Browsing by Author "Chang, Wonjae"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Sub-zero soil CO2 respiration in biostimulated hydrocarbon-contaminated cold-climate soil can be linked to the soil-freezing characteristic curve(Environmental Science and Pollution Research, 2025-01) Nayeema, Tasnim; Lee, Aslan Hwanhwi; Richter, Amy; Ng, Kelvin Tsun Wai; Chang, WonjaeExtending unfrozen water availability is critical for stress-tolerant bioremediation of contaminated soils in cold climates. This study employs the soil-freezing characteristic curves (SFCCs) of biostimulated, hydrocarbon-contaminated cold-climate soils to efficiently address the coupled effects of unfrozen water retention and freezing soil temperature on sub-zero soil respiration activity. Freezing-induced soil respiration experiments were conducted under the site-relevant freezing regime, programmed from 4 to − 10 °C at a seasonal soil-freezing rate of − 1 °C/day. The effects of unfrozen water retention on extending soil respiration activity emerged at the onset of soil-freezing. The unfrozen water effect became significant below 0 °C (correlation r = 0.83–0.94) and comparable to the temperature effect (correlation r = 0.82–0.90), successfully demonstrating the coupled effects on sub-zero respiration activity. Soil CO2 respiration modelling based on the temperature dependency only (Arrhenius and Q10 models) did not accurately describe sub-zero respiration activity associated with increased unfrozen water retention in treated contaminated soils. The shifted SFCCs of the treated soils, expressed as a function of soil temperature (T) and unfrozen water content (θ), served as a key framework for efficiently developing the sub-zero respiration model (SFCC-RESP). The developed SFCC-RESP model closely approximated the changes in soil respiration rates influenced by T and θ in the treated soils (R2 = 0.94–0.98) and described the abrupt decrease and subsequent stabilization in CO2 production during the transition to the deeply frozen soil phase. The SFCC-RESP model integrated with soil thermal models (TEMP/W) can be used to produce spatial distributions of T, θ, and CO2 production in the treated soil matrix, providing a tool to approximate the abundance of unfrozen habitable niches when developing cold-tolerant bioremediation strategies.