Browsing by Author "Wilson, Lee"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Cu(II) Ion Adsorption by Aniline Grafted Chitosan and Its Responsive Fluorescence Properties(MDPI, 2020-02-26) Vafakish, Bahareh; Wilson, LeeThe detection and removal of heavy metal species in aquatic environments is of continued interest to address ongoing efforts in water security. This study was focused on the preparation and characterization of aniline grafted chitosan (CS-Ac-An), and evaluation of its adsorption properties with Cu(II) under variable conditions. Materials characterization provides support for the grafting of aniline onto chitosan, where the kinetic and thermodynamic adsorption properties reveal a notably greater uptake (>20-fold) of Cu(II) relative to chitosan, where the adsorption capacity (Qm) of CS-Ac-An was 106.6 mg/g. Adsorbent regeneration was demonstrated over multiple adsorption-desorption cycles with good uptake efficiency. CS-Ac-An has a strong fluorescence emission that undergoes prominent quenching at part per billion levels in aqueous solution. The quenching process displays a linear response over variable Cu(II) concentration (0.05–5 mM) that affords reliable detection of low level Cu(II) levels by an in situ “turn-off” process. The tweezer-like chelation properties of CS-Ac-An with Cu(II) was characterized by complementary spectroscopic methods: IR, NMR, X-ray photoelectron (XPS), and scanning electron microscopy (SEM). The role of synergistic effects are inferred among two types of active adsorption sites: electron rich arene rings and amine groups of chitosan with Cu(II) species to afford a tweezer-like binding modality.Item Valorization of Eggshell as Renewable Materials for Sustainable Biocomposite Adsorbents—An Overview(MDPI, 2024-10-08) Babalola, Bolanle; Wilson, LeeThe production and buildup of eggshell waste represents a challenge and an opportunity. The challenge is that uncontrolled disposal of generated eggshell waste relates to a sustainability concern for the environment. The opportunity relates to utilization of this biomass resource via recycling for waste valorization, cleaner production, and development of a circular economy. This review explores the development of eggshell powder (ESP) from eggshell waste and a coverage of various ESP composite sorbents with an emphasis on their potential utility as adsorbent materials for model pollutants in solid–liquid systems. An overview of literature since 2014 outlines the development of eggshell powder (ESP) and ESP composite adsorbents for solid–liquid adsorption processes. The isolation and treatment of ESP in its pristine or modified forms by various thermal or chemical treatments, along with the preparation of ESP biocomposites is described. An overview of the physico-chemical characterization of ESP and its biocomposites include an assessment of the adsorption properties with various model pollutants (cations, anions, and organic dyes). A coverage of equilibrium and kinetic adsorption isotherm models is provided, along with relevant thermodynamic parameters that govern the adsorption process for ESP-based adsorbents. This review reveals that ESP biocomposite adsorbents represent an emerging class of sustainable materials with tailored properties via modular synthetic strategies. This review will serve to encourage the recycling and utilization of eggshell biomass waste and its valorization as potential adsorbent systems. The impact of such ESP biosorbents cover a diverse range of adsorption-based applications from environmental remediation to slow-release fertilizer carrier systems in agricultural production.