University of SaskatchewanHARVEST
  • Login
  • Submit Your Research
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Design and Analysis of Booms for Wheeled Mobile Platform for Crop Phenotyping

      Thumbnail
      View/Open
      ZHANG-THESIS-2018.pdf (5.727Mb)
      Date
      2019-02-11
      Author
      Zhang, QianWei 1989-
      ORCID
      0000-0001-8924-7998
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Crop phenotyping is frequently used by breeders and crop scientists to monitor the growth of plants and to relate them to genotypes of plants. Seemingly, this contributes to better crop growth and results in higher yield in solving food insecurity from growing world population. Instead of traditional crop monitoring, which is labor intensive, high-throughput phenotyping (HTP) using ground-based vehicle has several advantages over manual methods. Equipped with advanced sensors, the high-throughput phenotyping platforms quickly, accurately, and automatically, measure and record plant traits, such as appearance, height, and temperature. Although there have been many studies on plant phenotyping, there is still needs for ground-based HTP platform to perform accurate phenotyping on targeted crops (e.g. canola and wheat). Previous studies using ground-based HTP platforms focus primarily on leafy plants rather than densely cultivated crops. Besides, the previous platforms are designed for specific vehicles or sensors, and they are inappropriate for canola or wheat, which are targeted crops of this study. In this research, the main objective is to develop appropriate mechanical structures that are attached to different wheeled mobile platforms for HTP study. Using sensors attached to these mechanical booms, data are collected automatically for several traits such as height, temperature, greenness, and photos. These collected data are compared with manual measured data to evaluate the performance of the system, including suitability of mechanical structure. Three generations of the HTP platform are developed. The 1st and 2nd generation booms with simple structures use C-channel as the key component. While developing these booms, the stress, deformation, and vibration, are assessed with the finite element analysis (FEA). Meanwhile, it is necessary to understand the actual vibration pattern of these relatively long cantilever beams when attached to moving vehicles; however, previous research have little or limited investigation on vibrations influence on long booms in a farm setting. Thus, part of this research investigates how different factors, such as vehicle selection, vehicle speed, sensor locations, and road conditions, influence the boom attached to a farm machine, its vibration, and its effects on sensors performance for phenotyping. Then, an ideal operating conditions for HTP were obtained. The measurements from sensors confirm that the proposed mechanical structures and their ideal operating conditions are fulfilling the requirements for accurate sensor measurements. Finally, the 3rd generation boom/robotic arm featured of a hybrid structure is proposed and analyzed for its kinematics and dynamics suitability. Through the calculation and simulation, it shows that this robotic arm meets the requirements, including long-reach and high-payload capability, while maintaining a lightweight and relatively compact size after folding. Moreover, comparing results from path planning routines between Newton-Euler iterative method and simulations, it illustrates that they correlate well.
      Degree
      Master of Science (M.Sc.)
      Department
      Mechanical Engineering
      Program
      Mechanical Engineering
      Supervisor
      Fotouhi, Reza
      Committee
      Zhang, Chris; Moazed, Reza; Boulfiza, Moh
      Copyright Date
      December 2018
      URI
      http://hdl.handle.net/10388/11875
      Subject
      Plant phenotyping
      phenotyping booms
      robotic arm
      vibration analysis
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy