# Shelterbelts: A Row of Trees or the Next Best Thing to Mitigating GHGs on Prairie Landscapes

Beyhan Amichev, Murray Bentham, Suren Kulshreshtha, Colin Laroque, Joseph Piwowar, and Ken C.J. Van Rees



Centre for Northern Agroforestry and Afforestation



NORTHERN MISSIONS 1820 - 1910

A 1998 Million and built of the product of the state of t

1:7,500,000







**Objective 1. Develop an inventory of shelterbelts systems in Saskatchewan** 

**Objective 2. Quantify the potential for shelterbelts to store carbon** 

Objective 3. What are the potential impacts of climate change on future shelterbelt growth patterns for C accumulation?

# **Shelterbelt Species**

Green ash Hybrid poplar Manitoba maple

White spruce Scots pine

Caragana







#### Length of digitized shelterbelts in various soil zones

| Туре  | Brown  | Dark<br>Brown | Black      | Dark<br>Gray | Gray | Total  |
|-------|--------|---------------|------------|--------------|------|--------|
|       |        | Len           | gth of she | elterbelt (  | km)  |        |
| Farm  | 8,488  | 12,422        | 8,048      | 778          | 19   | 29,754 |
| Field | 7,859  | 10,852        | 2,892      | 293          | 3    | 21,899 |
| Total | 16,347 | 23,274        | 10,940     | 1,071        | 21   | 51,653 |

# Length of digitized shelterbelts by species grouping

| Туре  | Conifer | Deciduous | Mixed        | Shrubs   | Total  |
|-------|---------|-----------|--------------|----------|--------|
|       |         | Length    | of shelterbe | elt (km) |        |
| Farm  | 4,309   | 21,876    | 186          | 3,384    | 29,754 |
| Field | 286     | 5,741     | 400          | 15,472   | 21,899 |
| Total | 4,595   | 27,617    | 586          | 18,856   | 51,653 |





312 - 428

428 - 764

# **Tree sampling locations**







# Six species growth comparison





#### Carbon Budget Model

#### **Total biomass C pools**

Total dead organic matter (DOM) stocks



Soil Zone (31 Clusters)

(Planted 1925-2009)



Six AGGP species provincial additions: 4,848 Gg C = 4.8 Tg C

Soil Zone (31 Clusters)

(Planted 1925-2009)

#### Summary of shelterbelt C inventory

|                   |                | Shelterbelts planted<br>1925-2009 |                     | Shelterbelts planted<br>since 1990 |                     |
|-------------------|----------------|-----------------------------------|---------------------|------------------------------------|---------------------|
| Species           | Length<br>(km) | Total<br>(Mg C)                   | Additions<br>(Mg C) | Total<br>(Mg C)                    | Additions<br>(Mg C) |
| Caragana          | 35,245         | 7,864,038                         | 3,403,911           | 1,517,700                          | 421,968             |
| Green Ash         | 5,841          | 964,207                           | 432,497             | 329,481                            | 99,988              |
| Hybrid Poplar     | 4,144          | 1,303,391                         | 684,186             | 216,767                            | 50,324              |
| Manitoba<br>Maple | 2,646          | 364,000                           | 212,503             | 41,894                             | 12,893              |
| Scots Pine        | 1,573          | 184,214                           | 64,392              | 51,095                             | 10,740              |
| White Spruce      | 991            | 131,750                           | 50,440              | 39,709                             | 6,697               |
| Total             | 50,439         | 10,811,599                        | 4,847,929           | 2,196,646                          | 602,701             |

#### Value of Added C since 1990 assuming \$15 per tonne CO<sub>2</sub>

|                | Additions since 1990 for<br>shelterbelts planted 1925-<br>2009 | Additions for<br>shelterbelts planted<br>since 1990 |  |
|----------------|----------------------------------------------------------------|-----------------------------------------------------|--|
| Species        | (\$Millions)                                                   |                                                     |  |
| Caragana       | 144                                                            | 23                                                  |  |
| Green Ash      | 19                                                             | 5                                                   |  |
| Hybrid Poplar  | 31                                                             | 3                                                   |  |
| Manitoba Maple | 8                                                              | 0.7                                                 |  |
| Scots Pine     | 3                                                              | 0.6                                                 |  |
| White Spruce   | 2                                                              | 0.4                                                 |  |
| Total          | 208                                                            | 33                                                  |  |

#### **Past vs. Future Climate (based om CCCMA-A2 scenario)** Long-term monthly average Temperature (°C), *by soil zone*



# Conclusions

- This represents the first modelling of these types of agroforestry systems in Canada. The 3PG and CBM-CFS3 models were applied successfully to estimate tree growth and carbon sequestration in shelterbelt systems.
- These results suggest that planted shelterbelts as a whole could contribute to mitigating greenhouse gas emissions by sequestering C in the biomass, dead organic matter and soil.
- However, if shelterbelts are to play a role in mitigating future greenhouse gases emissions then further research is warranted to estimate biomass growth and C sequestration potential in a changing climate to determine which species to plant to maximize carbon sequestration into the future.

# **Acknowledgements**

This research was done by a team of collaborators from the University of Saskatchewan, University of Regina, and Agriculture and Agri-Food Canada (AAFC). Funding was provided by Agriculture and Agri-Food Canada (AAFC)'s Agricultural Greenhouse Gases Program (AGGP). We thank the AAFC Agroforestry Development Centre at Indian Head, SK for providing the shelterbelt tree data and all the farmers who allowed us to either harvest or measure their shelterbelts.



Centre for Northern Agroforestry and Afforestation