Browsing by Author "Pomeroy, John W."
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item An integrated assessment of impacts to ecosystem services associated with prairie pothole wetland drainage quantifying wide-ranging losses(Canadian Science Publishing, 2024-06-20) Whitfield, Colin; Cavaliere, Emily; Baulch, Helen; Clark, Robert; Spence, Christopher; Shook, Kevin; He, Zhihua; Pomeroy, John W.; Wolfe, JaredIn many regions, a tradeoff exists between draining wetlands to support the expansion of agricultural land, and conserving wetlands to maintain their valuable ecosystem services. Decisions about wetland drainage are often made without identifying the impacts on the services these systems provide. We address this gap through a novel assessment of impacts on ecosystem services via wetland drainage in the Canadian prairie landscape. Draining pothole wetlands has large impacts, but sensitivity varies among the indicators considered. Loss of water storage increased the magnitude of median annual flows, but absolute increases with drainage were higher for larger, less frequent events. Total phosphorus exports increased in concert with streamflow. Our analysis suggested disproportionate riparian habitat losses with the first 30% of wetland area drained. Dabbling ducks and wetland-associated bird abundances respond strongly to the loss of small wetland ponds; abundances were predicted to decrease by half with the loss of only 20%–40% of wetland area. This approach to evaluating changes to key wetland ecosystem services in a large region where wetland drainage is ongoing can be used with an economic valuation of the drainage impacts, which should be weighed against the benefits associated with agricultural expansion.Item Climate Change in Canadian Floodplain Mapping Assessments(Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, 2020) Rajulapati, Chandra Rupa; Tesemma, Zelalem; Shook, Kevin; Papalexiou, Simon Michael; Pomeroy, John W.In the recent decades, precipitation patterns and corresponding streamflow responses in many cold regions catchments have changed considerably due to warming. Understanding historical changes and predicting future responses are of great importance for planning and management of water resources systems. Regional climate simulations using convention- permitting models are helpful in representing the fine-scale cloud and mesoscale processes, which are critical for understanding the physical mechanisms that cause in convective precipitation. From a hydrological perspective, these fine resolution simulations are helpful in understanding the runoff generation mechanisms, particularly for mountainous watersheds, which have high spatial variation in precipitation due to large differences in elevation over small distances. The sister-study of this report, the Bow River Basin Study (BRBS), used a physically based hydrological land surface scheme along with a water management model, coupled with a high resolution convention- permitting atmospheric regional model (Weather Research and Forecasting, WRF) to understand the streamflow generating mechanisms and identify the changes in streamflow responses of the Bow and Elbow River Basins. The coupled model appears to provide a large improvement in predictability, with minimal calibration of parameters and without bias correction of forcing from the atmospheric model. The model4 was able to provide reliable estimates of streamflows, despite the complex topography in the catchment. Using the WRF Pseudo Global Warming (PGW) scenario, estimated future streamflows simulated were then used to develop projected flow exceedance curves. The uncertainty in the simulations is extremely helpful in the risk assessment for downstream flood inundations. However, the uncertainty in streamflows cannot be assessed as the WRF- PGW dataset was only available for a single realization, because of the high computational cost. The research presented in this report focusses instead on using the highly efficient hydrological model developed and verified in BRBS whilst assessing uncertainty using another regional climate model, the CanRCM4, where many realizations are available for different boundary conditions. Since the CanRCM4 simulations have a relatively low resolution, a novel methodology was developed to adjust regional climate model outputs using the WRF-PGW data. An ensemble of 15 CanRCM4 simulations was used to force the Bow River basin model to determine a measure of the uncertainty in the simulated streamflows, and the projected streamflow exceedance probability curves. These curves are extremely useful for risk assessment for downstream flood inundations. Given the importance of understanding how much extreme precipitation will change in urban areas of the basin, where short duration high intensity events cause flash flooding, frequency analysis of these events was carried out for Calgary and Intensity Duration Frequency (IDF) curves were developed. A ready-to-use empirical form of IDF curve has been proposed from this analysis for the City of Calgary. The results from the WRF-PGW modelling indicated that future high flow, low frequency (exceedances less than 10%) streamflow events will decrease compared to those under the current climate condition by 4, 9 and 1.6 m3/s for the Bow River at Banff and Calgary and Elbow River at Sarcee Bridge respectively. The average of the 15 new CanRCM4-WRF-PGW results supports the above result with some greater decreases in streamflow of 9, 16 and 4 m3/s for Bow River at Banff and Calgary and Elbow River at Sarcee Bridge respectively. However, there were some CanRCM4-WRF-PGW realisations that suggested substantial increases in future low frequency streamflow from those indicated by the average CanRCM4- WRF-PGW-drive MESH model. The below average, high frequency (exceedances greater than 30%) future streamflows will increase modestly in all gauging locations by from 1 to 12.5 m3/s. The results of the extreme precipitation analysis at Calgary indicated an increase in future extreme precipitation events of all duration and return periods. On an average an increase of 1.5 times is noted for short return periods (=2, 5), and an increase of 4 times for long return periods (=500, 1000).Item Developing a tile drainage module for the Cold Regions Hydrological Model: lessons from a farm in southern Ontario, Canada(European Geosciences Union, 2024-07-04) Kompanizare, Mazda; Costa, Diogo; Macrae, Merrin; Pomeroy, John W.; Petrone, RichardSystematic tile drainage is used extensively in poorly drained agricultural lands to remove excess water and improve crop growth; however, tiles can also transfer nutrients from farmlands to downstream surface water bodies, leading to water quality problems. Thus, there is a need to simulate the hydrological behaviour of tile drains to understand the impacts of climate or land management change on agricultural surface and subsurface runoff. The Cold Regions Hydrological Model (CRHM) is a physically based, modular modelling system developed for cold regions. Here, a tile drainage module is developed for CRHM. A multi-variable, multi-criteria model performance evaluation strategy was deployed to examine the ability of the module to capture tile discharge under both winter and summer conditions (NSE > 0.29, RSR < 0.84 and PBias < 20 for tile flow and saturated storage simulations). Initial model simulations run at a 15 min interval did not satisfactorily represent tile discharge; however, model simulations improved when the time step was lengthened to hourly but also with the explicit representation of capillary rise for moisture interactions between the rooting zone and groundwater, demonstrating the significance of capillary rise above the saturated storage layer in the hydrology of tile drains in loam soils. Novel aspects of this module include the sub-daily time step, which is shorter than most existing models, and the use of field capacity and its corresponding pressure head to provide estimates of drainable water and the thickness of the capillary fringe, rather than using detailed soil retention curves that may not always be available. An additional novel aspect is the demonstration that flows in some tile drain systems can be better represented and simulated when related to shallow saturated storage dynamics.Item Development of a Snowmelt Runoff Model for the Lower Smoky River(Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, 2013) Pomeroy, John W.; Shook, Kevin; Fang, Xing; Brown, Tom; Marsh, ChristopherThe Smoky River tributary of the Peace River has an ungauged (in real-time) basin area of 23,769 km2, corresponding to 46% of its basin area of 51,839 km2 . The purpose of this study was to develop a model to simulate the daily spring ungauged flows of the Smoky River and its main tributary, the Little Smoky River for recent periods using measured meteorological data and forecast periods using the outputs of a numerical weather forecast model. A physically-based model of the ungauged local flows contributing to the Smoky River at Watino and the Little Smoky River at Guy, the Lower Smoky River Model (LSRM), was developed using the CRHM platform. The model was deployed to 26 ungauged sub-basins, from which discharges were routed and accumulated to produce the ungauged discharges at Guy and Watino. The LSRM modelled discharge was evaluated to estimate the discharge of the Smoky River and Little Smoky River in an operational setting with measured meteorological observations. Results from this comparison were very good with a high degree of hydrograph predictability, small bias in flow estimation, and very good prediction of peak daily discharge and excellent prediction of the timing of peak daily discharge. The results were somewhat better for the Smoky River than for the Little Smoky River, showing the effect of increasing basin size in compensating for inadequate precipitation observation density and/or errors in model structure or parameterization. The model has not yet been tested in an operational setting during a spring snowmelt event and its full capabilities and usefulness cannot be assessed until it has been tested in such a setting.Item Informing the Vermilion River Watershed Plan through Application of the Cold Regions Hydrological Model Platform(Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, 2012) Pomeroy, John W.; Fang, Xing; Shook, Kevin; Westbrook, Cherie; Brown, TomThe Vermilion River Basin has been identified as one of most altered basins in the North Saskatchewan River Basin by the North Saskatchewan Watershed Alliance. Of all the basin altering activities, wetland drainage is thought to be the most important one in impacting watershed hydrology. The Cold Regions Hydrological Model (CRHM) has had recent developments that make it particularly appropriate to evaluate the impacts of Canadian Prairie wetlands on hydrology. In light of the importance of wetlands in the Vermilion River Basin and the capability of CRHM, this study had five objectives: 1) Setup CRHM for the Vermilion River Basin and conduct preliminary tests using local meteorological data. 2) Develop an improved wetland module that incorporates the dynamics of drained wetland complexes in the physically based, modular Prairie Hydrological Model of CRHM. 3) Refine CRHM results using advances in the improved wetland module, additional parameter data and other adjustments as necessary. 4) Demonstrate scenarios/sensitivity of landscape components such as wetlands and uplands to support planning decisions and make recommendations for land and watershed management. 5) Apply CRHM results to fortify recommendations and support decision making during initial plan implementation. The objectives were addressed with the following methodology. Existing data on precipitation, hydrometeorology, wetland characteristics, stage and extent, drainage pattern and land cover in the Vermilion River Basin were compiled. The existing CRHM Prairie Hydrological Model formulation was set up on the basin and test runs conducted and compared to streamflow hydrographs over multiple years. Then, improvements to the Prairie Hydrological Model formulation of CRHM were made so that CRHM could simulate sequences of many wetlands of varying sizes. The improved model was evaluated through hydrological simulation and quantitative analysis of streamflow and then used in sensitivity analysis of the effect of changing wetland drainage/restoration on streamflow for the Vermilion River. The model was then used to evaluate wetland manipulation and climate scenarios to fortify recommendations, explore options and support decision making for the implementation of the Vermilion watershed plan. The streamflow response of the Vermilion River Basin at its mouth was found to be dominated by channel hydraulics and the control structures in the lower basin and so it is influenced by wetlands only to the extent that the management regime of these control structures is affected by upstream hydrological behaviour of the tributaries with respect to volume and timing of streamflow inputs to the structures. Changes in the upper basin streamflows are more likely to be controlled by changes in the basin hydrological processes rather than in-stream water management and/or channel modifications and therefore the upper basin streamflows are more likely to show the effects of the manipulation of wetland storage.Item Measuring prairie snow water equivalent with combined UAV-borne gamma spectrometry and lidar(European Geosciences Union, 2024) Harder, Philip; Helgason, Warren; Pomeroy, John W.Despite decades of effort, there remains an inability to measure snow water equivalent (SWE) at high spatial resolutions using remote sensing. Passive gamma ray spectrometry is one of the only well-established methods to reliably remotely sense SWE, but airborne applications to date have been limited to observing kilometre-scale areal averages. Noting the increasing capabilities of unoccupied aerial vehicles (UAVs) and miniaturization of passive gamma ray spectrometers, this study tested the ability of a UAV-borne gamma spectrometer and concomitant UAV-borne lidar to quantify the spatial variability of SWE at high spatial resolutions. Gamma and lidar observations from a UAV (UAV-gamma and UAV-lidar) were collected over two seasons from shallow, wind-blown, prairie snowpacks in Saskatchewan, Canada, with validation data collected from manual snow depth and density observations. A fine-resolution (0.25 m) reference dataset of SWE, to test UAV-gamma methods, was developed from UAV-lidar snow depth and snow survey snow density observations. The ability of UAV-gamma to resolve the areal average and spatial variability of SWE was promising with appropriate flight characteristics. Survey flights flown at a velocity of 5 m s−1, altitude of 15 m, and line spacing of 15 m were unable to capture the average or spatial variability of SWE within the uncertainty of the reference dataset. Slower, lower, and denser flight lines at a velocity of 4 m s−1, altitude of 8 m, and line spacing of 8 m were able to successfully observe areal average SWE and its variability at spatial resolutions greater than 22.5 m. Using a combination of UAV-based gamma SWE and UAV-based lidar snow depth improved the spatial representation of SWE substantially and permitted estimation of SWE at a spatial resolution 0.25 m with a ± 14.3 mm error relative to the reference SWE dataset. UAV-borne gamma spectrometry to estimate SWE is a promising and novel technique that has the potential to improve the measurement of shallow prairie snowpacks, and when combined with UAV-borne lidar snow depths, can provide fine-resolution, high-accuracy estimates of prairie SWE. Research on optimal hardware, data processing, and interpolation techniques is called for to further improve this remote sensing product and explore its application in other environments.Item Modelling the regional sensitivity of snowmelt, soil moisture, and streamflow generation to climate over the Canadian Prairies using a basin classification approach(Hydrology and Earth System Sciences, 10/9/2023) He, Zhihua; Shook, Kevin; Spence, Christopher; Pomeroy, John W.; Whitfield, ColinThis study evaluated the effects of climate perturbations on snowmelt, soil moisture, and streamflow generation in small Canadian Prairies basins using a modelling approach based on classification of basin biophysical characteristics. Seven basin classes that encompass the entirety of the Prairies Ecozone in Canada were determined by cluster analysis of these characteristics. Individual semi-distributed virtual basin (VB) models representing these classes were parameterized in the Cold Regions Hydrological Model (CRHM) platform, which includes modules for snowmelt and sublimation, soil freezing and thawing, actual evapotranspiration (ET), soil moisture dynamics, groundwater recharge, and depressional storage dynamics including fill and spill runoff generation and variable connected areas. Precipitation (P) and temperature (T) perturbation scenarios covering the range of climate model predictions for the 21st century were used to evaluate climate sensitivity of hydrological processes in individual land cover and basin types across the Prairies Ecozone. Results indicated that snow accumulation in wetlands had a greater sensitivity to P and T than that in croplands and grasslands in all basin types. Wetland soil moisture was also more sensitive to T than the cropland and grassland soil moisture. Jointly influenced by land cover distribution and local climate, basin-average snow accumulation was more sensitive to T in the drier and grassland-characterized basins than in the wetter basins dominated by cropland, whilst basin-average soil moisture was most sensitive to T and P perturbations in basins typified by pothole depressions and broad river valleys. Annual streamflow had the greatest sensitivities to T and P in the dry and poorly connected Interior Grasslands (See Fig. 1) basins but the smallest in the wet and well-connected Southern Manitoba basins. The ability of P to compensate for warming-induced reductions in snow accumulation and streamflow was much higher in the wetter and cropland-dominated basins than in the drier and grassland-characterized basins, whilst decreases in cropland soil moisture induced by the maximum expected warming of 6 ∘C could be fully offset by a P increase of 11 % in all basins. These results can be used to (1) identify locations which had the largest hydrological sensitivities to changing climate and (2) diagnose underlying processes responsible for hydrological responses to expected climate change. Variations of hydrological sensitivity in land cover and basin types suggest that different water management and adaptation methods are needed to address enhanced water stress due to expected climate change in different regions of the Prairies EcozoneItem Predicting Hydrological Change in an Alpine Glacierized Basin and Its Sensitivity to Landscape Evolution and Meteorological Forcings(Wiley, 2023-08-20) Aubry-Wake, Caroline; Pomeroy, John W.Shifting precipitation patterns, a warming climate, changing snow dynamics and retreating glaciers are occurring simultaneously in glacierized mountain headwaters. To predict future hydrological behavior in an exemplar glacierized basin, a spatially distributed, physically based cold regions process hydrological model including on and off-glacier process representations was applied to the Peyto Glacier Research Basin in the Canadian Rockies. The model was forced with bias-corrected outputs from a high-resolution Weather and Research Forecasting (WRF-PGW) atmospheric simulation for 2000–2015, and under pseudo-global warming for 2085–2100 under a business-as-usual climate change scenario. The simulations show that the end-of-century increase in precipitation nearly compensates for the decreased ice melt associated with almost complete deglaciation, resulting in a decrease in annual streamflow of 7%. However, the timing of streamflow advances drastically, with peak flow shifting from July to June, and August streamflow dropping by 68%. To examine the sensitivity of future hydrology to possible future drainage basin biophysical attributes, the end-of-century simulations were run under a range of initial conditions and parameters and showed the highest sensitivity to initial ice volume and surface water storage capacity. This comprehensive examination suggests that hydrological compensation between declining icemelt and increasing rainfall and snowmelt runoff as well as between deglaciation and increasing basin depressional storage capacity play important roles in determining future streamflow in a rapidly deglaciating high-mountain environment. Conversely, afforestation and soil development had relatively smaller impacts on future hydrology