Finance and Management Science
Permanent URI for this collection
Browse
Browsing Finance and Management Science by Subject "flow shop scheduling"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A particle swarm optimisation for the no-wait flow shop problem with due date constraints.(International Journal of Production Research, 2016) Samarghandi, HamedThis paper considers the no-wait flow shop scheduling problem with due date constraints. In the no-wait flow shop problem, waiting time is not allowed between successive operations of jobs. Moreover, a due date is associated with the completion of each job. The considered objective function is makespan. This problem is proved to be strongly NP-Hard. In this paper, a particle swarm optimisation (PSO) is developed to deal with the problem. Moreover, the effect of some dispatching rules for generating initial solutions are studied. A Taguchi-based design of experience approach has been followed to determine the effect of the different values of the parameters on the performance of the algorithm. To evaluate the performance of the proposed PSO, a large number of benchmark problems are selected from the literature and solved with different due date and penalty settings. Computational results confirm that the proposed PSO is efficient and competitive; the developed framework is able to improve many of the best-known solutions of the test problems available in the literature.Item Studying the effect of server side constraints on the makespan of the no-wait flow shop problem with sequence dependent setup times.(International Journal of Production Research, 2015) Samarghandi, HamedThis paper deals with the problem of scheduling the no-wait flow-shop system with sequence-dependent set-up times and server side-constraints. No-wait constraints state that there should be no waiting time between consecutive operations of jobs. In addition, sequence-dependent set-up times are considered for each operation. This means that the set-up time of an operation on its respective machine is dependent on the previous operation on the same machine. Moreover, the problem consists of server side-constraints i.e. not all machines have a dedicated server to prepare them for an operation. In other words, several machines share a common server. The considered performance measure is makespan. This problem is proved to be strongly NP-Hard. To deal with the problem, two genetic algorithms are developed. In order to evaluate the performance of the developed frameworks, a large number of benchmark problems are selected and solved with different server limitation scenarios. Computational results confirm that both of the proposed algorithms are efficient and competitive. The developed algorithms are able to improve many of the best-known solutions of the test problems from the literature. Moreover, the effect of the server side-constraints on the makespan of the test problems is explained using the computational results.