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Abstract 

The research focuses on the design and characterization of two- (chitosan/glutaraldehyde) 

and three-component (chitosan/glutaraldehyde/β-cyclodextrin) biopolymer sorbent materials.  

The chitosan prepolymer investigated had a low molecular weight (~ 50,000-190,000 gmol
-1

) 

and high molecular weight (~ 150,000-375,000 gmol
-1

) whereas glutaraldehyde was used as the 

cross linking agent for each biopolymer. Two component chitosan/glutaraldehyde co-monomers 

were reacted at variable mole ratios (1:15, 1:25 and 1:35).  Three-component copolymers 

containing β-cyclodextrin (β-CD) were obtained by reacting variable mass ratios of β-CD with 

chitosan (1-3, 1-1 and 1-1/3; chitosan/β-CD (w/w)).  The chitosan/glutaraldehyde fraction was 

held constant at a 1:6 mole ratio comparable to the two-component copolymers.  The two- and 

three-component biopolymer materials were characterized using TGA, FT-IR spectroscopy and 

elemental analysis (C, H & N).  The solid-solution isotherm properties in aqueous solutions for 

the biopolymers were characterized with two detection methods (UV-Vis and ICAP-OES) with 

two types of adsorbates, respectively; p-nitrophenol (PNP) and arsenate oxoanion (HAsO4
2-

) at 

alkaline conditions.   

The Langmuir (i.e. Sips restricted) and the Sips sorption isotherm models were utilized to 

obtain sorption parameters at pH 8.5 and 295 K, (i.e. surface area estimates, sorption capacities 

and removal efficiencies) for each biopolymer material.  The surface area estimates are as 

follows for the 1:15, 1:25 and 1:35 chitosan-based two-component biosorbent materials: the Sips 

restricted values are 46.7, 46.7 and 31.6 m
2
g

-1
 and the Sips values are 124, 46.7 and 31.6 m

2
g

-1
 

for the low molecular weight chitosan material.  The Sips restricted are 58.7, 54.2 and 64.7 m
2
g

-1
 

and for the Sips are 79.8, 64.7 and 96.3 m
2
g

-1
 for the high molecular weight chitosan material, 

respectively.  The surface area estimates are as follows for the 1-3, 1-1 and 1-1/3 chitosan and   
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β-cyclodextrin three-component biopolymer materials: for the Sips restricted are 34.6, 54.2 and 

116 m
2
g

-1
 and for the Sips are 275, 51.2 and 161 m

2
g

-1
, respectively.  Removal efficiencies are 

dependent upon the pH, temperature, and the relative amount of sorbent and sorbate.  The 

removal efficiencies of p-nitrophenol by the biopolymers ranged between 7.1 and 48.9% for low 

and high molecular weight chitosan biosorbent materials.  The removal efficiencies of p-

nitrophenol by three components, the chitosan, β-cyclodextrin and glutaraldehyde biopolymers 

ranged between 7.3 and 28.0%.  The removal efficiencies of the arsenate oxoanion by the 

biopolymers ranged between 30.7 and 92.2% for low and high molecular weight chitosan 

biosorbent materials. The removal efficiencies of arsenate oxoanion by the three-component 

biopolymers (chitosan, β-cyclodextrin and glutaraldehyde) ranged between 22.8 and 55.4%.  The 

removal efficiencies for the unmodified commercial chitosan (high and low molecular weight) 

and activated carbon sorbent materials was negligible (~ 0%). 

The Langmuir (i.e. Sips restricted) and the Sips sorption isotherms both showed similar 

“best-fit” results for the sorption in aqueous solution data which resulted in neither isotherm 

model being favoured over the other.  
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1.0 Introduction 

1.1 Research Objectives 

Many examples of economical and environmentally friendly biomaterials that use 

chitosan as a framework component in biopolymer sorbents materials are well known and their 

usage for the sorption of metal contaminants (i.e. lead, copper, arsenic, etc.)
14,21

 from aqueous 

environments.  Organic pollutants, such as phenolic derivatives and inorganic pollutants such as 

arsenic are a cause for concern.  These pollutants may potentially build up in aquatic 

environments through their widespread usage, posing serious concerns for water quality and 

human health.  Arsenic and phenolic derivatives are considered toxic and carcinogenic 

compounds.  

It is known that surface area effects have a profound influence on the sorption properties 

of polymeric materials.  Thus, it is hypothesized that biopolymers based on co-monomer mole 

ratios of chitosan-glutaraldehyde (with and without β-cyclodextrin) will affect the surface area 

and the sorption properties of such sorbent materials.  Two-component chitosan-based 

biopolymers have been prepared using a systematic design strategy by varying the relative co-

monomer mole ratios (1:15, 1:25 and 1:35) of the cross linker (i.e. glutaraldehyde) to offer novel 

sorbent materials.  The physicochemical properties of these frameworks have been investigated 

by comparing low and high molecular weight chitosan.  Three-component hybrid chitosan-based 

biopolymers incorporate β-cyclodextrin into a design strategy by varying the mass ratios of 

chitosan and β-cyclodextrin into a 1:6 chitosan:glutaraldehyde framework of biopolymer 

material.   
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The objectives of this research were to synthesize and characterize the physicochemical 

properties of chitosan-based sorbent biomaterials.  As well, the sorption properties of chitosan 

biopolymers were investigated in aqueous solutions containing arsenate oxoanion (i.e. HAsO4
2-

) 

and an organic anion (i.e. phenolate form of PNP) respectively.  In addition, the equilibrium 

sorption properties were evaluated to provide an estimate of the sorbent surface area and the 

sorption capacity.  The Langmuir (i.e. Sips restricted) or Sips isotherm models
4
 (see eqns. 13 and 

14) provide parameter estimates of the monolayer coverage (Qm) and related thermodynamic 

sorption parameters of the sorbent biomaterials.  

The research was focused on a systematic design approach of chitosan based biopolymer 

materials by tuning the relative composition of the copolymer.  The materials are characterized 

using thermal gravimetric analysis (TGA), elemental analysis (EA) and FT-IR spectroscopy.  

The sorption properties were investigated using equilibrium isotherms according to the uptake of 

arsenic oxoanion and PNP, respectively, at variable concentration conditions.  Arsenic sorption 

was quantified using ICAP-OES and the sorbent accessible surface area was estimated using a 

dye-based adsorption method with UV-Vis spectroscopy; whereas the sorption results were 

analyzed using Langmuir (i.e. Sips restricted) and Sips isotherm models.  The biopolymer 

sorbents were compared with unmodified commercially available sorbents; high mol. wt. 

chitosan flakes, low mol. wt. chitosan powder and granular activated carbon. 

1.2 p-Nitrophenol (PNP) 

 PNP is a model organic pollutant which possesses toxic and carcinogenic properties and 

poses potentially serious environmental and human health problems
4
. There is no known natural 

source of PNP, it is produced as an intermediate during the synthesis of azo dyes, insecticides, 
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herbicides and pesticides.  PNP has also been detected in the exhaust of light-duty gasoline and 

diesel vehicles.  PNP is formed from the photochemical degradation of aromatic compounds 

such as benzene and toluene while in the presence of nitric oxide or hydroxyl radicals and nitrous 

dioxide.
72

 There are three manufacturers in the USA with estimated production volumes of 45 – 

450 kg/year up to 45 000 – 450 000 kg/year, where a total release of PNP into the air is reported 

at 420 kg; no data available on the release of PNP into aquatic environments. Through wet and 

dry deposition, airborne nitrophenols can be released into the hydrosphere and geosphere.  

Nitrophenols in water are estimated to be at least in the order of several thousand tonnes per year 

on a global basis.
72

   

PNP has surface area of 52.5 Å2
 in its co-planar orientation and a surface area of 25.0 Å2

 

in its orthogonal orientation.
22

  PNP is soluble in water (12.4 g/L at 293K) with a vapour 

pressure , Pv = 3.2x10
-6

 kPa at 293 K, pKa = 7.08 at 294.5 K, log Kow = 1.85 – 2.04; thus, the 

environmental fate of PNP favours partitioning into the hydrosphere.
72

 There is a clear need to 

develop novel materials for the remediation of aquatic environments containing PNP. 

 

 

Figure 1.1.  The ionized form of PNP at pH (i.e. pH=9) values above the pKa 7.08
72

 of PNP. 
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1.3 Arsenic Background 

Water is an essential requirement for every living organism to grow and to survive on the 

Earth.  Water pollution has become a grave concern for many people living in developing nations 

of the world that have been affected by natural the occurrence or anthropogenic sources of 

pollutants; thus, making safe clean drinking water a limited resource.  It is projected that by the 

year 2025, the world population will have grown to ~8.45 billion people, resulting in 60% of the 

total population (5.1 billion) living in regions of the world that will be faced with moderate to 

extreme water scarcity and food vulnerability.  With increasing industrial growth and climate 

change,
15

 there are several water borne contaminants, chemical and microbial, that need to be 

addressed through sequestration methods using low cost and innovative materials.  Recently, 

heavy metals have become a cause for concern due to the fact that mining, oil refining and the 

combustion of fossil fuels release large amounts of heavy metals into the environment.  In 

particular, arsenic is a toxic element that warrants special concern owing to its carcinogenic 

properties and its high relative abundance alongside mercury, palladium and cadmium.
12

 The 

recent BP oil spill in the Gulf of Mexico on April 20
th

, 2010 has resulted in a renewed interest in 

arsenic contamination, “the presence of oil in seawater disrupts the ocean’s mechanism to 

naturally filter out arsenic”.
13

 Oil spills clog up the ocean floor sediments preventing arsenic to 

absorb onto mineralized surfaces, resulting in increased arsenic concentrations. The resulting 

build up results in the transport of contaminants into the food chain, causing birth defects and 

behavioral changes in marine animals.
13

  The oil spill in the Gulf represents potentially 

significant and detrimental environmental effects and concern for human health in the coming 

years if no efforts are made to remediate such contaminants.
13
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World-wide, arsenic is widely recognized as a hazardous and toxic contaminant to human 

health and to the environment.  High arsenic concentrations found in shallow zones of ground 

water have been reported in the USA, China, Bangladesh, Taiwan, Mexico, Argentina, Poland, 

Canada, Hungary, Japan, Mongolia, Chile, Pakistan, Romania, Vietnam, Nepal, Myanmar, 

Cambodia and India.  Bangladesh and West Bengal have the largest population (~36 - 70 million 

people) at risk for high arsenic groundwater contamination.
1,2,9-11

 Some regions of Bangladesh 

are reported to have concentrations as high as 1000 μg/L.
11

  The surrounding wastewater released 

from oil production platforms may contain comparable arsenic levels up to 1000 μg/mL.
12

 In 

Canada, a community called George Gordon First Nation located in Saskatchewan, is reported to 

have unacceptable high levels of arsenic above 70 μg/L in its raw water.
46  

Health Canada has 

established a maximum acceptable arsenic concentration in drinking water of 10μg/L.
49 

1.4 Arsenic Properties 

Arsenic was isolated in 1250 A.D. by Albertus Magnus.  It is a silver-grey, brittle, 

crystalline solid, metalloid with an atomic number of 33 and an atomic weight 74.9 amu.  It 

ranks 20
th

 in natural abundance of the known elements, 14
th

 in seawater and 12
th

 in abundance 

within the human body.    Arsenic becomes mobile through natural weathering reactions, 

biological activity, geochemical reactions, volcanic emissions and other anthropogenic activities.  

Arsenic concentrations in most minerals range from 0.5 to 2.5mg/Kg.  The natural weathering of 

minerals converts arsenic sulfides to arsenic trioxides and enters the hydrological cycle by dust, 

dissolution in rain, rivers or groundwater.
9,10  

Anthropogenic sources of arsenic include mining, 

combustion of fossil fuels, use of pesticides, herbicides and crop desiccants.  The use of arsenic 

additives to livestock feed contribute as an additional source of arsenic in the environment.
9,10  
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1.5 Acid-Base Dissociation Constants 

The acid dissociation constants (Ka) of chitosan, β-cyclodextrin and arsenate are 

important parameters to consider in this study because pH plays a key role in the speciation and 

sorption properties of arsenic.  Arsenic species exist in three different dissociated forms in 

aqueous solution, all of which are dependent upon the pH and undergo dissociation.  The amine 

groups of chitosan display a variable ionization state depending on the pH of the solution, as well 

as the hydroxyl groups of β-CD.  Table 1.1 lists various types R-NH2 groups and their 

corresponding Ka and Kb values. 

Table 1.1.  Acid and Base Dissociation Constants with the conjugate acid dissociation constants 

of various organic amines (adapted from reference 47). 

Weak Base Ionization Reaction *Kb **Ka pKa 

Methylamine 

(CH3NH2) 

CH3NH2(aq) + H2O(l)           

CH3NH2
+

(aq) + OH
-
(aq) 

4.4x10
-4

 2.27x10
-11

 10.6 

Ethylamine 

(C2H5NH2) 

C2H5NH2(aq) + H2O(l)            

C2H5NH3
+

(aq) + OH
-
(aq) 

5.6x10
-4

 1.79x10
-11

 10.7 

Aniline 

(C6H5NH2) 

C6H5NH2(aq) + H2O(l)              

C6H5NH3
+

(aq) + OH
-
(aq) 

3.9x10
-10

 2.56x10
-5

 4.59 

*Refers to the non-protonated amine base. 

**Refers to protonated form of base 
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1.6 Hard and Soft Acids and Bases (HSAB) 

 Ralph G. Pearson was the first to introduce the Hard and Soft Acids and Bases (HSAB) theory 

in 1963
45

, where he proposed a simple rule that “hard acids bind strongly to hard bases and soft 

acids bind strongly to soft bases”.  The arsenate species is considered a soft acid due to the large 

polarizability of the molecule and the arsenite species is considered a hard acid due to the limited 

polarizability of the molecule.
10

 

1.7 Arsenic Speciation 

Arsenic mobility occurs mostly in aqueous environments, whereby it gains primary 

access to the human body through contaminated water and food intake laden with this material.  

Arsenic exists in different oxidation (-3, 0, +3, +5) states.
9,11

 Arsenate(V) exists in aqueous 

solution at ambient conditions and it will hydrolyze depending on the solution pH, hence, 

affecting the arsenate speciation according to eq. 1-3:
30  

 

H3AsO4 (aq) ↔ H2AsO4
-
 (aq) + H

+
 (aq), pKa,1 = 2.19   (1) 

H2AsO4
-
(aq) ↔ HAsO4

2-
(aq) + H

+ 
(aq), pKa,2 = 6.94    (2) 

HAsO4
2-

(aq) ↔ AsO4
3-

(aq) + H
+
 (aq), pKa,3 = 11.50    (3) 

At pH 8.5 and by Eq. (2), reveals the predominant arsenate species in solution is H2AsO4
-
 

and HAsO4
2-

.  The mass action law provides confirmation of the percentage of each form of 

arsenate at pH 8.5 in aqueous solution: 

][

]][[

42

4

2,

2







AsOH

HAsOH
K a        (4) 
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The total arsenic(V) concentration in solution [As(V)]T is expressed by the following: 

[As(V)]T = [H2AsO4
-
] + [ HAsO4

2-
]      (5) 

Therefore, the percentage of H2AsO4
-
 and HAsO4

2-
 species in solution is 2.60% and 97.4%, 

respectively. This is confirmed by Scheme 1.1. 

 

 

 

 

 

 

 

 

Scheme 1.1.  Arsenic speciation in aqueous solution at various pH conditions (adapted from 

reference 31) where CHNH2 represents the monomer units of chitosan in its neutral form for the 

chitosan amine group. 

The most dominant forms of arsenic is arsenite, As(III), and arsenate, As(V); As(V) is 

commonly found in uranium mill tailings and As(III) is the most mobile and toxic form of 

arsenic found in groundwater.
34

  Arsenite and arsenate vary in their state of protonation from pH 

2-12 in solution, see Scheme 1.2. 
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Scheme 1.2. The arsenic species (As(III)/As(V)) capable of variable states of protonation from 

pH 2-12. 

 

1.8 Arsenate(V) Oxoanion Species Bond Distances, Molecular Volume and Surface Area 

The isolated tetrahedral shaped oxoanion arsenate species was built using Spartan 2008 

1.2.0 (see Figure 1.2) where the bond lengths, volume and area were calculated using 

equilibrium geometries in the ground state with Hartree-Fock 3-21G in vacuum.  Table 1.2 

shows the various bond lengths of each bond in the Arsenic(V) oxoanion species.  The bond 

lengths, volume and surface area are important to compare relative to the cavity dimensions of 

βCD.  From Table 1.2, it is apparent the arsenate(V) oxoanion species can fit comfortably into 

the βCD cavity because the cavity volume of the βCD exceeds the van der Waals volume the 

arsenate(V) oxoanion species. 

Arsenate(V) 

 

 

 

 

 Ura

nium Mill 

Tailings)6 

 

Arsenite (III) 

(most toxic 

& mobile) 
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Figure 1.2.  The isolated tetrahedral shaped arsenate oxoanion species was built using 

Spartan 2008 1.2.0, calculated in the absence of any counter ion(s) or solvent. 

 

 

Table 1.2.  The covalent bond distances of the tetrahedral oxoanion arsenate species. 

Bond Bond Lengths/Å 

 1.66 

 1.67 

 1.85 

 0.973 

Note: The van der Waals Volume of HAsO4
2-

 is 34.3 Å2
 and the Molecular Surface Area is 92.Å2

 

 

1.9 Technologies of Arsenic Remediation from Contaminated Water/Wastewater  

There are several potential methods for the removal of arsenic from contaminated waters 

and they may be classified into two general types, i) physicochemical and ii) biological
10,11

:  The 

physicochemical techniques include oxidation/precipitation, adsorption, ion exchange, 

precipitation-coagulation, membrane filtration and permeable reactive methods.  The biological 

techniques include phytoremediation and biological treatment with living microbes/bio-filtration.  

There are disadvantages and advantages to each technique and choosing the best arsenic 

2- 
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remediation technology depends on various parameters including pH conditions and 

concentration levels.  The economics to operate and maintain the arsenic remediation technology 

must consider the management of the toxic sludge waste by-products produced in the overall 

process.  Municipal-scale technologies may employ a pretreatment step in combination with any 

of the approved methods for total arsenic removal: coagulation/filtration, lime softening, 

activated alumina, ion exchange, reverse osmosis, manganese greensand filtration, 

electrodialysis and adsorption/filtration.  The pretreatment step in combination with an arsenic 

removal method show removal efficiencies >90% that result in the reduction of total arsenic 

removal to levels as low as 3-5 μg/L.
50 

1.10 Biosorbents and Heavy Metal Sorption 

Adsorption/filtration using various media, such as iron, aluminum and titanium oxide, 

indicate the great potential for arsenic removal technology strategies.
50 

Activated carbon (AC) is 

a popular sorbent for wastewater treatment and is one of the most widely used materials for 

sorption-based applications.
14

  The relative cost of AC, regeneration costs and its worldwide 

demand has driven research and development efforts toward alternative biomaterial sorbents 

with improved sorption properties and lower cost.  The development of such biomaterial sorbents 

will improve the sorption capabilities and widespread usage of various biomaterial sorbents for 

water treatment and remediation processes.  Several low-cost sorbents such as, chitosan, natural 

zeolites, clays, industrial waste (i.e. waste slurry, lignin, iron (III) hydroxide and red mud), low 

rank coal (lignite) and agricultural biomass have been studied as sorbent materials.
14

  A 

comparison of the costs and sorption capabilities of AC with other commercially available 

sorbents for heavy metal cations (Hg
2+

, Cr
6+

, Cd
2+

, Pb
2+

) indicate that chitosan showed among 
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the greatest sorption capacity due to its ability to specifically remove various types of heavy 

metal cations (Hg
2+

, Cr
6+

, Cd
2+

).
14

 
 

1.11 Chelation 

Chelation is the formation or presence of coordinate covalent (or other attractive 

interactions) between two or more separate binding sites within the same ligand and a single 

central atom.
35

 The terms bidentate, tetradentate or hexadentate indicates the number of potential 

binding sites of the ligand
35

.   Sir Gilbert T. Morgan and H.D.K. Drew
36

 first applied the term 

chelate in 1920, “The adjective chelate, derived from the great claw or chele (Greek) of the 

lobster or other crustaceans, was suggested for the caliper-like groups which function as two 

associating units and fasten to the central atom so as to produce heterocyclic rings.”  Chitosan 

and its derivatives possess the unique ability to form complexes by chelating to metal ions. 

1.12 Chelation Applications 

Common chelators include phosphates and ethylenediaminetetraacetic acid (EDTA).  

EDTA is a hexadentate (six-toothed) ligand and chelating agent; see Scheme 1.3.  EDTA is used 

for chelation therapy
81

, which involves the use of chelating agents for poisonous heavy metal 

detoxification. There are several applications for chelators such as, chemical analyzers, water 

softeners, and ingredients in many commercial products such as shampoos and food 

preservatives and as a soil treatment method to extract heavy metals (Cd, Cu, Pd, Zn).
58

   

http://en.wikipedia.org/wiki/Greek_language
http://en.wikipedia.org/wiki/Lobster
http://en.wikipedia.org/wiki/Heterocyclic
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Scheme 1.3. The structure of EDTA
4-

 chelating a metal ion; where n=charge on the metal 

ion (M
n+

) 

 

1.13 Anion Binding 

 Designing anion receptors is a challenging task because the sorbent and sorbate both need 

to behave as team in order to reach the ultimate goal of the sorbent which is attracting anion 

sorbates in aqueous solution.  There are five intrinsic properties
43

 that make anion receptor 

chemistry a challenge: i) anions are larger in comparison to cations and the size of the receptor 

needs to be greater to accommodate the anion (i.e. F
-
 is the smallest anion with an ionic radius of 

1.33 Å in comparison to K
+
 with an ionic radius of 1.38 Å), ii) inorganic anions such as halides 

(spherical shaped), SCN
-
 (linear shaped), PtCl4

2-
 (tetrahedral shaped) and Fe(CN)6

3-
 (octahedral 

shaped) occur in various atomic and molecular geometries, iii) anions have higher free energies 

of hydration resulting in receptors competing more with the surrounding solvent to attract the 

anion (i.e. ΔGhydration (F
-
) = -465 kJmol

-1
 and ΔGhydration (K

+
) = -25 kJmol

-1
), iv) Depending on the 

size of the pH window of the anion.  For example, the arsenate dissociates initially at pH 2.19, 
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the second dissociation at 6.94 and the third dissociation at 11.50
31

 resulting in a wider pH range; 

thus an anion receptor has more opportunity to be influenced into a more complimentary cationic 

behavior.  On the other hand, arsenite does not dissociate until pH 9.1
31

; thus having a smaller 

pH window and requiring more thought as to the design of the anion receptor and v) most anions 

are formerly “coordinately saturated” and interact through hydrogen bonding or van der Waals 

interactions, thus resulting in relatively weak binding compared with cation binding. 

1.14 Receptors/Hosts Frameworks 

Supramolecular chemists have focused most of their attention on binding of cationic 

guests with receptor/hosts. Natural waters are mostly (pH = 6 - 8) neutral to slightly alkaline 

conditions and previous research efforts have investigated chitin or chitosan in acidic and/or 

alkaline environments.
51

  To the best of my knowledge, there is limited research focused on the 

use of chitin or chitosan as neutral receptors/hosts with anionic guests.  However, there are 

several other sorbent systems that report arsenate oxoanion sorption under varying pH 

conditions. See Table 1.3. 

 

 

 

 

 

 

 



15 
 

Table 1.3.  Various receptor/hosts frameworks with their corresponding parameters for arsenate 

oxoanion sorption. 

Sorbent 

Material 

pH Sorption Mechanism Receptor

/Host 

Type 

Removal Reference 

Surfactant 

Modified 

Zeolite 

6.5-6.8 Anion exchange Cation Qm
L
 = 

7mmol/Kg 

52 

Surfactant 

Modified 

Kaolinite 

7.2-7.5 Anion exchange Cation ---- 52 

 Carbonate rich 

soils 

8.4 Inner sphere complex via 

ligand exchange 

Neutral  53 

Fe
0
, citrate and 

solar light 

 

 

8.1-8.4 Combing Fe(III) with citrate 

form Fe-citrate that absorbs 

solar radiation generating OH
.
, 

H2O2 and O2
.-
 which are highly 

oxidizing species favouring the 

oxidation of Fe
0
 to Fe(III) 

generating Fe(III) for the 

formation of iron hydroxide 

which adsorbs arsenic 

 98.9%*  

1000 – 

1200 μgL
-1

 

arsenic 

54 

Fe
0
, citrate and 

solar light 

8.2-8.5 Combing Fe(III) with citrate 

form Fe-citrate that absorbs 

solar radiation generating OH
.
, 

H2O2 and O2
-
 which are highly 

oxidizing species favouring the 

oxidation of Fe
0
 to Fe(III) 

generating Fe(III) for the 

formation of iron hydroxide 

which adsorbs arsenic 

 99.5%* 

1100 – 

1300 μgL
-1

 

arsenic 

54 

Chitosan-

montmorillonite 

4.5 External surface and interlayer 

adsorption 

Cation Qm
L
=120m

mol/Kg 

55 

Qm
L
 denotes the Langmuir monolayer coverage. 

*Arsenic removal levels were optimized by using 1.3 g of zero-valent iron and 4.5 mg citrate/L 

natural water followed by 6 hrs of irradiation. After solar irradiation was followed by 18 hrs of 

equilibration. 
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1.15 Chitosan 

Chitosan is a derivative of chitin which is second to cellulose as the most naturally 

abundant biopolymer in the world.  Chitin originates from the exoskeletons of arthropods, 

particularly from crab and shrimp shells or the cell walls of fungi and yeast.
20

 Chitin exists as 

three polymorphic forms: the α-, β- and γ-forms; the γ-form may be considered as a pseudo-

chitin form much like a distorted version of either α- or β-form of chitin
33

.  The α- form of chitin 

has intramolecular and intermolecular hydrogen bonding with an anti-parallel alignment; thus, 

exhibiting stronger hydrogen bonding
59

.  While the β-chitin form shows only intramolecular 

hydrogen bonding with parallel alignment
20

; the γ-chitin exists as two chains up (parallel 

alignment) for every chain down (anti-parallell alignment). 

The α-form of chitin is the stronger more abundant in the environment, it is found in 

arthropod cuticles where extreme hardness is a structural requirement.  The β- and γ-forms of 

chitin are found in squid, Loligo where flexibility and structural strength are required.
33

  

Cellulose and chitin are structurally analagous, they differ at the C-2 position; where the 

hydroxyl group on cellulose is replaced with an acetamido group on chitin
18

 (see Figures 1.3 and 

1.4). 
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Figure 1.3.  The molecular structure of chitin a natural linear polysaccharide polymer 

consisting of (1, 4) 2-acetamide-2-deoxy-D-glucose units; where n represents the number 

of monomer units. 

 

 

 

Figure 1.4. The molecular structure of a linear cellulose a polymer consisting β(14)-D-

glucose units; where n represents the number of monomer units. 

  

 

The advantage of chitosan, in comparison to cellulose and chitin, is the occurrence and 

the relative accessibility of the primary amine groups,
17,18,19

 shown in Fig. 1.5.  The amine 

groups of chitosan provide an advantage over conventional carbohydrate-based biosorbents 

studied in terms of their heavy metal adsorption properties
14

, because they are relatively efficient 
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chelators for metal ions.  It is important to recognize that the –NH2 group of chitosan may 

participate in cross linking reactions, in addition to the hydroxyl groups. 

 

 

 

 

Figure 1.5.  The structure of chitosan (adapted from reference 30). 

The amine groups of chitosan have a pKa of 6.5
30

 and become neutral amine groups when 

the pH is above the pKa of the amine group.  The pH effect is an important consideration when 

designing experimental conditions for studies aimed at investigating of the cation or anion 

binding sites at the sorbent surface.  In this sorption study, a neutral sorbent surface was created 

at pH 8.5.  Chitosan is a readily available biomaterial which can be modified for the sorption of 

arsenate species by varying the pH conditions.  The percentage of neutral amine groups can be 

determined by the following acid-base equilibria in aqueous solution:
30 

    (7) 

][

]][[

3

2






CHNH

CHNHH
K a        (8) 

By the law of mass action: 

][][][ 232 CHNHCHNHCHNH T  
     (9) 
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Where the CHNH2 unit represents the neutral amine monomer of chitosan and CHNH3
+
 

represents the protonated ammonium ion monomer species.  The percentage of neutral amine 

(CHNH2) on the sorbent surface is obtained by using Eqs. (8) and (9): 

 

a

T

K

HCHNH

CHNH

][
1

1

][

][

2

2





      (10) 

Therefore, at pH 8.5 the amounts of CHNH2 (99%) and CHNH3
+
 (1%) species in solution differ 

significantly and the predominance of CHNH2 favours neutral adsorbate binding at these 

conditions for the chitosan based synthetic materials.  The percentage of neutral amine is plotted 

against pH in Scheme 1.1.   

The primary amine (CHNH2) groups are important for adsorption because they can 

chelate many heavy metal cations through the nonbonding electrons of N.  The abundance of 

primary amine groups is affected by the degree of deacetylation; i.e. a low degree of 

deacetylation implies a low percentage of primary amine groups are potentially available for 

sorption.  Crystallanity and molecular weight also affect the sorption properties of chitosan.
16

 

Chitosan is a biologically safe, non-toxic, biocompatible and biodegradable polymer.
28

 These 

features offer chitosan as a promising sorbent for applications in pharmaceuticals, cosmetics, 

biomedical, biotechnological, agricultural, food and non-food industries and sorbents for the 

environmental remediation of contaminated water.
29

 

Chitin and chitosan are aminopolysaccharides; the complete N-deacetylation of chitin 

produces chitosan.
14

 The chemical modification of the amino functionality of chitosan can be 

modified to engineer biopolymers designed for tailored sorption applications.  The amino 

functionalities are applicable to chemical reactions as acetylation, quanternization, reaction with 
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aldehydes and ketones (yielding Schiff bases), alkylation, grafting and chelation of metals.
20

 

Commercially available chitosan possesses a range of molecular weights (i.e. polydispersity) and 

degrees of acetylation.  The high mol. wt. chitosan is soluble under mild acidic conditions and 

limits its applications since the N-centre becomes protonated
29 

and requires acidic pH conditions 

to ensure adequate solubility in aqueous solution.  

1.16 Chitosan Biopolymers 

The hydroxyl groups on chitin are also of importance in various types of chemical 

modification.  Trimukhe and Varma
21

 studied the chelation/complexation of heavy metals with 

cross linked chitin.  Chitosan was cross linked using three different cross linkers: 

diisocyanatohexane (HDI), trimetallic anhydride (TMA) and dibromodecane (DBD) where the 

hydroxyl groups of chitin were involved in the cross linking (see scheme A).  After the cross 

linking step, deacetylation of the cross linked chitin was performed to expose primary amino 

groups.  This process was repeated to ensure that all of the amine groups were available for 

heavy metal chelation/complexation.  The advantages for cross linking allow tuning of the 

sorbent SA, pore structure properties and swelling characteristics of the biopolymer.  They 

obtained sorption capacities comparable to unmodified chitosan powder.  The advantages of 

using chitosan based biopolymers are their relatively low cost, capacity for regeneration, 

enhanced biodegradability and biocompatibility. 

To synthesize a chitosan cross linked with Glu biopolymer, the relative amount of 

chitosan and Glu, acetic acid, pH and temperature of the reaction determines the 

physiocochemical properties of the biopolymer.
5
 Chitosan based biopolymers are used for 

several applications such as the immobilization of protein
5
, metal chelation,

1,5,16,21,24
 and as drug 
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delivery carriers.
28

  There are numerous biomedical applications that employ various cross linked 

forms of chitosan that rely on their unique adsorption/desorption properties. 

1.17 Cyclodextrin Properties 

The most common Cyclodextrins (CDs) are α-,β- and γ- which are composed of 6-,7- and 

8- glucopyranose units attached by α-(14) linkages
44

.  They have a unique toroidal molecular 

shape and their inclusion chemistry has been the subject of many studies
4
.  Primary hydroxyl 

groups line the narrow end of the cyclodextrin cavity while secondary hydroxyls group are 

located at the wider end of the cyclodextrin cavity resulting in a hydrophilic exterior and a 

lipophilic cavity interior due to the abundance of apolar groups in the CD interior; see Scheme 

1.4 and 1.5.  The toroidal molecular shape and the well defined cavity of CD’s dimensions 

(diameter of 4.9-7.9 Å with a cavity depth of 7.9Å) allows them to form stable host-guest 

complexes with various organic compounds and heavy metals.
23,40,44

 Table 1.4 gives a list of 

physical properties with their corresponding parameters with respect to the type of cyclodextrin.   
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Scheme 1.4.  The structure of amphiphilic β-cyclodextrin showing the hydrophilic primary and 

secondary hydroxyl groups and the lipophilic cavity, where n=7 (adapted from reference 22 and 

44). 

 

 

 

 

 

 

 

 

 

 

Scheme 1.5. The structure of βCD showing the positions (R2, R3, and R6) of the hydroxyl groups 

(adapted from reference 56). 
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Table 1.4. Physical properties and molecular dimensions of α-,β-,γ-cyclodextrins. (Adapted from 

references 22 and 44) 

Properties 
α β γ 

Number of 

glucopyranose 

units 

6 7 8 

Empirical formula 

(anhydrous) 

C36H60O30 C42H70O35 C48H80O40 

Relative Molecular 

Weight (g/mol) 

972 1,135 1,297 

Water solubility 

(g/100mL) at 25ºC 

14.5 1.85 23.2 

Internal average 

diameter (Å) 

4.9 6.2 7.9 

External average 

diameter (Å) 

14.6 15.4 17.5 

Length of 

macrocycle (Å) 

7.9 7.9 7.9 

Cavity volume (Å
3
) 

176 346 510 

Average pKa 

determined by 

(potentiometry at 

25ºC) where the 

average value of 

the primary and 

secondary OH 

groups 

12.33 12.20 12.08 

 

1.18 Cyclodextrin Biopolymers     

CDs are moderately water soluble (see Table 1.4).  Their solubility behaviour and 

physicochemical properties can be modified through copolymer formation.  The degree of cross 

linking in biopolymers containing βCD can be varied by the reaction conditions and the nature of 
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the cross linkers, such as glutaraldehyde or epichlorohydrin
4
. The synthesis of a water insoluble 

cyclodextrin polymer can is accomplished by varying the mole ratios of cyclodextrin to the cross 

linker; thus, modifying the sorption and swellability characteristics of the biopolymer.
4
 In this 

sorption study, two and three-component biopolymers were synthesized using chitosan and β-

cyclodextrin as the carbohydrate framework and cross linking with glutaraldehyde to form an 

extensive co-polymer framework.  To synthesize a chitosan/β-cyclodextrin/glutaraldehyde 

(three-component) biopolymer, the amount of chitosan, β-cyclodextrin and glutaraldehyde, pH 

conditions and temperature of the synthetic conditions determine the physical and chemical 

properties.
5
 The host-guest properties of such cyclodextrin biopolymers have been used in in the 

production of industrial chemicals, biochemical products and chemical separations
60

, optimizing 

drug formulations
61

, analytical methods for chromatography
62

, food processing
63

 and for food 

production (i.e. flavour stabilization, improving shelf life, flavour carriers, cholesterol 

sequestrant, taste modifiers and as debittering agents
64

). 

1.19 Glutaraldehyde 

Glutaraldehyde (Glu; glutaric acid dialdehyde, glutaric aldehyde, 1,5-pentanedial) is a 

multifunctional cross linker with two aldehyde groups each positioned at the 1,5 terminal sites of 

a pentyl chain.  Glutaraldehyde (see Figure 1.6) is among many cross linkers, such as 

epichlorohydrin
4
, that is used as a versatile cross linker for designing polymeric frameworks. 

 

Figure 1.6.  The molecular structure of glutaraldehyde, a bi-functional cross linker unit.  
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1.20 Interactions of Chitosan & β-Cyclodextrin Biopolymers with Metal Species 

Roberts
33

 reports that chitosan is a metal chelating polymer; however, it must have two or 

more ligands to bind to a metal ion if it is a chelator.  Therefore, either the OH/O
-
 or NH/NH

-
 

groups on the D-glucosamine monomers of chitosan may act as ligands from two or more 

chitosan chains to bind a metal ion.    By employing X-ray photoelectron spectroscopy (XPS), 

Dambies
41 

studied the sorption interactions between three metal ions (Cu(II), Mo(VI) and 

Cr(VI)) with chitosan flakes, chitosan beads and glutaraldehyde cross linked chitosan beads, 

respectively.  XPS was used to study the oxidation state of metal ions sorbed onto the surface of 

the chitosan.  It was found that the amine functional groups are the main sorption sites for the 

metal cations.   It was also found that chitosan in the form of flakes, beads and cross linked beads 

“reduce the oxidation state of the sorbed metal ion”.  Dambies concluded that the reducing 

activity depends on two main criteria: i) the oxidation potential of the metal (correlated to the 

normal redox potential scale) and ii) the “framework” of the biopolymer; where the 

glutaraldehyde cross linked chitosan significantly increased the reducing effect.  This could 

explain possible interactions occurring in this study between the oxoanion arsenate species and 

the amine anionic sites located on the surface of the chitosan glutaraldehyde cross linked 

biopolymer.  There are many possible interactions occurring between the chitosan, β-

cyclodextrin biopolymers and the arsenic species in solution at pH 8.5.  As mentioned, the 

biopolymers could chelate metal ions requiring two or more binding sites of the biopolymer 

(referred to as a ligand or host).  However, several other interactions are possible such as 

electrostatic (non-directional) interactions, hydrogen bonding, ion-ion interactions and Lewis 

acid-Lewis base interactions. 
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1.21 Summary of Introduction 

Arsenic contamination is a growing concern throughout the world especially in countries 

such as Bangladesh and West Bengal where arsenic is a major health and environmental concern.  

There are conventional treatments for arsenic removal such as coagulation/filtration, lime 

softening, activated alumina, ion exchange, reverse osmosis, manganese greensand filtration and 

electrodialysis; each treatment has advantages and limitations.  There has been a lot of research 

using conventional sorbents for adsorption using various receptor/host frameworks.  The 

Langmuir (i.e. Sips restricted) and Sips isotherms provide insight about the sorption mechanism; 

at varying experimental conditions such as the type of receptor/host framework, pH, ionic 

strength, temperature, concentration of sorbate and the amount of sorbent.  However, there needs 

to be further research on different types of novel biomaterial sorbents to understand the 

relationship between structure and function of sorbents (i.e. receptor/host frameworks as 

described in this research). 

The overall objective of this research is to design two- and three-component chitosan 

based biopolymers which will be characterized and tested for arsenate oxoanion sorption in 

aqueous solution.  The thermodynamic sorption properties will be modeled through two types of 

sorption isotherms (i.e. Sips and Langmuir models). 
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Chapter 2 Materials and Methods 

2.0 Materials 

High molecular weight chitosan (HMWCH) (from crab shells practical grade 150,000-

375,000 gmol
-1

 ≥75% deacetylation), low molecular weight chitosan (LMWCH) (50,000-

190,000 gmol
-1

, 75-85% deacetylation) and Glutaraldehyde (Glu) were all Aldrich products and 

used as received without further purification.  β-CD hydrate was obtained as an Alfa Aesar 

product and used as received without further purification.   

2.1 Biomaterials Preparation 

2.1.1 Chitosan Calculation: to determine the amount of Glutaraldehyde for biopolymer 

synthesis 

Firstly, the mean molar mass (M.M.M.) of a monomer of chitosan (C6H11NO4) with respect to 

(w.r.t) nitrogen (N) was calculated from the % of N determined by an elemental analysis (EA): 

Sample Calculation
5
: 


)__(%

)___(___(
..

Nof

ChitosaninatomsNNofmassmolar
MMM


  

The calculated M.M.M. of HMWchitosan w.r.t. N worked out to be 189.3 g mol
-1

. 

The calculated M.M.M. of LMWchitosan w.r.t. N worked out to be 196.7 g mol
-1

. 

Therefore, I could now calculate the amount of Glu required for each mole ratio 1:15, 1:25 and 

1:35. 
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A sample calculation for amounts of chitosan and Glu required for a 1:15 co-monomer mole 

ratio: 

 

 

Glug
Glumole

Glug
Gluofmoles __8.1501

__1

__1.100
___15   

1 mole of chitosan monomer:1 mole of Glu ≈ 189.3 g chitosan:1501.8 g Glu 

 1 g of chitosan:7.933 g Glu 

GlumL
Glug

__173.7
__106.1

1_mL
Glu _g_ 7.933   

 7.173 mL of Glu is needed for a 1:15 co-monomer mole ratio of CH:Glu 

2.2 Biopolymer Synthesis 

2.2.1 Low Molecular Weight Chitosan (50,000-190,000 gmol
-1

)/Glutaraldehyde 

Approximately 0.40 g of chitosan was placed in a 100 mL round bottom flask and was 

stirred to complete dissolution overnight with 60 mL of 5.0 x 10
-2

 M acetic acid.  To the 

dissolved chitosan, a desired (1:15 , 1:25, 1:35  mole ratios of chitosan:glutaraldehyde) amount 

of a 50% (w/v) Glu aqueous solution was added rapidly to the chitosan/acetic acid aqueous 

solution.  Rapid addition of Glu was required due to the onset of rapid gelation (~3 minutes).  

The clear solution turned to a dark orange-yellow color over the course of one hour.  The mixture 

nHMWchitosag
nHMWchitosaofmole

g
nHMWchitosaofmole __3.189

___1

_3.189
___1 
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was allowed to stir until complete gelation then allowed to sit for 1 hour before neutralizing with 

a 0.2 M NaOH solution to pH 6-7.  The orange-yellow gellated product was washed several 

times with cold millipore water and cold HPLC grade acetone.  The orange-yellow spongy 

material was then dried in a vacuum oven at 56ºC at reduced pressure (0.94 atm Hg) overnight.  

The oven dried products were crushed and ground into a fine powder form before drying in a 

pistol dryer under vacuum with P2O5 at 50°C overnight.  The products were ground in a mortar 

and pestle and passed through a 40 mesh sieve. The products were then washed in soxhlet 

extractor with HPLC grade methanol for 24 hours then repeated for a second washing cycle with 

HPLC grade diethyl ether for 24 hours. 

2.2.2 High Molecular Weight Chitosan (150,000-375,000 gmol
-1

)/Glutaraldehyde 

The synthesis procedure is the same as above except that chitosan with a greater 

molecular weight (150,000-375,000 gmol
-1

), was used in a place of the LMWCH.  (The 

photograph of synthesized chitosan/glutaraldehyde biopolymer material is shown in Figure 2.1.) 

 

Figure 2.1.  The photograph of crude product chitosan/glutaraldehyde biopolymer material. 
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2.2.3 High Molecular Weight Chitosan -β-Cyclodextrin:Glutaraldehyde 

These three-component polymeric materials were designed to cover a range of mass 

ratios (1-1, 1-3 and 1-1/3) of HMWCH to β-CD; where the amount of Glu added was kept 

constant for each material in a 1:6 mole ratio (1 mole of HMWCH to 6 moles of Glu).  The 

amount of Glu added was kept constant and based on a total mass of 1.0 g of HMWCH 

(150,000-375,000 gmol
-1

); the mass ratio (w-w) amounts of HMWCH to βCD was varied from 

1-1 to 1-3 to 1-1/3. 

2.2.3.1 1:6 High Molecular Weight Chitosan-β-Cyclodextrin (1-1): Glutaraldehyde 

0.50 g of HMWCH and 0.50 g of β-CD hydrate were placed in a 100 mL round bottom 

flask and stirred in ~20 mL of 1 M HCl until complete dissolution overnight; an additional 1 mL 

of 1 M HCl was added to ensure adequate solvent while the stir bar maintained stirring.  After 

the reaction was place in an 80 ºC oil bath and the mixture turned from a cloudy solution to a 

clear solution indicating the CH was dissolved.  After stabilization at 80 ºC, a desired 1:6 mole 

ratio of (chitosan:glutaraldehyde)  was obtained by addition of a 50% (w/v) glutaraldehyde 

aqueous solution while stirring rapidly.  Rapid addition of glutaraldehyde was required because 

gelation occurs within 3 minutes of mixing at these conditions.  The reaction mixture was 

promptly removed upon gelation from the 80 ºC oil bath and allowed to cool to room 

temperature for 1 hour before neutralizing with a drop-wise addition of 2 M NaOH solution to a 

pH 7-8.  The clear solution turned to a dark orange-yellow color over the course of an hour.  The 

neutralized reaction mixture was allowed to stir for an additional 30 minutes and cooled in a ice 

bath before washing.  The orange/yellow coloured gel was washed several times with 75 mL 

millipore water and 50 mL HPLC grade acetone.  The product was then dried in a vacuum oven 
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at reduced pressure (0.94 atm Hg) overnight.  The oven dried products were crushed and ground 

to a powder before drying in a pistol dryer under vacuum conditions with P2O5 at 50°C 

overnight.  The products were ground in a mortar and pestle and passed through a 40 mesh sieve.  

The material was then washed in soxhlet extractor with HPLC grade methanol for 24 hours then 

HPLC grade diethyl ether for 24 hours and subsequently dried under vacuum conditions with 

P2O5 at 50 °C overnight. 

2.2.3.2 1:6 High Molecular Weight Chitosan-β-Cyclodextrin (1-3): Glutaraldehyde 

0.25 g of HMWCH (150,000-375,000), and 0.75 g of β-CD hydrate were used for this 

synthesis and the procedure is the same as described above in the previous section. 

2.2.3.3 1:6 High Molecular Weight Chitosan-β-Cyclodextrin (1-1/3): Glutaraldehyde 

0.75 g of HMWCH (150,000-375,000) and 0.25 g of β-CD hydrate was used for this 

synthesis and the procedure is the same as described above. 

2.3 Biomaterials Characterization 

The biopolymers were characterized using TGA to investigate their thermal stability and 

relative co-monomer composition, FT-IR spectroscopy to show specific functional groups and 

vibrational bonds that are key signatures to the characterization of products.  CH&N elemental 

analysis (EA) determines the relative composition (wt %) of carbon, hydrogen and nitrogen.  

ICAP-OES
22

 and Varian Cary 100 Scan UV-Vis spectrophotometry were used to measure 

arsenate (λem=189 nm) and PNP (λmax=400 nm ) in aqueous solution at pH 8.5 
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2.3.1 Biomaterials Characterization Instrumentation 

2.3.1.1 Inductively Coupled Argon Plasma-Optical Emission Spectroscopy 

Liquid samples are pumped through a nebulizer to produce a fine misty spray; large 

droplets are removed by the spray chamber where the fine droplets pass through to the plasma 

source.  The small droplets (residual sample) are decomposed to atoms and ions that become 

electronically excited and emit a characteristic emitted light for a given wavelength.  This 

characteristic light (emission) is measured and provides a measurement of the concentration of 

each element in the sample.  Arsenate equilibrium sorption experiments were measured with a 

Thermoscientific ICAP-OES.  The arsenic concentration was obtained using emission 

spectroscopy at λem = 189 nm.  The analysis protocol of each sample was measured in triplicate 

with a 30 second sample flush time with millipore water between each sample.  The sample 

introduction was a nebulizer with an axial plasma view.  The calibration mode was set to 

concentration.  The flush pump rate was 100 rpm and the analysis pump rate was 40 rpm with a 

pump stabilization of 5 seconds.  RF power was 1150 W with an auxiliary gas flow of 0.5 Lmin
-1

 

and nebulizer gas flow of 0.30 Lmin
-1

. 
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Figure 2.2. The photograph of the ICAP-OES A) Nebulizer B) Plasma Source. 

2.3.1.2 Fourier Transform-Infrared Spectroscopy 

The IR spectra were obtained with a BIO-RAD FTS-40 spectrophotometer and powdered 

samples were analyzed in reflectance mode.  Biopolymers were prepared by mixing ~45 mg of 

biopolymer sample with pure spectroscopic grade KBr (~120 mg) by grinding in a small mortar 

and pestle.  DRIFT spectra were recorded at room temperature with a resolution of 4 cm
-1

 over 

the range of 400-4000 cm
-1

. Two hundred and fifty six scans were recorded and corrected against 

a background spectrum of pure KBr.  The DRIFT spectra were obtained in reflectance mode and 

the results are reported as arbitrary units.
22 

 

 

A B 
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2.3.1.3 Ultraviolet-Visible Spectroscopy 

The sorption isotherm for biopolymers with PNP were obtained using a Cary 100 Scan 

UV-Vis spectrophotometer at pH 8.5 and room temperature (295 K).  Absorbance values of PNP 

were recorded at λ=400 nm to calculate residual equilibrium dye concentration (Ce). 

2.3.1.4 Thermal Gravimetric Analysis 

Thermal events were measured on a TGA Q50 Series with a standard furnace.  

Biopolymers were equilibrated at 30ºC, heated with a ramp profile of 5ºC per minute for 500ºC 

under N2 as the carrier gas and air as the coolant gas (flow rate = 50 ml min
-1

). 

2.3.1.5 Carbon,  Hydrogen and Nitrogen Elemental Analysis 

The content (w/w%) of carbon (C), Hydrogen (H) and Nitrogen (N) were measured by 

Perkin Elmer 2400 CHN Elemental Analyzer with a detection limit of ±0.3%.
22 

2.4 Equilibrium Sorption Experiments 

The HAsO4
2-

 and PNP sorption study of chitosan based copolymers was adapted from a 

published literature method. 

2.4.1 Arsenate(V) Equilibrium Sorption Experiments 

Fixed amounts (~20 mg) of the sieved biopolymers in powder form were mixed with 10 

mL of adsorbate (Na2HAsO4·7H2O) solution at pH 8.52 in 6 dram vials at variable concentrations 

(45-120 ppm) of adsorbate and equilibrated at room temperature on a horizontal shaker table for 

24 hours.  After shaking, the supernatants solutions were filtered through 0.45 μm nylon syringe 

filters and then analyzed by Thermoscientific ICAP-OES 6000 series. The initial concentration 

(Co) was determined before sorption and after sorption (Ce) with biopolymers at 22°C at pH 8.5.  
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Uptake of the adsorbate was determined from the difference between the initial and final residual 

arsenate ion concentration in aqueous solution with eq. (1). 

2.4.2 p-Nitrophenol Equilibrium Sorption Experiments 

Fixed amounts (~20 mg) of the sieved biopolymers in a powder form were mixed with 10 

mL of aqueous adsorbate (PNP dissolved in a 10 mM potassium phosphate monobasic buffer 

solution) in 6 dram vials at variable concentration (0.2 – 10 mM) and equilibrated at room 

temperature on a horizontal shaker table for 24 hours.  The initial concentration (Co) was 

determined before sorption and after sorption (Ce) with biopolymers at 22°C at pH 8.5.  Uptake 

of the adsorbate was determined from the difference between the initial and final PNP ion 

concentration in the aqueous phase with eq. (1). 

2.5 Arsenate(V) Solution Preparation 

Arsenate solution was prepared by dissolving ACS grade Na2HAsO4·7H2O (Alfa Aesar), 

into millipore water at pH 8.5.  The arsenic solutions used in the sorption study were prepared by 

fresh appropriate dilution of this stock solution.
2
 

2.6 p-Nitrophenol Solution Preparation 

A PNP dye concentration (0.4 – 10 mM) was prepared by dissolving PNP into a 10 mM 

potassium phosphate monobasic buffer solution; the phosphate buffer was prepared at pH 8.5 by 

adjusting the pH with 2 M NaOH.  The molar absorptivity (ε) value for PNP was estimated as ε 

= 18,478 Lmol
-1

cm
-1

 (pH 8.5; λmax = 400 nm) using the Beer Lambert Law. 
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2.7 Equilibrium Sorption Study 

 The equilibrium sorption study was carried out with chitosan - based biomaterials using 

two types of adsorbates: PNP and HAsO4
2-

, respectively.  The Langmuir (i.e. Sips restricted) and 

Sips isotherm models, eqns. 2 and 3, were applied to both sets of sorption results; however the 

isotherm parameters for PNP provide an independent estimate of the sorbent surface area, (SA; 

m
2
 g

-1
: see eq. (11)).  

2.7.1 Surface Area 

The Langmuir
25,26 

and Sips
24

 isotherm models provide surface area (SA) estimates  of the 

monolayer coverage (Qm) of the sorbent material, where PNP is the adsorbate species. 

N

LQA
SA mm       (11) 

Where Am represents the cross-sectional area occupied by PNP (Am for “planar” orientation is 

5.25 x10
-19

 m
2
/mol; whereas, an “end-on” orientation is 2.5 x10

-19
 m

2
/mol), L is Avogadro’s 

number (mol
-1

) and N is the coverage factor which equals unity for PNP at these conditions.   

2.7.2. Equilibrium Concentration of Adsorbate Species 

The sorption isotherms are plots of equilibrium concentration of adsorbate species 

adsorbed from solution per mass of adsorbate (Qe) versus the equilibrium concentration of 

unbound adsorbate species in aqueous solution (Ce).  The Qe value is defined below where Co is 

the initial adsorbate concentration, V is the volume of solution and m is the mass of sorbent, as 

outlined previously.
4,22 

m

VCC
Q eo

e




)(
         (12) 
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2.7.3. Langmuir Isotherm 

The Langmuir (i.e. Sips restricted) isotherm model
25,26

 

eL

emL

e
CK

CQK
Q




1
         (13) 

Where KL is the Langmuir constant
2
 and is related to the sorption capacity and energy, 

respectively. 

 

 

Scheme 2.1.  The monolayer coverage representation according to the Langmuir isotherm. 

2.7.4. Sips Isotherm  

The Sips isotherm represents a generalized model which can be expressed as a monolayer 

or multilayer equilibrium process with respect to the adjustable fit parameter (ns; cf. eq.(14)): 

s

s

n

es

n

es
me

CK

CK
QQ

)(1

)(


      (14) 

Where Ks is the adsorption constant, ns represents the degree of heterogeneity of the sorbent 

surface, Ce is the residual equilibrium concentration of sorbate in aqueous solution and Qm 

represents the monolayer coverage of the sorbate as defined in eq. (11).  The Langmuir (i.e. Sips 

      

adsorbate 

Surface 

adsorption sites 
polymer surface 
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restricted) isotherm (eqn. 13) assumes equivalent adsorption sites; whereas, the Sips isotherm 

(eqn. 3) accounts for multiple adsorption energies. 

 

 

Scheme 2.2.  The sorbate coverage representation according to the Sips isotherm. 

The Langmuir (i.e. Sips restricted) isotherm model describes monolayer surface coverage 

and assumes independent homogenous sorption sites.  The Sips isotherm model provides an 

assessment of the heterogeneity of the sorption process according to the value of the exponent 

parameter (ns)
40

.  The Langmuir or the Sips isotherm models can be used to estimate the surface 

area according to the estimated sorption parameters (Qm) parameters using eqns.11 and 12, 

respectively. 

2.7.5. Criterion of the Best-Fit 

The criterion of the best-fit of the experimental data with the isotherm models (eqn. 13 

and 14) is determined by the correlation coefficient (R
2
) and the sum of the square of the errors 

(SSE), see eqn. 15 





N

QQ
SSE

ifie

2

,, )(
      (15) 
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 Where Qe,i is the experimental value, Qf,i is the simulated value according to the chosen 

isotherm model and N is the number of experimental data points. 

2.7.6. Error Analysis 

 The error analysis was adapted from Kwon
22

, using equation (1) above to calculate the Qe 

values and the error contributions (ΔQe and Qe) which are related to uncertainties in the mass of 

sorbent (m) and the initial concentration (Co) and the equilibrium concentration (Ce).  To 

differentiate Qe with respect to each quantity, the following contributions are obtained, as shown 

in equations (16-18). 

m
m

VCC
Q eo

e 



2

)(
2       (16) 

oe C
m

V
Q  2        (17) 

ee C
m

V
Q  2        (18) 

Where ΔCe, ΔCo and Δm are the standard errors associated with each measurement.  The total 

error in Qe is obtained from the sum of each of the individual quantities represented by equations 

(16–18) for each data point.  It is noted that there is both a positive and negative error associated 

with each data point as reflected by a factor of 2 and the absolute value for each quantity given in 

the equations (16-18).  The uncertainties in absorbance gives rise to standard errors in Ce and Co 

which can be calculated from the straight line regression parameters of the Beer-Lambert 

coefficients.  An uncertainty in the consecutive weightings on an electronic balance (i.e. 1x10
-5

 g 

per weight measurement) gives rise to the variable uncertainty in mass.  For example, to obtain a 
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mass of sorbent, three weightings are needed; thus, the standard error is ~3x10
-5

 g for a digital 

balance with a weighing precision of ± 0.01 mg. 

2.8. Removal Efficiency 

The removal efficiencies of PNP and HAsO4
2-

 from aqueous solution were calculated 

using equation (19)
4
: 

%100% 








 


o

eo

R
C

CC
       (19) 

Where Co and Ce are defined as above.  The pH, temperature, adsorbate concentration and both 

the relative amount and nature of biopolymer material all contribute to the magnitude of the 

removal efficiencies. 
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Chapter 3 Results and Discussion for Materials Characterization 

3.0 Materials Characterization 

 Chitosan cross linked with glutaraldehyde has been previously studied for its sorption 

properties towards inorganic and organic compounds. However, characterization of the 

biomaterial warrants more research in order to understand the sorption mechanism in aqueous 

solution.  In this thesis, the materials characterization has been briefly examined in order to 

provide a better understanding of the relationship between the structure of the sorbents and the 

sorption phenomena of chitosan modified materials.  Several materials characterization 

techniques employed in this research include FT-IR spectroscopy, TGA, EA and synthetic yield 

of products.  These techniques provide support for the product identity and provide a platform 

upon which to carry out future studies. 

3.1 Synthetic Yields  

 Product yields may give insight to the factors affecting the efficiency of the cross linking 

reaction such as viscosity, mass transfer effects, reactant ratios of precursors and the nature of 

the cross linker.  It is apparent that the two-component 1:15 biopolymers, for both the high and 

low molecular weight chitosan had the greatest yields (cf. Table 3.1).  The product yields for 

chitosan copolymers with glutaraldehyde were observed to decrease in proportion to the cross 

linking density of the biopolymer.
4
 The mass transfer efficiency between chitosan and 

glutaraldehyde is hypothesized to decrease with increasing viscosity of the reaction mixture as 

the polymerization reaction proceeds through solution, gelation and solid polymer phases.   
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Table 3.1.  The product experimental yield (%)* of each CH-Glu (two-component) based 

biopolymer. 

Sorbent 

Biomaterial 

1:15 1:25 1:35  

    

LMWCH:Glu 24.4% 22.0% 16.3%  

HMWCH:Glu 29.3% 14.8% 11.6%  

*% yield is based on the reaction mechanism 1 where both aldehyde groups of Glu react 

with two glucose units of chitosan; cross linked product not shown. 

 

There are several approaches outlined for a hypothesized reaction mechanism and all 

would be valid; however, there are several products predicted for this type of synthesis.  Three 

generalized reaction schemes (Schemes 3.1 to 3.3) have been proposed based on a previous study 

by Knaul et. al
65

 according to evidence based on FT-IR and 
13

C NMR data.  Mechanism 1 

(Scheme 3.1) occurs through a Schiff base reaction at the amine functional group: 

 

Scheme 3.1.  Glu is reacted with dissolved chitosan in mild acetic acidic conditions at 295 K to 

produce a glutaraldehyde linked product reaction of the amine groups of chitosan. Note that the 

cross linked copolymer is not shown for the sake of brevity. 

 

Mechanism 2 (Scheme 3.2) involves reaction of the hydroxyl groups of chitosan and is based on 

the same conditions outlined in mechanism 1: 
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Scheme 3.2. Glu is reacted with dissolved chitosan in mild acetic acidic conditions at 295 K to 

produce a cross linked product via reaction of the hydroxyl groups of chitosan. 
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Reaction mechanism 3 (Scheme 3.3) is based upon the 
13

C NMR spectrum of a 25% Glu solution 

in water and assumes that Glu is unstable in water because it may adopt a similar structure to 

glyoxal which is also unstable in water.  This fact is the basis of mechanism 3 because the 

structure of Glu in water gives rise to a “pyran isomer, or its dimer, trimer, or a crown ether, 

depending on the molecular weight”
65

; thus, mechanism 3 proposes that the molecular structure 

of Glu in water is that of a hemi-acetal which cross links with the amine groups of chitosan: 

 

Scheme 3.3. Glu is reacted with dissolved chitosan in mild acetic acidic conditions at 295 K to 

produce a cross linked product via mechanism 3. 

A Schiff base is expected to occur between the amino group on an adjacent chitosan polymer and 

the remaining aldehyde group; the FT-IR spectra indicates the presence of a C=N bond occurring 

between Glu and chitosan.
65  
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The generalized reaction scheme for a two-component copolymer is as follows, where A is 

chitosan and B is Glu: 

A + B (solution)    A/B (gel phase)   (A-B)n (solid product) + (An-Bn)n (solid product) 

A previous independent study on the modification of chitosan films with Glu to regulate 

solubility and swellability showed that the viscosity increases as the amount of chitosan is 

increased.
57

 This is consistent with the rheological behavior of polymer in solution. 

 The product experimental yields obtained for the three-component biopolymers 

composed of HMWCH, βCD and Glu (cf. Table 3.2) shows that as the mass ratio of chitosan to 

βCD (1-1/3 to 1-3) changes the viscosity of the solution changes.  When there are equivalent 

mass amounts of CH and βCD for the polymerization reaction, the highest yield is obtained 

among amount the three ratios of reagents.  When the mass ratio is 1-1/3, the amount of βCD is 

1/3 the amount of CH and the percent yield decreases.  As the mass ratio changes to a 1-3 

mixture, the relative amount of chitosan is 1/3 the amount of βCD and the lowest percent yield 

was obtained.  The relative amounts of CH and β-CD play a huge role in the cross linking and is 

evident in the product yields.  The mass transfer effects (i.e. stirring effects) is vital and plays an 

important role in the connectivity of the framework. 

Table 3.2. The product experimental yields of each CH-βCD-Glu (three-component) based 

hybrid biopolymer. 

Mass ratio of chitosan to βCD 1-3 1-1 1-1/3 

1:15 HMWCH-βCD:Glu 11.4% 34.1% 31.7% 

Note: Chitosan and Glu content were fixed whereas the βCD content was varied. 
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3.2 Elemental Analysis 

Elemental Analysis (EA) is a common technique used for biopolymer samples to 

determine the relative amount of carbon, hydrogen and nitrogen (C, H and N) composition 

through combustion analysis.  In cases where the polymer contains impurities such as unreacted 

starting materials, occluded solvents and moisture, the results from this technique may be semi-

quantitative.
57

 EA is useful when the theoretical composition can be calculated and compared to 

the experimental values.  In order to calculate a theoretical yield, the weight of the products from 

a polymerization reaction, an understanding of the reaction mechanism is necessary.  Several 

reaction mechanism have been proposed involving chitosan/Glu (two-component) and for 

chitosan/βCD:Glu (three-component) for polymerization reactions.  The cross linking reaction 

mechanism of CH with Glu involves four types of potential products, as discussed by Oyrton et 

al.
5
 Four types of products or a combination of any four types leads to ambiguous theoretical 

estimates for the weight percentages of carbon, hydrogen and nitrogen.  

 In general, the content of C increases as expected for Table 3.3; however, the content of 

N decreases and H does not scale quantitatively as expected.  The cross linking of glutaraldehyde 

with LMWCH depressed the amount of N available in the biopolymer framework.  As noted 

previously, an understanding of the reaction mechanism is of paramount importance for the 

development of a systematic design approach of these types of biopolymers.  For Table 3.4, the 

content of C, H & N does not scale quantitatively as expected.  The 1:25 has the highest content 

of C and the lowest content of H and N.  

It is noted that as the content of C increases as the content of N decreases for each 

LMWCH and HMWCH incorporated into the respective frameworks; however, there is no clear 

correlation for the content of H available within each biopolymer framework. The percentage 
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weights are uncorrected for residual solvents that may have remained adsorbed within the 

biopolymer frameworks during the cross linking stage.  Theoretical estimates cannot be 

calculated based solely on the proposed mole ratios because the basis of this calculation relies on 

a knowledge of the reaction mechanism and the site of cross linking occurs. i.e. amine groups 

versus hydroxyl groups or both. 

Table 3.3. The CHN Elemental Analysis and Theoretical Estimates of LMWCH:Glu 

biopolymers. 

Sorbent 

Biomaterial 

Experimental Theoretical*  

%C %H %N %C %H %N 

1:15 
54.0 7.37 2.65 84.5 8.77 1.22 

1:25 
55.7 7.50 2.18 59.8 7.96 0.53 

1:35 
57.0 7.38 2.16 87.9 8.94 0.57 

*Assumes reaction of Glu with amine groups of chitosan 

 

Table 3.4. The CHN Elemental Analysis and Theoretical Estimates of HMWCH:Glu 

biopolymers. 

Sorbent 

Biomaterial  

 Experimental   Theoretical*  

%C %H %N %C %H %N 

1:15 51.8 7.55 3.21 84.5 8.77 1.22 

1:25 53.2 7.20 2.61 59.8 7.96 0.53 

1:35 51.87 7.23 2.69 87.9 8.94 0.57 

*Assumes reaction of Glu with amine groups of chitosan. 
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Table 3.5. The CHN Elemental Analysis of HMWCH-βCD:Glu biopolymers. 

Sorbent Biomaterial %C %H %N 

1:15 CH-βCD (1-3):Glu 48.1 7.28 3.22 

1:15 CH-βCD (1-1):Glu 44.5 6.71 2.53 

1:15 CH-βCD (1-1/3):Glu 49.4 7.23 2.80 

 

In Table 3.5, when there is an equivalent amount of chitosan and β-CD in the framework, 

the lowest percentage of C, H & N was obtained.  However, when we change the relative ratios 

of CH and β-CD there are observable differences among each biopolymer framework.  Although 

the 1-1/3 has 1/3 the amount of β-CD incorporated into the framework it results in the second 

highest amount N content.  The 1-3 has three times the amount of β-CD incorporated into the 

framework and the highest amount of N content is obtained.  This is a direct contradiction of 

what is expected for this type of product assuming that chitosan and βCD react similarly toward 

Glu.   Mass transfer plays a role in the product yields and is obviously reflected in the EA data.  

CH is the sole bearer of N whereas β-CD and Glu do not contain N.  This type of inconsistency 

would come from a more detailed understanding of the reaction pathway in conjunction with 

analysis from other characterization techniques.  The composition of the products and the 

presence of characteristic functional groups from this cross linking reaction may be obtained 

from TGA and FT-IR spectroscopy. 
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3.3 Thermal Gravimetric Analysis 

Thermal Gravimetric Analysis (TGA) is a technique where a sample is heated and the 

weight loss is monitored with increasing of temperature.  TGA shows thermal losses of a sample 

using a first derivative plot of the weight (weight loss %/°C) versus temperature (°C).  Second 

derivative plots illustrate regions where the weight loss is most significant over a given 

temperature range.
57

 The LMWCH and HMWCH, see Fig. (3.4) have a peak centered ~300°C.  

In general, each chitosan:Glu biopolymer (cf. Figure 3.1 and 3.2) exhibits thermal events near 

~215°C and ~420°C.  It is noted that the peaks corresponding to cross linked chitosan are shifted 

to higher temperatures.  These thermal events represent mass losses from the biopolymer as 

follows: i) mass losses due to loss of Glu ~215°C and ii) weight losses due to CH ~420°C.  In 

Figure 3.1, the thermal event occurring around ~185°C is related to the Glu monomer content of 

chitosan and this peak area increases as the glutaraldehyde content of the biopolymer increases.  

Thermal transitions occurring below 100°C are attributed to desorption of water and/or residual 

solvents.  Figure 3.3, has thermal events centered on ~250°C and ~420°C; the biopolymer is 

composed of three components and represents a more complex product due to the peak area 

between 390°C to 475°C. 
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Figure 3.1.  The first derivative TGA plot of LMWCH:Glu where A) 1:15 B) 1:25 and C) 1:35 

two-component biopolymers. 
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Figure 3.2.  The first derivative TGA plot of HMWCH:Glu where A) 1:15 B) 1:25 and C) 1:35 

of two-component biopolymers. 
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Figure 3.3.  The first derivative TGA plot of 1:15 HMWCH-βCD:Glu where A) 1-3 B) 1-1 and 

C) 1-1/3 three-component biopolymers. 
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Figure 3.4.  The first derivative (weight loss %/°C) TGA plot of A) LMWCH and B) HMWCH. 
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Figure 3.5.  The first derivative TGA plot of βCD hydrate prepolymer. 

 

 

3.4 Fourier Transform-Infrared Spectroscopy 

 Fourier Transform-Infrared (FT-IR) spectroscopy is the most commonly used 

spectroscopic method of characterization for these biopolymers.
5
 The FT-IR spectrum for the 

LMWCH:Glu (cf. Figure 3.7) and HMWCH:Glu (cf. Figure 3.8)  biopolymers and LMWCH and 

HMWCH prepolymers are shown (cf. Figure 3.6).  The O-H stretching region ~3400cm
-1

, C-H 

stretching region ~2900cm
-1

, C-C stretching region ~1600cm
-1

 are similar amongst the 

biopolymers.
5
  Two new bands appear at ~1560cm

-1
 (C=C) and ~1655cm-1 (C=N); the 

appearance of these bands indicate cross linking has occurred between the amine groups on CH 

and the aldehyde groups of Glu. 
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The IR spectra for the CH-βCD:Glu (cf. Figure 3.9) biopolymers have similar IR and 

display characteristic peaks at ~1560cm
-1

 (C=C) and ~1655cm
-1

 (C=N).  The appearance of these 

bands indicate that the cross linking between the amine groups on chitosan and the aldehyde 

groups of glutaraldehyde.   The relative similarly of the vibrational bonds amongst the chitosan, 

βCD and the glutaraldehyde cross linked biopolymers observed in this study is consistent with 

other reports.
5,8 
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Figure 3.6.  The FT-IR spectra of LMWCH in powder form and HMWCH and flake form. 
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Figure 3.7.  The FT-IR spectrum of LMWCH:Glu biopolymers in their powder form.  
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Figure 3.8.  The FT-IR spectrum of HMWCH:Glu biopolymers in their powder form. 
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   Figure 3.9.  The FT-IR spectra of the1:15 HMWCH:βCD:Glu (3 component) biopolymers in 

their powder form. 

Knaul et al., studied the cross linking of chitosan with dialdehydes and proposed a 

reaction mechanism, as discussed previously.
65

 The ν(C=N) absorbance is shifted much more 

than the expected absorbance (1620-1660 cm
-1

) which may be due to an acetal type bonding as 

shown by mechanism 2.  The broad ν(O-H) indicates strong intermolecular and intramolecular 

hydrogen bonding.
66 
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Table 3.6.  The FT-IR band assignments for each biopolymer. 

Biopolymer ν(C=N)     

(cm
-1

) 

ν(C=O) 

(cm
-1

) 

ν(C=C)  

(cm
-1

) 

ν(C-H) 

(cm
-1

) 

ν(O-H) 

(cm
-1

) 

LMWCH:Glu 1664 1716 1574 2872, 

2933 

3447 

HMWCH:Glu 1683 1721 1570 2872, 

2952 

3433 

1:15 

HMWCH:βCD:Glu 

1669 1711 1565 2867, 

2938 

3357 

LMWCH NR NR NR 2850 3400 

HMWCH NR NR NR 2850 3400 

NR – not reported because of the absence of the vibrational bond. 
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Chapter 4 Results and Discussion for Equilibrium Sorption Experiments  

 The Langmuir model (i.e. Sips restricted) is a well-established model used in the 

analysis of adsorption behaviour.  However, recent research in our laboratory indicates that the 

Sips model is more general and versatile since it can describe Langmuir and Freundlich 

behaviour for certain limiting conditions.  Therefore, the Langmuir (herein referred to as the Sips 

restricted where ns=1) and Sips isotherms were investigated in this research in order to obtain a 

greater understanding of "Langmuir" type behaviour and test the utility of the Sips isotherm 

which describes a wider range of adsorption behaviours. 

4.0 p-Nitrophenol Equilibrium Sorption Results 

 An aqueous solution containing PNP and fixed amounts (~20 mg) of chitosan based 

biopolymers were shaken and equilibrated for 24 hours in aqueous solution where PNP was used 

as the adsorbate species.  Each set of solid-solution equilibrium experiments were carried out 

similarly, the following co-monomer mole ratio (1:15, 1:25 and 1:35) was varied and compared.  

A comparison was made between the sorption capacities obtained using the Sips and the Sips 

restricted isotherm models of the LMWCH:Glu and HMWCH:Glu where PNP was the adsorbate 

species.   

 

4.0.1 Two-Component Low Molecular Weight Chitosan Cross Linked Biopolymer 

Figures 4.1-4.2 illustrate the PNP sorption isotherms obtained for each biopolymer with 

variable co-monomer mole ratios where PNP is the adsorbate species, in aqueous solution at pH 

8.5 and 295 K.  The sorption properties of the LMWCH:Glu biopolymer materials were analyzed 

using various isotherm models, as shown by the fitted lines.  At these conditions, PNP exists as 

an organic anion and previous work with CD:EP copolymers
4
 indicated that PNP was a suitable 

adsorbate that could be quantitatively monitored using UV-Vis spectroscopy.  PNP provides 
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estimates of Qm and estimates of the sorbent SA.  The pH dependent ionization behaviour of 

PNP allows it to be used as a probe for anion binding in a similar manner to that of arsenic 

oxoanion species.  The equilibrium sorption properties of two- and three-component chitosan 

based biopolymers were investigated using a similar strategy.  The concentration dependence of 

Qe is well-described with the Sips restricted and Sips isotherm models.  In general, the quantity 

of PNP adsorbed increases monotonically as Ce increases for each co-monomer mole ratio of 

LMWCH based biopolymers.  The magnitude of Qe shows a stronger increase with increasing Ce 

for biopolymers with lower Glu co-monomer mole ratios.   

The sorption results in Table 4.2, show that the 1:25 biopolymer had the highest εR% 

(48%) for the LMWCH:Glu biopolymer with PNP over the entire range of adsorbate 

concentration (Ce; 1-9 mM).  This concentration range was examined because it corresponds to 

conditions used in a previous study.
4
 At pH 8.5, PNP exists in its anionic form and was used as 

the adsorbate dye with a copolymer sorbent (βCD:EP).; see Table 4.1 for isotherm parameters.  It 

was beneficial to mirror the conditions of the PNP sorption study
4
 herein and to compare and 

contrast the present study with chitosan biopolymers (cf. Table 4.1).  In comparing the two sets 

of sorption it gave us insight into the performance of chitosan based biopolymers with a related 

series of βCD copolymers.  The performance was demonstrated through removal efficiencies, 

sorbent SAs and sorption capacities.  Tables 4.4 to 4.5 show the parameters obtained from each 

isotherm model. 

Overall, the co-monomer ratios for LMWCH:Glu exhibit a non-uniform increase in Qe 

indicating a low affinity towards PNP.  The Langmuir and Sips isotherms for the 1:15 copolymer 

had the “best-fit” and the highest Qm value (0.307 and 0.822 mmolg
-1

, respectively)  The 

sorption curves show regions (< 2.5 mM) with little concentration dependence of Qe for all three 



59 
 

co-monomer sorbent materials.  From the Sips restricted isotherm, it could be interpreted that the 

homogenous monolayer coverage is attained ~2.5 mM PNP and beyond this concentration the 

results indicate weak binding because all potential binding sites are occupied and this is observed 

in each of the three LMWCH biopolymer materials. The LMWCH prepolymer has a lower 

degree of polymerization then the HMWCH.  The results indicate that the sorption of fewer PNP 

anions occurs because all of the sorption sites are assumed to be equivalent and homogenous 

according to the Sips restricted isotherm model.  The varying sorption capacity could be related 

to the variable SA, (cf. Table 4.3) of the biopolymer materials.  It is interesting to note that both 

isotherm models (Sips restricted and Sips) for the 1:15 biopolymers have drastically different SA 

estimates which range from 46.7 to 123.7 m
2
/g.  The 1:25 and 1:35 SA estimates, obtained from 

each isotherm model provide support for the reliability of the sorption capacity parameter (Qm) 

since each isotherm model yielded comparable SA estimates for each co-monomer mole ratio 

obtained.  

At low values of Ce (<2.5 mM PNP) the sorption values show similarity and differences 

above 2.5 mM PNP amongst the three biopolymers.  The variation in data points indicates weak 

binding of PNP, which may be due to a lack of available inclusion sites within the biopolymer or 

that the surface of the biopolymer is homogenous in nature and the monolayer coverage is 

completely established ~2.5 mM.  A case can be made for either of the above hypotheses.  

Hydration effects may play a major role in PNP sorption because the LMWCH:Glu biopolymers 

may not swell to the extent as the HMWCH:Glu biopolymers
57

.  These types of chitosan based 

biopolymers have the unique ability to swell while in aqueous solutions depending on the level 

of their cross link density and molecular weight.
57

 A comparison between LMWCH and 

HMWCH in this study indicates that hydration may play a major role in the sorption capacity.  
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The lipophilic nature of the LMWCH:Glu is attenuated  in comparison to the HMWCH:Glu 

biopolymers.  It is apparent that the lipophilicity is less pronounced as the co-monomer ratio 

increases, therefore, hydrophobic interactions may be more evident for PNP and the LMCH:Glu 

based biopolymers.   

 Previous studies indicated that the Langmuir (i.e. Sips restricted) isotherm model was 

well suited for chitosan based sorbent materials.  In this study, the Sips restricted and the Sips 

models may provide more evidence for homogeneity vs. heterogeneity of the sorbent surface.  

Since the Sips model can account for Langmuir behaviour when ns=1, a stronger case can be 

made for homogeneity.  If ns≠1 then we can conclude that the sorption sites are heterogeneous.  

The comparable goodness of fit for the Sips restricted and Sips model does not allow for a clear 

choice of isotherm model; and this may be related to the scatter of the results relative to the 

concentration dependence of Qe.   

At 295 K and pH 8.5, the Sips restricted provides estimates of Qm for the three chitosan 

based biopolymers: 1:15 ≈ 1:25 > 1:35 and the Sips estimates of Qm values 1:15 >> 1:25 > 1:35.   

The magnitude of Qm for the 1:25 and 1:35 are similar for each model; whereas, the difference of 

the 1:15 biopolymer amongst the two isotherm models is significant.  This significance may be 

explained by the fact that the Sips has three adjustable parameters, whereas the Sips restricted 

has only two parameters.  The Qm for the βCD:EP copolymers were previously studied at two pH 

conditions (pH 4.6 and 10.3) and three different temperatures (295 K, 308 K, 318 K).  It is 

evident that the 1:35 βCD:EP consistently had the highest Qm value  (Qm = 0.389 mmol PNP/g 

sorbent) amongst the three copolymers for all temperatures and pH conditions investigated.  

However, the conditions that most resemble this study are those at 295 K and pH 10.3 because 

PNP exists as an organic anion species above pH 7.  The LMWCH:Glu biopolymers have  lower 
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Qm values than the βCD:EP copolymers; 0.21 – 0.31 mmol PNP/g sorbent).  The Sips restricted 

estimate for Qm for all three co-monomer mole ratios, are equal to or less than 0.31 mmol PNP/g 

sorbent.  The sorption results in Fig. 4.1 and 4.2 indicate that the sorption sites are ~86% 

saturated since the corresponding values are less than ~0.31 mmol PNP/g sorbent.   

Both isotherms have very low SSE values (< 2.25x10
-3

) and poor R
2 

~ 0.0813 – 0.699.  Since 

good fits should have R
2 

> 0.9, there is no cause for concern since the “best-fit” line resides 

within the allowable error estimates.  In addition to the “best-fit” criteria, analysis of the 

isotherm parameters needs to be evaluated as part of the isotherm model analysis.  The parameter 

ns ≈ 0.870 – 1.210 is close to unity indicating that the 1:25 and 1:35 biopolymers favour the Sips 

restricted isotherm and show Langmuir type behaviour.  Thus, homogeneity is favoured and 

monolayer coverage seems plausible; the 1:15 biopolymer ns ≠ 1 indicating heterogeneous 

sorption sites. 

Table 4.1.  Best-fit parameter
a,b

 estimates (Qm, KBET) using the BET non-linear isotherm 

model at various temperatures and pH conditions for the sorption of PNP with βCD:EP 

copolymers (adapted from reference 4). 

Conditions 1:15 1:25 1:35 

295 K pH=4.6 0.387
a
, 56.6

b
 0.345

a
, 57.5

b
 0.599

a
, 12.4

b
 

308 K pH=4.6 0.420
a
, 74.0

b
 0.381

a
, 39.8

b
 0.620

a
, 26.7

b
 

318 K pH=4.6 0.119
a
, 184

b
 0.784

a
, 11.4

b
 0.810

a
, 20.0

b
 

295 K pH=10.3 0.294
a
, 72.4

b
 0.269

a
, 38.0

b
 0.389

a
, 42.7

b
 

a
Qm (mmol/g) 

b
KBET (Lmmolg

-2
) 

 

 

 

 

 

 

 

 

 



62 
 

Table 4.2. Removal efficiencies for PNP in aqueous solution for two-component biopolymers of 

LMWCH:Glu at 295 K and pH 8.5. 

  Biopolymer Sorbent Material εR % 

1:15 8.8-40 

1:25 8.7-48 

1:35 7.1-39 
a
 The calculated range of εR% values correspond to a range of PNP concentrations 

([PNP]o = 1 – 9 mM) with a fixed mass (~20 mg) of biopolymer sorbent material. 

 

Table 4.3. Dye based surface area estimates for two-component biopolymers of 

LMWCH:Glu using PNP in aqueous solution at 295 K and pH 8.5 

Biopolymer Sorbent 

Material 

Surface Area Estimate (m
2 

g
-1

)
a
 

Sips restricted
b
 Sips 

1:15 46.7 124 

1:25 46.7 46.7 

1:35 31.6 31.6 
a
 Dye-based method surface area estimates obtained from eq.(11) using a value for Am for 

the planar orientation of PNP and a Qm value estimated from eq. (13 and 14). 
b
Sips restricted is defined when ns=1. 

 

Table 4.4. Sorption parameters for PNP in aqueous solution for two-component 

biopolymers of LMWCH:Glu at 295 K and pH 8.5 (unbuffered)* obtained from the 

“best-fit” using the Sips restricted isotherm model when ns=1. 

Sorbent Qm (mmol g
-1

)  KS (L mmol
-1

)  SSE x10
-3

 R
2
 

1:15  0.307 2.05 1.27 0.626 

1:25 0.309 4.18 1.15 0.478 

1:35 0.212 8.67 1.76 0.0813 

*Solutions were unbuffered and pH did not require adjustment. 
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Figure 4.1. The sorption isotherm of fixed amounts (~20 mg) of two-component biopolymers of 

LMWCH:Glu with PNP at various concentrations at pH 8.5 and 295 K.  The solid line represents 

the best-fit according to the Sips restricted isotherm when ns=1. 
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Table 4.5. Sorption parameters for PNP in aqueous solution with two-component biopolymers of 

LMWCH:Glu at 295 K and pH 8.5 (unbuffered)* obtained from the “best-fit” using the Sips 

isotherm model. 

Sorbent Qm (mmol g
-1

)  Ks (L mmol
-1)

   

ns SSEx10
-3

 R
2
 

1:15  0.822 0.0226 0.296 1.19 0.699 

1:25 0.309 4.51 0.870 1.32 0.480 

1:35 0.212 6.75 1.21 2.05 0.0815 

*Solutions were unbuffered and pH did not require adjustment. 
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Figure 4.2. The sorption isotherm of fixed amounts (~20 mg) with two-component 

biopolymers of LMWCH:Glu with PNP at various concentrations at pH 8.5 and 295 K.  

The solid line represents the best-fit according to the Sips isotherm. 
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4.0.2 Two-Component High Molecular Weight Chitosan Cross Linked Biopolymer 

Figures 4.4 and 4.5 summarize the results obtained from the PNP sorption isotherms at 

equilibrium obtained at each co-monomer mole ratio.  The sorption properties in aqueous 

solution at pH 8.5 and 295K for the HMWCH:Glu biopolymer materials were quantitatively 

evaluated, as shown by the fitted lines.  The sorption properties of chitosan based biopolymers 

were investigated using a similar strategy.  The concentration dependence of Qe is well-described 

by using the Sips restricted and Sips sorption isotherm models.  In general, the sorption capacity 

of PNP increases monotonically as Ce increases for each co-monomer mole ratio for the 

HMWCH based biopolymers.  The magnitude of Qe shows a greater increase as Ce increases for 

biopolymers with an increasing co-monomer ratio.  The HMWCH:Glu biopolymers were 

synthesized similar to the LMWCH:Glu biopolymers, however, the sorption capacities followed 

a reversed ordering.  As the co-monomer mole ratio was increased, the sorption capacity 

increased.  For a given co-monomer mole ratio (i.e.1:15), the HMWCH:Glu may have more Glu 

crosslinks than LMWCH:Glu for a given chitosan monomer and/or there are more monomer 

sites to accommodate the Glu crosslinks. (cf. Scheme 4.1). 
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Scheme 4.1.  Generalized structures of two-component biopolymers A) 1:15 

HMWCH:Glu and B) 1:15 LMWCH:Glu biopolymers showing Glu crosslinks for a 

given chitosan prepolymer chain length. 

 

In Table 4.6, the sorption results showed that the 1:35 HMWCH:Glu biopolymer material 

had the highest εR%  (48.9%) of PNP throughout the range of adsorbate concentration from 0.4 

to 3 mM.  This concentration range was examined because the LMWCH:Glu biopolymers 

displayed saturation of their sorption sites ~2.5 mM PNP and showed greater dissimilarities 

thereafter. Therefore, it was beneficial to lower the PNP concentration of interest because the 

concentration region where the uniformity existed (0.4 to 3 mM PNP) showed good agreement 

amongst the isotherm models. Tables 4.8 to 4.9 show the parameters obtained from each 

isotherm model. 

B) A) 

HMWCH 

Glu 

Glu LMWCH 
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Overall, each co-monomer mole ratio for the HMWCH:Glu sorbents exhibited a uniform 

increase in Qe indicating a high affinity towards PNP.  The Sips restricted and Sips isotherms for 

all co-monomer mole ratios displayed a reasonable “best-fit” suggesting that the models provide 

a good description of the data.  As well, the sorption sites are either homogenous or 

heterogeneous surfaces with a distribution of adsorption energies.   The HMWCH has a higher 

degree of polymerization and larger SA estimates than the LMWCH:Glu biopolymers.  More 

PNP anion species are adsorbed which is obvious by the greater Qm values, in comparison to the 

LMWCH:Glu.  The variation in the sorption properties could be related to the variable SA (see 

Table 4.7) and molecular weight of the biopolymer materials.  The Sips restricted (SA = 58 - 

64.7 m
2
/g) gives consistently lower SA estimates, for all co-monomer mole ratios, in comparison 

to the Sips (SA = 79 – 96.3 m
2
/g).  Also, the HMWCH:Glu biopolymers may be more porous in 

nature resulting in a sorbent framework with more accessible pores and decreased steric 

hindrance
73

 of the co-monomer (Glu) or the degree of polymerization.  Hydration may contribute 

to the SA and PNP sorption because the HMWCH:Glu biopolymers may swell to a greater extent 

than the LMWCH:Glu.  Swelling lowers the steric hindrance because it is well known that these 

types of chitosan based biopolymers are known to swell in aqueous solutions,
57

 as outlined 

above.  The isotherm results and Qm values support the occurrence of swelling.   A comparison 

between LMWCH and HMWCH in this study suggests that hydration plays the major role in the 

sorption capacity.  The lipophilic nature of the HMWCH:Glu is increased in comparison to the 

LMWCH:Glu biopolymers.  The lipophilicity increases as the cross linking density increases; 

thus, promoting favourable hydrophobic interactions between PNP and the HMWCH:Glu based 

biopolymers (see Scheme 4.1).  
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At 295 K and pH 8.5, the Qm values for the three HMWCH based biopolymers: 1:15 < 1:25 < 

1:35; agree for both isotherm models.  Sorption of PNP by HMWCH copolymers was carried out 

similarly as described above for the LMWCH biopolymers.  The HMWCH:Glu biopolymers 

have higher Qm values than the βCD:EP copolymers; (Sips restricted: 0.39 – 0.43 mmol PNP/g 

sorbent and Sips: 0.43 – 0.64 mmol PNP/g sorbent). 

Both isotherms have very low SSE values (< 7.30x10
-4

) and R
2 

> 0.771.  The goodness of fit 

and error estimates were both discussed in the previous section (§4.0.1).  The Sips parameter ns ≈ 

0.8 - 0.9 is close to unity, for all co-monomer mole ratios, indicating good agreement with the 

Sips restricted model which describes Langmuir type behaviour.  Thus homogeneity is favoured 

and monolayer coverage seems plausible. 

This conclusion is further supported by referring to the comparison of the isotherm shapes to 

the known IUPAC categories, see § 4.0.3 for the types of sorption isotherms.  

Table 4.6. Removal efficiencies for PNP in aqueous solution for two-component 

biopolymers of HMWCH:Glu at 295 K and pH 8.5. 

Biopolymer Sorbent Material εR % 

1:15 14.3-37.4 

1:25 17.3-45.3 

1:35 19.7-48.9 
a
 The calculated range of values for ε% correspond to a range of PNP concentrations 

([PNP]o = 0.4 – 3 mM) with a fixed mass (~20 mg) of biopolymer sorbent material. 

 

 

 

 

 

 



69 
 

Table 4.7. The surface area estimates for two-component biopolymers HMWCH:Glu 

using PNP in aqueous solution at 295 K and pH 8.5. 

Biopolymer Sorbent 

Material 

Surface Area Estimate (m
2 

g
-1

)
a
 

Sips restricted
b
 Sips 

1:15 58.7 79.8 

1:25 54.2 64.7 

1:35 64.7 96.3 
a
Dye-based method surface area estimates obtained from eq.(11) using a value for Am for 

the planar orientation of PNP and a Qm value estimated from eq. (13 and 14). 
b
Sips restricted is defined when ns=1. 

 

 

 

 

Table 4.8. Sorption parameters for PNP in aqueous solution for two-component 

biopolymers HMWCH:Glu at 295 K and pH 8.5 (unbuffered)* obtained from the “best-

fit” using the Sips restricted isotherm model when ns=1. 

Sorbent Qm (mmol g
-1

)  KL (L mmol
-1

)

  

SSEx10
-4

 R
2
 

1:15  0.386 0.477 6.40 0.823 

1:25 0.356 0.992 6.20 0.858 

1:35 0.432 0.912 6.40 0.892 

 *Solutions were unbuffered and pH did not require adjustment. 
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Figure 4.3. The sorption isotherm of fixed amounts (~20 mg) of two-component biopolymers 

HMWCH:Glu biopolymers with PNP at various concentrations at pH 8.5 and 295 K.  The solid 

line represents the best-fit according to the Sips restricted isotherm when ns=1. 

 

Table 4.9. Sorption parameters for PNP in aqueous solution for two-component biopolymers 

HMWCH:Glu at 295 K and pH 8.52 (unbuffered)* obtained from the “best-fit” using the Sips 

isotherm model. 

Sorbent Qm (mmol g
-1

)  KS (L mmol
-1

)  ns SSEx10
-4

 R
2
 

1:15  0.534 0.245 0.862 7.30 0.824 

1:25 0.427 0.661 0.876 7.10 0.863 

1:35 0.640 0.358 0.775 6.90 0.899 

*Solutions were unbuffered and pH did not require adjustment. 
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Figure 4.4. The sorption isotherm of fixed amounts (~20 mg) of two-component 

biopolyers HMWCH:Glu with PNP at various concentrations at pH 8.5 and 295 K.  The 

line through the data represents the best fit according to the Sips isotherm model.  
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4.0.3 The Various Types of Sorption Isotherms
22 

Brunauer, Deming, and Teller (BDT) classified sorption isotherms as six different categories 

(Type I, II, III, IV, V, and VI). Those isotherms are shown in Figure 1.9.
77

 

 

 

Figure 4.5. The six types of adsorption isotherms (adapted from reference 77). 

Type I Isotherm 

These isotherms are used to characterize the sorption caused by predominantly microporous 

structure because most micropore filling occurs at relatively low pressure (< 0.1) and the 

adsorption process is usually completed at about half relative pressure (P/Po ≈ 0.5).  Typical 

adsorptions of this group are the adsorption of molecular nitrogen onto AC at 77 K and ammonia 

on activated carbon (AC) at 273K.  
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Type II Isotherm  

These isotherms involve physical adsorption of gases by non-porous solids. Point B is the end of 

monolayer surface coverage and multilayer coverage begins at higher relative pressures after the 

point B. ACs with mixed micro- and meso-porosity show Type II isotherms. 

Type III Isotherm  

These isotherms are favored by weak interactions between adsorbate-adsorbent systems such as 

non-porous and microporous adsorbents. The weak interactions between the adsorbate and the 

adsorbent result in low loadings at low relative pressures. However, beyond the first sorption 

point, much stronger sorption can occur and result in maximum loadings at higher relative 

pressures. The adsorption of water molecules on AC where the primary adsorption sites are 

oxygen fall into this category.  

Type IV Isotherm  

These isotherms show a hysteresis loop attributed to capillary condensation, which is commonly 

shown in the presence of mesoporosity. Point B is the end of monolayer surface coverage and 

multilayer coverage starts right after the point B. These sorption isotherms exhibit a limited 

loading at high relative pressures. 

Type V Isotherm  

These isotherms are achieved with microporous or mesoporous adsorbents and are convex at the 

high relative pressure. The driving force for adsorbate uptake is the same as Type III isotherms. 

An example is water adsorption on AC at 100 °C.
78

 

Type VI Isotherm  

These isotherms are associated with extremely homogeneous, non-porous surfaces. The complete 

formation of a monolayer which corresponds to the step height is fulfilled before progression to a 

subsequent layer. An example is the adsorption of krypton on carbon black at 90 K which was 

previously graphitized at 3000 K.
79
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4.1 Arsenate(V) Oxoanion Equilibrium Sorption Results 

 An aqueous solution containing arsenate oxoanion (HAsO4
2-

) and fixed amounts (~20 

mg) of chitosan based biopolymers were shaken and equilibrated for 24 hours in aqueous 

solution where arsenate oxoanion was used as the adsorbate species.  Each set of solid-solution 

equilibrium experiments were carried out similarly for the two component (CH/Glu) 

biopolymers with varying co-monomer mole ratio (1:15, 1:25 and 1:35).  A comparison between 

the sorption capacities using the Sips isotherm and the Sips restricted isotherm models of the 

HMWCH:Glu where HAsO4
2-

 was the adsorbate species.   

 

4.1.1 Two-Component Low Molecular Weight Chitosan Cross Linked Biopolymer 

Figures 4.6 and 4.7 summarize the sorption isotherms obtained for each biopolymer at 

variable co-monomer mole ratio with HAsO4
2-

.  The sorption properties of the LMWCH:Glu 

biopolymer materials were quantitatively analyzed, as shown by the fitted lines, for the 

respective model in aqueous solution at pH 8.5 and 295 K.  At these conditions, HAsO4
2- 

exists 

as an inorganic anion and the concentration dependence of Qe is well described by using the Sips 

restricted and Sips sorption isotherm models. In general, for each cross linked LMWCH based 

biopolymer, the quantity of HAsO4
2- 

adsorbed increases monotonically as Ce increases.  The 

magnitude of Qe shows a greater increase as Ce increases for biopolymers with lower co-

monomer mole ratios.  

The sorption results in Table 4.10 show that 1:15 biopolymer had the highest εR%, 

(92.2%) for the LMWCH:Glu cross linked biopolymer of HAsO4
2- 

 over the entire range of 

concentration (Ce) for HAsO4
2- 

from 47-121 ppm.  This concentration range was examined 

because the sorption capacity was attained near saturation ~125 ppm.  Therefore, it was 
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beneficial to investigate a range of adsorbate concentrations < 125 ppm of HAsO4
2-.

.  Tables 4.11 

to 4.12 show the parameters obtained from each isotherm model.   

Overall, both isotherm models yielded “best-fit” for all of the co-monomer ratios.  The 

LMWCH:Glu sorbent exhibits a uniform increase in Qe indicating a relatively high affinity 

towards HAsO4
2-

.  The Sips restricted and Sips isotherms for all co-monomer mole ratios had the 

“best-fit” giving no clear indication that sorption sites are either a homogenous monolayer or 

heterogeneous surface with a distribution of adsorption energies.  The isotherm curves show 

regions (Ce > 40 ppm) with little variation for all three sorbents.  This could be interpreted as the 

surface coverage is saturated by ~40 ppm.  Beyond 40 ppm. the concentration dependence of the 

isotherm curves plateau because all of the binding sites are occupied.  This effect is clearly 

observed for the 1:25 and 1:35 co-monomer mole ratio sorbents. 

At 295 K and pH 8.5, the Sips restricted estimates for Qm for the three types of LMWCH 

based biopolymers are as follows: 1:15 > 1:25 > 1:35 and the Sips estimates of Qm follow a 

similar trend. Each isotherm model for the 1:35 biopolymer yields similar Qm values.  Both 

isotherms have high SSE values (> 0.955) and R
2 

> 0.771 for all sorbent biopolymers. 

In the case of LMWCH:Glu biopolymers sorbents where HAsO4
2- 

is the adsorbate, it is 

difficult to clearly discriminate between the two isotherm models because they have similar SSE 

and R
2
 values. However, the SSE is lower for the Sips and ns ≠ 1 indicating evidence of the 

heterogeneity of the sorption sites. 

 

 



76 
 

Table 4.10. Removal efficiencies
a
 for HAsO4

2-
 in aqueous solution with two-component 

biopolymers of LMWCH:Glu at 295 K and  pH 8.5. 

Biopolymer Sorbent Material εR % 

1:15 71.4-92.2 

1:25 59.6-85.8 

1:35 50.3-82.3 
a
 The calculated range of εR% values correspond to a range of HAsO4

2-
 concentrations ([HAsO4

2-

]o = 47-121 ppm) with a fixed mass (~20 mg) of biopolymer sorbent material. 

 

Table 4.11. Sorption parameters for  (HAsO4
2-

) in aqueous solution with two-component 

biopolymers LMWCH:Glu at 295 K   and pH 8.5 (unbuffered)*obtained from the “best-fit” 

using the Sips restricted isotherm model when ns=1. 

Sorbent Qm (mg g
-1

)  KL (mL μg
-1

)

  

SSE R
2
 

1:15  50.0 0.166 3.37 0.955 

1:25 44.5 0.112 2.04 0.955 

1:35 36.0 0.113 0.874 0.963 

*Solutions were unbuffered and pH did not need require adjustment. 

 

 

 



77 
 

0 10 20 30 40 50 60 70
10

15

20

25

30

35

40

45

50

1:15

1:25

 1:35

Q
e (

m
g

 g
-1

)

C
e
 (g mL

-1
)

 

 

Figure 4.6. The sorption isotherm of fixed amounts (~20 mg) of two-component biopolymers 

LMWCH:Glu with HAsO4
2-

 at various concentrations at pH 8.5 and 295 K.  The solid line 

represents the best-fit according to the Sips restricted isotherm when ns=1 

 

 

 

 

Table 4.12. Sorption parameters for  (HAsO4
2-

) in aqueous solution with two-component 

biopolymers LMWCH:Glu at 295 K and pH 8.5 (unbuffered)* obtained from the “best-fit” using 

the Sips isotherm model. 

Sorbent Qm (mg g
-1

)  KS (mL μg
-1

)

  

ns SSE R
2
 

1:15  228 0.000780 0.391 1.60 0.981 

1:25 70.5 0.0295 0.567 1.93 0.958 

1:35 39.6 0.0945 0.778 0.782 0.968 

*Solutions were unbuffered and pH did not require adjustment. 
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Figure 4.7. The sorption isotherm of fixed amounts (~20 mg) of two-component biopolymers 

LMWCH:Glu biopolymers with HAsO4
2- 

at various concentrations at pH 8.5 and 295 K.  The 

solid line represents the best-fit according to the Sips isotherm. 
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4.1.2 Two-Component High Molecular Weight Chitosan Cross Linked Biopolymer 

In general, for each cross linked HMWCH based biopolymer, the sorption quantity of 

HAsO4
2- 

increases monotonically as Ce increases.  The magnitude of Qe shows an increase as Ce 

increases for biopolymers with increasing Glu content and reaches a maximum for the 1:25 co-

monomer mole ratio.   The sorption capacity increases as the Glu content increases (1:15 < 1:25 

≈ 1:35). 

The sorption results show that the 1:35 biopolymer had the highest εR% (87.2%) see 

Table 4.1.3.  The εR% for the HMWCH:Glu copolymers ranged from 31 – 87% for HAsO4
2- 

 

throughout the entire range of equilibrium concentration (Ce) for 47-121 ppm.  Tables 4.1.4 to 

4.1.5 show the parameters obtained from each isotherm model.   

Overall, both isotherm models yielded good “best-fit” results based on the SSE and R
2
 

values.  The 1:25 and 1:35 co-monomer mole ratios for HMWCH:Glu exhibit a uniform increase 

in Qe which indicates a relatively high affinity towards HAsO4
2-

.  The sorption affinity of the 

1:15 biopolymer is relatively low and the isotherm data illustrates a very limited concentration 

dependence for Qe.  While the sorption capacity of the 1:25 and 1:35 biopolymers are similar, the 

Qm value for 1:15 copolymer is lower.  The apparent scatter in the data for 1:15 is a consequence 

of the low binding affinity toward HAsO4
2
.   The 1:15 isotherm curve does show a region of Ce 

(> 50 ppm) with little concentration dependence of Qe.  This could be interpretated that the 

coverage is completely established at ~50 ppm for this biopolymer.  The Langmuir Qm value is 

22.2 mg HAsO4
2-

/g sorbent and the Sips Qm value for the 1:15 biopolymer is 26.6 mg HAsO4
2-

/g 

sorbent and the sorption results in Fig. 4.8 and 4.9 indicate that the sorption sites are ~ 81% and 

~68% while the corresponding Qe values are ~18 mg HAsO4
2-

/g sorbent.  The Langmuir Qm 

values for HAsO4
2-

 are 39.3 and 37.8 mg HAsO4
2-

/g sorbent for the 1:25 and 1:35 copolymers 
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respectively.  The sorption results in Fig. 4.8 indicate that the sorption sites are 87 - 90% 

saturated since the corresponding Qe value is ~34 mg HAsO4
2-

/g sorbent, respectively.  The Sips 

Qm values for 1:25 and 1:35 are 44.0 and 56.6 mg HAsO4
2-

/g sorbent, respectively.  The sorption 

results in Fig. 4.9 indicate that the sorption sites are 60 - 77% saturated since the corresponding 

Qe value for HAsO4
2- 

is ~34 mg /g sorbent. 

At 295 K and pH 8.5, the various two-component biopolymers of HMWCH based 

biopolymers have the following Sips restricted Qm values: 1:15 < 1:35 ~ 1:25.  In contrast the 

Sips Qm estimates are as follows: 1:15 < 1:25 < 1:35. The Sips restricted and Sips isotherms 

displayed equally good “best-fit” results for these two-component biopolymers. 

Both isotherms have similar SSE values (> 0.958) and R
2 

(> 0.771) coefficients for all 

sorbent biopolymers.  The SSE for the Sips restricted isotherm is less than the Sips isotherm 

which indicates the former isotherm displays a suitable “best-fit” for the 1:15 biopolymer.  Thus 

homogeneous sorption sites are concluded for the 1:15 biopolymer; whereas, the 1:25 and 1:35 

biopolymers are described by the Sips restricted isotherm indicating the occurrence of 

heterogeneous sorption sites.  However, ns ≠ 1, for all three co-monomer mole ratios.  

 

Table 4.13. Removal efficiencies
a
 for HAsO4

2-
 in aqueous solution with two-component 

biopolymers HMWCH:Glu at 295 K and  pH 8.5. 

Biopolymer Sorbent Material εR% 

1:15 30.7-56.0 

1:25 56.5-85.8 

1:35 57.2-87.2 
a
 The calculated range of εR% values correspond to a range of HAsO4

2-
 concentrations  

([HAsO4
2-

]o = 47-121 ppm) with a fixed mass (~20 mg) of biopolymer sorbent material. 
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Table 4.14. Sorption parameters for HAsO4
2-

 in aqueous solution with two-component 

biopolymers HMWCH:Glu at 295 K and pH 8.5 (unbuffered)* obtained from the “best-

fit” using the Sips restricted isotherm model when ns=1. 

Sorbent Qm (mg g
-1

) KL (mL μg
-1

) SSE R
2
 

1:15  22.2 0.0708 1.18 0.771 

1:25 39.3 0.154 1.37 0.954 

1:35 37.8 0.170 1.30 0.950 

*Solutions were unbuffered and pH did not require adjustment. 
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Figure 4.8. The sorption isotherm of fixed amounts (~20 mg) of two-component biopolymers 

HMWCH:Glu with HAsO4
2-

 at various concentrations at pH 8.5 and 295 K.  The solid represents 

the best-fit according to the Sips restricted isotherm when ns=1. 

 



82 
 

 Table 4.15. Sorption parameters for HAsO4
2-

 in aqueous solution with HMWCH:Glu at 295 K 

and pH 8.5 (unbuffered)* obtained from the “best-fit” using the Sips isotherm model. 

Sorbent Qm (mg g
-1

)  KS (mL μg
-1

)

  

nS SSE R
2
 

1:15  26.6 0.0486 0.672 1.25 0.779 

1:25 44.0 0.124 0.762 1.34 0.958 

1:35 50.6 0.0786 0.557 0.958 0.966 

*Solutions were unbuffered and pH did not require adjustment. 

 
 

0 10 20 30 40 50 60 70 80 90
10

15

20

25

30

35

40  1:15

 1:25

 1:35

 

 

Q
e(m

g
 g

-1
)

C
e
(g mL

-1
)

 
 

Figure 4.9. The sorption isotherm of fixed amounts (~20 mg) of two-component biopolymers 

HMWCH:Glu with HAsO4
2-

 at various concentrations at pH 8.5 and 295 K.  The solid line 

represents the best-fit according to the Sips isotherm. 



83 
 

4.2 Three-Component High Molecular Weight Chitosan-β-Cyclodextrin Cross Linked 

Biopolymer 

An aqueous solution containing PNP and fixed amounts (~20 mg) of HMWCH based 

biopolymers, with βCD incorporated into the framework were shaken and equilibrated for 24 

hours in aqueous solution made up of either sorbate species: PNP and HAsO4
2-

.  Each set of 

sorption equilibrium isotherm were carried out the similarly to the two-component biopolymers.  

The βCD content (1-1, 1-3 and 1-1/3) of the three-component biopolymers were varied and 

compared.  The Glu content was held constant at a 1:6 mole ratio (chitosan:Glu) whereas the 

βCD content was varied relative to HMWCH (chitosan-βCD;1-1, 1-3, 1-1/3 (w/w)).   

4.2.1 p-Nitrophenol Equilibrium Sorption 

Figures 4.10 and 4.11 summarizes the PNP
 
equilibrium sorption isotherms for each 

HMWCH and βCD mass ratio, the sorption properties of the HMWCH-βCD:Glu biopolymer 

materials were quantitatively analyzed, as shown by the fitted lines, in aqueous solution at pH 

8.5 and 295 K.  

The concentration dependence of Qe is well-described using the Langmuir and Sips 

sorption isotherm models. In general, for each HMWCH-βCD mole ratio biopolymer, the 

quantity of PNP adsorbed
 
increases monotonically as Ce increases.  The magnitude of Qe 

increases as Ce increases for biopolymers with greater HMWCH content.   

From the viewpoint of available inclusion or adsorption sites, HMWCH is a linear 

macromolecule whereas βCD is a pre-organized macrocycle with inclusion sorption sites.  Three 

component biopolymers may have less efficient packing of the crosslinked chitosan chains 
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because of the size of the βCD macrocycle as compared with Glu or chiotsan may which adopt a 

linear conformation; see Schemes 4.2 and 4.3: 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4.2. Chitosan cross linked with  Scheme 4.3.Chitosan and βCD cross 

Glu showing a microporous biopolymer. linked with Glu showing a variable porosity 

biopolymer; toroids represent βCD. 

 

The degree of sorption could be related to the variable SA (cf. Table 4.17) of the three-

component biopolymer materials.  It is interesting to note that both isotherm models for the 1-3 

give drastically different SA estimates; a range of 34.6 – 275 m
2
/g.  The 1-1 and 1-1/3 sorbents 

have similar SA estimates despite the use of different isotherm models.  SA estimate 

Glu crosslinks Glu crosslinks 

βCD Chitosan 

polymer 
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comparisons, obtained from the Langmuir model, for the three component biopolymers when 

compared to the two component (HMWCH:Glu) biopolymers show that the 1:25 HMWCH:Glu 

SA estimates are similar to the 1-1 HMWCH:βCD SA estimates (SA = 54.2 m
2
/g).  The 1-3 

biopolymer has the lowest SA estimate and the 1-1/3 has the highest SA estimate.  The SA 

estimates of each biopolymer of HMWCH:Glu are within ±10 m
2
/g while the HMWCH-βCD 

content has a wide range (~81 m
2
/g) of SA estimatesm as evidenced from the Langmuir Qm 

parameters. 

The possibility of steric hinderance occurring in the 1-3 framework is apparent by its 

sorption capacity.  Equal amounts of HMWCH and βCD (1-1) show that an increase of the 

chitosan content increases the sorption of more PNP from aqueous solution.  As the amount of 

βCD in the framework increases from a 1-1 to the 1-3 biopolymer, it is evident that steric 

hinderance
73

 plays a role in the 1-3 material.  The sorption capacity increased from the 1-3 to the 

1-1.  The sorption capacity of the 1-1/3 frameworks increased and steric hinderance plays a role 

in the framework.  Thus, the framework with the greatest content of chitosan attains the highest 

sorption capacity amongst the three-component biopolymer materials.  Thus, the sorption 

capacity increased as the chitosan content increased (chitosan-βCD) 1-3 < 1-1 < 1-1/3.  Based on 

the structure of each co-monomer, chitosan is made of a linear polymer chain of glucose 

substituted amine molecules; whereas βCD is made of cyclic oligomers which form a well-

defined inclusion sites in the framework; (cf. Scheme 1.4 and 1.5).  βCD may contribute to the 

sorption capacity, in part, due to its inclusion sites.   

The foregoing sorption results showed that the 1-1/3 biopolymer had the highest εR% 

(28.0%), see Table 4.17, for the HMWCH-βCD:Glu co-monomer biopolymer over the entire 
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range of concentrations from 0.4 – 3 mM PNP.  This concentration range was examined because 

the HMWCH-βCD:Glu biopolymers displayed saturation of their sorption sites ~2.5 mM for 

PNP and showed variability thereafter.  Tables 4.1.8 to 4.1.9 show the parameters obtained from 

each isotherm model.  

Overall, both isotherm models give reasonable fits and the 1-1, 1-1/3 and 1-3 mole ratios 

for three-component biopolymers HMWCH-βCD:Glu exhibit a uniform increase in Qe indicating 

a high affinity towards PNP relative to copolymers without βCD.  The sorption affinity of the 1-3 

biopolymers is relatively low and the isotherm data illustrates a very limited concentration 

dependence of Qe.  While the sorption capacity of 1-1/3 and 1-3 are relatively similar, the value 

of Qm for 1-1 is lower.  The isotherm curves for the 1-1 biopolymer show a region (Ce ~2.50 

mM; PNP) with little concentration dependence.  This could be interpretated that the surface 

coverage is completely established ~2.5 mM and beyond this concentration, the binding sites are 

fully occupied.  

The Sips restricted Qm values for 1-1, 1-3 and 1-1/3 are 0.357, 0.232 and 0.769 PNP 

mmol/g sorbent, respectively.  The sorption results in Fig. 4.10 indicate that the sorption sites are 

32 - 49% saturated.  The corresponding Qe value is ~ 0.175, 0.075 and 0.275 mmol PNP/g 

sorbent, respectively.  The Sips Qm values for 1-1, 1-3 and 1-1/3 are 0.340, 1.83 and 1.07 mmol 

PNP/g sorbent, respectively.  The sorption results in Fig. 4.11 indicate that the sorption sites are 

~4-50% saturated since the corresponding Qe value ~ 0.175, 0.075 and 0.275 mmol PNP/g 

sorbent, respectively. 

At 295 K and pH 8.52, the Langmuir Qm values for the three-component biopolymers are as 

follows: 1-3 < 1-1 < 1-1/3.  The Sips Qm values follow a similar trend.  The ns values are close to 
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unity for 1-1 and 3-1 biopolymers; whereas, ns = 0.73 for 1-3 copolymer.  The sorption sites are 

consistent with homogenous monolayer coverage for the 1-1 and 1-1/3 copolymers.  When ns = 

1, the Sips model is equivalent to the Langmuir.  Both isotherms have very low SSE values and 

R
2 

> 0.950 for all sorbents.  Therefore, an analysis of the magnitude of the isotherm parameters 

should be considered when determining the “best-fit” criteria. 

Both isotherms have similarly low SSE values (< 5.00x10
-5

) and R
2 

> 0.957 for all HMWCH-

βCD biopolymers.  The SSE, for the Sips restricted isotherm is less than the Sips isotherm 

showing evidence of homogeneity of the surface sorption sites for the 1-1 biopolymer.  For the 

1-3 and 1-1/3 sorbents, the SSE is similar for both isotherms; the ns value for the 1-3 biopolymer 

yielded variable Sips restricted parameter estimates.  The ns ≈ 1 for the 1-1 and 3-1 biopolymer 

indicates Langmuir-type behaviour.  For HMWCH-βCD:Glu biopolymers, the 1-1 and 1-1/3 

biopolymers are well-described by the Sips restricted isotherm and the 1-3 biopolymer is well-

described (ns ≠ 1) by the Sips isotherm model. 

Table 4.16. Removal efficiencies for PNP in aqueous solution with three-component 

biopolymers HMWCH-βCD:Glu at 295 K and  pH 8.5. 

Biopolymer Sorbent Material εR% 

1-3 7.30-10.8 

1-1 14.3-25.7 

1-1/3 21.1-28.0 
a
 The calculated range of εR% values correspond to a range of PNP concentrations            

([PNP]o = 0.39 – 2.9 mM) with a fixed mass (~20 mg) of biopolymer sorbent material. 
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Table 4.17. The surface area estimates for three-component biopolymers HMWCH-βCD:Glu 

using PNP in aqueous solution at 295 K and pH 8.5. 

Biopolymer Sorbent 

Material 

Surface Area Estimate (m
2 

g
-1

)
a
 

Sips restricted
b
  Sips 

1-3 34.6 275 

1-1 54.2 51.2 

1-1/3 116 161 
a
Dye-based method surface area estimates obtained from eq.(11) using a value for Am for 

the planar orientation of PNP and a Qm value estimated from eq. (13 and 14) 
b
Sips restricted when ns=1. 

 

 

Table 4.18. Sorption parameters for PNP in aqueous solution with three-component 

biopolymers HMWCH-βCD:Glu at 295 K and pH 8.5 (unbuffered)* obtained from the 

“best-fit” using the Sips restricted isotherm model when ns=1. 

Sorbent Qm (mmol g
-1

)  KL(L mmol
-1

)

  

SSEx10
-5

 R
2
 

1-3 0.232 0.300 3.00 0.957 

1-1  0.357 0.597 4.00 0.987 

1-1/3 0.769 0.285 5.00 0.993 

*Solutions were unbuffered and pH did not require adjustment. 
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Figure 4.10. The sorption isotherm of fixed amounts (~20 mg) of three-component biopolymers 

HMWCH-βCD:Glu with PNP at various concentration at pH 8.5 and 295 K.  The solid line 

represents the best-fit according to the Sips restricted isotherm when ns=1. 

 
 

Table 4.19. Sorption parameters for PNP in aqueous solution with three-component biopolymers 

HMWCH-βCD:Glu at 295 K and pH 8.5 (unbuffered)* obtained from the “best-fit” using the 

Sips isotherm model. 

Sorbent Qm (mmolg
-1

)  KS (Lmmol
-1

)

  

ns SSEx10
-5

 R
2
 

1-3 1.83 0.00804 0.730 3.00 0.961 

1-1  0.340 0.657 1.04 5.00 0.987 

1-1/3 1.07 0.159 0.910 5.00 0.994 

*Solutions were unbuffered and pH did not require adjustment. 
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Figure 4.11. The sorption isotherm of fixed amounts (~20 mg) of three-component 

biopolymers HMWCH-βCD:Glu biopolymers with PNP at various concentrations                

at pH 8.5 and 295 K.  The solid line represents the best-fit according to the Sips isotherm. 
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4.2.2 Arsenate(V) Oxoanion Equilibrium Sorption  

Figures 4.12 and 4.13 summarize sorption isotherms for HAsO4
2- 

in aqueous solution
 
at 

equilibrium for each type three-component biopolymer.  The sorption properties of the 

HMWCH-βCD:Glu biopolymer materials in aqueous solution at pH 8.5 and 295 K were 

quantitatively analyzed, as shown by the fitted lines.  For each HMWCH-βCD mole ratio, the 

adsorbed amount of HAsO4
2- 

increases monotonically as Ce increases.  The magnitude of Qe 

shows a gradual increase as Ce increases for biopolymers with increasing βCD content.  

The sorption results show that the 1-3 sorbent containing HMWCH had the highest εR% 

(55.4%) (cf. Table 4.20) for the three-component biopolymers
 
throughout the entire range of 

equilibrium concentration of HAsO4
2- 

from 44 - 118 ppm.  This concentration range was 

examined because the sorption isotherm was near saturation ~ 125 ppm for Ce.  Tables 4.21 to 

4.22 show the parameters obtained for each isotherm model.  

Overall, both isotherm models provided a satisfactory “best-fit”.  The 1-1, 1-1/3 and 1-3 

mass ratios for HMWCH-βCD:Glu exhibit a non-uniform increase in Qe indicating a low affinity 

towards HAsO4
2-

.  The sorption affinity of the 1-1 biopolymer is relatively low and the isotherm 

data indicates a very limited concentration dependence of Qe.  While the sorption capacity of 1-

1/3 and 1-3 are relatively similar, the reported value of Qm for 1-1 is attenuated.  The apparent 

scatter in the experimental data is a consequence of the reduced concentration dependence of Qe 

due to the low binding affinity toward HAsO4
2
.    

The isotherm for each copolymer mole ratio where Ce values > 50 ppm display little 

variation.  This could be interpretated that full surface coverage is achieved ~ 50 ppm.  Beyond 

this concentration 50 ppm, the isotherm levels off because the potential binding sites are 
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occupied. The Langmuir Qm parameter for the 1-1, 1-1/3 and 1-3 biopolymers are 18.2, 23.7 and 

22.0 mg HAsO4
2-

/g sorbent, respectively.  The sorption results in Fig. 4.12 indicate that the 

sorption sites are 69-86% saturated since the corresponding Qe value is ~12.5, 16.5 and 19.0  mg 

HAsO4
2-

/g sorbent, respectively.  The Sips Qm values for 1-1, 1-1/3 and 1-3 are 41.3, 45.4 and 

23.0 mg HAsO4
2-

/g sorbent, respectively.  The sorption results in Fig. 4.13 indicate that the 

sorption sites are 30-82% saturated. 

At 295 K and pH 8.5, the Sips restricted and Sips Qm values for the three-component 

biopolymers: 1-1 < 1-1/3 < 1-3.  The Sips restricted and Sips isotherms for the three-component 

biopolymer provided the “best-fit”.  When ns = 1, the resulting isotherms are equal (KL = Ks) 

reflecting the behavior of the Langmuir.  When the ns ≈ 1 for the 1-3 biopolymer it is evident that 

the sorption sites show homogeneity.  Both isotherms have very low SSE values (< 1.29) and R
2 

> 0.716 for all sorbent biopolymers.  Therefore, an assessment of the magnitude of the isotherm 

parameters is required to verify the goodness of “best-fit” by the isotherm models.  The 1-1 and 

1-1/3 biopolymers are poorly described by the Sips restricted because ns ≠ 1; however, they are 

well-described by the Sips isotherm model. 

Both isotherms have similar SSE values (< 1.29) and R
2 

> 0.716 for all three-component 

biopolymers of HMWCH-βCD biopolymers.  The SSE for the 1-3 and 1-1 are similar for both 

isotherms.  The ns ≈ 1 for the 1-3 biopolymer displays Langmuir type behaviour.  For HMWCH-

βCD:Glu biopolymers, the 1-1 and 1-1/3 biopolymers are well-described by the Sips isotherm 

and the 1-3 biopolymer is well-described (ns = 1) by the Sips restricted isotherm model. 
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Table 4.20. Removal efficiencies for HAsO4
2-

 in aqueous solution with three-component 

biopolymers of HMWCH-βCD:Glu at 295 K and  pH 8.5. 

Biopolymer Sorbent Material
b εR % 

1-3 35.3-55.4 

1-1 22.8-35.1 

1-1/3 29.5-47.8 
a
 The calculated range of εR% values correspond to a range of HAsO4

2-
 concentrations ([HAsO4

2-

]o = 44 -118 ppm) with a fixed mass (~20 mg) of biopolymer sorbent material. 
b 

Refers to βCD-chitosan mole ratio. 

 

Table 4.21. Sorption parameters for HAsO4
2-

 in aqueous solution with three-component 

biopolymers of HMWCH-βCD:Glu at 295 K and pH 8.5 (unbuffered)* obtained from the 

“best-fit” using the Sips restricted isotherm model when ns=1. 

Sorbent Qm(mg g
-1

)  KL (mL μg
-1

)

  

SSE R
2
 

1-3 23.7 0.0643 1.14 0.811 

1-1  18.2 0.0278 0.714 0.789 

1-1/3 22.0 0.0417 1.29 0.765 

*Solutions were unbuffered and pH did not require adjustment. 
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Figure 4.12. The sorption isotherm of fixed amounts (~20 mg) of three-component biopolymers 

of HMWCH-βCD:Glu biopolymers with HAsO4
2-

 at various concentrations at pH 8.5 and 295 K.  

The solid line represents the best-fit according to the Sips restricted isotherm when ns=1. 

 

 

Table 4.22. Sorption parameters for HAsO4
2-

 in aqueous solution with three-component 

biopolymers of HMWCH-βCD:Glu at 295 K and pH 8.5 (unbuffered)* obtained using the Sips 

isotherm model. 

Sorbent Qm (mg g
-1

)  KS (mL μg
-1

)

  

ns SSE R
2
 

1-3 23.0 0.0668 1.09 1.23 0.811 

1-1  41.3 0.00278 0.546 0.758 0.792 

1-1/3 45.4 0.00362 0.423 1.12 0.716 

*Solutions were unbuffered and pH did not need to be adjusted. 
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Figure 4.13. The sorption isotherm of fixed amounts (~20 mg) of three-component 

biopolymers of HMWCH-βCD:Glu biopolymers with HAsO4
2-

 at various concentrations at 

pH 8.5 and 295 K.  The solid line represents the best-fit according to the Sips isotherm. 
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4.3 Commercial Biosorbents (Chitosan and Activated Carbon) for Arsenate(V) Oxoanion 

Equilibrium Sorption 

 The commercially available sorbents, low molecular weight (powder) and high molecular 

weight (flake) chitosan, and activated carbon, were used for the comparison of arsenate(V) 

oxoanion equilibrium sorption.  The results were compared with two- and three-component 

chitosan-based biopolymers.  Figure 4.14 summarizes the εR% ~ 0% for all three commercial 

sorbents.  Chitosan cross linked biosorbent materials exhibit superior sorption properties for 

sorption-based applications such as arsenic cation species and arsenate oxoanions. 
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Figure 4.14 The equilibrium sorption of fixed amounts (~20 mg) of commercial sorbents 

and chitosan based two- and three-component biosorbent materials with various 

concentrations of HAsO4
2-

 at pH 8.5 and 295 K. 
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Chapter 5 

5.0 Summary  

Many researchers utilize sorption since it represents a “green strategy” for the separation 

and sequestration of target compounds from aqueous solution and chemical mixtures.  Sorption 

is a relatively simple, inexpensive and a low energy intensive technology for various chemical 

sorption and processing, including the remediation of contaminated aquatic environments.  The 

development of novel sorbent materials in conjunction with an improved understanding of the 

mechanism of sorption will facilitate the development of tunable materials for specific chemical 

targets by exploiting the principles of supramolecular chemistry. 

Two- and three-component chitosan-based biosorbent materials were successfully 

synthesized through a Schiff base reaction under acidic conditions.  These materials were 

characterized using FT-IR, TGA, and EA.  The sorption properties were studied at pH 8.5 with 

two very different adsorbates: the arsenate oxoanion species (HAsO4
2-

) and the phenoxide anion 

of PNP.  The synthetically derived sorbent materials each contained chitosan in their frameworks 

and displayed variable sorption with each type of adsorbate species.   

The characterization data also showed that there are differences amongst the types of 

cross linked chitosan-based biosorbent materials. The TGA showed two thermal decomposition 

events where the two-component biopolymers, LMWCH:Glu and HMWCH:Glu, exhibit thermal 

events centered on ~215°C and ~420°C, glutaraldehyde and chitosan mass loss, respectively.  

The three-component biopolymer (HMWCH-βCD:Glu) exhibits thermal events centered on 

~250°C and ~420°C.  A complex transition between 390°C and 475°C arises from the three-

component biopolymer.  The FT-IR spectra show two new bands appearing at ~1560cm
-1

 (C=C) 



98 
 

and ~1655cm-1 (C=N), and their appearance of these bands confirms that cross linking occurs 

between the amine groups on CH and the aldehyde groups of Glu. 

For the two-component biopolymers, LMWCH:Glu showed a decrease in sorption as the 

co-monomer mole ratio increased and displayed attenuated binding with PNP; whereas, stronger 

binding affinity to the HAsO4
2-

 species was observed.  The 1:15 LMWCH:Glu sorbed the highest 

amount of deprotonated phenoxide anion of PNP and the HAsO4
2-

 sorbate.  In contrast to the 

LMWCH:Glu, the HMWCH:Glu showed a increase in sorption as the co-monomer mole ratio 

increased.  The 1:35 HMWCH:Glu sorbed the highest amount of PNP and performed similarly to 

the 1:25 HMWCH:Glu for the highest amount of HAsO4
2-

.  The three-component biopolymer 

system, HMWCH-βCD:Glu showed graphically the  1-1/3 chitosan-βCD mass ratio had the 

highest PNP sorption and the 1-3 mass ratio had the highest HAsO4
2-

 sorption. 

It was important to compare the HMWCH and LMWCH based materials because they 

had variable sorption properties based on the Glu co-monomer mole ratios and/or the presence of 

β-CD.  The differences are attributed to a number of factors: the variation in crosslink density 

affects the SA and pore structure properties of copolymer materials.
4
 Variable co-monomer mole 

ratios affects the swelling, hydration properties and the relative accessibility of sorption sites for 

such microporous materials.  The occurrence of cross linking with glutaraldehyde at the OH vs. 

NH sites of chitosan will also affect the surface chemistry and the types of intermolecular 

interactions of such sorbent materials.  It was also imperative to compare the chitosan-based 

biosorbent cross linked materials to the commercially available sorbents (LMWCH, HMWCH 

and AC) to illustrate the phenomenal changes in the sorption capacities and removal efficiencies 

of these biopolymer sorbent materials.  It has been reiterated over and over again in the literature 

that the “free amine group” on chitosan acts as effective metal chelators (i.e. M
n+

 species).  
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However, a comparison of chitosan in its powder or flake form with the cross linked chitosan 

biopolymers reveals significant differences in sorption properties toward arsenate and phenolate 

anion species.  In order to effectively capture heavy metals in aqueous environments, biosorbent 

materials should behave similarly to a sponge, i.e. swellability and surface area are favourable 

properties observed in cross linked biosorbent materials. The tunability of the biopolymers, 

through varying the co-monomer mole ratios (1:15, 1:25 and 1:35) and mass ratios (i.e. 1-1, 1-3 

and 1-1/3) enable tuning of the binding affinity and selectivity of anions in aqueous solutions. 

5.1 Future Research 

 To examine the charge effects (i.e. singly vs. multiply charged states) of the oxoanion (1
-
, 

2
-
, 3

-
 anions) of adsorbate species, it is necessary to examine the pH and ionic strength 

dependence of sorption.  

 To examine the neutral (uncharged species) in relation to the deprotonated species of 

PNP and H3AsO4. 

 A further understanding of the thermodynamic mechanism of sorption of the PNP and 

H3AsO4 species through a temperature dependent sorption study which would yield 

enthalpic and entropic parameters that would help elucidate the importance of H-bonding 

and van der Waal interactions between sorbate and sorbent. 

 Design a binary system of H3AsO4 with another heavy metal species to examine metal-

metal interactions by investigating sorption capacities and selectivity. 

 To obtain the surface area of the anhydrous chitosan based biopolymers in powder form 

through N2 porosimetry. 
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 Investigate the swellability of chitosan:Glu and chitosan-βCD:Glu biosorbents materials 

by determining the surface areas of chitosan-based biopolymers.  The higher the 

swellability the greater the surface area which relates to an increased sorption capacity. 

 To understand the nature of the sorption sites in chitosan cross linked glutaraldehyde 

biopolymers through a Raman/IR spectroscopic study by identifying which functional 

groups participate on the sorbent and sorbate (i.e. C=O, OH or NH groups). 

 For quantitative analysis of adsorbate species, TGA-based thermal events may provide 

some understanding of the sorption phenomena described herein. This can be done by 

TGA-MS, DSC-IR and ICP-MS. 

 To understand the binding interactions such as hydrophobic effects occurring between 

solvent, sorbate and sorbent.  Measuring the heat released and/or absorbed from the 

mixing of two or more components will aid in the investigation of the enthalphic and 

entropic entities by utilizing an ITC in water, D2O and mixed H2O/D2O systems. 

 To obtain structural information as to the binding sites of the adsorbates by the sorbent, it 

is necessary to investigate the sorption mechanisms utilizing EXAFS.  This method 

identifies chemical bonding such as nearest atomic neighbouring shells, average bond 

lengths, atomic coordination, chemical identification of atoms in the shells, and the 

degree of ordering/strength of bond.  PXRD provides structural information (long range), 

XANES analyses the oxidation states of adsorbate speciation existing in aqueous 

solutions, XPS identifies sorption sites and species sorbed. 

 Establish all reaction mechanisms to confirm all products by determining the connectivity 

of the framework by using 
13

C solid state NMR spectroscopy. 
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 Establish the reusability of chitosan:Glu and chitosan-βCD:Glu biosorbents materials (i.e 

# of cycles) that the sorbent can be used to adsorb HAsO4
2-

 or PNP
-
. 

 Optimize all criteria such as pH, temperature and ionic strength to improve the sorption 

capacities of the chitosan based sorbent in aqueous solution. 

 To study the nature of the cross linker monomer by comparing a HAsO4
2-

 sorption study 

using βCD:EP and βCD:Glu copolymers compared to the sorption results obtained in this 

thesis. 

 To investigate the relative inclusion site accessibility of β-CD of the three-component 

polymer materials through the phenolphthalein sorption study.
76

 

 To examine the (A-B)n vs. An-Bn type biopolymer by studying these types of polymers 

through molecular imprinting of  the polymer with guests of interest to see if the use of 

molecular imprinting polymers will improve the sorption properties of such sorbents.
80

  

Also, the drop-wise addition vs. fast addition of cross linker to control the rate of gelation 

and the type of biopolymer. 
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