NPV (Singh et al. 1998, Tom et al. 

1998b, Singh and Adams 2000, Liu et al. 2007b). However, increased blood flow alters 

the proportion of vascular tissue to blood, and results in a lower NPV in the follicular 

wall (Tom et al. 1998b). These changes may reflect alterations in the biological function 

of follicles (Singh et al. 1998, Tom et al. 1998b, Liu et al. 2007a, Liu et al. 2007b, Liu et 

al. 2008). The reason(s) for the higher NPV of the follicular wall in wave 3 at 

emergence, as observed in this study, is not clear and requires histomorphological 

investigation.  
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The decreasing NPV of the wall in follicles emerging after the mid-interovulatory 

interval may be related to increased blood flow, as growing follicles develop to become 

mature ovulatory sized structures. Tom et. al. (1998b) reported a rapid decrease in NPV 

of the follicular wall during the growth of ovulatory follicles and during the transition 

into the static phase of dominant anovulatory follicles in cattle. Histological evaluation 

in the same study revealed high vascularity in the follicular wall. In another 

investigation in cattle, the wall of preovulatory follicles had low granulosa cell density 

and high vascularity and edema within the theca interna (Singh and Adams 2000). 

Preovulatory follicles destined to develop functional corpora lutea in cattle and humans 

had a lower NPV (darker) for the follicular wall than atretic follicles (Martinuk et al. 

1992, Singh et al. 1998, Tom et al. 1998b). It has been suggested that echotextural 

characteristics of the follicular wall are indicative of the steroidogenic activity of the 

theca and granulosa cells in cattle (Singh et al. 1998). In ewes given equine chorionic 

gonadotropin (eCG), high NPV for the follicular wall was associated with higher serum 

progesterone concentrations after ovulation and corpus luteum formation (Liu et al. 

2007b). Based on the present echotextural analysis of the follicular wall in cyclic ewes, 

we speculated that follicles emerging after the middle of the inter-ovulatory interval may 

be more adapted for ovulation and corpus luteum formation. In normal cyclic ewes, 

ovulation normally occurs from the last wave of the cycle; however, in some prolific 

breeds of ewes, follicles from the penultimate wave of the cycle can ovulate (Bartlewski 

et al. 1999a). Short-term treatment with medroxyprogesterone acetate (MAP) releasing 

intravaginal sponges at midcycle, after induction of luteolysis with PGF2α, can induce 

follicles from both waves to ovulate in Western White Face sheep (Bartlewski et al. 
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2003, Liu et al. 2007a). It is exciting to note that the NPV of the walls of follicles 

emerging after middle of the inter-ovulatory interval differed from the walls of follicles 

of waves 1 and 2 of the ovulatory cycle. The reasons for this contrast could be 

investigated further by parallel histomorphological and functional evaluation of follicles 

at different time points of the inter-ovulatory interval.  

Granulosa cells are sloughed into the antrum individually or as clusters of cells during 

the later stages of follicular development (Singh et al. 1998, Singh and Adams 2000). 

This may cause an increase in the NPV of the antrum, especially near the follicular wall. 

In the present study, echotextural analysis of the whole follicular antrum did not reveal 

significant changes in pixel values in waves 1, 2 and 3 of the inter-ovulatory interval. 

This observation is in agreement with results of another report that the mean pixel values 

of the antrum in bovine anovulatory dominant follicles did not vary significantly during 

the follicular lifespan (Tom et al. 1998b). However, other studies in cattle showed 

brighter (higher NPV) follicular antra during the late-static and regression phases of 

anovulatory follicles (Vassena et al. 2003a). In the current study there was a decrease in 

the NPV of the follicular antrum in ovulatory follicles as they reached their maximum 

diameter. A tendency for a similar drop in the NPV as the diameter of the follicular 

antrum increased, was also noted for waves 2 and 3 of the inter-ovulatory interval (P = 

0.09 and P = 0.07, respectively; Fig. 2). This trend might be related to the growth of 

follicles and the increase in antral fluid volume with low echogenicity. The drop in NPV 

occurred as follicles attained their maximum steroidogeneic potential. For ovulatory 

follicles, the more obvious drop in NPV of the follicular antrum as the follicles grew, 

may represent less cellular debris in the antrum compared to earlier waves in the inter-
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ovulatory interval. In the ewe, the formation of short-lived corpora lutea following 

multiple GnRH injections was related to a greater NPV of the central antrum prior to 

GnRH treatment (Liu et al. 2007b). This was interpreted to suggest that follicles forming 

into optimal luteal structures shed greater numbers of granulosa cells into their antra in 

comparison to follicles forming normal corpora lutea (Liu et al. 2007b).     

A significant alteration in PH of the follicular antrum occurred only in the first wave of 

the inter-ovulatory interval in the present study. The increase in PH of the follicular 

antrum in wave 1 of the inter-ovulatory interval started from the beginning of the static 

phase and continued through the regression phase of the follicular lifespan (Fig. 4.3.). 

This could be explained by the accumulation of echoic cellular debris and 

macromolecules within the follicular antrum (Pierson and Adams 1995, Singh et al. 

1998, Tom et al. 1998b); however, this pattern was not observed in the other anovulatory 

waves of the inter-ovulatory interval. The follicular wall in preovulatory bovine follicles 

showed low values for PH (Tom et al. 1998b); however, in the present study, the PH of 

the follicular wall in the ovulatory wave did not change as the follicles grew to ovulatory 

diameters. Ovarian antral follicles are much smaller in the ewe than in cattle or humans 

and this may account for the high variation in the gray-scale pixel values that we 

observed. Utilizing regional echotextural analysis requires selection of the whole area of 

the follicular wall and/or antrum for analysis (Pierson and Adams 1995, Birtch et al. 

2005). Due to irregularities at the follicular wall-antrum interface and the small size of 

ovine ovarian follicles, it is inevitable that some pixels from each region (wall or 

antrum) enter into the analysis of the other region, resulting in greater variation or 

heterogeneity in pixel values.  
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In the present study, the length of the static phase was longer for the follicles emerging 

in the second wave of the inter-ovulatory interval. Studying the same breed of ewes, 

Bartlewski et. al. (1999a) reported an extended static phase for the follicles emerging in 

wave 1 and a longer growing phase for the follicles in wave 4 of an inter-ovulatory 

interval, while other wave dynamics remained unchanged. These results lead us to 

conclude that the pattern of growth and regression of follicles do not vary consistently 

among the waves of the estrous cycle in the ewe. This is interesting as the first and last 

waves would develop against a background of increasing and decreasing serum 

progesterone concentration, respectively, while waves 2 and 3 develop largely in an 

environment of high serum progesterone concentration.  

Quantitative assessment of the area under the curve (AUC), combined with follicular 

diameter data may assist in interpretation of echotextural data, especially for the 

follicular wall. An increase or decrease in follicular diameter, with no change in AUC 

for the follicular wall suggests a decrease or increase in the thickness of follicular wall 

respectively. Variation in the AUC for both follicular wall and antrum were highly 

correlated with changes in the follicular diameter. Therefore, it can be speculated that 

the changes in the image attributes of the follicular wall are mainly due to alterations in 

follicular size rather than the wall thickness. However, this assumption must be verified 

by measurements of follicular wall thickness using histological sections or computer-

assisted programs.   

In summary, results from this study partially supported the hypothesis that follicular 

image attributes change during the lifespan of follicles within a follicular wave, 

reflecting the developmental stage of the follicle. Interestingly, the changes were 
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dependent on the time of wave emergence during the inter-ovulatory interval. A greater 

alteration in NPV of the follicular wall was observed in follicular waves emerging after 

middle of the inter-ovulatory interval, suggesting morphological changes in the wall, 

related to the potential for ovulation of those follicles. The NPV of the antrum in the 4th 

wave of the inter-ovulatory interval also decreased as these ovulatory follicles grew to 

≥5 mm in diameter. This might be indicative of less atretic granulosa cells and other 

debris in the follicular antrum, suggesting a different morphological and functional 

status of follicles destined for ovulation and formation of corpora lutea. Pixel 

heterogeneity of the antrum in the first wave of the inter-ovulatory interval increased 

during the static and regression phases of the follicular lifespan. There are potential 

morphological and functional differences amongst antral follicles emerging at different 

stages of the inter-ovulatory interval in cyclic ewes. These findings also suggest 

predictive potential for image analysis as a diagnostic tool to evaluate follicular 

physiologic status in sheep.  
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CHAPTER 5:  OVARIAN FOLLICULAR DOMINANCE IN THE EWE 
AND THE INDUCTION OF DAILY FOLLICULAR WAVES 

 
Toosi BM, Seekallu SV, Zeigler AC, Barrett DMW and Rawlings NC 

 

5.1. Abstract 

In the ewe, large antral follicles emerge and grow in waves every 4 to 5 days both during 

the breeding season and seasonal anestrus. Emergence of each wave is preceded by a 

transient peak in serum FSH concentrations. The existence of follicular dominance, or 

the ability of follicles in a wave to block the development of other large antral follicles, 

in the ewe is unclear. This experiment was designed to see if emergence of follicular 

waves could be induced on a daily basis with injection of ovine FSH. Six anestrus ewes 

were treated with two daily injections of oFSH (0.35 µg/kg; sc; 8 h apart) for 4 days, 

starting 24 h after the expected time of an endogenously driven FSH peak. Six anestrous 

ewes were treated with vehicle. Ultrasonography was done twice daily and blood 

samples were collected ever 6 h. Injection of oFSH resulted in the occurrence of 4 

discrete peaks in serum FSH concentrations. Each injection of oFSH resulted in the 

emergence of a new follicular wave. The mean number of small follicles decreased from 

the first day of treatment to a nadir on day 4 after the start of treatment (16 ± 1.9), 

compared to control ewes (25 ± 3.8; P < 0.05).  We conclude that the ovine ovary is able 

to respond on a daily basis to physiologic peaks in serum FSH concentrations with the 

emergence of new follicular waves. The existence of direct follicular dominance in the 

ewe is questionable and the mechanisms that control the rhythm of follicular waves and 

the replenishment of the pool of small follicles, from which waves originate, are unclear. 
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5.2. Introduction 

In the ewe, development of ovarian antral follicles occurs in a wave-like pattern (Noel et 

al. 1993, Ravindra et al. 1994, Ginther et al. 1995, Souza et al. 1997, Bartlewski et al. 

1999a, Bartlewski et al. 2000b, Evans et al. 2000, Driancourt 2001). A follicular wave is 

defined as the emergence or growth of 1 to 3 follicles from a pool of small follicles (2 to 

3 mm in diameter) in the ovary and their growth to ≥5 mm in diameter before regression 

(anovulatory wave) or ovulation (ovulatory wave) (Bartlewski et al. 1998, Bartlewski et 

al. 1999a, Bartlewski et al. 2000b, Duggavathi et al. 2003a). Follicular waves emerge 

every 4 to 5 days both during the breeding season and seasonal anestrus (Ginther et al. 

1995, Bartlewski et al. 1998, Bartlewski et al. 1999a, Bartlewski et al. 2000b). 

Emergence of each follicular wave is associated with a transient peak in serum FSH 

concentrations; this peak appears to be essential for follicle wave emergence and each 

peak lasts 3 to 4 days (Ginther et al. 1995, Bartlewski et al. 1998, Bartlewski et al. 

1999a, Bartlewski et al. 2000b, Driancourt 2001,).     

In cattle, two or three follicular waves emerge in each estrous cycle (Ginther et al. 2003, 

Adams et al. 2008, Jaiswal et al. 2009). Each wave is characterized by the initial 

emergence or growth of 7 to 11 small follicles (4 mm in diameter) followed by the rapid 

growth of one follicle in this cohort to an ovulatory diameter (dominant follicle)  

(Ginther et al. 2003). This follicle suppresses the growth of other follicles in the cohort 

(subordinate follicles) and prevents emergence of a new follicular wave (Armstrong and 

Webb 1997, Adams et al. 2008). Treatment of cattle with physiological or 

supraphysiological concentrations of FSH, in the presence of a growing dominant 

follicle, failed to increase the mean number of major waves with emergence of 
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additional follicular waves, supporting the concept of direct follicle to follicle 

dominance (Ginther et al. 2002). In cattle, it has been suggested that this direct dominant 

effect of a growing follicle in a wave is exerted only when that follicle is in the active 

growth phase (Adams 1999, Ginther et al. 2002, Adams et al. 2008).  

In contrast to cattle, the number of small antral follicles (1 to 3 mm in diameter) did not 

increase at wave emergence in sheep, except during the periovulatory period 

(Duggavathi et al. 2003a). In sheep, follicles originating from the penultimate wave of 

the estrous cycle can ovulate with follicles from the final wave (Bartlewski et al. 1999a, 

Bartlewski et al. 2003, Evans 2003). In addition, wave overlap has also been noted in 

ewes treated with exogenous progesterone (Johnson et al. 1996, Leyva et al. 1998, Flynn 

et al. 2000). However, in those studies, emergence of new follicular waves occurred in 

the late-growth, static or early regression phase of a large antral follicle, when the ability 

of that follicle to exert functional dominance would have been questionable. However, 

emergence of a new follicular wave in the presence of a large growing follicle(s) from a 

previous wave has been reported in sheep (Duggavathi et al. 2004, Duggavathi et al. 

2005a). In one study, ovine FSH was injected to create a peak in serum concentrations of 

FSH in an interwave interval in the ewe and that peak resulted in emergence of a new 

follicular wave (Duggavathi et al. 2004). Mechanisms involved in the recruitment of 

follicles for emergence in each follicular wave are not clear in the ewe (Baird and 

Campbell 1998, Hunter et al. 2004). 

If direct dominance is not as evident in sheep as it is in cattle, the creation of frequent 

peaks in serum FSH concentrations in the ewe should result in emergence of recurrent 

follicular waves. The objective of the present study was to see if the ovine ovary 
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responds to daily injections of oFSH with frequent waves of follicular growth. We 

hypothesized that direct dominance is not evident in the ewe and the ovine ovary is 

capable of responding to frequent, even daily peaks in serum FSH concentrations with 

emergence of a new follicular wave.  

5.3. Materials and methods 

All Animal experimentation was performed according to the guidelines of the Canadian 

Council on Animal Care and was approved by the University of Saskatchewan animal 

care committee.  

5.3.1. Animals 

Twelve healthy, anestrus (May-June), Western White Face ewes (5 to 7 years of age, 

average body weight of 82.2 ± 4.3 kg) were randomly divided into treatment (n = 6) and 

control (n = 6) groups. All animals were housed in sheltered dry lots (Saskatoon, SK., 

Canada; 52 ºN latitude). Animals received daily maintenance rations of alfalfa pellets 

with water, and cobalt iodized salt licks available ad libitum.  

5.3.2. Ultrasonography 

All of the anestrous ewes underwent daily ultrasonography, starting at 08:00 h each day 

to determine the rhythmicity of follicular waves. Scanning was then done twice daily 

starting at 08:00 and 20:00 h to detect the first appearance of a 4 mm follicle of a new 

wave. Twice daily ultrasonography continued until 72 h after the last treatment after 

which observations were reduced to daily for a further 6 days.  
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Transrectal ultrasonography of ovaries was performed using a high-resolution, real-time 

B-mode echo camera (Aloka SSD-900; Aloka Co. Ltd., Tokoyo, Japan) connected to a 

7.5 MHz transducer. The number, diameter and relative position of all follicles ≥1 mm 

in diameter were sketched onto ovarian charts, and all ovarian images were recorded on 

high-grade video tapes (Fuji S-VHS, ST-120 N; Fujifilm, Tokoyo, Japan), using a 

compatible VCR (Panasonic, AG 1978; Matsushita Electronics, Mississauga, ON, 

Canada), for retrospective analysis of ovarian data.  

5.3.3. Experiment procedures and hormone preparation 

Treatment with oFSH was designed to start at 24 h after a peak in serum concentrations 

of FSH that preceded a follicular wave. Based on previous observations we know this 

peak occurs 60 h after the first detection of a 4 mm follicle in the previous wave 

(Duggavathi et al. 2005a, Duggavathi et al. 2004). To create physiological peaks in 

serum FSH concentrations, each daily treatment consisted of two injections of oFSH 8 h 

apart (0.35 µg/kg, sc). Control ewes received two injections of vehicle 8 h apart. The 

Experimental regimen was designed to provide 4 daily treatments of oFSH or vehicle 

within the period between two endogenously generated peaks in serum concentrations of 

FSH (Fig. 5.1.).  

One milligram of the oFSH used in this experiment (Teri.oFSH/ig.1, Tucker Endocrine 

Research Institute LLC, Atlanta, GA, USA) had a biological potency of FSH equivalent 

of 90 x NIH-oFSH-S1 and biological potency of LH less than 0.1 x NIH-oLH-S1. Ovine 

FSH for injection was prepared in saline with 0.05% bovine serum albumin (BSA; w/v; 

St. Louis, MO) and 50% polyvinylpyrrolidone (PVP; w/v; Sigma). 
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5.3.4. Blood sampling and hormone assays  

Blood samples (10 ml) were taken in vacutainers (Becton Dickinson, Rutherford, NJ, 

USA) daily (08:00 h), and at 02:00, 08:00, 14:00 and 20:00 h from 24 h before the first 

injection to 48 h after the last treatment (total of 6 days). Blood samples were allowed to 

clot for 18 to 24 h at room temperature, and serum was harvested and stored at -20 oC 

until assayed. 

All serum samples were analyzed for circulating concentrations of FSH and estradiol by 

validated radioimmunoassays (Rawlings et al. 1984, Currie and Rawlings 1989). The 

range of the standard curves was from 0.12 to 16.0 ng/mL and 1.0 to 50 pg/mL for FSH 

and estradiol, respectively. The sensitivities of assays (defined as the lowest 

concentration of hormone capable of significantly displacing labeled hormone from the 

antibody; unpaired t-test, P < 0.05) were as follows: FSH, 0.1 ng/mL and estradiol, 1 

pg/mL. For reference sera with mean FSH concentrations of 0.45 or 3.28 ng/mL, the 

intra- and inter-assay CVs were 7.4 or 3.8% and 10.7 or 4.6% respectively. For estradiol, 

the intra- and inter assay CVs for reference sera with mean concentrations of 7.02 or 

22.14 pg/mL were 8.8 or 6.5% and 13.3 or 8.4%, respectively.  

Peaks in serum concentrations of FSH, in samples taken twice daily, were determined 

using the cycle-detection computer program (Clifton and Steiner 1983). Within each 

peak of FSH secretion, data for all ewes in a group were aligned temporally to the zenith 

of the peak. To graph the data for each group, the zenith of each peak was normalized to 

the first day of treatment (Day 0). Serum estradiol concentrations were normalized to the 

first day of treatment.  
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 Exprimental design
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Fig. 5.1. Schematic representation of the experimental design in the present study. 
Six anestrous ewes were treated with two injections of oFSH 8 h apart (0.35 µg/kg, sc, 
dotted line) every day for 4 days in the period between two endogenously generated 
peaks in serum concentrations of FSH (solid line). Control ewes (n = 6) received vehicle 
only. The first treatment was timed to occur 24 h after the peak in serum concentrations 
of FSH that preceded a follicular wave. Based on previous observations we know that 
FSH peaks occur 60 h after the first detection of a 4 mm follicle in the previous 
follicular wave (Duggavathi et al. 2004). See text for detail and rationale for 
experimental design.  
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5.3.5. Follicular data analysis 

A follicular wave is regarded as a follicle or group of follicles that emerge or grow from 

2 or 3 mm in diameter to an ovulatory size of ≥5 mm in diameter, with emergence 

restricted to a 24 h period (Bartlewski et al. 1999a, Duggavathi et al. 2004). For 

consistency, the day of emergence for each growing follicle in a follicular wave was 

considered when that follicle was first detected at 3 mm in diameter. 

Follicular waves emerging within 24 h after each daily treatment with oFSH were 

considered to be associated with the peak in serum FSH concentrations created by that 

treatment. With scanning done twice daily, it was possible to accurately map follicular 

waves emerging on a daily basis over the period of treatment. Follicular waves induced 

by injection of oFSH every day for 4 days were designated waves A, B, C and D. The 

wave immediately preceding treatment was designated wave 1 and following treatment 

in control ewes was wave 2. Characteristics of the follicular waves such as the number 

of follicles in the wave (follicles growing to ≥5 mm in diameter), maximum follicular 

diameter, length of growth, static and regression phases (days) as well as growth and 

regression rates of the largest follicle of a wave were calculated. The number of small (1 

to 3 mm in diameter) follicles seen on a daily basis over the experiment was also 

calculated.  

5.3.6. Statistical analysis  

Changes in mean serum concentrations of FSH and estradiol over the period of the 

experiment as well as daily changes in the number of small size follicles were analyzed 
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by two-way repeated measures Analysis of Variance (SigmaStat® Statistical Software for 

Windows Version 2.3, 1997, SPSS Inc., Chicago, IL, USA). Comparison of follicular 

wave characteristics amongst different follicular waves within treatment groups were 

made by one-way repeated measures Analysis of Variance (SigmaStat® Statistical 

Software for Windows Version 2.3, 1997, SPSS Inc., Chicago, IL, USA). Multiple 

comparisons were made by the method of Fisher’s least significant difference (LSD). All 

values are means ± SEM and statistical significance was set as P < 0.05. 

5.4. Results 

5.4.1. Serum concentrations of FSH 

After four daily treatments with oFSH in the period between two consecutive 

endogenously driven peaks in serum concentrations of FSH, discrete peaks were 

detected by the cycle detection program on days 0.4 ± 0.1, 1.6 ± 0.1, 2.5 ± 0.0, 3.4 ± 0.1 

relative to the day of first treatment (Day 0). A significant peak in serum FSH 

concentrations after each injection was also shown by ANOVA (Fig. 5.2.). Basal serum 

concentrations of FSH were significantly greater in ewes given oFSH (2.6 ± 0.2 ng/mL) 

than in control ewes (1.1 ± 0.1 ng/mL) from day 1 to 6 after the first injection of oFSH 

(day 0). The endogenously driven peak in serum concentrations of FSH on day 5 after 

onset of treatment in control ewes appeared to be masked by treatment in ewes given 

oFSH (Fig. 5.2.). However, in ewes given oFSH or vehicle, a peak in serum 

concentrations of FSH was seen 8.3 ± 0.3 or 8.6 ± 0.3 days after the first injection, 

respectively (Fig. 5.2.).  
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Fig. 5.2. Mean (±SEM) serum concentrations of FSH in oFSH-treated (n = 6; top 
panel, ●) and control (n = 6; bottom panel, ○) ewes. Treatment included two 
injections of oFSH (0.35 µg/kg, sc) or vehicle, 8 h apart, given daily for four successive 
days (represented by dash-lined arrows), starting 24 h after the expected day of an 
endogenously driven peak in serum FSH concentrations. Within each peak of FSH 
secretion, data for all ewes in a group were aligned temporally to the zenith of the peak. 
To graph the data for each group, the zenith of each peak was normalized to the mean 
day relative to the first treatment when that peak occurred (Day 0 = day of first 
treatment). The solid arrows denote peaks in serum FSH concentrations identified by the 
cycle detection program. Dotted lines denote significant increases in serum FSH 
concentrations after giving each oFSH treatment, compared to basal serum FSH 
concentrations.  
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5.4.2. Follicular wave emergence  

In ewes given oFSH on days 0, 1, 2 and 3 (Day 0 = day of first treatment), follicular 

waves emerged on days 0.6 ± 0.1, 1.7 ± 0.1, 2.6 ± 0.1 and 3.6 ± 0.1, respectively (waves 

A, B, C and D; Fig. 5.3.). Within oFSH treated ewes, the number of follicles that 

emerged within the first 12 h after the first, second, third and fourth treatment with 

oFSH, given daily (1.3 ± 0.4, 1.4 ± 0.3, 2.5 ± 0.8 and 1.8 ± 0.6, respectively) was greater 

than the number of emerging follicles during the second 12 h after each treatment (P < 

0.05; 0.3 ± 0.2, 0.8 ± 0.2, 0.6 ± 0.3, 0.3 ± 0.2, respectively). Emergence of endogenously 

driven wave 1 occurred on day -0.6 ± 0.2 and -0.7 ± 0.1 in ewes given oFSH or vehicle, 

respectively (P > 0.05). In control ewes, the mean day of emergence of the next 

endogenously driven wave (wave 2) was on day 4.2 ± 0.4. 

5.4.3. Number of small follicles and serum estradiol concentrations 

The mean number of small follicles (1 to 3 mm in diameter) decreased after giving 

oFSH, reaching a nadir on day 4 after first treatment (Fig. 5.4.; P < 0.05). Mean serum 

estradiol concentrations did not differ between ewes given oFSH and control ewes (3.2 ± 

0.3 and 3.3 ± 0.3 pg/mL, respectively; P > 0.05).  

5.4.4. Follicular wave characteristics  

Antral follicular wave characteristics (length of the growth, static and regression phases, 

growth and regression rates, and maximum follicular diameter) of the largest follicle of a 

wave did not differ among waves or treatment groups (P > 0.05).  
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Fig. 5.3.  Panel A: Mean (±SEM) diameter profiles of follicles in waves 1, A, B, C 
and D emerging between days -1 to 0, 0.5 to 1, 1.5 to 2, 2.5 to 3 and 3.5 to 4, 
respectively, in oFSH-treated ewes. Panel B: Mean (±SEM) diameter profiles of 
follicles of waves 1 and 2 in control ewes. In panel A and B, data for each follicular 
wave are graphed from the mean day of wave emergence for that wave, normalized to 
the day of first treatment. Treatment included two injections of oFSH (0.35 µg/kg, sc) or 
vehicle, 8 h apart, given daily for four successive days (represented with dash-lines), 
starting 24 h after the expected day of an endogenously driven peak in serum FSH 
concentrations (Day 0 = day of first treatment).  
* indicates significant difference in number of growing follicles between oFSH-treated 
and control groups (P< 0.05)  
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Fig. 5.4.  Mean (±SEM) daily (08:00 h) number of small follicles (1-3 mm in 
diameter) in oFSH-treated (n = 6; ●) and control (n = 6; ○) ewes. Treatment included 
two injections of oFSH (0.35 µg/kg, sc) or vehicle, 8 h apart, given daily for four 
successive days (represented with dash-lined arrows), starting 24 h after the expected 
day of an endogenously peak in serum FSH concentrations. The mean number of small 
follicles were normalized to the day of the first injection (Day 0) of oFSH or vehicle. 
* indicates significant difference in number of small follicles between oFSH-treated and 
control groups (P< 0.05). 
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5.5. Discussion 

In the present study, treatment of anestrous ewes with oFSH on a daily basis 

successfully created four distinct peaks in serum FSH concentrations. In all oFSH 

treated ewes, there was at least one follicle emerging in response to each treatment. This 

confirms that in sheep there is no direct dominance effect from growing follicle(s) of a 

follicular wave to suppress emergence and growth of a new follicular wave in response 

to a peak in serum FSH concentrations. This is in agreement with previous reports from 

our laboratory when emergence of a new follicular wave was induced in the growth 

phase of an existing follicular wave by giving exogenous FSH (Duggavathi et al. 2004, 

Davies 2005, Duggavathi et al. 2005a).  

In the ewe, it has been suggested that serum concentrations of FSH need to reach a 

threshold to stimulate emergence and growth of an antral follicular wave (Driancourt 

2001). In the present study, oFSH treatment on a daily basis increased the basal serum 

FSH concentrations during the treatment period. It could be argued that the increased 

serum concentrations of FSH, probably over the required threshold for follicle 

stimulation, resulted in a continuous emergence of ovarian antral follicles to ovulatory 

diameters. Although a great number of follicles grew to ovulatory diameters in response 

to the oFSH treatments, the emergence of those follicles were distributed mainly within 

the first 12 h after each oFSH treatments (76.5%), given every 24 h for 4 days. These 

results indicate that the occurrence of daily, discrete FSH peaks, over increased basal 

circulating concentrations of FSH, induced the emergence and growth of discrete antral 

follicular waves.  
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The last oFSH treatment appeared to mask the occurrence of the next endogenously 

driven peak in serum FSH concentrations. Interestingly, the occurrence of the first clear 

endogenously driven FSH peak after oFSH treatment was detected simultaneously with 

the second peak in serum FSH concentrations after treatment, in control ewes. This 

emphasizes that giving oFSH on a daily basis did not interrupt the rhythmic occurrence 

of the endogenously driven peaks in serum FSH concentration. If dominance is unclear 

in sheep then some other endogenous rhythm would be needed to drive the regular 

rhythm of peaks in FSH secretion and the associated follicular waves (Duggavathi et al. 

2005b). Rhythmic peaks in serum FSH concentrations have been reported in 

ovariectomized ewes with a similar inter-peak interval and peak amplitudes as those in 

ovary-intact ewes (Duggavathi et al. 2005b). In another study, a 10-day application of 

estradiol-releasing implants in cyclic ewes resulted in truncation of peaks in serum FSH 

concentrations and interruption of follicular wave emergence; however, those truncated 

peaks showed a rhythmic occurrence during the treatment period (Barrett et al. 2006).  

In the present study, 5 follicular waves emerged in ewes treated with oFSH in the time 

frame of the emergence of 2 follicular waves in control ewes. This suggests that small 

FSH-sensitive follicles are available on a daily basis to enter a wave in response to a 

physiological FSH stimulus. In cattle, follicular wave emergence is associated with a 

transient increase in the numbers of small antral follicles (7 to 11 follicles of about 4 mm 

in diameter) in the ovary (Ginther et al. 2001, Ginther et al. 2003). However, no 

significant day effect for the number of small follicles has been reported in ewes except 

around the time of ovulation (Duggavathi et al. 2003a). In contrast to normal follicular 

waves in cattle, the number of small follicles (1 to 3 mm in diameter) in the ovary, in the 
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present study in sheep, declined towards the end of the treatment period. These results 

are in agreement with other observations in sheep indicating a lack of recruitment of a 

large number of small follicles at the emergence of a new follicle wave or follicle-to-

follicle suppression of small follicles during the growth phase of a wave (Noel et al. 

1993, Ginther et al. 1995, Bartlewski et al. 1999a, Evans et al. 2000, Duggavathi et al. 

2003a). Moreover, the drop in the number of small follicles in this study indicated that 

the growth of follicles into larger size categories (4 mm and ≥5 mm in diameter) in 

response to frequent oFSH treatments caused depletion of the small follicle pool. This 

also probably confirms the gonadotropin independent growth of antral follicles which 

are less than 2 mm in diameter in sheep (Driancourt 2001). Based on the present results, 

it is interesting to speculate that small follicles in the ovary remain responsive to 

physiological peaks in serum FSH concentrations for some time; however, only a few of 

them ever emerge into follicular waves in response to peaks in serum FSH 

concentrations. It has been suggested that selection of 1 to 3 small follicles to emerge 

and grow in each follicular wave is associated with an intricate relationship between 

gonadotropins and local factors in the ovary (Campbell et al. 1999, Webb et al. 2007). 

However, the mechanism for recruitment of small follicles into a follicular wave is 

unclear as is the regulation of the rate of replenishment of small follicles in the ovary.  

In summary, daily injections of oFSH for four days resulted in emergence of new 

follicular waves on a daily basis. This treatment did not disturb the rhythm of 

endogenously driven peaks in serum FSH concentrations and follicular wave emergence. 

Small follicles (1 to 3 mm in diameter) in the ovary appear to be able to respond to 

physiologic peaks in serum FSH concentrations on a daily basis. The mechanisms for 
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follicle selection for growth and development into follicular waves and for 

replenishment of the pool of small ovarian follicles are intriguingly unclear in the ewe.  
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CHAPTER 6:  EFFECTS OF THE RATE AND DURATION OF 
PHYSIOLOGICAL INCREASES IN SERUM FSH CONCENTRATIONS ON 

EMERGENCE OF FOLLICULAR WAVES IN CYCLIC EWES 

Toosi BM, Seekallu SV and Rawlings NC 

6.1. Abstract 

There are 3 or 4 follicular waves in the inter-ovulatory interval of cyclic ewes. 

Emergence of each follicular wave is preceded by a transient peak in serum FSH 

concentrations which lasts for 3 to 4 days and is essential for emergence of the wave. To 

study the characteristics of peaks in FSH secretion required for follicular wave 

emergence, we attempted to investigate the effects of creating a gradual increase in the 

leading slope of an FSH peak (Experiment 1) and of raising basal serum concentrations 

of FSH and maintaining them at peak levels for 60 h (Experiment 2). In Experiment 1, 6 

cyclic ewes received ovine FSH (0.1 µg/kg, sc) every 6 h for 42 h starting 24 h after 

ovulation. Control ewes (n = 6) received vehicle. Blood samples were taken every 6 h 

and ovaries were examined daily by ultrasonography in both experiments. Serum FSH 

concentrations increased in oFSH treated ewes (P < 0.05) resulting in an additional peak 

between two endogenously driven FSH peaks and therefore, did not give the planned 

gradual leading slope to an FSH peak. FSH treatment occurred in the early growth phase 

of wave 1 of the inter-ovulatory interval and increased the growth rate of growing 

follicles in that wave, compared to control ewes (P < 0.05). This apparently induced 

dominance in follicles in wave 1, causing them suppress wave emergence in response to 

the injected FSH. In Experiment 2, oFSH was infused constantly (1.98 µg/ewe/h, n = 6) 

for 60 h starting 3 days after ovulation and at the time of the second endogenously 

driven FSH peak of the inter-ovulatory interval. Control ewes (n = 5) were infused with 
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vehicle. Infusion of oFSH resulted in a superstimulatory effect with a peak in the mean 

number of large follicles on day 2 after the start of FSH infusion (13 ± 1.2 large follicles 

per ewe; 1.8 ± 0.2 in control ewes; P < 0.001). Within oFSH treated ewes there was a 

decrease in number of small follicles from 16.3 ± 2.1 before the start of treatment to 4.4 

± 1.3 on day 2 (P < 0.05). In conclusion, creating an exogenous FSH peak by giving 

frequent low doses of ovine FSH failed to induce emergence of a new follicular wave 

due probably to induced dominance exerted by the largest follicles growing concurrent 

to oFSH treatment. Infusion of a low dose of oFSH constantly for 60 h stimulated the 

growth of small follicles in the ovary and induced a superovulatory response in cyclic 

ewes. 

6.2. Introduction 

In the ewe, ovarian antral follicular growth occurs in a wave-like pattern (Noel et al. 

1993, Ravindra et al. 1994, Ginther et al. 1995, Souza et al. 1997, Bartlewski et al. 

1999a, Bartlewski et al. 2000b, Evans et al. 2000, Driancourt 2001) which is defined as 

the emergence and growth of 1 to 3 follicles from a pool of small follicles (1 to 3 mm in 

diameter) and their growth to ≥5 mm in diameter (Bartlewski et al. 1998, Bartlewski et 

al. 1999a, Duggavathi et al. 2003a). These follicles may remain in a static phase before 

regression (anovulatory waves) or ovulation (ovulatory waves) (Bartlewski et al. 1998, 

Bartlewski et al. 1999a, Bartlewski et al. 2000b). Emergence of each follicular wave is 

preceded by a transient peak in serum concentrations of follicle stimulating hormone 

(FSH), which lasts for 3 to 4 days, and is considered the signal for emergence of the 

wave (Ginther et al. 1995, Bartlewski et al. 1998, Bartlewski et al. 1999a, Driancourt 

2001). Truncation of endogenous FSH peaks by treatment with estradiol resulted in 
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disappearance of follicular waves in cyclic ewes (Barrett et al. 2006). Moreover, 

treatment of ewes with a physiologic dose of exogenous oFSH to create an FSH peak 

during the inter-wave interval, resulted in emergence of a new follicular wave without 

disruption of the normal pattern of FSH peaks and follicular waves (Duggavathi et al. 

2004, Duggavathi et al. 2005a). The induced FSH peak resulted in a wave with normal 

follicle(s) in terms of growth characteristics and estradiol secretion (Duggavathi et al. 

2004). It has been suggested that the peaks in serum FSH concentrations need to reach a 

specific threshold to stimulate the emergence of a follicular wave (Picton and McNeilly 

1991, Driancourt 2001). Although this threshold seems to be close to the zenith of the 

peaks in serum concentrations of FSH, individual variation in this threshold has also 

been noted among ewes (Picton and McNeilly 1991).  

The FSH peaks that precede the emergence of ovarian follicular waves in the ewe appear 

to vary in characteristics, such as peak height, duration and the shape of the leading and 

trailing slopes of the peak. However, peaks in serum FSH concentrations, with different 

characteristics, can trigger emergence of follicular waves when they reach a required 

threshold (Picton and McNeilly 1991, Driancourt 2001). The relationships between the 

characteristics of FSH peaks and the growth patterns of their corresponding follicular 

waves have not been studied in the ewe. In anestrous ewes, when the amplitude of a 

peak in serum concentrations of FSH was doubled, by giving exogenous oFSH, the 

ensuing follicular wave did not differ from that seen in control ewes (Duggavathi et al. 

2005a).  

In Experiment 1, our objective was to see if a very gradual increase in the leading slope 

of an FSH peak would be detected by the ovary as a proper signal to stimulate 
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emergence of a new follicular wave. We hypothesized that a new follicular wave with 

normal follicular dynamics would emerge after an induced FSH peak with a gradual 

leading slope. A peak in serum FSH concentrations could be simply defined as a 

temporary and gradual rise in basal concentrations to the threshold levels required for 

emergence of a follicular wave, since a peak usually occurs over 3 to 4 days. It is not 

clear whether a discrete peak is required to signal a follicular wave or merely an increase 

in basal concentrations of FSH to a threshold value. In Experiment 2, our objective was 

to see if raising the basal serum concentrations of FSH to the concentrations seen at the 

zenith of a peak and maintaining it for several days would allow multiple follicle waves 

to emerge. We hypothesized that maintaining elevated basal serum FSH concentrations 

would induce continuous emergence of new follicular waves in the sheep ovary. 

6.3. Materials and methods 

All Animal experimentation was performed according to the guidelines of the Canadian 

Council on Animal Care and was approved by the University of Saskatchewan animal 

care committee. The cyclic, nulliparous, Western White Face ewes (4 to 6 years of age), 

used in the present experiments, received daily maintenance rations of alfalfa pellets 

with water, and cobalt iodized salt licks available ad libitum. Ewes were kept outdoors 

in pens when not involved with experiments. During both experiments, ewes were 

housed indoors with lighting set to simulate the natural light/dark cycle (October-

December). Estrus was synchronized by a 14-day treatment with MAP-releasing 

intravaginal sponges (Medroxyprogesterone Acetate, 60 mg; Veramix®, Up-John, 

Orangeville, ON, Canada). Experiments were conducted in the second cycle after 

synchronization. Estrus was detected with three vasectomized crayon-harnessed rams. 
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6.3.1. Experiment 1  

6.3.1.1. Animals 

Twelve ewes with a mean body weight of 81.8 ± 4.7 kg were divided into treatment (n = 

6) and control (n = 6) groups.  

6.3.1.2. Hormone Preparation and Experimental Procedures 

Six ewes were treated with ovine FSH (0.1 µg/kg, sc; Teri.oFSH/ig.1, Tucker Endocrine 

Research Institute LLC, Atlanta, GA, USA) every 6 h for 42 h. Treatment started 24 h 

after ovulation. Six control ewes received injections of vehicle only. The treatment 

regimen was designed to create a gradual increase in serum FSH concentrations over the 

42 h prior to the zenith of the second FSH peak of the inter-ovulatory interval. Each 1 

mg of oFSH used had a biological potency of FSH equivalent to 90 x NIH-oFSH-S1 and 

a biological potency of LH less than 0.1 x NIH-oLH-S1. The oFSH was prepared in 

saline with 0.05% BSA (w/v; Sigma, St. Louis, MO, USA) and 50% 

polyvinylpyrrolidone (w/v; Sigma; 100 µg oFSH per 50 mL vehicle). 

6.3.1.3. Ultrasonography 

Transrectal ultrasonographic examination of ovaries was performed using a high-

resolution, real-time B-mode echo camera (Aloka SSD-900; Aloka Co. Ltd., Tokyo, 

Japan) connected to a 7.5 MHz transducer. The examinations were done daily (starting 

at 08:00 h), starting 2 days before the expected day of estrus. Ovulation was detected by 

the disappearance of large antral follicles (≥5 mm in diameter) and confirmed by 

formation of corpora hemorrhagica and/or corpora lutea (Bartlewski et al. 1999d). The 
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number, diameter and relative position of all follicles ≥1 mm in diameter and copora 

lutea (CL), were sketched onto ovarian charts, and all ovarian images were recorded on 

Digital Versatile Discs (DVDs; Verbatim DVD+R 16X, Verbatim Corp. Charlotte, NC, 

USA), using a compatible DVD recorder (LG, LRA 750, LG Electronics Inc. Canada, 

Mississauga, ON, Canada), for retrospective analysis of ovarian data. Ultrasongraphic 

examination of the ovaries was continued until the identification of the emergence of the 

third follicular wave of the inter-ovulatory interval studied.  

6.3.1.4. Blood Sampling, Hormone Assays and Data Analysis  

Blood samples (10 ml) were collected in vacutainers (Becton Dickinson, Rutherford, NJ, 

USA) prior to each ultrasound examination and at 08:00, 14:00, 20:00 and 02:00 hr from 

24 h before the first, to 48 h after the last treatment, followed by sampling at 08:00 and 

20:00 for another 48 h. Serum was harvested from samples and stored at -20 ºC until 

assayed. Serum samples were analyzed for circulating concentrations of FSH (samples 

taken daily and every 6 h; (Currie and Rawlings 1987)) and estradiol (samples taken 

daily; (Joseph et al. 1992)) by validated radioimmunoassays. The sensitivity of the 

assays (defined as the lowest concentration of hormone capable of significantly 

displacing labeled hormone from the antibody; unpaired t-test, P < 0.05) were as 

follows: FSH, 0.1ng/mL and estradiol, 1pg/mL. For reference sera with mean FSH 

concentrations of 0.48 or 3.65 ng/mL, the intra- and inter-assay CVs were 8.3 or 3.4% 

and 10.5 or 4.8% respectively. For estradiol, the intra- and inter-assay CVs for reference 

sera with mean concentrations of 8.66 or 25.54 pg/mL were 9.9 or 6.7% and 12.2 or 

8.8%, respectively. Peaks in serum concentrations of FSH, in samples taken twice daily, 

were determined using a cycle-detection computer program modified for Windows® XP 
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(Clifton and Steiner 1983). Within each peak of FSH secretion, data for all ewes in a 

group were aligned temporally to the mean day of the zenith of the peak for that group 

of ewes. To graph the data for each group of ewes, the time of the zenith of each FSH 

peak was normalized to the mean day of the occurrence of the peak relative to the start 

of the treatment (Day 0). Peak serum concentrations of estradiol were calculated for 

each follicular wave.  

6.3.1.5. Analysis of Follicular Data   

A follicular wave was regarded as a follicle or group of follicles that emerged or grew 

from 3 mm in diameter to an ovulatory size of ≥5 mm in diameter, with emergence 

restricted to a period of 24 h (Bartlewski et al. 1999a). Data for the first and second 

follicular waves of the inter-ovulatory interval studied are presented and compared. The 

mean day of follicular wave emergence for waves 1 and 2 were determined relative to 

the start of treatment (Day 0). The number of follicles in a wave represents the number 

of all follicles growing from 1 to 3 mm to ≥5 mm in diameter in each follicular wave. 

The lengths of the growth, static, and regression phases, maximum diameter, growth rate 

and the lifespan of the largest follicle in waves 1 and 2 are presented (Bartlewski et al. 

1999a). The inter-wave interval is defined as the interval between the time of wave 

emergence for two consecutive follicular waves.  

6.3.1.6. Statistical Analysis 

Serum concentrations of FSH and estradiol in samples taken during the experiment were 

analyzed for effects of time and treatment by two-way repeated measures Analysis of 

Variance (RM-ANOVA, SigmaStat® Statistical Software for Windows Version 2.03, 
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1997, SPSS Inc., Chicago, IL, USA). Two-way ANOVA was used to compare 

characteristics of growing follicles with main effects of treatment and wave (Table 1). 

Multiple comparisons were made by Fisher’s least significant difference (LSD). All 

values are means ± SEM and statistical significance was set as P < 0.05. 

6.3.2. Experiment 2  

6.3.2.1. Animals 

Eleven ewes with a mean body weight of 80.6 ± 3.3 kg were randomly divided into 

treatment (n = 6) and control (n = 5) groups.  

6.3.2.2. Hormone Preparation, Experiment Procedures and Ultrasonography  

Ovine FSH (Teri.oFSH/ig.1) was infused intravenously to 6 ewes for 60 h. Infusion 

started 3 days after ovulation with an infusion rate of 0.5 mL/min/ewe. Peristaltic pumps 

(Pharmacia P-3, Pharmacia Fine Chemicals, London, UK) were used for infusion of 

oFSH and were connected to the left jugular vein of the ewes via indwelling jugular 

catheters (vinyl tubing; 1.00 mm inner diameter x 1.50 mm outer diameter; 530070; 

Biocorp Australia Propriety Ltd., Huntingdale, Australia). Ovine FSH was prepared in 

saline (33 µg/500 mL) with 0.05% BSA (w/v; Sigma, St. Louis, MO, USA). All ewes 

were restrained in individual carts during the infusion with free access to food and water 

(ad libitum). Control animals received the saline-BSA solution. Infusion with oFSH was 

designed to increase the basal serum concentrations of FSH to the zenith of the FSH 

peaks that precede follicular waves and to maintain FSH concentrations at this level for 

60 hours. The infusion was timed to start prior to the second endogenously driven FSH 
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peak of the inter-ovulatory interval and to last as long as the endogenous peak. 

Transrectal ovarian ultrasonographic examination was done daily; starting 2 days before 

the expected time of estrus and continuing until 10 days after the end of infusion.  

6.3.2.3. Blood Sampling, Hormone Assays and Data Analysis  

Blood samples (10 mL) were taken using vacutainers (Becton Dickinson, Rutherford, 

NJ, USA) prior to each ultrasound examination. Samples were also taken every 6 h (4 

ml) from 6 h before the start of infusion to 24 h after the end of infusion via a second 

indwelling jugular catheter (vinyl tubing) inserted in the right jugular vein. Cannulae 

were inserted 24 h before the start of infusion and were filled with heparinized saline 

between the periods of intensive bleeding (1000 U.S.P. units of heparin sodium per 1 L 

of saline; Hepalean, Organon Teknika Inc., Toronto, ON, Canada). Serum 

concentrations of FSH were measured in all blood samples. Serum estradiol and 

progesterone concentrations were determined in samples taken daily (Rawlings et al. 

1984). The sensitivity of the assay for progesterone was 0.02 ng/mL. For reference sera 

with mean FSH concentrations of 0.91 or 3.91 ng/mL, the intra- and inter-assay CVs 

were 7.4 or 3.9% and 8.7 or 4.2%, respectively. For estradiol, the intra- and inter-assay 

CVs for reference sera with mean concentrations of 7.22 or 21.12 pg/mL were 10.8 or 

8.7% and 11.9 or 8.8%, respectively. The intra-assay CVs were 4.3, 4.8 and 2.6% for 

reference sera with mean progesterone concentrations of 2.2, 6.1 and 20.1 ng/mL, 

respectively. Peaks in serum concentrations of FSH, in samples taken daily, were 

determined by the cycle detection computer program (Clifton and Steiner 1983). The 

pattern of serum concentrations of FSH, estradiol and progesterone was normalized to 

the day of the start of treatment.  
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6.3.2.4. Analysis of follicular Data  

Due to the induced super-stimulatory response in the ovaries of the ewes infused with 

oFSH, it was not feasible to identify and track individual follicles over the treatment 

period. Therefore, the length of the growth, static and regression phases of follicles 

emerging in response to treatment were not determined. The mean number of small (1 to 

3 mm in diameter), medium (4mm in diameter) and large (≥ 5 mm in diameter) follicles 

were calculated and are presented on a daily basis for the period of experiment.  

6.3.2.5. Statistical Analysis  

Serum concentrations of FSH, estradiol and progesterone in samples taken during the 

experiment were analyzed for effects of time and treatment by two-way repeated 

measures Analysis of Variance (RM-ANOVA, SigmaStat® Statistical Software for 

Windows Version 2.3, 1997, SPSS Inc., Chicago, IL, USA). Two-way ANOVA was 

also used to assess time and treatment effects for the number of follicles in each size 

category. Multiple comparisons were made by Fisher’s least significant difference 

(LSD). All values are means ± SEM and statistical significance was set as P < 0.05. 

6.4. Results 

6.4.1. Experiment 1 

6.4.1.1. Serum concentrations of FSH  

Within the group of ewes treated with a low dose of oFSH every 6 h for 42 h starting 24 

h after ovulation, a gradual rise in serum FSH concentrations was observed from 0.7 ± 

 110



 

0.1 ng/mL before the first treatment, reaching a high serum concentration of 2.3 ± 0.4 

ng/mL at the end of the treatment period (P < 0.05; Fig. 6.1.). This resulted in the 

occurrence of an additional FSH peak 2.1 ± 0.3 days earlier than the second endogenous 

peak of the inter-ovulatory interval in oFSH treated ewes (P < 0.05; Fig. 6.1.).  In oFSH-

treated ewes, serum concentrations of FSH were significantly higher from 6 h to 48 h 

after the start of treatment, compared to vehicle treated ewes (Fig. 6.1.).  

Peak estradiol concentrations, corresponding to the first or second follicular waves of the 

inter-ovulatory interval did not differ between oFSH- and vehicle treated ewes, or within 

each experimental group (3.9 ± 0.7 or 3.4 ± 0.4 and 3.7 ± 0.5 or 4.5 ± 0.5 pg/mL, 

respectively; P > 0.05). 

6.4.1.2. Development and characteristics of follicular waves 

Injection of a low dose of oFSH every 6 h for 42 h during the growth phase of the first 

wave of the inter-ovulatory interval did not alter the time of emergence of the second 

follicular wave in comparison to control ewes (P > 0.05; Fig. 6.1.; Table 6.1.). The inter-

ovulatory interval and the interval between the first 2 waves of the inter-ovulatory 

interval did not differ between oFSH- and vehicle-treated ewes (P > 0.05; Fig. 6.1.; 

Table 6.1.). The largest follicle in wave 1 grew faster (P < 0.05; Table 6.1.) and had a 

significantly greater diameter on day 3 after emergence (day 2 after start of treatment; 

Fig. 6.1.) in ewes that received oFSH compared to vehicle-treated ewes. The growth 

phase and the lifespan of the largest follicle in wave 1 were shorter in oFSH-treated 

ewes than in control ewes (P < 0.05; Table 6.1.). In both oFSH- and vehicle treated 
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ewes, there were more follicles emerging in the first wave, compared to the second wave 

of the inter-ovulatory interval (P < 0.05; Table 6.1.). 
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Fig. 6.1. Mean serum concentrations of FSH (outlined with shading) and emerging 
follicular waves 1 (●) and 2 (○) of the inter-ovulatory interval in cyclic Western 
White Face ewes treated with oFSH (top panel) and vehicle (bottom panel). 
Treatment consisted of eight injections of oFSH (0.1 µg/kg) or vehicle 6 h apart, starting 
24 h after ovulation. Concentrations of FSH and follicular diameters are expressed as 
mean ± SEM. Within each peak of FSH secretion, data for all ewes in a group were 
aligned temporally to the mean day of the zenith of the peak. The time of the zenith of 
each FSH peak was then normalized to the mean day of the occurrence of the peak 
relative to the start of the treatment (Day 0). Data for each follicular wave were 
normalized to the mean day of wave emergence. Asterisk (*) indicates a difference in 
diameter of follicles between oFSH- and vehicle-treated groups (P < 0.05). The area 
with the diagonal pattern indicates differences in mean serum FSH concentrations 
between oFSH- and vehicle-treated ewes (P < 0.05). Arrows indicate peaks in serum 
concentrations of FSH detected by the cycle detection computer program. The black bar 
on the X axis shows the duration of treatment with oFSH or vehicle (42 h). 
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Table 6.1. Comparison of the characteristics of follicular waves 1 and 2 of the inter-
ovulatory interval in cyclic Western White Face ewes treated with oFSH 
(treatment; n = 6) or vehicle (control; n = 6) every 6 h for 42 h starting 24 h after 
ovulation.These data represent the characteristics of the largest follicle in a wave. 
 
 

 

 Wave 1 Wave 2 
 Treatment Control Treatment Control 

-1.2 ± 0.2a 
 

-1.5 ± 0.2a 
 

2.3 ± 0.3a 
 

2.8 ± 0.3a 
 

3.2 ± 0.6 
 

3.3 ± 0.5 
 

1.2 ± 0.1a 

 
6.2 ± 0.2 

 
9.3 ± 0.3a 

 

-1.4 ± 0.2a 
 

-1.5 ± 0.2a 
 

2.6 ± 0.3a 
 

4.0 ± 0.3b 
 

2.2 ± 0.6 
 

4.4 ± 0.4 
 

0.9 ± 0.1b 
 
6.2 ± 0.3 

 
10.6 ± 0.3b 

 

4.0 ± 0.2b 

 
3.5 ± 0.3b 

 
1.7 ± 0.3b 

 
2.8 ± 0.3a 

 
- 
 
- 
 

1.1 ± 0.1ab 

 
5.8 ± 0.2 

 
- 
 

3.6 ± 0.2b 

 
3.0 ± 0.3b 

 
1.4 ± 0.3b 

 
 2.0 ± 0.3a 

 
- 
 
- 
 

1.3 ± 0.1a 

 
5.6 ± 0.3 

 
- 
 

Day of wave emergence* 
 
Day of FSH peak*  
 
Number of follicles in the wave 
 
Length of growth phase (d) 
 
Length of static phase (d) 
 
Length of regression phase (d) 
 
Growth rate (mm/day) 
 
Maximum follicular diameter (mm) 
 
Length of follicular lifespan (day) 
 
Inter-wave interval (d)            W1 to W2 

 4.9 ± 0.2         4.8 ± 0.4 
 

            W2 to W3 
  4.5 ± 0.3       4.3 ± 0.4 

All values are mean ± SEM 
a,b denotes a significant difference (P < 0.05) within and between groups.  

* indicates day relative to the start of treatment (Day 0) 

W: follicular wave 
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6.4.2. Experiment 2 

6.4.2.1. Serum concentrations of FSH 

When oFSH was infused to cyclic ewes for 60 h around the time of the second 

endogenously driven FSH peak of the inter-ovulatory interval, mean serum FSH 

concentrations were significantly higher in ewes infused with oFSH (3.9 ± 0.2 ng/mL) 

compared to control ewes (2.2 ± 0.2 ng/mL). Mean serum concentrations of FSH 

dropped significantly within 12 h after the end of infusion in oFSH-treated ewes to a 

nadir of 0.8 ± 0.1 ng/mL; this was lower than the concurrent nadir in serum FSH 

concentrations in control ewes (1.6 ± 0.2 ng/mL; P < 0.01). The duration of the FSH 

peak (time between the nadirs in oFSH concentrations before and after peaks in FSH 

serum concentrations) preceding the second follicular wave of the inter-ovulatory 

interval of control ewes (3.9 ± 0.4 d) did not differ from the duration of the period of 

elevated serum concentrations of FSH caused by infusion of FSH (4.1 ± 0.3 d; P < 0.05; 

Fig. 6.2.).    

6.4.2.2. Emergence of follicular waves and development of antral follicles   

The mean day of emergence for follicular waves 1 and 3 of the inter-ovulatory interval 

did not differ significantly between ewes infused with oFSH or vehicle (days -3.1 ± 0.1 

or -2.8 ± 0.3; and days 6.2 ± 0.3 or 6.0 ± 0.1 respectively; Fig. 6.3.) 

The mean number of small follicles (≥ 1 mm and ≤ 3 mm in diameter), calculated on a 

daily basis, decreased significantly on the second day of infusion with oFSH and 

remained low for 2 days in ewes that received oFSH compared to control ewes (P < 
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0.05; Fig. 6.4.). The mean number of small follicles rebounded in ewes given oFSH and 

was greater than in control ewes on day 7 after onset of infusion. Compared to control 

ewes, ewes infused with oFSH had a greater number of medium (4 mm in diameter) and 

large (≥ 5 mm in diameter) size follicles between days 1 to 7 and 2 to 4 after the start of 

infusion respectively (P < 0.05, Fig. 6.4.). In ewes treated with oFSH, the mean number 

of large follicles (≥ 5 mm in diameter) reached a maximum on day 2 after the start of 

treatment (day 0); it then declined rapidly to day 6 (P < 0.05; Fig. 6.4.).  

6.4.2.3. Corpus luteum formation and serum concentrations of progesterone and 

estradiol  

In addition to the corpura lutea (CLs) present in the ovaries at the time of treatment, the 

presence of newly formed CLs was also noted in the ovaries of ewes treated with oFSH 

between days 4 and 9 after the start of treatment (Fig. 6.5.). The maximum diameter of 

the old and newly formed CLs were 14.6 ± 2.4 and 6.4 ± 1.6 mm respectively (P < 0.05). 

Mean serum progesterone concentrations gradually increased from two days prior to the 

start of treatment (day -2) in both oFSH- and vehicle-treated ewes (Fig. 6.5.). Serum 

progesterone concentrations were greater in ewes given oFSH compared to control ewes 

from days 4 to 7 after the start of treatment (P < 0.05; Fig. 6.5.). In comparison to 

control ewes, treatment with oFSH did not result in any significant alteration in the mean 

serum estradiol concentrations in samples taken daily. Mean serum estradiol 

concentrations over the period of the experiment were 3.2 ± 0.3 and 3.3 ± 0.3 pg/mL in 

oFSH and vehicle treated ewes, respectively (P > 0.05).  
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Fig. 6.2. Mean (± SEM) serum FSH concentrations in oFSH-treated (●; n = 6) and 
control (○; n = 5) cyclic Western White Face ewes from 6 days before to 9 days 
after the start of treatment (day 0). Treatment consisted of infusion of oFSH (1.98 
µg/ewe/h) or vehicle for 60 h, starting 72 h after detection of ovulation by 
ultrasonographic examination. Asterisk (*) indicates a difference in the mean serum 
concentrations of FSH between oFSH- and vehicle-treated groups (P < 0.05). 
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Fig. 6.3. Mean (± SEM) diameter of the largest follicle growing in follicular wave 1 

(●/○), wave 2 (∆) and wave 3 (■/□) of the inter-ovulatory interval in cyclic Western 

White Face ewes treated with oFSH (closed symbols; n = 6) and vehicle (open 

symbols; n = 5). Treatment consisted of infusion of oFSH (1.98 µg/ewe/h) or vehicle for 

60 h (shaded area), starting 72 h after detection of ovulation by ultrasonographic 

examination. Within the group of ewes treated with oFSH, there was a super-stimulatory 

effect on follicle development immediately after onset of treatment; therefore tracking 

follicles from wave 1 and those growing in response to the treatment was not feasible.    
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Fig. 6.4. Mean (± SEM) number of small (1-3 mm in diameter; top panel), medium 

(4 mm in diameter; middle panel) and large (≥ 5 mm in diameter; bottom panel) 

size follicles calculated on a daily basis from 6 days before to 9 days after the start 

of treatment (Day 0) of cyclic Western White Face ewes given oFSH (●; n = 6) or 

vehicle (○; n = 5). Treatment consisted of infusion of oFSH (1.98 µg/ewe/h) or vehicle 

for 60 h (shaded area), starting 3 days after detection of ovulation by ultrasonographic 

examination. Asterisk (*) indicates a difference in number of follicles between oFSH- 

and vehicle-treated ewes (P < 0.05).
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Fig. 6.5. Mean (± SEM) number of corpora lutea (CLs, top panel) and serum 

concentrations of progesterone (bottom panel) in the ovaries of cyclic Western 

White Face ewes given oFSH (●; n = 6) or vehicle (○; n = 5). Treatment consisted of 

infusion of oFSH (1.98 µg/ewe/h) or vehicle for 60 h (shaded area), starting 72 h after 

detection of ovulation by ultrasonographic examination. The mean number of CLs was 

calculated on a daily basis from 1 day before to 9 days after the start of treatment (Day 

0), Asterisk (*) indicates a difference in the number of CLs, or a difference in mean 

serum progesterone concentration, between oFSH- and vehicle-treated ewes (P < 0.05). 
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6.5. Discussion 

In previous studies from our laboratory The treatment of Western White Face ewes with 

two injections of oFSH (0.5 µg/kg, sc), 8-h apart, resulted in a peak in circulating FSH 

concentrations with a similar peak amplitude to endogenously driven peaks (Duggavathi 

et al. 2004, Duggavathi et al. 2005a). Creation of such FSH peaks in between two 

consecutive, endogenously driven FSH peaks, induced emergence of additional 

follicular waves without interrupting the rhythmic occurrence of endogenously driven 

FSH peaks and follicular wave emergence (Duggavathi et al. 2004, Duggavathi et al. 

2005a). Waves were induced in the growth phase of endogenously driven waves and 

subsequent endogenously driven waves emerged during the growth phase of waves 

caused by injection of oFSH. These observations bring follicular dominance into 

question in the ewe. In Experiment 1 of the present study, we gave approximately the 

same total dose of oFSH used previously, but in 8 injections (0.1 µg/kg in each 

injection) 6-h apart. We had intended for this treatment to create a gradual leading slope 

to the second endogenously driven FSH peak of the inter-ovulatory interval. However, 

treatment increased serum FSH concentrations gradually to a physiological peak 2.1 

days before the second endogenously driven peak of the inter-ovulatory interval. The 

induced peak occurred 3.5 days after the first endogenously driven peak of the inter-

ovulatory interval. The inter-peak interval in the ewe is generally within the range of 3 

to 5 days (Ginther et al. 1995, Bartlewski et al. 1999a, Duggavathi et al. 2004). In this 

set of ewes, the second endogenously driven peak of the inter-ovulatory interval 

occurred at an interval of 5.5 days from the first endogenously driven peak. This second 

peak was later than we expected; therefore, we did not achieve our experimental goal for 
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FSH treatment. However, this discrepancy in timing of FSH peaks was fortuitous and 

led to an interesting observation. The ovary did not respond to the early gradual increase 

in serum FSH concentrations that we created with a new wave, but rather the second 

endogenously driven peak appeared to initiate the second wave of the inter-ovulatory 

interval. It could be argued that the presence of a direct suppressive effect of the 

growing follicles in the first follicular wave of the inter-ovulatory interval might explain 

the lack of additional follicular wave emergence in response to the treatment with oFSH. 

However, the existence of ovarian follicular dominance is much less clear in sheep than 

cattle; there may be some weak dominance in the follicular phase and early luteal phase 

(Baird 1983, Lopez-Sebastian et al. 1997, Driancourt 2001, Evans et al. 2002). Recently, 

it has been suggested that a direct inhibitory effect from a large follicle on the 

emergence of a new follicular wave probably does not exist in the ewe (Davies 2005, 

Duggavathi et al. 2005a). Studies demonstrating this were discussed above in the 

opening of our discussion. However, in the present study, the large growing follicles of 

wave 1 were stimulated by treatment with oFSH resulting in a greater growth rate 

compared to control ewes. This rapidly growing follicle, stimulated by greater than 

normal serum concentrations of FSH early in its growth phase, could have produced 

inhibitory secretory products that prevented the injected FSH from inducing a fresh 

follicular wave (induced dominance). The later occurring, second endogenously driven 

FSH peak of the inter-ovulatory interval, may have caused emergence of a new wave 

when the first wave was in its static phase. In cattle, follicular dominance is lost during 

the static phase of a wave (Adams 1999). Interestingly, these observations suggest that 

enhanced FSH stimulation of a growing follicle in a wave, in the cyclic ewe, can induce 

dominance and a delay of the emergence of the next expected follicular wave. This 
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could also explain why we did not achieve our experimental goal as discussed above. 

Therefore, although dominance is weak or absent in the ewe it would appear that the 

mechanism to exert dominance is conserved in large antral follicles and can be induced 

by injection of oFSH. The present data do not reveal how dominance was achieved; it 

would not appear to have involved estradiol secretion as this did not differ between 

experimental groups in Experiment 1. In sheep, the larger growing antral follicles in 

each follicular wave have been shown to be the major source of estradiol production 

with maximum estradiol production seen at the end of the growth phase of those follicles 

(Souza et al. 1996, Souza et al. 1997, Bartlewski et al. 1999a). 

The eventual emergence of the second follicular wave of the inter-ovulatory interval in 

ewes given oFSH in Experiment 1 was delayed but occurred following what appeared to 

be the second endogenously driven FSH peak. This peak occurred at a similar time to 

the second peak of the inter-ovulatory interval of the control ewes. It is not clear whether 

the second wave in the ewes given oFSH was simply delayed by treatment or could have 

been induced by the rather minimal endogenously driven peak in serum FSH 

concentrations that preceded it. This FSH peak could have occurred as the first follicular 

wave of the inter-ovulatory interval lost its induced dominance. 

The emergence and growth of more follicles to ≥5 mm in diameter in the first wave, 

compared to the second wave of the inter-ovulatory interval, in the ewes of Experiment 

1, has not been previously reported in Western White Face ewes (Bartlewski et al. 

1999a). In the Western White Face ewe, there is a transient increase in the number of 

small antral follicles in the ovary around the time of ovulation (Duggavathi et al. 2003a). 

In Polypay ewes more follicles have been shown to grow to >4 mm in diameter in the 
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first follicular wave of the inter-ovulatory interval; however, this effect did not seem to 

be induced by variation in gonadotropin secretion (Ginther et al. 1995).   

In Experiment 2 of the present study, serum FSH concentrations were increased and 

maintained at about 75% higher than the corresponding peak in serum FSH 

concentrations in control ewes. However, the increased serum concentrations of FSH 

during oFSH infusion were within the physiologic range for the peak FSH 

concentrations in cyclic Western White Face ewes (1.7 to 5.9 ng/mL) (Bartlewski et al. 

1999a). Infusion of a physiologic dose of oFSH for 60 h around the expected time of the 

second FSH peak of the inter-ovulatory interval resulted in a superstimulatory response 

in the ovaries of all treated ewes. Superstimulatory/superovulatory doses of FSH have 

been shown to stimulate the growth of multiple ovulatory sized follicles in sheep; 

however, the effects of these doses are not physiological (Riesenberg et al. 2001a, 

Riesenberg et al. 2001b, Gonzalez-Bulnes et al. 2002a, Gonzalez-Bulnes et al. 2002b, 

Gonzalez-Bulnes et al. 2002c). The results of Experiment 2 were unexpected and quite 

exciting. Ovarian follicular superstimulation/superovulation resulted from a dose of 

oFSH of 119 µg (equal to 10.7 NIH-FSH-S1 units) infused over 60 h, compared to 

currently used superstimulatory regimens using high concentrations of FSH given in 

several injections over a few days (oFSH: 176 (Simonetti et al. 2008) or 180 (Gonzalez-

Bulnes et al. 2002a, Gonzalez-Bulnes et al. 2002b, Mitchell et al. 2002, Veiga-Lopez et 

al. 2005) NIH-FSH-S1 units over 4 days; pFSH: 17 mg over 1.5 days (Riesenberg et al. 

2001a) or 18 mg over 3 days (Gonzalez-Bulnes et al. 2000)). This indicates that a very 

low dose of oFSH given constantly over only two to three days could produce an 

effective superstimulatory tool.  
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The observed superstimulatory response in Experiment 2 resulted in a significant drop in 

the number of small follicles concurrent with an increase in the number of medium and 

large size follicles, indicating that most members of the ovarian pool of small follicles 

are capable of growing when they are continuously exposed to a physiological 

concentration of FSH equivalent to the peaks that precede follicular waves. It is 

interesting that raising serum FSH concentrations in the ewe for 60 h, to a level 

equivalent to the zenith of the FSH peaks that precede follicular waves, caused a large 

number of small follicles to advance in growth and development. This suggests that the 

major attribute of the FSH peak that precedes emergence of ovarian follicular waves is 

to reach a critical threshold value. Interestingly, doubling the amplitude of a peak does 

not increase the number of follicles in a wave or affect any characteristics of the wave 

(Duggavathi et al. 2005a). Differing degrees of responsiveness of small follicles present 

in the ovary may determine the number of growing follicles in each follicular wave in 

response to a physiological peak in serum FSH concentrations when circulating peak 

concentrations are available for only a few hours (Bartlewski et al. 1998, Bartlewski et 

al. 1999a). However, discrete peaks in serum FSH concentrations or discrete and limited 

doses of FSH could be critical in releasing a limited number of responsive small follicles 

into a new follicular wave, if the whole pool is responsive. The shape and height of an 

FSH peak is quite variable (Bartlewski et al. 1999a); again, emphasizing the existence of 

a critical threshold to induce a wave. 

Treatment of ewes with physiological concentrations of oFSH in Experiment 2 did not 

cause an increase in serum concentrations of estradiol, even though a superstimulatory 

effect was seen on emergence and growth of antral follicles in that experiment. 
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Stimulatory and inhibitory effects of FSH have been noted on granulosa cell production 

of estradiol in the ewe (Monniaux 1987, McNatty et al. 2007). Peak estradiol production 

in a follicular wave is seen when the largest follicle of a wave reaches its maximum size 

and at that stage estradiol production is probably more LH dependent (Souza et al. 1997, 

Bartlewski et al. 1999a). Estradiol production from follicular waves is lower in anestrous 

ewes compared to cyclic ewes probably because the frequency of secretion of LH pulses 

is much lower in anestrus than cyclic ewes (Bartlewski et al. 2000c). Serum 

concentrations of estradiol can increase during super stimulatory treatments in the ewe, 

but these treatments utilize very high doses of FSH and the preparations of FSH often 

have some contamination with LH (Gonzalez-Bulnes et al. 2002a, Simonetti et al. 2008). 

It was also intriguing that in ewes given FSH in Experiment 2, the occurrence of the next 

endogenously driven FSH peak and emergence of the corresponding follicular wave 

happened simultaneously with the third FSH peak and follicular wave of the inter-

ovulatory interval in control ewes. There was no interruption in the periodicity of peaks 

in serum FSH concentrations or ovarian follicular waves, when a period of ovarian 

superstimulation was induced by infusion of oFSH at the expected time of a follicular 

wave. In cattle, ablation of the dominant follicle of the first follicular wave of the estrous 

cycle advances the emergence of the second wave of the inter-ovulatory interval 

(Ginther et al. 2002). However, Evans et al. (2002) found that ablation of the largest 

antral follicle, in the ewe, did not significantly advance the following peak in FSH 

concentrations and subsequent follicular wave emergence. This indicates that, unlike 

cattle, the lifespan of the largest follicle in a wave does not influence the time of 

occurrence of the next endogenous FSH peak. The occurrence of rhythmic peaks in 
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serum FSH concentrations has been also reported in ovariectomized ewes, with those 

peaks having a similar inter-peak interval and amplitude as those seen in ovary-intact 

ewes (Duggavathi et al. 2005a). In another study, a 10-day application of estradiol-

releasing implants in cyclic ewes resulted in truncation of peaks in serum FSH 

concentrations and interruption of follicular wave emergence; however, those truncated 

peaks showed a rhythmic occurrence during the treatment period (Barrett et al. 2006). 

There is perhaps, an endogenous rhythm that drives the peaks in serum FSH 

concentrations that precede follicular waves in the ewe that is not influenced by ovarian 

follicular secretory products.  

Ovulation of growing follicles in response to oFSH treatment was observed in 

Experiment 2, in the presence of at least one functional CL. All newly formed CLs were 

characterized by compromised morphology and function. This suggests a lack of LH 

support for ovulation and formation of the new CLs. Variation in the responsiveness of 

large follicles (≥5 mm in diameter) for ovulation and/or formation of proper CLs has 

been previously reported in the presence of a full-lifespan CL, in the ewe (Bartlewski et 

al. 1999b, Bartlewski et al. 2000a). Based on the results of other studies it was also 

suggested that this variation could be due to differing degrees of follicular maturation 

(Haresign and Lamming 1978, McNatty et al. 1981a, Carriere et al. 1995, Duggavathi et 

al. 2003b) or differing responsiveness of follicles with the same size and age to 

gonadotropins (Bartlewski et al. 2001a, Bartlewski et al. 2004, Liu et al. 2007b). 

In conclusion, injections of oFSH every 6 h for 42 h in the early to mid growth phase of 

a follicular wave in the ewe appeared to cause follicles in this wave to block the 

emergence of a follicular wave. In contrast to cattle, this marked dominance of a 
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follicular wave is not usually seen in the ewe (Driancourt et al. 1991, Ginther et al. 1995, 

Evans et al. 2002, Duggavathi et al. 2004, Duggavathi et al. 2005a). In Experiment 2, 

infusion of oFSH, at physiologic dose, increased and maintained basal serum FSH 

concentrations at a slightly higher level than peak concentrations in control ewes. This 

resulted in a superstimulatory/superovulatory response at a dose of about 17-fold lower 

than commercially employed superstimulatory regimens in the ewe. Based on these 

results, we suggest that most of the population of small antral follicles in the ovine ovary 

become responsive to physiologic peak concentrations of FSH and are cable of 

advancing into a follicular wave.  
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CHAPTER 7:   SUSCEPTIBILITY OF FOLLICLES TO APOPTOSIS IN 
AN EXTENDED OVARIAN FOLLICULAR LIFESPAN MODEL IN THE EWE 

Toosi BM, Seekallu SV and Rawlings NC 

7.1. Abstract 

In prolific breeds of sheep, such as the Finnish Landrace, the extended lifespan of 

follicles growing in the penultimate wave of the cycle enables them to ovulate with 

follicles growing in the final wave. The extended lifespan of those follicles was 

associated with lower serum progesterone concentrations, compared to non-prolific 

breeds. Treatment of ewes with prostaglandin and intravaginal sponges containing 

medroxyprogesterone acetate (MAP) creates an endocrine milieu similar to low serum 

concentrations of progesterone. Such treatment of non-prolific Western White Face ewes 

increased ovulation rate by extending the lifespan of the follicles in the penultimate 

wave of the cycle; however, fertility was not enhanced. In the present experiment, the 

incidence of apoptosis in large antral follicles (≥5 mm in diameter) with an extended 

lifespan to apoptosis was investigated. Six cyclic, non-prolific, Western White Face 

ewes were treated with a single dose of PGF2α on day 8 of the estrous cycle, followed 

immediately by a 6-day intravaginal treatment with MAP-sponges. Ultrasonographic 

examination of ovaries was done daily. Ovariectomy was performed one day before the 

expected day of ovulation and large follicles (≥5 mm in diameter) originating from both 

the final and penultimate waves of the cycle were fixed in paraformaldehyde and 

processed for TUNEL staining. The lifespan of the penultimate and final waves of the 

cycle was 7.1 ± 0.2 and 3.0 ± 0.2 d, respectively (P < 0.05). The percentage of TUNEL-

positive cells in follicles of the penultimate wave of the cycle was greater than in 
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follicles developed in the final wave (25.8 ± 4.0 and 7.3 ± 3.3 percent, respectively; P < 

0.05). In conclusion, creation of an endocrine environment similar to low serum 

progesterone concentrations delayed follicular atresia in large antral follicles in the 

penultimate wave of an estrous cycle; but this delay was accompanied by a greater 

degree of apoptosis in the follicular somatic cells compared to follicles in the final wave 

of the cycle at about one day before expected ovulation.  

7.2. Introduction 

In the ewe, an estrous cycle is characterized by emergence of 3 or 4 antral follicular 

waves. In each follicular wave, one to three antral follicles grow from 2 or 3 mm to ≥5 

mm in diameter before regression or ovulation (Ginther et al. 1995, Bartlewski et al. 

1998, Bartlewski et al. 1999a, Evans et al. 2000, Driancourt 2001, Duggavathi et al. 

2005a).  In non-prolific breeds such as the Western White Face ewe, follicles that 

ovulate, such as the Finnish Landrace, originate from the final wave of the cycle. 

However, in prolific breeds of ewe, it has been suggested that the increased ovulation 

rate occurs due to ovulation of follicles recruited from both final and penultimate waves 

of the estrous cycle (Bartlewski et al. 1999a, Bartlewski et al. 1999d). The lifespan of 

follicles growing in the penultimate wave of the cycle is prolonged assuring their 

presence at the time of ovulation.  

In normal cyclic ewes, emergence and growth of follicles in the penultimate wave of the 

cycle usually occurs at around 8 to10 days after ovulation (Bartlewski et al. 1999a, 

Toosi et al. 2009), which is concurrent with the maximum secretion of progesterone 

from the corpus luteum (Edgar and Ronaldson 1958, Duggavathi et al. 2003b). It has 
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been suggested that lower serum progesterone concentrations in prolific ewes, compared 

to non-prolific ewes, is associated with the longer lifespan of follicles in the penultimate 

wave of the cycle (Bartlewski et al. 2003). Treatment of ewes with intravaginal sponges 

containing medroxyprogesterone acetate (MAP), after removal of the corpus luteum 

with prostaglandin treatment, appeared to mimic the condition of low serum 

progesterone concentrations (Flynn et al. 2000). The ovulation rate in a non-prolific 

breed of sheep was increased significantly when ewes were given a 6-day treatment with 

MAP sponges after prostaglandin F2α induced luteolysis at midcycle (Bartlewski et al. 

2003). This treatment resulted in the extended lifespan of follicles growing in the 

penultimate wave of the cycle and ovulation of about 50% of those follicles with 

follicles emerging in the final wave of the cycle (Bartlewski et al. 2003). However, when 

a group of ewes were bred after treatment to increase the ovulation rate, fertility was not 

enhanced (Davies 2005). Clearly, in this treatment regime for enhanced ovulation rate, 

the follicles ovulating from the penultimate wave of the cycle would be older compared 

to follicles in the final wave of the cycle. In cattle, oocytes from aged follicles have a 

lower fertility (Austin et al. 1999) but this does not appear to be the case in sheep (Evans 

et al. 2001b). 

In sheep, apoptosis or programmed cell death has been shown to be a major component 

of ovarian follicular atresia (Jablonka-Shariff et al. 1996, Jolly et al. 1997a, Jolly et al. 

1997b). The evolutionarily conserved biochemical process of apoptosis includes specific 

DNA fragmentation at internucleosomal sites (Gavrieli et al. 1992, Hussein 2005). DNA 

fragmentation can be detected in histological sections using terminal dideoxynucleotidyl 

transferase dUTP nick end labelling (TUNEL) (Gavrieli et al. 1992, Tilly and Perez 
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1997). In the present experiment, we were interested to investigate the viability of 

follicles in the penultimate and final waves of the estrous cycle in non-prolific ewes 

given the MAP and prostaglandin treatment above, by looking at the levels of apoptosis 

just before the expected time of ovulation. We hypothesized that the aged antral follicles 

of the penultimate wave of the cycle in ewes given prostaglandin and MAP would show 

a greater degree of follicular apoptosis compared to follicles in the final wave of the 

cycle. 

7.3. Materials and methods 

7.3.1. Animals and experiment procedures  

All animal experimentation was performed according to the guidelines of the Canadian 

Council on Animal Care and was approved by the local animal care committee. Six 

cyclic, non-prolific, Western White Face ewes (5 to 6 years of age) with an average 

body weight of 77.5 ± 3.2 kg were used in this study (October-December). Ewes were 

kept indoors with lighting set to simulate the natural light/dark cycle and they received 

daily maintenance rations of alfalfa pellets with water, and cobalt iodized salt licks 

available ad libitum. Estrus was synchronized by a 14-day treatment with MAP-

releasing intravaginal sponges (Medroxyprogesterone Acetate, 60 mg; Veramix®, Up-

John, Orangeville, ON, Canada). Experiments were conducted in the second cycle after 

synchronization. Estrus was detected with three vasectomized crayon-harnessed rams.  

All ewes were treated with an intravaginal MAP sponge (60 mg; Veramix, Upjohn, ON, 

Canada) for 6 days starting on Day 8 of the estrous cycle (Day 0: Day of ovulation). A 

single dose of prostaglandin F2α (PGF2α; 15 mg, im; Lutalyse, Upjohn, Orangeville, ON, 
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Canada) was given to all ewes immediately after sponge insertion. During the treatment 

period and after sponge removal we were able to clearly detect and monitor the 

emergence and development of follicles in the penultimate and final waves of the cycle. 

Two days after sponge removal (Day 16) or one day before the expected day of 

subsequent ovulation, the ovaries which had large follicles (≥5 mm in diameter) from 

both the penultimate and final waves of the cycle were removed.  

7.3.2. Ultrasonography 

Transrectal ovarian ultrasonography was performed with a B-mode, real-time echo 

camera (Aloka SSD 900; Aloka Co. Ltd., Tokyo, Japan) equipped with a stiffened 7.5 

MHz linear array transducer. All ewes underwent daily ultrasonographic examination, 

starting two days before the expected day of estrus. The day of ovulation was defined as 

the day on which a large, previously identified ovarian follicle of ≥5 mm in diameter 

was no longer seen. After detection of ovulation, ultrasonography was continued from 8 

days after ovulation or when treatment commenced, to the day of ovariectomy to 

monitor ovarian antral follicular growth. The size and relative position of all follicles ≥1 

to 2 mm in diameter were sketched on ovarian charts.  

7.3.3. Tissue collection and preparation 

Ovariectomy was performed by mid-ventral laparotomy within 5 min after euthanasia by 

Euthanyl Forte® (IV; 1 mL/5 kg of body weight; Bimeda-MTC Animal Health Inc., 

Cambridge, ON, Canada). Collected ovaries were cut into separate small pieces which 

contained either the preovulatory follicle originating from penultimate or final wave of 

the cycle. The follicles were then fixed in 4% paraformaldehyde for 24 h at room 
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temperature. The tissues were embedded in paraffin and 5-µm sections were cut at the 

point of the largest diameter of the follicle and mounted on poly-L-Lysine coated slides. 

Each of four sequential sections of a follicle was separately mounted on a slide and used 

for TUNEL, hematoxylin and eosin (H & E) or positive and negative control staining.     

7.3.4. TUNEL assay 

A terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL; in 

situ cell death detection kit AP; catalogue no.: 1168409910, Roche Diagnostics Co., 

Indianapolis, IN, USA) was used to identify the extent of cell apoptosis in granulosa and 

theca cells of the follicles collected. The procedure of labelling DNA fragments used in 

this study was a modification of the protocol described by (Weber et al. 2002). For 

permeabilisation, deparafinized and rehydrated tissue sections were irradiated with 

microwaves at 800 W for 90 sec (Kenmore Microwave Oven 1000 W, Model no: 87103, 

Sears Canada Inc., Toronto, ON, Canada) with 0.1 M Citrate buffer (Sigma, St. Louis, 

MO, USA). After 3’-end labelling of DNA fragments and blocking the slides with 3% 

bovine serum albumin in tris buffered saline (TBS), samples were analyzed in a drop of 

PBS under a fluorescence microscope (Zeiss® Axioskop 40, Carl Zeiss Canada Ltd., 

Toronto, Canada) using a standard filter (520 nm, green). Every TUNEL assay included 

a separate positive control slide that was incubated with 1 µg/mL DNase (DNase I 

recombinant, catalogue no.: 04716728001, Roche Diognostics Co., Indianapolis, IN, 

USA) for 10 min at 22 ○C. Negative control slides were incubated with 50 µl of label 

solution without terminal transferase for 60 min at 37 ○C. 
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7.3.5. TUNEL quantitation and data analysis 

The sections which were stained with TUNEL or H&E were subjected to blinded 

evaluation. The number of TUNEL positive and the total number of follicular somatic 

cells were counted in ten different fields at 2, 4, 6, 8, 10 and 12 o’clock (1000X). 

TUNEL positive cells were expressed as a percentage of the total number of follicular 

somatic cells. The percentage of apoptotic cells in follicles originating from the 

penultimate or final wave of the estrous cycle were compared by the Wilcoxon Signed 

Rank test (Statistix® Statistical Software for Windows, Version 8, Analytical Software, 

Tallahassee, FL, USA. The lifespan of follicles from the penultimate and final waves of 

the cycle were compared by student’s t-test (SigmaStat® Statistical Software for 

Windows, Version 2.03, 1997, SPSS Inc.).  

7.4. Results 

At the time of ovariectomy, the lifespan of follicles originating from the penultimate and 

final waves of the cycle were 7.1 ± 0.2 and 3.0 ± 0.2 d, respectively (P < 0.05). There 

was no difference in maximum follicle diameter at the time of follicle collection 

between the preovulatory follicles from the penultimate (5.4 ± 0.2 mm) and final (5.5 ± 

0.2 mm) wave of the estrous cycle (P < 0.05). The percentage of apoptotic (TUNEL-

positive) cells in follicles of the penultimate wave of the cycle was greater than in 

follicles in the final wave (25.8 ± 4.0 and 7.3 ± 3.3%, respectively; P < 0.05). The 

percentage of TUNEL-positive cells in follicles growing in the final and penultimate 

waves of the cycle are shown in Table 7.1.   
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Fig. 7.1. Representative images of apoptosis in preovulatory foll
penultimate (A 1 & A 2) and final (B 1 & B 2) waves obtained from s
Western White Face ewes. 
A1 and B1 : TUNEL-positive cells in the follicular wall are identifiable
fluorescence. These cells were mainly located towards the follicular antrum. 
A combination of florescent and phase contrast microscopy was used to 
location of the apoptotic cells. C1: Positive DNase treated control sample. C
control sample. 
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Table 7.1. Percentage of apoptotic (TUNEL-positive) cells in large antral follicles 
(≥5 mm in diameter) originating from the final and penultimate waves of the 
estrous cycle and collected one day before expected ovulation. All ewes were treated 
with a single dose of PGF2α on day 8 of the cycle followed by a 6-d treatment with a 
MAP sponge.  
 
 

 

 

Animal # 
 

1 8 77 79 91 94 

Final Wave 6 7 4 9 13 5 

TUNEL-positive cells (%) 

Penultimate 

Wave 23 20 17 40 36 19 
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7.5. Discussion 

In the present experiment, in ewes given prostaglandin and a short term treatment with 

MAP, regression of follicles emerging in the penultimate wave of the cycle was delayed 

and therefore, follicles originating from both penultimate and final waves of the cycle 

were collected at the same time before ovulation. The extended lifespan of follicles in 

this model is due to prolongation of the static phase of those follicles (Bartlewski et al. 

2003). In this experiment, the proportion of apoptotic cells in the follicular somatic cells 

was greater in follicles originating from the penultimate wave of the cycle compared 

with those growing in the final wave. At the time of follicle collection, follicles 

originating from the penultimate wave of the cycle had a longer lifespan and were 

mainly in their static phase compared to follicles from the final wave. Follicles from the 

final wave of the cycle were at the end of the growth or in the early static phase of the 

follicular wave. Apoptosis is a marker of atresia in ovarian follicles (Hussein 2005, 

Krysko et al. 2008). Advanced apoptosis was observed in atretic follicles in sheep 

ovaries (Jablonka-Shariff et al. 1996). Therefore, high rates of apoptosis indicate that 

follicles from the penultimate wave were becoming atretic. Thus, these data demonstrate 

that in follicles from the penultimate wave with an extended static phase, there is a 

decrease in granulosa and theca cell proliferation and enhanced apoptosis leading to 

follicle atresia and likely poor oocyte quality. Although these follicles can ovulate with 

follicles from the final wave of the cycle, results of our previous studies with 

prostaglandin and MAP treatment, led us to conclude that they do not appear to be able 

to contribute to increasing fertility when ewes are bred. It is interesting that the prolific 

Finish Landrace ewe achieves an enhanced ovulation rate and fertility by ovulating 
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follicles from both the final and penultimate follicular waves of a cycle (Bartlewski et al. 

1999a).  

 

Although aged follicles from the penultimate wave of the cycle showed a greater degree 

of atresia/apoptosis, their sizes were not different from those emerging in the final wave. 

It is interesting that PGF2α and MAP treatment delays follicular regression, but the 

mechanism involved is not clear. Gonadotropins have been shown to support follicular 

development and decrease the incidence of atresia (Jablonka-Shariff et al. 1996, 

Matsuda-Minehata et al. 2006). However, no differences in parameters of secretion of 

FSH and LH were reported before in Western White Face ewes given the same 

treatment as in the present study (Bartlewski et al. 2003). Perhaps, the progestogen 

treatment had some direct effects on the ovary (Bartlewski et al. 2003); however, this 

needs further elucidation.  

 

Apoptosis is a primary degenerative process that occurs during follicular atresia in 

different species (Hughes and Gorospe 1991, Tilly et al. 1991, Hurwitz and Adashi 

1992, Tilly et al. 1992, Billig et al. 1994, Jolly et al. 1994). In the ewe, it has been shown 

that apoptosis occurs before other changes in morphological or biochemical indices of 

follicular status become apparent (Jolly et al. 1997a). Although follicles from the 

penultimate wave of the cycle showed a greater degree of apoptosis in this study, 

previous studies using this extended follicular lifespan model, showed an increased 

ovulation rate in non-prolific ewes (Bartlewski et al. 2003, Davies 2005). These results 

suggest that although follicles from the penultimate wave of the cycle were not as 
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healthy as follicles from the final wave at the time of ovulation, they were sill capable of 

responding to an LH surge with ovulation.  

 

On the other hand, based on results from the present study we suggest that development 

of atresia in aged follicles affects some aspects of their viability, leading to decreased 

fertility of the oocyte they contain. It would seem that mechanisms leading to atresia of a 

follicle in the ewe are triggered during the static phase of a follicle before any noticeable 

decline in follicular diameter is detectable by ultrasound examination. In sheep, estradiol 

synthesis by a follicle occurs concurrent with the growth of that follicle (Souza et al. 

1997, Bartlewski et al. 1999a, Duggavathi et al. 2006) and it is minimal during the static 

phase (Souza et al. 1997, Bartlewski et al. 1999a). Initiation of follicular atresia during 

the static phase of the follicular lifespan is likely involved in declining estradiol 

secretion by the follicle, since follicular atresia has been shown to be associated with a 

decreased aromatase activity of granulosa cells (Jolly et al. 1997a).  

Most of the apoptotic cells observed in the present study were located on the antral side 

of the zona granulosa. This is in agreement with other reports indicating that cell layers 

closer to the follicular antrum are the predominant site of detection of apoptosis in 

atretic ovine follicles (Jablonka-Shariff et al. 1996, Jolly et al. 1997b). Perhaps, this is 

due to the extrusion of apoptotic debris toward the follicular antrum, since they 

accumulate in the follicular antrum (Jolly et al. 1997b). In sheep, apoptotic cells/nuclei 

were also observed in the antrum, suggesting that apoptotic bodies are released into the 

follicular fluid in atretic follicles (Jablonka-Shariff et al. 1996).  
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In the present study, the prostaglandin and MAP treatment created an endocrine milieu 

similar to low serum concentrations of progesterone (Bartlewski et al. 2003). This milieu 

delayed follicular regression of the penultimate follicular wave of a cycle as reported by 

others (Evans et al. 2001b, Bartlewski et al. 2003, Davies 2005). However, the delayed 

follicular atresia was accompanied by a greater degree of apoptosis in follicular somatic 

cells. We concluded that an increase in the incidence of apoptosis, as a marker of 

follicular atresia, occurs in aged antral follicles in sheep prior to any morphological 

changes detectable by ultrasonography and that likely leads to a decreased follicular 

viability and lowered fertility of the oocytes the follicles contain.   
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CHAPTER 8:  GENERAL DISCUSSION AND FUTURE DIRECTIONS 

8.1. General summary discussion and conclusions 

In the present thesis, regulation of ovarian antral follicular development was investigated 

in sheep. The results of the experiments presented in this study, enhanced our 

understanding of the mechanisms controlling ovarian antral follicular waves in the ewe, 

providing the potential to develop methods to improve reproductive management in 

sheep and other species. 

Follicular development occurs in a wave-like pattern in the ewe (Noel et al. 1993, 

Ravindra et al. 1994, Ginther et al. 1995, Souza et al. 1997, Bartlewski et al. 1999a, 

Evans et al. 2000). Emergence of each follicular wave is preceded by a transient peak in 

serum FSH concentrations. These FSH peaks are required for development of antral 

follicular waves (Ginther et al. 1995, Bartlewski et al. 1998, Bartlewski et al. 1999a, 

Driancourt 2001, Barrett et al. 2007). However, it is not clear what facets of an FSH 

peak cause follicular wave emergence and what aspects of development of a follicular 

wave are regulated by its preceding FSH peak. Experiments presented in this thesis 

were designed to address these subjects.  

We applied two different approaches to our investigations. Peaks in serum FSH 

concentrations appear to vary in their characteristics, such as duration, peak 

concentration and amplitude. Our first approach was to look for patterns of these 

variations across the inter-ovulatory interval and see if these were associated with any 

alteration in the characteristics of follicular waves. Our second approach was to 
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manipulate different characteristics of FSH peaks within a physiologic range and to 

investigate the resulting changes in follicular wave dynamics. 

8.1.1. First Approach  

Some variation in the characteristics of peaks in serum FSH concentrations have been 

noted across the inter-ovulatory interval in sheep (Ginther et al. 1995, Bartlewski et al. 

1999a). However, no consistent pattern has been previously reported. In the present 

study (Chapter 3), using nineteen Western White Face ewes, we showed that the 

amplitude of FSH peaks declined across the inter-ovulatory interval while basal serum 

FSH concentrations increased. Intriguingly, FSH peaks declined in amplitude by up to 

50% across the inter-ovulatory interval and yet still induced follicular waves. However, 

no associated changes in characteristics of follicular waves were observed in that 

experiment. Based on previous studies we concluded that there is a threshold for serum 

concentrations of FSH to induce the emergence of a follicular wave (Duggavathi et al. 

2005a). In addition, based on chapter 3 of the present studies, we concluded that 

variation in the peak amplitude and duration and basal serum concentrations of FSH, 

across the inter-ovulatory interval, do not appear to have a marked influence on the 

characteristics of follicles in those waves. 

Ultrasonographic imaging has enhanced our understanding of ovarian function by 

allowing repeated, non-invasive examination of the ovaries (Schrick et al. 1993, 

Ravindra et al. 1994, Ginther et al. 1995, Souza et al. 1997, Bartlewski et al. 2000b). 

Quantitative evaluation of the changes in the echotexture of a tissue is not feasible by the 

human eye (Baxes 1994, Singh et al. 2003) and requires custom designed computer 
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algorithms (Pierson and Adams 1995, Singh et al. 2003). Since no consistent pattern for 

changes in antral follicular dynamics were noted across the inter-ovulatory interval in 

Chapter 3, we investigated the potential changes in the image attributes of follicles 

emerging at different stages of the inter-ovulatory interval (Chapter 4). Image attributes 

of antral follicles reflect the cellular and vascular composition of the follicular wall and 

consistency of the follicular fluid (Singh et al. 1998, Tom et al. 1998b, Singh et al. 2003, 

Vassena et al. 2003a). In chapter 4, we showed that the NPV of the wall, in follicles 

emerging in follicular wave 3 of the inter-ovulatory interval, was greater at emergence 

(3 mm in diameter) and then dropped as follicles in that wave grew to ≥5 mm in 

diameter. A tendency for a similar pattern in the changes in NPV of the wall was also 

observed for ovulatory follicles in the final wave of the inter-ovulatory interval. This 

observation suggested a higher degree of proliferation and/or vascularization in the wall 

of those follicles at emergence. We concluded that there are potential morphological 

and functional differences amongst antral follicles emerging at different stages of the 

inter-ovulatory interval in cyclic ewes. Interestingly, those trends were more evident for 

follicles emerging after mid-cycle (Wave 3 and the last or Ovulatory wave).  

In chapter 3, we noted that changes in the characteristics of peaks in serum FSH 

concentrations across the inter-ovulatory interval were not associated with differences in 

the characteristics of the follicular waves that followed each peak. However, in Chapter 

4, trends in echotextural variation of the follicular wall among follicles emerging at 

different stages of the inter-ovulatory interval appeared to be more marked towards the 

end of the inter-ovulatory interval as FSH peak amplitude declined but basal serum FSH 

concentrations increased. It has been shown that FSH controls the proliferation of 
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granulosa cells (Rao et al. 1978, Monniaux 1987, McNatty et al. 1993). Granulosa cells 

play a central role in supporting the development of follicles that are destined for 

ovulation and formation of a corpus luteum. Perhaps, the increase in basal serum 

concentrations of FSH seen in Chapter 3, towards the end of the inter-ovulatory interval, 

caused a greater proliferation and density of cells in the follicular wall as reflected by the 

greater NPV in the follicular wall at the onset of those waves emerging late compared to 

early in the inter-ovulatory interval. Although ovulation occurs mainly from the last 

wave of the inter-ovulatory interval in non-prolific breeds of ewe, it can also occur from 

the penultimate wave (Bartlewski et al. 1999a, Evans et al. 2000, Driancourt 2001). 

Based on the ultrasonographic data discussed above, it is appealing to speculate that 

follicles emerging after the middle of the inter-ovulatory interval are more adapted for 

ovulation and transformation into corpora lutea. 

8.1.2. Second Approach 

We also designed experiments to manipulate characteristics of peaks in serum FSH 

concentrations and to investigate their potential effects on follicular wave dynamics. We 

studied the influence of a supraphysiologic amplitude, enhanced frequency of peaks and 

creating a gradual leading slope to the FSH peaks on emergence and characteristics of 

the follicular waves that followed. The effects of basal serum FSH concentrations on 

follicular wave dynamics were also studied.  

In sheep, usually 1 to 3 follicles grow in each follicular wave (Ginther et al. 1995, 

Bartlewski et al. 1999a, Evans et al. 2000). It has been shown that in most species, 

recruitment of follicles into waves is regulated by FSH (Driancourt 2001). However, the 
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mechanisms involved in recruitment of follicles into each follicular wave are not clear in 

the ewe (Baird and Campbell 1998, Driancourt 2001, Fabre et al. 2006). We think that 

initiation of a follicular wave in the ewe requires that the preceding FSH peak reaches a 

threshold of serum FSH concentrations; however, this threshold varies among ewes 

(Picton and McNeilly 1991, Driancourt 2001, Duggavathi et al. 2005a). It is not clear if 

the number of follicles emerging in each follicular wave is associated with the absolute 

concentration or amplitude of the peak that precedes it. 

In this thesis, we showed that the number of follicles emerging in each follicular wave 

did not change among different waves of the inter-ovulatory interval (Chapter 3). 

Although the amplitude of FSH peaks and basal serum concentrations of FSH varied 

across the inter-ovulatory interval, the peak concentrations of FSH remained unchanged 

(Chapter 3). Therefore, emergence of a similar number of follicles in different follicular 

waves across the inter-ovulatory interval might reflect the absolute concentrations of 

FSH at the zenith of each FSH peak. 

To investigate whether variation in peak FSH concentrations over a wider but still 

physiologic range, could affect the characteristics of follicular waves in the ewe, 

treatment with ovine FSH was used to increase the amplitude of an FSH peak by 5 to 6 

fold (Chapter 3). We concluded that enhancing FSH peak amplitude/peak concentration 

to the upper end of the physiological range had only a small effect on the characteristics 

of the subsequent follicular wave and did not increase the number of follicles recruited 

or emerging into that wave. 
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An interesting and important question is what mechanisms are involved in the regulation 

of the periodicity of peaks in serum FSH concentrations and the resulting recurrent 

emergence of antral follicular waves every 3 to 5 days in the ewe. The ability of a 

growing follicle in a wave to exert direct and indirect dominance on the emergence of 

new follicular waves has been investigated in the ewe. Induction of dominance by 

injecting LH, to create pulses in serum concentrations of LH, decreased serum FSH 

concentrations and suppressed the growth of follicles beyond 4 mm in diameter 

(Gonzalez-Bulnes et al. 2004). In the same study, the ovary ipsilateral to the largest 

follicle had the greatest decrease in number of growing small follicles. However, the 

presence of a large follicle may (Gonzalez-Bulnes et al. 2003) or may not (Driancourt et 

al. 1991, Gonzalez-Bulnes et al. 2000) decrease the ovarian response to superovulatory 

treatments in sheep. Furthermore, ablation of the largest follicle of a follicular wave did 

not affect the time of emergence of the next follicular wave in the ewe (Evans et al. 

2002). In more recent studies in sheep, injections of oFSH to create a physiological FSH 

peak during the growth phase of a follicular wave, induced emergence of a new 

follicular wave (Duggavathi et al. 2004, Davies 2005, Duggavathi et al. 2005a). 

Moreover, an endogenously driven peak in serum FSH concentrations and emergence of 

its corresponding follicular wave occurred during the growth phase of a follicular wave 

induced by injection of oFSH (Davies 2005). These findings caused us to question the 

existence of both direct and indirect follicular dominance in the ewe. Another potential 

mechanism for the regulation of the periodicity of FSH peaks and follicular wave 

emergence could be the existence of an intrinsic rhythm that drives the occurrence of 

peaks in serum FSH concentrations independent of any effect of follicular dominance. 

This notion was supported by the occurrence of repeated peaks in serum FSH 
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concentrations in ovariectomized ewes (Duggavathi et al. 2005a). Also, there was no 

interruption in the normal train of FSH peaks after creation of an exogenously driven 

follicular wave in middle of an inter-wave interval (Duggavathi et al. 2004, Davies 

2005). Our results from Chapter 5 of the present thesis also led us to suggest the 

existence of such an endogenous rhythm that could drive FSH peaks. 

In chapter 5 of the present thesis, the ovine ovary responded to discrete peaks in serum 

FSH concentrations, created on a daily basis, by emergence of new follicular waves. 

Emergence of recurrent follicular waves on a daily basis indicated that direct dominance 

is not as evident in sheep as it is in cattle. We concluded that in the ewe, the periodicity 

of antral follicular wave emergence can follow the daily occurrence of discrete peaks in 

serum FSH concentrations; in addition, small FSH-sensitive follicles are available on a 

daily basis to enter a wave in response to a physiological FSH stimulus.  

It appears that as long as discrete peaks in serum FSH concentrations occur and reach a 

specific threshold, they can drive the emergence of follicular waves in the ewe, even 

when the discrete FSH peaks occur on a daily basis (Chapter 5). We were interested to 

see if a very gradual increase in the leading slope of an FSH peak would be detected by 

the ovary as a proper signal to stimulate emergence of a new follicular wave. We treated 

ewes with low physiological doses of FSH every 6 h for 42 h (Chapter 6). This treatment 

resulted in the gradual increase in serum concentrations of FSH to a peak; however, this 

peak was not followed immediately by emergence of a new follicular wave and did not 

delay the occurrence of the next endogenously driven FSH peak. Interestingly, our 

treatment started early in the growth phase of the existing follicular wave in the ovary 

and we observed an increased growth rate of follicles growing in that wave (Chapter 6). 
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We concluded that stimulation of those growing follicles by injected oFSH could have 

produced inhibitory secretory products that prevented emergence of a new follicular 

wave in response to our treatment (induced dominance). Some evidences for local 

suppression of the final development of antral follicles by a large pre-existing follicle in 

the ovary have been reported in the ewe (Gonzalez-Bulnes et al. 2004). It was suggested 

that follicle growth inhibitory factors (FGIFs) could be produced by dominant follicles 

to directly and locally inhibit development of subordinate follicles (Armstrong and 

Webb 1997). However, several lines of evidence support the argument that the 

mechanisms used to explain dominance in cattle are not as active in sheep (Driancourt et 

al. 1991, Ginther et al. 1995, Adams 1999, Bartlewski et al. 1999a, Driancourt 2001, 

Evans et al. 2001a, Evans et al. 2002, Duggavathi et al. 2004, Davies 2005, Duggavathi 

et al. 2005a). An earlier study in this thesis (Chapter 5) and other studies from our 

laboratory (Duggavathi et al. 2004, Davies 2005, Duggavathi et al. 2005a) provided 

strong evidence for the absence of direct dominance in Western White Face ewes as 

described above. It is not clear how the exposure of a growing follicle(s) in a follicular 

wave to injected FSH, as explained in Chapter 6, could be involved in the induction of 

direct dominance and this needs to be further elucidated. In general, the presence or 

absence of dominance is controversial in sheep. However, it should be noted that these 

contradictory evidences may reflect differences in mechanisms controlling follicular 

wave dynamics in different breeds of sheep, from the strictly mono-ovular to poly-

ovular breeds (Baird and Campbell 1998, Bartlewski et al. 1999a, Gonzalez-Bulnes et al. 

2001). It is very interesting to speculate and conclude that potential mechanisms of 

dominance are conserved in ovine growing antral follicles; however, they do not show 

dominance at normal serum FSH concentrations and follicle sizes.  
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A peak in serum FSH concentrations usually last for 3 to 4 days (duration between 

nadirs before and after a peak). Therefore, a peak in serum FSH concentrations could be 

simply defined as a temporary rise in basal concentrations to the threshold levels 

required for emergence of a follicular wave. But, again the question is why only 1 to 3 

follicles respond to that increase in serum FSH concentrations and grow further in a 

follicular wave? Is there any difference in the maturity or differentiation of follicles in 

the pool of small follicles that respond to FSH compared to other small follicles? Our 

data from Chapter 5 showed that small follicles that are responsive to FSH peaks are 

present in the ovary on a daily basis. Furthermore, based on the presence of a relatively 

constant number of small antral follicles in the ovine ovary across the inter-ovulatory 

interval we suggest that this population of follicles could be fairly homogenous 

(Duggavathi et al. 2003a). In this thesis we also showed that peak concentrations of 

FSH, or FSH peak amplitude, had no effect on the number of follicles emerging in each 

follicular wave (Chapter 3). We further tested the critical attributes of the FSH peak and 

the availability of FSH sensitive follicles in the pool of small follicles (Chapter 6). This 

was done by infusing a physiological dose of ovine FSH to increase basal serum 

concentrations of FSH to a level equivalent to the zenith of a peak; this concentration 

was maintained for 60 h (Chapter 6). Amazingly, this treatment resulted in emergence 

and growth of the largest proportion of the small follicles present in the ovary to 

ovulatory diameters (super-stimulatory effect). These results led us to conclude that the 

bulk of follicles in the pool of small follicles can respond to oFSH at any given time. The 

transient nature of discrete peaks in serum concentrations of FSH may provide a short 

threshold stimulation that only initiates onward growth in a limited number of the most 
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sensitive follicles in the pool of small follicles in the ewe. However, this would not seem 

to adequately explain the precise limitation of the number of follicles in a wave in sheep.  

Our findings presented in Chapter 5 are also in agreement with the conclusions above. 

However, in the experiment described in Chapter 5, frequent treatment of ewes with 

oFSH, to create discrete peaks in serum FSH concentrations on a daily basis, resulted in 

an elevation in basal serum FSH concentrations during the treatment period. We have to 

conclude that each treatment with oFSH created a discrete peak in serum FSH 

concentrations above the elevated basal serum concentrations, and activated the 

emergence of a new follicular wave. Basal serum FSH concentrations rose above the 

concentrations reached by many FSH peaks seen in normal untreated ewes (Bartlewski 

et al. 1999a). However, basal serum FSH concentrations were not maintained for 60 h as 

in the study described above in Chapter 6. If discrete FSH peaks above increased 

baseline can elicit follicular waves then the amplitude of a peak above baseline must be 

critical to initiate such waves, not just the absolute FSH concentration at the zenith of 

the peak. Again, it is intriguing that the follicular waves induced by FSH peaks on an 

increasing baseline of serum FSH concentrations contained the expected number of 

follicles. There was no perturbation of the numbers of small follicles entering each 

wave. 

Finally, we investigated the viability of aged ovulatory follicles originating from the 

penultimate wave of the estrous cycle in non-prolific ewes, when their lifespan was 

extended by giving prostaglandin and MAP. We looked at the level of apoptosis just 

before the expected time of ovulation. This treatment delayed regression of the 

penultimate follicular wave of a cycle; however, those follicles with an extended 
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lifespan had a greater degree of apoptosis in follicular somatic cells. We concluded that 

an increase in the incidence of apoptosis, as a marker of follicular atresia, occurs in 

aged antral follicles in sheep prior to any morphological changes detectable by 

ultrasonography and that likely leads to decreased follicular viability and lowered 

fertility of the oocytes the follicles contain.   

8. 2. Future directions 

1. We showed variation in the image attributes of antral follicles among different 

follicular waves across the inter-ovulatory interval. Variation in the image attributes of 

the follicular wall reflect morphological changes and perhaps, changes in physiological 

function of follicles. This needs to be clarified and confirmed in the ewe by 

histomorphological investigations.  

2. By using ultrasonography at a higher resolution, it would be interesting to study the 

image attributes of small and medium size follicles around time of follicular wave 

emergence to find out if follicles destined for emergence into a follicular wave are 

distinguishable from other follicles in a similar size range.  

3. Based on the experimental model developed in our laboratory to create physiological 

peaks in serum FSH concentrations and to induce new follicular waves, it would be 

interesting to investigate the molecular characteristics of the oocyte at different stages of 

follicular development. 

4. In this thesis, we showed that giving multiple injections of a low physiologic dose of 

oFSH, early after recruitment of a follicle in a follicular wave, may induce dominance in 
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that follicle. It would be interesting to test the degree of induced dominance in growing 

follicles of a follicular wave in response to different doses of oFSH and to investigate 

the differences in dominant and non-dominant follicles by molecular and 

ultrasonographic approaches.   

5. According to the results of this thesis, infusion of a low physiological dose of oFSH 

will result in a superovulatory response in the ewe. It would be interesting to address the 

potential applications of this finding in practice. Development of FSH implants or the 

use of osmotic pumps, to release a constant physiological dose of oFSH, in order to 

superovulate the ewe, would be very appealing. Moreover, oocytes could be recovered 

after superovulation, using this model, to compare their viability with other 

superovulatory regimens commercially used in this species.  

6. The possible presence of an endogenous rhythm that could drive the peaks in serum 

FSH concentrations needs to be further investigated in the ewe. An interesting approach 

to address the existence of an endogenous rhythm for FSH peaks would be to ablate all 

medium and large size follicles in the ovary, one day after the expected day of an 

endogenously driven peak in serum FSH concentrations, and look to see if that hastens 

emergence of the next FSH peak. 

7. In each follicular wave, only 1 to 3 follicles grow from the pool of small follicles in 

the ovary to ovulatory diameters. It is not possible to differentiate between the emerging 

and resting follicles when they are 1-3 mm in diameter. If we knew which small follicles 

within the ovarian pool were more prepared for further growth and development, then 

we could investigate potential mechanisms involved in initiation of further development 
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of those small antral follicles. Since infusion of FSH stimulated most of the small 

follicles in the ovary to grow to an ovulatory diameter, we could speculate that those 

mechanisms were activated in most of the small follicles in the ovary rather than only in 

1 to 3 of them. Therefore, it would be interesting to collect ovaries after 24-48 h of 

oFSH infusion, when most of those stimulated follicles are still in the small and medium 

size range (≤4 mm in diameter), and investigate the expression of molecular factors 

mediating follicular development, such as members of the IGF system and BMPs in 

those follicles. When we infused FSH to ewes (Chapter 6), follicles did not emerge and 

grow markedly from the pool of small follicles until close to the second day of 

treatment. Small follicles at a similar stage of development and collected from untreated 

ewes, could be used as controls.  

8. In this thesis, we showed that follicles ovulating from the penultimate wave of the 

inter-ovulatory interval, after MAP sponge treatment, had a greater degree of apoptosis. 

FSH has been shown to increase follicular resistance to apoptosis; therefore, it would be 

intriguing to see if supporting those follicles in the penultimate wave with oFSH would 

delay aging of those follicles and improve follicle viability.  
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