University of SaskatchewanHARVEST
  • Login
  • Submit Your Research
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Stability Analysis and Neuro-control of Nonlinear Systems: a Dynamic Pole Motion Approach

      Thumbnail
      View/Open
      MAJUMDAR-THESIS-2019.pdf (4.267Mb)
      Date
      2019-01-23
      Author
      Majumdar, Hasan 1990-
      ORCID
      0000-0002-6338-799X
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      In a linear time-invariant system, the parameters are constant thereby poles are static. However, in a linear time-varying system since the parameters are a function of time, therefore, the poles are not static rather dynamic. Similarly, the parameters of a nonlinear system are a function of system states, and that makes nonlinear system poles dynamic in the complex plane. The location of nonlinear system poles are a function of system states explicitly and time implicitly. Performance characteristics of a dynamic system, e.g., stability conditions and the quality of response depend on the location of dynamic poles in the complex plane. In this thesis, a dynamic pole motion in the complex g-plane based approach is established to enhance the performance characteristics of a nonlinear dynamic system. g-plane is a three-dimensional complex plane. The stability approach, initiated by Sahu et al. (2013), was an exertion of the dynamic Routh's stability criterion by constructing a dynamic Routh's array to examine the absolute stability of a nonlinear system in time domain. This thesis extends the work to investigate the relative stability as well as stability in the frequency domain with the introduction of the dynamic Nyquist and Bode plots. A dynamic Nyquist criterion together with the concept of the dynamic pole motion is developed. The locations of the dynamic poles are executed by drawing a dynamic root locus from the dynamic characteristic equation of a nonlinear system. The quality of the response of a nonlinear dynamic system is enhanced by using a dynamic pole motion based neuro-controller, introduced by Song et al. (2011). In this thesis, we give a more comprehensive descriptions of the neuro-controller design techniques and illustrate the neuro-controller design approach with the help of several nonlinear dynamic system examples. The controller parameters are a function of the error, and continually relocate the dynamic poles in the complex g-plane to assure a higher bandwidth and lower damping for larger errors and lower bandwidth and larger damping for smaller errors. Finally, the theoretical concepts are further corroborated by simulation results.
      Degree
      Master of Science (M.Sc.)
      Department
      Mechanical Engineering
      Program
      Mechanical Engineering
      Supervisor
      Gupta, Madan M.; Zhang, W. J. (Chris)
      Committee
      Fotouhi, Reza; Wiens, Travis; Bui, Francis
      Copyright Date
      January 2019
      URI
      http://hdl.handle.net/10388/11790
      Subject
      Dynamic Pole Motion, Neuro-control, Dynamic Root Locus, Stability Analysis, Nonlinear Dynamic Systems, Dynamic Routh's Criterion, Dynamic Nyquist and Dynamic Bode Plots
      Collections
      • Graduate Theses and Dissertations

      Related items

      Showing items related by title, author, creator and subject.

      • Decision Trees for Dynamic Decision Making And System Dynamics Modelling Calibration and Expansion 

        An, Wenyi (2014-09-11)
        Many practical problems raise the challenge of making decisions over time in the presence of both dynamic complexity and pronounced uncertainty regarding evolution of important factors that affect the dynamics of the system. ...
      • Investigation in modeling a load-sensing pump using dynamic neural unit based dynamic neural networks 

        Li, Yuwei (2007-01-03)
        Because of the highly complex structure of the load-sensing pump, its compensators and controlling elements, simulation of load-sensing pump system pose many challenges to researchers. One way to overcome some of the ...
      • "It's not a fashion statement, it's a death wish" : subcultural power dynamics, niche-media knowledge construction, and the 'emo kid' folk-devil 

        Daschuk, Mitch D. (2009)
        This thesis examines the genesis of the derogative ‘emo kid’ representation and considers the latent functions it initially served in being applied to visible categories of adolescent subculturalists on the behalf of ...
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy