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ABSTRACT 

The overall objective was to elucidate the mechanism of action of ovulation-inducing factor/nerve 

growth factor (OIF/NGF) in the reproductive function of spontaneous and induced ovulators, using 

cow and llama as models.  

In Study 1, the dynamics of trkA, the high affinity receptor for OIF/NGF, were studied during 

periovulatory period in cows. Unilateral ovariectomies were performed by colpotomy on Days 2, 4 and 

6 of the estrous cycle (Day 0= ovulation), and before and after LH administration. Ovarian samples 

were processed for immunofluorescent detection of trkA. The intensity and area of immuno-positive 

staining, and the proportion of immuno-positive cells in both the granulosa and theca layers were higher 

in dominant than in subordinate follicles (P<0.05). Dominant follicles displayed a different intracellular 

distribution of trkA from subordinate follicles. The number of positive cells was higher in the 

developing CL (Day 2 and 4) than in the mature or regressing CL (Day 6, Pre-LH, and Post-LH).  

In Study 2, the distribution of GnRH neurons in the hypothalamus was examined in female llamas 

(n = 4). Hypothalamic samples were processed for immunohistochemistry for GnRH. The distribution 

of GnRH neurons had no evident accumulation in specific hypothalamic nuclei. The majority of GnRH 

neurons were detected in the anterior and medio-basal hypothalamus (P<0.05). The GnRH neuron 

fibers were detected primarily in the median eminence and in the medio-basal hypothalamus.  

In Study 3, the relationship between trkA and GnRH neurons in the llama diencephalon was 

examined in llama brains (n = 4) obtained in Study 2. Samples were stained using double 

immunofluorescence. TrkA immuno-reactivity was present in most hypothalamic areas examined; the 

highest density was found in the diagonal band of Broca and the periventricular nuclei. A low 

percentage of GnRH cells (1%) showed immuno-reactivity to trkA. Close association between 
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immuno-reactive cells (i.e., GnRH and trkA in the same microscopic field) was detected rarely (3/160 

GnRH neurons).  

We concluded that: 1) the high affinity receptor for OIF/NGF is expressed in greater quantities in 

dominant than subordinate follicles and in the developing CL; 2) GnRH neurons of llamas are 

concentrated in the anterior and middle hypothalamus, in close relationship to the third ventricle; and, 

3) expression of trkA receptors on GnRH neurons was rare, suggesting that the ovulatory effect of 

OIF/NGF is not via direct interaction with GnRH neurons.   
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Chapter 1. Introduction 

 

The first evidence of a seminal component influencing female ovarian function came from a study in 

Bactrian camels (Chen et al., 1985). It was reported that ovulation occurred in 87% of female Bactrian 

camels after infusion of seminal plasma in the vagina. This surprising finding remained unexplored for 

years; however, a series of studies expanded the concept of this ovulation-inducing factor to a related 

group of induced ovulators, the South American camelids (Reviewed by Adams et al., 2013). 

Interestingly, the factor has been detected in the seminal plasma of both induced and spontaneous 

ovulators (Ratto et al., 2006; Bogle et al., 2011), establishing that seminal plasma is more than just the 

fluid accompanying sperm, and in fact, is capable of influencing ovarian function in the female. 

 

1.1. Ovulation-inducing factor in seminal plasma 

Mating is a prolonged process in camelids and involves intrauterine semen deposition (Bravo, 2002; 

Tibary et al., 2006). The mechanism by which OIF/NGF is absorbed by the endometrium and reaches 

the circulatory system is not fully understood. In an early study, no ovulations were detected among 

female alpacas treated with 1 ml of seminal plasma by intrauterine infusion whereas 93% of alpacas 

ovulated when treated intramuscularly (Adams et al., 2005). The role of uterine abrasion in facilitating 

absorption of seminal OIF/NGF was examined in a subsequent study (Ratto et al., 2005). Based on the 

observation that copulation in camelids results in transient inflammation of the endometrium (Bravo et 

al., 1996), alpacas were treated with 2 ml of seminal plasma intramuscularly or by intrauterine infusion 

with or without endometrial curettage. It was concluded that disruption of the endometrial mucosa by 

curettage facilitated absorption of OIF and increased the ovulatory effect of seminal plasma. An 
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increase in absorption, in effect, increased the dose of OIF in circulation. The dose-related effect of 

OIF was reflected in these 2 studies; the increased dose increased the ovulatory response in llamas. As 

well, an increased dose of OIF/NGF which mimicked physiological levels (up to 20 mg) in intrauterine 

infusion (Silva et al., 2015) resulted in an ovulatory response in 100% of llamas. Taken together, these 

findings support the idea that the intrauterine dose of OIF/NGF determines the amount of OIF/NGF 

absorbed and the ovulation rate. 

 

In studies designed to elucidate the nature of OIF in seminal plasma, the llama was used as an in vivo 

bioassay to test the ovulation-inducing effect of various seminal plasma fractions (Ratto et al., 2010). 

Seminal plasma treated with heat (up to65°C), charcoal dextran or proteinase k mantained the ovulatory 

effect of seminal plasma in llamas. However, treatment with pronase did prevent the ovulatory effect, 

suggesting that the factor that triggered ovulation in seminal plasma was a protein. When fractions of 

seminal plasma were filtered with different molecular mass cut-offs ovulations were induced only in 

those animals treated with fractions ≥ 30 KDa. However, the ovulatory effect was retained even after 

proteinase K digestion which rendered all proteins less than 19 KDa (Ratto et al., 2010). These findings 

seemed contradictory at first and were explained only when ovulation-inducing factor was discovered 

to be identical to nerve growth factor, a homodimer (Ratto et al., 2012). It was concluded that the 

differences in protein profiles and ovulatory effect were due to sample preparation prior to SDS-PAGE. 

Mercaptoethanol reduced the bonds between the protein dimers, and given the retention of bioactivity, 

it was unlikely that proteinase K itself actually rendered seminal NGF into its monomers (Ratto et al., 

2012). 
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1.2. Effect of OIF/NGF on ovarian function 

Seminal plasma or purified OIF/NGF induced ovulation when administered intravenously, 

intramuscularly, or by intrauterine infusion in llamas and alpacas (Adams et al., 2005; Ratto et al., 

2006; Berland et al., 2012). Given that the ovulatory effect is mediated by a massive LH release, it was 

infered that OIF/NGF is absorbed into the bloodstream and distributed systemically. Results of initial 

studies supported the hypothesis that the ovulatory effect of OIF/NGF was mediated directly via 

gonadotropes of the anterior pituitary which were involved in the OIF/NGF driven ovulatory response. 

OIF/NGF elicited LH secretion from anterior pituitary cell cultures of the rat (Paolicchi et al., 1998), 

cow and llama (Bogle et al., 2012). However, llamas treated with a GnRH receptor blocker (Cetrorelix) 

eliminated the LH and ovulatory response to OIF/NGF (Silva et al., 2011), suggesting that the site of 

action of OIF/NGF is primarily at the level of the hypothalamus. 

 

A local ovarian effect cannot be disregarded in South American camelids. It is established that llamas 

and alpacas that ovulated due to OIF/NGF treatment exhibited a larger CL that produced more 

progesterone than control animals (Adams et al., 2005). In addition, Llamas treated with OIF/NGF had 

a greater vascularization in the preovulatory follicle and the developing CL than control animals 

(Ulloa-Leal et al., 2014). Subsequent studies documented the existence of OIF/NGF in the seminal 

plasma of other species, such as equine and porcine, using the llama as a bioassay (Bogle et al., 2011). 

In addition, nerve growth factor receptors have been detected in the ovaries of several mammalian 

species (Levanti et al., 2005; Ren et al., 2005). However, the hypothesis that OIF/NGF exerts a local 

effect in non-camelids species is supported by studies in farm animals that have reported effects of 

OIF/NGF in follicular and luteal dynamics (see below). 
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An initial study in cattle, reported that the seminal plasma of bulls was capable of inducing ovulation 

in alpacas, but at a lower rate than seminal plasma of llamas or alpacas (Ratto et al., 2006), this provided 

a basis to study the potential role of OIF/NGF in cows. However, OIF/NGF did not induced ovulation 

in heifers treated during the first follicular wave, it hastened the emergence of the second follicular 

wave (Tanco et al., 2012). Furthermore, OIF/NGF treatment in the preovulatory period favored 

synchronization of ovulation, producing a window of 4 hours where all treated cows ovulated, whereas 

the control group ovulated in a dispersed manner over time (Tribulo et al., 2015). Notwithstanding, a 

luteotrophic effect was observed in both studies, and cows treated with seminal plasma containing 250 

ug of OIF/NGF had higher blood progesterone concentrations and longer lasting CL than the control 

group. These findings suggest that OIF/NGF receptors are present in the reproductive tract of cows and 

that they have functional properties. 

 

This literature review will focus on basic and functional aspects related to the organization of the 

central nervous system and the function of the ovary. 

 

1.3. Mechanism of ovulation in different species 

Mammals have been classified as spontaneous or induced ovulators (Conaway, 1971). Spontaneous 

ovulators include animals in which high circulating estrogen concentrations have a positive feedback 

on the hypothalamus and trigger the preovulatory LH surge. Induced ovulators are the species that 

ovulate only after mating. The classical concept is that physical stimulation of coitus is responsible for 

triggering ovulation (Fernandez-baca et al., 1970; Wildt et al., 1980). However, the results of more 
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recent findings suggest that this classification is an oversimplification of the multiple factors 

influencing the complex cascade of ovulation.  

 

As an example, rodents normally have an obvious estrous cycle punctuated by spontaneous ovulation 

every 5 days (mice; Jaiswal et al., 2009) or 4 days (rats; Mandl., 1951), but they can behave as induced 

ovulators under certain conditions. Female rats maintained under constant light for a period of 2 months 

and subsequently housed overnight with males ovulated consistently after penile intromission (Brown-

Grant et al., 1973). Moreover, rats treated with barbiturates and allowed to mate with a male displayed 

either pseudopregnancy or aberrant follicular development (Everett, 1967). More recently, prepubertal 

mice were induced to ovulate by intraperitoneal administration of seminal plasma (Bogle et al., 2011). 

Taken together, the findings support the idea that rodents conserve neuronal pathways related to 

induced ovulation. Furthermore, social interaction facilitates or induces ovulation in some species, such 

as female-to-female contact in rabbits (Staples, 1967; Cervantes et al., 2015) or male-to-female contact 

in sheep (Gelez et al., 2004). Hence, the GnRH system in females is sensitive to stimulation from 

different physico-chemical sources (endogenous and exogenous), the existence of a well conserved 

ovulation inducing factor in seminal plasma raises questions about our current understanding of 

mechanisms controlling ovulation among species. 

 

An early concept was that induced ovulation was a primitive trait which remained in some superior 

Orders (Conaway, 1971); however, both induced and spontaneous ovulation are present in many 

mammalian groups (Kauffman et al., 2005). Further, induced ovulation is not a common feature in 

lower non-mammalian Orders (Baker et al., 2000). The finding suggests that induced ovulation is a 

later adaptation of certain species and reflects a complex evolutionary specialization. It is important to 
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highlight that every mammalian Order has one or more species displaying induced ovulation, although 

the relative frequency of induced ovulation as a trait among the Orders needs to be studied further 

(Kaufman et al., 2005). 

 

1.4. Anatomy of the GnRH system 

The GnRH neurons are a scattered population of cells distributed along the midline of the brain in a 

rostro-caudal fashion (Herbison, 2005). Originated in the nasal placode, GnRH neurons migrate 

caudally during early embryonic development to differentiate into mature GnRH neurons (Whitlock, 

2005). Evidence of this neuronal migration is the existence of hypogonadal mice, an accident of nature 

that is characterized by the lack of GnRH neurons in the brain, and accumulation of GnRH neurons in 

the nasal area (Gibson et al., 1997). The degree of rostro-caudal migration varies between species, for 

example in rodents a greater proportion of GnRH immuno-reactive cells are located in the preoptic 

area, but in mink the majority of GnRH neurons are located caudally in the mediobasal hypothalamus 

(Toumi et al., 1992). The causes and consequences of the differences in GnRH neuron distribution 

among species remains unknown.  

 

 The GnRH neurons that are involved in reproduction are situated in the septum, preoptic area and 

infundibular portions of the hypothalamus, i.e. the septo-preoptico-infundibular pathway (Silverman 

et al., 1994). The final output of this pathway occurs in the median eminence where the neurosecretory 

terminals release GnRH into the portal vessels of the pituitary gland. The median eminence is one of 

the circumventricular organs, i.e. structures adjacent to and whose function is dependent on the 

ventricles of the brain. (Rodriguez et al., 2010). Topographically, the median eminence forms the floor 
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of the third ventricle and is highly vascularized by the superior hypophysial arteries, branches of the 

internal carotid arteries. After these vessels form capillaries in the median eminence (primary plexus) 

they drain their content into the portal vessels that supply the anterior pituitary, forming a second 

capillary plexus allowing an efficient distribution within the anterior pituitary (Page, 2005). The 

existence of extra-hypothalamic GnRH neurons and pathways located in areas such as the 

hippocampus, septum and the pre-piriform cortex have been reported, but the role of these neurons in 

reproductive function, if any, remains to be established (Merchentaler et al., 1984). 

 

1.5. Physiology of GnRH neurons 

The GnRH system acts as a network of cells that secrete this decapeptide into the pituitary portal system 

in a coordinated fashion that changes relative to the stage of the estrous cycle. Using a model of portal 

cannulation in sheep, GnRH concentrations in portal blood remained basal during the luteal phase, 

displaying one pulse every 4 hours (Moenter et al., 1991). The frequency of GnRH pulses increased to 

1 pulse per hour after luteolysis as circulating progesterone concentrations dropped. The majority 

(90%) of GnRH pulses in the portal system or the cerebrospinal fluid are accompanied by an LH pulse 

from the pituitary (Moenter et al., 1991; Yoshioka et al., 2000). The consequent rise in circulating 

estradiol concentrations induced an increase in GnRH pulse frequency and a decrease in pulse 

amplitude (Karsh et al., 1996), which culminated in a large preovulatory LH surge followed by 

ovulation. GnRH secretion remained low during early luteal development and was minimal during 

mid-diestrus (Yoshioka et al., 2000).  
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The existence of a so-called surge-center and a tonic-center of GnRH neurons in the hypothalamus and 

preoptic areas of the brain were originally hypothesized based on studies in which the afferents to the 

hypothalamus were surgically sectioned. Early studies (Wiegand et al., 1980) where lesions were 

placed in the medial preoptic area and suprachiasmatic nuclei of rats, resulted in signs of persistent 

estrous (i.e., vaginal cornification). It was inferred that the pathways that were controlling the 

preovulatory LH surge were located in the medial preoptic area of rats. Conversely, the tonic center 

has been suggested to exist somewhere in the medio-basal hypothalamus. However, the anatomical 

location of the tonic centre has been elusive and the concept of separate surge and tonic centers of 

GnRH neurons in the brain remains a hypothesis to test (Herbison, 1998). 

 

Rather than GnRH ‘centers’, the GnRH system may be better characterized as a diffuse network 

(Herbison, 1998; 2005) that reacts in a coordinated manner despite a relatively widespread scattered 

cell population. During events leading up to ovulation, estradiol activates the neurons of the network 

or, more likely, activates neurons that synapse with the GnRH network. Using immunocytochemistry 

of mouse brain tissues sacrificed at the time of the expected LH surge with or without exposure to 

males, only a subset of the total GnRH neuronal population was activated (expressed c-Fos proto-

oncogene, i.e., up to 40% of the total GnRH neurons in the preoptic area) (Wu et al., 1992). In sheep, 

there was a similar degree of GnRH neuron activation in ewes undergoing an induced preovulatory LH 

surge (Moenter et al., 1993). Curiously, there were non-GnRH neurons that were activated and GnRH 

neurons that were not involved in the GnRH surge. 

 

1.6. GnRH afferents 
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The regulation of GnRH neurons has been a topic of intensive research since the discovery of GnRH 

itself in 1971(Clarke, 2011). Several molecules have been implicated in affecting GnRH function. In 

an early report, the injection of an epinephrine antagonist blocked ovulation in rabbits (Sawyer et al., 

1947). Findings from recent studies suggest that norepinephrine can act as a permissive or repressive 

factor to ovulation (Herbison, 1997). Norepinephrine neurons are located in the brainstem and project 

cranially into the hypothalamus establishing synaptic contacts with some GnRH neurons, and about 

40% of norepinephrine immuno-reactive cells in the brainstem display estradiol receptors (Temel et 

al., 2002). 

 

GnRH neurons express kisspeptin receptors, suggesting that kisspeptin is a primary regulator of GnRH 

secretion (Messager et al., 2005). In addition, kisspeptin or kisspeptin receptor knock-out mice display 

an absence of puberty and under-developed gonads (d'Anglemont de Tassign et al., 2010). Treatment 

with exogenous kisspeptin induces LH secretion n most species studied to date (presumably in response 

to GnRH secretion), including both induced and spontaneous ovulators (Inoue et al., 2011; Caraty et 

al., 2007). The extent of the influence of kisspeptin on reproduction may also extend to sexual 

differentiation (Clarkson et al., 2014). 

 

Glutamate is another excitatory neurotransmitter in the brain (Herbison, 2005) and has been shown to 

activate GnRH neurons in vitro (Spergel et al., 1999). GnRH neurons express all types of glutamate 

receptors (Herbison, 1998) and the glutamate synaptic inputs can modify GnRH neuron excitability 

(Iremonger et al., 2010). Conversely, gamma amino butyric acid (GABA) is the principal inhibitory 

neurotransmitter in the brain and there is general consensus about the inhibitory effects of GABA on 

GnRH neurons (Herbison et al., 1991). However, there are some reports about a stimulatory effect and 
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recently it has been suggested that some areas of the brain display excitatory or inhibitory actions on 

GnRH neurons depending on the conditions (Watanabe et al., 2014).  

 

Currently, there is a lack of studies addressing the role of neurotropins on central regulation of 

reproduction, in contrast to the current information regarding their local role in ovarian function and 

development (see below). That OIF/NGF induces a preovulatory LH documents that neurotropins 

regulate ovarian and hypothalamic function in an endocrine manner, and potentially this effect can help 

in the understanding the regulation of reproduction. 

 

1.7 NGF in the ovary 

OIF/NGF has been detected in the ovaries of several mammalian species using immunohistochemistry 

or western blot analysis (Levanti et al., 2005; Dissen et al., 1996; Li et al., 2014; Jana et al., 2011). 

Principal receptors for OIF/NGF are the high-affinity tyrosine receptor kinase A (trkA), and the low-

affinity receptor, p75 (Meakin et al., 1992). TrkA mediates most of NGF effects, such as survival of 

sympathetic neurons in the nervous system (Levi-Montalcini et al., 1960) and adrenal medulla 

outgrowth (Unsicker et al., 1978). 

 

Nerve growth factor is a determinant factor regulating ovarian function in mature, but also, in 

developing ovaries. Studies from NGF knock-out mice have documented that ovaries from pups had 

lower quantities of primary and secondary follicles, as well as higher number of naked oocytes (lack 

of pre-follicular cells) than the wild-type mouse (Dissen et al., 2002), suggesting that NGF has a role 

in follicular assembly. In addition, 2-day old rat ovaries cultured with NGF induced the expression of 
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functional FSH receptors (Romero et al., 2002). However, this finding may not be only dependent on 

NGF, since neurotropin 4 induces also FSH receptors through interaction with tyrosine kinase B (Kerr 

et al., 2009).  

 

Conversely, p75 is a low affinity receptor for NGF and also has the ability to bind to other 

neurotrophins (Underwood et al., 2008); hence, it has been referred to as the pan-neurotropic receptor 

(Dissen et al., 2000). This receptor is a member of the tumor necrosis factor superfamily and has been 

associated primarily with inducing cell death or apoptosis (Dechant et al., 2002). However, p75 

activation has also been implicated in other processes including cell differentiation, inhibition of 

neurite outgrowth, and, in certain instances, enhancing trkA effects (Underwood et al., 2008) 

 

1.8 NGF during ovulation. 

Several neurotrophins have been identified in the mammalian ovary such as nerve growth factor, 

neurotrophin-3, brain derived neurotrophic factor and neurotrophin 4/5 (Ojeda et al., 1996). The 

majority of neurotrophins act in a paracrine or autocrine way mediating cellular differentiation and 

function. The most studied neurotrophin is nerve growth factor which has been identified to have a role 

in neuronal growth and survival. In the ovary, the expression of nerve growth factor increases during 

the gonadotropin surge at first ovulation and this increase is accompanied by an increase of the high 

affinity receptor, trkA (Dissen et al., 1996). The rise in the NGF/trkA system increases up to 100 fold 

after the LH surge and virtually disappears from the ovary afterwards (Dissen et al., 1996). The source 

of NGF and trkA is the cells of the theca layer, but it can be also detected in the granulosa layer in 

cows (Dissen et al., 2000). 
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Cows are an excellent model to study the local ovarian effects of OIF/NGF.  Results from studies have 

shown that when cows are treated with OIF/NGF there is no preovulatory secretion of LH (Tanco et 

al., 2012; Tribulo et al., 2015), thus the confounding effect of LH is not present as in llamas (Ratto et 

al., 2005). In addition, the detailed knowledge of the follicular dynamics in this species allow us to 

track follicular populations, and evaluate temporal changes during follicular or luteal development 

under different physiological environments (see below). 

 

Transrectal ultrasonography of cattle has been useful to describe final part folliculogenesis. During this 

stage, antral follicles grow in a wave-like fashion. Each follicular wave is characterized ultrasonically 

by the sudden apeareance of a group of 8 to 41 follicles of 3-4 mm (Adams et al, 2008). Initially, the 

follicles grow at a similar rate and when the largest growing follicle reaches 6 mm the rest of the cohort 

suffers inhibition of their growth and undergo regression (Ginther, 2000). The largest follicle, namely 

dominant follicle, continues to grow and can reach 15 to 20 mm in size to later regress. The dominant 

follicle can ovulate when it reaches 8 to 10 mm (Martinez et al, 1999) when the CL is nonfunctional 

and progesterone concentrations are low, this environment allows the hypothalamus to be sensitive to 

estrogen and the positive feedback. 

 

1.9. Objectives and hypotheses 

The overall objective of the research in the present thesis was to gain a better understanding of the 

route and mechanism by which seminal plasma (OIF/NGF) elicits its effects on ovarian function in 

both induced and spontaneous ovulators. We now know that the ovulation-inducing effect of OIF/NGF 

in camelids is mediated at the level of the brain, but the location in the brain and the cells involved in 
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triggering the preovulatory surge in circulating concentrations of LH remain unknown. Further, the site 

and mechanism of action of the luteotrophic effect of OIF/NGF (central or local) observed in both 

induced and spontaneous ovulators are also unknown.  

 

The specific objective of Study 1 was to understand the role of OIF/NGF locally at the level of the 

ovary. Although the existence of the high-affinity receptor for OIF/NGF (trkA) in the ovary has been 

reported previously, its role and the dynamics of its expression in both induced and spontaneous 

ovulators are unknown. By characterizing the spatial and temporal distribution of trkA in ovarian 

follicles and the CL at known stages of development in the bovine model, we tested the hypothesis that 

the luteotrophic effect of OIF/NGF is mediated by an increase in trkA receptors in the ovulatory follicle 

and early CL.  

 

To gain a better understanding of structural pathways involved in the mechanism of ovulation in 

camelids, the specific objectives of Study 2 were to identify the anatomical distribution of GnRH 

neurons in the llama hypothalamus and preoptic area and to characterize the cytological characteristics 

of GnRH neurons and their pathways throughout the hypothalamus. 

 

Given the known involvement of GnRH in OIF/NGF-induced ovulation, Study 3 was designed to test 

the hypothesis that the ovulatory effect of OIF/NGF in camelids is produced by direct interaction with 

GnRH neurons. We examined the structural relationship between trkA and GnRH in the hypothalamus 

and preoptic areas of the llama brain.  
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Chapter 2. The dynamics of trkA expression in the bovine ovary are associated with a 

luteotrophic effect of OIF/NGF 

 

R Carrasco, J Singh, GP Adams 

Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University 

of Saskatchewan, Saskatoon, Canada 

 

2.1. Abstract 

Ovulation-inducing factor in semen (OIF/NGF) influences ovulation and CL form and function in 

camelids and, remarkably, in cows. The ovulation-inducing effect in camelids is mediated at the level 

of the hypothalamo-pituitary axis, but the site of action of the luteotrophic effect is unknown and may 

be particularly important in understanding the effect of OIF/NGF in spontaneous ovulators. An 

experiment was designed to characterize the expression of the high affinity OIF/NGF receptor (trkA) 

in the ovary during the periovulatory period in cattle. Cows (n = 14) were examined daily by transrectal 

ultrasonography to determine the day of ovulation (Day 0), and were assigned randomly to be 

unilaterally ovariectomized on Day 2, 4, 6 or in the pre-ovulatory period just before or after exogenous 

LH treatment. After a complete interovulatory interval, the cows were re-assigned to a different day-

group on which the remaining ovary was removed (n = 4 to 5 ovaries/day-group). Ovaries were fixed 

in paraformaldehyde, and 5 µm sections of ovarian tissue representing the dominant follicle, largest 

subordinate follicle, and the CL were processed for immunofluorescent detection of trkA receptor. A 

statistical interaction in the intensity of the immuno-reaction between follicle type and day-groups was 

detected (P = 0.004). The proportion of trkA immuno-positive cells was higher in dominant than 
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subordinate follicles in both the theca and granulosa layers (P < 0.05). The number of positive cells 

was higher in the developing CL (Day 2 and 4) than the mature-regressing CL (Day 6, Pre-LH, and 

Post-LH). Dominant follicles displayed a predominantly diffuse intracellular distribution of trkA 

immuno-reactivity in Day-group 2 and the Post-LH group when compared to subordinate follicles (P 

< 0.05). We concluded that the luteotrophic effect of OIF/NGF in cattle is driven by a direct interaction 

with its receptor in the theca and granulosa layer of dominant follicles and the early CL. 

 

2.2. Introduction 

Ovulation-inducing factor (OIF) is a protein in the seminal plasma that has been shown to elicit an 

ovulatory response in camelids when administered intramuscularly, intravenously or by intrauterine 

infusion (Chen et al., 1985, Adams et al., 2005; Ratto et al., 2006; Berland et al., 2012). The protein 

has subsequently been identified as beta nerve growth factor (β-NGF; Ratto et al., 2012), and is present 

in the seminal plasma of all species examined to-date (Bogle, 2015). The existence and effect of this 

seminal protein challenge the classic assumption that the physical stimulation of copulation is the 

principal factor involved in inducing ovulation in South American camelids (Fernandez-Baca et al., 

1970). For the purposes of the present study, the abbreviation OIF/NGF will be used to indicate NGF 

of seminal plasma origin. 

 

Beta nerve growth factor is a homodimer with a molecular mass of 26 – 28 KDa (Angeletti et al., 1971), 

and was discovered in abundance in mouse sarcomas (Levi-Montalcini et al., 1951), snake venom 

(Cohen et al., 1956), and mouse salivary glands (Cohen, 1960). The effects of NGF were initially 

thought to be restricted to nerve function and development, as indicated by a potent stimulatory effect 
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on dorsal root ganglia during embryonic limb development in chicks (Levi-Montalcini, 1987). More 

recently, NGF has been shown to play a role in a variety of non-neuronal systems such as in immune-

related (Bonini et al., 2003), inflammatory (Leon et al., 1992), reproductive (Lara et al., 1990), and 

endothelial tissues (Cantarella et al., 2002). The biological actions of NGF are mediated by interaction 

with two different receptors. Tyrosine kinase receptor A (trkA) is a high affinity receptor for NGF and 

mediates its neurogenic effects (e.g., survival of dorsal root ganglia neurons in mice; Minichiello et al., 

1995, or induction of neurite outgrowth in PC12 cells in vitro; Loeb et al., 1991). A non-specific low-

affinity receptor (p75NTR) has been implicated in mediating trkA activation, increasing the affinity of 

trkA for NGF, and inducing apoptosis in cell culture (Yoon et al., 1998). The p75NTR receptor also 

has a low affinity interaction with other neurotrophins such as brain-derived neurotrophin factor and 

neurotrophin 3 (Underwood et al., 2008). 

 

Nerve growth factor has been implicated as a local mediator at different stages of development of the 

reproductive system. In the infantile NGF knock-out mouse, primary and secondary follicle 

populations are lower than the wild type mouse (Dissen et al., 2001), suggesting that obliteration of the 

NGF signaling system has detrimental effects on  fetal ovarian development. In prepubertal rats treated 

with pregnant mare serum gonadotropin, administration of anti-NGF or a trkA blocker into the ovarian 

bursa on the day of expected LH surge impaired ovarian prostaglandin E2 production and reduced the 

ovulatory response (Dissen et al., 1996). In addition, a role in the maintenance of follicular and luteal 

vasculature was reflected in vascular cell proliferation of neonatal rat ovaries cultured in vitro after 

treatment with NGF, either directly or through synthesis of vascular endothelial growth factor (Julio-

Piper et al., 2008). 
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A novel endocrine effect of OIF/NGF was discovered in a series of studies on ovulation in species 

categorized as induced ovulators (reviewed by Adams et al., 2012). Intramuscular administration of 

seminal plasma (containing OIF/NGF) in llamas and alpacas elicited a surge in plasma LH 

concentrations, followed by ovulation in >90% of animals and was associated with enhanced CL 

development (Adams et al., 2005). It was concluded that the mechanism involves a central effect on 

the hypothalamus or pituitary gland via a systemic route (Ratto et al., 2005). However, the results of 

later studies in cattle (a spontaneous ovulator) provided rationale for the hypothesis that the 

luteotrophic effect of OIF/NGF is mediated by a local route. Although treatment with purified 

OIF/NGF did not induce ovulation in pre-pubertal heifers, treatment during the first follicular wave in 

post-pubertal heifers hastened the emergence of the following follicular wave and was luteotrophic 

(Tanco et al., 2012). In a subsequent study in cattle, the administration of bull seminal plasma 

(containing 250 ug of OIF/NGF) did not elicit an LH response or ovulation, but did enhance CL 

development (Tribulo et al., 2015). Plasma progesterone concentrations increased more rapidly and the 

CL lifespan was longer in the seminal plasma-treated group than in the control group. Surprisingly, 

ovulation occurred more synchronously in the seminal plasma-treated group (within a period of 4 

hours) than in the control group (within a period of 18 hours; Tribulo et al., 2015). The mechanisms 

by which OIF/NGF induced the ovarian changes in cattle are unknown. Although NGF and its receptors 

have been detected in bovine and porcine ovaries (Levanti et al., 2005), their temporal expression in 

the ovary in relation to follicular dynamics, ovulation, and CL development have not been 

characterized. 

 

To determine the role of OIF/NGF at the level of the ovary, the objective of the present study was to 

characterize the spatial and temporal distribution of trkA in ovarian follicles and CL at known stages 
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of the estrous cycle, and to test the hypothesis that the luteotrophic effect of OIF/NGF is mediated by 

an increase in trkA receptors in the ovulatory follicle and early CL.  

 

2.3. Materials and Methods 

 

2.3.1. Animals 

Non-lactating Hereford-cross cows (n = 6) and sexually mature heifers (n = 8) from the research herd 

at the University of Saskatchewan Goodale Farm were used from August to October. The experimental 

protocol was approved by the University Committee on Animal Care and Supply and conducted in 

accordance with the guidelines of the Canadian Council on Animal Care.  

 

2.3.2. Experimental design 

The ovaries were examined daily by transrectal ultrasonography to detect ovulation (Day 0). Animals 

were then assigned randomly in replicate to be unilaterally ovariectomized on Day 2, 4, 6, or in the 

pre-ovulatory period either just before, or just after, the LH surge. Animals assigned to pre-ovulatory 

groups were given a luteolytic dose of prostaglandin F2α (500 ug cloprostenol im, Estroplan, 

Vétoquinol, Georges Lavaltrie, QC, Canada) during the luteal phase when the dominant follicle of the 

second follicular wave was ≥10 mm and growing. Animals assigned to the Pre-LH group were 

ovariectomized 24 hours after prostaglandin treatment. Animals assigned to the Post-LH group were 

given pLH (25 mg Luthropin im, Bioniche, Belleville, Ontario, Canada) 24 hours after prostaglandin 

treatment and were ovariectomized 18 hours later. After one complete interovulatory interval following 
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the first ovariectomy, animals were re-assigned randomly to a different day-group on which the 

remaining ovary was removed (n = 4 to 5 ovaries per day-group; Fig 2.1). 
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Figure 2.1. Experimental design showing follicle and CL diameter (mean ± SEM) profiles in cows 

preceding unilateral ovariectomy (vertical dashed lines) on Days 2, 4, 6, and the pre-ovulatory 

period just before and just after treatment with LH. The number in parentheses accompanying 

the vertical dashed lines reflects the number of the respective structures (i.e. follicle, CL) 

analyzed per time point. For illustration purposes, dominant follicle diameters of the second 

wave were normalized to the mean day of emergence of Wave 2.  
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2.3.3. Ultrasonographic monitoring 

The ovaries were examined daily by transrectal ultrasonography using a 7.5 MHz linear-array probe 

(Mylab, Esaote Canada, Georgetown, Ontario, Canada). The CL and ovarian follicles ≥4 mm were 

individually identified and monitored from day-to-day to determine luteal and follicular wave status. 

Wave emergence was defined as the day on which the follicle destined to become dominant was first 

detected at a diameter of 4 – 5 mm. If the future dominant follicle was first detected at 6 mm, the 

previous day was taken as wave emergence (Ginther et al., 1989). Ovulation was defined as the sudden 

disappearance of a follicle ≥10 mm from one examination to the next (Knopf et al., 1989).  

 

2.3.4. Ovariectomy and tissue handling 

Unilateral ovariectomy was performed via colpotomy in the standing position under caudal epidural 

anesthesia using 2% (w/v) lidocaine HCl with 0.01mg/ml epinephrine (Singh et al., 1997). An incision 

was made in the dorsolateral aspect of the vaginal fornix and the peritoneum was manually punctured 

after blunt dissection through the adventitia. After manually compressing the mesovarium with a 

lidocaine-soaked gauze, the ovary containing the structure of interest was removed using a chain 

écraseur. Within a few minutes of collection, the ovarian artery was cannulated and perfused with 20 

ml of cold phosphate buffered saline (PBS; pH = 7.4) followed by 20 ml of 4% paraformaldehyde in 

PBS (pH = 7.4). The ovary was then immersed in the same fixative for 24 hours at 4°C. After the 

fixation period, ovaries were rinsed in PBS (3 times for 15 min. each), and stored in PBS at 4ºC. Cows 

were treated post-operatively with procaine penicillin G (20,000 IU/kg;) im daily for 3 days.  
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2.3.5. Immunohistochemistry 

The fixed ovaries were trimmed such that the structures of interest, previously identified by 

ultrasonography, were exposed for sectioning. The trimmed ovarian tissues were placed in plastic 

cassettes and dehydrated in graded ethanol solutions (50%, 70%, 90%, 95%, and 100%), cleared in 

xylene, and embedded in blocks of paraffin. The tissue blocks were sectioned at a thickness of 5 um 

and mounted on poly-L-lysine coated glass slides. Enzymatic antigen retrieval was performed using a 

concentration of 2 mg/ml of pepsin (Sigma, St Louis Missouri, USA) in a 0.01N HCl solution (pH= 

1.5) for 20 minutes at room temperature. Slides were then washed in PBS, and incubated in blocking 

buffer (1% bovine serum albumin in PBS) for 1 hour. Slides were incubated overnight at 4° C with a 

primary antibody (rabbit anti-human trkA, Santa Cruz Biotechnologies, Santa Cruz, California, USA) 

diluted 1:200 in 1% BSA in PBS. The next day, slides were washed and incubated for 2 hours with a 

secondary antibody (goat anti-rabbit IgG, Alexa 488, Life Technologies, Burlington, Ontario, Canada) 

diluted 1:400 in 1% BSA in PBS. After washing, slides were counter-stained with DAPI, cover-slipped, 

and stored (≤1 week) for examination by confocal fluorescence microscopy (Leica LSM, Wetzlar, 

Germany). The specificity of the antibody was tested by pre-adsorbing the primary antibody with trkA 

peptide for 1 hour at room temperature or by omitting the primary antibody from the incubation 

process; either procedure prevented the detection of immunoreaction during assessment. Additionally, 

histologic sections from every ovary were stained with hematoxylin-eosin to assess and identify 

microscopic details, as described previously (Singh et al., 2000). 

 

2.3.6. Image analysis 

Confocal fluorescence images of the follicular wall and the CL were analyzed with ImageJ software 

(NIH, Bethesda, Maryland, USA). The proportion of positive cells, the intensity of the immuno-
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reaction, the area stained, and the intracellular distribution of the immuno-reaction were estimated in 

the granulosa and theca layers of dominant and subordinate follicles. Two images per follicle were 

obtained and analyzed. Each image contained information corresponding to trkA immuno-reactivity 

(green channel, Alexa 488) and the nuclear counterstain (blue channel, DAPI). The basement 

membrane was used to differentiate between granulosa and theca layers, and was outlined manually 

using the aid of nuclear morphology a guide. The theca interna was defined as the region extending 

100 um from the basement membrane into the ovarian stroma. The granulosa layer was defined as the 

area from the basement membrane into the follicular lumen. The follicular wall was considered as a 

composite of granulosa layer and theca interna. The proportion of cells that were immuno-positive was 

estimated from the total number of cells of the follicle wall, granulosa layer, or theca interna. The 

intensity of the immuno-reaction was estimated by creating a mask of the green channel (trkA reactive) 

using an algorithm to select immuno-reactive areas, and from those areas, the grayscale value per 

stained square micron was calculated. The immuno-reactive area (um2) was calculated by creating a 

binary image (black = 0; white =256) of the green channel using a common threshold for all images; 

the area is expressed as a percentage of the total area of the follicular wall, the granulosa layer or the 

theca interna. For the CL, the number of cells that were immuno-reactive was estimated from the total 

number of cells counted per high-powered field (63x). The intensity of the immuno-reaction of CL was 

analyzed, as described above. Based on the degree of granularity, two patterns of intracellular 

distribution of trkA were apparent; diffuse or focal (Fig 3.6). A grid overlay was placed on each image 

of the follicles and CL. The cells counted and classified for granularity were those in which the nucleus 

was overlain by the intersection of orthogonal grid crosses.  
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2.3.7. Data analysis 

Differences between follicle type and day-groups were compared by two-way analysis of variance. For 

the CL, a day-group effect was analyzed by one-way analysis of variance. When significant differences 

were detected, multiple comparisons were made using the method of least significant difference. Data 

are presented as the mean ± SEM, and significance was considered when P<0.05.  Cell counts from 

corpora lutea were pooled into early (Day 2 and Day 4) and mature-regressing day-groups (Day 6, Pre-

LH and Post-LH) and compared by t-test for unequal variance (Ruxton, 2006). The intracellular 

distribution of trkA immuno-reactivity of dominant and subordinate follicles is expressed as mean ± 

SEM of the diffuse:focal ratio and was compared as described for follicles above. 

 

2.4. Results 

The diameters of dominant and subordinate ovarian follicles and the CL at the time of ovariectomy are 

presented in Fig. 3.1 (n=2 to 5 per structure/ per day group). The diameter profile of the subordinate 

follicle in day-groups 2, 4 and 6 is that of the largest subordinate in the excised ovary, but not 

necessarily the largest subordinate of the follicular wave.  

 

The fluorescence signal in ovarian tissues (Fig. 3.2) was restricted to follicles and the CL. No reaction 

was detected in stromal cells or blood vessels, and no signal was detected in regressing follicles or the 

regressing CL from the previous cycle. Various degrees of positive reaction were detected in the thecal 

layer of some small antral follicles ≤ 1mm (i.e., those not detected by ultrasonography). At the cellular 

level, immuno-reactivity was restricted to the cytoplasm; nuclear staining was not observed. No 

statistical difference was detected in trkA immuno-reactivity of the dominant follicles collected after 
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the first versus second unilateral ovariectomy; hence, data for all structures were analyzed regardless 

of been collected on the first or second ovariectomy.  

 

2.4.1. Follicles 

An interaction (P < 0.01) between follicle type (dominant versus subordinate) and day-group (Day 2, 

4, 6, pre- and Post-LH) on the intensity of trkA immuno-reactivity was the result of greater intensity 

in dominant versus subordinate follicles in all day-groups except one, the Pre-LH group (Fig. 2.3.A). 

Among dominant follicles, the intensity of the immuno-reaction was greater on Day 2 than on Day 6, 

Pre-LH, or Post-LH (P = 0.04, P = 0.01, P = 0.03, respectively), The intensity of subordinate follicles 

remained constant among day-groups, except for the Pre-LH group that was greater and similar to the 

intensity of dominant follicles (Fig. 2.3A). A similar pattern was observed when the intensity of the 

immuno-reaction was analyzed with respect to the granulosa layer (Fig. 2.3.B) or the theca interna 

(Fig. 2.3.C) separately. 

 

The area of immuno-reactivity of dominant follicles was greater than their subordinate counterparts on 

Day 4 (P = 0.004) and Post-LH (P = 0.04, Fig. 2.4A). An interaction between day-group and follicle 

type (P < 0.001) in the immuno-stained area of the theca layer was attributed to a dramatic increase in 

the subordinate follicles of the Pre-LH group compared to other groups (Fig. 2.4). In addition, a 

progressive reduction in the immuno-stained area of the theca layer of dominant follicles from Day 2 

to Day 6 was detected (P < 0.05; Fig. 2.4B). 
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Dominant follicles had a greater proportion of immuno-positive cells than subordinates follicles in both 

the granulosa (P < 0.001) and theca (P < 0.001) layers, but no effect of day-group was detected (Fig. 

2.4 B, D). The proportion of positive cells in the granulosa layer of dominant follicles was greater than 

subordinate follicles on Day 2 (P = 0.001), 4 (P = 0.018), and Post-LH (P < 0.001). The theca layer of 

dominant follicles had a greater proportion of immuno-reactive cells than subordinates follicles on Day 

4 (P < 0.001), Day 6 (P = 0.015) and Post-LH (P < 0.001). The proportion of positive cells of the theca 

layer of subordinate follicles was similar among day-groups, except in the Post-LH group that was 

lower than the Day 2 group (P = 0.02). The follicular wall of dominant follicles displayed a greater 

diffuse to focal ratio of trkA immuno-reactivity when compared to subordinate follicles on day 2 and 

on day Post-LH (P < 0.05; Fig. 2.5). 

 

2.4.2. Corpus luteum 

In luteal cells, trkA immuno-fluorescent granules were distributed homogenously within the cytoplasm 

of immuno-positive cells in all day-groups, but the grayscale intensity values and number of immuno-

positive cells tended to differ among day-groups (P = 0.09; Fig. 2.2 and 2.6). In a retrospective 

comparison, the number of immuno-positive cells was greater in early developing CL (Days 2 and 4 

combined) than in mature or regressing CL (Day 6, Pre- and Post-LH combined; 41.1 ± 10.4 vs 9.7 ± 

3.4 cells per high-powered field; P = 0.01). 
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Figure 2.2. Immunofluorescence staining pattern of trkA in a dominant follicle (A), CL (B), 

subordinate follicle (C) and regressing follicle (D) in cattle.  FL: Follicular lumen, GL: 

Granulosa layer, TL: Theca layer, FW: Follicular wall, LC: Luteal cell. Scale bar = 50 µm. 
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Figure 2.3. Grayscale intensity of pixels (mean ± SEM) representing the trkA immuno-positive area of 

dominant (black bars) and subordinate ovarian follicles (white bars) collected at the time of 

ovariectomy (Day-groups; Day 0 = ovulation) in cattle. Intensity values (0 = black; 65536 = white) of 

the follicular wall (A), the granulosa layer (B), and the theca interna (C). abc Values with no common 

superscript are different (P<0.05). *Difference between dominant and subordinate follicles (P<0.05). 
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Figure 2.4. Comparison of immuno-reactivity of the follicular wall (granulosa and theca) to trkA in 

dominant (black bars) and subordinate follicles (white bars) taken during the periovulatory period in 

cattle (mean ± SEM; ovulation = Day 0). (A) Immuno-positive area of the granulosa layer (% of the 

total area of the granulosa). (B) Immuno-positive area of the theca layer (% of the total area of the 

theca). (C) Proportion of cells in the granulosa layer that are immuno-positive. (D) Proportion of cells 

in the theca layer that are immuno-positive. abc Values with no common superscripts are different 

(P<0.05).*Difference between dominant and subordinate follicles (P<0.05) 



  

30 
 

  

Figure 2.5. Patterns of intracellular distribution of trkA receptor in cells of the granulosa and theca 

layers of dominant and subordinate follicles in cattle, assessed by confocal microscopy. (A) The pattern 

of granularity is expressed as the ratio of diffuse versus focal distribution in dominant (black bars) and 

subordinate follicles (white bars) among day-groups. (B) Diffuse granularity. (C) Focal granularity. 

*Difference between dominant and subordinate follicles (P<0.05).  

 



  

31 
 

 

Figure 2.6. Anti-trkA staining pattern of the bovine CL collected in the periovulatory period, assessed 

by confocal microscopy. (A) Grayscale intensity values of immuno-reactive cells and (B) number of 

immuno-positive cells per high-powered field (mean ± SEM) in the CL among different day-groups 

(n=3-5 ovaries per group; Day 0 = ovulation). (C-F) Photomicrographs depicting anti-trkA immuno-

fluorescence (green) in bovine CL on Day 2 (C), Day 4 (D), Day 6 (E) and Post-LH (F). Cell nuclei 

are shown in red (pseudo-color). Scale = 20 µm.  
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2.5. Discussion 

The bovine model was used in the present study as a species representative of spontaneous ovulators 

and because of the ability to monitor ovarian events over time in relation to putative factors controlling 

ovarian function (Adams et al., 1995, 2008). Antral follicular dynamics during the estrous cycle in 

cattle and other species is a highly coordinated phenomenon characterized by two or more waves of 

follicle development. Each follicular wave consists of simultaneous growth of 8 to 40 follicles, detected 

initially at a diameter of ≥1 mm, one of which continues to grow (dominant follicle) while the others 

regress (subordinate follicles) (Ginther, 2000; Jaiswal et al., 2004; Adams et al., 2008). The dominant 

follicle during the luteal phase (i.e., elevated progesterone and low LH) will ultimately cease growth 

and undergo regression, whereas dominant follicle during lueolysis or in the absence of a CL (absence 

of the inhibitory effect of progesterone on LH release) will ovulate. 

 

Results of the present study reveal abundant expression of the NGF-specific receptor, trkA, in ovarian 

follicles and the CL throughout the estrous cycle in cattle. TrkA has been isolated in theca and 

granulosa cells of bovine ovarian follicles of varying sizes in ovaries collected from the abattoir (Dissen 

et al., 2000) and in immuno-histochemical studies (Levanti et al., 2005), but the physiologic role of the 

NGF/trkA system in ovarian function in cattle was not examined. In the present study, the granulosa 

and theca layers of the dominant follicle of both anovulatory and ovulatory follicular waves of the 

estrous cycle expressed higher levels (intensity, area stained, and proportion of positive cells) of trkA 

receptors than that of subordinate follicles, suggesting a role of OIF/NGF during follicle selection and 

maturation. Results are consistent with those of a study involving in vitro culture of isolated ovarian 

follicles from sheep in which concentrations of NGF in the follicular fluid were greater in follicles ≥4 

mm than in those ≤3 mm (Mattioli et al., 1999). The contrast in trkA expression between dominant and 
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subordinate follicles was most obvious during early CL development (Days 2 and 4) and after luteolysis 

(Post-LH); i.e., during periods of low progesterone and elevated LH, suggesting that trkA receptors 

may be induced by LH. In this regard, NGF and trkA were detected solely within 4 hours before the 

first preovulatory LH surge at the time of puberty in rats (Dissen et al., 1996). In addition, we found 

that early antral follicles (<1 mm in diameter) were immuno-reactive to trkA, similar to that previously 

reported in cattle (Levanti et al., 2005), reinforcing the idea that OIF/NGF is involved in follicular 

growth and maturation. Finally, in a recent report in cattle (Tanco et al., 2012), cows treated with OIF 

on Day 6 of the first follicular wave had earlier emergence of the next follicular wave than in the 

untreated control group. Taken together, the pattern of expression of trkA in the bovine ovary suggest 

that OIF/NGF has effects not only in mature stages as reported in other species, but also at multiple 

stages of folliculogenesis. 

 

An unexpected finding in our study was the high expression (in intensity and area stained) of trkA 

receptors in subordinate follicles of the Pre-LH group. An earlier histomorphometric study of bovine 

follicular populations (Singh et al., 2000) described a thickening or hypertrophy (luteinization) of the 

theca interna of subordinate follicles in both ovulatory and non-ovulatory waves. In the present study, 

we found this thickening effect only in the Pre-LH group and not in the Day 6 subordinate follicles. 

We attributed this finding to be a consequence of luteolysis and the associated increase in LH pulse 

frequency as a result of decreasing plasma progesterone concentrations (Ireland et al., 1982, Goodman 

et al., 1980). The relative absence of trkA immuno-reactivity in the subordinate follicles of the Post-

LH group was attributed to a more advanced state of atresia than in the Pre-LH group. 
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Analysis of the Cl revealed a tendency for a difference among day-groups in the number of immuno-

positive cells. The difference was attributed to a greater number of immuno-positive cells during the 

early luteal phase (Days 2 and 4) than during mature and regressing phases (Day 6, Pre- and Post-LH). 

A greater number of trkA-responsive cells is consistent with the findings of a luteotrophic effect of 

OIF/NGF reported in cattle (Tanco et al., 2012; Tribulo et al., 2015). Perhaps trkA expression in the 

early CL is a carry-over of trkA immuno-positive cells of the theca and granulosa cells of the 

preovulatory follicle, since trkA and NGF have been implicated as regulators of cyto-differentiation at 

follicle rupture (Mayerhoffer et al., 1996). In gilts, tkrA and NGF were detected in the CL from Day 3 

to Day 16 of the estrous cycle (as measured by immunofluorescence and western blot (Jana et al., 

2011). 

 

In conclusion, our data support the hypothesis that the luteotrophic effect of OIF/NGF is mediated, in 

whole or in part, by a rise in trkA receptor expression in the ovulatory follicle and early CL. Rather 

than an indirect effect via gonadotropin release, we infered that the follicular and luteogenic effects of 

OIF/NGF (endogenous or exogenous) in cattle (a spontaneous ovulator) is mediated directly at the 

level of the ovaries through interactions with trkA.  
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Chapter 3. Distribution of GnRH neurons in the hypothalamus and preoptic area of llamas 

(Lama glama) 

 

R Carrasco, J Singh, GP Adams 

Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University 

of Saskatchewan, Saskatoon, Canada 

 

3.1. Abstract 

Gonadotropin-releasing hormone (GnRH) is a decapeptide involved in the regulation of reproduction 

in all mammals studied to-date and its distribution within the brain shows wide variation across species. 

The objective of the present study was to characterize the number and distribution of GnRH neurons 

in the hypothalamus and preoptic area of llamas, an induced ovulator. The brains of female llamas (n 

= 4) were fixed, frozen and sectioned serially every 50 microns (coronal sections). Every 10th section 

was prepared for immunohistochemical staining of GnRH. The immuno-reaction was revealed by 3,3′-

diaminobenzidine (DAB) and hydrogen peroxide. The number of GnRH immuno-reactive cells ranged 

from 220 to 250 cells per brain and were localized in the medio-basal hypothalamus (44.3%), anterior 

hypothalamus (27%), preoptic area (14.9%), diagonal band of Broca/medial septum (13.4%), and 

mammillary area (0.5%). The majority of immuno-reactive cells were not localized in specific 

hypothalamic nuclei, but rather appeared to be distributed diffusely. GnRH fibers were identified in 

most of the areas analyzed, including the posterior pituitary. The highest concentration of fibers 

(P<0.05) was detected in the median eminence. No discernible pattern was detected in the distribution 

of different immuno-reactive cell morphologies (monopolar, bipolar, multipolar) within the 
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hypothalamus. We concluded that GnRH neurons in llamas are concentrated in the anterior and medio-

basal hypothalamus in close relationship to the third ventricle. 

 

3.2. Introduction 

Gonadotrophin-releasing hormone (GnRH) is a decapeptide that is fundamental in the regulation of 

reproduction (Gibson et al., 1997). It was originally isolated from the porcine hypothalamus (Schally 

et al., 1971) and later its presence was identified in the brains of many different species (King et al., 

1985). To date, three different GnRH isoforms have been discovered across species, but the isoform 

involved mainly in reproductive processes is type 1 or mammalian GnRH (reviewed by Herbison, 

2005). 

 

During embryonic development, GnRH cells migrate caudally from the nasal placode into the brain in 

a mid-ventral direction toward the hypothalamus (Wray, 2010), but also to non-hypothalamic areas 

(Merchentaller et al., 1982). Consequently, the distribution of GnRH cells is not homogenous 

throughout the brain and varies markedly among species (reviewed by Silverman et al., 1994). Studies 

in rodents using immunocytochemistry and in situ hybridization have shown an accumulation of GnRH 

cells in the preoptic area surrounding the organum vasculosum of the lamina terminalis (reviewed by 

Silverman et al., 1994). In contrast, similar studies in sheep detected the presence of immuno-reactive 

cells in caudal and cranial portions of the hypothalamus (Lehman et al., 1986; Caldani et al., 1989). In 

a study in sheep designed to determine the areas responsible for the surge or tonic secretion of GnRH, 

implants of estradiol in the medio-basal hypothalamus induced LH secretion whereas implants in the 

preoptic area did not (Caraty et al., 1998). In contrast, rodents whose preoptic afferents to the 
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hypothalamus were surgically sectioned failed to ovulate (Wiegand et al., 1980). This discrepancy in 

the role of different neuron populations suggests anatomical specialization of GnRH neurons 

(Herbison, 1998), which is an important factor to consider when studying ovulatory processes in 

different animals. 

 

Llamas are South American camelids classified as induced ovulators (Fernandez-Baca et al., 1970). 

Using transrectal ultrasonography it has been determined that these animals display continuous 

follicular waves. (Adams et al., 1990). Mating triggers a rise in circulating levels of luteinizing 

hormone (Bravo et al., 1990), which causes ovulation and corpus luteum formation (Adams et al, 1989, 

1991). Based on information from other induced ovulators (Carrol et al., 1985; Greulich, 1934), it was 

initially assumed that ovulation in llamas was triggered by physical stimulation of the genitalia 

(Fernandez-Baca et al., 1970). Based on the discovery of an ovulation-inducing factor (OIF) in the 

seminal plasma of camelids (Adams et al., 2005), however, the results of recent studies demonstrate 

that systemic absorption of this seminal protein is the primary trigger for the ovulatory response in 

camelids (Ratto et al., 2005, 2006, 2010). Ovulation-inducing factor (OIF) was recently found to be 

identical in amino-acid sequence and structure to nerve growth factor (NGF) (Ratto et al., 2012), the 

mechanism by which this protein triggers ovulation involves the release of LH (Adams et al., 2005) 

induced by triggering, directly or indirectly, GnRH neuron secretion (Silva et al., 2011). 

 

No information relating to the GnRH system in llamas was found in a search of the published literature, 

and the relationship between OIF and GnRH neurons therefore is unknown. The objective of the 

present study was to identify the anatomical distribution of GnRH neurons in the llama hypothalamus 
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and preoptic area, characterize the cytological characteristics of GnRH neurons, and identify the major 

GnRH pathways throughout the hypothalamus. 

 

3.3. Materials and Methods 

 

3.3.1. Animals and tissue collection 

Female llamas (n = 4) from the llama herd of the University of Saskatchewan were euthanized with an 

overdose of pentobarbital following the guidelines of the Animal Care Committee of the University of 

Saskatchewan. The head was separated from the body, perfused with 2 liters of cold heparinized saline 

solution (10,000 IU Na heparin/L), followed by 2 liters of a cold 4% paraformaldehyde in phosphate 

buffered saline (PBS; pH = 7.4). The brain was extracted from the cranium, and the portion of mid-

brain containing the preoptic area and hypothalamus was dissected and immersed in 4% 

paraformaldehyde overnight at 4°C (Fig 3.1). The next day, the sample was washed 3 times in PBS 

and immersed in 30% sucrose in PBS at 4°C until the tissues sank. Tissues were frozen at -80°C and 

sectioned every 50 um using a cryostat and sections were stored in cryoprotectant solution (30% 

sucrose, 30% ethylene glycol in PBS) at -20°C until immunohistochemistry was performed. In 

addition, the pituitary glands of 3 of the llamas were sectioned sagittally at 20 um increments, mounted 

on glass slides and stained for GnRH as described below 
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3.3.2. Immunohistochemistry 

Immunohistochemical procedure was applied to unmounted (free-floating) sections to obtain optimal 

staining of thick sections. The cryoprotectant solution was removed by rinsing the sections 4 times in 

PBS for 15 minutes each. Endogenous peroxidase activity was blocked by incubating sections for 30 

minutes in 30% hydrogen peroxide at room temperature, followed by 2 rinses in PBS. Antigen retrieval 

was performed by heating the samples to 93°C for 30 minutes in a sodium citrate solution (sodium 

citrate 0.1 M in distilled water; pH = 6.0). After cooling to room temperature and removing the antigen 

retrieval solution, non-specific binding was blocked by incubating sections with 1% BSA 0.3% triton 

X-100 in PBS for 3 hours. The primary antibody was diluted in 1% BSA, 0.3% triton x-100, 0.1% 

sodium azide in PBS (pH = 7.4) at a dilution of 1:5000 (mouse anti-GnRH; Stemberger Monoclonals, 

Cedarlane, Burlington, Ontario, Canada) and incubated with the sections for 24 hours at 4°C. Sections 

were washed 3 times for 15 minutes each with PBS and subsequently incubated with goat anti-

mouse/HRP antibody (1:200; Dako, Burlington, Ontario, Canada) for 24 hours at 4°C. The immuno-

reaction was revealed by incubating the sections in DAB for 30 minutes and all sections were rinsed 

in distilled water to stop the reaction (Hoffman et al., 2008). A set of sections were mounted in poly-

L-lysine coated slides and counterstained with hematoxylin. In addition, adjacent sections were stained 

with Cresyl violet for assessment of anatomical detail. Antibody specificity was tested by omitting the 

primary antibody; specificity was confirmed when no reaction was detected. The primary antibody 

used in the present study has been tested previously in different species (rat and sheep; Egginger et al., 

2011 and Tillet et al., 2012, respectively), and no cross-reactivity with other antigens has been reported. 

 

The brain atlas of the Lama glama, from the collection of the University of Wisconsin-Madison 

(http://brainmuseum.org/) was used to determine the anatomical areas of the hypothalamus and 
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preoptic area. In addition, stereotaxic atlases of other mammals (Rabbit, Urban et al., 1972 and Girgis 

et al., 1981; Pig, Felix et al., 1999) were used for reference. Slides were assessed with a light 

microscope at magnifications of 5x, 10x and 20x to determine anatomical detail and cell distribution, 

and at 40x and 100X to examine GnRH cell projections. Only cells where the nucleus was identified 

were quantified. The number of positive cells and fibers per section, per nucleus and per area, as well 

as the number of cell to cell contacts, and the number of cell projections were recorded among sections. 

 

3.3.3. Data analysis 

From each brain, 1 in every 10 sections (10% of total sections) was stained against GnRH and examined 

using a light microscope. The first section of each brain to be stained was selected randomly from the 

first 10 sections. Data are presented as mean ± SEM number of GnRH neurons and proportion of total 

neurons that were identified as GnRH neurons in the respective hypothalamic areas and nuclei. The 

number of GnRH immuno-positive cells are expressed in two ways: total number of GnRH cells per 

anatomical structure and density of GnRH neurons per anatomical structure. The density of GnRH 

neurons was calculated by dividing the immuno-reactive cell number per hypothalamic area and nuclei 

by the number of sections containing the area or nuclei. Differences in total GnRH immuno-reactive 

cells or densities of GnRH neurons among areas were compared by one way-analysis of variance for 

repeated measures (that is, counts from one area of the brain for an individual were not independent of 

counts for another area). When significant differences were detected, post hoc analyses using the 

method of least significant difference were conducted. The distribution of cell morphologies 

(monopolar, bipolar or multipolar) were compared by a goodness-to-fit chi-square test. Significance 

was considered when P<0.05.  
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3.4. Results 

The distance between the optic chiasma and the mammillary bodies corresponded to 17.5 mm (35 

sections stained per brain x 10 sections between stained sections x 50 um thickness per section). Based 

on the total number of cells per animal (range 220 to 250) and that 10% of the sections per brain were 

stained and analyzed, we estimated that the total number of GnRH immuno-reactive cells within the 

preoptic area and hypothalamus in the llama ranges between 2200 and 2500 cells (mean ±  SEM = 

2390 ± 88 cells).  

 

3.4.1. GnRH neuron cytology 

Three different cell projection patterns were identified in immuno-reactive cells; monopolar, bipolar 

and multipolar (Fig 3.1 A-D). The overall prevalence of these three morphologies throughout the 

hypothalamus was similar (monopolar 33.3%, bipolar 38.5%, multipolar 28.3%). However, in the 

medio-basal hypothalamus, the bipolar type of cell was most frequent (40.5%), followed by the 

monopolar type (35.2%), and the multipolar type (24.2%, P < 0.05). Immuno-reactive cells displayed 

two distinct profiles; an irregular border with multiple spines and a smooth border (Fig. 3.1 A, C). 

Contact between adjacent GnRH immuno-reactive cells was observed in all brains examined, but at a 

low frequency (2 to 3 per brain; Figure 3.1 E).  

 

3.4.2. GnRH immuno-reactive fibers 

Fibers were detected in all sections analyzed but fiber density was not homogeneous among sections. 

The presence of enlargements or varicosities was detected along every fiber examined (Fig 3.1 F). 

Fibers were detected in close relation to the lateral ventricles or in close apposition to other GnRH 
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neurons. The median eminence was the structure of the brain with the highest quantity of fibers (P < 

0.05; Fig 3.3 E). These fibers were present in the internal and external layers of the median eminence. 

The orientation of the fibers varied along the median eminence: in the rostral portion, axons had a 

rostro-caudal direction, and in the mid- and caudal parts of the median eminence the fibers were 

oriented in a latero-medial fashion. The medio-basal hypothalamus and the medial preoptic area 

displayed almost 20% of the total number of immuno-reactive fibers (Table 3.1). 

 

3.4.3. Fiber projections in the posterior pituitary 

GnRH fibers in the posterior portion of the pituitary gland were found in sagittal sections of pituitaries 

and transverse sections of the median eminence (Fig. 3.3). The fibers showed a caudo-ventral 

orientation within the pituitary and had a similar appearance to the fibers detected in the hypothalamus. 

Further, transverse sections of the caudal portion of the median eminence showed a dense presence of 

immuno-reactive fibers running in different directions (Fig. 3.3 E). These fibers were in proximity to 

the pituitary cleft with no penetration into the anterior pituitary. Immuno-reactive fibers were in close 

apposition to blood vessels but no contact was detected.  

 

3.4.4. GnRH cell distribution 

The number of GnRH immuno-reactive cells and fibers were not equally distributed among 

hypothalamic areas examined (P < 0.001 and P = 0.03, respectively; Table 3.1). While a relative 

accumulation of immuno-reactive cells and fibers in the middle portions of the hypothalamus (anterior 

and medio-basal hypothalamus) was observed (Fig 3.4), GnRH cells were scattered; that is, they were 

not aggregated in specific hypothalamic nuclei (Fig 3.2). The highest proportion (P < 0.05) of GnRH 



  

43 
 

cells was observed in the medio-basal hypothalamus and anterior hypothalamus (Table 3.1). The 

anterior hypothalamic areas displayed a similar number of GnRH cells to the lateral anterior and lateral 

hypothalamus, and both contained a greater number of cells than the lateral and medial septa, arcuate 

nuclei and periventricular nuclei (P < 0.05). No differences were detected in GnRH neuron density 

between the preoptic area, anterior hypothalamic area and medio-basal hypothalamus (Fig 3.4), but 

these regions had more GnRH cells than the diagonal band of Broca/medial septum or the mammillary 

area (P < 0.05). A representative drawing of the relative position of immuno-reactive neurons and 

fibers is shown in Fig 3.2. 
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Figure 3.1. Example of the general organization of llama brain. A. Ventral view of the llama brain. B. 

Magnification of A, square box indicates the area that was used for immunohistochemistry. C. 

Llama hypothalamus sectioned in the midline to expose the third ventricle (parallel lines). a= 

optic chiasma, b= anterior pituitary, c= posterior pituitary, d= mammillary bodies. 

 



  

45 
 

Table 3.1. Distribution of GnRH neurons and fibers (mean ± SEM and percent of total) in major 

hypothalamic areas and nuclei of llama brains (n = 4). Statistical comparisons are summarized 

in the table below. 

 Neurons Fibers 

 Mean ± SEM % Mean ± SEM % 

Diagonal band of Broca 21.5 ± 1.4a 9.0 29.3 ± 6.6a 5.1 

Medial septum  6.0 ± 1.0b 2.5 7.3 ± 3.3b 1.3 

Lateral septum 2.0 ± 0.5b 0.8 14.0 ± 5.2b 2.5 

Medial preoptic area 21.5 ± 1.3a 9.0 47.0 ± 10.7a 8.2 

Lateral preoptic area 11.5 ± 3.7a 4.8 9.5 ± 4.9b 1.7 

Anterior hypothalamic area 35.3 ± 9.3ac 14.7 32.8 ± 8.1a 5.7 

Lateral anterior 

hypothalamic area 
24.3 ± 3.1a 10.1 19.0 ± 7.5b 3.3 

Retrochiasmatic area 5.3 ± 1.0ab 2.2 6.3 ± 1.3c 1.1 

Arcuate nucleus 1.8 ± 0.6b 0.7 4.3 ± 3.3c 0.7 

Median eminence 0b 0.0 309.8 ± 82.2d 54.2 

Medio-basal hypothalamus 72.0 ± 9.3c 30.1 68.8 ± 31.5ab 12.0 

Lateral hypothalamic area 25.8 ± 4.3a 10.8 14.8 ± 7.8b 2.6 

Dorsal hypothalamus 6.8 ± 1.8b 2.8 2.8 ± 1.9c 0.5 

Supraoptic nucleus 3.0 ± 1.8b 1.3 1.5 ± 1.5c 0.3 

Suprachiasmatic nucleus 0b 0.0 0.8 ± 0.8c 0.1 

Periventricular nucleus 1.5 ± 1.0b 0.6 0.8 ± 0.8c 0.1 

Mammillary area 1.0 ± 0b 0.4 2.8 ± 2.8c 0.5 

TOTAL* 239.0 ± 8.8 100% 571 ± 150 100% 

* Total GnRH immuno-reactive neurons or fibers per llama 

abcd Within rows, values with different superscripts are different, P<0.05 
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Figure 3.2. GnRH immuno-reactive cell profiles in llama hypothalamus. Micrographs showing the 

different neuronal shapes observed. (A) Monopolar neuron. (B, D) Bipolar neuron. (C) 

Multipolar neuron. (E) Cell to cell contact. (F) Appearance of GnRH fibers, arrows show 

varicosities. (A-D) Arrowheads show the nucleus. A-E scale bar 50 µm. F scale bar 20 µm. 
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Figure 3.3. Schematic drawing of GnRH immuno-reactive cells (stars) and fibers (lines) distribution at 

different areas in the preoptic area and hypothalamus of llamas. Sections are 2000 to 3000 um 

apart and are arranged from rostral (left top; A) to caudal (right bottom; H). LV: Lateral 

ventricle, AC: Anterior commissure, AHA: Anterior hypothalamic area, MBH: Medio-basal 

hypothalamus, ME: Median eminence, IIIV: third ventricle, OT: Optic tract, Fx: fornix, DBB: 

Diagonal band of Broca, MS: Medial septum, MPO: Medial preoptic area, OX: Optic chiasma, 

AP: Anterior pituitary, MA: Mammillary area. 
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Figure 3.4. Distribution of GnRH fibers in the pituitary and median eminence of llamas. (A) Low 

magnification of a parasagittal section of posterior pituitary (PP) and anterior pituitary (AP; 

scale bar 2 mm). Squares are magnified in B-D. (B-D) High magnification of GnRH fibers 

(arrows) running through the caudal lobe of the pituitary, as shown in A. (E) Transverse section 

of the median eminence of llama stained against GnRH. Arrows show the immuno-reactive 

axons running through the median eminence and the posterior pituitary. Part of the anterior 

pituitary was lost (shown by asterisk) during processing. IIIV: Third ventricle, ME: Median 

eminence, AP: Anterior pituitary, PP: Posterior pituitary. (A–D) hematoxylin counterstain. 

Scale bar 50 um. 
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Figure 3.5. Number (mean ± SEM) of immuno-reactive cells in major areas throughout the 

hypothalamus and preoptic area of llamas (n = 4). (A) Total number of immuno-reactive cells 

among the hypothalamic areas examined in four animals. (B) GnRH immuno-reactive cell 

density in the hypothalamic areas examined, total cell number was corrected for the number of 

sections displaying the area. Areas are organized rostro-caudally (From DBB to MA). Bars with 

no common superscript show significant differences (P<0.05). DBB/MS: Diagonal band of 

Broca/medial septum/lateral septum, POA: Medial and lateral preoptic area, AHA: Medial and 

lateral anterior hypothalamic area, MBH: Medio-basal and lateral hypothalamus, MA: 

Mammillary area.  
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Table 3.4. Anatomical distribution of monopolar, bipolar and multipolar GnRH neurons in the llama 

hypothalamus (mean ± SEM; n = 4 brains).  

 

Anatomical area Monopolar Bipolar Multipolar 

 

Diagonal band of 

Broca/Medial and 

Lateral Septa 

12.8 ± 4.0 (39.8%) 11.3 ± 2.3 (35.2%)  8 ± 1.9 (25.0%) 

 

Preoptic area 
11.5 ± 3.4 (32.2%) 14.0 ± 2.9 (39.2%) 10.3 ± 1.3 (28.7%) 

 

Anterior 

hypothalamus 

17.3 ± 4.8 (27.8%) 22.8 ± 4.9 (36.7%) 22.0 ± 4.1 (35.6%) 

 

Medio-basal 

Hypothalamus 

35.3 ± 5.6 a (35.3%) 40.5 ± 13.9 b (40.5%) 24.3 ± 6.0 c (24.3%) 

 

Mammillary Area 

 

0.0 (0.0%) 0.3 ± 0.3 (25.0%) 30.8 ± 0.5 (75.0%) 

 abc Within rows, values with different superscripts are different, P<0.05. 

* Percentage of cell type within an area. 
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3.5. Discussion 

In the present study GnRH neurons and fibers had similar morphological features among mammalian 

species in terms of shape and staining patterns (King et al., 1985). Similar to sheep (Lehman et al., 

1986; Silverman., 1994), and rat (Merchenthaler et al., 1984), GnRH neurons in llamas were not 

localized in specific hypothalamic nuclei and, in general, were scattered loosely among major 

hypothalamic areas.  

 

GnRH neurons have been described previously in different species (mouse, rat, guinea pig, sheep, 

human; King et al., 1985) and the results have shown a wide variation among species in relation to 

their distribution. In the rat, the majority of GnRH neurons are located in the medial septal-preoptic 

regions and very few cells are located in the medio-basal hypothalamus (Merchentaler et al., 1984). A 

similar pattern was described in sheep (Lehman et al., 1986; Caldani et al., 1988), but showing a higher 

proportion (15-30 %) of cells present in the anterior hypothalamus. We found that in llamas 27% and 

44% of the immuno-reactive cells were located in the anterior and medio-basal hypothalamus, 

respectively (Fig 3.4), and few cells were located in the preoptic area (lateral and medial; 13,8% of the 

total GnRH neurons). Our data is in agreement with observations from the mink, another induced 

ovulator, where 80% of GnRH cells are located in the medio-basal hypothalamus (Toumi et al., 1992) 

and close to 20% of cells are located in the preoptic area and anterior hypothalamus. The accumulation 

of cells in the medio-basal hypothalamus has been described, to a lesser degree, in humans and 

monkeys (King et al., 1985). There is a scarcity of this type of studies in induced ovulators, and it 

remains to be established as to whether this distribution of GnRH neurons is characteristic or not of 

induced ovulators.  
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Although GnRH neurons act in a pulsatile fashion throughout the estrous cycle there is evidence that 

there are subpopulations that are specialized in certain processes (i.e. ovulation). In rabbit, electrical 

damage of the area surrounding the organum vasculosum did not compromise reflex ovulation in does, 

and were able to develop hemorrhagic follicles 24 hours after copulation with a fertile buck (Lescure 

et al., 1978). Similarly, female ferrets that received penile intromission had a higher proportion of 

activated GnRH neurons in the medio-basal hypothalamus than other areas (Wersinger et al., 1997; 

Baker et al., 2001). In addition, in ewes that were implanted with estradiol, only those implanted in the 

medio-basal hypothalamus displayed an LH surge whereas those implanted in the preoptic area failed 

to ovulate (Caraty et al., 1998). Taken together, these findings suggest that the GnRH system contains 

specialized neuronal subpopulations associated to specific areas in the brain, and it remains to be 

established if any of the GnRH populations described in the present study is involved actively during 

ovulation in llamas. 

 

An ovulation-inducing factor has been detected in Bactrian camelids (Chen et al., 1985) and South 

American camelids (Adams et al., 2005; Ratto et al., 2011). In llamas and alpacas, the factor has been 

found to be identical to nerve growth factor (OIF/NGF; Ratto et al., 2012). The distribution of OIF/NGF 

receptors have been predominately found in an area denominated as the basal forebrain (Gibbs et al., 

1994), which includes the diagonal band of Broca and the lateral and medial septum. We found that 

the number of GnRH neurons in the areas corresponding to the basal forebrain is around 11% of the 

total of GnRH cells. We inferred that given this relative low density of immuno-reactive cells is 

unlikely that such a small population of immuno-reactive cells in the diagonal band of Broca are 

capable of inducing a preovulatory LH surge. Further, it has been estimated in mouse that at least 40% 

of GnRH neurons are activated during ovulation in mouse (Wu et al., 1992).  It may be possible that 
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other neuronal components, including GnRH neurons, express one of the two receptors for OIF/NGF; 

the high affinity trkA and the low affinity p75. 

 

The median eminence is the place where hypothalamic hormones are released to the portal vessels 

which later reach and stimulate the anterior pituitary (Page, 2005). An unexpected finding in our study 

was the presence of GnRH immuno-reactive projections in the neural lobe of the pituitary (Fig 3.3), 

the projections were in close relation to the pituitary cleft and occasionally distinguished within the 

neural lobe (Fig 3.3). Such GnRH projections have also been reported in a multispecies comparative 

study of the GnRH system (King et al., 1985), where bats, ferrets, and humans resembled the 

organization described in the present study. The functional consequences of this arrangement have not 

been elucidated, and whether they contribute to critical events such as the preovulatory LH surge 

remains to be established. 

 

In summary, the GnRH system in llamas forms a continuum with an accumulation of cells in the 

anterior and medio-basal hypothalamus on the lateral aspects of the third ventricle. This proximity 

between the cerebral ventricle and the GnRH cells, suggest a potential route for OIF in the 

cerebrospinal fluid to stimulate directly or indirectly the preovulatory secretion of GnRH/LH. 
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Chapter 4. The relationship between gonadotropin releasing hormone and tyrosine receptor 

kinase A in the hypothalamus and preoptic area of the llama 

 

Carrasco R, Singh J, Adams GP 

Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University 

of Saskatchewan, Saskatoon, Canada. 

 

4.1. Abstract 

A molecule identical to nerve growth factor, with ovulation-inducing properties has been discovered 

in the seminal plasma of South American camelids. The effect has been shown to be mediated, at the 

level of the hypothalamus, presumably by GnRH neurons. The objective of the present study was to 

establish a morphological relationship between GnRH neurons and OIF/NGF high affinity receptor, 

trkA. Mature llamas (n = 4) were euthanized and their brain tissue was fixed and processed for 

immunohistochemistry on free-floating sections. Ten equidistant sections per brain were stained using 

antibodies against trkA and GnRH for immunofluorescence and immunoperoxidase. Cells immuno-

reactive to trkA were detected in most hypothalamic areas, especially in the diagonal band of Broca, 

the periventricular nucleus, and the lateral preoptic nucleus. A low proportion of GnRH neurons were 

immuno-reactive to trkA (1% of total GnRH cells). Some GnRH fibers were found occasionally, to be 

in proximity to trkA immuno-positive neurons. Results did not support the hypothesis that the effect 

of OIF/NGF is driven by its direct interaction with GnRH neurons. 
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4.2. Introduction 

Llamas and alpacas ovulate in response to copulation; that is, they are induced ovulators (England et 

al., 1969; Fernandez-Baca et al., 1970). The physical stimulation of coitus, however, is not the primary 

trigger for ovulation, as initially proposed, but rather it is in response to a factor present in seminal 

plasma that induces a preovulatory LH surge (Adams et al., 2005; Ratto et al., 2012). The seminal 

ovulation-inducing factor (OIF) is a potent stimulator of LH release (Adams et al., 2005; Ratto et al., 

2011), and is capable of inducing ovulation in llamas and alpacas at dose 1/100th of that present in a 

normal ejaculate (Tanco et al., 2011).  The factor was recently found to be identical to nerve growth 

factor (Ratto et al., 2012), and will be herein-after referred to as OIF/NGF. In a study designed to 

determine the mechanism by which OIF/NGF elicits LH release from the pituitary gland (Silva et al., 

2011), llamas pretreated with a GnRH receptor antagonist and subsequently treated with OIF/NGF 

failed to have a preovulatory LH surge. Although there is evidence of OIF/NGF-induced LH release 

from pituitary gonadotrophs in vitro (Bogle et al., 2012), the main site of action of OIF/NGF in vivo 

appears to be at the level of the hypothalamus.  

 

Ovarian follicular development in llamas and alpacas occurs in a wave-like pattern (Adams et al., 

1990), as described in other farm animals (Adams, 1999; Draincourt, 2001). As a monotocous species, 

each follicular wave involves development of a single dominant follicle which, in llamas and alpacas, 

is capable of ovulating when it is ≥ 7 mm in diameter. In the absence of mating, ovulation does not 

occur, a CL does not develop, and successive follicular waves emerge at periodic intervals. This is a 

striking difference from spontaneous ovulators, where the corpus luteum is present during the majority 

of the estrous cycle, and progesterone plays and important role in follicle maturation and oocyte 

competence (Fair et al., 2011). In induced ovulators, ovarian estradiol is not associated with positive 
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feedback on the hypothalamic-pituitary axis to elicit the LH surge as in spontaneous ovulators, but it 

does modulate pituitary LH secretion in OIF/NGF treated llamas (Silva et al., 2012). 

 

Nerve growth factor is a molecule with the special ability to maintain and enhance neuron survival 

(Levi-Montalcini, 1987), and is present in restricted areas of the central nervous system, such as the 

dorsal root ganglia and in cholinergic pathways in the ventral forebrain (Conner et al., 1994). Nerve 

growth factor mediates actions through interaction with two different receptors; trkA and p75. TrkA 

(also known as NTRK1) is a high affinity receptor and mediates most of the classical actions of NGF. 

Conversely, p75 (also termed NGFR) is a low affinity receptor that has the ability to bind other 

neurotropins. In vitro culture studies support the idea that p75 is involved in inducing cell death and, 

under certain conditions, is capable of mediating the effects of NGF (Yoon et al., 1998). Since 

pharmacological blockade of trkA eliminated most of the effects of NGF (Ohmichi et al., 1992), it is 

likely that the ovulation-inducing effect of OIF/NGF is driven by interaction with the high affinity 

receptor, trkA. 

 

The NGF-trkA system has been described in several species and different tissues either by in situ 

hybridization (Gibbs et al., 1994; Dissen et al., 2000), immunohistochemistry (Gibbs et al., 1994; Ren 

et al., 2005; Badowska-Szalewska et al., 2006) or autoradiography (Richardson et al., 1986). In the rat 

brain, NGF receptors have been found in the diagonal band of Broca, caudal putamen, lateral preoptic 

area and globus palidus (Richardson et al., 1986). The relationship between the NGF/TrkA system and 

autonomous nervous system has been shown at central and peripheral level. TrkA immuno-reactive 

cells in the rat brain were also immuno-positive in a high proportion to choline acetyltransferase, an 

enzyme involved in the synthesis of acetylcholine. (Sobreviela et al., 1994). Conversely, an in vivo 
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study revealed that continuous injections of a NGF antiserum produced a depletion of sympathetic 

structures in newborn mice (Levi-Montalcini et al., 1960).  

 

To test the hypothesis that OIF/NGF effects a response through direct interaction with GnRH neurons 

in llamas, the objectives were to determine if GnRH neurons or their neuronal terminals express trkA 

receptors. 

 

4.3. Materials and Methods 

 

4.3.1. Animals and tissue collection 

Mature llamas (n = 4) were euthanized using an overdose of pentobarbital, and the head was separated 

and immediately perfused with 2 liters of cold saline heparinized solution (10,000 IU Na heparin/L), 

followed by 2 liters of a solution of 4% paraformaldehyde in phosphate buffered saline (PBS; pH= 

7.4). After the brain was extracted from the cranium, the preoptic area and hypothalamus were 

dissected out and immersed in the same fixative overnight at 4°C. The next day, the tissues were 

washed 3 times in PBS and stored in PBS with 0.1% (w:v) sodium azide at 4°C until cryoprotection. 

Samples were immersed in cryoprotectant solution (30% sucrose in PBS) until the tissues sank, then 

were frozen at -80°C until sectioning. Tissues were sectioned transversely (coronal plane) at 50 um 

using a cryostat and each section was stored in a mixture of 30% sucrose and 30% ethylene glycol in 

PBS at -20°C until immunostaining. Animal procedures were approved by the University of 

Saskatchewan Committee on Animal Care in accordance with guidelines of the Canadian Council on 

Animal Care. 
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4.3.2. Immunohistochemistry  

Immunofluorescence was carried out on unmounted (free floating) sections to optimize staining of 

thick sections. Ten equidistant sections per brain (one every 1500 um) were selected for double 

immunofluorescence labelling. After removing the cryoprotectant solution, sections were rinsed 4 

times in PBS for 15 minutes each. Antigen retrieval was performed by heating the samples at 80° C 

for 35 minutes in sodium citrate solution (pH: 6.0). After cooling to room temperature, sections were 

blocked with 0.5 % BSA 0.5% triton X-100 in PBS for 3 hours. Sections were incubated with a cocktail 

of primary antibodies diluted in 0.5 % BSA, 0.5 % triton x-100, and 0.1% sodium azide in PBS for 48 

hours at 4°C. Anti-GnRH antibody (mouse anti GnRH; Stemberger Monoclonals; Cedarlane, 

Burlington, Ontario, Canada) was used at a dilution of 1:10,000 and anti-trkA (rabbit anti-trkA, Santa 

Cruz biotechnologies; Dallas, Texas, USA) was used at a dilution of 1:500. Sections were washed 3 

times with PBS and subsequently incubated with goat anti-rabbit antibody conjugated to biotin (1:500; 

Life Technologies; Burlington, Ontario, Canada) and goat anti-mouse/Alexa 546 antibody (1:500; Life 

Technologies; Burlington, Ontario, Canada) for 3 hours at 37°C in blocking buffer. After washing the 

secondary antibodies, samples were incubated with streptavidin conjugated to Alexa 488 (Life 

Technologies; Burlington, Ontario, Canada) diluted in blocking buffer to 1:200 for two hours at 37°C 

(Hoffman et al., 2008). Finally, sections were washed and mounted on poly-L-lysine coated slides, air 

dried, incubated 10 minutes in a solution of 0.3% sudan black in 70% ethanol, air dried again, covered 

with Vectashield mounting medium (Vectorlabs, Burlington, Ontario, Canada) containing DAPI, and 

a coverslip was applied.  

An additional set of sections was stained by immune-peroxidase for trkA and GnRH using DAB and 

Nickel DAB as chromogens. Nickel DAB (blue-black product) and DAB (brown product) can be used 
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for immuno-detection of two different molecules in the same section. The immune-peroxidase 

procedure was carried as stated above. 

 

A set of adjacent sections was stained with Cresyl violet for assessment of the structural and anatomical 

detail. Anatomical organization was determined using the aid of the Lama glama brain atlas from the 

brain atlas collection of the University of Wisconsin, Madison, and stereotaxic atlases of other 

mammals (Urban et al., 1972, Girgis et al., 198 and Felix et al., 1999). 

 

4.3.3. Antibody controls 

Preabsorption of the primary anti-trkA antibody with trkA immunogen (Santa Cruz Biotechnologies; 

Dallas, Texas, USA) was performed in a 1 to 5 ratio (weight:weight) with no resultant immuno-

detection. In addition, llama dorsal root ganglia were used as a positive control (Fig 4.1). GnRH is 

highly conserved among species (Fernald et al., 1999), and use of the anti-GnRH antibody has been 

validated previously with different species (rat, Egginger et al., 2011; sheep, Tillet et al., 2012). 

Omission of the anti-GnRH or anti-trkA antibody eliminated immuno-detection in hypothalamic 

sections.  

 

4.3.4. Data analysis 

Cell numbers were counted manually by a single observer using a wide-field fluorescent microscope 

at 20x magnification (Zeiss, Axioskope 40; Thornwood, New York, USA). To avoid double counting, 

only cells with a distinguishable single nuclei were quantified. Confocal microscopy was performed 
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on a Leica LSM confocal microscope (Concord, Ontario, Canada) with lasers for excitation of Alexa 

488 and Alexa 546. Cell number are expressed as mean number of cells per anatomical structure or 

area among animals. Data are expressed as mean ± SEM or as a percentage of the total number of cells 

displaying immuno-reactivity. Number of trkA and GnRH immuno-reactive cells within an area or 

nucleus were compared by paired t-tests. The number of trkA immune-positive cells along the 

hypothalamus and preoptic area was compared by analysis of variance for repeated measures. 

Differences were considered to be significant when the p-value was less than 0.05. 

 

4.4. Results 

 

4.4.1. General distribution of trkA immuno-reactive cells  

Llama dorsal root ganglia stained against trkA receptor showed a strong immunoreaction (Fig 4.1 A). 

The signal was restricted to sensory neurons; no reaction was detected in satellite cells. When the 

antibody was pre-incubated with trkA, no reaction was detected (Fig 4.1 B), documenting the 

specificity of the antibody signal.  

TrkA immuno-reactivity was present in all hypothalamic areas and nuclei examined, except in median 

eminence, dorsal hypothalamus and optic chiasma. Areas that were positive to trkA immunoreactivity 

had a wide variation in the number of positive cells (Table 4.1). The areas with highest density of trkA 

immuno-positive cells were the diagonal band of Broca and the periventricular nuclei (P < 0.05). Low 

quantities of trkA immuno-reactive cells were detected in the arcuate nucleus and retrochiasmatic area. 

The immuno-reactive signal was restricted to the cytoplasm surrounding the nuclei, no identifiable 

neuronal projections were detected. 
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Figure 4.1. Immuno-reactivity (A) and negative control (B) for trkA in a dorsal root ganglium of a 

llama. The negative control section was stained with the antibody pre-absorbed with the 

immunogen. The same antibody dilutions were used in A and B. Scale bar = 30 um. 
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Figure 4.2. Immuno-reactivity to trkA receptor in the diencephalon of llamas. (A-C) Distribution of 

trkA positive cells in the periventricular area of llama brain at increasing magnifications. (B 

and C) Arrows show immuno-reactive neurons at high magnification. (D-E) Presence of trkA 

positive cells (arrows) in the supraoptic nucleus. Scale bars: A 1mm. B 150 µm. C 30 µm. D 2 

mm. E 150 µm. 
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Table 4.1: Distribution of cells and cell fibres expressing GnRH and trkA immuno-reactivity (mean 

number ± SEM, and percentage of the total number) in the hypothalamus and preoptic area of 

llamas (n = 4 brains).  

 GnRH TrkA  

Area Cells  % Fibers Cells 
% 

 

Diagonal band of Broca 1 ± 0.8* 3.1 8.8 ± 3.1 193 ± 17.5a 22.3 

Medial septum 1 ± 0.3 1.2 2.5 ± 0.6 48 ± 15.5b 4.9 

Lateral septum 0 0.0 0.0 0c 0 

Medial preoptic 6 ± 3.7 14.8 14.3 ± 8.5 39 ± 15.6b 4.5 

Lateral preoptic 3 ± 1.8 7.4 5.0 ± 2.4 101 ± 36.1b 11.7 

Optic chiasma 0 0.0 0.0 0c 0.0 

Suprachiasmatic nuclei 0 0.0 0.0 0c 0.0 

Supraoptic nuclei 0* 0.0 0.0 56 ± 14.1b 6.5 

Anterior hypothalamus 2 ± 0.6 4.3 6.5 ± 1.2 33 ± 17.4b 3.8 

Lateral anterior hypothalamus 3 ± 0.4 7.4 4.8 ± 2.1 69 ± 28.8b 8.0 

Periventricular hypothalamus 1 ± 0.3* 1.9 0.3 ± 0.3 174 ± 25.7a 20.2 

Medio-basal hypothalamus 16 ± 3.2* 40.1 12.5 ± 3.0 52 ± 6.1b 6.0 

Lateral hypothalamus 7 ± 2.2* 16.7 5.3 ± 1.8 47 ± 9.0b 5.4 

Mammillary hypothalamus 0 0.0 0.0 36 ± 20.9c 4.1 

Dorsal hypothalamus 0 0.0 0.0 0c 0.0 

Retrochiasmatic area 1 ± 0.7 2.5 5.3 ± 2.8 12 ± 7.5c 1.4 

Arcuate nucleus 0 0.0 8.3 ± 3.8 5 ± 4.3c 0.6 

Total  40.5 ±7.3   2390 ± 131  

* Within rows, asterisk indicates differences between trkA and GnRH cells (P < 0.05)  

abc Within columns, values with different superscripts are different (P < 0.05) 
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4.4.2. Morphological relationship between trkA and GnRH 

The GnRH neuronal population was scarce in comparison to trkA immuno-positive cells (40.5 ± 7.3 vs 

2390.2 ± 131 cells; P<0.001; table 4.1). Of the total number of cells in the hypothalamus and preoptic 

areas displaying immuno-reactivity to GnRH, 156/160 (99%) stained for GnRH alone and 4/160 (1%) 

stained for both GnRH and trkA. Of the number of cells in the hypothalamus and preoptic areas 

displaying immuno-reactivity to trkA, 9477/9481 (>99%) stained for trkA alone and 4/9481 (<1%) 

stained for both GnRH and trkA. Aside from the lack of co-localization, TrkA and GnRH neurons were 

not commonly visualized in the same anatomical plane, and on only three occasions appeared closely 

related (i.e. within the same microscopic field; Fig 4.3). In the few instances (three ocacions) where 

GnRH immuno-reactive fibers were found in close relationship to trkA immuno-reactive cells, there 

was no apparent contact (Fig 4.4). 
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Figure 4.3. Immuno-reactivity to GnRH and trkA in llama hypothalamus, detected by double 

immunofluorescence (A-C) or double immunoperoxidase (D-E). (A-C) Top panel illustrate 

different cells displaying immuno-reactivity for GnRH (A; red), trkA (B; green) and both 

channels (C; merged) in a single microscopic field. (D-E) Darkfield micrographs showing 

immunoreactivity for GnRH (brown; arrow heads) and trkA (black; arrows) at different 

magnifications (D 10x; E 20x). Scale bars: A-C 30 µm. D: 120 µm. E: 60 µm.  
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Figure 4.4: Relationship between trkA immuno-reactive cells (green) and GnRH fibres (Red) in the 

llama hypothalamus. Series of fluorescence micrographs of the same sample of the 

hypothalamus of a llama showing (A) cell nuclei (DAPI; blue), (B) immune-reaction against 

trkA cells (green), (C) immuno-reaction against GnRH fibers (red), (D) Merged channels. Scale 

bars 30 µm.  
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4.5. Discussion 

Ovulation-inducing factor has been shown to induce ovulation in a high proportion of llamas and 

alpacas after parenteral administration. The effect is mediated via GnRH neurons (directly or 

indirectly) resulting in LH secretion from gonadotropes in the anterior pituitary (Silva et al., 2011). 

Results of the present study do not support the hypothesis that OIF/NGF effects a response through 

direct interaction with GnRH neurons in llamas, since the high affinity receptor for OIF/NGF was 

detected in ≤1% of GnRH neurons. It is unlikely that such a low proportion of GnRH neurons would 

drive the preovulatory GnRH and LH surge since, in mice at least, around 40% of GnRH neurons are 

activated during the LH surge, as measured by detection of the c-FOS proto-oncogene (an established 

marker of activation; Wu et al., 1992). Similar to the triggering factor for the LH surge in spontaneous 

ovulators (estradiol), that of induced ovulators like camelids (OIF/NGF) must involve an intermediate 

cell type to interact with GnRH neurons (e.g., kisspeptin cells, norepinephrine cells). Consequently, 

GnRH neurons act as a final output for a complex interplay between neurons (Herbison, 2005), and in 

llamas it appears that they do not interact with OIF/NGF via trkA receptor. 

  

The role of NGF on reproductive tissues has been elucidated during the last 20 years. Early studies 

documented the presence and modulation of NGF content in the ovary after denervation in rodents 

(Lara et al, 1990). Further studies established that NGF and trkA increased their expression prior to 

first ovulation in the prepubertal mouse (Dissen et al., 1996). Despite these surprising findings, no 

evidence linking NGF to hypothalamic GnRH functions have been described. Studies have reported 

that other growth factors have an effect in the hypothalamic GnRH population. GnRH neuron secretion 

can be triggered by transforming growth factor alpha in the female rat hypothalamus in culture (Ojeda 

et al., 1990). Most notably, a role of glial cells on GnRH function has been shown in the mouse; this 
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effect appears to be mediated by an interaction of astrocytes, tanycytes and GnRH neurons at the 

median eminence (Prevot, 2002). Furthermore, intraventricular injection of NGF or NGF antibodies 

modified FSH levels in blood and breeding patterns in birds (Bentley et al., 1997). The finding suggests 

that disrupting or enhancing the NGF system at a central level affects reproduction.  

 

Both the high molecular weight form (7s NGF) and the low molecular weight form (2.5s NGF) were 

detected in the central nervous system after intravenous administration of NGF in mice (Pan et al., 

1998). There are two routes by which OIF/NGF can cross the blood-brain-barrier; 1) by interacting 

with the choroid plexus, or, 2) by crossing cerebral capillaries. If OIF/NGF crosses the blood-brain-

barrier by interacting with the epithelium of the choroid plexus, the expression of a specific receptor 

may be required. In this regard, only one report has documented the expression of neurotropins and 

their receptors in the choroid plexus, showing undetectable levels of trkA mRNA in the rat choroid 

plexus in comparison to other neurotropin receptors (Timmursk et al., 1995). The low affinity NGF 

receptor has been described in primary culture of the rat choroid plexus (Spuch et al., 2011). Thus, it 

remains to be established if in South American camelids, OIF/NGF crosses the blood-brain-barrier. 

 

Our study of the llama brain shows that trkA immuno-reactive cells were present in most areas of the 

hypothalamus, but were accumulated in two major areas: 1) the diagonal band of Broca; and, 2) the 

periventricular area. The large number of trkA immune-reactive cells in the periventricular area offers 

interesting insight for the OIF/NGF hypothesis; this area is in close contact with the third ventricle, 

suggesting that if OIF/NGF crosses the blood-brain-barrier and reaches the cerebrospinal fluid it may 

be available to interact with the trkA receptor in regions of the brain that influence GnRH neurons. 

Although, the ependymal epithelia lining the third ventricle is permeable to molecules, close to the 
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median eminence the ependymal cells are modified into tanycytes which regulate the passage of 

molecules between the cerebrospinal fluid and brain tissue (Rodriguez et al., 2010; Fanglet et al., 2013). 

Thus, it remains to be established if OIF/NGF is capable to diffuse within the brain tissue and interact 

with the trkA immune-reactive cells.  

 

We concluded that the proportion of GnRH neurons that express trkA receptors in the llama 

hypothalamus is too low to  support the hypothesis that OIF/NGF interacts directly with GnRH neurons 

to elicit ovulation. The neurochemical identity of the trkA immuno-reactive cells remains to be 

established. 
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Chapter 5. General Discussion 

 

In three studies we examined aspects of the ovulatory and luteotrophic effect of OIF/NGF in cows and 

the anatomy of the GnRH system in llamas. The local and systemic aspects of the OIF/NGF theory 

reflect the different mechanisms by which OIF/NGF exerts an effect in induced and spontaneous 

ovulators. Studies designed to determine the effect of OIG/NGF on ovulation in cows have failed to 

show changes in luteinizing hormone concentrations in plasma after treatment with OIF/NGF. 

However, effects on follicular dynamics and CL development have been reported consistently (Tanco 

et al., 2012; Tribulo et al., 2015). In llamas, copulation and treatment with seminal plasma or purified 

OIF/NGF elicits an ovulatory response in a high proportion of females. These two examples illustrate 

the systemic or central effect (central nervous system in llamas), and the local or peripheral effect in 

different species (ovarian effect in cow or sheep). 

 

The presence of trkA receptor in the follicular wall has been intensively studied in rodents (Lara et al., 

1990; Dissen et al., 1996; Dissen et al., 2000; Dissen et al., 2001; Romero et al., 2002). In mouse, the 

expression of trkA receptor is restricted to the theca layer of preovulatory follicles in the hours prior to 

first ovulation (Dissen et al., 1996). The temporal interaction was not examined before in other species 

in relation to the estrous cycle. The results of the present study suggests that trkA receptor is expressed 

constantly either in the granulosa or theca layer of dominant follicles during the follicular wave in 

cattle. Perhaps, the difference in expression patterns of trkA may be related to a difference between 

mono-ovulatory and poly-ovulatory species (i.e. cow versus mice), suggesting that the differential 

pattern of expression in trkA or NGF may be the result of dramatic differences in ovarian and follicular 

dynamics. 
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Species differences may be reflected in whether or not OIF/NGF or endogenous NGF modifies ovarian 

function. It is well established that endogenous NGF is present in ovarian tissues (mouse and cow, 

Dissen et al., 2000; pig and cow Levanti et al., 2005; ground squirrel, Li et al., 2014) and follicular 

fluid (sheep, Barboni et al., 2002; human, Sadeu et al., 2012). Conversely, OIF/NGF can be detected 

in different sexual accessory glands in males of several species (Bogle, 2015). It is unclear if intrinsic 

factors in the female may favour the action of NGF of different origins (endogenous or seminal 

plasma). For example, an early report (Marion et al., 1950) showed that the time from the end of estrous 

to ovulation and the length of estrous are decreased when females are mated with a vasectomized bull. 

In addition, it was found that intrauterine treatment with seminal plasma tended to increase conception 

rates in dairy and beef cows (Odhiambo et al., 2009). Furthermore, bull semen contains OIF/NGF and 

is functional in the llama (Ratto et al., 2006) and cow (Tribulo et al., 2015). All these findings reflect 

the effects of OIF/NGF in the reproductive system of the cow. Perhaps the expression and secretion of 

endogenous NGF is repressed in the female, and OIF/NGF administration (or insemination) surpasses 

that regulatory system and induces effects otherwise not produced. 

 

The mode of action of OIF/NGF during ovulation in the brain of llamas has not been examined to date, 

but presumably induces ovulation by influencing directly or indirectly GnRH neurons (Silva et al., 

2011). If so, OIF/NGF would cross the blood-brain barrier and passage through the blood-brain barrier 

should happen in a rapid manner. In favor of this hypothesis there is evidence that β-NGF can cross 

the blood brain barrier in mice (Pan et al., 1998). Hypothetically, NGF can cross the blood brain barrier 

on two ways in llamas, through the choroid plexus or across cerebral capillaries. However, given the 

existence of tight junctions in cerebral capillaries and the blood brain barrier, is most likely that NGF 

reaches neural tissue via the choroid plexus. Studies have pointed the existence of leaky capillaries, 

expressing markers of fenestrations in the arcuate nucleus of rodents (Cioffi et al., 2009; Cioffi, 2011), 
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suggesting that this brain area may be exposed to the internal milieu. In order to reach the cerebrospinal 

fluid by the choroid plexus, one would expect the existence of receptors or transporters associated with 

NGF. However, to our knowledge this has not been reported in the literature (Timmusk et al., 1995), 

only the low affinity neurotropic receptor has been reported (Spuch et al., 2011). Injection of 

radiolabeled NGF into the lateral ventricle of rats labels the surrounding neural tissue (Ferguson et al., 

1994), implying that OIF/NGF diffuses freely into cerebral tissue and neurons.  

 

The cerebrospinal fluid at the level of the third ventricle offers a good opportunity for 

neurotransmission and signaling for three reasons. First, it provides a constant flow allowing 

downstream signaling to specific targets (Johansen et al., 2005). Second, the ventral aspect of the third 

ventricle displays low CSF flow, which may facilitate the diffusion of OIF into the adjacent areas. And 

third, other molecules such as leptin, t3, and prolactin have been shown to reach the CSF through the 

choroid plexus and exert effects at specific areas in the brain (Rodriguez et al., 2010). Our data shows 

that in llamas the anterior hypothalamus and the medio-basal hypothalamus display higher proportion 

of cells reactive to GnRH and trkA. These two areas are located surrounding the ventral aspect of the 

third ventricle, and given this location it is structurally feasible for OIF to reach GnRH neurons or other 

neurons that provide inputs to them.  

 

If OIF/NGF does not cross the blood brain barrier in llamas, is possible that OIF interacts with some 

GnRH elements in circumventricular organs, such as the median eminence and organum vasculosum 

of the lamina terminalis. We found that the population of GnRH neurons around the organum 

vasculosum of the lamina terminalis is low, and there are no GnRH or trkA immuno-reactive cells in 

the median eminence besides GnRH immuno-positive fibers. However, recent evidence in mice has 
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shown that dendrites, the part of the neuron that is involved in reception of signals, are extremely long 

and branched in GnRH neurons, reaching up to 100 microns away from the cell body (Herde et al., 

2011). In addition, these neuronal projections may be in contact with the interstitial fluid outside the 

blood-brain barrier, since tracers injected intraperitoneally can be colocalized in immuno-reactive 

GnRH neurons. Thus, GnRH neurons display specializations to sense endocrine changes in the 

bloodstream and in llamas this aspect must be clarified. 
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5.1. Conclusions. 

 

The following conclusions were obtained from this work: 

 

 TrkA receptor is expressed in dominant and subordinate follicles during the follicular wave. 

The degree of expression is higher in dominant compared to subordinate follicles; 

 The corpus luteum of cattle expresses varying degrees of immuno-reactivity during formation 

and regression; 

 The majority of GnRH cells in the brain of adult llamas are predominantly in the anterior and 

medio-basal hypothalamus; 

 The majority of GnRH fibers are present in the median eminence and medio-basal 

hypothalamus; 

 GnRH-like immuno-reactivity resembling fibers are detectable in the posterior pituitary; 

 TrkA immuno-reactivity is detectable in the preoptic area and hypothalamus of llamas, 

principally in the diagonal band of Broca, periventricular nuclei and lateral preoptic area; and, 

 A low proportion of GnRH neurons (about 1%) appeared immuno-reactive to trkA; 
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5.2. Future studies. 

 

The complex arrangement of neural structures offers a challenge in understanding the biology of 

OIF/NGF. Given the wide array of neuropeptides that are involved in ovulation, we have to ask 

ourselves if molecules such as kisspeptin or norepinephrine mediate the ovulatory effect of OIF/NGF. 

Furthermore, are these neurons (kisspeptin, norepinephrine, or others) activated during ovulation? Our 

findings did not support the hypothesis that GnRH neurons express trkA receptor, however, it may be 

important to precise by which mechanism OIF/NGF crosses the blood brain barrier and which part of 

the brain OIF/NGF is capable of reaching. Since the onset of puberty is determined by the first 

ovulation, would treatment with OIF/NGF affect puberty in camelids? Or would sexual maturation be 

earlier in camelids? An additional question would be is the trkA/p75/NGF system any different in 

induced and spontaneous ovulators? 

 

NGF has been implicated in a variety of ovarian processes. It seems that NGF is more than a molecule 

maintaining the innervation of organs and based on our results it may be involved in folliculogenesis, 

would a local source of OIF/NGF in the ovary enhance follicular or luteal development? Is OIF/NGF 

or any neural component involved in follicular dominance? In this regard, it has been suggested that 

the ovaries of ruminants have a higher density of adrenergic innervation than other species. Is it 

possible that the classical endocrine regulation of ovarian function may be modulated or complemented 

by neural imputs? 
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