Browsing by Author "Ferguson, Grant"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Synthesis of science: findings on Canadian Prairie wetland drainage(Taylor and Francis Online, 2021) Baulch, Helen; Whitfield, Colin; Wolfe, Jared; Basu, Nandita; Bedard-Haughn, Angela; Belcher, Kenneth; Clark, Robert; Ferguson, Grant; Hayashi, Masaki; Ireson, Andrew; Lloyd-Smith, Patrick; Loring, Philip; Pomeroy, John; Shook, Kevin; Spence, ChristopherExtensive wetland drainage has occurred across the Canadian Prairies, and drainage activities are ongoing in many areas (Prairie Habitat Joint Venture 2014; Dahl 1990; Watmough and Schmoll 2007; Bartzen et al. 2010; Dahl 2014; Dumanski et al. 2015; Waz and Creed 2017). In 2017 the Global Water Futures program funded the Prairie Water project, with the broad goal of helping to foster improved water security in the region (Spence et al. 2018). Throughout the duration of this project, it has been clear that a diverse group of stakeholders (including river basin organizations, government agencies, and landowners) is seeking the same information — a synthesis of what is known and not known about the effects of wetland drainage. This synthesis of the state of the science on wetland drainage in the Canadian Prairies is aimed at assembling current knowledge based on western scientific methods to articulate what is known about the variability of drainage effects across the region. Traditional knowledge, which represents a different but complementary way of knowing the functioning of prairie watersheds (sometimes also termed catchments, or basins), and the processes driving change within them, is not discussed here. Instead, this synthesis is presented in the spirit of building such collaborations. It summarizes current western scientific knowledge on surface hydrology, groundwater interactions, nutrient export, biodiversity, carbon storage and greenhouse gas dynamics, and wetland conservation socioeconomics. The implications to water security now and in the future are also discussed.Item A Team’s Journey into the Depths : Collecting deep groundwater samples in the American Southwest(Global Water Futures Groundwater, Climate Change and Water Security in the Canadian Prairies, 2023-03) Ferguson, GrantResearchers strengthen a collaborative working relationship through challenging fieldwork.Item Variability in timing and transport of Pleistocene meltwater recharge to regional aquifers(American Geophysical Union (AGU), 2021-10-07) Mowat, Aidan; Francis, Daniel; McIntosh, Jennifer; Lindsay, Matthew B. J.; Ferguson, GrantThe impacts of Pleistocene glaciation on groundwater flow systems in sedimentary basins are widely recognized, but the timing and distribution of subglacial recharge events remain poorly constrained. We investigate the spatial and temporal variability of recharge events from glaciations over the last 2 million years in the Williston Basin, Canada. Integration of fluid chemistry, stable isotope data, and transport modeling indicate that meltwater arrived at depths of ∼600–1000 m in the northcentral region of the Williston Basin at two separate time periods, 75–150 and 300 ka, which we attribute to permeability differences between stacked aquifer systems. Our findings indicate that meltwater recharge extended along the northern margin of the Williston Basin as well as previously identified recharge areas to the east. Given the distance of measurements from recharge areas, evidence of recharge from the early to mid-Pleistocene appears to be preserved in the Williston Basin.