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Abstract 

A thorough understanding of the growth mechanism in organic thin film growth is necessary to 

be able to develop devices based on these materials. In particular, there are open questions about the 

growth mechanism of multilayered structures beyond the first monolayer. Of particular interest to this 

work is developing an understanding of the early and intermediate steps of n-alkane film epitaxial growth 

on highly ordered surfaces.  

In order to address this question, a technique needs to be used that allows observation of films at 

intervals during growth, while providing elemental sensitivity, spatial resolution, and orientation 

information. Photoemission electron microscopy (PEEM) is an electron microscopy technique with high 

spatial resolution suited to studying thin films in situ. When combined with tunable polarized X-rays from 

a synchrotron source, PEEM provides a powerful method to study the orientation of molecular films.  

However, alkane films are sensitive to radiation damage from UV and X-ray light. In addition, an 

in situ deposition study of n-alkanes cannot be performed without contamination of the vacuum 

environment. Deposition in PEEM will lead to contamination of other samples when the microscope is 

subsequently used. Therefore, an ex situ approach is used, where films are grown in high vacuum 

conditions in an adjacent chamber and analyzed with PEEM immediately after preparation. This method 

will be used to study the intermediate stages of n-alkane thin film growth. 

Previous research using linear polarized near edge X-ray absorption spectroscopy (NEXAFS) has 

proven useful in the study of the various oriented morphologies of n-alkanes grown by physical vapour 

deposition. Early to mid-stage growth has not been studied in depth however, and there may be a shift in 

growth modes as the epitaxial interaction with the graphite substrate is reduced as more layers are 

deposited. The ex situ evaporator has been designed, manufactured, and is operating according to 

expectations. Experiments have been performed to address the compatibility of these alkanes in the 

PEEM with x-ray illumination, including normalization techniques and radiation damage assessment. 
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Chapter 1 - Background and Introduction 

Ordering and arrangement in molecular thin films is an important subject for many areas of 

research, particularly for optical and organic coatings, as well as electronic devices, such as thin film 

semiconductors
1-3

. It is important to understand these growth phenomena in order to adjust specific 

properties in the final film. The growth mechanisms for monolayer organic films can be studied with 

precision using high resolution scanning tunneling and atomic force microscopy (AFM)
4-6

, as atomic or 

molecular resolution is possible. Multilayer films are inherently more complex and their structures cannot 

necessarily be inferred from monolayer studies. For example, adsorbate-adsorbate interactions become 

important as layers are added, and there can be a transition from molecule-substrate to intermolecular 

interactions during film growth. The change to intermolecular forces causes variations in the growth 

mechanism, film structure, and morphology.  

Linear dichroism in near edge X-ray absorption fine structure (NEXAFS) spectroscopy has been 

used to provide information on the molecular orientation of n-alkane films
7
. When combined with 

photoemission electron microscopy (PEEM), this technique can be used to provide information on 

individual areas of a film, with a spatial resolution down to 100nm. In this project, the orientation of n-

alkane films will be studied by X-ray linear dichroism in NEXAFS spectroscopy measured by PEEM. As 

n-alkane films are easily damaged by X-ray radiation, care must be taken to minimize the effect of 

radiation damage on the samples. The primary goal of this project is to investigate the early to 

intermediate stage growth of n-alkane films on a highly ordered surface. To address this, an ex situ 

evaporator will be designed and manufactured. This will allow films to be prepared on site and studied 

immediately thereafter, without exposure to the atmosphere. 
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1.1 Near Edge X-ray Absorption Fine Structure Spectroscopy (NEXAFS) 

NEXAFS is an element specific X-ray absorption spectroscopy (XAS) technique. A sharp rise in 

absorption occurs when the energy of the absorbing X-ray corresponds to the binding energy of a core 

electron. This abrupt discontinuity in the absorption probability is known as the absorption edge and will 

be described in detail below. In addition to elemental sensitivity, NEXAFS spectra of low Z elements are 

sensitive to chemical bonding, oxidation states, and functional groups. This means that NEXAFS can be 

used to gather information about the local environment of specific elements in a molecule. 

NEXAFS can also be used to provide information about molecular orientation of a sample. When 

there exists an ordered arrangement of molecules, the intensity of the features in the NEXAFS spectrum 

depend on the orientation of the transition dipole moment (TDM) relative to the polarization vector of a 

linearly polarized X-ray beam. If the angle between the polarization vector of the illuminating X-rays and 

the TDM is varied, easily observed changes in the NEXAFS spectrum are produced
8
. This is termed 

linear dichroism and is used to determine the orientation of n-alkane molecules at the surface of an 

ordered film. The NEXAFS spectrum is therefore sensitive to molecular orientation. For these reasons 

NEXAFS is powerful technique for observing highly ordered domains in a molecular thin film. 

1.1.1 Principles of NEXAFS Spectroscopy 

XAS is the measurement of the photobsorption cross section of a substance at X-ray wavelengths. 

NEXAFS is a type of XAS that concerns spectra with an energy range a few eV below the absorption 

edge to around 50 eV above the edge
8
. X-ray absorption can excite or ionize core electrons, creating a 

core hole. In general, the X-ray absorption cross section of a material decreases with increasing photon 

energy. At discrete energies a sharp increase in absorption is observed. This abrupt discontinuity in the 

absorption probability is known as the absorption edge. To illustrate this effect, the theoretical absorption 

cross section of copper is shown in Figure 1-1. The absorption edges of copper are clearly visible as sharp 

increases in absorption. The energy where the absorption edge occurs is unique to individual elements and 

corresponds to the shell that is being excited (1s, 2s, 2p, etc.).  
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100 1000 10000

Photon Energy (eV)
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Figure 1-1: Theoretical absorption cross section for copper. Data used from Henke et al.
9
  

X-ray absorption is followed by a decay process, as shown in Figure 1-2, below. The creation of a 

core hole is caused by the absorption of an X-ray causing a photoelectron to be ejected from the atom. 

The core excited state is short-lived and a series of relaxation processes occur to bring the atom back to 

the ground state. The empty core hole can be quickly filled by an electron in a higher energy orbital, 

leading to a fluorescent photon to be emitted with an energy characteristic of the atom. The energy of the 

electron decaying to fill the core hole may also be transferred to a shell electron which is then ejected 

from the atom, called an Auger electron. The X-ray absorption spectrum is produced by measuring the 

amount of emitted Auger electrons, or the amount of fluorescent photons emitted, as a function of photon 

energy
8
. 
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Figure 1-2: Diagram of X-ray absorption and decay processes. Energy that is charcteristic of an atom is 

released, either as an Auger electron or a fluorescent photon, when the cole hole is filled from an electron 

from a higher shell. Figure reprinted from Hahner
10

 with permission. 

The relative fluorescence and Auger yield is strongly related to the atomic number Z as shown in 

Figure 1-3. For the 1s core holes, Auger decay has a higher probability than fluorescence in low Z atoms, 

and therefore dominates the decay process. Similar relationships between atomic number and relative 

yields exist for 1s and 2p transitions
11

. Auger decay is favored for the low Z elements, such as carbon, 

nitrogen and oxygen. Consequently, electron yield measurement is the preferred way to obtain a 

NEXAFS spectrum for low Z elements. Auger electrons are not observed for helium and hydrogen, since 

the Auger decay process requires at least three electrons
8
. 
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Figure 1-3: Relative yields for fluorescence and Auger electrons for K shell transitions. The bulk of X-

PEEM signal is from secondary electrons produced by scattering of primary/Auger electrons. Figure 

modified from Krause
11

 with permission. 

 

Figure 1-4: NEXAFS spectrum (top) and the corresponding molecular potential (bottom). Figure 

reprinted from Hahner
10

 with permission.  
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Spectral structures in the NEXAFS region are dominated by multiple scattering contributions
8
. 

The energies that these transitions occur at and their shapes in the NEXAFS spectrum depend on the 

characteristics of excitation, as shown in Figure 1-4. These core electrons can be ionized from the atom, 

or excited into unoccupied π*, Rydberg, or σ* transitions. Rydberg peaks are atomic like transitions. They 

appear as low intensity, sharp peaks in the spectrum. The width and shape of spectral structures is 

determined by the lifetime of excited states, as given by the uncertainty principle 

∆𝐸∆𝑡 ≤ ℏ
2⁄  ( 1.1 ) 

and therefore excited states with long lifetimes (and corresponding large ∆t) give rise to sharper peaks in 

the NEXAFS spectrum (from a corresponding smaller ∆E). Long-lived π* transitions are sharp, whereas 

σ* transitions are shorter lived and are generally broader. The π* transitions occur below the ionization 

potential, whereas the σ* transitions usually occur above. Rydberg states always occur below the 

ionization potential. The broadening of the σ* peaks can also be caused by an increased possibility of 

decay to continuum states, due to an overlap of the σ* states and the continuum
8
. 

NEXAFS spectroscopy can be used to determine the elemental composition of a material. 

NEXAFS spectroscopy can also be used to study local environment of an element, such as functional 

groups and oxidation states
12

. When the material being studied exhibits a preferential ordering, orientation 

analysis can also be performed using polarized X-rays. The orientation analysis of molecules using 

polarized X-rays will be discussed in detail below. 

1.1.2 Orientation Analysis with Polarized NEXAFS 

Although the energy and intensity of a specific feature in a NEXAFS spectrum depends on the 

elements present and the local environment of these elements, the intensity of these transitions can also 

depend on the orientation of the TDM of specific electronic transitions in a molecule when linearly 

polarized X-rays are used. The polarization of light refers to the electric field vector (𝑬⃗⃗ ) of the X-rays, as 

shown in Figure 1-5. When a material exhibits anisotropic absorption of X-ray radiation when linearly 
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polarized light is incident on it, this is called linear dichroism.  This linear dichroism means that NEXAFS 

spectroscopy is sensitive to molecular orientation in ordered materials. Linear dichroism and orientation 

analysis using NEXAFS spectroscopy will be discussed below.  

 

Figure 1-5: Illustration of an electromagnetic wave where the polarization vector (red) is oriented vertical. 

The magnetic field vector (blue) is always at a right angle to the electric field vector, and both are 

perpendicular to direction of propagation. CC BY-SA 3.0
13

 

Features of NEXAFS spectra can exhibit linear dichroism in ordered samples. The electronic 

transitions that occur in X-ray absorption follow dipole selection rules. Absorption is strongest when the 

𝑬⃗⃗  of the incoming linear polarized X-rays is aligned with the TDM. Equation 1.2 shows that the 

magnitude of absorption (I) is proportional to the angle (θ) between the 𝑬⃗⃗  and the TDM (μif), 

𝐼 ∝ |𝑬⃗⃗ • 𝜇𝑖𝑓|
2 = |𝑬⃗⃗ |

2
|𝜇𝑖𝑓|

2𝑐𝑜𝑠2𝜃 ( 2.2 ) 

 

where μif is the one-electron TDM from the initial to the final state. μif is defined as 

𝜇𝑖𝑓 = ⟨𝜓𝑓|𝜇|𝜓𝑖⟩ ( 1.3 ) 

  

where µ is the dipole operator and 𝜓𝑓 and 𝜓𝑖 are the final and initial states, respectively. Therefore, the 

intensity of the transition depends on the orientation of the TDM relative to the direction of the 𝑬⃗⃗  of the 

polarized X-rays.  In an absorption spectrum, light has a maximum probability of absorption when 

polarized parallel to the TDM, and a minimum probability when polarized perpendicular to the TDM.  
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The orientation of molecules on an ordered sample can be determined from the NEXAFS 

spectrum by using the polarization characteristics of synchrotron light. When there exists a preferential 

absorption of a specific polarization in the NEXAFS spectrum of a sample, the orientation of a specific 

TDM can be determined. When linear dichroism in NEXAFS spectroscopy is combined with the spatial 

resolution of PEEM, contrast differences appear between different orientations of TDMs within a 

molecule and the orientation of the molecule can be established. For saturated hydrocarbons, this 

information is gained by comparing angle dependent spectra of the C 1s  σ*C-C and C 1s  σ*C-H 

transitions, as discussed below.  

1.1.3 X-ray Absorption Linear Dichroism of Hydrocarbons 

 NEXAFS spectroscopy is a useful technique for studying the molecular orientation of organic 

molecules. The core  π* transitions in unsaturated molecules are short lived, and therefore sharp peaks 

in the spectrum because the natural width of resonances is determined by the lifetime of the excited state
8
. 

The position of the π* transitions in the spectrum usually occurs below the ionization potential, leading to 

clear and uncluttered peaks in the NEXAFS spectrum. Figure 1-6 shows several NEXAFS spectra of 

highly oriented pyrolytic graphite (HOPG) with changing orientation between the 𝑬⃗⃗  of the X-ray beam 

and the TDM of the molecular plane. HOPG represents an ideal sample as it is known that HOPG consists 

of layers of 6-membered benzene rings oriented parallel the substrate surface. It can be clearly seen that 

the intensity of the π* transition that occurs at 285 eV is strongest when the 𝑬⃗⃗  of the X-ray beam is 

perpendicular to the graphite surface, while the intensity of the transition nearly vanishes when the 𝑬⃗⃗   

becomes parallel to the surface. As the TDM of the C 1s  π* is aligned perpendicular to the surface in 

the HOPG graphite sheets, the maximum intensity of the transition occurs when the 𝑬⃗⃗  of the X-ray beam 

is also aligned perpendicular to the surface. This affirms that the graphite sheets are parallel to the 

surface. 
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Figure 1-6: NEXAFS spectra of HOPG as a function of angle dependence of incident X-rays. Figure 

reprinted from Stohr
8
 with permission. 

Conversely, saturated molecules, such as n-alkanes contain no core  π* transitions that have well 

defined symmetry. For these systems, the core  σ* transitions must be used to determine molecular 

orientation. This is complicated by the σ* transitions occurring near the ionization potential, broadening 

the peak and causing difficulty in precisely determining the peak position. Figure 1-7 shows Carbon 1s 

NEXAFS spectra of a hexacontane (C60H122) thin film, deposited on a NaCl (001) surface, as a function of 

polarization angle. In this experiment, the sample is rotated about the beam axis to change the angle of 

polarization relative to the TDM of the sample. θ = 0⁰ and θ = 90⁰ are defined as the angles at which the 

intensity of the C 1s  σ*C-H transition reaches minimum and maximum intensity, respectively. The C 1s 

 σ*C-H transition (288 eV) shows the largest intensity when the 𝑬⃗⃗  of the X-ray beam is oriented 

perpendicular to the alkane chain (in the CH2 plane). At this polarization, the intensity of the C 1s   

σ*C-C transition (293 eV) will be supressed as the TDM is perpendicular to the 𝑬⃗⃗  of the polarized X-ray 

beam. As the polarization angle is reduced and the 𝑬⃗⃗  becomes aligned with the n-alkane backbone, the 

intensity of the σ*C-H transition decreases, and conversely the σ*C-C transition increases.  
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Figure 1-7: Carbon 1s NEXAFS spectra of an n-alkane thin film as a function of polarization angle. 

Figure reprinted from Fu et al.
7
 with permission. 

 While polarized NEXAFS spectra provide information regarding the molecular orientation of thin 

ordered films, spatial recognition is needed to study films with separate ordered domains. When 

photoemission electron microscopy (PEEM) is combined with NEXAFS spectroscopy, chemical sensitive 

and orientation specific information can be obtained for specific areas of a sample with spatial resolutions 

down to 100 nm. The X-PEEM technique has been used to study molecular order in organic thin film 

systems, such as polyimines
14

, alkane thiolate films on gold
15

, and observation of pentacene film growth 

in real time
16

, and many more examples. The following section will discuss the theory and principles of 

PEEM. 

1.2 Photoemission Electron Microscopy (PEEM) – Theory and Technique 

Photoemission electron microscopy (PEEM) is an electron microscopy technique where 

variations in the work function and topography of the surface create image contrast. With X-PEEM, X-

rays are absorbed by the sample, exciting core electrons. A cascade of secondary electrons follows the 
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excitation of core electrons, which is generated by the inelastic scattering of primary and Auger electrons. 

The sample is held at a large negative potential, so electrons that escape the surface are accelerated from 

the sample and collected with a series of electromagnetic or magnetic lenses, as shown in Figure 1-8. 

 

Figure 1-8: A basic schematic of electromagnetic lenses used in a PEEM. Figure reprinted from Gilbert et 

al.
17

 with permission. 

The contrast variations that appear on the image correspond to variations in the electron emission 

of the material. These variations can arise from the work function, photoemission cross-section, or surface 

topography of the materials. The majority of electron emission is dependent on the work function of the 

material, which is defined as the minimum energy required in order to remove an electron from a solid. A 

smaller work function then indicates there will be more electron emission, and therefore a brighter PEEM 

image. The work function for most elements lie between 3 and 5 eV. The work functions of some 

common elements, such as Au, Si, and Fe, are 5.37 eV, 4.85 eV, and 4.81 eV, respectively
18

. 

As with most electron microscopy techniques, PEEM samples must be conductive, stable under 

ultra-high vacuum (UHV) conditions, and free of large changes in surface topography. Samples that are 

not flat will cause field emission from topographical features on the surface. Figure 1-9(a) shows the 

effect of surface features on the corresponding image. The distortion of the electric field by topographical 
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features causes peaks to appear darker and valleys appear brighter when compared to flat regions
19

. Large 

surface features may also block illumination of areas in the features shadow. Sharp peaks can also cause 

field emission, causing focusing problems and image distortion
20

. 

 

Figure 1-9: (a) Topological surface features (above) and the approximate corresponding PEEM image 

(below). (b) Effects of localized charging on a PEEM image (above) and the corresponding image 

intensity (below). Adapted from Gilbert et al.
17

. 

Nonconductive samples can cause charging effects and electrical discharges, as shown in Figure 1-9(b). 

This can cause focusing problems, and in extreme cases, electrical discharges may cause damage the 

MCP. Localized insulating areas on a sample can cause localized charge area that deflect the trajectories 

of the emitted electrons, causing images to become distorted
17

.  

Any light source that generates photons with sufficient energy to overcome the work function of 

the sample can be used for PEEM. The relationship between the maximum kinetic energy of the emitted 

electrons (Kmax) is shown in the following equation.  

𝐾𝑚𝑎𝑥 = ℎ𝑓 − 𝜑                          ( 1.4 ) 

In the equation above, 𝜑 represents the work function of the material, 𝑓 is the frequency of the light 

interacting with the material, and ℎ is the Planck constant. This equation shows that the kinetic energy of 

the electrons that are produced ranges from 0 to the energy of the incident photon, less the work function 

of the material. 
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The most common energy range of light used purely for imaging is ultraviolet (UV) light, as cost-

effective bright sources such as Hg arc lamps are available, and UV light produces the highest resolution 

images. This is because lower energy light produces a smaller range on electron energies, lowering the 

amount of chromatic aberration in the image produced. Synchrotron produced X-rays are used when 

analytical information is required through NEXAFS, as synchrotron light can be tuned and images can be 

gathered at differing energies. The use of X-rays lowers the resolution somewhat however, as chromatic 

aberration is increased. 

The X-rays illuminating the sample will penetrate the substance to a depth, known as the 

attenuation length, that is largely dependent on the on the density of the material and the photon energy. 

For any material, the attenuation length is defined as the distance (λ) where the probability of finding a 

photon has dropped to 1/e. In other words, it is the depth into a material where the intensity of the X-ray 

beam has been reduced to 63% (1/e). In general, the attenuation length is inversely proportional to the 

density of the material, but this is also dependent on the material’s X-ray absorption properties. For 

example, the attenuation length for graphite (density = 2.2 g/cm
3
) at 200 eV is approximately 1 μm, while 

the attenuation length of Cu (density = 8.96 g/cm
3
) at 200 eV is approximately 30 nm

9
.  
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Figure 1-10: Photoabsorption and electron generation of a sample with a substrate layer B and adsorbate 

layer A. A universal curve for the mean free path of electrons in solids as a function of energy is shown as 

well. Figure reprinted from Stohr
8
 with permission. 

In addition to the ejection of primary electrons due to the photoelectric effect, the absorption of 

X-rays creates primary photoelectrons and Auger electrons, at the surface and throughout the sample 

where the X-rays penetrated. The scattering of these electrons within the sample leads to an electron 

cascade. As these electrons travel to the surface of the sample, they are scattered by interactions with 

other electrons on their way there, creating secondary electrons. The depth that X-rays penetrate the 

sample to much greater than the depth of the electrons that escape the sample, owing to the small inelastic 

mean free path (λ) of the electrons generated. The λ of these electrons follows the universal curve, shown 

in Figure 1-10. As shown above, electrons with kinetic energies from 10-500 eV (typical for soft X-rays) 

have a small λ
21

. Therefore, the λ of electrons generated are generally by soft X-rays are typically below 

10 Å. For example, the maximum probing depth of for Auger electrons with an energy below 500 eV is 

less than 5 nm
22

. Thus the electrons used for imaging in PEEM usually come from near the surface, 

giving PEEM excellent surface sensitivity.  
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Since the absorption of the illuminating light is dependent on the X-rays energy, contrast changes 

can be seen in PEEM images at different illumination energies. If an image of the sample is taken when 

illuminated at different wavelengths of monochromatic light, a series of images will be obtained that will 

allow changes in absorption to be observed with changing photon energies. This series of images allows a 

chemical and orientation sensitive NEXAFS spectrum to be acquired from specific areas of the sample 

where element specific information can be obtained. Synchrotron radiation also allows adjustable 

polarization, which give a great advantage for measuring molecular orientation on a surface
10, 14, 23

. 

The magnified electrons are amplified and detected using a micro-channel plate (MCP)/phosphor 

combination. The MCP consists of many small channels typically 10μm in size, although high resolution 

MCPs may have channels as small as 0.4 μm
24

. These channels are densely distributed over the surface of 

the MCP and function independently as electron multipliers. The MCP amplifies the electrons by 

producing a cascade when one electron strikes the sidewalls of the MCP channels. In this way the MCP 

amplifies the electron signal while maintaining the spatial resolution of the electrons. The phosphor 

screen generates visible light when the electron pulse strikes it. The phosphor is viewed with a cooled 

charge coupled device (CCD) camera. 

PEEM is a powerful technique for studying the growth of thin films
16, 25

. When combined with 

polarized synchrotron light, PEEM can be used to record spatially resolved NEXAFS spectra where 

orientation of discrete areas of a sample can be determined
14

. This technique is particularly useful for 

samples with molecular ordering, as information regarding the elemental composition and orientation can 

be determined for specific areas of a heterogeneous sample. In the following sections, the mechanisms 

behind the growth of ordered thin films will be discussed. 

1.3 Growth of Organic Thin Films 

n-alkane films may be prepared in a highly ordered arrangement when grown on crystalline 

substrates. The process of depositing an ordered crystalline overlayer on a crystalline substrate is known 
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as epitaxy. Epitaxy is a form of crystal growth that exists as a nucleation and growth relationship between 

two crystalline phases. This allows a crystalline phase (epitaxial layer) to be grown on another crystalline 

phase (substrate layer) that is dependent on the structure on the substrate layer. The epitaxial layer can be 

formed from many different sources, including liquids, vapours, or molecular and atomic beams
26

. These 

surfaces grown by epitaxy can be directly observed by several methods, such as AFM, scanning 

transmission X-ray microscopy (STXM), scanning electron microscopy (SEM), and PEEM, among 

others. 

When the epitaxial layer is grown on a substrate with a well-defined crystal phase, the crystal 

structure of the grown layer may conform to that of the substrate, even if there is a significant lattice 

mismatch between the substrate crystal phase and the most thermodynamically favourable crystal 

structure of the deposit
26

. The study of epitaxial adsorbed organic molecules of a film is an important 

method to study surfaces. Small changes to the substrate, such as surface defects or impurities, can have a 

significant influence on the growth of adsorbing molecules. The basics of epitaxial growth and how this 

applies to long chain molecules will be discussed below. 

1.3.1 Atomic Epitaxy 

Epitaxy is the process of film growth where atoms of the growing film, known as the epilayer, 

mimic the arrangement of the atoms of the substrate that the film is growing on
26

. During epitaxial 

growth, the adsorbing molecules are transported to the surface of the substrate, and crystalline growth 

occurs at the interface between these two phases. It is important for the interfacial area to remain in a 

supersaturation state with the adsorbing molecules, as epitaxial growth cannot occur otherwise. The 

epitaxial growth process as a process of atomic ordering, which is strongly dependent on the chemical 

activity of the substrate surface, as well as the kinetics of the process
26

.  
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Figure 1-11: The three different growth modes; Frank-van de Merwe (left), Volmer-Weber mode (center), 

and Stranski-Krastanov (right). Figure adapted from Herman et al.
26

 with permission. 

The growth processes of epitaxial films occur similarly to bulk crystal growth, with the exception 

of the influence of the substrate on the initial stages of growth
26

. There are five possible growth modes in 

which epitaxial growth can occur. These are Volmer-Weber mode, Frank-van der Merwe mode, Stransk-

Krastanov mode, columnar growth mode, and step flow mode
27

. The three most common modes of 

epitaxial growth are depicted in Figure 1-11.  These are Frank-van de Merwe mode, Volmer-Weber 

mode, and Stranski-Krastanov mode.
 
In Frank-van der Merwe mode, the substance grows layer-by-layer 

on the substrate, where an entire monolayer forms before new growth begins on top. This will happen 

when the adsorbing atoms or molecules have a larger affinity for the substrate than for each other. In 

Volmer-Weber mode, islands form when incoming atoms or molecules form small clusters and then grow 

larger. This growth mode will occur when the adsorbing atoms or molecules have a larger affinity for 

each other than for the substrate. The Stranski-Krastanov mode is an intermediate growth mode, between 

the Frank-van de Merwe and Volmer-Weber modes. This growth mode will occur when the adsorbing 

molecules or atoms completely cover the surface and subsequent layers have a decreasing attraction to the 

substrate. Eventually the adsorbing atoms or molecules will have a greater affinity to each other than to 

the substrate and islands will form.  
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Figure 1-12: Illustration of a strained epitaxial layer (a) and a relaxed epitaxial layer (b). Adapted from 

Herman et al.
26

. 

If the lattices of the epilayer and the substrate are mismatched, the lattice of the epilayer will 

become distorted to accommodate this misfit. The lattice of the epilayer may become strained as it 

distorts to conform to the lattice of the substrate Figure 1-12a, or the lattice of the epilayer may distort 

through relaxation Figure 1-12b. If the misfit between the substrate and epilayer is small, the first 

monolayers that are deposited will be strained to match the substrate. As the thickness increases however, 

the energy required to strain the lattice may become large enough that is energetically favourable for the 

epilayer to relax and introduce dislocations
26

. This is the case for Stranski-Krastanov growth.  

1.3.2 Molecular Epitaxy 

In contrast to atomic epitaxy, epitaxy with molecules introduces addition variables and 

complexities. Large molecules may have differing degrees of commensurism with the substrate, where 

the epitaxial layer may closely match lattice points on the substrate (commensurate), or may only have 

very little in common with the substrate (incommensurate). Commensurate and incommensurate 

molecular epitaxy of large molecules can lead to preferential orientations in thin films, as discussed 

below. 

In order for molecular epitaxial growth to occur, the overlayer must have a commensurate 

configuration with the lattice points of the substrate layer. For epitaxy of large molecules, this can be 
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satisfied by varying degrees of commensurism, such as point on point coincidence where for high degrees 

of commensuism, to point on line for lower degrees. These two forms of commensurism are shown in 

Figure 1-13. Point-on-point commensurism occurs where each lattice point of the over layer matches 

directly with a point of the substrate. Lattice lines of the over layer must also coincide with lattice lines of 

the substrate. For point-on-line commensurism, the lattice points of the over layer do not coincide with all 

lattice points on the substrate, but every lattice point coincides with a lattice line of the substrate
28

. 

 

Figure 1-13: A representation of point-on-point (left) and point-on-line commensurism (right) molecular 

epitaxy. The larger white circles represent the substrate, while the smaller black circles represent the 

deposited layer. Figure modified from Hooks et al.
28

 with permission. 

Epitaxial growth can also occur incommensurately. For an incommensurate over layer, there 

exists a preferred orientation of growth, even though there does not exist any distinct matching between 

lattice lines of the over layer and substrate. For example, a film of hexabrobobenzene (C6Br6) grown on 

graphite exhibits a unique orientation, even though the lattice constants for graphite and C6Br6 are very 

different (2.46 Å and 9.14 Å, respectively)
28

. The ability for a substrate to distort the growth of an over 

layer from its natural order depends on the degree of fit between the two lattices. 

The epitaxial growth of n-alkanes occurs by following energetically favourable directions on 

several surfaces. Of particular interest is growth on HOPG (0001) and single crystalline NaCl (001) 

surfaces, where films grow in six-fold and four-fold symmetry, respectively
29

. The process in which this 

occurs is complex however and dependent on many variables. This work will explore the details of this 

growth in more depth to attempt to provide an explanation for the growth mechanisms. 
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1.4 Previous Study of n-alkanes on High Symmetry Surfaces 

The way a substance grows on a surface is dependent on many conditions, including substrate 

temperature, substrate heat capacity, deposition rate, as well as others. When n-alkanes are epitaxially 

grown on a highly ordered substrate, a series of complex orientational morphologies are observed that 

depend on the deposition conditions. By using PEEM and NEXAFS, the early stage growth of n-alkane 

films can be studied in detail. 

1.4.1 Molecular Orientation of n-alkanes 

Two fundamental molecular orientations have been identified for the growth of n-alkanes in all- 

trans configuration on high symmetry substrates. These are lateral, where the carbon backbone is aligned 

parallel to the surface, and normal, where the backbone is aligned perpendicular to the surface
30

. Laterally 

oriented n-alkanes may also be oriented side-on, where the carbon chain zig zags parallel to the plane of 

the substrate, on or edge on, where the carbon chain zig zags are perpendicular to the substrate plane. The 

differences between side on and edge on orientations are shown visually in Figure 1-14 

 

Figure 1-14: Two possible variations of laterally oriented n-alkane chains, where the backbone of the 

carbon chain is oriented parallel to the to the plane of the substrate (above) and where the backbone is 

oriented perpendicular to the plane of the substrate (below). Figure modified from Leunissen et al.
31

 with 

permission. 
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Thin n-alkane films are often prepared through physical vapour deposition (PVD). PVD is a 

widely used technique for depositing thin films for various solid sources. In PVD, the chemical to be 

grown is transported to the substrate in the vapour phase, without chemical change. Compounds or 

elements are sublimed or vapourized by resistive heating or laser ablation. PVD allows for the controlling 

of growth parameters, such as deposition rate, angle, substrate temperature, and kinetic energy of the 

vapour phase that are unable to be controlled in other techniques, such as solution deposition. These 

parameters are important to control because they influence the adsorption and desorption processes. 

PVD is often done in vacuum to reduce the chance of impurities being included in the grown 

layers. Vacuum evaporation also creates the possibility of in situ techniques to be applied during film 

growth, although not all in situ techniques are UHV compatible. Among the most important factors 

governing the growth of n-alkane films from vapours in vacuum conditions are the substrate temperature 

and the deposition rate
32

.  

A simple model proposed by Kubono et al.
32

 is described here, where initial growth occurs in 

several steps. Figure 1-15 gives a schematic representation of these steps. When molecules that form 

ordered thin films first interact with the surface they are being adsorbed to (1), the molecules will migrate 

across the surface (2). The molecules may either re-evaporate from the surface (3), or cluster together and 

orient themselves from a random orientation to form an ordered nucleation site (4). As the molecules 

form nucleation clusters, they may re-evaporate from the cluster (5), or reorient themselves to their 

preferred orientation (6). The conditions at which this process takes place are important to consider, as 

they have a large influence on the observed morphologies of the film that is grown. Of particular 

importance are the substrate temperature and the deposition rate. 
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Figure 1-15: Illustration of thin film growth. Adsorption from vapour (1), surface migration (2), re-

evaporation from surface (3), capture into oriented cluster (4), re-evaporation from cluster (5), 

reorientation (6). Figure modified from Kubono et al.
32

 with permission. 

Substrate temperature plays an important role in the evaporation and re-evaporation of molecules 

from the substrate, as a higher substrate temperature will increase the energy of the adsorbed molecules. 

This can cause the molecules to have greater re-evaporation rates from the substrate, greater ability to 

migrate along the surface of the substrate, and a greater ability to reorient. Figure 1-16 shows the 

percentage of normally oriented clusters as a function of substrate temperature for C40H82 deposited on 

glass by PVD
33

. The method used to determine the orientation of the alkane clusters was X-ray 

diffraction, which does not have spatial resolution for this example. As a consequence, the orientation 

measurements give the average of the entire film. The normally oriented clusters are formed at higher 

temperatures, while the lateral orientated clusters are formed at lower substrate temperatures. In the 

C40H82 example below, the equilibrium temperature, where half the C40H82 molecules are oriented normal 

to the substrate and half are in the lateral orientation, is 270K. The lateral orientation provides an increase 

in surface area, leading to higher rates of evaporation and re-evaporation from the substrate
23

. This in turn 

leads to the lateral orientation being found at lower substrate temperatures. 
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Figure 1-16: Percentage of normal orientated C40H82 molecules on glass as a function of temperature. 

Figure Modified from Kubono et al.
32

 with permission. 

The rate of deposition also influences the growth of ordered thin films
32

. At higher deposition 

rate, re-evaporation from the surface and from cluster will be reduced, and n-alkane molecules will prefer 

the lateral orientation. This is due to a larger interaction of the molecule with the substrate surface from 

the greater contact area of the laterally oriented molecule compared to the normal orientation
32

. When the 

rate of molecules reaching the surface increases, nucleated clusters grow faster. This means that 

molecules do not need to migrate as far across the surface as far before joining clusters, and will not have 

time to re-evaporate and rearrange before more molecules adsorb. Consequently, a film grown at a slower 

deposition rate will prefer the normally oriented clusters, while a film grown with a higher deposition rate 

will preferentially form laterally oriented clusters.  
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Figure 1-17: Normal and lateral orientations of n-alkane nuclei (a). Potential energy as a function of 

molecular tilt angle of the molecule (b). Figure reprinted from Kubono et al.
32

 with permission. 

The dependence or orientation can also be described thermodynamically
30

. Normally oriented 

clusters have a larger potential energy compared to the lateral clusters, and therefore the lateral orientation 

is preferred to normal orientation. Figure 1-17 shows the potential energy of the n-alkane clusters as a 

function of molecular tilt angle. The two orientations are stable with the normal orientation at higher 

temperatures being preferred. The preferred orientation of n-alkane thin films cannot be described in 

purely thermodynamic terms. The degrees of freedom for clusters of normal or laterally oriented 

molecules should similar, so it is assumed that entropy is independent of molecular orientation
32

. 

Therefore, the driving force behind the growth of oriented n-alkane thin films is the relative rate of the 

formation of nucleation sites for the normal and laterally oriented clusters. This is dependent on the 

critical nucleus sizes for each orientation, as well as the temperature of the substrate
30

. 
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When n-alkanes are deposited on a structured surface such as NaCl (001) or HOPG (0001), the 

observed films can grow epitaxially with an orientation that is commensurate with the substrate beneath. 

Leunissen et al. found that a complete monolayer of dotriacontane (C32H66) forms on the HOPG substrate 

(substrate temperature = 45°C) before islands nucleate on the monolayer
31

. Using a combination of 

polarization microscopy and AFM, Leuinissen et al determined that these islands are of the same 

orthorhombic crystal structure as the monolayer, with the carbon backbone of the molecules oriented 

parallel to the surface with a face on configuration. This configuration is not the most thermodynamically 

stable crystal structure of n-alkanes however. This suggests that the monolayer acts as a template, where 

three dimensional epitaxial nucleation occurs on the monolayer. In this case, the Stranski-Krastanov 

growth model that is observed is likely as a result of the large lattice mismatch between the HOPG 

substrate (4.2Å) and the alkane crystal phase (5.0Å).  

 

Figure 1-18: cryogenic scanning electron microscopy images of C32 on HOPG. Island growth can be seen 

in the tilted left image and six-fold symmetry can be seen in the rightmost image. Figure reprinted from 

Leunissen et al.
31

 with permission. 

In addition to the differences in molecular orientation, thin n-alkane films also show complex 

orientational morphologies when grown epitaxially on an ordered substrate. Figure 1-18 shows cryogenic 

scanning electron microscopy images of dotriacontane (C32H66, C32) on HOPG substrate. The rightmost 

image clearly shows the six-fold symmetry of n-alkane island growth on HOPG. The leftmost image is 
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taken from an angle and island growth can clearly be seen. After nucleation, the crystals expand parallel 

to the substrate until they reach another crystallite. The result is a trigonal pattern with orientations of 

islands at 60 degrees to each other, with edges almost perpendicular to the substrate surface. The 

morphology that is observed depends on the conditions during deposition, primarily on the substrate 

temperature. By creating n-alkane films at different substrate temperatures, the observed patterns can be 

tuned to a specific morphology. Previous studies of the morphological dependence on substrate 

temperature will be discussed in the following section. 

1.4.2 Growth Patterns of n-alkane Films on HOPG at Different Substrate Temperatures 

 The patterns formed by n-alkanes grown on HOPG by physical vapour deposition show a large 

dependence on the temperature of the substrate when they are deposited
34

. There are several morphologies 

observed for n-alkanes based on several factors, including the length of the carbon chains, the rate of 

deposition, and the temperature of the substrate when deposited. By adjusting the temperature of the 

substrate during deposition, it is possible to control the morphology of the deposited n-alkane. Masnadi 

and Urquhart studied this temperature dependence in detail by varying the temperature of the substrate for 

multiple different n-alkane chain lengths
34

. The term “supercooling” is used to describe the variation of 

substrate temperature to normalize for the differences in n-alkane chain lengths, since alkanes with longer 

carbon chains have higher melting points than their short chain counterparts. The supercooling term (TSC) 

is defined as the difference between the melting point of the n-alkane (Tfus) and the substrate temperature 

(TS), shown in equation 1.5: 

𝑇𝑆𝐶 = 𝑇𝑓𝑢𝑠 − 𝑇𝑆              ( 1.5 ) 

 Figure 1-19 shows the differing morphologies for hexatricontane (C36H74, C36) on HOPG at 

differing temperatures. At high supercooling temperatures, a flat film with uniform thickness and large 

domains is observed (a). As the supercooling temperature is decreased, distinct narrow bars appear (b) 

that increase in width and clearly show a six-fold symmetry as the supercooling temperature is further 
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decreased (c). A supercooling temperature between 20 °C and 25 °C gives rise to very thick bar structures 

ordered in a six-fold symmetry (d). After this point however the six-fold symmetry is no longer observed, 

and a morphology of large pseudo-rectangular domains is seen (e). At substrate temperatures close to the 

melting point of the n-alkane being deposited, a flat film with pseudo-rectangular domains is observed (f). 

 

Figure 1-19: Optical microscope images of morphologies for C36 at different supercooling temperatures: 

(a) 6 °C(TSC= 69.8 °C); (b) 25 °C(TSC = 50.8 °C); (c) 30 °C(TSC = 45.8 °C); (d) 50 °C(TSC = 25.8 °C); (e) 

56 °C(TSC= 19.8 °C); (f) 65 °C(TSC= 10.8 °C). Figure reprinted from Masnadi et al.
29

 with permission. 

 A transition from layer growth to island growth is also observed during the growth of n-alkanes, 

suggesting a Stranski-Krastanov growth mode. This can be observed from Figure 1-19, where at low TSC 

large islands without bars of six-fold symmetry are seen (a). At slightly higher TSC large islands with 

small bars of six-fold symmetry are seen (b). This suggests a transition from layer growth to island 

growth of ordered domains. There are many possible reasons for Stranski-Krastanov growth to occur, as 

any factor that changes the binding energy may be the cause
26

. One possibility is to this growth 

mechanism change is strain, as strain in the grown film is often attributed to the Stranski-Krastanov 

growth mode. Initial deposition leads to the formation of one or more strained layers, whose structure is 

strongly influenced by the underlying substrate
27

.  
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Care must be taken when discussing molecular epitaxy of n-alkanes, as there are a wider range of 

growth conditions (chain length, substrate temperature, evaporation rate, etc.) that have more importance 

than strain on the morphology of the prepared films
34

. It is important to understand the factors that affect 

the growth of n-alkane films in order to engineer films of a specific orientation. 

As shown above, the epitaxial growth of n-alkane films on highly ordered surfaces depends on 

the conditions during growth. Small changes to the substrate temperature or evaporation rate can have a 

large influence on the type of complex morphology observed in the n-alkane film. In addition to the 

overall structure of the n-alkane film dependent on the growth conditions, the orientation of the carbon 

backbone of the molecules can vary from normally oriented to parallel, and side or edge-on orientation 

when parallel to the surface (see section 1.1.2.). In order to study these morphological differences in n-

alkane films, a technique needs to be used that provides the spatial resolution necessary to observe n-

alkane domains, but also provide information about the orientation of the constituent molecules as well. 

To this end, NEXAFS and PEEM will be used to study the growth of n-alkane films. 

1.4.3 NEXAFS of n-alkanes 

Imaging techniques such as AFM and SEM can be used to gain insight into the growth and 

orientation of thin films. Information about molecular orientations and growth cannot easily be directly 

observed with these techniques however. While X-ray diffraction techniques can give information about 

the orientation of crystallites, obtaining spatial resolution with such techniques is difficult however. By 

using polarized NEXAFS however, element specific information about molecular orientation can be 

directly discerned from spectra generated at discrete areas of a film. 

NEXAFS spectroscopy is an excellent technique for studying the molecular orientation of n-

alkane films. Core level excitations for low Z elements, such as carbon and oxygen, are well defined and 

occur in the soft X-ray energy region. The features of a NEXAFS spectrum are often presented in regards 

to these core level electron transitions to unoccupied valence orbitals with σ* or π* symmetry. These 



29 

 

features of the NEXAFS spectrum can give information about chemical composition
12, 35

, local 

environment of the element under investigation
36

, and the orientation of species adsorbed to a surface
10, 37

. 
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Figure 1-20: NEXAFS spectrum of hexacontane (C60H122). Spectra for saturated hydrocarbons are 

dominated by two resonances, the σ*(C-H) and the σ*(C-C) transitions, labelled A and B, respectively. Figure 

modified from Stohr
8
 with permission. 

Since n-alkanes are saturated molecules, there will be no π* transitions observed in their 

NEXAFS spectrum. Consequently, the spectra of saturated hydrocarbons are dominated by two 

resonances: the σ*(C-H) transition and the σ*(C-C) transition, as shown in Figure 1-20. The energies that the 

σ*(C-H) and σ*(C-C) transitions occur at for n-alkanes typically occur at 288 eV and 293 eV. The σ*(C-H) 

transition is a relatively sharp peak when compared to the σ*(C-C) transition, which occurs near the 

ionization potential of n-alkanes, which leads to mixing with the continuum of the spectrum and 

broadening of the peak. 
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The intensities of the σ* transitions described above are dependent on the polarization of X-ray 

radiation used in samples that exhibit a preferential ordering. When the 𝑬⃗⃗  of the X-rays is oriented along 

the chain direction of the n-alkane, the C-C transition at 293 eV is the most pronounced feature of the 

spectrum. Conversely, when the 𝑬⃗⃗  of the X-rays is in line with the C-H transition, the peak at 288 eV will 

be most pronounced. The change in the intensities of these two peaks with the changing of polarization 

angle is clearly seen in Figure 1-7. The relationship between these peak intensities and the polarization 

angle allows the direction of carbon chains on an oriented sample to be determined.  

A comparison of two C36 spectra recorded with polarized X-rays of two different orientations is 

given in Figure 1-21. The change in intensities of the C-H bands (287.5 eV) and the C-C bands (293 eV) 

provide information about the orientation of the alkane chains. This intensity change of the spectral 

features indicates that the carbon chains are oriented parallel to the surface, with their carbon backbone in 

plane with the substrate
34

. 

 

Figure 1-21: Spectra of a C36 on graphene sample recorded with vertical and horizontal polarizations. 

Figure modified from Masnadi et al.
34

 with permission. 
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When NEXAFS spectra of oriented samples are collected with a technique such as STXM or 

PEEM, information about the orientation of specific domains can also be extracted. Figure 1-22 shows a 

STXM image of several different oriented bar structures (a) recorded at 288.2 eV of a sample of C36 

deposited on graphene. The spectra correspond to the dark area labeled 1 (b) and the dark vertical bars (c). 

The spectrum of area 1 (b) indicates an n-alkane film where the carbon chains are oriented normal to the 

graphene surface. The spectrum shows an absorption maximum at 288 eV for both polarizations, 

indicating that the polarization is aligned along the C-H transition dipole moment for both spectra. The 

spectra for the vertical bars (c) show a variation in the intensity of the C-H and C-C bands however, 

indicating that these areas feature the alkane chains oriented parallel to the substrate surface. The 

continuum region of the spectrum for the parallel bar regions show a larger optical density than the 

normal oriented regions (approximately 0.4 vs 0.2, respectively) indication that the bar regions of the 

sample are thicker. These result show a mixture of parallel domains oriented normal to the surface, and n-

alkane molecules in the islands orientated in the substrate plane
34

. 

 

Figure 1-22: STXM image of C36 recorded at 288.2eV (a). The corresponding spectra of the area labelled 

1 (b) and the dark vertical bars circled with dashed lines (c) are shown below. Figure reprinted from 

Masnadi et al.
34

 with permission. 
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 As shown above, NEXAFS is a powerful technique in determining the orientation of thin n-

alkane films. When paired with a technique that offers spatial resolution, information about the 

orientation of specific areas of a film can be obtained. By utilizing ex situ PEEM, the intermediate stages 

of film growth can be observed while obtaining elemental and orientation information from specific 

domains of a film. The implementation and practical considerations for this technique will be described in 

section 2. 

1.4.4 Unresolved Questions 

The previous studies discussed have given important insight into the mechanisms of growth on n-

alkanes on HOPG (0001), particularly for early stages of growth and for thicker films. The epitaxial 

growth on n-alkanes on HOPG (0001) is an incredibly complex process however, and many factors 

influence the growth of n-alkane thin films such as substrate, temperature, film thickness, deposition rate, 

surface type, and the symmetry of the substrate. As more of these kinetic and thermodynamic parameters 

are studied, more questions are sure to arise. Of particular interest is the mid stages of growth, where 

interactions with the substrate become weaker and morphologies of the deposited n-alkanes begin to 

change. 

Previous research
31, 34

 has suggested a Stranski-Krastanov growth mode for the epitaxial growth 

of n-alkanes on graphite (see Figure 1-19(b)), where the initial stages of growth cover the entire substrate 

surface with n-alkane, followed by island growth after one or more monolayers are deposited (see Figure 

1-11). It is important to understand the conditions where this change in growth mode occurs in order to be 

able to engineer films of a controlled morphology. This project will attempt to address the question of 

intermediate growth conditions and what the effect is on the morphologies of n-alkane films. 

1.5 Research Objectives and Approach 

The object of the project is to study the intermediate stages of n-alkane growth on highly ordered 

graphite. An in situ approach, where the film is observed while it grows, is ideal for this research, and has 
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been used in previous studies to observe the growth of n-alkane thin films
16

. This is not practical in this 

case however, due to the sensitivity of the materials being observed and the limitations of the instrument 

being used. It is impractical to evaporate n-alkanes in the PEEM main chamber because the n-alkane will 

adsorb to the optical components, contaminating the microscope as discussed below. To address this, an 

ex situ approach will be developed and utilised which has many of the advantages of an in situ technique, 

but avoids the problem of contamination of the PEEM.  

The PEEM technique has been used with great success as an in situ approach to absorption 

studies such as metal catalysis of gasses
25, 38

. The majority of these studies are on ideal systems however, 

such as the absorption of gasses, where contamination of internal components and vacuum degradation 

are not an issue. Alkanes present a particular difficulty where advantageous build up or the evaporated 

compound will quickly spoil the cleanliness of the ultra-high vacuum environment of the instrument. 

Removing this contamination is costly and time consuming, and even a high temperature bake out of the 

instrument may not be able to remove the contamination, rendering an in situ study of alkanes with 

PEEM impractical. 

 In order for the ex situ method to be utilized, a custom evaporator must be built and attached 

directly to the PEEM (section 2.2). To prepare n-alkane films, the evaporator must be able to sublime 

small amounts of powdered n-alkane onto a substrate that has been heated to a stable temperature. This 

requires a stable method of heating the sample (section 2.3.2), as well as a method to monitor the rate of 

n-alkane absorption to the sample surface (section 2.3.4). 

 To study the early to mid-stage growth of n-alkanes on highly ordered graphite, a method needs 

to be developed that addresses many of the challenges that are inherent to n-alkanes and their growth on 

graphite. The largest of these challenges relate to the sensitivity of these materials to damage from high 

energy light, as well as the quality of the grown films. This work will attempt to develop methods to study 
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the early to mid-stage growth of n-alkanes on HOPG by minimizes sample damage from high energy light 

that allows these films to be studied while they grow. 
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Chapter 2 – Experimental Methods 

The ideal method to study the early to mid-stage growth of alkanes on graphite would be to 

observe the growth of the film while it is happening, called an in situ measurement. This method is 

unsuitable for use in the PEEM however as the alkane would coat the interior of the microscope main 

chamber during sublimation, leading to degradation of the UHV environment and contamination of the 

optical elements of the microscope. In order to avoid these issues, an ex situ process has been developed. 

The ex situ method involves depositing the sample in a preparation chamber attached adjacent to the 

PEEM main chamber and transferring it to the PEEM without exposing the sample to the atmosphere. 

This method allows samples to be prepared on site, without exposing them to ambient pressures before 

analysis. While this method does not allow samples to be studied during growth, it enables the 

opportunity for successive depositions without compromising the cleanliness of the PEEM optics or the 

integrity of the of the UHV environment of the microscope main chamber.  

2.1 Constraints 

This ex situ approach to deposition of n-alkanes presents a design challenge, as suitable space at 

the Canadian Photoelectron Emission Research Spectromicroscope (CaPeRS) PEEM end station of the 

Spectromicroscopy SM beamline is limited due to the large amount of beamline optics, as well as UHV 

pumps, electronics, and power sources. As a result, free space is scarce and any additions to the end 

station need to be made as compact as possible in order to fit in the limited space available. In order to 

accurately model the additions to the CaPeRS PEEM to make sure space requirements are adhered to, 

extensive use of the 3D drafting software AutoCAD
TM

 was used. The program allows 3D models to be 

made that accurately represent the real structures. Structures are modelled in pieces with accurate 
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dimensions and put together to form the proposed structure. In this way, designs can be drafted and 

measured to determine suitability for the space requirements, as well as aid in manufacturing. 

 

Figure 2-1: Schematic of the PEEM microscope sample loading area at the SM beamline. The dashed 

circle indicates the area where the ex situ evaporator must be placed. ACAD file credit to Elmitec GmbH 

and the Canadian Light Source. 

 Figure 2-1 shows an overhead view of the CaPeRS sample loading area at the SM beamline. The 

area where the ex situ evaporator was installed and the transfer arm is circled with a dashed line. The area 

sits between a mirror (M4 PEEM) (left) and the microscope main chamber (bottom right). The total 

length of the transfer arm and the load lock chamber, which must be shorter than the distance between the 

main chamber and the M4 PEEM mirror, is a distance of 520 mm. 

 The current load lock chamber for the microscope is a custom manufactured five-way cross with 

two ports offset at angles greater than 90 degrees to facilitate sample loading and observation. The ex situ 

project requires a six sided chamber with ports angled 90 degrees from each other however, so using the 
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current chamber is impossible. The six ports are required for mounting the quartz crystal balance (QCB) 

(see section 2.3) (above), evaporator and pump (below), transfer arm, heating stage, PEEM main 

chamber, and observation window (sides). These must be angled at 90 degrees relative to each other to 

facilitate the advancement and retraction of the transfer arm and heating stage, as well as maintaining the 

evaporator and QCB directly below and above the sample, respectively. Using a standard six-way cross is 

not possible, as the total length of the cross is 125 mm. When paired with the transfer arm, gives a total 

length of 525 mm, which is larger than the space available, as shown in Figure 2-1. However, six-sided 

cubes are available with tapped holes for mounting CF flanges with a total length of only 70 mm. One of 

these cubes, with a rotatable close coupler mounted, will be used for the main chamber of the ex situ 

evaporator. 

2.2 Evaporator Preparation Chamber 

In order to maximize the usability of the available space, the main chamber of the evaporator is 

designed around a commercially available cube.  The cube is a single piece stainless steel construction 

with areas to mate with Conflat™ 
*
 (denoted CF herein) flanges on all six sides and tapped bolt holes. 

This gives the smallest available way to mount 6 flanges to a central chamber, without resorting to 

custom-manufactured products. The main chamber of the microscope also has tapped bolt holes for 

mounting a CF flange. These bolt holes are rotated approximately 40 degrees from center, which 

necessitates a rotatable coupling flange able to utilise the tapped holes. The part used is a specialty flange 

obtained from Kimball physics, as shown in Figure 2-2. This piece allows two flanges with tapped bolt 

holes to be mated with minimal length added, only 35.5 mm in this case. 

                                                           
*
 ConFlat is a trademark of Agilent Technologies 
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Figure 2-2: Models of a standard 6-way cross (left) and a 6-way cube with a rotatable lose coupler 

attached (right). 

While the standard 6-way cross allows rotatable mounting without additional hardware, the total 

length of the 6-way cross is 125 mm. While this is only 19.5 mm shorter than the cube with rotatable 

close coupler attached, it is nevertheless a significant enough amount to make the 6-way cross unusable in 

the confines of the available space. 

Figure 2-3 shows a three-dimensional CAD schematic of the design for the ex situ evaporator. The 

heating stage, QCB, and evaporator can be seen mounted to the evaporator main chamber in their 

respective positions. The rotatable close couple is attached to the CF flange of the cube in the direction 

positive z-axis, while the transfer arm will be mounted to the flange at the negative z-axis position. An 

image of the functioning evaporator installed on the laboratory bell jar is shown in Figure 2-4. This same 

setup is used at the SM beamline with the exception of the PEEM main chamber at the position that the 

bell jar is in. 
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Figure 2-3: Schematic of the design for the ex situ evaporator. The transfer arm and microscope main 

chamber are attached to the evaporator chamber on the positive and negative y-axis, respectively. 

 

Figure 2-4: Image of the ex situ evaporator connected to the bell jar in the on campus lab. The laboratory 

bell jar was used for preliminary testing. Axes are the same as in Figure 2-3. 
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In order for the sample to be transferred from the evaporator chamber to the PEEM main 

chamber, the evaporator chamber needs to have vacuum conditions near to the UHV conditions of the 

main chamber. In addition, the pumping system must be quick and versatile, capable of quickly pumping 

form atmospheric conditions when the sample is first inserted. To accomplish this, a small turbomolecular 

pump is used with a mechanical roughing pump. The turbomolecular pump is mounted directly below the 

evaporator. The turbomolecular pump is capable of reducing the pressure of the evaporator chamber to 

less than 10
-7 

Torr, which allows the main chamber to be opened and the sample transferred. The vacuum 

conditions are monitored by two gauges: a Pirani gauge for low vacuum (down to 10
-3

 Torr), and an ion 

gauge for high vacuum down to 10
-10

 torr. In addition to the low vacuum pressure, the Pirani gauge allows 

for easy identification of leaks in the system. The ion gauge is used to monitor high vacuum conditions, 

as it cannot be used at pressures above 10
-3 

Torr.  

By using the design outlined in the previous figures, the ex situ evaporator can be made to fit in the 

confined space available at the CaPeRS PEEM end station. A large amount of design has been undertaken 

on the internals of the ex situ evaporator in order to conform to the restrictions of the above design. Below 

the design of the internal components of the ex situ evaporator will be discussed. 

2.3 Internal Components 

In order to grow films by the ex situ method, the custom evaporator needs to include several 

necessary functionalities, while adhering to strict space restrictions. The ex situ evaporator requires a 

sample heating stage to maintain the proper temperature of the substrate, a crucible that holds the alkane 

sample to be evaporated, and a QCB to monitor the rate of deposition. A custom short transfer arm tip 

will also be designed and manufactured to reduce the overall length of the transfer arm. The design, 

manufacture, and implementation of these components will be discussed below. 
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2.3.1 Transfer Arm Tip 

The area with the greatest space restriction is along the axis of the sample transfer arm, and the 

transfer arm of the CaPeRS PEEM had been previously designed to a shorter length than a standard 

transfer arm as ordered from a manufacturer. The transfer arm tip is attached to the in-vacuum end of the 

transfer arm and allows the sample to be transferred from the load lock into the PEEM main chamber 

without having to vent the microscope main chamber. The transfer arm tip utilized a spring and pin 

mechanism to secure the sample holder in place until it is transferred to the main chamber. The tip that 

was already mounted to the transfer arm was not designed to minimize the overall length. As a result, the 

current transfer arm tip cannot be used without interfering with the motion of the ex situ evaporator 

heating stage. In order to use the current transfer arm and avoid have a completely new transfer arm 

designed and built, a new tip to hold the sample holder was designed and fabricated. The new design, 

seen in Figure 2-5 and Figure 2-6,  has a total overall length of 19.5 mm. This is 23.5 mm shorter than the 

current transfer arm tip.  The new tip was manufactured from copper and stainless steel by the Physics 

Machine Shop on the University of Saskatchewan campus. The shorter transfer arm tip is necessitated by 

the smaller overall length of the 6-way cube, compared to the 6-way cross. 

 

Figure 2-5: Schematic of the redesigned transfer arm tip (top) and the original transfer arm tip (bottom). 

The total lengths for the redesigned and original tips are 19.5 mm and 43 mm, respectively. 
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Figure 2-6: Redesigned transfer arm tip (left) and original tip (right). They are seen attached to the 

transfer arm. 

The redesigned tip is attached to the transfer arm with a set screw that turns into a recess in the 

bottom of the tip. The sample holder is secured to the transfer arm by a pin that rotates into the bottom of 

the sample holder. A spring ensures that the sample holder remains secured during use. The sample holder 

can only be removed by applying pressure and rotating the transfer arm. The newly designed transfer arm 

tip allows the sample holder to be manipulated in the same manner as before, but with a reduced length 

profile. This smaller length is required for transferring samples to the heating stage described below. 

2.3.2 Heating Stage 

In order to control the morphologies of the deposited alkanes, it is necessary to control the 

temperature of the substrate during deposition. The CaPeRS sample holder is equipped with a tungsten 

heating filament that allows the sample to be heated up to 600 ⁰C with resistive heating, and up to 1500 

⁰C with electron bombardment. The sample holder also has a C type (W/Re 95%/5% – W/Re 74%/26%, 

by weight) thermocouple in order measure the sample temperature. The heating filament and 

thermocouple of the sample holder is designed to function in the vacuum of the PEEM main chamber. In 

order to control the temperature during sample preparation, a heating stage needed to be created that 

would fit in the confines of the 38 mm evaporator chamber diameter while utilizing the heating filament 

and thermocouple of the CaPeRS sample holder. The heating stage was manufactured from copper 

because copper is easily machineable and has favourable thermal properties. Machining work was 

performed at the Physics Machine Shop. 
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Figure 2-7: (left) 3D CAD drawing of the sample heating stage that has been designed. The main piece is 

made from machineable copper. The yellow plate is made from machineable ceramic and insulates the 

heater and thermocouple connections from the frame. This piece was manufactured by the Physics 

Machine Shop (right). The finished heating stage, connected to the linear manipulator. 

 The heating stage is shown in Figure 2-7. The stage features four stainless steel contact pins, 

insulated with ceramics, attached to wires for the sample heating filament and the thermocouple. These 

are attached to feedthroughs on a stainless steel three-way cross. The heating stage is mounted on a linear 

manipulator to allow it to be advanced and retracted from the evaporator. The sample holder is mounted 

so that the surface of the sample points downward, towards the evaporator. Note the mounting area for the 

sample holder is cut out on the front side to allow the heating stage to be retracted when the sample is on 

the transfer arm. 

 The heating stage allows the desired temperature of the sample to be maintained, as is required 

for the epitaxial growth of n-alkanes using PVD. The design and function of the evaporator be discussed 

below. 

2.3.3 Evaporator 

The evaporator consists of a ceramic crucible to hold the alkane, with a tungsten wire coiled 

around it to create a filament that provides heat when current is applied. The crucible is held in place by 

the tension of the tungsten wire with no additional support needed. The filament is connected to 

feedthroughs and a power source is connected to provide current, typically around 1.5 amps, 1.0 volts for 
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C36. While this filament is not able to attain the high temperatures needed for the evaporation of metals, 

it allows temperatures suitable to evaporate organics. Both the heating stage and the evaporator are 

controlled by a dual output power supple capable of 0-30 DC volts and up to 5 A. 

 During initial evaporations, it proved difficult to control the rate of evaporation effectively, as 

temperature of the evaporator fluctuated considerably as the mass of the n-alkane was reduced through 

sublimation. To solve this, a platinum resistance temperature detector (RTD) was attached to the ceramic 

crucible with low vapour pressure epoxy. The resistance of the RTD will increase linearly as temperature 

increases, and by monitoring the resistance of the RTD the temperature of the crucible can be kept 

constant. The relationship between resistance and temperature for this particular RTD is given by the 

equation below: 

 𝑅(𝛺) = 3.85 ∗ 𝑇(0𝐶) + 1000                          ( 2.1 ) 

where R is the resistance and T is the temperature. Using a multi-meter to monitor the resistance of the 

RTD allowed quick and accurate measurement of the crucible temperature, allowing the evaporation rate 

to be kept constant.  

2.3.4 Quartz Crystal Balance 

The rate of deposition and final thickness of the adsorbed material is measured with the use of a 

quartz crystal balance (QCB). QCB thickness monitors operate on the principle of the piezoelectric effect, 

where a crystal experiences a deformation when a voltage is applied. When an alternating voltage is 

applied to a quartz crystal, a common type of piezoelectric crystal, a standing wave is generated at a 

resonant frequency. This resonant oscillation has a very narrow resonance that is highly stable, allowing 

the frequency to be determined with high accuracy. 

As material is adsorbed, the oscillation of the crystal is dampened. This dampening is directly 

proportional to the amount of adsorbed material, and if the density of the adsorbate is known, the total 

thickness and deposition rate can be calculated with high accuracy. 
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 The evaporation rate was measured with a quartz crystal micro balance. The QCB was 

mechanically attached to a CF flange with a single feedthrough for the QCB. This was attached to the top 

of the cube to measure the rate of deposition. The QCB was controlled with a Sigma SQM 160 

rate/thickness controller, which allows accuracy in rate determination to 0.1 Å/s and thickness of 1 Å. 

Since the QCB is obstructed by the sample during the deposition, the final thickness of the prepared film 

is calculated by multiplying the rate of deposition by the time taken. The rate is measured before and after 

the deposition, and the temperature of the ceramic crucible is kept constant during the preparation to 

ensure that the rate is constant. 

2.4 Deposition Method 

Due to space constraints and the geometry of the ex situ evaporator, the deposition rate cannot be 

monitored simultaneously with deposition, as the QCB is blocked when the sample is in the evaporation 

chamber. To accurately determine the rate and thickness of the sample, the rate is monitored and adjusted 

while the sample is retracted. When a stable deposition rate is achieved, the sample is advanced into the 

chamber for a set amount of time to achieve the desired thickness. After deposition, the sample can then 

be retracted once more and the rate measured to ensure that it remained constant for the entire deposition. 

The deposition rate that is measured at the QCB will be less than the rate at the surface of the 

sample. This is because the sample is closer to the evaporator than the QCB is. The surface of the sample 

is 97.5 mm from the evaporator crucible, while the surface of the QCB crystal is a distance of 117.5 mm 

from the crucible. This means that the deposition rate at the sample will be approximately 69% larger than 

at the QCB.  

2.5 Materials and Methods 

There are many different n-alkanes that can be used to create ordered films by PVD based on their 

varying chain lengths
34

. There are different options for graphitic substrates that can be used to grow 

ordered thin n-alkane films as well. The n-alkanes used for this work were selected based on their vacuum 
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compatibility and the reproducibility of n-alkane morphologies created, while the graphitic substrate was 

selected for its ability to be characterized before deposition. The sections below detail what materials are 

used to create the samples, as well as the methods used to characterize the films and substrates, both 

before and after sample preparation. 

2.5.1 n-alkanes Studied 

The n-alkane chosen the majority of depositions was hexatriacontane (C36H74; C36). As the length 

of the n-alkane increases, the temperature required to sublime the n-alkane increases as well. In order to 

keep similar morphologies at these increasing chain lengths, a higher substrate temperature is needed for 

the vapours to deposit on in order to get similar morphologies
39

. C36 was chosen due to the moderate 

substrate temperature (approximately 46 ⁰C) needed to obtain a morphology with well-ordered domains 

(see Figure 1-19), as well as its relatively high vapour pressure when compared to other alkanes. It was 

also determined experimentally that C36 was the n-alkane that gave the most reproducible patterns, which 

was consistent with the literature
34

. 

2.5.2 Substrate 

There are several types of graphite that can be used to grow alkane films on, including highly 

ordered pyrolytic graphite (HOPG) and graphene grown by chemical vapour deposition
34

. As the 

substrate is carbon, the substrate can contribute to the NEXAFS spectrum that is measured. This is 

especially problematic for thin films, where there can be significant spectroscopic contribution from the 

substrate. The contribution to the spectrum from the graphite substrate can be minimized by using a 

sufficiently thin graphite layer as the substrate.  

For this research, Kish graphite applied to a silicon, or silicon dioxide substrate was chosen. Kish 

graphite is high-quality graphite flakes produced as a byproduct of steel making. Thin flakes of graphite 

on SiO2 was prepared by the mechanical cleavage method
40

. This yields a surface that is covered in 

graphite pieces of various sizes ranging from several layers down to one mono layer (graphene). The 
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adhesive residue from the tape is removed by washing on a 1:1:1 mixture of acetone:toluene:methanol for 

30 mins. The resulting clean, bare support surface provides an area with which to take a reference 

spectrum for normalization during analysis. To ensure minimal contribution to the spectrum from the 

underlying substrate, graphene or few layer graphene areas were measured.  

2.5.3 Support for Substrate 

The PEEM technique requires that samples be conductive. For this reason, p-doped silicon is used 

as a support for the graphite. The silicon support allows charge to be carried through the sample to 

neutralize the charged surfaces. Silicon and helps aid in the identification of thin graphite and graphene 

flakes on the surface. Large graphite flakes are visible to the unaided eye, and smaller flakes are easily 

observed with the use of optical microscopy. Thin graphite flakes that are ten layers thick or less are not 

able to be distinguished from their thick counterparts on pure silicon however, with optical or electron 

microscopes. For this reason, silicon with a 90 nm layer of oxide is used as the support for the substrate. 

Silicon wafers with a thin oxide layer allow easy identification of graphene by optical microscope with 

illumination with visible light. Graphite composed of ten layers or less appears darker in colour than 

thicker flakes when viewed under optical microscopes. The thin flakes are sufficiently transparent to 

visible light and add to the optical path of the light. This changes their interference color when compared 

to the bare SiO2 surface
41

.  

  

Figure 2-8: A comparison between similar graphite flakes on bare silicon (left, 50X objective) and on 

silicon dioxide (right, 50X objective). 
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As shown in Figure 2-8, it can be clearly seen that graphite has greater contrast with the substrate 

when on 90 nm silicon dioxide (right) compared to bare silicon (left). Different thicknesses of the 

graphene layers can be discerned by their relative contrast to the other layers, with thin layers appearing 

darker and thick layers lighter. These effects are not visible when on bare silicon. Optical microscopy will 

be used to characterize the substrate surface before thin film growth. 

The insulating oxide layer of the silicon dioxide support was thought to have presented a problem 

for use with the PEEM by allowing charge to build up in the sample. When the number or electrons 

entering the system is greater than the number leaving, a positive charge is built up on the surface of the 

insulator until an equilibrium is reached
17

. This phenomenon is called charging and leads to a range of 

problematic effects (see section 1.2). Charging causes abnormal contrast changes, image deformation and 

shifts in the image. Sudden releases of electrons will cause bright flashes on the screen, potentially 

causing damage to the multi-channel plate and tripping the high voltage interlock of the instrument (see 

section 1.2). It was experimentally determined that 90 nm oxide was suitable for use in the PEEM when 

the intensity of the X-ray beam is reduced (see section 3.3.3).  

2.5.4 Characterization Methods 

After graphite has been transferred to the silicon support and cleaned (see section 2.5.2), the 

substrate is viewed under an optical microscope to ensure that the surface is sufficiently covered with 

graphite. Optical microscopy can also be used to identify single layer graphene flakes and verify the 

cleanliness of the substrate. Optical microscopy can also be used to view deposited alkanes. Figure 2-9 

shows the patterns formed by C36 on graphene and graphite flakes when evaporated onto the substrate at 

41 °C. Patterns of small ordered bars cover the surface of the substrate. The patterns can be seen on 

several graphite pieces and show no variation with thickness of the graphite flakes. 
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Figure 2-9: Patterns of 70nm thick of C36 deposited on graphite and graphene flakes (25X objective). The 

patterns formed by the alkanes are identical when formed on graphite or graphene (circled in red). Sample 

prepared in on laboratory thermal evaporator jar. 

Before the sample is deposited, the bare substrate is viewed in the PEEM with UV illumination 

from the Hg arc lamp. The UV source is polychromatic and low intensity; NEXAFS spectra cannot be 

obtained with the Hg arc lamp. However, UV light provides better spatial resolution that X-rays. This 

arises from the lower energy of UV light creating photoelectrons with a narrower range of energies, 

leading to less chromatic aberration. The Hg arc lamp illuminates the entire sample, which allows for 

easier focusing and tilt adjustments of the sample. n-alkanes are sensitive to UV light and undergo 

photolysis under UV light. Since the UV source illuminates the entire n-alkane sample, it causes the entire 

surface to become damaged. Therefore, UV light is not useful for studying prepared films. UV light is 

used to focus and find acceptable graphite flakes to study on the substrate before the deposition. 

 Graphene is very difficult to identify under UV illumination however, so higher thickness flakes 

are used as land marks to find areas with graphene. Figure 2-10 shows a Si/SiO2 support with graphite 

and graphene areas adhered. The dark flake in the center of the image that is circled in red shows a 

graphene flake. It can be seen that graphene is easily identified in the optical microscope image, but very 
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difficult to see graphite thinner than 10 layers under UV light in the PEEM (left). Final characterization of 

the sample is done with synchrotron light from 270 eV to 310 eV (right). The graphene area is clearly 

visible under X-ray illumination but cannot be distinguished from the thicker graphite flakes. A 

combination of optical microscopy and UV illumination in the PEEM allows suitable flakes to be 

identified before sample preparation.  

 

Figure 2-10: Sample surface before evaporation. The images show the sample illuminated with UV light 

in the PEEM (left, 200μm FOV), optical microscope (center, 50X objective), and 270 eV X-ray radiation 

(right, 50μm FOV). The same area is circled in each image. 

-The poor quality of the X-ray PEEM image (right) when compared to the UV PEEM image (left) 

should be noted. The blurry image and poor focus are due in part to greater chromatic aberration from the 

X-ray electrons, as well to charging from the SiO2 sample support. These issues will be addressed in the 

following chapter by reducing the intensity of the X-ray beam, which is at full power in the figure above.
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Chapter 3 – Results 

3.1 Alkane growth on HOPG 

The molecular orientation of alkanes deposited on graphite is highly dependent on the deposition 

conditions, such as substrate temperature and deposition rate. For this project, the laboratory thermal 

evaporator in a high vacuum bell jar was first used to study the proper deposition conditions and to make 

samples to test the viability of PEEM measurements. Optical microscopy is also used to study samples 

before PEEM measurements are taken to characterize the growth patterns. Herein will be presented the 

characterization of samples prepared with the laboratory thermal evaporator and samples prepared with 

the ex situ evaporator. Comparisons will also be made between the two methods of sample preparation. 

3.1.1 Laboratory Results and Characterization 

Previous Urquhart group studies
7, 34, 39, 42

 have developed well-defined procedures to deposit n-

alkanes on HOPG substrates. Graphite and graphene flakes adhered to a silicon support had not been 

extensively studied as a substrate however, and initial work was focused on using the on laboratory 

thermal evaporator to develop a procedure to consistently create the desired morphologies of n-alkanes on 

the graphite substrate. The properties of the substrate, such as heat capacity and thermal conductivity, will 

vary between differing thicknesses of graphite. This will lead to different morphologies being observed, 

even when the deposition conditions, such as substrate temperature and deposition rate, are identical 
7, 34

. 

It is therefore important to develop a procedure that gives reproducible results for the substrate being 

studied. Figure 3-1 shows a C36 film deposited on graphite flakes supported on Si/SiO2 under an optical 

microscope (left) and in the PEEM (right). The deposition conditions that gave these and similar results 

were a substrate temperature of 46⁰C, while depositing at a rate of 0.5-1.0Å/second. The patterns of bars 

were not as wide and pronounced as there are on HOPG squares, as shown in section 1.4.2. The variance 
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in morphologies is related to the differences in substrate properties; while the solid HOPG substrate is 

uniform, graphite on silicon has discrete domains with varying thickness. These differences may cause 

slightly different morphologies to be observed, even when the deposition conditions are identical. The 

small domains showed a six-fold symmetry and were able to be reliably produced. 

 

Figure 3-1: C36 on graphite (left, 100X objective), prepared with the laboratory thermal evaporator. The 

temperature of the substrate was maintained at 46⁰C throughout the deposition. The final thickness of the 

sample is 50 nm. PEEM image of C36 on graphite (right, 50µm FOV). Sample was prepared with the 

laboratory thermal evaporator. 

 Samples created with the laboratory thermal evaporator were also studied using PEEM (Figure 

3-1 right) to examine the effects of radiation damage, as well as to determine the optimal experimental 

parameters to collect NEXAFS spectra. Samples prepared on campus for use at the CLS were sealed in a 

plastic bag filled with nitrogen gas to avoid air exposure during transportation to the SM beamline. 

Prepared samples were also stored in darkness during transportation to avoid UV induced photolysis.  

3.1.2 Ex situ Evaporator Results and Characterization 

The ex situ evaporator functions very similarly to the laboratory thermal evaporator, with the 

exception that the sample is not exposed to air when transferring to the microscope main chamber. Since 

the deposition rate cannot be monitored simultaneous with the sample preparation, care was taken to 
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ensure that the crucible was kept at a constant temperature to maintain a steady rate of alkane sublimation. 

For more detail on the evaporator, see section 2.3.3.  

Before samples are prepared in the ex situ evaporator, the bare substrate is first observed in the 

PEEM. This allows the sample to be focussed and its tilt adjusted before there is alkane deposited on it. 

Adjustment of the sample tilt in the PEEM is required in order to achieve proper focus of the sample, and 

must be adjusted separately for each individual sample. If the sample is not perpendicular to the electron 

axis of the microscope the images will be distorted. Adjusting the tilt prior to alkane deposition also 

allows the entire substrate surface to be illuminated with UV light, greatly simplifying the tilt adjustment 

process when compared to the X-ray beam, which only illuminates a small area of the sample surface. 

The surface of the substrate may also be observed before alkane deposition to find and mark the location 

of suitable graphite flakes that can be returned to after the alkane deposition is completed. A spectrum of 

the surface of the clean Si/SiO2 support can also be acquired here for use in normalization. Figure 3-2 

shows a PEEM image of a sample before alkane is deposited. An area with a concentration of large 

graphite flakes is shown which will be returned to after sample preparation is complete. Completing these 

steps before the n-alkane is deposited on the sample ensures that the sample spends the minimum amount 

of time in the X-ray beam and will be less damaged by the X-rays compared to a sample where these 

steps have not been taken. 
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Figure 3-2: PEEM image (100 µm FOV) of the graphite substrate before sample deposition. 

Figure 3-3 (left) shows an optical microscope image of a C36 film that was grown in the ex situ 

evaporator. While the alkane domains are not as clear as the ones produced in the laboratory thermal 

evaporator, thin bars with a six-fold symmetry are observed. Optical microscopy allows the samples 

prepared in the ex situ evaporator to be compared with the ones created with the laboratory thermal 

evaporator. Figure 3-3 (right) shows a PEEM image of a C36 sample prepared with the ex situ evaporator. 

Many small alkane domains are visible across the surface of the graphite flake. These domains correspond 

well to the domains produced from the laboratory evaporator.  
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Figure 3-3: Optical image of a C36 film grown in the ex situ evaporator (left, 100X objective). Small 

domains with six-fold symmetry are present on the graphite and graphene flakes. The areas where the 

small alkane domains are most visible are circled in both images. The X-ray PEEM image at 285 eV 

(right, 75μm FOV) of a sample created in the ex situ evaporator. Many small domains are seen on the 

surface of the graphite flake. 

Because the time the sample is under the beam needed to be minimized and the intensity of the X-

ray beam needed to be reduced to avoid radiation damage (see section 3.3.1), spectra needed to be 

collected and averaged from multiple domains in order to obtain data with an acceptable signal-to-noise 

ratio. Collection of spectra from small domains was also made challenging due the non-uniformity of the 

X-ray beam (see section 3.3.2). The large number of small domains provides many opportunities to 

collect spectra from different orientations (see section 3.3.4). 

As the results described here show, both the ex situ evaporator and the laboratory thermal 

evaporator gives similar results for the patterns on alkane observed on graphite flakes. The images 

collected with the PEEM show alkane domains similar to the ones seen in the optical microscope images, 

and the films grown in the ex situ evaporator resemble those produced with the laboratory thermal 

evaporator. Individual spectra can be extracted from these domains where they can be compared to 

spectra from alkane domains of different orientations. These results are presented in section 3.3. 
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3.2 NEXAFS Normalization 

NEXAFS spectra are routinely normalized. The normalization process regularizes variations in the 

light source that arise from the decay of the electrons in the storage ring, contamination of the beamline 

optics, and other source fluctuations such as changing position of the electron bunches in the storage ring. 

Normalization can also help to reduce variations that can arise due to amplifier and detector settings. 

Normalized data can then be compared even when the details of the experiment are changed. The basic 

procedure to normalize a total electron yield spectrum is to take the ratio of the measured spectrum, 

termed I, with the incident photon flux, termed I0. This normalization equation can be written as: 

𝐼 𝐼0⁄                  ( 3.1 ) 

At a synchrotron beamline, the intensity for the C 1s edge region of the X-ray beam varies with the 

energy of the photons, as seen in Figure 3-4. As can be seen in the figure, there are large variation in the 

intensity of the X-rays that reach the sample as a function of energy. When the sample spectrum is 

measured, these variations in the X-ray intensity will also be included in the measured spectrum. The 

normalization process is particularly important when studying carbon 1s spectra as there are large 

variations in the intensity of incident X-rays over the NEXAFS energy range. The most prominent of 

these variations occur at 284 and 291 eV and are referred to as the carbon dip. The carbon dip is clearly 

visible in the spectrum shown in Figure 3-4, and can account for an X-ray intensity drop of over 90%. 

These carbon dips are the result of carbon impurities deposited on the optical elements of the beamline. 

Care must be taken to properly normalize spectra as small variations in the in the spectra used to 

normalize data can result is large changes to the final spectra, particularly at the low intensity regions of 

the carbon dip. In the following sections, challenges associated with normalization of C 1s spectra will be 

discussed, and techniques to address these difficulties will be explored. 
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Figure 3-4: Intensity of X-ray beam as a function of photon energy over the carbon 1s edge at the PEEM 

endstation of the SM beamline. 

 

3.2.1 Challenges for Normalization of n-alkane Films 

The most crucial step when normalizing a NEXAFS spectrum is to obtain a quality spectrum of 

the incident photon flux (I0). The I0 can be obtained in several different ways, but all require a spectrum of 

a reference material that does not show any features over the energy range being used for the sample. 

Targets typically used for I0 measurements are a gold mesh, nickel mesh, or a silicon photodiode. There 

are several methods to collect the I0, however the best results are obtained when the I and I0 are obtained 

at the same time, ensuring that any variations in the light source are included in both spectra, and are 

removed by normalization. This is often accomplished by placing a metal mesh upstream of the sample to 

that will allow the majority of the X-rays to pass through while absorbing a fraction. The current 

produced in the metal from the absorption of X-rays can be monitored which is proportional to the 

amount of incident X-rays. These metals have a smooth response of absorption with changing 
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illumination energy (with the exception of near the absorption edges). These well-known absorption 

characteristics allow them to be used over a large range of energies.  

Since PEEM is a spectromicroscopy technique the I0 can be recorded from a clean area of the 

substrate. This may only work if the sample can be made in such a way that there is an area of clean 

substrate in close proximity to the area of interest, and the absorption spectrum of the substrate has no 

spectral features in the desired energy range. This “internally” collected I0 will not have an energy shift 

relative to the I, which can occur when scans are taken sequentially. This reference area can be created by 

removing a section of the sample to expose the silicon substrate, by removing a portion of the sample 

with a razor blade for example. This is the optimal scenario for normalization, as both the I and I0 are 

obtained at the same time and place in the beamline.   

While the best I0 measurements are taken at the same time as the I, this may not be possible in all 

cases. The carbon absorption on optics will also occur on metal meshes used to monitor photocurrents, 

and a fresh coat of metal must be regularly deposited to keep the mesh surface clean. The I0 may also not 

be able to be collected from a clean portion of the substrate, due to the small beam spot size, or the 

inability to produce a sample in such a way. This leaves the I0 to be collected with a separate clean 

reference sample, measured either before or after the I spectrum is collected. This may be from a clean 

sample in the main chamber, such as a gold foil, or from a removable photodiode placed upstream from 

the main chamber for this specific purpose. 

 A major drawback to obtaining the I0 at a separate time than the I is that the energy scale can 

change between scans. At different times, the energy scale of the monochromater may change by small 

amount. Movements of mechanical components of the beamline, positions of optical elements, position of 

the electron beam in the storage ring of the synchrotron, and heat load on optical elements can all have an 

effect on the energy scale
43

. These differences between the measured and reference spectra can lead to 

normalization artefacts and must be accounted for during normalization. 
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Figure 3-5: Two photo diode scans obtained on different days. The left spectrum shows the entire energy 

range while the right spectra show the detail of the carbon dip region. 

Figure 3-5 shows two photodiode spectra that were obtained on different days. Differences 

between the two overlaid spectra are clearly visible, in particular in the details of the carbon dip region 

where there is a visible shift in the energy where the dips are located. A change in the structure of the high 

energy region is also visible in the spectra. If these factors are not properly corrected, significant artefacts 

will be present in the normalized spectrum. Artefacts are errors the represented data that have been 

introduced by the technique. Normalization artefacts may be introduced to the spectrum as a result of 

carbon contamination of the I0 spectrum, dark noise, offset currents, or photon energy measurement due 

to monochromator fluctuations. These factors must be addressed in order to obtain quality spectra. 
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Figure 3-6: Normalized spectra using a simultaneously obtained I0 (left) and a separately obtained 

photodiode I0 (right). 

Figure 3-6 shows two spectra that were normalized by a simultaneously collected I0 collected 

from a clean area of the sample substrate (left) and from a previously obtained photodiode I0 (right). The 

I0 spectra used for normalization are the same ones shown in Figure 3-5.  The spectrum normalized with 

the photodiode I0 (right) has several peaks not seen in the spectrum normalized with the simultaneously 

collected I0 (left), as well as a large reduction in the peak at 285 eV. There are also noticeable changes to 

the extended structure of the spectrum. These peaks are not features of the spectrum, but are artefacts 

introduced from improper normalization. With proper data handling, the presence of normalization 

artefacts can be controlled and allow I0 obtained from spectra obtained from different times to be used for 

normalization. 

3.2.2 Normalization Solutions and Procedures 

The basic normalization procedure requires the sample spectrum to be divided by the reference 

spectrum (I/I0). In reality it is not always as simple as this and there are several steps that need to be taken 

before this is able to be completed. In this section, a normalization example will be given with a 

polystyrene sample where spin casting was used to deposit the sample on a silicon substrate. Figure 3-7 
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shows the polystyrene sample and the corresponding spectra. The silicon substrate (bright area) has been 

exposed by scratching the polystyrene away with a razor blade to reveal the clean substrate. This 

produces an internal normalization, where the I and I0 spectra are recorded simultaneously on the same 

surface. 

 

Figure 3-7: Image of 80 nm thick polystyrene film on silicon (top, 50 µm FOV) and the corresponding 

spectra from each area (bottom). The lower I spectrum is taken from a polystyrene area, while the upper I0 

spectrum is from the exposed silicon substrate. 

The first step in the normalization procedure is to remove the dark noise from both the I and I0 

spectrum. The I and I0 measurements do not only contain the desired information, but also contain dark 

noise. To obtain a measurement of the dark noise, the beamline shutter is closed for the first data points of 

each measurement in order to measure the dark noise of the spectrum. This dark noise will be removed 

from the spectra as a constant.  
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Figure 3-8 shows two spectra where the dark noise has not been removed (left) and where it has 

been removed. The two spectra are identical except for the beginning of the spectrum where there is no 

signal. The whole spectrum on the right has been shifted downwards to ensure that the beginning of the 

spectrum where there is no signal is at a value of 0. Dark noise is removed in the same manner for the I0 

spectra. Removing the dark noise from both the I and I0 spectra ensures that artefacts are not introduced 

from the dark noise during normalization. The normalized spectra are truncated to remove the portion 

with zero signal. 

0

200

400

600

800

1000

270 280 290 300 310

0

200

400

600

800

1000C
o

u
n
ts

Energy (eV)

 

Figure 3-8: Measured spectrum (I) where the shutter is closed at the beginning to measure the dark noise. 

The left spectrum does not have the dark noise removed, while the right spectrum does. The value for the 

dark noise is 100.25 

The dark noise is a background signal that can arise from multiple sources, such as electronic 

noise from the CCD camera, interference from electronics, from the MCP, among others. The dark noise 

does not create significant difficulties in situations where the measurements have intensities march larger 

than the level of the dark noise. The dark noise is significant for this experiment however as the X-ray 

beam has fairly low intensity in the energy range near the carbon dip and significant artefacts will be 

introduced to the normalized spectrum if the dark noise is not removed from both the I and I0 before 

normalization. The I and I0 that is measured contains the dark noise, as shown in the equation below: 
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𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐼 = 𝐼 + 𝑑𝑎𝑟𝑘 𝑛𝑜𝑖𝑠𝑒               ( 3.2 ) 

 If the dark noise is not removed from the I and I0, then the normalization equation becomes: 

𝐼

𝐼0
=

𝐼+𝑑𝑎𝑟𝑘 𝑛𝑜𝑖𝑠𝑒

𝐼0+𝑑𝑎𝑟𝑘 𝑛𝑜𝑖𝑠𝑒
                        ( 3.3 ) 

If the I and the I0 become small relative to the dark noise, then the normalized spectrum will become 

distorted. For normalization to be applied successfully, the dark needs to be removed and the spectrum 

normalized by the following equation: 

𝐼

𝐼0
=

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐼−𝑑𝑎𝑟𝑘 𝑛𝑜𝑖𝑠𝑒

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐼0−𝑑𝑎𝑟𝑘 𝑛𝑜𝑖𝑠𝑒
              ( 3.4 ) 

The upper spectrum in Figure 3-8 has a dark noise value of 100.25, while the counts at the 

minimum of the carbon dip at ~285 eV are 120.0, putting the signal from the sample at this energy to only 

19.75 average counts. The dark noise is very large relative to the signal, so large artefacts will be present 

in the normalized spectrum. Figure 3-9(a) shows a normalized spectrum of polystyrene where the dark 

noise has not been removed before normalization. The spectrum has several artefacts because of this 

including a peak before the main absorption edge, as well as erroneous peaks after the absorption edge. 

Figure 3-9(b) shows the normalized spectrum of the same polystyrene sample where the dark noise has 

been removed prior to normalization. While some artefacts still exist in the spectrum, notably a small 

shoulder peak in the pre-edge area denoted with an asterisk, the spectrum is much clearer. 
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Figure 3-9: (a) A normalized spectrum of 80 nm polystyrene on silicon substrate where the I0 has been 

taken from a clean area of the bare silicon substrate. Normalization artefacts are present both before 

(indicated with *) and after the peak at the carbon 1s absorption edge. (b) The normalized spectrum after 

the dark noise has been removed. 

The surface of the sample is uniformly covered for alkane sample, and unlike the polystyrene 

example shown previously, the sample preparation method for alkanes does not give the opportunity to 

remove a portion of the sample to expose the substrate. This means that the I0 spectra are not able to be 

obtained simultaneous to the spectra for the samples. This requires that the data from the I and I0 spectra 

be handled properly in order to be normalized without introducing artefact to the spectrum. For separately 

recorded reference spectra, it is important to account for any energy shifts that might have occurred, as 

described previously. If there is a shift in energy, the I0 is adjusted by shifting the energy scale of the 

entire spectrum to align with features present in both the I0 and the I spectrum. For the raw data, the sharp 

drop in the intensity of the X-rays before the carbon 1s absorption edge is aligned with both spectra 

before normalization.  

3.3 PEEM Results 

 There are several challenges relating to the X-ray absorption study of n-alkanes due to sensitivity 

to radiation. In addition, other challenges needed to be overcome in order to collect orientation specific 
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spectra of alkane domains include charging effects observed on the sample, as well as beam motion and 

structure observed in the beam. These negatively affect the quality of the spectra that are obtained, and 

strategies need to be formulated to ensure that useful data can be extracted from the spectra. The 

following section details these challenges and the steps taken to address them. 

3.3.1 Radiation Damage and Reduction Strategies 

A major obstacle to the study of n-alkanes using NEXAFS is degradation of the samples due to 

radiation. Alkanes have rich radiation chemistry due to efficient energy transfer. Products of radiation 

induced energy transfer in alkanes include H2 gas, alkyl radical production, and cross linking of molecular 

chains
44

. In order to ensure the sample is not significantly damaged and these products are not generated 

in high quantity, care must be taken to keep the radiation dose on the sample as low as possible. The 

effect of radiation on n-alkane films have been studied herein, and strategies have been applied to reduce 

the radiation damage incurred on the samples. 

Figure 3-10 shows a composite optical microscope image of the damage caused to the sample by 

the X-ray beam. This particular sample is C36 produced in the laboratory thermal evaporator. The sample 

was studied with large doses of radiation at several areas of the sample. The width of the beam can be 

clearly seen over the area of the sample that has been irradiated. After one area is studied, the sample is 

translated so that a different area is illuminated by the beam. The X-ray beam strikes the sample at a 

glancing angle, spreading out in the horizontal direction leading to streaks of visible radiation damage. 

Greater details of the effects of radiation can be seen in Figure 3-11. A graphite flake is seen here that has 

been partially irradiated. Loss of the alkane’s orientations can be clearly seen on the lower half of the 

flake that has been in the X-ray beam (circled areas). The upper region of the flake appears to still be of 

good quality however. 
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Figure 3-10: Composite optical microscope image (10X objective) of radiation damage on a C36 sample. 

Damage is small towards the ends of the beam 

 

Figure 3-11: Optical microscope image (100X objective) of a graphite flake with C36 deposited after 

irradiation. Areas with radiation damage are circled. 

Radiation damage is not only visible under optical microscopy, but can also be characterized by 

observing changes in the spectra. Figure 3-12 shows multiple spectra recorded with increasing time under 

the beam. As the time exposed to X-rays increases, the π* peak at 285 eV grows larger, while the σ* at 

287 eV becomes smaller. This is indicative of crosslinking between carbon chains forming, increasing the 
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unsaturation in the sample, and therefore the π* peak. Loss of mass is also evident as the intensity of the 

extended spectrum lowers with each additional measurement. The mass loss is from H2 formation as well 

as loss of carbon. 

282 284 286 288 290 292 294

400

600

800

1000

1200

1400

C
o

u
n
ts

Energy (eV)

 1st scan

 2nd scan

 3rd scan

 4th scan

Peak Heights

Scan Number 285 eV 287 eV

1st scan 465 1012

2nd scan 506 869

3rd scan 540 804

4th scan 563 773

 

Figure 3-12: A spectral comparison of an area of alkane of a graphite flake. The σ* peak at 287 eV grows 

smaller, while the π* peak at 285 eV grows larger as the sample is damaged by radiation. Vertical 

polarization. 

 Different approaches have been investigated to minimize the exposure to excessive radiation that 

could damage the sample. To avoid radiation damage, unnecessary exposure to the beam is kept to a 

minimum by shuttering the beam while the energy is changed during a scan, lowering the dwell time 

when taking data points, and reducing the overall intensity of the light hitting the sample. As seen from 

Figure 3-11, areas of the sample that have not been irradiated remain in good condition, and the sample 

can be translated to a fresh area for successive measurements. Spectra are also taken near the edge of the 

beam. It can be seen from Figure 3-10 that the area near the edge of the beam cause far less damage that 
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the center. The intensity at the edges is approximately 60% less than at the center. When these factors are 

combined, the damage to the sample from the X-ray beam can be minimized, and data of suitable quality 

can be obtained, such as the first scan in Figure 3-12. 

3.3.2 Beam Motion 

Another difficulty encountered was change in the beam position on the sample with changing 

energy. The monochromator and optical components of the beamline and introduce structure to the beam, 

and care must be taken to ensure that this does not affect the spectra that are obtained. Figure 3-13 shows 

a graphite flake with C36 deposited at two different illumination energies of one eV difference. As the 

monochromator changes position, the light and darks streaks present in the beam also move across the 

surface of the sample.  

 

Figure 3-13: A sample of C36 on graphite/Si02 (50µm FOV). Note the streaks in the beam, and how they 

appear at different positions on the sample at only 1 eV difference. 
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 The structure of the beam was found to be related to the slit settings of the beamline. When the 

slit openings are larger, the flux of the beamline increases, at the cost of reduced energy resolution. When 

the slit openings are small, the beam becomes dimmer while the energy resolution is increased. This is 

due to diffraction of the X-ray beam when the slit size is small. While low beam flux can hinder 

measurements of most samples, the reduction of the beam brightness as well as an increase in energy 

resolution are both advantageous to this experiment, so the slit sizes were reduced. After a certain point 

the dark and bright lines appear in the beam and make spectral measurements impossible when the beam 

position changes with the monochromator. The slit sizes were thus carefully optimized to reduce the beam 

flux while keeping the sample uniformly illuminated. 

3.3.3 Charging 

An additional problem encountered was charging of the poorly conductive sample. The charging 

effect causes positive charge to be built up on the sample surface, which will deflect electrons as they 

escape the sample (see section 1.2). This causes the sample to defocus; the image will appear blurred and 

larger than it was if there was no charging. Charging can also cause discharges from the sample when 

built up charge is released quickly. The sudden discharge of electrons can cause voltage interlocks to 

engage on the instrument, and can even damage the sensitive amplifier and detector of the PEEM. When 

there is a large amount of electrons in a dielectric material such as an insulator or vacuum, charge can 

build up in the material. This build up a charge will cause the electrons ejected from the sample to 

become deflected. These effects reduce the spatial resolution of the image. For these reasons, care must 

be taken to minimize the effects of charging when studying poorly conductive samples with PEEM in 

order to obtain accurate spectromicroscopy measurements.  
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Figure 3-14: A sample of C36 on graphite/SiO2 (50µm FOV). The graphite flake appears to be different 

sizes when X-rays at different energies are used to illuminate the sample. The X-ray energies that each 

image is measured at is indicated below. 

If care is not taken when studying n-alkanes with PEEM the effects of charging can easily be 

seen. Figure 3-14 shows a C36 sample that is illuminated at two different X-ray energies. When the X-

rays illuminating the sample are at 289 eV, the sample appeared to be smaller by about 17% when 

compared to the sample are 311 eV. The change in apparent size is caused by localized areas of positive 

charge build up, deflecting the trajectories of the emitted electrons and distorting the image.  

As shown in Figure 3-14, the image taken at 289 eV (left) appears sharper and more focussed 

than the image taken at 311 eV (right). The lower amount of image distortion means that there is less 

charging present during illumination at 289 eV due to the lower flux of the beam when compared to 

illumination at 311 eV. The magnitude of the X-ray intensity is shown in the spectrum at the bottom of 

Figure 3-14. In order to minimize the charging, the flux of the beam is kept low. Keeping the intensity of 
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the beam low complements the radiation reduction strategy as well. While imaging of thing n-alkane 

films can be performed with a SiO2 support if proper steps are taken, image quality will be reduced as a 

result. 

3.3.4 Quality of Data 

In order to keep the dosage of radiation to a minimum, the time the sample was in the X-ray beam 

had to be limited. This was accomplished by minimizing the time allotted for the software to measure data 

points (dwell time), as well as reducing the number of total data points. When combined with the reduced 

intensity of the beam, this creates noisy spectra. Care was taken to ensure that the method used provided 

spectra of sufficient quality, particularly over energy ranges where information about the orientation of 

carbon chains can be extracted. 
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Figure 3-15: Raw spectrum from a C36 sample. The illuminating X-rays are vertically polarized. 

Figure 3-15 shows a raw spectrum from a C36 sample. Before the sharp rise in absorption at 286 

eV, data points are measured at 1 eV increments. Few data points are measured here because little 

important information is obtained from this region.  From 286 eV to 289 eV data points are measured at 
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0.25 eV increments. The amount of data points measured here is increased as this is the region of the 

spectrum where the most details are. The increased number of data points are necessary to observe the 1s 

σ*C-H transition at approximately 288 eV. Data points are taken at 1 eV increments from 289 eV to 296 

eV. The reduced number of data points here minimizes the time the sample remains in the beam while 

still allowing the broad 1s σ*C-C transition to be observed at 293 eV. The time the sample spends in the 

beam is also limited by having a dwell time for each data point of 50ms and averaging two measurements 

of each point. While limiting the number of measurements and the time taken for each data point leave 

the spectrum appearing noisy with straight sections between point as opposed to flowing curves, this 

reduction in time spent under the beam allows the relevant information about the heights of the 1s σ*C-H  

and 1s σ*C-C peaks to be extracted while avoiding radiation damage. 

3.3.5 Spectra at Different Orientations 

NEXAFS and PEEM can be used to determine the orientation of an ordered sample with spatial 

resolution (see sections 1.1.2 and 1.4.3). Spectra have been taken from sample where light and dark 

domains are present. These spectra are then compared with vertical and horizontal polarizations to 

determine the orientation of the alkane chains.  

 Figure 3-16 show a PEEM image of a typical sample created with the ex situ evaporator. Light 

and dark domains are seen and spectra are gathered from many areas to obtain a representation of the light 

and dark domains. Six-fold symmetry is not observed in these samples and patterns correspond to a 

pseudo-rectangular morphology where there is weak interaction between the alkane and the graphite 

substrate (see section 1.4.2, Figure 1-19 e and f). The poor quality of the image should also be noted, as 

the image appears fuzzy and out of focus. Difficulties focusing the PEEM can be attributed to small 

changes to the position and tilt of the sample, which are hard to correct without excess radiation exposure. 

While all possible care was taken to ensure the sample returned to the same position when returned to the 

PEEM main chamber, small changes to the tilt or position are unavoidable and could affect the focus of 
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the image. Some blurriness in the images may also be cause by the gain of the MCP which had to be 

increased to compensate for the lowered intensity of the X-ray beam. 

 

Figure 3-16: Graphite flake showing light and dark alkane areas (75 μm FOV). Image was obtained at an 

energy of 286.35 eV. 

Figure 3-17 presents the NEXAFS spectra for the light and dark regions with vertical (a) and 

horizontal (b) polarizations. It can be seen from the spectra that there are no appreciable differences in the 

shape of the spectra over the energy range. The only difference between the spectra from the light and 

dark areas is a reduction in the number of counts of the dark spectrum evenly over the energy range. The 

dark areas are therefore assumed to be islands, as low areas of a PEEM sample appear brighter, whereas 

islands on the surface appear darker (see Figure 1-8a). 



74 

 

284 286 288 290 292 294

b

a  Light

Energy (eV)

 Dark

 

Figure 3-17: (a) Corresponding vertically polarized spectra of light and dark regions shown in Figure 

3-16. (b) Horizontal polarized spectra of light and dark regions. 

 When comparing the spectra collected with different polarizations, a small inversion of the C-H 

and C-C absorption bands is observed. Figure 3-18 shows a maximum absorption in the C-H band with 

vertical polarization, whereas the maximum absorption occurs in the C-C band with horizontal 

polarization. This inversion of absorption maxima indicate the alkane chains are oriented normal to the 

graphite substrate.  
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Figure 3-18: The vertical and horizontal polarized spectra for the light areas from Figure 3-17 
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Chapter 4 – Discussion 

 The focus of this thesis is on investigating the early to mid-stage growth of ordered n-alkane films 

on graphite. As previously demonstrated by Mitra Masnadi and Juxia Fu
7, 34, 39, 42, 45

, the growth of n-

alkane films on ordered substrates is dependent on the deposition conditions. Still it is not known how the 

growth mechanism changes as film thickness increases, and what factors drive these changes. The 

underlying mechanisms of film growth for these n-alkane thin films at early to mid-stages are difficult to 

investigate since the film must be observed at discrete intervals during film growth. A spatial and 

orientation sensitive technique is needed was to analyze thin n-alkane films as they grow. 

To this end, PEEM and NEXAFS were used to study and characterize n-alkane thin films. These 

techniques provide an excellent way of obtaining structural and orientation information about the sample. 

By utilizing PEEM with polarized synchrotron light, chemical and orientation information was able to be 

obtained from the NEXAFS spectra collected from individual areas of the sample. While these are 

excellent techniques for studying thin n-alkane films, there are many unique challenges to the study n-

alkanes, such as radiation sensitivity and vacuum compatibility. These problems need to be addressed 

before PEEM could be used to investigate the films. Chiefly among these issues was the ability to create 

samples where the film could be studied at different growth stages. To address this, a new ex situ 

evaporator was designed, assembled, and attached directly adjacent to the CaPeRS PEEM main chamber. 

The ex situ evaporator allowed successive depositions of n-alkanes to be used and thereby study the 

intermediate growth stages of these films. 

 The ex situ evaporator allowed n-alkane thin film samples to be prepared at the synchrotron 

beamline without exposing the sample to atmospheric conditions between evaporations. Preparing films 

on site was essential to preserve the film morphologies and was necessary to study changing growth 
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mechanisms as the thickness of the n-alkane thin films increases, through subsequent measurements on 

the same sample. The laboratory thermal evaporator was used to prepare films for initial film studies 

however, as this pre-existing evaporator setup allowed for a proven method of creating samples. 

The ex situ evaporator was developed and demonstrated to be capable of creating ordered n-

alkane films. The desired morphology with large ordered domains was not always obtained from the ex 

situ evaporator however. This was likely caused by poor temperature regulation of the sample heating 

stage. The ex situ evaporator also proved difficult to use, and the unreliable and time consuming process 

of sample preparation meant that the goal of successive depositions was never realized. Nevertheless, the 

ex situ evaporator allowed samples to be studied immediately after preparation, and could form the basis 

for future n-alkane studies with upgraded equipment. 

 There are many challenges associated using NEXAFS to study with n-alkanes due to the 

sensitivity of the films to X-ray and UV light. Therefore, an important step to this work was to develop a 

method that allowed spectra of n-alkanes to be gathered with minimal radiation damage where orientation 

information could still be extracted. The first issued to be address was normalization of NEXAFS data 

from C 1s spectra of n-alkanes. The synchrotron beamline used for PEEM has a large variation in X-ray 

intensity over the C 1s energy range due to adventitious carbon buildup on optical elements. Viewing the 

substrate before sample preparation allowed a I0 spectrum to be collected, and the positions of the carbon 

dips were carefully monitored in both the I and I0 spectra to adjust for any energy shifts caused by 

monochromator position fluctuations. The dark noise levels of the I and I0 spectra were also carefully 

removed in order to avoid introducing normalization artefacts to the normalized spectrum. By taking 

these precautions, spectra could be acceptably normalized, even with the large carbon dips from the 

beamline. 

 Due to the sensitivity of n-alkanes to high energy radiation, steps were taken to minimize the 

amount of time samples spent under the X-ray beam, as well as limiting the overall intensity of the X-
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rays, in order reduce the amount of radiation damage the samples exhibited. Through monitoring the π* 

peak at 285 eV, it was determined that this low intensity methodology was sufficient to prevent major 

damage to the samples. The large area of the samples also meant that an undamaged area was available 

for successive measurements. 

 During initial studies of n-alkane films created with the laboratory thermal evaporator, issues 

were encountered with charging due to the insulating 90 nm thick SiO2 layer on top of the silicon support 

for the graphite/graphene substrate. It was determined experimentally however that charging did not cause 

samples to be unsuitable for PEEM when low intensity X-rays were used. This strategy of minimizing 

charging by limiting the intensity of the X-ray beam paired well with the method used for controlling 

radiation damage.  

 As a consequence of the strategies to reduce radiation damage and charging, the quality of the 

spectra that were collected was not as good as for a sample that is not prone to radiation damage or 

charging, since there needed to be less data points and a shorter dwell time at each photon energy interval. 

For example, compare the spectra from Figure 3-18 to the spectrum of a polystyrene film in Figure 4-1
35

. 

This relatively thick polystyrene film is much more robust than the n-alkane films, and as a consequence, 

spectra can be gathered with more data points and a longer dwell time. The peaks in Figure 4-1 sharp and 

well defined, while the peaks in the spectra of Figure 3-18 are broad and noisy. Even though the n-alkane 

spectra are of poor quality, the relevant peaks are able to be distinguished from the spectra, allowing 

sample orientation to be determined. 
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Figure 4-1: A spectrum of a 1000 Å thick polystyrene film. Data courtesy of Stephen Urquhart, originally 

published in Urquhart et al.
35

. 

 This work has demonstrated that PEEM and NEXAFS have the potential to be powerful 

techniques for the observation of thin film growth. However, there remain several difficulties that need to 

be addressed before this technique can be successfully applied to the study of the early to mid-stage 

growth mechanisms of thin alkane films. Due to the difficulties with sample temperature stability 

discussed below, it was found that the pseudo-rectangular morphologies of C36 were the easiest to 

reliably produce, and were therefore the ones studied for the majority of the project. While the pseudo-

rectangular morphology was easy to reproduce, morphologies with large bars and six-fold symmetry (see 

section 1.4.2, Figure 1-19) were more difficult to create with the ex situ evaporator and were not well 

reproduced. The likely cause of this is temperature fluctuations of the substrate during sample 

preparation. 

 The main difficulties encountered during sample preparation that were in regards to the heating of 

the substrate surface. As the sample being studied was in vacuum, there was no way for the sample to 

cool by convection, and the only means of sample cooling was radiatively. At the moderate temperatures 

used for sample preparation, small variations to the current of the heating filament would result in large 
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changes to the sample temperature that would take significant time to stabilize. In addition, there may 

have been an energy transfer to the substrate from the arrival of the n-alkane, or there could be a 

temperature change due to enthalpy of deposition. These temperature changes could have a large impact 

on the observed morphologies of the films produced. While all possible care was employed to minimize 

the temperature variations during deposition, it was nevertheless difficult to precisely control the sample 

temperature. 

 In order to realize the full potential of this technique, upgrades need to be made to the 

experimental equipment to address the above mentioned challenges. To concentrate on sample 

preparation challenges, a heat sink or active cooling could be installed in the sample holder or heating 

stage. This would create more conductive cooling of the sample and cause the sample temperature to be 

more stable during alkane deposition. As for the instrument itself, monochromator upgrades would help 

to reduce beam motion and uniformity. These solutions are not trivial to implement however, and are 

beyond the scope of this project. 

 There is currently a proposal to upgrade the CaPeRS X-PEEM
46

 which would address some of the 

issues mentioned above. In particular, the proposal suggests a realignment of the microscope to provide 

brighter and more unified illumination. This would help to alleviate some of the focusing and tilt 

alignment issues discussed in section 2. The proposal also suggests intensity filters to be available for use 

with radiation sensitive samples, as well as an improved photon shutter. The proposal also contains 

provisions to improve simultaneous I0 collection, reduce “stripes” in the beam spot, and more reliable 

sample manipulation tools. These improvements would allow easier and more successful observation of 

thin n-alkane films.  
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Chapter 5 - Conclusions 

An ex situ evaporator was developed for use on the CaPeRS PEEM endstation of the SM beamline at 

the CLS. Pseudo-rectangular morphologies of C36 were grown in the ex situ evaporator, and the 

orientation of their carbon chains was determined using linear polarized NEXAFS spectroscopy. The 

analysis of the carbon 1s NEXAFS spectra show that the alkane chains are lying parallel to the substrate 

surface in this morphology. The work outlined here affirms previous observations that the orientations of 

alkane chains of pseudo-rectangular morphologies are lying parallel to the surface of the substrate. The 

quality of the data that was able to be gathered was, however, inadequate to examine the changes in 

growth mechanism (sections 1.4.2 and 1.4.4) believed to occur in early to mid-stage growth of n-alkane 

films. 

In addition to the difficulties with the sample, challenges were also encountered with the microscope 

and beamline. Beam motion across the sample that occurred when the monochromator changed positions 

meant that spectra could not be extracted from singular domains. The beam did also not uniformly 

illuminate the sample, but caused streaks of light across the surface, compounding the problems caused 

by the beam motion. 

There are several modifications and upgrades that could be made to the evaporator and microscope 

that could alleviate some difficulties associated with this project. For example, a heat sink could be 

integrated to the sample holder to promote even heating during sample preparation, or temperature 

stability could also be obtained with a liquid cooling system such as the one used in the laboratory 

thermal evaporator. In addition, monochromator upgrades and beamline improvements could be made to 

address the instability of the X-ray beam. Implementing these suggestions is not a trivial task however, 

and the time required alone puts these procedures outside the scope of this project. Nevertheless, this 
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work demonstrates the feasibility of using PEEM to study the growth of n-alkanes, and additional work in 

the future may be able to provide a better understanding of the growth mechanisms n-alkane films.   
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