University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      PREDICTING DEMAND-RESPONSIVE TRANSIT SCHEDULE VARIATIONS USING NEURAL NETWORKS

      Thumbnail
      View/Open
      Young_Kimberley_Allan_1996_sec.pdf (7.218Mb)
      Date
      1996-11
      Author
      Young, Kimberley Allan
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Scheduling and dispatching procedures in transit systems have been increasingly automated, resulting in higher efficiencies and reliability. However, automated systems often lack the flexibility to adapt to external changes. The problem becomes more acute with transit systems that provide demand responsive service. The project described in this thesis considered the use of an artificial neural network to assist in determining the impact of external factors on the demand service scheduling system operated by the Saskatchewan Abilities Council. The study focused on two primary external variables, the effect of weather, and the time and date. The neural network was designed to provide an indication of expected schedule deviation for the transit system. The components of an acquisition system that would acquire and process data from a weather station and from either real time or stored bus data were determined. The acquisition system's main components were developed, consisting primarily of processing software that extracted and formatted weather and bus data for a neural network. An initial simulation showed that the neural network approach was viable. Additional simulations, using training data based on representative conditions, indicated that the neural network learned well and predicted schedule impacts on previously unseen data with a mean absolute error of less than 2%. The neural network approach has been shown to be very promising for the application of determining weather and time impacts on transit schedules.
      Degree
      Master of Science (M.Sc.)
      Department
      Electrical and Computer Engineering
      Program
      Electrical Engineering
      Supervisor
      Wood, H. C.
      Copyright Date
      December 1996
      URI
      http://hdl.handle.net/10388/11848
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy