University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      THE EFFECTS OF DEGRADING PERINEURONAL NETS IN THE MEDIAL PREFRONTAL AND POSTERIOR PARIETAL CORTICES ON THE SPATIAL WORKING MEMORY OF RATS

      Thumbnail
      View/Open
      ANDERSON-THESIS-2019.pdf (10.35Mb)
      Date
      2019-09-10
      Author
      Anderson, Michael David 1995-
      ORCID
      0000-0002-3872-8406
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Perineuronal nets (PNNs) are specialized extracellular matrix structures that surround subsets of neurons in the central nervous system (CNS). They help in maintaining a stable excitatory-inhibitory balance in the brain, and the adult loss of PNNs can lead to a period of increased synaptic plasticity. Furthermore, the loss of PNNs can affect cortical networks and influence learning, memory, and cognition. The aim of this thesis was to test the effect that degrading PNNs in the medial prefrontal (mPFC) and posterior parietal (PPC) cortices had on spatial working memory (WM). To do this, the spatial WM of Long-Evans rats was measured using the trial unique, delayed nonmatching-to-location (TUNL) task in touchscreen-equipped operant conditioning chambers. Rats were trained in this task and then assigned to either a penicillinase (PEN) control or chondroitinase ABC (ChABC) treatment. ChABC is an enzyme that compromises the structure of PNNs by degrading one of their major components: chondroitin sulfate proteoglycans (CSPGs). Surgeries were performed to infuse these enzymes into the medial prefrontal cortex (mPFC) in a first set of rats and into the posterior parietal cortex (PPC) in a second set of rats. All rats were trained under a standard 6 s delay and then tested under 4 conditions: a 6 s delay, a variable 2 s or 6 s delay, a 2 s delay with a 1s inter-trial interval (interference condition), and a 20 s delay. Rats that received mPFC ChABC infusions initially performed better than controls in the 20 s delay condition, but did not perform any differently in any of the other three conditions. Rats that received PPC ChABC infusions did not perform significantly differently from controls in any condition. Immunohistochemical analysis confirmed that CSPGs were degraded in both cortical regions. This suggests that PNNs in the mPFC are involved in learning a novel delay in a spatial WM task, but that they are not essential for general spatial WM function. Furthermore, it appears that PNNs in the PPC are not involved in spatial WM. Ultimately, these findings contribute to a growing body of literature that explores how cortical PNNs are involved in cognition.
      Degree
      Master of Science (M.Sc.)
      Department
      Physiology
      Program
      Physiology
      Supervisor
      Howland, John G
      Committee
      Baillie, Landon; Ianowski, Juan; Borowsky, Ron
      Copyright Date
      August 2019
      URI
      http://hdl.handle.net/10388/12299
      Subject
      perineuronal nets
      Chondroitinase ABC
      medial prefrontal cortex
      posterior parietal cortex
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy